WO2024004284A1 - Gear and robot - Google Patents

Gear and robot Download PDF

Info

Publication number
WO2024004284A1
WO2024004284A1 PCT/JP2023/009697 JP2023009697W WO2024004284A1 WO 2024004284 A1 WO2024004284 A1 WO 2024004284A1 JP 2023009697 W JP2023009697 W JP 2023009697W WO 2024004284 A1 WO2024004284 A1 WO 2024004284A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
blades
resin
circumferential direction
group
Prior art date
Application number
PCT/JP2023/009697
Other languages
French (fr)
Japanese (ja)
Inventor
隆平 黒川
地人 倉田
良尚 高橋
耕太郎 森
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024004284A1 publication Critical patent/WO2024004284A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels

Definitions

  • the present disclosure relates to gears and robots.
  • Patent Document 1 discloses a resin gear.
  • An objective of the present disclosure is to allow gears to be cooled without increasing cost or weight.
  • a center portion formed with a shaft or a shaft hole for attaching the shaft; an outer periphery in which multiple teeth are formed;
  • a gear comprising: a connecting portion connecting the center portion and the outer peripheral portion, the connecting portion having a plurality of blades formed therein.
  • gears can be cooled while suppressing increases in cost or weight.
  • FIG. 2 is a perspective view of a gear according to an embodiment of the present disclosure.
  • FIG. 2 is a plan view of a gear according to an embodiment of the present disclosure.
  • FIG. 2 is a side view of a gear according to an embodiment of the present disclosure.
  • FIG. 3 is a bottom view of a gear according to an embodiment of the present disclosure.
  • FIG. 7 is a perspective view of a gear according to a modification of the embodiment of the present disclosure.
  • the plane parallel to the top and bottom surfaces of the gear 10 is the XY plane, and the axis parallel to the central axis of the gear 10 is the Z axis.
  • the surfaces shown in FIGS. 2 and 4 of the gear 10 are referred to as the top surface and the bottom surface, respectively; however, they may be regarded as the bottom surface and the top surface, the front surface and the back surface, or the back surface and the front surface, respectively. or may be considered as a side and an opposite side.
  • the surface of the gear 10 shown in FIG. 3 is a side surface, it may be regarded as another surface.
  • the gear 10 is made of resin in this embodiment, it may be made of metal. Although any resin may be used as the resin, in this embodiment, polyarylene sulfide (PAS) resin such as polyphenylene sulfide (PPS) resin is used.
  • PAS polyarylene sulfide
  • PPS polyphenylene sulfide
  • the gear 10 includes a center portion 20, an outer peripheral portion 30, and a connecting portion 40 that connects the center portion 20 and the outer peripheral portion 30.
  • a shaft hole 21 for attaching a shaft is formed in the center portion 20.
  • a plurality of teeth 31 are formed on the outer peripheral portion 30 .
  • a plurality of blades are formed in the connecting portion 40.
  • the number of blades may be any number, but in this embodiment, it is six. That is, six blades 41A, 41B, 41C, 41D, 41E, and 41F are formed in the connecting portion 40 as a plurality of blades.
  • the gear 10 may be any type of gear, but in this embodiment it is a spur gear, the center part 20 is a cylindrical hub, the outer peripheral part 30 is an annular rim, and the connecting part 40 connects the hub and the rim. It's on the web.
  • the gear 10 may be a gear with an integrated shaft, and in such a case, a shaft is formed in the center portion 20 instead of the shaft hole 21.
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F are raised obliquely to the radial direction of the gear 10 in a direction common to each blade in the circumferential direction of the gear 10 on one end side in the axial direction of the gear 10. There is. Therefore, when the gear 10 rotates, the gas or fluid at one end in the axial direction of the gear 10 is stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a cooling effect can be automatically obtained.
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F are arranged in a direction common to each blade in the circumferential direction of the gear 10 with respect to the radial direction of the gear 10, even on the other end side of the gear 10 in the axial direction. It rises diagonally.
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F are oriented at the other end of the gear 10 in the axial direction in the circumferential direction of the gear 10 in a direction opposite to the one end of the gear 10 in the axial direction. It rises obliquely with respect to the radial direction of the gear 10. Therefore, when the gear 10 rotates, the gas or fluid at the other end in the axial direction of the gear 10 is stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a cooling effect can be automatically obtained.
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F protrude to a position higher than the end surface 32 of the outer peripheral portion 30 at one end of the gear 10 in the axial direction. Therefore, when the gear 10 rotates, the gas or fluid at one end in the axial direction of the gear 10 is sufficiently stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a desired cooling effect can be obtained.
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F further protrude to a position higher than the end surface 22 of the center portion 20 at one end of the gear 10 in the axial direction.
  • the height dimension D3 of the portion of each blade that protrudes in the axial direction beyond the end surface 32 of the rim is larger than the difference D1 in height between the end surface 22 of the hub and the end surface 32 of the rim.
  • the height dimension D3 of the portion of each blade that protrudes axially beyond the end surface 32 of the rim is preferably smaller than the rim thickness dimension D0, and in this embodiment is less than half of the rim thickness dimension D0. .
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F also protrude to a position higher than the end surface 33 of the outer peripheral portion 30 on the other end side of the gear 10 in the axial direction. Therefore, when the gear 10 rotates, the gas or fluid at the other end in the axial direction of the gear 10 is sufficiently stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a desired cooling effect can be obtained.
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F further protrude to a position higher than the end surface 23 of the center portion 20 at the other end of the gear 10 in the axial direction.
  • the height dimension D4 of the portion of each blade that protrudes in the axial direction from the end surface 33 of the rim is larger than the difference D2 in height between the end surface 23 of the hub and the end surface 33 of the rim.
  • the height dimension D4 of the portion of each blade that protrudes in the axial direction beyond the end surface 33 of the rim is preferably smaller than the rim thickness dimension D0, and in this embodiment is less than half of the rim thickness dimension D0. .
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F do not necessarily have to protrude to a position higher than the end surface 32 of the outer circumferential portion 30 on one end side in the axial direction of the gear 10; 32 or at a position lower than the end surface 32 of the outer peripheral portion 30, a certain cooling effect can be achieved.
  • the blades 41A, 41B, 41C, 41D, 41E, and 41F do not necessarily have to protrude to a position higher than the end surface 33 of the outer circumferential portion 30 on the other end side of the gear 10 in the axial direction.
  • a certain cooling effect can be achieved even at the same height as the end surface 32 or at a position lower than the end surface 32 of the outer peripheral part 30.
  • both ends of the blades 41A, 41B, 41C, 41D, 41E, and 41F in the radial direction of the gear 10 are directly connected to the center portion 20 and the outer peripheral portion 30, respectively. Therefore, even within the limited area of the connecting portion 40, the blade size can be applied to obtain the desired cooling capacity.
  • through holes are formed between blades of the connecting portion 40 that are adjacent to each other in the circumferential direction of the gear 10. Specifically, as shown in FIGS. 2 and 4, between the blades 41A and 41B of the connecting portion 40, between the blades 41B and 41C, between the blades 41C and 41D, between the blades 41D and 41E, and between the blades 41E, Through holes 42A, 42B, 42C, 42D, 42E, and 42F are formed between 41F and between blades 41F and 41A, respectively. Therefore, gas or fluid at one end of the gear 10 in the axial direction can flow into the other end of the gear 10 in the axial direction, and vice versa. Therefore, cooling capacity is improved.
  • the plurality of blades of the connecting portion 40 includes only one group of blades arranged along the circumferential direction of the gear 10, but as a modified example of the present embodiment, as shown in FIG.
  • the blades may further include one or more other groups of blades arranged along the circumferential direction of the gear 10 outside the first group of blades in the radial direction of the gear 10.
  • six blades 41A, 41B, 41C, 41D, 41E, and 41F are lined up along the circumferential direction as one group of blades.
  • six blades 43A, 43B, 43C, 43D, 43E, 43F may be arranged along the circumferential direction.
  • the outer blades 43A, 43B, 43C, 43D, 43E, 43F may be directly connected to the inner blades 41A, 41B, 41C, 41D, 41E, 41F, but in this modification, the inner blades 41A, 41B, 41C, 41D, 41E, and 41F via an annular bridge 44.
  • the outer blades 43A, 43B, 43C, 43D, 43E, and 43F may be aligned with the inner blades 41A, 41B, 41C, 41D, 41E, and 41F in the circumferential direction, but in this modification, The circumferential position is shifted from that of the blades 41A, 41B, 41C, 41D, 41E, and 41F. Specifically, the outer blades 43A, 43B, 43C, 43D, 43E, and 43F are located between the inner blades 41A and 41B, between the inner blades 41B and 41C, and between the inner blades 41C and 41D in the circumferential direction, respectively.
  • the gear 10 can be applied to a robot gear, for example. That is, according to this embodiment, a robot including the gear 10 can be provided.
  • the robot is, for example, a nursing care robot, a marine debris collection robot, or a medical surgical robot.
  • the gear 10 may be applied to a drone propeller driving gear.
  • the gear 10 corresponds to a resin molded product.
  • the resin used in this embodiment is preferably a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, but includes, for example, polyolefin resins such as polypropylene, polyethylene, and polybutene; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyamides such as nylon-6 and nylon 6,6.
  • thermoplastic polyimide resin polyamide-imide resin
  • polystyrene resin such as polystyrene, syndiotactic polystyrene, acrylonitrile-styrene copolymer resin or acrylonitrile-butadiene-styrene copolymer resin
  • polyphenylene sulfide Polyarylene sulfide resins such as; polyphenylene ether resins; polyurethane resins; polylactic acid; polyether ether ketone resins; polyetherimide resins; polyketone resins; Arylate resin; examples include liquid crystal polyester resin.
  • thermoplastic resins used in this embodiment include thermoplastic polyimide resins, polyamideimide resins, and polyarylene sulfides, which are so-called engineering plastics or super engineering plastics that have excellent heat resistance, mechanical properties, etc.
  • Preferred are polyphenylene ether resins, polyether ether ketone resins, polyetherimide resins, polyketone resins, polyarylate resins, and liquid crystalline polyester resins.
  • Arylene sulfide resins are more preferred, and among polyarylene sulfide resins (hereinafter also referred to as "PAS resins”), polyphenylene sulfide (hereinafter also referred to as "PPS resins”) resins are particularly preferred.
  • the above resin may be used alone or in the form of a polymer alloy in which a plurality of the above resins are mixed.
  • the resin according to the present embodiment may include optional additive components (fillers, colorants, antistatic agents, antioxidants, heat stabilizers, ultraviolet stabilizers, ultraviolet absorbers, foaming agents, flame retardants, etc.) described below as necessary. It may be in the form of a composition containing a flame retardant aid, a rust preventive, a coupling agent, a silane coupling agent, a thermoplastic elastomer, or a synthetic resin.
  • Polyarylene sulfide resin has a resin structure in which the repeating unit is a structure in which an aromatic ring and a sulfur atom are bonded, and specifically, it has a structural part represented by the following general formula (1) and the necessary It is a resin having as a repeating unit a trifunctional structural moiety represented by the following general formula (2) according to the following.
  • R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.
  • the trifunctional structural moiety represented by formula (2) preferably ranges from 0.001 to 3 mol%, particularly from 0.01 to 1 mol%, based on the total number of moles with other structural moieties. It is preferable that
  • R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of mechanical strength of the PAS resin, in which case, Examples include those bonded at the para position represented by the following formula (3), and those bonded at the meta position represented by the following formula (4).
  • the structure in which the sulfur atom is bonded to the aromatic ring in the repeating unit at the para position represented by the above general formula (3) is particularly important in terms of heat resistance and crystallinity of the above PAS resin. preferable.
  • the above PAS resin has not only the structural moieties represented by the above general formulas (1) and (2), but also the structural moieties represented by the following structural formulas (5) to (8), the above general formula ( It may be contained in an amount of 30 mol% or less of the total of 1) and the structural moiety represented by general formula (2).
  • the structural moieties represented by the above general formulas (5) to (8) be 10 mol % or less from the viewpoint of heat resistance and mechanical strength of the PAS resin.
  • their bonding mode may be either a random copolymer or a block copolymer.
  • the above PAS resin may have a naphthyl sulfide bond or the like in its molecular structure, but it is preferably 3 mol% or less, particularly 1 mol% or less, based on the total number of moles with other structural parts. It is preferable that it is below.
  • the physical properties of the PAS resin are not particularly limited as long as they do not impair the effects of this embodiment, but are as follows.
  • melt viscosity The melt viscosity of the PAS resin is not particularly limited, but the melt viscosity (V6) measured at 300 ° C. is preferably in the range of 2 Pa ⁇ s or more, because it provides a good balance between fluidity and mechanical strength. is in the range of 1000 Pa ⁇ s or less, more preferably in the range of 500 Pa ⁇ s or less, even more preferably in the range of 200 Pa ⁇ s or less.
  • the non-Newtonian index of the PAS resin is not particularly limited, but is preferably in the range of 0.90 or more and 2.00 or less.
  • the non-Newtonian index is preferably in the range of 0.90 or more, more preferably in the range of 0.95 or more, and preferably in the range of 1.50 or less, more preferably 1 It is in the range of .20 or less.
  • Such polyarylene sulfide resin has excellent mechanical properties, fluidity, and abrasion resistance.
  • the non-Newtonian exponent (N value) is determined using a capillograph under the conditions of melting point +20°C, ratio of orifice length (L) to orifice diameter (D), and shear rate (SR) and shear stress (SS) were measured and calculated using the following formula.
  • N value the more linear the structure is, and the higher the non-Newtonian index (N value) is, the more branched the structure is.
  • SR shear rate (sec -1 )
  • SS shear stress (dynes/cm 2 )
  • K is a constant.
  • the resin used in this embodiment can contain a filler as an optional component, if necessary.
  • a filler as an optional component, if necessary.
  • these fillers known and commonly used materials can be used as long as they do not impair the effects of this embodiment. fillers, etc.
  • fibrous fillers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium silicate, wollastonite, natural fiber, etc.
  • Non-fibrous fillers can also be used for glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, glass beads, zeolite, milled fiber, calcium sulfate
  • Non-fibrous fillers can also be used.
  • the filler is not an essential component, and when blended, its content is not particularly limited as long as it does not impair the effects of this embodiment.
  • the blending amount of the filler is, for example, preferably 1 part by mass or more, more preferably 10 parts by mass or more, preferably 600 parts by mass or less, more preferably 200 parts by mass or less, per 100 parts by mass of the resin. It is. This range is preferable because the resin exhibits good mechanical strength and moldability.
  • the resin used in this embodiment may contain a silane coupling agent as an optional component, if necessary.
  • the silane coupling agent is not particularly limited as long as it does not impair the effects of this embodiment, but silane coupling agents having a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group, are preferred. It is mentioned as.
  • Examples of such silane coupling agents include epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane.
  • alkoxysilane compounds Containing alkoxysilane compounds, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldimethoxysilane , ⁇ -isocyanatopropylethyldiethoxysilane, ⁇ -isocyanatopropyltrichlorosilane and other isocyanato group-containing alkoxysilane compounds, ⁇ -(2-aminoethyl)aminopropylmethyldimethoxysilane, ⁇ -(2-aminoethyl)amino Examples include amino group-containing alkoxysilane compounds such as propyltrimethoxysilane and ⁇ -aminopropy
  • the silane coupling agent is not an essential component, but if it is blended, the amount added is not particularly limited as long as it does not impair the effects of this embodiment, but it is based on 100 parts by mass of the resin.
  • the amount ranges from preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, to preferably 10 parts by mass or less, more preferably 5 parts by mass or less. This range is preferable because the resin has good corona resistance and moldability, especially mold releasability, and the molded product exhibits excellent adhesion to the epoxy resin while further improving mechanical strength.
  • the resin used in this embodiment may contain a thermoplastic elastomer as an optional component, if necessary.
  • the thermoplastic elastomer include polyolefin elastomers, fluorine elastomers, and silicone elastomers, and among these, polyolefin elastomers are preferred.
  • the blending amount is not particularly limited as long as it does not impair the effects of this embodiment, but it is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass or more, based on 100 parts by mass of the resin (A).
  • the amount ranges from 0.1 parts by weight or more to preferably 10 parts by weight or less, more preferably 5 parts by weight or less. This range is preferable because the impact resistance of the resulting resin is improved.
  • the polyolefin elastomer may be a homopolymer of ⁇ -olefin, a copolymer of two or more ⁇ -olefins, or a copolymer of one or more ⁇ -olefins and a vinyl polymerizable compound having a functional group.
  • One example is merging.
  • the above-mentioned ⁇ -olefin includes ⁇ -olefins having a carbon atom number ranging from 2 or more to 8 or less, such as ethylene, propylene, and 1-butene.
  • Vinyl polymerizable compounds having the above-mentioned functional groups include vinyl acetate; ⁇ , ⁇ -unsaturated carboxylic acids such as (meth)acrylic acid; Alkyl esters of unsaturated carboxylic acids; metal salts of ⁇ , ⁇ -unsaturated carboxylic acids such as ionomers (metals include alkali metals such as sodium, alkaline earth metals such as calcium, zinc, etc.); ⁇ , ⁇ -unsaturated carboxylic acids such as ionomers; Glycidyl esters of ⁇ -unsaturated carboxylic acids, etc.; ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid; derivatives of the above ⁇ , ⁇ -unsaturated dicarboxylic acids (monoesters, diesters, acid anhydrides) ), etc., or two or more thereof.
  • the above-mentioned thermoplastic elastomers may be used
  • the resin used in this embodiment may further include polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, Polyethersulfone resin, polyetheretherketone resin, polyetherketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, phenolic resin, urethane Synthetic resins such as resins and liquid crystal polymers (hereinafter simply referred to as synthetic resins) can be blended as optional components.
  • synthetic resins such as resins and liquid crystal polymers
  • the above synthetic resin is not an essential component, but when blended, the proportion of the blend is not particularly limited as long as it does not impair the effects of this embodiment, and may vary depending on the purpose.
  • the proportion of the synthetic resin blended into the resin according to the present embodiment is, for example, in the range of 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the resin. Can be mentioned.
  • the ratio of resin (A) to the total of resin (A) and synthetic resin is preferably in the range of (100/115) or more, more preferably (100/105) or more, based on mass. is within the range of
  • the resin used in this embodiment also includes colorants, antistatic agents, antioxidants, heat stabilizers, ultraviolet stabilizers, ultraviolet absorbers, foaming agents, flame retardants, flame retardant aids, and rust preventive agents.
  • additives such as coupling agents may be included as optional components, if necessary.
  • These additives are not essential components, and for example, preferably in a range of 0.01 parts by mass or more, preferably in a range of 1000 parts by mass or less, per 100 parts by mass of the resin, so that the effects of the present embodiment are impaired. It may be used with appropriate adjustment according to the purpose and use.
  • the resin used in this embodiment is made by blending each essential component and other optional components as necessary.
  • Methods for producing the resin used in this embodiment include, but are not particularly limited to, a method of blending essential components and optional components as needed and melting and kneading, more specifically, using a tumbler or Henschel mixer as necessary.
  • An example of this method is to uniformly dry-mix the mixture using a dry-mixing machine, etc., and then introduce the mixture into a twin-screw extruder and melt-knead it.
  • Melt kneading is performed preferably within a temperature range in which the resin temperature is equal to or higher than the melting point of the resin, preferably in a temperature range in which the melting point is equal to or higher than the melting point +10 °C, more preferably at the melting point +10 °C or higher, still more preferably at the melting point +20 °C or higher. This can be carried out by heating to a temperature in the range of not higher than the melting point +100°C, more preferably not higher than the melting point +50°C.
  • the above-mentioned melt-kneading machine is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity. It is preferable to melt and knead while appropriately adjusting the range, and melt and knead under conditions such that the ratio (discharge amount/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). is even more preferable. Further, the addition and mixing of each component to the melt-kneading machine may be performed simultaneously or may be performed separately.
  • the position of the side feeder is preferably such that the ratio of the distance from the extruder resin input part (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and 0. More preferably, it is .3 or more. Moreover, it is preferable that this ratio is 0.9 or less, and it is more preferable that it is 0.7 or less.
  • the resin according to the present embodiment obtained by melt-kneading in this manner is a molten mixture containing the above-mentioned essential components, optional components added as necessary, and components derived from these components, and after the melt-kneading, a known method, For example, it is preferable to extrude the molten resin into a strand, process it into pellets, chips, granules, powder, etc., and then pre-dry it at a temperature range of 100 to 150°C as necessary. .
  • the molded product of this embodiment is made of resin. Furthermore, the method for manufacturing a molded article according to the present embodiment includes a step of melt-molding the resin. The details will be explained below.
  • the resin used in this embodiment can be used in various molding processes such as injection molding, gas injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding. It also has excellent mold releasability, making it suitable for injection molding applications.
  • various molding conditions are not particularly limited, and molding can be performed by a general method.
  • the resin temperature is in a temperature range equal to or higher than the melting point of the resin, preferably in a temperature range equal to or higher than the melting point +10°C, more preferably in a temperature range from melting point +10°C to melting point +100°C, and still more preferably in a temperature range from melting point +20 to melting point.
  • the resin After going through the step of melting the resin in a temperature range of +50° C., the resin may be injected into a mold through the resin discharge port and molded. At this time, the mold temperature may also be set within a known temperature range, for example, room temperature (23°C) to 300°C, preferably 120 to 180°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gears, Cams (AREA)
  • General Details Of Gearings (AREA)

