WO2024003967A1 - Headlight device - Google Patents

Headlight device Download PDF

Info

Publication number
WO2024003967A1
WO2024003967A1 PCT/JP2022/025440 JP2022025440W WO2024003967A1 WO 2024003967 A1 WO2024003967 A1 WO 2024003967A1 JP 2022025440 W JP2022025440 W JP 2022025440W WO 2024003967 A1 WO2024003967 A1 WO 2024003967A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
projection
lights
headlamp device
Prior art date
Application number
PCT/JP2022/025440
Other languages
French (fr)
Japanese (ja)
Inventor
遥 寺島
勝重 諏訪
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/025440 priority Critical patent/WO2024003967A1/en
Publication of WO2024003967A1 publication Critical patent/WO2024003967A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/27Thick lenses

Definitions

  • the present disclosure relates to a headlamp device.
  • a headlamp device that has multiple light sources (e.g., light emitting diodes (LEDs)) and multiple lenses as optical components, and the light distribution is segmented (that is, the light irradiation range is configured with multiple segments).
  • LEDs light emitting diodes
  • a headlamp device that individually controls lighting of a plurality of light sources corresponding to a plurality of segments has been proposed (see, for example, Patent Document 1).
  • This headlamp device has a function of preventing the driver of the vehicle from being dazzled by excluding an area where a vehicle such as a preceding vehicle or an oncoming vehicle is present from the irradiation range.
  • the above-mentioned headlight device is composed of multiple light sources and multiple lenses and has a large number of optical components, errors (especially assembly errors) tend to increase (that is, positional accuracy decreases). However, there is a problem in that it is difficult to obtain a desired light distribution.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a headlamp device that can obtain a desired light distribution.
  • a headlamp device includes a light source section having a plurality of light sources, an entrance surface and an exit surface, and a plurality of lights emitted from the light emitting surfaces of the plurality of light sources enter from the entrance surface.
  • a single optical section that outputs the plurality of incident lights as a plurality of projection lights from the exit surface and forms a light distribution with the plurality of projection lights
  • the exit surface is configured to output the plurality of projection lights from the exit surface. It has one or more projection areas through which light passes, and the optical axis of the exit surface in each of the one or more projection areas is eccentric with respect to the optical axis of the plurality of light sources. do.
  • a desired light distribution can be obtained.
  • FIG. 1 is a perspective view schematically showing the main configuration of a headlamp device according to Embodiment 1.
  • FIG. FIG. 2 is a side view schematically showing the main configuration of the headlamp device of FIG. 1.
  • FIG. (A) is a front view showing the light source part of the headlamp device of FIGS. 1 and 2, and (B) and (C) are views showing an example of the irradiation range divided into four segments. be.
  • FIG. 2 is a perspective view schematically showing the main configuration of a headlamp device according to a second embodiment.
  • 5 is a side view schematically showing the main structure of the headlamp device of FIG. 4.
  • FIG. (A) is a front view showing the light source part of the headlamp device of FIGS.
  • FIG. 3 is a perspective view schematically showing the main configuration of a headlamp device according to a third embodiment.
  • 8 is a side view schematically showing the main structure of the headlamp device of FIG. 7.
  • FIG. (A) is a front view showing the light source part of the headlamp device of FIGS. 7 and 8, and (B) and (C) are views showing an example of the irradiation range divided into two segments.
  • FIG. 7 is a perspective view schematically showing the main configuration of a headlamp device according to a fourth embodiment.
  • 11 is a side view schematically showing the main structure of the headlamp device of FIG. 10.
  • FIG. 7 is a perspective view schematically showing the main structure of a headlamp device according to a fifth embodiment.
  • 15 is a side view schematically showing the main structure of the headlamp device of FIG. 14.
  • FIG. (A) is a front view showing the light source part of the headlamp device of FIGS.
  • FIG. 14 and 15, and (B) and (C) are views showing an example of the irradiation range divided into four segments.
  • FIG. 7 is a perspective view schematically showing the main structure of a headlamp device according to a sixth embodiment.
