WO2024004024A1 - Power module and power conversion device - Google Patents

Power module and power conversion device Download PDF

Info

Publication number
WO2024004024A1
WO2024004024A1 PCT/JP2022/025730 JP2022025730W WO2024004024A1 WO 2024004024 A1 WO2024004024 A1 WO 2024004024A1 JP 2022025730 W JP2022025730 W JP 2022025730W WO 2024004024 A1 WO2024004024 A1 WO 2024004024A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
power module
conductor
power
hole
Prior art date
Application number
PCT/JP2022/025730
Other languages
French (fr)
Japanese (ja)
Inventor
悠策 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022575431A priority Critical patent/JP7334369B1/en
Priority to PCT/JP2022/025730 priority patent/WO2024004024A1/en
Publication of WO2024004024A1 publication Critical patent/WO2024004024A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power module and a power conversion device.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-104355
  • Patent Document 1 describes a semiconductor device.
  • the semiconductor device described in Patent Document 1 includes a lead frame, a semiconductor chip, a cooling module, and a mold resin.
  • a semiconductor chip is placed on a lead frame.
  • the cooling module is placed above the semiconductor chip.
  • a liquid is sealed inside the cooling module.
  • the lead frame, semiconductor chip, and cooling module are sealed with mold resin.
  • the semiconductor device described in Patent Document 1 has improved cooling efficiency using a cooling module.
  • the present disclosure has been made in view of the problems of the prior art as described above. More specifically, the present disclosure provides a power module that can reduce the current density in the current path from the semiconductor element while suppressing the generation of thermal stress around the semiconductor element.
  • the power module of the present disclosure includes a circuit board, a first semiconductor element, a conductor block, and a conductor.
  • the first semiconductor element is arranged on the circuit board.
  • the conductor block has an upper end and a lower end.
  • the conductor block is arranged on the first semiconductor element such that the lower end thereof is electrically connected to the first semiconductor element.
  • a liquid is sealed inside the conductor block. The conductor electrically connects the circuit board and the top end.
  • the power module of the present disclosure it is possible to reduce the current density in the current path from the semiconductor element while suppressing the generation of thermal stress around the semiconductor element.
  • FIG. 2 is a partially enlarged sectional view of the power module 100A. It is a process diagram which shows the manufacturing method of 100 A of power modules.
  • FIG. 3 is a partially enlarged sectional view of power module 100B.
  • FIG. 7 is a partially enlarged sectional view of a power module 100B according to a modification.
  • FIG. 3 is a partially enlarged sectional view of the power module 100C. It is a partially enlarged cross-sectional view of a power module 100C according to a modification.
  • FIG. 7 is a partially enlarged sectional view of a power module 100D according to a modification.
  • 2 is a block diagram showing the configuration of a power conversion system 200.
  • Embodiment 1 A power module according to Embodiment 1 will be described.
  • the power module according to the first embodiment is referred to as a power module 100A.
  • FIG. 1 is a cross-sectional view of the power module 100A.
  • FIG. 2 is a partially enlarged sectional view of the power module 100A.
  • the power module 100A includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a plurality of conductor blocks 40, a base plate 50, and a case 51. and a sealing material 52.
  • the circuit board 10 has an insulating layer 11, a conductor pattern 12, and a conductor pattern 13.
  • Insulating layer 11 has an upper surface 11a and a lower surface 11b.
  • the upper surface 11a and the lower surface 11b are end surfaces of the insulating layer 11 in the thickness direction.
  • the lower surface 11b is the opposite surface to the upper surface 11a.
  • the insulating layer 11 is made of an electrically insulating material.
  • the insulating layer 11 is made of, for example, alumina (Al 2 O 3 ), aluminum nitride (AlN), or the like.
  • the conductor pattern 12 is arranged on the upper surface 11a.
  • the conductor pattern 13 is arranged on the lower surface 11b.
  • the conductor pattern 12 and the conductor pattern 13 are made of a conductive material.
  • the conductor pattern 12 is made of copper (Cu), for example.
  • the conductor pattern 12 and the conductor pattern 13 may be composed of multiple layers.
  • the conductor pattern 12 and the conductor pattern 13 may be composed of an aluminum (Al) layer on the insulating layer 11 side and a copper layer disposed on the aluminum layer.
  • the semiconductor element 20 is a power semiconductor element.
  • the semiconductor element 20 is, for example, an IGBT (Insulated Gate Bipolar Transistor). However, the semiconductor element 20 is not limited to this.
  • the semiconductor element 20 may be a MOSFET (Metal Oxide Field Effect Transistor).
  • the semiconductor element 20 may be a Schottky barrier diode.
  • the semiconductor element 20 is formed using, for example, a silicon (Si) substrate.
  • the semiconductor element 20 may be formed using a substrate made of a wide bandgap semiconductor material such as a silicon carbide (SiC) substrate, a gallium nitride (GaN) substrate, or a diamond substrate.
  • the semiconductor element 20 has an upper surface and a lower surface.
  • the upper surface and the lower surface are end surfaces of the semiconductor element 20 in the thickness direction.
  • the lower surface is the opposite surface to the upper surface.
  • the semiconductor element 20 has electrodes on the upper and lower surfaces.
  • the semiconductor element 20 is an IGBT
  • the semiconductor element 20 has an emitter electrode and a gate electrode on the upper surface, and a collector electrode on the lower surface.
  • the semiconductor element 20 is a MOSFET, it has a source electrode and a gate electrode on the upper surface, and a drain electrode on the lower surface.
  • the upper and lower electrodes of the semiconductor element 20 are made of, for example, aluminum or an aluminum alloy in which silicon is added to aluminum.
  • a covering layer made of, for example, nickel (Ni), gold (Au), etc. may be disposed on the surfaces of the upper and lower electrodes of the semiconductor element 20.
  • the semiconductor element 20 is arranged on the circuit board 10. More specifically, the semiconductor element 20 is arranged on the conductor pattern 12. The electrodes on the lower surface of the semiconductor element 20 are bonded to the conductor pattern 12 with a bonding material 60 . Thereby, the semiconductor element 20 is electrically connected to the circuit board 10.
  • the bonding material 60 is made of, for example, sintered silver particles, solder alloy, or the like.
  • the conductor 30 has one end 30a and the other end 30b.
  • the conductor 30 is electrically connected to the circuit board 10 at one end 30a. More specifically, one end 30 a is bonded to the conductor pattern 12 with a bonding material 61 .
  • the bonding material 61 is made of, for example, sintered silver particles, solder alloy, or the like. Thereby, the conductor 30 is electrically connected to the circuit board 10.
  • the one end portion 30a may be directly bonded to the conductive pattern 12 by ultrasonic bonding or the like. Further, the one end portion 30a may be connected to the conductor pattern 12 by screw fastening.
  • the conductor 30 is made of copper, for example.
  • the wire 31 is connected to the conductor pattern 12 at one end, and to the electrode on the upper surface of the semiconductor element 20 (or the gate electrode if the semiconductor element 20 is an IGBT or MOSFET) at the other end. Thereby, the semiconductor element 20 is electrically connected to the circuit board 10.
  • the bonding between the wire 31 and the electrode on the upper surface of the semiconductor element 20 and the bonding between the wire 31 and the conductor pattern 12 are performed, for example, by wire bonding.
  • the wire 31 is made of, for example, gold, aluminum, copper, or the like. Note that, for example, a control signal for the semiconductor element 20 flows through the wire 31.
  • the power module 100A may include a conductive member for electrically connecting the conductor pattern 12 and the semiconductor element 20 instead of the wire 31.
  • the conductor block 40 has an upper end 40a and a lower end 40b.
  • the conductor block 40 is arranged on the semiconductor element 20.
  • the lower end 40b is bonded to an electrode on the surface of the semiconductor element 20 (an emitter electrode when the semiconductor element 20 is an IGBT, and a source electrode when the semiconductor element 20 is a MOSFET) by a bonding material 62.
  • the conductor block 40 is electrically connected to the semiconductor element 20 at the lower end 40b.
  • a hole 41 is formed in the upper end 40a.
  • the hole 41 extends toward the lower end 40b.
  • the upper end 40a side of the hole 41 is a screw hole 42 (female thread).
  • the conductor 30 is fastened to the upper end 40a by screwing the screw 43 into the screw hole 42.
  • the screw 43 is made of copper, for example.
  • a liquid 44 is sealed in the hole 41 . That is, a liquid 44 is sealed inside the conductor block 40.
  • the liquid 44 is, for example, water, fluorocarbon, halofluorocarbon, hexachloroethane, fluorinate, fluorine-based inert liquid, or the like.
  • the inner wall surface of the hole 41 that comes into contact with the liquid 44 may be subjected to surface treatment such as metal plating.
  • the circuit board 10 is arranged on the upper surface of the base plate 50. More specifically, the circuit board 10 is arranged on the base plate 50 by bonding the conductive pattern 13 to the upper surface of the base plate 50 using the bonding material 63.
  • the bonding material 63 is made of, for example, sintered silver particles, solder alloy, or the like.
  • the base plate 50 is made of, for example, copper, silicon carbide particle reinforced aluminum composite material (AlSiC), or the like.
  • the power module 100A does not need to have the base plate 50 and the bonding material 63.
  • conductive pattern 13 is used instead of base plate 50.
  • the insulating layer 11 may be formed of an electrically insulating resin material.
  • the case 51 is attached to the outer peripheral edge of the base plate 50. Case 51 extends along a direction intersecting the upper surface of base plate 50. Case 51 is made of electrically insulating material.
  • the space defined by the upper surface of the base plate 50 and the inner wall surface of the case 51 is filled with a sealing material 52.
  • the sealing material 52 is made of a thermosetting resin material. Examples of the thermosetting resin material include silicone and epoxy.
  • the resin material constituting the sealing material 52 preferably contains a metal or filler that does not easily deteriorate at high temperatures.
  • a plurality of unevenness may be formed on the surface of the conductive pattern 12 opposite to the insulating layer 11. This improves the adhesion between the sealing material 52 and the conductor pattern 12. Further, in order to improve the adhesion between the sealing material 52 and the conductor pattern 12, the surface of the conductor pattern 12 may be coated.
  • FIG. 3 is a process diagram showing a method for manufacturing the power module 100A.
  • the method for manufacturing the power module 100A includes a first bonding step S1, a second bonding step S2, a third bonding step S3, a fourth bonding step S4, a conductor connection step S5, and a sealing step S6.
  • the electrode on the lower surface of the semiconductor element 20 and the conductor pattern 12 are bonded using the bonding material 60.
  • the second bonding step S2 is performed after the first bonding step S1.
  • the conductor block 40 (lower end 40b) and the semiconductor element 20 (electrode on the upper surface of the semiconductor element 20) are bonded using the bonding material 62.
  • the third bonding step S3 is performed after the second bonding step S2.
  • the conductor 30 (the other end 30b) and the conductor pattern 12 are bonded using the bonding material 61.
  • the fourth bonding step S4 is performed after the third bonding step S3.
  • the conductive pattern 13 is bonded to the base plate 50 using the bonding material 63.
  • first bonding step S1, second bonding step S2, third bonding step S3, and fourth bonding step S4 may be changed as appropriate. All or part of the first bonding step S1, the second bonding step S2, the third bonding step S3, and the fourth bonding step S4 may be performed simultaneously.
  • the conductor connection step S5 is performed after the first bonding step S1, the second bonding step S2, the third bonding step S3, and the fourth bonding step S4.
  • the conductor 30 is screwed to the upper end 40a by screwing the screw 43 into the screw hole 42, and the conductor 30 and the conductor block 40 are electrically connected.
  • the sealing step S6 is performed after the conductor connecting step S5.
  • the space defined by the upper surface of the base plate 50 and the inner wall surface of the case 51 is filled with the sealant 52.
  • Filling with the sealant 52 is performed by, for example, supplying the sealant 52 from above using a dispenser or the like. Filling with the sealing material 52 may be performed in a first step and a second step.
  • the power module 100A that has been subjected to the conductor connection step S5 is immersed in the sealing material 52 stored in the container and then pulled up.
  • the sealing material 52 is further supplied to the space defined by the upper surface of the base plate 50 and the inner wall surface of the case 51 in the power module 100A that has undergone the first step. Note that the sealing material 52 used in the first step and the sealing material 52 used in the second step may be different materials or may be the same material.
  • the semiconductor element 20 When the power module 100A operates, the semiconductor element 20 generates heat. As a result, in the power module 100A, the semiconductor element 20 and the joints with the members connected to the semiconductor element 20 become high in temperature during operation. On the other hand, when cooling the power module 100A, the heat generated in the semiconductor element 20 is transmitted in this order to the bonding material 60, the conductive pattern 12, the insulating layer 11, the conductive pattern 13, the bonding material 63, and the base plate 50, and is transferred from the base plate 50 to the outside. The temperature of the semiconductor element 20 decreases by dissipating the heat.