Abstract

This gear (10) comprises: a center part (20) in which a shaft or a shaft hole (21) for attaching the shaft is formed; an outer peripheral part (30) in which a plurality of teeth (31) are formed; and a connection part (40) which is for connecting the center part (20) and the outer peripheral part (30), and in which a plurality of sheets of blades are formed.

Description

歯車及びロボットgears and robots
 本開示は、歯車及びロボットに関する。 The present disclosure relates to gears and robots.
 特許文献1には、樹脂製歯車が開示されている。 Patent Document 1 discloses a resin gear.
特開2020-056506号公報Japanese Patent Application Publication No. 2020-056506
 従来の歯車は、耐熱性に課題があり、冷却する必要がある。しかし、歯車を冷却する部品によってコスト及び重量が増加するという課題がある。 Conventional gears have problems with heat resistance and need to be cooled. However, there is a problem in that the components that cool the gears increase cost and weight.
 本開示の目的は、コスト又は重量の増加を抑えつつ歯車を冷却できるようにすることである。 An objective of the present disclosure is to allow gears to be cooled without increasing cost or weight.
 以下に本開示の幾つかの態様を示す。
[態様1]
 軸又は軸を取り付けるための軸穴が形成された中心部と、
 複数の歯が形成された外周部と、
 前記中心部と前記外周部とを接続する接続部であって、複数枚の羽根が形成された接続部と
を備える歯車。
[態様2]
 前記複数枚の羽根は、前記歯車の軸方向の一端側で、前記歯車の周方向において各羽根に共通の向きで前記歯車の径方向に対して斜めにせり上がっている態様1の歯車。
[態様3]
 前記複数枚の羽根は、前記歯車の軸方向の他端側で、前記歯車の周方向において前記歯車の軸方向の一端側とは逆の向きで前記歯車の径方向に対して斜めにせり上がっている態様2の歯車。
[態様4]
 前記複数枚の羽根は、前記歯車の径方向における両端がそれぞれ前記中心部及び前記外周部に直接接続している態様1から態様3のいずれか1態様の歯車。
[態様5]
 前記接続部は、前記歯車の周方向において隣り合う羽根同士の間に貫通穴が形成されている態様1から態様4のいずれか1態様の歯車。
[態様6]
 前記複数枚の羽根は、前記歯車の周方向に沿って並べられた1群の羽根を含む態様1から態様5のいずれか1態様の歯車。
[態様7]
 前記複数枚の羽根は、前記歯車の径方向において前記1群の羽根よりも外側で、前記歯車の周方向に沿って並べられた他の1群以上の羽根を更に含む態様6の歯車。
[態様8]
 ポリアリーレンスルフィド樹脂で形成された態様1から態様7のいずれか1態様の歯車。
[態様9]
 態様1から態様8のいずれか1態様の歯車を備えるロボット。
Below are some aspects of the present disclosure.
[Aspect 1]
a center portion formed with a shaft or a shaft hole for attaching the shaft;
an outer periphery in which multiple teeth are formed;
A gear comprising: a connecting portion connecting the center portion and the outer peripheral portion, the connecting portion having a plurality of blades formed therein.
[Aspect 2]
The gear according to aspect 1, wherein the plurality of blades are raised obliquely to the radial direction of the gear in a direction common to each blade in the circumferential direction of the gear, on one end side in the axial direction of the gear.
[Aspect 3]
The plurality of blades rises obliquely to the radial direction of the gear in the opposite direction from the one end in the axial direction of the gear in the circumferential direction of the gear on the other end of the gear in the axial direction. A gear according to embodiment 2.
[Aspect 4]
The gear according to any one of aspects 1 to 3, wherein both ends of the plurality of blades in the radial direction of the gear are directly connected to the center portion and the outer peripheral portion, respectively.
[Aspect 5]
The gear according to any one of aspects 1 to 4, wherein the connecting portion has a through hole formed between adjacent blades in the circumferential direction of the gear.
[Aspect 6]
The gear according to any one of aspects 1 to 5, wherein the plurality of blades include a group of blades arranged along the circumferential direction of the gear.
[Aspect 7]
The gear according to aspect 6, wherein the plurality of blades further includes one or more other groups of blades arranged along the circumferential direction of the gear, outside of the first group of blades in the radial direction of the gear.
[Aspect 8]
The gear according to any one of aspects 1 to 7, which is formed of a polyarylene sulfide resin.
[Aspect 9]
A robot comprising the gear according to any one of aspects 1 to 8.
 本開示によれば、コスト又は重量の増加を抑えつつ歯車を冷却できるようになる。 According to the present disclosure, gears can be cooled while suppressing increases in cost or weight.
本開示の実施形態に係る歯車の斜視図である。FIG. 2 is a perspective view of a gear according to an embodiment of the present disclosure. 本開示の実施形態に係る歯車の平面図である。FIG. 2 is a plan view of a gear according to an embodiment of the present disclosure. 本開示の実施形態に係る歯車の側面図である。FIG. 2 is a side view of a gear according to an embodiment of the present disclosure. 本開示の実施形態に係る歯車の底面図である。FIG. 3 is a bottom view of a gear according to an embodiment of the present disclosure. 本開示の実施形態の変形例に係る歯車の斜視図である。FIG. 7 is a perspective view of a gear according to a modification of the embodiment of the present disclosure.
 以下、本開示の一実施形態について、図を参照して説明する。 Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings.
 各図中、同一又は相当する部分には、同一符号を付している。本実施形態の説明において、同一又は相当する部分については、説明を適宜省略又は簡略化する。 In each figure, the same or corresponding parts are given the same reference numerals. In the description of this embodiment, the description of the same or corresponding parts will be omitted or simplified as appropriate.
 図1から図4を参照して、本実施形態に係る歯車10の構成を説明する。 The configuration of the gear 10 according to the present embodiment will be described with reference to FIGS. 1 to 4.
 各図中、歯車10の上面及び底面と平行な面をXY平面、歯車10の中心軸と平行な軸をZ軸とする。説明の便宜上、歯車10の図2及び図4に示す面を、それぞれ上面及び底面としているが、逆に底面及び上面とみなしてもよいし、正面及び背面、若しくは逆に背面及び正面とみなしてもよいし、又は側面及び反対の側面とみなしてもよい。同様に、歯車10の図3に示す面を側面としているが、別の面とみなしてもよい。 In each figure, the plane parallel to the top and bottom surfaces of the gear 10 is the XY plane, and the axis parallel to the central axis of the gear 10 is the Z axis. For convenience of explanation, the surfaces shown in FIGS. 2 and 4 of the gear 10 are referred to as the top surface and the bottom surface, respectively; however, they may be regarded as the bottom surface and the top surface, the front surface and the back surface, or the back surface and the front surface, respectively. or may be considered as a side and an opposite side. Similarly, although the surface of the gear 10 shown in FIG. 3 is a side surface, it may be regarded as another surface.
 歯車10は、本実施形態では樹脂で形成されているが、金属で形成されていてもよい。樹脂としては、任意の樹脂が使用されてよいが、本実施形態では、ポリフェニレンスルフィド(PPS)樹脂などのポリアリーレンスルフィド(PAS)樹脂が使用されている。 Although the gear 10 is made of resin in this embodiment, it may be made of metal. Although any resin may be used as the resin, in this embodiment, polyarylene sulfide (PAS) resin such as polyphenylene sulfide (PPS) resin is used.
 歯車10は、中心部20と、外周部30と、中心部20と外周部30とを接続する接続部40とを備える。中心部20には、軸を取り付けるための軸穴21が形成されている。外周部30には、複数の歯31が形成されている。接続部40には、複数枚の羽根が形成されている。羽根の枚数は、任意の数でよいが、本実施形態では6枚である。すなわち、接続部40には、複数枚の羽根として、6枚の羽根41A,41B,41C,41D,41E,41Fが形成されている。 The gear 10 includes a center portion 20, an outer peripheral portion 30, and a connecting portion 40 that connects the center portion 20 and the outer peripheral portion 30. A shaft hole 21 for attaching a shaft is formed in the center portion 20. A plurality of teeth 31 are formed on the outer peripheral portion 30 . A plurality of blades are formed in the connecting portion 40. The number of blades may be any number, but in this embodiment, it is six. That is, six blades 41A, 41B, 41C, 41D, 41E, and 41F are formed in the connecting portion 40 as a plurality of blades.
 このような構成により、歯車10の回転時には、複数枚の羽根によって歯車10の近傍の気体又は流体が攪拌輸送され、自動的に冷却効果が得られる。そのため、歯車10のかみ合いによる摩擦熱又は駆動モータの発熱に起因して歯車10の近傍の温度が上昇することを回避しやすくなる。その結果、材料の劣化、又は熱膨張による歯車10のバックラッシュ若しくは強度低下を防止しやすくなる。 With such a configuration, when the gear 10 rotates, the gas or fluid near the gear 10 is stirred and transported by the plurality of blades, and a cooling effect is automatically obtained. Therefore, it becomes easier to avoid an increase in temperature near the gear 10 due to frictional heat due to meshing of the gear 10 or heat generated by the drive motor. As a result, it becomes easier to prevent backlash or strength reduction of the gear 10 due to material deterioration or thermal expansion.
 本実施形態によれば、冷却のために歯車10とは別個の冷却部品を設ける必要がなくなる。その結果、歯車10を使用する製品のコスト削減、軽量化、又は省電力などの省エネルギーを実現しやすくなる。 According to this embodiment, there is no need to provide a cooling component separate from the gear 10 for cooling. As a result, it becomes easier to realize energy savings such as cost reduction, weight reduction, or power saving of products that use the gear 10.
 歯車10の回転数の増減と発熱量の増減との間には相関がある。本実施形態では、回転数の増減に応じて、各羽根の回転数が増減すれば、冷却能力も自動的に増減されるため、発熱量を検知又は推定して冷却能力の増減を調整する機構を設ける必要もなくなる。 There is a correlation between an increase or decrease in the rotational speed of the gear 10 and an increase or decrease in the amount of heat generated. In this embodiment, if the rotational speed of each blade increases or decreases in accordance with the increase or decrease in the rotational speed, the cooling capacity will also be automatically increased or decreased, so the mechanism detects or estimates the amount of heat generated and adjusts the increase or decrease in the cooling capacity. There is no need to provide one.
 歯車10は、任意の種類の歯車でよいが、本実施形態では平歯車であり、中心部20が円筒状のハブ、外周部30が環状のリム、接続部40がハブとリムとを接続するウェブになっている。本実施形態の一変形例として、歯車10は、軸一体型の歯車でもよく、そのような場合、中心部20には、軸穴21の代わりに、軸が形成される。 The gear 10 may be any type of gear, but in this embodiment it is a spur gear, the center part 20 is a cylindrical hub, the outer peripheral part 30 is an annular rim, and the connecting part 40 connects the hub and the rim. It's on the web. As a modification of this embodiment, the gear 10 may be a gear with an integrated shaft, and in such a case, a shaft is formed in the center portion 20 instead of the shaft hole 21.
 羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の一端側で、歯車10の周方向において各羽根に共通の向きで歯車10の径方向に対して斜めにせり上がっている。そのため、歯車10の回転時には、羽根41A,41B,41C,41D,41E,41Fによって歯車10の軸方向の一端側の気体又は流体が攪拌され、自動的に冷却効果を得られる。 The blades 41A, 41B, 41C, 41D, 41E, and 41F are raised obliquely to the radial direction of the gear 10 in a direction common to each blade in the circumferential direction of the gear 10 on one end side in the axial direction of the gear 10. There is. Therefore, when the gear 10 rotates, the gas or fluid at one end in the axial direction of the gear 10 is stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a cooling effect can be automatically obtained.
 本実施形態では、羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の他端側でも、歯車10の周方向において各羽根に共通の向きで歯車10の径方向に対して斜めにせり上がっている。具体的には、羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の他端側で、歯車10の周方向において歯車10の軸方向の一端側とは逆の向きで歯車10の径方向に対して斜めにせり上がっている。そのため、歯車10の回転時には、羽根41A,41B,41C,41D,41E,41Fによって歯車10の軸方向の他端側の気体又は流体が攪拌され、自動的に冷却効果を得られる。 In this embodiment, the blades 41A, 41B, 41C, 41D, 41E, and 41F are arranged in a direction common to each blade in the circumferential direction of the gear 10 with respect to the radial direction of the gear 10, even on the other end side of the gear 10 in the axial direction. It rises diagonally. Specifically, the blades 41A, 41B, 41C, 41D, 41E, and 41F are oriented at the other end of the gear 10 in the axial direction in the circumferential direction of the gear 10 in a direction opposite to the one end of the gear 10 in the axial direction. It rises obliquely with respect to the radial direction of the gear 10. Therefore, when the gear 10 rotates, the gas or fluid at the other end in the axial direction of the gear 10 is stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a cooling effect can be automatically obtained.
 図3に示すように、羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の一端側で、外周部30の端面32よりも高い位置まで突き出している。そのため、歯車10の回転時には、羽根41A,41B,41C,41D,41E,41Fによって歯車10の軸方向の一端側の気体又は流体が十分に攪拌され、所望の冷却効果を得られる。本実施形態では、羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の一端側で、中心部20の端面22よりも高い位置まで更に突き出している。すなわち、各羽根の、リムの端面32よりも軸方向に突き出した部分の高さ寸法D3は、ハブの端面22とリムの端面32との高さ位置の差D1よりも大きい。各羽根の、リムの端面32よりも軸方向に突き出した部分の高さ寸法D3は、好ましくはリムの厚さ寸法D0よりも小さく、本実施形態ではリムの厚さ寸法D0の半分未満である。 As shown in FIG. 3, the blades 41A, 41B, 41C, 41D, 41E, and 41F protrude to a position higher than the end surface 32 of the outer peripheral portion 30 at one end of the gear 10 in the axial direction. Therefore, when the gear 10 rotates, the gas or fluid at one end in the axial direction of the gear 10 is sufficiently stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a desired cooling effect can be obtained. In this embodiment, the blades 41A, 41B, 41C, 41D, 41E, and 41F further protrude to a position higher than the end surface 22 of the center portion 20 at one end of the gear 10 in the axial direction. That is, the height dimension D3 of the portion of each blade that protrudes in the axial direction beyond the end surface 32 of the rim is larger than the difference D1 in height between the end surface 22 of the hub and the end surface 32 of the rim. The height dimension D3 of the portion of each blade that protrudes axially beyond the end surface 32 of the rim is preferably smaller than the rim thickness dimension D0, and in this embodiment is less than half of the rim thickness dimension D0. .
 図3に示すように、羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の他端側でも、外周部30の端面33よりも高い位置まで突き出している。そのため、歯車10の回転時には、羽根41A,41B,41C,41D,41E,41Fによって歯車10の軸方向の他端側の気体又は流体が十分に攪拌され、所望の冷却効果を得られる。本実施形態では、羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の他端側で、中心部20の端面23よりも高い位置まで更に突き出している。すなわち、各羽根の、リムの端面33よりも軸方向に突き出した部分の高さ寸法D4は、ハブの端面23とリムの端面33との高さ位置の差D2よりも大きい。各羽根の、リムの端面33よりも軸方向に突き出した部分の高さ寸法D4は、好ましくはリムの厚さ寸法D0よりも小さく、本実施形態ではリムの厚さ寸法D0の半分未満である。 As shown in FIG. 3, the blades 41A, 41B, 41C, 41D, 41E, and 41F also protrude to a position higher than the end surface 33 of the outer peripheral portion 30 on the other end side of the gear 10 in the axial direction. Therefore, when the gear 10 rotates, the gas or fluid at the other end in the axial direction of the gear 10 is sufficiently stirred by the blades 41A, 41B, 41C, 41D, 41E, and 41F, and a desired cooling effect can be obtained. In this embodiment, the blades 41A, 41B, 41C, 41D, 41E, and 41F further protrude to a position higher than the end surface 23 of the center portion 20 at the other end of the gear 10 in the axial direction. That is, the height dimension D4 of the portion of each blade that protrudes in the axial direction from the end surface 33 of the rim is larger than the difference D2 in height between the end surface 23 of the hub and the end surface 33 of the rim. The height dimension D4 of the portion of each blade that protrudes in the axial direction beyond the end surface 33 of the rim is preferably smaller than the rim thickness dimension D0, and in this embodiment is less than half of the rim thickness dimension D0. .
 羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の一端側で、必ずしも外周部30の端面32よりも高い位置まで突き出していなければならないわけではなく、外周部30の端面32と同じ高さ、又は外周部30の端面32よりも低い位置でも一定の冷却効果を奏する。羽根41A,41B,41C,41D,41E,41Fは、歯車10の軸方向の他端側でも、必ずしも外周部30の端面33よりも高い位置まで突き出していなければならないわけではなく、外周部30の端面32と同じ高さ、又は外周部30の端面32よりも低い位置でも一定の冷却効果を奏する。 The blades 41A, 41B, 41C, 41D, 41E, and 41F do not necessarily have to protrude to a position higher than the end surface 32 of the outer circumferential portion 30 on one end side in the axial direction of the gear 10; 32 or at a position lower than the end surface 32 of the outer peripheral portion 30, a certain cooling effect can be achieved. The blades 41A, 41B, 41C, 41D, 41E, and 41F do not necessarily have to protrude to a position higher than the end surface 33 of the outer circumferential portion 30 on the other end side of the gear 10 in the axial direction. A certain cooling effect can be achieved even at the same height as the end surface 32 or at a position lower than the end surface 32 of the outer peripheral part 30.
 本実施形態では、羽根41A,41B,41C,41D,41E,41Fは、歯車10の径方向における両端がそれぞれ中心部20及び外周部30に直接接続している。そのため、接続部40の限られた領域内でも所望の冷却能力を得るための羽根サイズを適用することができる。 In this embodiment, both ends of the blades 41A, 41B, 41C, 41D, 41E, and 41F in the radial direction of the gear 10 are directly connected to the center portion 20 and the outer peripheral portion 30, respectively. Therefore, even within the limited area of the connecting portion 40, the blade size can be applied to obtain the desired cooling capacity.
 必須ではないが、本実施形態では、接続部40の、歯車10の周方向において隣り合う羽根同士の間に貫通穴が形成されている。具体的には、図2及び図4に示すように、接続部40の羽根41A,41Bの間、羽根41B,41Cの間、羽根41C,41Dの間、羽根41D,41Eの間、羽根41E,41Fの間、及び羽根41F,41Aの間には、それぞれ貫通穴42A,42B,42C,42D,42E,42Fが形成されている。そのため、歯車10の軸方向の一端側の気体又は流体が歯車10の軸方向の他端側に流れ込むことが可能であり、その逆も可能である。よって、冷却能力が向上する。 Although not essential, in this embodiment, through holes are formed between blades of the connecting portion 40 that are adjacent to each other in the circumferential direction of the gear 10. Specifically, as shown in FIGS. 2 and 4, between the blades 41A and 41B of the connecting portion 40, between the blades 41B and 41C, between the blades 41C and 41D, between the blades 41D and 41E, and between the blades 41E, Through holes 42A, 42B, 42C, 42D, 42E, and 42F are formed between 41F and between blades 41F and 41A, respectively. Therefore, gas or fluid at one end of the gear 10 in the axial direction can flow into the other end of the gear 10 in the axial direction, and vice versa. Therefore, cooling capacity is improved.
 接続部40の複数枚の羽根は、本実施形態では、歯車10の周方向に沿って並べられた1群の羽根のみを含んでいるが、本実施形態の一変形例として、図5に示すように、歯車10の径方向において当該1群の羽根よりも外側で、歯車10の周方向に沿って並べられた他の1群以上の羽根を更に含んでいてもよい。具体的には、図1に示した例では、1群の羽根として、6枚の羽根41A,41B,41C,41D,41E,41Fが周方向に沿って並んでいるが、図5に示した例のように、6枚の羽根41A,41B,41C,41D,41E,41Fよりも径方向外側で、他の1群の羽根として、6枚の羽根43A,43B,43C,43D,43E,43Fが周方向に沿って並んでいてもよい。外側の羽根43A,43B,43C,43D,43E,43Fは、内側の羽根41A,41B,41C,41D,41E,41Fと直接接続されていてもよいが、この変形例では、内側の羽根41A,41B,41C,41D,41E,41Fと環状のブリッジ44を介して接続されている。外側の羽根43A,43B,43C,43D,43E,43Fは、それぞれ内側の羽根41A,41B,41C,41D,41E,41Fと周方向位置が揃っていてもよいが、この変形例では、それぞれ内側の羽根41A,41B,41C,41D,41E,41Fとは周方向位置がずれている。具体的には、外側の羽根43A,43B,43C,43D,43E,43Fは、それぞれ周方向において内側の羽根41A,41Bの間、内側の羽根41B,41Cの間、内側の羽根41C,41Dの間、内側の羽根41D,41Eの間、内側の羽根41E,41Fの間、及び内側の羽根41F,41Aの間に位置するように形成されている。この変形例では、2群の羽根が群ごとに周方向に沿って並んでいるが、別の変形例として、3群以上の羽根が群ごとに周方向に沿って並んでいてもよい。 In this embodiment, the plurality of blades of the connecting portion 40 includes only one group of blades arranged along the circumferential direction of the gear 10, but as a modified example of the present embodiment, as shown in FIG. As such, the blades may further include one or more other groups of blades arranged along the circumferential direction of the gear 10 outside the first group of blades in the radial direction of the gear 10. Specifically, in the example shown in FIG. 1, six blades 41A, 41B, 41C, 41D, 41E, and 41F are lined up along the circumferential direction as one group of blades. As in the example, on the radially outer side of the six blades 41A, 41B, 41C, 41D, 41E, 41F, as another group of blades, six blades 43A, 43B, 43C, 43D, 43E, 43F may be arranged along the circumferential direction. The outer blades 43A, 43B, 43C, 43D, 43E, 43F may be directly connected to the inner blades 41A, 41B, 41C, 41D, 41E, 41F, but in this modification, the inner blades 41A, 41B, 41C, 41D, 41E, and 41F via an annular bridge 44. The outer blades 43A, 43B, 43C, 43D, 43E, and 43F may be aligned with the inner blades 41A, 41B, 41C, 41D, 41E, and 41F in the circumferential direction, but in this modification, The circumferential position is shifted from that of the blades 41A, 41B, 41C, 41D, 41E, and 41F. Specifically, the outer blades 43A, 43B, 43C, 43D, 43E, and 43F are located between the inner blades 41A and 41B, between the inner blades 41B and 41C, and between the inner blades 41C and 41D in the circumferential direction, respectively. between the inner blades 41D and 41E, between the inner blades 41E and 41F, and between the inner blades 41F and 41A. In this modification, two groups of blades are arranged in groups along the circumferential direction, but as another modification, three or more groups of blades may be arranged in groups in the circumferential direction.