  • 18 is a side view schematically showing the main structure of the headlamp device of FIG. 17.
  • FIG. (A) is a front view showing the light source part of the headlamp device of FIGS. 17 and 18, and (B) and (C) are views showing an example of the irradiation range divided into two segments. be.
  • the headlamp device is, for example, a vehicle headlamp device mounted on a vehicle.
  • the vehicle is, for example, a four-wheeled motor vehicle, a three-wheeled motor vehicle, a two-wheeled motor vehicle, or the like.
  • the irradiation state of light emitted from the headlamp device is high beam, which is the state during driving.
  • the light distribution (i.e., light distribution pattern) of the light emitted from the headlamp device when the illumination state is high beam is different from that of the headlamp when the illumination state is low beam, which is the state when vehicles pass each other. It has a wider range and higher illuminance than the light distribution of light emitted from the lighting device. Therefore, when the illumination state of the headlamp device is high beam, good visibility for the driver of the vehicle equipped with the headlamp device is ensured. However, when the illumination state is high beam, the high beam illumination light may dazzle the driver of a preceding vehicle or an oncoming vehicle.
  • the headlamp device performs control to adjust the light distribution of light, for example, ADB (Adaptive Driving Beam) control of the headlamp.
  • ADB Adaptive Driving Beam
  • the light distribution of the light emitted by the high beam is such that the target area (for example, the area in front excluding the preceding vehicle and oncoming vehicle) becomes the light irradiation area. The distribution is adjusted.
  • the headlamp device has one headlamp module. Therefore, in each embodiment, the headlamp device is also referred to as a headlamp module. However, the headlamp device according to each embodiment may include a plurality of headlamp modules.
  • the x-axis is a coordinate axis parallel to the left-right direction of the vehicle equipped with the headlamp device. That is, the x-axis direction is the width direction of the vehicle. When facing the front of the vehicle, the left direction is the +x-axis direction, and the right direction is the -x-axis direction.
  • the y-axis is a coordinate axis parallel to the vertical direction of the vehicle. The upward direction of the vehicle is the +y-axis direction, and the downward direction of the vehicle is the -y-axis direction.
  • the +y-axis side of the vehicle is the empty side
  • the -y-axis side is the road surface side.
  • the z-axis is a coordinate axis perpendicular to the x-axis and the y-axis.
  • the z-axis direction is the direction in which the vehicle travels. In the following description, the +z-axis direction is also referred to as the front.
  • FIG. 1 is a perspective view schematically showing the main configuration of a headlamp device 1 according to the first embodiment.
  • FIG. 2 is a side view schematically showing the main configuration of the headlamp device 1.
  • the headlamp device 1 includes a light source section 10 having a plurality of light sources 11 to 14, and a light guide projection optical element (for example, a lens) having an entrance surface 110 and an exit surface 120.
  • a single optical section 100 is provided.
  • a plurality of lights emitted from the light emitting surfaces 11a to 14a of the plurality of light sources 11 to 14 enter into the optical section 100 from the entrance surface 110.
  • the plurality of lights that have entered the optical section 100 travel within the optical section 100 and are projected from the projection areas 120a and 120b of the exit surface 120 as a plurality of projection lights L11 to L14.
  • La indicates an example of a light ray that travels through the optical section 100 and is emitted from the output surface 120.
  • the output surface 120 of the optical section 100 has one or more projection areas (here, two projection areas 120a and 120b) through which the plurality of projection lights L11 to L14 respectively pass.
  • the optical axes A120a and A120b of the projection areas 120a and 120b of the exit surface 120 may be eccentric with respect to the optical axes A11 to A14 of the plurality of light sources 11 to 14. Note that the configuration of the headlamp device 1 is not limited to that shown in FIGS. 1 and 2.
  • the optical axes A120a, A120b being eccentric with respect to the optical axes A11 to A14 means a state in which the optical axes A120a, A120b and the optical axes A11 to A14 do not overlap with each other (that is, in the x direction and the y direction). a state in which the optical axes A120a and A120b are deviated from each other in at least one direction), a state in which the directions of the optical axes A120a and A120b are different from the directions of the optical axes A11 to A14 (that is, a state in which they are tilted), or both of these states.