  • the bonding material may deteriorate due to the difference in the coefficient of thermal expansion between the semiconductor element 20 and the conductor block 40 and the difference in the coefficient of thermal expansion between the conductor pattern 12 and the semiconductor element 20.
  • Thermal stress is generated in the bonding material 60 and the bonding material 62. This thermal stress concentrates on the ends of the bonding material 60 and the bonding material 62, causing the bonding material 60, the bonding material 62, the interface between the bonding material 60 and the conductive pattern 12 or the semiconductor element 20, Cracks may occur at the interface between the semiconductor element 62 and the semiconductor element 20 or the conductor block 40.
  • the above temperature fluctuations are repeated, cracks develop and eventually lead to electrical connections between the conductor pattern 12 and the semiconductor element 20 and between the semiconductor element 20 and the conductor block 40. will be resolved.
  • a liquid 44 is sealed inside the conductor block 40. Therefore, even if the semiconductor element 20 generates heat during the operation of the power module 100A, the heat generated in the semiconductor element 20 will be consumed by increasing the temperature of the liquid 44 and changing the phase of the liquid 44. Fluctuations in temperature between operation and cooling can be reduced. Since the liquid 44 has almost no rigidity, even if there is a difference in coefficient of thermal expansion between the liquid 44 and its surroundings, it does not cause thermal stress. In this way, according to the power module 100A, it is possible to reduce thermal stress around the semiconductor element 20.
  • the conductor block 40 functions not only as a member for enclosing the liquid 44 but also as a member for electrically connecting the semiconductor element 20 and the conductor 30. Therefore, in the power module 100A, there is no need to separately provide a current path from the semiconductor element 20, and even if the conductor block 40 and the semiconductor element 20 are placed close to each other, it is possible to reduce the current density in the current path from the semiconductor element 20. It is. Furthermore, in the power module 100A, since one conductor block 40 is arranged on one semiconductor element 20, positioning of the conductor block 40 in the first bonding step S1 is facilitated.
  • Embodiment 2 A power module according to Embodiment 2 will be explained.
  • the power module according to the second embodiment is referred to as a power module 100B.
  • differences from the power module 100A will be mainly explained, and overlapping explanations will not be repeated.
  • FIG. 4 is a partially enlarged sectional view of the power module 100B.
  • the power module 100B includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a plurality of conductor blocks 40, a base plate 50, a case 51, and a seal. It has a stopper 52.
  • the configuration of power module 100B is common to the configuration of power module 100A. Note that in FIG. 4, illustration of the base plate 50 and the case 51 is omitted.
  • the hole 41 has an enlarged diameter portion 45 on the lower end 40b side.
  • the enlarged diameter portion 45 has a larger inner diameter than the screw hole 42 .
  • the configuration of power module 100B is different from the configuration of power module 100A.
  • the hole 41 has an enlarged diameter portion 45 on the lower end 40b side. Therefore, in the power module 100B, the volume of the sealed liquid 44, that is, the heat capacity of the sealed liquid 44, can be increased on the side closer to the semiconductor element 20, and temperature fluctuations between operation and cooling can be further reduced. Can be made smaller. As a result, according to the power module 100B, it is possible to further reduce thermal stress around the semiconductor element 20. Further, in the power module 100B, since the hole 41 has the enlarged diameter portion 45, the volume of the portion of the hole 41 in which the liquid 44 is not sealed can be increased, so that the pressure inside the hole 41 is increased. It is possible to reduce the
  • FIG. 5 is a partially enlarged sectional view of a power module 100B according to a modification.
  • the semiconductor element 20 located at the center of the plurality of semiconductor elements 20 is referred to as a semiconductor element 20A.
  • the semiconductor element 20 located outside the semiconductor element 20A among the plurality of semiconductor elements 20 is referred to as a semiconductor element 20B.
  • the conductor block 40 placed on the semiconductor element 20A is referred to as a conductor block 40A
  • the conductor block 40 placed on the semiconductor element 20A is referred to as a conductor block 40B.
  • the temperature rise around the semiconductor element 20A tends to be larger during operation than around the semiconductor element 20B.
  • the hole 41 of the conductor block 40A has the enlarged diameter part 45, but the hole 41 of the conductor block 40B does not have the enlarged diameter part 45, there is a gap between the periphery of the semiconductor element 20A and the periphery of the semiconductor element 20B. It is possible to reduce the imbalance in temperature rise. As a result, it is possible to reduce variations in the degree of crack growth from place to place due to thermal stress.
  • Embodiment 3 A power module according to Embodiment 3 will be explained.
  • the power module according to the third embodiment is referred to as a power module 100C.
  • the points that are different from the power module 100A will be mainly explained, and duplicate explanations will not be repeated.
  • FIG. 6 is a partially enlarged sectional view of the power module 100C.
  • the power module 100C includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a conductor block 40, a base plate 50, a case 51, and a sealing material. 52.
  • the configuration of the power module 100C is common to the configuration of the power module 100A. Note that in FIG. 6, illustration of the base plate 50 and the case 51 is omitted.
  • the conductor block 40 is arranged over the plurality of semiconductor elements 20. To put this from another perspective, the conductor blocks 40 on each of the plurality of semiconductor elements 20 are integrated. Accordingly, the holes 41 of the plurality of integrated conductor blocks 40 are connected to each other. In this regard, the configuration of power module 100C is different from the configuration of power module 100A.
  • the total volume of the holes 41 that is, the total volume of the liquid 44 sealed therein is increased. Therefore, according to the power module 100C, it is possible to further reduce thermal stress around the semiconductor element 20.
  • FIG. 7 is a partially enlarged sectional view of a power module 100C according to a modification. As shown in FIG. 7, in the power module 100C, only some of the plurality of conductor blocks 40 may be integrated. In this case as well, since the total volume of the liquid 44 sealed is increased, it is possible to further reduce the thermal stress around the semiconductor element 20.
  • Embodiment 4 A power module according to Embodiment 4 will be explained.
  • the power module according to the fourth embodiment is referred to as a power module 100D.
  • differences from the power module 100A will be mainly explained, and overlapping explanations will not be repeated.
  • FIG. 8 is a partially enlarged sectional view of the power module 100D.
  • the power module 100D includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a conductor block 40, a base plate 50, a case 51, and a sealing material. 52.
  • the configuration of power module 100D is common to the configuration of power module 100A. Note that in FIG. 8, illustration of the base plate 50 and the case 51 is omitted.
  • the hole 41 reaches the lower end 40b. That is, in the power module 100D, the hole 41 penetrates the conductor block 40. As a result, in the power module 100D, the liquid 44 sealed in the hole 41 is in contact with the semiconductor element 20. In this regard, the configuration of power module 100D is different from the configuration of power module 100A.
  • the power module 100D since the liquid 44 sealed in the hole 41 is in contact with the semiconductor element 20, heat generated in the semiconductor element 20 is easily transferred to the liquid 44. Therefore, in the power module 100D, the temperature fluctuation between the operation time and the cooling time can be further reduced. As a result, according to the power module 100D, it is possible to further reduce thermal stress around the semiconductor element 20.
  • FIG. 9 is a partially enlarged sectional view of a power module 100D according to a modification.
  • the holes 41 reach the lower end 40b (liquid 44 is in contact with the semiconductor element 20), while in the conductor block 40B, the holes 41 do not reach the lower end 40b. (Liquid 44 is not in contact with semiconductor element 20).
  • Liquid 44 is not in contact with semiconductor element 20.
  • Embodiment 5 the power modules according to the first to fourth embodiments described above are applied to a power conversion device.
  • the present disclosure is not limited to a specific power conversion device, a case will be described below as Embodiment 5 in which the present disclosure is applied to a three-phase inverter.
  • the power conversion system according to the fifth embodiment is referred to as a power conversion system 200.
  • FIG. 10 is a block diagram showing the configuration of the power conversion system 200.
  • the power conversion system includes a power source 300, a power conversion device 400, and a load 500.
  • Power supply 300 is a DC power supply and supplies DC power to power conversion device 400.
  • the power source 300 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. Good too.
  • the power supply 300 may be configured with a DC/DC converter that converts DC power output from a DC system into predetermined power.
  • the power conversion device 400 is a three-phase inverter connected between the power source 300 and the load 500, converts the DC power supplied from the power source 300 into AC power, and supplies the AC power to the load 500. As shown in FIG. 10, the power conversion device 400 includes a main conversion circuit 401 that converts DC power into AC power and outputs it, and a control circuit that outputs a control signal for controlling the main conversion circuit 401 to the main conversion circuit 401. 403.
  • the load 500 is a three-phase electric motor driven by AC power supplied from the power converter 400.
  • the load 500 is not limited to a specific application, but is a motor installed in various electrical devices, and is used, for example, as a motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 401 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, it converts the DC power supplied from the power supply 300 into AC power, and supplies the AC power to the load 500.
  • the main conversion circuit 401 is a two-level three-phase full bridge circuit, and includes six switching elements and each switching element. It can be composed of six freewheeling diodes connected in antiparallel to each other.
  • each switching element and each freewheeling diode of the main conversion circuit 401 is a switching element or a freewheeling diode included in the semiconductor module 402 corresponding to the power module according to any of the first to fourth embodiments described above. be.
  • the six switching elements are connected in series every two switching elements to constitute upper and lower arms, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit.
  • the output terminals of the upper and lower arms that is, the three output terminals of the main conversion circuit 401, are connected to the load 500.
  • the main conversion circuit 401 includes a drive circuit (not shown) that drives each switching element, but the drive circuit may be built into the semiconductor module 402 or may include a drive circuit separately from the semiconductor module 402. It may be.
  • the drive circuit generates a drive signal for driving the switching element of the main conversion circuit 401 and supplies it to the control electrode of the switching element of the main conversion circuit 401. Specifically, according to a control signal from a control circuit 403, which will be described later, a drive signal that turns the switching element on and a drive signal that turns the switching element off are output to the control electrode of each switching element.
  • the drive signal When keeping the switching element in the on state, the drive signal is a voltage signal (on signal) that is greater than or equal to the threshold voltage of the switching element, and when the switching element is kept in the off state, the drive signal is a voltage signal that is less than or equal to the threshold voltage of the switching element. signal (off signal).
  • the control circuit 403 controls the switching elements of the main conversion circuit 401 so that the desired power is supplied to the load 500. Specifically, based on the power to be supplied to the load 500, the time during which each switching element of the main conversion circuit 401 should be in the on state (on time) is calculated. For example, the main conversion circuit 401 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is sent to the drive circuit included in the main conversion circuit 401 so that an on signal is output to the switching element that should be in the on state at each time, and an off signal is output to the switching element that should be in the off state. Output.
  • the drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the power modules according to the first to fourth embodiments described above are applied as the semiconductor module 402 constituting the main conversion circuit 401, the generation of thermal stress around the semiconductor element 20 is suppressed. At the same time, it is possible to reduce the current density in the current path from the semiconductor element 20.
  • the present disclosure is not limited to this and can be applied to various power conversion devices.
  • a two-level power converter is used, but a three-level or multi-level power converter may be used, and when supplying power to a single-phase load, the present disclosure may be applied to a single-phase inverter. May be applied.
  • the present disclosure can also be applied to a DC/DC converter or an AC/DC converter.
  • the power conversion device to which the present disclosure is applied is not limited to cases where the above-mentioned load is an electric motor. It can also be used as a power conditioner for solar power generation systems, power storage systems, etc.