 歯車10は、例えば、ロボット用ギヤに適用することができる。すなわち、本実施形態によれば、歯車10を備えるロボットを提供することができる。ロボットは、例えば、介護用ロボット、海洋ごみ回収ロボット、又は医療用手術ロボットである。歯車10は、ドローンプロペラ駆動用ギヤに適用されてもよい。 The gear 10 can be applied to a robot gear, for example. That is, according to this embodiment, a robot including the gear 10 can be provided. The robot is, for example, a nursing care robot, a marine debris collection robot, or a medical surgical robot. The gear 10 may be applied to a drone propeller driving gear.
 本実施形態では、樹脂が歯車10の成形に用いられる。よって、本実施形態に係る歯車10は、樹脂の成形品に相当する。 In this embodiment, resin is used to mold the gear 10. Therefore, the gear 10 according to this embodiment corresponds to a resin molded product.
 本実施形態で用いられる樹脂としては、熱可塑性樹脂が好ましい。当該熱可塑性樹脂は特に制限されることは無いが、例えば、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ナイロン-6やナイロン6,6等のポリアミド系樹脂又は芳香族ポリアミド樹脂;熱可塑性ポリイミド樹脂;ポリアミドイミド系樹脂;ポリスチレン、シンジオタクチックポリスチレン、アクリロニトリル-スチレン共重合体樹脂又はアクリロニトリル-ブタジエン-スチレン共重合体樹脂等のポリスチレン系樹脂;ポリフェニレンスルフィド等のポリアリーレンスルフィド系樹脂;ポリフェニレンエーテル系樹脂;ポリウレタン系樹脂;ポリ乳酸;ポリエーテルエーテルケトン系樹脂;ポリエーテルイミド系樹脂;ポリケトン系樹脂;非晶性ポリアリレートや液晶性ポリアリレート等のポリアリレート系樹脂;液晶ポリエステル系樹脂等が挙げられる。 The resin used in this embodiment is preferably a thermoplastic resin. The thermoplastic resin is not particularly limited, but includes, for example, polyolefin resins such as polypropylene, polyethylene, and polybutene; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyamides such as nylon-6 and nylon 6,6. thermoplastic polyimide resin; polyamide-imide resin; polystyrene resin such as polystyrene, syndiotactic polystyrene, acrylonitrile-styrene copolymer resin or acrylonitrile-butadiene-styrene copolymer resin; polyphenylene sulfide Polyarylene sulfide resins such as; polyphenylene ether resins; polyurethane resins; polylactic acid; polyether ether ketone resins; polyetherimide resins; polyketone resins; Arylate resin; examples include liquid crystal polyester resin.
 これらの中でも、本実施形態で用いられる熱可塑性樹脂としては、耐熱性、機械的特性等に優れる、いわゆるエンジニアリングプラスチック又はスーパーエンジニアリングプラスチックスである、熱可塑性ポリイミド樹脂、ポリアミドイミド系樹脂、ポリアリーレンスルフィド系樹脂、ポリフェニレンエーテル系樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリケトン系樹脂、ポリアリレート系樹脂及び液晶性ポリエステル樹脂が好ましく、耐薬品性、耐熱性及び機械的特性の観点から、ポリアリーレンスルフィド系樹脂がより好ましく、さらにポリアリーレンスルフィド系樹脂(以下「PAS樹脂」とも言う)の中でも特に、ポリフェニレンスルフィド(以下「PPS樹脂」とも言う)樹脂が好ましい。 Among these, the thermoplastic resins used in this embodiment include thermoplastic polyimide resins, polyamideimide resins, and polyarylene sulfides, which are so-called engineering plastics or super engineering plastics that have excellent heat resistance, mechanical properties, etc. Preferred are polyphenylene ether resins, polyether ether ketone resins, polyetherimide resins, polyketone resins, polyarylate resins, and liquid crystalline polyester resins. Arylene sulfide resins are more preferred, and among polyarylene sulfide resins (hereinafter also referred to as "PAS resins"), polyphenylene sulfide (hereinafter also referred to as "PPS resins") resins are particularly preferred.
 本実施形態において、上記樹脂を単独で使用しても、あるいは上記樹脂を複数混合したポリマーアロイの形態で使用してもよい。また、本実施形態に係る樹脂は、必要により後述の任意の添加成分(フィラー、着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、カップリング剤、シランカップリング剤、熱可塑性エラストマー又は合成樹脂)を含有する組成物の形態であってもよい。 In this embodiment, the above resin may be used alone or in the form of a polymer alloy in which a plurality of the above resins are mixed. In addition, the resin according to the present embodiment may include optional additive components (fillers, colorants, antistatic agents, antioxidants, heat stabilizers, ultraviolet stabilizers, ultraviolet absorbers, foaming agents, flame retardants, etc.) described below as necessary. It may be in the form of a composition containing a flame retardant aid, a rust preventive, a coupling agent, a silane coupling agent, a thermoplastic elastomer, or a synthetic resin.
 ポリアリーレンスルフィド樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1)で表される構造部位と、必要に応じてさらに下記一般式(2)で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。 Polyarylene sulfide resin has a resin structure in which the repeating unit is a structure in which an aromatic ring and a sulfur atom are bonded, and specifically, it has a structural part represented by the following general formula (1) and the necessary It is a resin having as a repeating unit a trifunctional structural moiety represented by the following general formula (2) according to the following.
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R及びRは、それぞれ独立して水素原子、炭素原子数1~4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。
Figure JPOXMLDOC01-appb-C000001
In formula (1), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group.
Figure JPOXMLDOC01-appb-C000002
 式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001~3モル%の範囲が好ましく、特に0.01~1モル%の範囲であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
The trifunctional structural moiety represented by formula (2) preferably ranges from 0.001 to 3 mol%, particularly from 0.01 to 1 mol%, based on the total number of moles with other structural moieties. It is preferable that
 ここで、上記一般式(1)で表される構造部位は、特に該式中のR及びRは、上記PAS樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。 Here, in the structural moiety represented by the above general formula (1), particularly R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of mechanical strength of the PAS resin, in which case, Examples include those bonded at the para position represented by the following formula (3), and those bonded at the meta position represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
 これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は上記一般式(3)で表されるパラ位で結合した構造であることが上記PAS樹脂の耐熱性や結晶性の面で好ましい。
Figure JPOXMLDOC01-appb-C000003
Among these, the structure in which the sulfur atom is bonded to the aromatic ring in the repeating unit at the para position represented by the above general formula (3) is particularly important in terms of heat resistance and crystallinity of the above PAS resin. preferable.
 また、上記PAS樹脂は、上記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)~(8)で表される構造部位を、上記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。 In addition, the above PAS resin has not only the structural moieties represented by the above general formulas (1) and (2), but also the structural moieties represented by the following structural formulas (5) to (8), the above general formula ( It may be contained in an amount of 30 mol% or less of the total of 1) and the structural moiety represented by general formula (2).
Figure JPOXMLDOC01-appb-C000004
 特に本実施形態では上記一般式(5)~(8)で表される構造部位は10モル%以下であることが、PAS樹脂の耐熱性、機械的強度の点から好ましい。上記PAS樹脂中に、上記一般式(5)~(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
Figure JPOXMLDOC01-appb-C000004
In particular, in this embodiment, it is preferable that the structural moieties represented by the above general formulas (5) to (8) be 10 mol % or less from the viewpoint of heat resistance and mechanical strength of the PAS resin. When the above PAS resin contains structural moieties represented by the above general formulas (5) to (8), their bonding mode may be either a random copolymer or a block copolymer.
 また、上記PAS樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。 Further, the above PAS resin may have a naphthyl sulfide bond or the like in its molecular structure, but it is preferably 3 mol% or less, particularly 1 mol% or less, based on the total number of moles with other structural parts. It is preferable that it is below.
 また、PAS樹脂の物性は、本実施形態の効果を損ねない限り特に限定されないが、以下の通りである。 Furthermore, the physical properties of the PAS resin are not particularly limited as long as they do not impair the effects of this embodiment, but are as follows.
(溶融粘度)
 PAS樹脂の溶融粘度は特に限定されないが、流動性および機械的強度のバランスが良好となることから、300℃で測定した溶融粘度(V6)が、好ましくは2Pa・s以上の範囲であり、好ましくは1000Pa・s以下の範囲、より好ましくは500Pa・s以下の範囲であり、さらに好ましくは200Pa・s以下の範囲である。ただし、溶融粘度(V6)の測定は、ポリアリーレンスルフィド樹脂を島津製作所製フローテスター、CFT-500Dを用いて行い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した溶融粘度の測定値とする。
(melt viscosity)