  • the light source unit 10 includes a plurality of light emitting elements as a plurality of light sources 11 to 14.
  • the light emitting device is a solid state light source.
  • a solid state light source is a directional light source.
  • the solid state light source is, for example, a semiconductor light source.
  • the light sources 11 to 14 are, for example, light emitting diodes (LEDs).
  • the solid-state light source may be an organic electroluminescence light source.
  • the light sources 11 to 14 may be light sources that emit light by irradiating excitation light onto a phosphor coated on a flat surface. LEDs are preferable as the light sources 11 to 14 because the modules are small, easy to form into an array, have high brightness, are safe, and are low cost.
  • FIG. 3(A) is a front view showing the light source section 10 of the headlamp device 1
  • FIGS. 3(B) and (C) are diagrams showing an example of the irradiation range divided into four segments. be.
  • the surfaces of the light sources 11 to 14 facing the +z-axis direction are light emitting surfaces 11a to 14a.
  • the light source section 10 includes a plurality (that is, N) of light emitting surfaces 11a to 14a.
  • the light emitting surfaces 11a to 14a may be arranged on the same plane (ie, a plane parallel to the xy plane).
  • N is 4, but N is not limited to 4. Note that N is an integer of 2 or more.
  • the light emitting surfaces 11a and 12a are arranged linearly in the x-axis direction, and the light emitting surfaces 13a and 14a are arranged linearly in the x-axis direction. Further, in the first embodiment, the light emitting surfaces 11a and 13a are arranged in the y-axis direction, and the light emitting surfaces 12a and 14a are arranged in the y-axis direction.
  • Each of the light emitting surfaces 11a to 14a has a rectangular shape such as a square, for example. However, each of the light emitting surfaces 11a to 14a is not limited to a rectangular shape. Each of the light emitting surfaces 11a to 14a may have another shape such as a circular shape.
  • the optical section 100 is located in the +z-axis direction of the light source section 10.
  • the optical section 100 is a light guide projection optical element composed of a single optical component.
  • Optical section 100 is composed of a single lens. A plurality of lights emitted from the light emitting surfaces 11a to 14a of the light source section 10 enter the optical section 100.
  • the optical section 100 projects projection lights L11 to L14 made up of a plurality of segments forward (in the +z-axis direction).
  • the entrance surface 110 of the optical section 100 has, for example, at least one condensing region that condenses the light emitted from the light source section 10 (that is, a region having a condensing function).
  • the entrance surface 110 has a plurality of condensing regions 110a, 110b and a plurality of optical axes A110a, A110b.
  • the entrance surface 110 of the optical section 100 may have a single light condensing region and its optical axis. In FIGS. 1 and 2, the entrance surface 110 has two light collection areas 110a and 110b.
  • the light condensing regions 110a and 110b protrude toward the light source section 10 (that is, toward the ⁇ z-axis direction), and extend in a predetermined extension direction (in the first embodiment, the x-axis direction). It has a convex portion having a top portion (that is, a top portion when the ⁇ z-axis direction is regarded as the height direction). Further, the profiles of the light condensing regions 110a and 110b (for example, an aspherical profile) are arranged such that one side (for example, in the +y-axis direction) with the top of the convex portion (that is, the ridgeline extending in the x-axis direction) sandwiched therebetween.
  • the amount of sag that indicates the profile of the light focusing regions 110a, 110b is different from one side to the other with the top of the convex portion in between. and are different from each other.
  • the tops of the convex portions have a gentle slope on the +y-axis direction side, and a steep slope on the -y-axis direction side.
  • the focal point of the light condensing regions 110a and 110b is, for example, a plane F parallel to the xy plane and on the end face of the optical section 100 facing in the -z axis direction.
  • the optical section 100 is, for example, integrally formed of the same material.
  • the optical section 100 is made of, for example, transparent resin.