Abstract

A power module (100A, 100B, 100C, 100D) is provided with a circuit board (10), a first semiconductor element (20), a conductor block (40), and a conductor (30). The first semiconductor element is disposed on the circuit board. The conductive block has an upper end (40a) and a lower end (40b). The conductive block is disposed on the first semiconductor element so that the lower end is electrically connected to the first semiconductor element. Liquid is sealed inside the conductor block. The conductor electrically connects the circuit board and the upper end.

Description

パワーモジュール及び電力変換装置Power module and power converter
 本開示は、パワーモジュール及び電力変換装置に関する。 The present disclosure relates to a power module and a power conversion device.
 例えば特開平6-104355号公報(特許文献1)には、半導体装置が記載されている。特許文献1に記載の半導体装置は、リードフレームと、半導体チップと、冷却モジュールと、モールド樹脂とを有している。半導体チップは、リードフレーム上に配置されている。冷却モジュールは、半導体チップの上方に配置されている。冷却モジュールの内部には、液体が封入されている。リードフレーム、半導体チップ及び冷却モジュールは、モールド樹脂により封止されている。特許文献1に記載の半導体装置は、冷却モジュールにより、冷却効率が高められている。 For example, Japanese Patent Laid-Open No. 6-104355 (Patent Document 1) describes a semiconductor device. The semiconductor device described in Patent Document 1 includes a lead frame, a semiconductor chip, a cooling module, and a mold resin. A semiconductor chip is placed on a lead frame. The cooling module is placed above the semiconductor chip. A liquid is sealed inside the cooling module. The lead frame, semiconductor chip, and cooling module are sealed with mold resin. The semiconductor device described in Patent Document 1 has improved cooling efficiency using a cooling module.
特開平6-104355号公報Japanese Patent Application Publication No. 6-104355
 特許文献1に記載の半導体装置では、冷却モジュールによる冷却効率を高めるために、半導体チップと冷却モジュールとの間の距離を小さくする必要がある。しかしながら、半導体チップと冷却モジュールとの間の距離を小さくすると、冷却モジュールがリードフレームと半導体チップとの電気的な接続を行う際の障害となる。より具体的には、リードフレームと半導体チップとの電気的な接続を行うための部材(ワイヤ等)の断面積が小さくなり、当該部材における電流密度が大きくなる。この電流密度の増加は、特許文献1に記載の半導体装置の信頼性を低下させる要因となる。 In the semiconductor device described in Patent Document 1, in order to increase the cooling efficiency by the cooling module, it is necessary to reduce the distance between the semiconductor chip and the cooling module. However, reducing the distance between the semiconductor chip and the cooling module becomes an obstacle when the cooling module makes electrical connection between the lead frame and the semiconductor chip. More specifically, the cross-sectional area of a member (such as a wire) for electrically connecting the lead frame and the semiconductor chip becomes smaller, and the current density in the member becomes larger. This increase in current density becomes a factor that reduces the reliability of the semiconductor device described in Patent Document 1.
 本開示は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本開示は、半導体素子の周囲における熱応力の発生を抑制しつつ、半導体素子からの電流経路における電流密度を低減することが可能なパワーモジュールを提供するものである。 The present disclosure has been made in view of the problems of the prior art as described above. More specifically, the present disclosure provides a power module that can reduce the current density in the current path from the semiconductor element while suppressing the generation of thermal stress around the semiconductor element.
 本開示のパワーモジュールは、回路基板と、第1半導体素子と、導体ブロックと、導体とを備えている。第1半導体素子は、回路基板上に配置されている。導体ブロックは、上端と、下端とを有する。導体ブロックは、下端が第1半導体素子に電気的に接続されるように第1半導体素子上に配置されている。導体ブロックの内部には、液体が封入されている。導体は、回路基板と上端とを電気的に接続している。 The power module of the present disclosure includes a circuit board, a first semiconductor element, a conductor block, and a conductor. The first semiconductor element is arranged on the circuit board. The conductor block has an upper end and a lower end. The conductor block is arranged on the first semiconductor element such that the lower end thereof is electrically connected to the first semiconductor element. A liquid is sealed inside the conductor block. The conductor electrically connects the circuit board and the top end.
 本開示のパワーモジュールによると、半導体素子の周囲における熱応力の発生を抑制しつつ、半導体素子からの電流経路における電流密度の低減することが可能である。 According to the power module of the present disclosure, it is possible to reduce the current density in the current path from the semiconductor element while suppressing the generation of thermal stress around the semiconductor element.
パワーモジュール100Aの断面図である。It is a sectional view of power module 100A. パワーモジュール100Aの部分的な拡大断面図である。FIG. 2 is a partially enlarged sectional view of the power module 100A. パワーモジュール100Aの製造方法を示す工程図である。It is a process diagram which shows the manufacturing method of 100 A of power modules. パワーモジュール100Bの部分的な拡大断面図である。FIG. 3 is a partially enlarged sectional view of power module 100B. 変形例に係るパワーモジュール100Bの部分的な拡大断面図である。FIG. 7 is a partially enlarged sectional view of a power module 100B according to a modification. パワーモジュール100Cの部分的な拡大断面図である。FIG. 3 is a partially enlarged sectional view of the power module 100C. 変形例に係るパワーモジュール100Cの部分的な拡大断面図である。It is a partially enlarged cross-sectional view of a power module 100C according to a modification. パワーモジュール100Dの部分的な拡大断面図である。It is a partially enlarged sectional view of power module 100D. 変形例に係るパワーモジュール100Dの部分的な拡大断面図である。FIG. 7 is a partially enlarged sectional view of a power module 100D according to a modification. 電力変換システム200の構成を示すブロック図である。2 is a block diagram showing the configuration of a power conversion system 200. FIG.
 本開示の実施形態の詳細を、図面を参照しながら説明する。以下の図面では、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。以下の各実施の形態は、適宜組み合わせて適用されてもよい。 Details of embodiments of the present disclosure will be described with reference to the drawings. In the following drawings, the same reference numerals are given to the same or corresponding parts, and overlapping descriptions will not be repeated. The following embodiments may be applied in combination as appropriate.
 実施の形態1.
 実施の形態1に係るパワーモジュールを説明する。実施の形態1に係るパワーモジュールを、パワーモジュール100Aとする。
Embodiment 1.
A power module according to Embodiment 1 will be described. The power module according to the first embodiment is referred to as a power module 100A.
 (パワーモジュール100Aの構成)
 以下に、パワーモジュール100Aの構成を説明する。
(Configuration of power module 100A)
The configuration of the power module 100A will be explained below.
 図1は、パワーモジュール100Aの断面図である。図2は、パワーモジュール100Aの部分的な拡大断面図である。図1及び図2に示されるように、パワーモジュール100Aは、回路基板10と、複数の半導体素子20と、導体30と、ワイヤ31と、複数の導体ブロック40と、ベース板50と、ケース51と、封止材52とを有している。 FIG. 1 is a cross-sectional view of the power module 100A. FIG. 2 is a partially enlarged sectional view of the power module 100A. As shown in FIGS. 1 and 2, the power module 100A includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a plurality of conductor blocks 40, a base plate 50, and a case 51. and a sealing material 52.
 回路基板10は、絶縁層11と、導体パターン12と、導体パターン13とを有している。絶縁層11は、上面11aと、下面11bとを有している。上面11a及び下面11bは、絶縁層11の厚さ方向における端面である。下面11bは、上面11aの反対面である。絶縁層11は、電気絶縁性の材料で形成されている。絶縁層11は、例えば、アルミナ(Al)、窒化アルミニウム(AlN)等で形成されている。 The circuit board 10 has an insulating layer 11, a conductor pattern 12, and a conductor pattern 13. Insulating layer 11 has an upper surface 11a and a lower surface 11b. The upper surface 11a and the lower surface 11b are end surfaces of the insulating layer 11 in the thickness direction. The lower surface 11b is the opposite surface to the upper surface 11a. The insulating layer 11 is made of an electrically insulating material. The insulating layer 11 is made of, for example, alumina (Al 2 O 3 ), aluminum nitride (AlN), or the like.
 導体パターン12は、上面11a上に配置されている。導体パターン13は、下面11b上に配置されている。導体パターン12及び導体パターン13は、導電性の材料で形成されている。導体パターン12は、例えば、銅(Cu)で形成されている。導体パターン12及び導体パターン13は、複数の層で構成されていてもよい。導体パターン12及び導体パターン13は、絶縁層11側にあるアルミニウム(Al)層と、アルミニウム層上に配置されている銅層とで構成されていてもよい。 The conductor pattern 12 is arranged on the upper surface 11a. The conductor pattern 13 is arranged on the lower surface 11b. The conductor pattern 12 and the conductor pattern 13 are made of a conductive material. The conductor pattern 12 is made of copper (Cu), for example. The conductor pattern 12 and the conductor pattern 13 may be composed of multiple layers. The conductor pattern 12 and the conductor pattern 13 may be composed of an aluminum (Al) layer on the insulating layer 11 side and a copper layer disposed on the aluminum layer.
 半導体素子20は、パワー半導体素子である。半導体素子20は、例えばIGBT(Insulated Gate Bipolar Transistor)である。但し、半導体素子20は、これに限られるものではない。半導体素子20は、MOSFET(Metal Oxide Field Effect Transistor)であってもよい。半導体素子20は、ショットキーバリアダイオードであってもよい。半導体素子20は、例えばシリコン(Si)基板を用いて形成されている。半導体素子20は、炭化シリコン(SiC)基板、窒化ガリウム(GaN)基板、ダイヤモンド基板等のワイドバンドギャップ半導体材料の基板を用いて形成されていてもよい。 The semiconductor element 20 is a power semiconductor element. The semiconductor element 20 is, for example, an IGBT (Insulated Gate Bipolar Transistor). However, the semiconductor element 20 is not limited to this. The semiconductor element 20 may be a MOSFET (Metal Oxide Field Effect Transistor). The semiconductor element 20 may be a Schottky barrier diode. The semiconductor element 20 is formed using, for example, a silicon (Si) substrate. The semiconductor element 20 may be formed using a substrate made of a wide bandgap semiconductor material such as a silicon carbide (SiC) substrate, a gallium nitride (GaN) substrate, or a diamond substrate.
 半導体素子20は、上面と下面とを有している。上面及び下面は、半導体素子20の厚さ方向における端面である。下面は、上面の反対面である。図示されていないが、半導体素子20は、上面及び下面に電極を有している。半導体素子20がIGBTである場合、半導体素子20は、上面にエミッタ電極及びゲート電極を有しており、下面にコレクタ電極を有している。半導体素子20がMOSFETである場合、上面にソース電極及びゲート電極を有しており、下面にドレイン電極を有している。半導体素子20の上面の電極及び下面の電極は、例えばアルミニウム又はアルミニウムにシリコンを添加したアルミニウム合金で形成されている。図示されていないが、半導体素子20の上面の電極及び下面の電極の表面上には、例えばニッケル(Ni)、金(Au)等で形成されている被覆層が配置されていてもよい。 The semiconductor element 20 has an upper surface and a lower surface. The upper surface and the lower surface are end surfaces of the semiconductor element 20 in the thickness direction. The lower surface is the opposite surface to the upper surface. Although not shown, the semiconductor element 20 has electrodes on the upper and lower surfaces. When the semiconductor element 20 is an IGBT, the semiconductor element 20 has an emitter electrode and a gate electrode on the upper surface, and a collector electrode on the lower surface. When the semiconductor element 20 is a MOSFET, it has a source electrode and a gate electrode on the upper surface, and a drain electrode on the lower surface. The upper and lower electrodes of the semiconductor element 20 are made of, for example, aluminum or an aluminum alloy in which silicon is added to aluminum. Although not shown, a covering layer made of, for example, nickel (Ni), gold (Au), etc. may be disposed on the surfaces of the upper and lower electrodes of the semiconductor element 20.
 半導体素子20は、回路基板10上に配置されている。より具体的には、半導体素子20は、導体パターン12上に配置されている。半導体素子20の下面にある電極は、接合材60により、導体パターン12に接合されている。これにより、半導体素子20は、回路基板10に電気的に接続されている。接合材60は、例えば焼結銀粒子、はんだ合金等で形成されている。 The semiconductor element 20 is arranged on the circuit board 10. More specifically, the semiconductor element 20 is arranged on the conductor pattern 12. The electrodes on the lower surface of the semiconductor element 20 are bonded to the conductor pattern 12 with a bonding material 60 . Thereby, the semiconductor element 20 is electrically connected to the circuit board 10. The bonding material 60 is made of, for example, sintered silver particles, solder alloy, or the like.
 導体30は、一方端部30aと、他方端部30bとを有している。導体30は、一方端部30aにおいて、回路基板10に電気的に接続されている。より具体的には、一方端部30aは、接合材61により、導体パターン12に接合されている。接合材61は、例えば焼結銀粒子、はんだ合金等で形成されている。これにより、導体30は、回路基板10に電気的に接続されている。なお、一方端部30aは、超音波接合等により、導体パターン12に直接接合されていてもよい。また、一方端部30aは、ねじ締結により導体パターン12に接続されてもよい。導体30は、例えば銅で形成されている。 The conductor 30 has one end 30a and the other end 30b. The conductor 30 is electrically connected to the circuit board 10 at one end 30a. More specifically, one end 30 a is bonded to the conductor pattern 12 with a bonding material 61 . The bonding material 61 is made of, for example, sintered silver particles, solder alloy, or the like. Thereby, the conductor 30 is electrically connected to the circuit board 10. Note that the one end portion 30a may be directly bonded to the conductive pattern 12 by ultrasonic bonding or the like. Further, the one end portion 30a may be connected to the conductor pattern 12 by screw fastening. The conductor 30 is made of copper, for example.