The melt viscosity of the PAS resin is not particularly limited, but the melt viscosity (V6) measured at 300 ° C. is preferably in the range of 2 Pa·s or more, because it provides a good balance between fluidity and mechanical strength. is in the range of 1000 Pa·s or less, more preferably in the range of 500 Pa·s or less, even more preferably in the range of 200 Pa·s or less. However, the melt viscosity (V6) of the polyarylene sulfide resin was measured using a Shimadzu flow tester, CFT-500D, at 300°C, load: 1.96 x 10 6 Pa, L/D = 10 (mm )/1 (mm), which is the measured value of melt viscosity measured after holding for 6 minutes.
(非ニュートン指数)
 PAS樹脂の非ニュートン指数は特に限定されないが、0.90以上から、2.00以下の範囲であることが好ましい。リニア型ポリアリーレンスルフィド樹脂を用いる場合には、非ニュートン指数が、好ましくは0.90以上の範囲、より好ましくは0.95以上の範囲から、好ましくは1.50以下の範囲、より好ましくは1.20以下の範囲である。このようなポリアリーレンスルフィド樹脂は機械的物性、流動性、耐磨耗性に優れる。ただし、本実施形態において非ニュートン指数(N値)は、キャピログラフを用いて融点+20℃、オリフィス長(L)とオリフィス径(D)の比、L/D=40の条件下で、剪断速度(SR)及び剪断応力(SS)を測定し、下記式を用いて算出した値である。非ニュートン指数(N値)が1に近いほど線状に近い構造であり、非ニュートン指数(N値)が高いほど分岐が進んだ構造であることを示す。
(non-Newtonian index)
The non-Newtonian index of the PAS resin is not particularly limited, but is preferably in the range of 0.90 or more and 2.00 or less. When using a linear polyarylene sulfide resin, the non-Newtonian index is preferably in the range of 0.90 or more, more preferably in the range of 0.95 or more, and preferably in the range of 1.50 or less, more preferably 1 It is in the range of .20 or less. Such polyarylene sulfide resin has excellent mechanical properties, fluidity, and abrasion resistance. However, in this embodiment, the non-Newtonian exponent (N value) is determined using a capillograph under the conditions of melting point +20°C, ratio of orifice length (L) to orifice diameter (D), and shear rate ( SR) and shear stress (SS) were measured and calculated using the following formula. The closer the non-Newtonian index (N value) is to 1, the more linear the structure is, and the higher the non-Newtonian index (N value) is, the more branched the structure is.
Figure JPOXMLDOC01-appb-M000005
 ただし、SRは剪断速度(秒-1)、SSは剪断応力(ダイン/cm)、そしてKは定数を示す。
Figure JPOXMLDOC01-appb-M000005
Here, SR is shear rate (sec -1 ), SS is shear stress (dynes/cm 2 ), and K is a constant.
 本実施形態で用いられる樹脂は、必要に応じて、充填剤を任意成分として含有することができる。これら充填剤としては本実施形態の効果を損なうものでなければ公知慣用の材料を用いることもでき、例えば、繊維状のものや、粒状や板状などの非繊維状のものなど、さまざまな形状の充填剤等が挙げられる。具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、珪酸カルシウム、ワラストナイト等の繊維、天然繊維等の繊維状充填剤が使用でき、またガラスビーズ、ガラスフレーク、硫酸バリウム、クレー、パイロフィライト、ベントナイト、セリサイト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、ガラスビーズ、ゼオライト、ミルドファイバー、硫酸カルシウム等の非繊維状充填剤も使用できる。 The resin used in this embodiment can contain a filler as an optional component, if necessary. As these fillers, known and commonly used materials can be used as long as they do not impair the effects of this embodiment. fillers, etc. Specifically, fibrous fillers such as glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, calcium silicate, wollastonite, natural fiber, etc. Can also be used for glass beads, glass flakes, barium sulfate, clay, pyrophyllite, bentonite, sericite, mica, mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, glass beads, zeolite, milled fiber, calcium sulfate Non-fibrous fillers can also be used.
 本実施形態において充填剤は必須成分ではなく、配合する場合、その含有量は本実施形態の効果を損ねなければ特に限定されるものではない。充填剤の配合量としては、例えば、樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは10質量部以上から、好ましくは600質量部以下、より好ましくは200質量部以下の範囲である。かかる範囲において、樹脂が良好な機械的強度と成形性を示すため好ましい。 In this embodiment, the filler is not an essential component, and when blended, its content is not particularly limited as long as it does not impair the effects of this embodiment. The blending amount of the filler is, for example, preferably 1 part by mass or more, more preferably 10 parts by mass or more, preferably 600 parts by mass or less, more preferably 200 parts by mass or less, per 100 parts by mass of the resin. It is. This range is preferable because the resin exhibits good mechanical strength and moldability.
 本実施形態で用いられる樹脂は、必要に応じて、シランカップリング剤を任意成分として配合することができる。シランカップリング剤としては、本実施形態の効果を損ねなければ特に限定されないが、カルボキシ基と反応する官能基、例えば、エポキシ基、イソシアナト基、アミノ基または水酸基を有するシランカップリング剤が好ましいものとして挙げられる。このようなシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物、γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。本実施形態においてシランカップリング剤は必須成分ではないが、配合する場合、その配合量は、本実施形態の効果を損ねなければその添加量は特に限定されないが、樹脂100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下までの範囲である。かかる範囲において、樹脂が良好な耐コロナ性と成形性、特に離形性を有し、かつ成形品がエポキシ樹脂と優れた接着性を呈しつつ、さらに機械的強度が向上するため好ましい。 The resin used in this embodiment may contain a silane coupling agent as an optional component, if necessary. The silane coupling agent is not particularly limited as long as it does not impair the effects of this embodiment, but silane coupling agents having a functional group that reacts with a carboxy group, such as an epoxy group, an isocyanato group, an amino group, or a hydroxyl group, are preferred. It is mentioned as. Examples of such silane coupling agents include epoxy groups such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. Containing alkoxysilane compounds, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane , γ-isocyanatopropylethyldiethoxysilane, γ-isocyanatopropyltrichlorosilane and other isocyanato group-containing alkoxysilane compounds, γ-(2-aminoethyl)aminopropylmethyldimethoxysilane, γ-(2-aminoethyl)amino Examples include amino group-containing alkoxysilane compounds such as propyltrimethoxysilane and γ-aminopropyltrimethoxysilane, and hydroxyl group-containing alkoxysilane compounds such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyltriethoxysilane. In this embodiment, the silane coupling agent is not an essential component, but if it is blended, the amount added is not particularly limited as long as it does not impair the effects of this embodiment, but it is based on 100 parts by mass of the resin. The amount ranges from preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, to preferably 10 parts by mass or less, more preferably 5 parts by mass or less. This range is preferable because the resin has good corona resistance and moldability, especially mold releasability, and the molded product exhibits excellent adhesion to the epoxy resin while further improving mechanical strength.
 本実施形態で用いられる樹脂は、必要に応じて、熱可塑性エラストマーを任意成分として含有することができる。熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、弗素系エラストマーまたはシリコーン系エラストマーが挙げられ、このうちポリオレフィン系エラストマーが好ましいものとして挙げられる。これらのエラストマーを添加する場合、その配合量は、本実施形態の効果を損ねなければ特に限定されないが、樹脂(A)100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上から、好ましくは10質量部以下、より好ましくは5質量部以下までの範囲である。かかる範囲において、得られる樹脂の耐衝撃性が向上するため好ましい。 The resin used in this embodiment may contain a thermoplastic elastomer as an optional component, if necessary. Examples of the thermoplastic elastomer include polyolefin elastomers, fluorine elastomers, and silicone elastomers, and among these, polyolefin elastomers are preferred. When adding these elastomers, the blending amount is not particularly limited as long as it does not impair the effects of this embodiment, but it is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass or more, based on 100 parts by mass of the resin (A). The amount ranges from 0.1 parts by weight or more to preferably 10 parts by weight or less, more preferably 5 parts by weight or less. This range is preferable because the impact resistance of the resulting resin is improved.
 例えば、上記ポリオレフィン系エラストマーは、α-オレフィンの単独重合体、または2以上のα-オレフィンの共重合体、1または2以上のα-オレフィンと、官能基を有するビニル重合性化合物との共重合体が挙げられる。この際、上記α-オレフィンとしては、エチレン、プロピレン、1-ブテン等の炭素原子数が2以上から8以下までの範囲のα-オレフィンが挙げられる。また、上記官能基としては、カルボキシ基、酸無水物基(-C(=O)OC(=O)-)、エポキシ基、アミノ基、水酸基、メルカプト基、イソシアネート基、オキサゾリン基等が挙げられる。そして、上記官能基を有するビニル重合性化合物としては、酢酸ビニル;(メタ)アクリル酸等のα,β-不飽和カルボン酸;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル等のα,β-不飽和カルボン酸のアルキルエステル;アイオノマー等のα,β-不飽和カルボン酸の金属塩(金属としてはナトリウムなどのアルカリ金属、カルシウムなどのアルカリ土類金属、亜鉛等);グリシジルメタクリレート等のα,β-不飽和カルボン酸のグリシジルエステル等;マレイン酸、フマル酸、イタコン酸等のα,β-不飽和ジカルボン酸;上記α,β-不飽和ジカルボン酸の誘導体(モノエステル、ジエステル、酸無水物)等の1種または2種以上が挙げられる。上述の熱可塑性エラストマーは、単独で用いても、2種以上を組み合わせて用いてもよい。 For example, the polyolefin elastomer may be a homopolymer of α-olefin, a copolymer of two or more α-olefins, or a copolymer of one or more α-olefins and a vinyl polymerizable compound having a functional group. One example is merging. In this case, the above-mentioned α-olefin includes α-olefins having a carbon atom number ranging from 2 or more to 8 or less, such as ethylene, propylene, and 1-butene. Further, examples of the above-mentioned functional groups include a carboxy group, an acid anhydride group (-C(=O)OC(=O)-), an epoxy group, an amino group, a hydroxyl group, a mercapto group, an isocyanate group, an oxazoline group, etc. . Vinyl polymerizable compounds having the above-mentioned functional groups include vinyl acetate; α,β-unsaturated carboxylic acids such as (meth)acrylic acid; Alkyl esters of unsaturated carboxylic acids; metal salts of α, β-unsaturated carboxylic acids such as ionomers (metals include alkali metals such as sodium, alkaline earth metals such as calcium, zinc, etc.); α, β-unsaturated carboxylic acids such as ionomers; Glycidyl esters of β-unsaturated carboxylic acids, etc.; α,β-unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid; derivatives of the above α,β-unsaturated dicarboxylic acids (monoesters, diesters, acid anhydrides) ), etc., or two or more thereof. The above-mentioned thermoplastic elastomers may be used alone or in combination of two or more.