  • the optical section 100 is, for example, a light guide/projection optical element whose interior is filled with a refractive material and which guides light incident from an entrance surface 110 and projects it from an output surface 120 .
  • it is desirable that the number of optical surfaces of the optical section 100 through which one light beam passes is small.
  • the optical surfaces of the optical section 100 through which one light ray passes are two surfaces: the entrance surface 110 and the exit surface 120.
  • the entrance surface 110 is provided at the end of the optical section 100 in the -z axis direction.
  • the incident surface 110 is arranged at a distance from the light source section 10 in the +y-axis direction of the light source section 10 .
  • the entrance surface 110 has, for example, positive power.
  • the shape of the entrance surface 110 may be independent of the position in the x-axis direction so as to facilitate manufacturing.
  • the expression representing the amount of sag in the x-axis direction of the incident surface 110 may be different from the expression representing the amount of sag in the y-axis direction.
  • the formula expressing the amount of sag on the incident surface 110 may be different between a region where y ⁇ 0 and a region where y ⁇ 0, assuming that the y coordinate of the top of the condensing regions 110a and 110b is 0.
  • the incident surface 110 (for example, the light condensing regions 110a and 110b) may be a free-form surface.
  • the optical axes A120a and A120b of the condensing regions 110a and 110b of the incident surface 110 may be eccentric with respect to the optical axes A11 to A14 of the light sources 11 to 14.
  • the entrance surface 110 may be discontinuous. That is, the entrance surface 110 may have a discontinuous portion such as a step.
  • each of the light converging regions 110a and 110b all have the same shape.
  • the plurality of light condensing regions 110a and 110b may have mutually different shapes.
  • the light that has passed through the incident surface 110 (for example, the light that has been condensed by the condensing regions 110a and 110b) is directed toward the front of the vehicle equipped with the headlamp device 1 (+z axis direction).
  • the exit surface 120 has at least one projection area that has a projection function. That is, the output surface 120 has a plurality of projection areas 120a, 120b and a plurality of optical axes A120a, A120b. That is, the output surface 120 may have a plurality of projection areas 120a, 120b and a plurality of optical axes A120a, A120b. However, the output surface 120 of the optical section 100 may have a single projection area and its optical axis. In FIGS. 1 and 2, the exit surface 120 has two projection areas 120a and 120b.
  • the optical unit 100 also includes projection areas 120a and 120b of the exit surface 120 such that images focused by the light collection regions 110a and 110b of the entrance surface 110 are projected by projection regions 120a and 120b of the exit surface 120, respectively.
  • the focal point in may be provided inside the optical section 100.
  • the projection areas 120a and 120b of the output surface 120 may be spherical.
  • the projection areas 120a and 120b of the output surface 120 may be aspherical.
  • the profile of the exit surface 120 in the x-axis direction (for example, an aspherical profile) may be different from the profile in the y-axis direction (for example, an aspherical profile).
  • the formula representing the sag amount indicating the profile in the x-axis direction of the output surface 120 is the sag amount indicating the profile in the y-axis direction (for example, an aspherical profile) may be different from the expression representing Moreover, the formula expressing the sag amount of the output surface 120 may be different between the area where y ⁇ 0 and the area where y ⁇ 0, assuming that the y coordinate of the top of the projection areas 120a and 120b is 0. Further, the output surface 120 (for example, the projection areas 120a, 120b) may be a free-form surface.
  • the formula representing the sag amount is a known formula that represents the profile of an aspherical surface as a function of the distance from the optical axis.
  • the optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 are eccentric in at least one of the x-axis direction and the y-axis direction with respect to the optical axes A11 to A14 of the light sources 11 to 14. Further, the headlamp device 1 may be configured such that the optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 have different degrees of eccentricity with respect to the optical axis of the corresponding light source.
  • the degree of eccentricity (that is, the amount of deviation) of the optical axis A120a of the projection area 120a with respect to the optical axis A11 of the light source 11 (or the optical axis A12 of the light source 12) is such that the optical axis A120b of the projection area 120b is It may be different from the magnitude of eccentricity (that is, the amount of deviation) with respect to the axis A13 (or the optical axis A14 of the light source 14).