 ワイヤ31は、一方端において導体パターン12に接合されており、他方端において半導体素子20の上面にある電極(半導体素子20がIGBT又はMOSFETである場合には、ゲート電極)に接合されている。これにより、半導体素子20は、回路基板10に電気的に接続されている。ワイヤ31と半導体素子20の上面にある電極との接合及びワイヤ31と導体パターン12との接合は、例えば、ワイヤボンディングにより行われる。ワイヤ31は、例えば、金、アルミニウム、銅等で形成されている。なお、ワイヤ31には、例えば、半導体素子20に対する制御信号が流れる。パワーモジュール100Aは、ワイヤ31に代えて、導体パターン12と半導体素子20とを電気的に接続するための導電部材を有していてもよい。 The wire 31 is connected to the conductor pattern 12 at one end, and to the electrode on the upper surface of the semiconductor element 20 (or the gate electrode if the semiconductor element 20 is an IGBT or MOSFET) at the other end. Thereby, the semiconductor element 20 is electrically connected to the circuit board 10. The bonding between the wire 31 and the electrode on the upper surface of the semiconductor element 20 and the bonding between the wire 31 and the conductor pattern 12 are performed, for example, by wire bonding. The wire 31 is made of, for example, gold, aluminum, copper, or the like. Note that, for example, a control signal for the semiconductor element 20 flows through the wire 31. The power module 100A may include a conductive member for electrically connecting the conductor pattern 12 and the semiconductor element 20 instead of the wire 31.
 導体ブロック40は、上端40aと下端40bとを有している。導体ブロック40は、半導体素子20上に配置されている。下端40bは、接合材62により、半導体素子20の表面にある電極(半導体素子20がIGBTである場合にはエミッタ電極、半導体素子20がMOSFETである場合にはソース電極)に接合されている。これにより、導体ブロック40は、下端40bにおいて、半導体素子20に電気的に接続されている。 The conductor block 40 has an upper end 40a and a lower end 40b. The conductor block 40 is arranged on the semiconductor element 20. The lower end 40b is bonded to an electrode on the surface of the semiconductor element 20 (an emitter electrode when the semiconductor element 20 is an IGBT, and a source electrode when the semiconductor element 20 is a MOSFET) by a bonding material 62. Thereby, the conductor block 40 is electrically connected to the semiconductor element 20 at the lower end 40b.
 上端40aには、穴41が形成されている。穴41は、下端40b側に向かって延びている。穴41の上端40a側は、ねじ穴42(雌ねじ)になっている。ねじ穴42にねじ43が螺合されることにより、導体30が、上端40aに締結されている。これにより、導体ブロック40は、導体30に電気的に接続されている。ねじ43は、例えば、銅で形成されている。穴41には、液体44が封入されている。すなわち、導体ブロック40の内部には液体44が封入されている。液体44は、例えば、水、フロロカーボン、ハロフロロカーボン、6塩化エタン、フロリナート、フッ素系不活性液体等である。図視されていないが、液体44と接触する穴41の内壁面には、金属めっき等の表面処理が施されていてもよい。 A hole 41 is formed in the upper end 40a. The hole 41 extends toward the lower end 40b. The upper end 40a side of the hole 41 is a screw hole 42 (female thread). The conductor 30 is fastened to the upper end 40a by screwing the screw 43 into the screw hole 42. Thereby, the conductor block 40 is electrically connected to the conductor 30. The screw 43 is made of copper, for example. A liquid 44 is sealed in the hole 41 . That is, a liquid 44 is sealed inside the conductor block 40. The liquid 44 is, for example, water, fluorocarbon, halofluorocarbon, hexachloroethane, fluorinate, fluorine-based inert liquid, or the like. Although not illustrated, the inner wall surface of the hole 41 that comes into contact with the liquid 44 may be subjected to surface treatment such as metal plating.
 ベース板50の上面上には、回路基板10が配置されている。より具体的には、回路基板10は、導体パターン13が接合材63によりベース板50の上面に接合されることでベース板50上に配置されている。接合材63は、例えば、焼結銀粒子、はんだ合金等で形成されている。ベース板50は、例えば、銅、炭化シリコン粒子強化アルミニウム複合材(AlSiC)等で形成されている。パワーモジュール100Aは、ベース板50及び接合材63を有していなくてもよい。この場合、導体パターン13が、ベース板50の代わりに用いられる。また、この場合、絶縁層11は、電気絶縁性の樹脂材料で形成されてもよい。 The circuit board 10 is arranged on the upper surface of the base plate 50. More specifically, the circuit board 10 is arranged on the base plate 50 by bonding the conductive pattern 13 to the upper surface of the base plate 50 using the bonding material 63. The bonding material 63 is made of, for example, sintered silver particles, solder alloy, or the like. The base plate 50 is made of, for example, copper, silicon carbide particle reinforced aluminum composite material (AlSiC), or the like. The power module 100A does not need to have the base plate 50 and the bonding material 63. In this case, conductive pattern 13 is used instead of base plate 50. Further, in this case, the insulating layer 11 may be formed of an electrically insulating resin material.
 ケース51は、ベース板50の外周縁部に取り付けられている。ケース51は、ベース板50の上面に交差する方向に沿って延びている。ケース51は、電気絶縁性の材料で形成されている。 The case 51 is attached to the outer peripheral edge of the base plate 50. Case 51 extends along a direction intersecting the upper surface of base plate 50. Case 51 is made of electrically insulating material.
 ベース板50の上面及びケース51の内壁面で画されている空間には、封止材52が充填されている。これにより、回路基板10、半導体素子20、導体30、ワイヤ31及び導体ブロック40が封止されている。封止材52は、熱硬化性の樹脂材料で形成されている。熱硬化性の樹脂材料は、例えば、シリコーン、エポキシ等である。高温に曝された際の軟化や劣化を抑制するため、封止材52を構成している樹脂材料は、高温で劣化しにくい金属やフィラーを含んでいることが好ましい。 The space defined by the upper surface of the base plate 50 and the inner wall surface of the case 51 is filled with a sealing material 52. Thereby, the circuit board 10, the semiconductor element 20, the conductor 30, the wire 31, and the conductor block 40 are sealed. The sealing material 52 is made of a thermosetting resin material. Examples of the thermosetting resin material include silicone and epoxy. In order to suppress softening and deterioration when exposed to high temperatures, the resin material constituting the sealing material 52 preferably contains a metal or filler that does not easily deteriorate at high temperatures.
 図示されていないが、導体パターン12の絶縁層11とは反対側の面には、複数の凹凸が形成されていてもよい。これにより、封止材52と導体パターン12との間の密着性が改善される。また、封止材52と導体パターン12との間の密着性を高めるため、導体パターン12の表面には、コーティングが施されていてもよい。 Although not shown, a plurality of unevenness may be formed on the surface of the conductive pattern 12 opposite to the insulating layer 11. This improves the adhesion between the sealing material 52 and the conductor pattern 12. Further, in order to improve the adhesion between the sealing material 52 and the conductor pattern 12, the surface of the conductor pattern 12 may be coated.
 (パワーモジュール100Aの製造方法)
 以下に、パワーモジュール100Aの製造方法を説明する。
(Manufacturing method of power module 100A)
A method of manufacturing the power module 100A will be described below.
 図3は、パワーモジュール100Aの製造方法を示す工程図である。図3に示されるように、パワーモジュール100Aの製造方法は、第1接合工程S1と、第2接合工程S2と、第3接合工程S3と、第4接合工程S4と、導体接続工程S5と、封止工程S6とを有している。 FIG. 3 is a process diagram showing a method for manufacturing the power module 100A. As shown in FIG. 3, the method for manufacturing the power module 100A includes a first bonding step S1, a second bonding step S2, a third bonding step S3, a fourth bonding step S4, a conductor connection step S5, and a sealing step S6.
 第1接合工程S1では、接合材60により、半導体素子20の下面の電極と導体パターン12とが接合される。第2接合工程S2は、第1接合工程S1の後に行われる。第2接合工程S2では、接合材62により、導体ブロック40(下端40b)と半導体素子20(半導体素子20の上面の電極)とが接合される。第3接合工程S3は、第2接合工程S2の後に行われる。第3接合工程S3では、接合材61により、導体30(他方端部30b)と導体パターン12とが接合される。第4接合工程S4は、第3接合工程S3の後に行われる。第4接合工程S4では、接合材63により、導体パターン13がベース板50に接合される。 In the first bonding step S1, the electrode on the lower surface of the semiconductor element 20 and the conductor pattern 12 are bonded using the bonding material 60. The second bonding step S2 is performed after the first bonding step S1. In the second bonding step S2, the conductor block 40 (lower end 40b) and the semiconductor element 20 (electrode on the upper surface of the semiconductor element 20) are bonded using the bonding material 62. The third bonding step S3 is performed after the second bonding step S2. In the third bonding step S3, the conductor 30 (the other end 30b) and the conductor pattern 12 are bonded using the bonding material 61. The fourth bonding step S4 is performed after the third bonding step S3. In the fourth bonding step S4, the conductive pattern 13 is bonded to the base plate 50 using the bonding material 63.
 第1接合工程S1、第2接合工程S2、第3接合工程S3及び第4接合工程S4の行われる順序は、適宜変更されてもよい。第1接合工程S1、第2接合工程S2、第3接合工程S3及び第4接合工程S4の全部又は一部は、同時に行われてもよい。 The order in which the first bonding step S1, second bonding step S2, third bonding step S3, and fourth bonding step S4 are performed may be changed as appropriate. All or part of the first bonding step S1, the second bonding step S2, the third bonding step S3, and the fourth bonding step S4 may be performed simultaneously.
 導体接続工程S5は、第1接合工程S1、第2接合工程S2、第3接合工程S3及び第4接合工程S4の後に行われる。導体接続工程S5では、ねじ43をねじ穴42に螺合することにより、導体30が上端40aにねじ締結され、導体30と導体ブロック40とが電気的に接続される。 The conductor connection step S5 is performed after the first bonding step S1, the second bonding step S2, the third bonding step S3, and the fourth bonding step S4. In the conductor connection step S5, the conductor 30 is screwed to the upper end 40a by screwing the screw 43 into the screw hole 42, and the conductor 30 and the conductor block 40 are electrically connected.
 封止工程S6は、導体接続工程S5の後に行われる。封止工程S6では、ベース板50の上面及びケース51の内壁面で画されている空間に封止材52が充填される。封止材52の充填は、例えばディスペンサ等を用いて封止材52を上方から供給することにより行われる。封止材52の充填は、第1工程及び第2工程により行われてもよい。 The sealing step S6 is performed after the conductor connecting step S5. In the sealing step S6, the space defined by the upper surface of the base plate 50 and the inner wall surface of the case 51 is filled with the sealant 52. Filling with the sealant 52 is performed by, for example, supplying the sealant 52 from above using a dispenser or the like. Filling with the sealing material 52 may be performed in a first step and a second step.
 第1工程では、導体接続工程S5まで行われたパワーモジュール100Aが、容器内に貯留されている封止材52中に浸漬された上で引き上げられる。第2工程では、第1工程を経たパワーモジュール100Aにおいて、ベース板50の上面及びケース51の内壁面で画されている空間に封止材52がさらに供給される。なお、第1工程で用いられる封止材52と第2工程で用いられる封止材52とは、異なる材料であってもよく、同一の材料であってもよい。以上により、図1及び図2に示される構造のパワーモジュール100Aが形成されることになる。 In the first step, the power module 100A that has been subjected to the conductor connection step S5 is immersed in the sealing material 52 stored in the container and then pulled up. In the second step, the sealing material 52 is further supplied to the space defined by the upper surface of the base plate 50 and the inner wall surface of the case 51 in the power module 100A that has undergone the first step. Note that the sealing material 52 used in the first step and the sealing material 52 used in the second step may be different materials or may be the same material. Through the above steps, the power module 100A having the structure shown in FIGS. 1 and 2 is formed.
 (パワーモジュール100Aの効果)
 以下に、パワーモジュール100Aの効果を説明する。
(Effect of power module 100A)
The effects of the power module 100A will be explained below.
 パワーモジュール100Aの動作時に、半導体素子20が発熱する。その結果、パワーモジュール100Aでは、動作時に、半導体素子20及び半導体素子20に接続されている部材との接合部が高温になる。他方で、パワーモジュール100Aの冷却時には、半導体素子20において発生した熱が接合材60、導体パターン12、絶縁層11、導体パターン13、接合材63及びベース板50の順に伝わり、ベース板50から外部に放熱されることにより、半導体素子20の温度が降下する。 When the power module 100A operates, the semiconductor element 20 generates heat. As a result, in the power module 100A, the semiconductor element 20 and the joints with the members connected to the semiconductor element 20 become high in temperature during operation. On the other hand, when cooling the power module 100A, the heat generated in the semiconductor element 20 is transmitted in this order to the bonding material 60, the conductive pattern 12, the insulating layer 11, the conductive pattern 13, the bonding material 63, and the base plate 50, and is transferred from the base plate 50 to the outside. The temperature of the semiconductor element 20 decreases by dissipating the heat.
 このような温度の変動が生じると、半導体素子20と導体ブロック40との間の熱膨張係数の差及び導体パターン12と半導体素子20との間の熱膨張係数の差に起因して、接合材60及び接合材62に熱応力が発生する。この熱応力が接合材60の端部及び接合材62の端部に集中することにより、接合材60中、接合材62中、接合材60と導体パターン12又は半導体素子20との界面、接合材62と半導体素子20又は導体ブロック40との界面に、クラックが発生することがある。上記の温度の変動が繰り返されると、クラックが進展し、最終的には導体パターン12と半導体素子20との間の電気的な接続や半導体素子20と導体ブロック40との間の電気的な接続が解消されてしまう。 When such temperature fluctuations occur, the bonding material may deteriorate due to the difference in the coefficient of thermal expansion between the semiconductor element 20 and the conductor block 40 and the difference in the coefficient of thermal expansion between the conductor pattern 12 and the semiconductor element 20. Thermal stress is generated in the bonding material 60 and the bonding material 62. This thermal stress concentrates on the ends of the bonding material 60 and the bonding material 62, causing the bonding material 60, the bonding material 62, the interface between the bonding material 60 and the conductive pattern 12 or the semiconductor element 20, Cracks may occur at the interface between the semiconductor element 62 and the semiconductor element 20 or the conductor block 40. When the above temperature fluctuations are repeated, cracks develop and eventually lead to electrical connections between the conductor pattern 12 and the semiconductor element 20 and between the semiconductor element 20 and the conductor block 40. will be resolved.