 更に、本実施形態で用いられる樹脂は、上記成分に加えて、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂(以下、単に合成樹脂という)を任意成分として配合することができる。本実施形態において上記合成樹脂は必須成分ではないが、配合する場合、その配合の割合は本実施形態の効果を損ねなければ特に限定されるものではなく、また、それぞれの目的に応じて異なり、一概に規定することはできないが、本実施形態に係る樹脂中に配合する合成樹脂の割合として、例えば樹脂100質量部に対し5質量部以上の範囲であり、15質量部以下の範囲の程度が挙げられる。換言すれば、樹脂(A)と合成樹脂との合計に対して樹脂(A)の割合は質量基準で、好ましくは(100/115)以上の範囲であり、より好ましくは(100/105)以上の範囲である。 Furthermore, in addition to the above-mentioned components, the resin used in this embodiment may further include polyester resin, polyamide resin, polyimide resin, polyetherimide resin, polycarbonate resin, polyphenylene ether resin, polysulfone resin, Polyethersulfone resin, polyetheretherketone resin, polyetherketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin, phenolic resin, urethane Synthetic resins such as resins and liquid crystal polymers (hereinafter simply referred to as synthetic resins) can be blended as optional components. In this embodiment, the above synthetic resin is not an essential component, but when blended, the proportion of the blend is not particularly limited as long as it does not impair the effects of this embodiment, and may vary depending on the purpose. Although it cannot be absolutely specified, the proportion of the synthetic resin blended into the resin according to the present embodiment is, for example, in the range of 5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the resin. Can be mentioned. In other words, the ratio of resin (A) to the total of resin (A) and synthetic resin is preferably in the range of (100/115) or more, more preferably (100/105) or more, based on mass. is within the range of
 また本実施形態で用いられる樹脂は、その他にも着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、防錆剤、およびカップリング剤等の公知慣用の添加剤を必要に応じ、任意成分として含有してもよい。これらの添加剤は必須成分ではなく、例えば、樹脂100質量部に対して、好ましくは0.01質量部以上の範囲であり、好ましくは1000質量部以下の範囲で、本実施形態の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。 In addition, the resin used in this embodiment also includes colorants, antistatic agents, antioxidants, heat stabilizers, ultraviolet stabilizers, ultraviolet absorbers, foaming agents, flame retardants, flame retardant aids, and rust preventive agents. , and known and commonly used additives such as coupling agents may be included as optional components, if necessary. These additives are not essential components, and for example, preferably in a range of 0.01 parts by mass or more, preferably in a range of 1000 parts by mass or less, per 100 parts by mass of the resin, so that the effects of the present embodiment are impaired. It may be used with appropriate adjustment according to the purpose and use.
 本実施形態で用いられる樹脂の製造方法について、以下、詳述する。 The method for producing the resin used in this embodiment will be described in detail below.
 本実施形態で用いられる樹脂は、各必須成分、および必要に応じてその他の任意成分を配合してなる。本実施形態に用いる樹脂を製造する方法としては、特に限定されないが、必須成分と必要に応じて任意成分を配合して、溶融混錬する方法、より詳しくは、必要に応じてタンブラーまたはヘンシェルミキサー等で均一に乾式混合し、次いで、二軸押出機に投入して溶融混練する方法が挙げられる。 The resin used in this embodiment is made by blending each essential component and other optional components as necessary. Methods for producing the resin used in this embodiment include, but are not particularly limited to, a method of blending essential components and optional components as needed and melting and kneading, more specifically, using a tumbler or Henschel mixer as necessary. An example of this method is to uniformly dry-mix the mixture using a dry-mixing machine, etc., and then introduce the mixture into a twin-screw extruder and melt-knead it.
 溶融混錬は、樹脂温度が樹脂の融点以上となる温度範囲、好ましくは該融点+10℃以上となる温度範囲、より好ましくは該融点+10℃以上、さらに好ましくは該融点+20℃以上から、好ましくは該融点+100℃以下、より好ましくは該融点+50℃以下までの範囲の温度に加熱して行うことができる。 Melt kneading is performed preferably within a temperature range in which the resin temperature is equal to or higher than the melting point of the resin, preferably in a temperature range in which the melting point is equal to or higher than the melting point +10 °C, more preferably at the melting point +10 °C or higher, still more preferably at the melting point +20 °C or higher. This can be carried out by heating to a temperature in the range of not higher than the melting point +100°C, more preferably not higher than the melting point +50°C.
 上記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5~500(kg/hr)の範囲と、スクリュー回転数50~500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02~5(kg/hr/rpm)の範囲となる条件下に溶融混練することがさらに好ましい。また、溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。例えば、上記成分のうち、添加剤を添加する場合は、上記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、上記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部(トップフィーダー)から該サイドフィーダーまでの距離の比率が、0.1以上であることが好ましく、0.3以上であることがより好ましい。また、かかる比率は0.9以下であることが好ましく、0.7以下であることがより好ましい。 The above-mentioned melt-kneading machine is preferably a twin-screw kneading extruder from the viewpoint of dispersibility and productivity. It is preferable to melt and knead while appropriately adjusting the range, and melt and knead under conditions such that the ratio (discharge amount/screw rotation speed) is in the range of 0.02 to 5 (kg/hr/rpm). is even more preferable. Further, the addition and mixing of each component to the melt-kneading machine may be performed simultaneously or may be performed separately. For example, when adding additives among the above-mentioned components, it is preferable from the viewpoint of dispersibility to introduce them into the extruder from the side feeder of the above-mentioned twin-screw kneading extruder. The position of the side feeder is preferably such that the ratio of the distance from the extruder resin input part (top feeder) to the side feeder to the total screw length of the twin-screw kneading extruder is 0.1 or more, and 0. More preferably, it is .3 or more. Moreover, it is preferable that this ratio is 0.9 or less, and it is more preferable that it is 0.7 or less.
 このように溶融混練して得られる本実施形態に係る樹脂は、上記必須成分と、必要に応じて加える任意成分およびそれらの由来成分を含む溶融混合物であり、該溶融混練後に、公知の方法、例えば、溶融状態の樹脂をストランド状に押出成形した後、ペレット、チップ、顆粒、粉末などの形態に加工してから、必要に応じて100~150℃の温度範囲で予備乾燥を施すことが好ましい。 The resin according to the present embodiment obtained by melt-kneading in this manner is a molten mixture containing the above-mentioned essential components, optional components added as necessary, and components derived from these components, and after the melt-kneading, a known method, For example, it is preferable to extrude the molten resin into a strand, process it into pellets, chips, granules, powder, etc., and then pre-dry it at a temperature range of 100 to 150°C as necessary. .
 本実施形態の成形品は樹脂を成形してなる。また、本実施形態の成形品の製造方法は、上記樹脂を溶融成形する工程を有する。以下、詳述する。 The molded product of this embodiment is made of resin. Furthermore, the method for manufacturing a molded article according to the present embodiment includes a step of melt-molding the resin. The details will be explained below.
 本実施形態で用いられる樹脂は、射出成形、ガスインジェクション成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に離形性にも優れるため射出成形用途に適している。射出成形にて成形する場合、各種成形条件は特に限定されず、通常一般的な方法にて成形することができる。例えば、射出成形機内で、樹脂温度が樹脂の融点以上の温度範囲、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃~融点+100℃の温度範囲、さらに好ましくは融点+20~融点+50℃の温度範囲で上記樹脂を溶融する工程を経た後、樹脂吐出口よりを金型内に注入して成形すればよい。その際、金型温度も公知の温度範囲、例えば、室温(23℃)~300℃、好ましくは120~180℃に設定すればよい。 The resin used in this embodiment can be used in various molding processes such as injection molding, gas injection molding, compression molding, extrusion molding of composites, sheets, pipes, etc., pultrusion molding, blow molding, and transfer molding. It also has excellent mold releasability, making it suitable for injection molding applications. When molding is performed by injection molding, various molding conditions are not particularly limited, and molding can be performed by a general method. For example, in the injection molding machine, the resin temperature is in a temperature range equal to or higher than the melting point of the resin, preferably in a temperature range equal to or higher than the melting point +10°C, more preferably in a temperature range from melting point +10°C to melting point +100°C, and still more preferably in a temperature range from melting point +20 to melting point. After going through the step of melting the resin in a temperature range of +50° C., the resin may be injected into a mold through the resin discharge port and molded. At this time, the mold temperature may also be set within a known temperature range, for example, room temperature (23°C) to 300°C, preferably 120 to 180°C.
 本開示は上述の実施形態に限定されるものではない。本開示の趣旨を逸脱しない範囲での変更が可能である。 The present disclosure is not limited to the embodiments described above. Changes can be made without departing from the spirit of the present disclosure.
 10 歯車
 20 中心部
 21 軸穴
 22,23 端面
 30 外周部
 31 歯
 32,33 端面
 40 接続部
 41A,41B,41C,41D,41E,41F,43A,43B,43C,43D,43E,43F 羽根
 42A,42B,42C,42D,42E,42F 貫通穴
 44 ブリッジ
10 Gear 20 Center 21 Shaft hole 22, 23 End face 30 Outer periphery 31 Teeth 32, 33 End face 40 Connection part 41A, 41B, 41C, 41D, 41E, 41F, 43A, 43B, 43C, 43D, 43E, 43F Blade 42A, 42B, 42C, 42D, 42E, 42F Through hole 44 Bridge