  • the output surface 120 may have discontinuous portions. That is, the output surface 120 may have a discontinuous portion such as a step.
  • the shapes of each projection area 120a and 120b are all the same. However, the shapes of the projection areas 120a and 120b may be different from each other.
  • the number of light converging regions 110a, 110b that the entrance surface 110 has and the number of projection regions 120a, 120b that the exit surface 120 has are equal, and the number of light converging regions 110a, 110b and the projection region 120a are equal.
  • 120b have a one-to-one correspondence.
  • the combination of the light condensing region 110a and the projection region 120a and the combination of the light condensing region 110b and the projection region 120b have the same shape.
  • the combination of the light collection area 110a and the projection area 120a and the combination of the light collection area 110b and the projection area 120b may have different shapes.
  • the number of optical surfaces of the optical section 100 through which one light beam emitted from the light emitting surface of the light source passes may be three or more.
  • Light distribution Figures 3 (B) and (C) show an example of the irradiation range divided into four segments, that is, an example of the light distribution pattern of the headlamp device 1. .
  • the light emitted from each of the light emitting surfaces 11a to 14a of the plurality of light sources 11 to 14 passes through the optical section 100 and is projected into different projection lights L11 to L14 (that is, a plurality of segments) in front of the headlamp device 1. ) to illuminate different irradiation ranges.
  • the light distribution has, for example, the same number of segments as the number of light emitting surfaces 11a to 14a.
  • the light distribution formed by the plurality of projection lights L11 to L14 is directed in a predetermined first direction (for example, the x-axis direction or the y-axis direction) and a second direction orthogonal to the first direction (for example, the y-axis direction).
  • the irradiation range includes a plurality of segments arranged in at least one of the axial direction and the x-axis direction.
  • the light emitting surface 120 in each of the one or more projection areas 120a, 120b is arranged such that the ends of adjacent segments in the arrangement direction of the plurality of segments touch each other (for example, as shown in FIG. 3(B)).
  • the positions and directions of the axes A120a and A120b may be set.
  • a plurality of light sources are arranged so that a plurality of lights emitted from light emitting surfaces 11a to 14a of a plurality of light sources 11 to 14 are irradiated to mutually different segments from an exit surface 120 of the optical section 100 as a plurality of projection lights L11 to L14. 11 to 14 and an optical section 100 are formed.
  • the output surface 120 of the optical section 100 has a plurality of optical axes.
  • Projection lights of adjacent segments (for example, L12 and L14, L14 and L11, and L11 and L13 in FIGS. 3B and 3C) have a projection area 120a having mutually different optical axes A120a and A120b on the exit surface 120, It is desirable that the light be emitted from 120b.
  • the intervals between the plurality of segments of the projected light are determined by the eccentricity of the optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 with respect to the optical axes A11 to A14 of the light sources 11 to 14, and the distance between the light sources 11 to 14. Determined by size.
  • the ends of adjacent segments of the projected light touch so that they partially overlap.
  • the optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 are eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap).
  • the boundary of a segment refers to the boundary line where the luminous intensity is 625 cd at the end of the segment. Touching means that both boundary lines of adjacent segments touch, or that both boundary lines are located on adjacent segments.
  • intervals between the segments emitted from the projection area including the same optical axis on the output surface 120 are all the same, but the intervals between the segments do not have to be the same.
  • the width in at least one of the x-axis direction (horizontal direction of the vehicle) and the y-axis direction (vertical direction of the vehicle) is equal to each other.
  • the focal lengths in the projection areas 120a and 120b corresponding to each optical axis are all equal.
  • each segment of the light distribution may have unequal widths in at least one of the horizontal and vertical directions.
  • the areas of the light emitting surfaces 11a to 14a corresponding to each segment may be different from each other.
  • the focal length in the projection area corresponding to each optical axis may be different.
  • the optical section 100 is constituted by a single optical element, the focal position of the exit surface 120 with respect to the entrance surface 110 is fixed. Therefore, variations in the position of the optical section 100 have little effect on the light distribution.