 パワーモジュール100Aでは、導体ブロック40の内部に、液体44が封入されている。そのため、パワーモジュール100Aの動作中に半導体素子20が発熱しても、半導体素子20において発生した熱が液体44の温度上昇や液体44の相変化に消費されることになるため、パワーモジュール100Aの動作時と冷却時との間における温度の変動を小さくすることができる。液体44は、剛性が殆どないため、周囲との間で熱膨張係数に差があっても、熱応力を発生させる原因とならない。このように、パワーモジュール100Aによると、半導体素子20の周囲における熱応力を低減することが可能である。 In the power module 100A, a liquid 44 is sealed inside the conductor block 40. Therefore, even if the semiconductor element 20 generates heat during the operation of the power module 100A, the heat generated in the semiconductor element 20 will be consumed by increasing the temperature of the liquid 44 and changing the phase of the liquid 44. Fluctuations in temperature between operation and cooling can be reduced. Since the liquid 44 has almost no rigidity, even if there is a difference in coefficient of thermal expansion between the liquid 44 and its surroundings, it does not cause thermal stress. In this way, according to the power module 100A, it is possible to reduce thermal stress around the semiconductor element 20.
 また、導体ブロック40は、液体44を封入する部材としてのみならず、半導体素子20と導体30とを電気的に接続するための部材としても機能している。そのため、パワーモジュール100Aでは、半導体素子20からの電流経路を別途設ける必要がなく、導体ブロック40と半導体素子20が近接配置されても半導体素子20からの電流経路における電流密度を低減することが可能である。さらに、パワーモジュール100Aでは、1つの半導体素子20の上に1つの導体ブロック40が配置されているため、第1接合工程S1における導体ブロック40の位置決めが容易になる。 Furthermore, the conductor block 40 functions not only as a member for enclosing the liquid 44 but also as a member for electrically connecting the semiconductor element 20 and the conductor 30. Therefore, in the power module 100A, there is no need to separately provide a current path from the semiconductor element 20, and even if the conductor block 40 and the semiconductor element 20 are placed close to each other, it is possible to reduce the current density in the current path from the semiconductor element 20. It is. Furthermore, in the power module 100A, since one conductor block 40 is arranged on one semiconductor element 20, positioning of the conductor block 40 in the first bonding step S1 is facilitated.
 実施の形態2.
 実施の形態2に係るパワーモジュールを説明する。実施の形態2に係るパワーモジュールを、パワーモジュール100Bとする。ここでは、パワーモジュール100Aと異なる点を主に説明し、重複する説明は繰り返さないものとする。
Embodiment 2.
A power module according to Embodiment 2 will be explained. The power module according to the second embodiment is referred to as a power module 100B. Here, differences from the power module 100A will be mainly explained, and overlapping explanations will not be repeated.
 (パワーモジュール100Bの構成)
 以下に、パワーモジュール100Bの構成を説明する。
(Configuration of power module 100B)
The configuration of the power module 100B will be explained below.
 図4は、パワーモジュール100Bの部分的な拡大断面図である。図4に示されるように、パワーモジュール100Bは、回路基板10と、複数の半導体素子20と、導体30と、ワイヤ31と、複数の導体ブロック40と、ベース板50と、ケース51と、封止材52とを有している。この点に関して、パワーモジュール100Bの構成は、パワーモジュール100Aの構成と共通している。なお、図4中では、ベース板50及びケース51の図示は省略されている。 FIG. 4 is a partially enlarged sectional view of the power module 100B. As shown in FIG. 4, the power module 100B includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a plurality of conductor blocks 40, a base plate 50, a case 51, and a seal. It has a stopper 52. In this regard, the configuration of power module 100B is common to the configuration of power module 100A. Note that in FIG. 4, illustration of the base plate 50 and the case 51 is omitted.
 パワーモジュール100Bでは、穴41が、下端40b側に拡径部45を有している。拡径部45では、ねじ穴42よりも内径が大きくなっている。この点に関して、パワーモジュール100Bの構成は、パワーモジュール100Aの構成と異なっている。 In the power module 100B, the hole 41 has an enlarged diameter portion 45 on the lower end 40b side. The enlarged diameter portion 45 has a larger inner diameter than the screw hole 42 . In this regard, the configuration of power module 100B is different from the configuration of power module 100A.
 (パワーモジュール100Bの効果)
 以下に、パワーモジュール100Bの効果を説明する。
(Effects of power module 100B)
The effects of the power module 100B will be explained below.
 パワーモジュール100Bでは、穴41が下端40b側に拡径部45を有している。そのため、パワーモジュール100Bでは、封入される液体44の体積、すなわち封入される液体44の熱容量を半導体素子20に近い側で増加させることでき、動作時と冷却時との間における温度の変動をさらに小さくすることができる。その結果、パワーモジュール100Bによると、半導体素子20の周囲における熱応力をさらに低減することが可能である。また、パワーモジュール100Bでは、穴41が拡径部45を有していることにより液体44が封入されていない穴41の部分の体積を増加させることができるため、穴41の内部における圧力の増加を低減することが可能である。 In the power module 100B, the hole 41 has an enlarged diameter portion 45 on the lower end 40b side. Therefore, in the power module 100B, the volume of the sealed liquid 44, that is, the heat capacity of the sealed liquid 44, can be increased on the side closer to the semiconductor element 20, and temperature fluctuations between operation and cooling can be further reduced. Can be made smaller. As a result, according to the power module 100B, it is possible to further reduce thermal stress around the semiconductor element 20. Further, in the power module 100B, since the hole 41 has the enlarged diameter portion 45, the volume of the portion of the hole 41 in which the liquid 44 is not sealed can be increased, so that the pressure inside the hole 41 is increased. It is possible to reduce the
 (変形例)
 以下に、変形例に係るパワーモジュール100Bを説明する。
(Modified example)
A power module 100B according to a modified example will be described below.
 図5は、変形例に係るパワーモジュール100Bの部分的な拡大断面図である。図5に示されるように、複数の半導体素子20のうちの中央部にある半導体素子20を、半導体素子20Aとする。複数の半導体素子20のうちの半導体素子20Aよりも外側にある半導体素子20を、半導体素子20Bとする。半導体素子20A上に配置されている導体ブロック40を導体ブロック40Aとし、半導体素子20A上に配置されている導体ブロック40を導体ブロック40Bとする。 FIG. 5 is a partially enlarged sectional view of a power module 100B according to a modification. As shown in FIG. 5, the semiconductor element 20 located at the center of the plurality of semiconductor elements 20 is referred to as a semiconductor element 20A. The semiconductor element 20 located outside the semiconductor element 20A among the plurality of semiconductor elements 20 is referred to as a semiconductor element 20B. The conductor block 40 placed on the semiconductor element 20A is referred to as a conductor block 40A, and the conductor block 40 placed on the semiconductor element 20A is referred to as a conductor block 40B.
 半導体素子20Aの周囲では、半導体素子20Bの周囲と比較して、動作時の温度上昇が大きくなりやすい。しかしながら、導体ブロック40Aの穴41が拡径部45を有する一方で導体ブロック40Bの穴41が拡径部45を有しないことにより、半導体素子20Aの周囲と半導体素子20Bの周囲との間での温度上昇の不均衡を低減することが可能である。その結果、熱応力に起因したクラックの進展の程度の場所ごとのバラつきを低減することが可能である。 The temperature rise around the semiconductor element 20A tends to be larger during operation than around the semiconductor element 20B. However, since the hole 41 of the conductor block 40A has the enlarged diameter part 45, but the hole 41 of the conductor block 40B does not have the enlarged diameter part 45, there is a gap between the periphery of the semiconductor element 20A and the periphery of the semiconductor element 20B. It is possible to reduce the imbalance in temperature rise. As a result, it is possible to reduce variations in the degree of crack growth from place to place due to thermal stress.
 実施の形態3.
 実施の形態3に係るパワーモジュールを説明する。実施の形態3に係るパワーモジュールを、パワーモジュール100Cとする。ここでは、パワーモジュール100Aと異なる点を主に説明し、重複する説明は繰り返さないものとする。
Embodiment 3.
A power module according to Embodiment 3 will be explained. The power module according to the third embodiment is referred to as a power module 100C. Here, the points that are different from the power module 100A will be mainly explained, and duplicate explanations will not be repeated.
 (パワーモジュール100Cの構成)
 以下に、パワーモジュール100Cの構成を説明する。
(Configuration of power module 100C)
The configuration of the power module 100C will be explained below.
 図6は、パワーモジュール100Cの部分的な拡大断面図である。図6に示されるように、パワーモジュール100Cは、回路基板10と、複数の半導体素子20と、導体30と、ワイヤ31と、導体ブロック40と、ベース板50と、ケース51と、封止材52とを有している。この点に関して、パワーモジュール100Cの構成は、パワーモジュール100Aの構成と共通している。なお、図6中では、ベース板50及びケース51の図示は省略されている。 FIG. 6 is a partially enlarged sectional view of the power module 100C. As shown in FIG. 6, the power module 100C includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a conductor block 40, a base plate 50, a case 51, and a sealing material. 52. In this regard, the configuration of the power module 100C is common to the configuration of the power module 100A. Note that in FIG. 6, illustration of the base plate 50 and the case 51 is omitted.
 パワーモジュール100Cでは、導体ブロック40が、複数の半導体素子20上に跨って配置されている。このことを別の観点から言えば、複数の半導体素子20の各々の上にある導体ブロック40は、一体化されている。これに伴い、一体化された複数の導体ブロック40の各々の穴41は、互いに接続されている。この点に関して、パワーモジュール100Cの構成は、パワーモジュール100Aの構成と異なっている。 In the power module 100C, the conductor block 40 is arranged over the plurality of semiconductor elements 20. To put this from another perspective, the conductor blocks 40 on each of the plurality of semiconductor elements 20 are integrated. Accordingly, the holes 41 of the plurality of integrated conductor blocks 40 are connected to each other. In this regard, the configuration of power module 100C is different from the configuration of power module 100A.
 (パワーモジュール100Cの効果)
 以下に、パワーモジュール100Cの効果を説明する。
(Effects of power module 100C)
The effects of the power module 100C will be explained below.
 パワーモジュール100Cでは、一体化された複数の導体ブロック40の各々の穴41が互いに接続されているため、穴41の体積の合計、すなわち、封入される液体44の体積の合計が増加される。そのため、パワーモジュール100Cによると、半導体素子20の周囲における熱応力をさらに低減することが可能である。 In the power module 100C, since the holes 41 of the plurality of integrated conductor blocks 40 are connected to each other, the total volume of the holes 41, that is, the total volume of the liquid 44 sealed therein is increased. Therefore, according to the power module 100C, it is possible to further reduce thermal stress around the semiconductor element 20.
 (変形例)
 以下に、変形例に係るパワーモジュール100Cを説明する。
(Modified example)
A power module 100C according to a modified example will be described below.
 図7は、変形例に係るパワーモジュール100Cの部分的な拡大断面図である。図7に示されるように、パワーモジュール100Cでは、複数の導体ブロック40のうちの一部のみが、一体化されていてもよい。この場合も、封入される液体44の体積の合計が増加されるため、半導体素子20の周囲における熱応力をさらに低減することが可能である。 FIG. 7 is a partially enlarged sectional view of a power module 100C according to a modification. As shown in FIG. 7, in the power module 100C, only some of the plurality of conductor blocks 40 may be integrated. In this case as well, since the total volume of the liquid 44 sealed is increased, it is possible to further reduce the thermal stress around the semiconductor element 20.
 実施の形態4.
 実施の形態4に係るパワーモジュールを説明する。実施の形態4に係るパワーモジュールを、パワーモジュール100Dとする。ここでは、パワーモジュール100Aと異なる点を主に説明し、重複する説明は繰り返さないものとする。
Embodiment 4.
A power module according to Embodiment 4 will be explained. The power module according to the fourth embodiment is referred to as a power module 100D. Here, differences from the power module 100A will be mainly explained, and overlapping explanations will not be repeated.
 (パワーモジュール100Dの構成)
 以下に、パワーモジュール100Dの構成を説明する。
(Configuration of power module 100D)
The configuration of the power module 100D will be explained below.
 図8は、パワーモジュール100Dの部分的な拡大断面図である。図8に示されるように、パワーモジュール100Dは、回路基板10と、複数の半導体素子20と、導体30と、ワイヤ31と、導体ブロック40と、ベース板50と、ケース51と、封止材52とを有している。この点に関して、パワーモジュール100Dの構成は、パワーモジュール100Aの構成と共通している。なお、図8中では、ベース板50及びケース51の図示は省略されている。 FIG. 8 is a partially enlarged sectional view of the power module 100D. As shown in FIG. 8, the power module 100D includes a circuit board 10, a plurality of semiconductor elements 20, a conductor 30, a wire 31, a conductor block 40, a base plate 50, a case 51, and a sealing material. 52. In this regard, the configuration of power module 100D is common to the configuration of power module 100A. Note that in FIG. 8, illustration of the base plate 50 and the case 51 is omitted.
 パワーモジュール100Dでは、穴41が、下端40bに達している。すなわち、パワーモジュール100Dでは、穴41が、導体ブロック40を貫通している。その結果、パワーモジュール100Dでは、穴41に封入されている液体44が、半導体素子20に接触している。この点に関して、パワーモジュール100Dの構成は、パワーモジュール100Aの構成と異なっている。 In the power module 100D, the hole 41 reaches the lower end 40b. That is, in the power module 100D, the hole 41 penetrates the conductor block 40. As a result, in the power module 100D, the liquid 44 sealed in the hole 41 is in contact with the semiconductor element 20. In this regard, the configuration of power module 100D is different from the configuration of power module 100A.
 (パワーモジュール100Dの効果)
 以下に、パワーモジュール100Dの効果を説明する。
(Effects of power module 100D)