Claims (9)

  1.  軸又は軸を取り付けるための軸穴が形成された中心部と、
     複数の歯が形成された外周部と、
     前記中心部と前記外周部とを接続する接続部であって、複数枚の羽根が形成された接続部と
    を備える歯車。
    a center portion formed with a shaft or a shaft hole for attaching the shaft;
    an outer periphery in which multiple teeth are formed;
    A gear comprising: a connecting portion connecting the center portion and the outer peripheral portion, the connecting portion having a plurality of blades formed therein.
  2.  前記複数枚の羽根は、前記歯車の軸方向の一端側で、前記歯車の周方向において各羽根に共通の向きで前記歯車の径方向に対して斜めにせり上がっている請求項1に記載の歯車。 2. The plurality of blades rise obliquely to the radial direction of the gear in a direction common to each blade in the circumferential direction of the gear, on one end side in the axial direction of the gear. gear.
  3.  前記複数枚の羽根は、前記歯車の軸方向の他端側で、前記歯車の周方向において前記歯車の軸方向の一端側とは逆の向きで前記歯車の径方向に対して斜めにせり上がっている請求項2に記載の歯車。 The plurality of blades rises obliquely to the radial direction of the gear in the opposite direction from the one end in the axial direction of the gear in the circumferential direction of the gear on the other end of the gear in the axial direction. The gear according to claim 2.
  4.  前記複数枚の羽根は、前記歯車の径方向における両端がそれぞれ前記中心部及び前記外周部に直接接続している請求項1に記載の歯車。 The gear according to claim 1, wherein both ends of the plurality of blades in the radial direction of the gear are directly connected to the center portion and the outer peripheral portion, respectively.
  5.  前記接続部は、前記歯車の周方向において隣り合う羽根同士の間に貫通穴が形成されている請求項1に記載の歯車。 The gear according to claim 1, wherein the connecting portion has a through hole formed between adjacent blades in the circumferential direction of the gear.
  6.  前記複数枚の羽根は、前記歯車の周方向に沿って並べられた1群の羽根を含む請求項1に記載の歯車。 The gear according to claim 1, wherein the plurality of blades includes a group of blades arranged along the circumferential direction of the gear.
  7.  前記複数枚の羽根は、前記歯車の径方向において前記1群の羽根よりも外側で、前記歯車の周方向に沿って並べられた他の1群以上の羽根を更に含む請求項6に記載の歯車。 The plurality of blades further includes one or more other groups of blades arranged along the circumferential direction of the gear, outside of the first group of blades in the radial direction of the gear. gear.
  8.  ポリアリーレンスルフィド樹脂で形成された請求項1に記載の歯車。 The gear according to claim 1, which is formed of polyarylene sulfide resin.
  9.  請求項1から請求項8のいずれか1項に記載の歯車を備えるロボット。 A robot comprising the gear according to any one of claims 1 to 8.
PCT/JP2023/009697 2022-06-29 2023-03-13 Gear and robot WO2024004284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022105065 2022-06-29
JP2022-105065 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024004284A1 true WO2024004284A1 (en) 2024-01-04