  • the output surface 120 has a plurality of optical axes A120a and A120b, a light distribution is formed depending on the eccentricity of each of the optical axes A120a and A120b with respect to the optical axes A11 to A14 of the light sources 11 to 14.
  • the emission directions of the projection lights L11 to L14 can be arbitrarily designed. In other words, by adjusting the eccentricity of the optical axes A11 to A14 of the light sources 11 to 14 with respect to the optical axes A120a and A120b of the optical section 100, the positions of the segments of the projected light that form the light distribution can be set.
  • the distance between adjacent light sources 11 to 14 and the eccentricity of the optical axes A120a and A120b of the light emitting surface 120 with respect to the optical axes A11 to A14 of the light sources 11 to 14 as parameters, it is possible to The size of the interval can be designed in detail. Therefore, the occurrence of uneven brightness of illumination light is reduced.
  • adjacent segments among the plurality of segments of the projected light are projected from projection areas 120a and 120b with mutually different optical axes A120a and A120b, as shown in FIGS. 3(B) and 3(C). Since the segments are set to 1, it is possible to reduce the influence of light seepage into adjacent segments on light distribution.
  • FIG. 4 is a perspective view schematically showing the main structure of the headlamp device 2 according to the second embodiment.
  • FIG. 5 is a side view schematically showing the main configuration of the headlamp device 2.
  • the incident surface 110 of the optical section 100 is provided with two condensing regions 110a and 110b having apex extending in the x-axis direction
  • the exit surface 120 is provided with two converging regions 110a and 110b.
  • projection areas 120a and 120b, which are convex portions, are provided has been described.
  • a condensing region 210a which is a convex portion having a single apex extending in the x-axis direction, is provided on the entrance surface 210 of the optical section 200.
  • a projection area 220a which is a single convex portion, is provided on the output surface 220.
  • the number of projection areas may be two or more as long as it is one or more.
  • the headlamp device 2 includes a light source section 20 having a plurality of light sources 21 to 24, and a single optical section 200 that is a light guiding and projecting optical element (for example, a lens) having an entrance surface 210 and an exit surface 220. ing.
  • La indicates an example of a light ray that travels within the optical section 200 and is emitted from the output surface 220.
  • the plurality of lights that have entered the optical section 200 are projected from the projection area 220a of the output surface 220 as a plurality of projection lights L21 to L24.
  • optical axis A220a of the projection area 220a of the output surface 220 is eccentric with respect to the optical axes A21 to A24 of the plurality of light sources 21 to 24.
  • FIG. 6(A) is a front view showing the light source section 20 of the headlamp device 2
  • FIGS. 6(B) and (C) are diagrams showing an example of the irradiation range divided into four segments. be.
  • the surfaces of the light sources 21 to 24 facing the +z-axis direction are light emitting surfaces 21a to 24a.
  • the light source section 20 includes a plurality of light emitting surfaces 21a to 24a.
  • the light emitting surfaces 21a to 24a are arranged, for example, on the same plane (that is, a plane parallel to the xy plane).
  • the light emitting surfaces 21a and 22a are arranged in the x-axis direction
  • the light emitting surfaces 23a and 24a are arranged in the x-axis direction.
  • the light emitting surfaces 21a and 23a are arranged in the y-axis direction
  • the light emitting surfaces 22a and 24a are arranged in the y-axis direction.
  • the optical section 200 is located in the +z-axis direction of the light source section 20. A plurality of lights emitted from the light emitting surfaces 21a to 24a of the light source section 20 enter the optical section 200.
  • the optical section 200 projects projection lights L21 to L24 made up of a plurality of segments forward (in the +z-axis direction).
  • the entrance surface 210 of the optical section 200 has, for example, a single condensing region 210a that condenses the light emitted from the light source section 20.
  • the entrance surface 210 has a single condensing region 210a and a single optical axis A210a.
  • the entrance surface 210 of the optical section 200 may have a plurality of light condensing regions and their optical axes.