The effects of the power module 100D will be explained below.
 パワーモジュール100Dでは、穴41に封入されている液体44が半導体素子20に接触しているため、半導体素子20において発生した熱が、液体44に伝わりやすい。そのため、パワーモジュール100Dでは、動作時と冷却時との間における温度の変動をさらに小さくすることができる。その結果、パワーモジュール100Dによると、半導体素子20の周囲における熱応力をさらに低減することが可能である。 In the power module 100D, since the liquid 44 sealed in the hole 41 is in contact with the semiconductor element 20, heat generated in the semiconductor element 20 is easily transferred to the liquid 44. Therefore, in the power module 100D, the temperature fluctuation between the operation time and the cooling time can be further reduced. As a result, according to the power module 100D, it is possible to further reduce thermal stress around the semiconductor element 20.
 (変形例)
 以下に、変形例に係るパワーモジュール100Dを説明する。
(Modified example)
A power module 100D according to a modified example will be described below.
 半導体素子20Aの周囲では、半導体素子20Bの周囲と比較して、動作時の温度上昇が大きくなりやすい。図9は、変形例に係るパワーモジュール100Dの部分的な拡大断面図である。図9に示されるように、導体ブロック40Aでは穴41が下端40bに達している(液体44が半導体素子20に接触している)一方で、導体ブロック40Bでは穴41が下端40bに達していない(液体44が半導体素子20に接触していない)。その結果、半導体素子20Aの周囲と半導体素子20Bの周囲との間での温度上昇の不均衡を低減することが可能である。その結果、熱応力に起因したクラックの進展の程度の場所ごとのバラつきを低減することが可能である。 The temperature rise around the semiconductor element 20A tends to be larger during operation than around the semiconductor element 20B. FIG. 9 is a partially enlarged sectional view of a power module 100D according to a modification. As shown in FIG. 9, in the conductor block 40A, the holes 41 reach the lower end 40b (liquid 44 is in contact with the semiconductor element 20), while in the conductor block 40B, the holes 41 do not reach the lower end 40b. (Liquid 44 is not in contact with semiconductor element 20). As a result, it is possible to reduce the imbalance in temperature rise between the surroundings of the semiconductor element 20A and the surroundings of the semiconductor element 20B. As a result, it is possible to reduce variations in the degree of crack growth from place to place due to thermal stress.
 実施の形態5.
 本実施の形態は、上述した実施の形態1~実施の形態4に係るパワーモジュールを電力変換装置に適用したものである。本開示は特定の電力変換装置に限定されるものではないが、以下においては、実施の形態5として、三相のインバータに本開示を適用した場合について説明する。実施の形態5に係る電力変換システムを、電力変換システム200とする。
Embodiment 5.
In this embodiment, the power modules according to the first to fourth embodiments described above are applied to a power conversion device. Although the present disclosure is not limited to a specific power conversion device, a case will be described below as Embodiment 5 in which the present disclosure is applied to a three-phase inverter. The power conversion system according to the fifth embodiment is referred to as a power conversion system 200.
 図10は、電力変換システム200の構成を示すブロック図である。図10に示されるように、電力変換システムは、電源300、電力変換装置400、負荷500から構成されている。電源300は、直流電源であり、電力変換装置400に直流電力を供給する。電源300は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源300を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。 FIG. 10 is a block diagram showing the configuration of the power conversion system 200. As shown in FIG. 10, the power conversion system includes a power source 300, a power conversion device 400, and a load 500. Power supply 300 is a DC power supply and supplies DC power to power conversion device 400. The power source 300 can be composed of various things, for example, it can be composed of a DC system, a solar battery, a storage battery, or it can be composed of a rectifier circuit or an AC/DC converter connected to an AC system. Good too. Moreover, the power supply 300 may be configured with a DC/DC converter that converts DC power output from a DC system into predetermined power.
 電力変換装置400は、電源300と負荷500の間に接続された三相のインバータであり、電源300から供給された直流電力を交流電力に変換し、負荷500に交流電力を供給する。電力変換装置400は、図10に示されるように、直流電力を交流電力に変換して出力する主変換回路401と、主変換回路401を制御する制御信号を主変換回路401に出力する制御回路403とを備えている。 The power conversion device 400 is a three-phase inverter connected between the power source 300 and the load 500, converts the DC power supplied from the power source 300 into AC power, and supplies the AC power to the load 500. As shown in FIG. 10, the power conversion device 400 includes a main conversion circuit 401 that converts DC power into AC power and outputs it, and a control circuit that outputs a control signal for controlling the main conversion circuit 401 to the main conversion circuit 401. 403.
 負荷500は、電力変換装置400から供給された交流電力によって駆動される三相の電動機である。なお、負荷500は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター若しくは空調機器向けの電動機として用いられる。 The load 500 is a three-phase electric motor driven by AC power supplied from the power converter 400. Note that the load 500 is not limited to a specific application, but is a motor installed in various electrical devices, and is used, for example, as a motor for a hybrid vehicle, an electric vehicle, a railway vehicle, an elevator, or an air conditioner.
 以下、電力変換装置400の詳細を説明する。主変換回路401は、スイッチング素子と還流ダイオードを備えており(図示せず)、スイッチング素子がスイッチングすることによって、電源300から供給される直流電力を交流電力に変換し、負荷500に供給する。主変換回路401の具体的な回路構成は種々のものがあるが、本実施の形態に係る主変換回路401は、2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路401の各スイッチング素子及び各還流ダイオードの少なくともいずれかは、上述した実施の形態1~実施の形態4のいずれかに係るパワーモジュールに相当する半導体モジュール402が有するスイッチング素子又は還流ダイオードである。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路401の3つの出力端子は、負荷500に接続される。 Hereinafter, details of the power conversion device 400 will be explained. The main conversion circuit 401 includes a switching element and a freewheeling diode (not shown), and when the switching element switches, it converts the DC power supplied from the power supply 300 into AC power, and supplies the AC power to the load 500. Although there are various specific circuit configurations of the main conversion circuit 401, the main conversion circuit 401 according to the present embodiment is a two-level three-phase full bridge circuit, and includes six switching elements and each switching element. It can be composed of six freewheeling diodes connected in antiparallel to each other. At least one of each switching element and each freewheeling diode of the main conversion circuit 401 is a switching element or a freewheeling diode included in the semiconductor module 402 corresponding to the power module according to any of the first to fourth embodiments described above. be. The six switching elements are connected in series every two switching elements to constitute upper and lower arms, and each upper and lower arm constitutes each phase (U phase, V phase, W phase) of the full bridge circuit. The output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 401, are connected to the load 500.
 主変換回路401は、各スイッチング素子を駆動する駆動回路(図示なし)を備えているが、駆動回路は半導体モジュール402に内蔵されていてもよいし、半導体モジュール402とは別に駆動回路を備える構成であってもよい。駆動回路は、主変換回路401のスイッチング素子を駆動する駆動信号を生成し、主変換回路401のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路403からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。 The main conversion circuit 401 includes a drive circuit (not shown) that drives each switching element, but the drive circuit may be built into the semiconductor module 402 or may include a drive circuit separately from the semiconductor module 402. It may be. The drive circuit generates a drive signal for driving the switching element of the main conversion circuit 401 and supplies it to the control electrode of the switching element of the main conversion circuit 401. Specifically, according to a control signal from a control circuit 403, which will be described later, a drive signal that turns the switching element on and a drive signal that turns the switching element off are output to the control electrode of each switching element. When keeping the switching element in the on state, the drive signal is a voltage signal (on signal) that is greater than or equal to the threshold voltage of the switching element, and when the switching element is kept in the off state, the drive signal is a voltage signal that is less than or equal to the threshold voltage of the switching element. signal (off signal).
 制御回路403は、負荷500に所望の電力が供給されるよう主変換回路401のスイッチング素子を制御する。具体的には、負荷500に供給すべき電力に基づいて主変換回路401の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御により主変換回路401を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路401が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。 The control circuit 403 controls the switching elements of the main conversion circuit 401 so that the desired power is supplied to the load 500. Specifically, based on the power to be supplied to the load 500, the time during which each switching element of the main conversion circuit 401 should be in the on state (on time) is calculated. For example, the main conversion circuit 401 can be controlled by PWM control that modulates the on-time of the switching element according to the voltage to be output. Then, a control command (control signal) is sent to the drive circuit included in the main conversion circuit 401 so that an on signal is output to the switching element that should be in the on state at each time, and an off signal is output to the switching element that should be in the off state. Output. The drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
 電力変換装置400では、主変換回路401を構成する半導体モジュール402として上述した実施の形態1~実施の形態4に係るパワーモジュールを適用するため、半導体素子20の周囲における熱応力の発生を抑制しつつ、半導体素子20からの電流経路における電流密度の低減することが可能である。 In the power conversion device 400, since the power modules according to the first to fourth embodiments described above are applied as the semiconductor module 402 constituting the main conversion circuit 401, the generation of thermal stress around the semiconductor element 20 is suppressed. At the same time, it is possible to reduce the current density in the current path from the semiconductor element 20.
 本実施の形態では、2レベルの三相インバータに本開示を適用する例を説明したが、本開示は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに本開示を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに本開示を適用することも可能である。 In the present embodiment, an example in which the present disclosure is applied to a two-level three-phase inverter has been described, but the present disclosure is not limited to this and can be applied to various power conversion devices. In this embodiment, a two-level power converter is used, but a three-level or multi-level power converter may be used, and when supplying power to a single-phase load, the present disclosure may be applied to a single-phase inverter. May be applied. Further, when power is supplied to a DC load or the like, the present disclosure can also be applied to a DC/DC converter or an AC/DC converter.
 また、本開示を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。 Furthermore, the power conversion device to which the present disclosure is applied is not limited to cases where the above-mentioned load is an electric motor. It can also be used as a power conditioner for solar power generation systems, power storage systems, etc.
 今回開示された実施の形態は全ての点で例示であり、制限的なものではないと考えられるべきである。本開示の基本的な範囲は上記の実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The basic scope of the present disclosure is indicated by the claims rather than the above-described embodiments, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 10 回路基板、11 絶縁層、11a 上面、11b 下面、12 導体パターン、13 導体パターン、20 半導体素子、20A,20B 半導体素子、30 導体、30a 一方端部、30b 他方端部、31 ワイヤ、40,40A,40B 導体ブロック、40a 上端、40b 下端、41 穴、42 ねじ穴、43 ねじ、44 液体、45 拡径部、50 ベース板、51 ケース、52 封止材、60,61,62,63 接合材、100A,100B,100C,100D パワーモジュール、200 電力変換システム、300 電源、400 電力変換装置、401 主変換回路、402 半導体モジュール、403 制御回路、500 負荷、S1 第1接合工程、S2 第2接合工程、S3 第3接合工程、S4 第4接合工程、S5 導体接続工程、S6 封止工程。 10 circuit board, 11 insulating layer, 11a top surface, 11b bottom surface, 12 conductor pattern, 13 conductor pattern, 20 semiconductor element, 20A, 20B semiconductor element, 30 conductor, 30a one end, 30b other end, 31 wire, 40, 40A, 40B conductor block, 40a upper end, 40b lower end, 41 hole, 42 screw hole, 43 screw, 44 liquid, 45 expanded diameter section, 50 base plate, 51 case, 52 sealing material, 60, 61, 62, 63 joint material, 100A, 100B, 100C, 100D power module, 200 power conversion system, 300 power supply, 400 power conversion device, 401 main conversion circuit, 402 semiconductor module, 403 control circuit, 500 load, S1 first bonding process, S2 second Bonding process, S3 third bonding process, S4 fourth bonding process, S5 conductor connection process, S6 sealing process.