Family

ID=89381939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009697 WO2024004284A1 (en) 2022-06-29 2023-03-13 Gear and robot

Country Status (2)

Country Link
TW (1) TW202400922A (en)
WO (1) WO2024004284A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276191A (en) * 2009-06-01 2010-12-09 Fuji Xerox Co Ltd Gear
JP2022048838A (en) * 2020-09-15 2022-03-28 日立グローバルライフソリューションズ株式会社 Helical gear, speed reduction gear mechanism using helical gear, and washing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276191A (en) * 2009-06-01 2010-12-09 Fuji Xerox Co Ltd Gear
JP2022048838A (en) * 2020-09-15 2022-03-28 日立グローバルライフソリューションズ株式会社 Helical gear, speed reduction gear mechanism using helical gear, and washing machine

Also Published As

Publication number Publication date
TW202400922A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP6232040B2 (en) Polyarylene sulfide / liquid crystal polymer alloy and composition containing the same
US9127142B2 (en) Low temperature injection molding of polyarylene sulfide compositions
WO2013141396A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and molded product
US20150225547A1 (en) Molded Part for Use in a Portable Electronic Device
US8852487B2 (en) Injection molding of polyarylene sulfide compositions
WO2013090163A1 (en) Boron-containing nucleating agent for polyphenylene sulfide
JP6128299B2 (en) Method for producing liquid crystal polyester composition
WO2013090171A1 (en) Nucleating system for polyarylene sulfide compositions
JP6757256B2 (en) Fortified polyarylene sulfide composition
JPH01225660A (en) Polyarylene sulfide resin composition
US11753540B2 (en) Resin composition
WO2016152845A1 (en) Filament-reinforced polyarylene sulfide resin molded article and method for producing same
TWI613064B (en) Method for resin composition
WO2024004284A1 (en) Gear and robot
JPWO2018066637A1 (en) Polyarylene sulfide resin composition, molded article and production method
JP4199985B2 (en) Resin composition
JP6601658B2 (en) Long fiber reinforced polyarylene sulfide resin composition, molded article, and production method thereof
KR102201207B1 (en) Polyarylene sulfide resin composition
JP5103763B2 (en) Resin composition and molded article comprising the same
WO2024004327A1 (en) Gear mechanism and robot-use arm mechanism
JPH03285954A (en) Lightened polyarylene sulfide resin composition and molded article thereof
JP2006249348A (en) Thermoplastic resin composition
JP2010285552A (en) Zinc oxide whisker-containing resin composition, gear molding and gear blank molding obtained by molding the same, and gear, gear blank, speed reducer, and power steering apparatus using gear molding and gear blank molding
JP3043570B2 (en) Polyarylene sulfide resin composition
JP7359596B2 (en) Method for manufacturing resin composition, method for manufacturing resin molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830739

Country of ref document: EP

Kind code of ref document: A1