Claims (6)

  1.  回路基板と、
     第1半導体素子と、
     導体ブロックと、
     導体とを備え、
     前記第1半導体素子は、前記回路基板上に配置されており、
     前記導体ブロックは、上端と、下端とを有し、
     前記導体ブロックは、前記下端が前記第1半導体素子に電気的に接続されるように前記第1半導体素子上に配置されており、
     前記導体ブロックの内部には、液体が封入されており、
     前記導体は、前記回路基板と前記上端とを電気的に接続している、パワーモジュール。
    a circuit board;
    a first semiconductor element;
    conductor block,
    and a conductor,
    the first semiconductor element is arranged on the circuit board,
    The conductor block has an upper end and a lower end,
    The conductor block is arranged on the first semiconductor element such that the lower end is electrically connected to the first semiconductor element,
    A liquid is sealed inside the conductor block,
    In the power module, the conductor electrically connects the circuit board and the upper end.
  2.  ねじをさらに備え、
     前記上端には、前記下端側に向かって延びる穴が形成されており、
     前記穴の前記上端側は、ねじ穴になっており、
     前記穴には、前記液体が封入されており、
     前記導体は、前記ねじが前記ねじ穴に螺合されることにより、前記上端に締結されている、請求項1に記載のパワーモジュール。
    further comprising a screw;
    A hole is formed in the upper end and extends toward the lower end,
    The upper end side of the hole is a screw hole,
    The liquid is sealed in the hole,
    The power module according to claim 1, wherein the conductor is fastened to the upper end by screwing the screw into the screw hole.
  3.  前記穴は、前記下端側において、前記ねじ穴よりも内径が大きくなっている拡径部を有する、請求項2に記載のパワーモジュール。 The power module according to claim 2, wherein the hole has an enlarged diameter portion on the lower end side, the inner diameter of which is larger than that of the screw hole.
  4.  前記穴は、前記下端に達するように延びており、
     前記液体は、前記第1半導体素子に接触している、請求項2又は請求項3に記載のパワーモジュール。
    The hole extends to reach the lower end,
    The power module according to claim 2 or 3, wherein the liquid is in contact with the first semiconductor element.
  5.  第2半導体素子をさらに備え、
     前記第2半導体素子は、前記回路基板上に配置されており、
     前記導体ブロックは、前記下端が前記第1半導体素子及び前記第2半導体素子に電気的に接続されるように前記第1半導体素子上及び前記第2半導体素子上に跨がって配置されている、請求項1~請求項4のいずれか1項に記載のパワーモジュール。
    further comprising a second semiconductor element,
    the second semiconductor element is arranged on the circuit board,
    The conductor block is disposed over the first semiconductor element and the second semiconductor element such that the lower end thereof is electrically connected to the first semiconductor element and the second semiconductor element. , the power module according to any one of claims 1 to 4.
  6.  請求項1~請求項5のいずれか1項に記載の前記パワーモジュールを有し、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路とを備える、電力変換装置。
    A main conversion circuit that includes the power module according to any one of claims 1 to 5 and converts and outputs input power,
    A power conversion device comprising: a control circuit that outputs a control signal for controlling the main conversion circuit to the main conversion circuit.
PCT/JP2022/025730 2022-06-28 2022-06-28 Power module and power conversion device WO2024004024A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022575431A JP7334369B1 (en) 2022-06-28 2022-06-28 Power module and power converter
PCT/JP2022/025730 WO2024004024A1 (en) 2022-06-28 2022-06-28 Power module and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025730 WO2024004024A1 (en) 2022-06-28 2022-06-28 Power module and power conversion device

Publications (1)

Publication Number Publication Date
WO2024004024A1 true WO2024004024A1 (en) 2024-01-04

Family

ID=87764023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025730 WO2024004024A1 (en) 2022-06-28 2022-06-28 Power module and power conversion device

Country Status (2)

Country Link
JP (1) JP7334369B1 (en)
WO (1) WO2024004024A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284654A (en) * 1991-03-14 1992-10-09 Fujitsu Ltd Heat dissipation structure of semiconductor device
JPH06104355A (en) * 1992-09-22 1994-04-15 Toshiba Corp Cooling liquid enclosing type semiconductor device
JPH0774287A (en) * 1993-07-08 1995-03-17 Seiko Epson Corp Semiconductor device with heat sink and manufacture of heat sink
JPH08191114A (en) * 1994-11-11 1996-07-23 Seiko Epson Corp Resin sealed semiconductor and manufacturing method thereof
JP2003264265A (en) * 2002-03-08 2003-09-19 Mitsubishi Electric Corp Power semiconductor device
WO2018180580A1 (en) * 2017-03-30 2018-10-04 三菱電機株式会社 Semiconductor device and power conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284654A (en) * 1991-03-14 1992-10-09 Fujitsu Ltd Heat dissipation structure of semiconductor device
JPH06104355A (en) * 1992-09-22 1994-04-15 Toshiba Corp Cooling liquid enclosing type semiconductor device
JPH0774287A (en) * 1993-07-08 1995-03-17 Seiko Epson Corp Semiconductor device with heat sink and manufacture of heat sink
JPH08191114A (en) * 1994-11-11 1996-07-23 Seiko Epson Corp Resin sealed semiconductor and manufacturing method thereof
JP2003264265A (en) * 2002-03-08 2003-09-19 Mitsubishi Electric Corp Power semiconductor device
WO2018180580A1 (en) * 2017-03-30 2018-10-04 三菱電機株式会社 Semiconductor device and power conversion device

Also Published As

Publication number Publication date
JP7334369B1 (en) 2023-08-28

Similar Documents

Publication Publication Date Title
US20190131210A1 (en) Semiconductor module, method for manufacturing the same and electric power conversion device
JP6972432B1 (en) Semiconductor packages, semiconductor devices and power converters
JP7101882B2 (en) Manufacturing method of semiconductor device, power conversion device and semiconductor device
JP2021068803A (en) Semiconductor module and power converter
JP6965706B2 (en) Semiconductor module, its manufacturing method and power converter
JP6743728B2 (en) Semiconductor power module and power converter
JP6826665B2 (en) Semiconductor devices, manufacturing methods for semiconductor devices, and power conversion devices
CN111052325B (en) Semiconductor module and power conversion device
JP6927437B1 (en) Power module and power converter
JP6575739B1 (en) Semiconductor device, semiconductor device manufacturing method, and power conversion device
JP7045978B2 (en) Semiconductor devices and power converters
JP7147502B2 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
WO2020208713A1 (en) Power semiconductor module and power conversion device
WO2024004024A1 (en) Power module and power conversion device
WO2021038688A1 (en) Power semiconductor device, production method for power semiconductor device, and power conversion device
WO2021152795A1 (en) Semiconductor device and power conversion device
JP6885522B1 (en) Semiconductor device, power conversion device and manufacturing method of semiconductor device
JP7229382B2 (en) Semiconductor device, power conversion device, and method for manufacturing semiconductor device
JP7268760B2 (en) Semiconductor modules, power converters and moving bodies
JP7150183B2 (en) Semiconductor device, power conversion device and moving body
US20240030087A1 (en) Semiconductor device, method of manufacturing semiconductor device, and power conversion device
WO2021157024A1 (en) Semiconductor module and power conversion device
WO2022239154A1 (en) Power module and power converting device
JP2024038575A (en) Semiconductor device, semiconductor device manufacturing method, and power conversion device
WO2020255297A1 (en) Semiconductor device and power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949301

Country of ref document: EP

Kind code of ref document: A1