  • the focal point of the condensing region 210a is, for example, a plane F parallel to the xy plane and on the end face of the optical section 200 facing in the -z axis direction.
  • the shape of the condensing region 210a of the incident surface 210 is similar to that of the condensing region 110a in the first embodiment.
  • the optical section 200 is constituted by a single optical element, the focal position of the exit surface 220 with respect to the entrance surface 210 is fixed. Therefore, variations in the position of the optical section 200 have little effect on the light distribution.
  • the distance between segments can be changed.
  • the size can be designed in detail.
  • FIG. 7 is a perspective view schematically showing the main configuration of the headlamp device 3 according to the third embodiment.
  • FIG. 8 is a side view schematically showing the main structure of the headlamp device 3.
  • the headlamp device 3 includes a light source section 30 having a plurality of light sources 31 and 32, and a light guide projection optical element (for example, a lens) having an entrance surface 310 and an exit surface 320. It includes a single optical section 300 and a shade 340 that is a light shielding member.
  • the plurality of lights that have entered the optical section 300 are projected from the projection area 320a of the output surface 320 as a plurality of projection lights L31 and L34.
  • La indicates an example of a light ray that travels within the optical section 300 and is emitted from the output surface 320.
  • the output surface 320 of the optical section 300 has a projection area 320a through which each of the plurality of projection lights L11 to L14 passes.
  • the optical axis A320a of the projection area 320a of the output surface 320 may be eccentric with respect to the optical axes A31 and A34 of the plurality of light sources 31 and 32.
  • the configuration of the headlamp device 3 is not limited to that shown in FIGS. 7 and 8.
  • the optical axis A320a being eccentric with respect to the optical axes A31 and A32 means a state in which the optical axis A320a and the optical axes A31 and A32 do not overlap each other (that is, in at least one of the x direction and the y direction).
  • the light source section 30 includes a plurality of light emitting elements as a plurality of light sources 31 and 32.
  • the light emitting element is the same as that described in Embodiment 1.
  • FIG. 9(A) is a front view showing the light source section 30 of the headlamp device 3, and FIGS. 9(B) and (C) are diagrams showing an example of the irradiation range divided into two segments.
  • the surfaces of the light sources 31 and 32 facing the +z-axis direction are light emitting surfaces 31a and 32a.
  • the light source section 30 includes a plurality (that is, N) of light emitting surfaces 31a and 32a.
  • the light emitting surfaces 31a and 32a may be arranged on the same plane (that is, a plane parallel to the xy plane).
  • N is 2, but N is not limited to 2.
  • N is an integer of 2 or more.
  • the light emitting surfaces 31a and 32a are arranged in the x-axis direction.
  • the shapes of the light emitting surfaces 31a and 32a are the same as those described in the first embodiment.
  • a shade 340 is installed in the +z-axis direction of the light source section 30, as shown in FIGS. 7 and 8.
  • the shade 340 has openings 341 and 342 facing the light emitting surfaces 31a and 32a of the light sources 31 and 32, and contributes to light distribution by blocking the ends of the light emitted from the light emitting surfaces 31a and 32a in the x direction. This limits the luminous flux.
  • the shade 340 has a structure that limits the size of the luminous flux diameter of the plurality of lights emitted from the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32, respectively.
  • the light flux contributing to the light distribution may be limited by blocking both the x-direction end and the y-direction end of the light emitted from the light emitting surfaces 31a, 32a of each light source 31, 32.
  • the shape of the openings 341 and 342 of the shade 340 is, for example, rectangular.
  • the shape of the openings 341 and 342 of the shade 340 is not limited to a rectangle.
  • the shapes of the openings 341 and 342 may be other shapes, such as the openings shown in FIG. 13(A), which will be described later.
  • the shade 340 is made of metal such as stainless steel, for example.
  • the area of the incident area of the incident light that passes through any one of the plurality of apertures 341 and 342 among the plurality of light sources and hits the entrance surface 310 is determined by the area of the light source 31 corresponding to the incident light among the plurality of light sources 31 and 32. It is smaller than the area of the light emitting surface 31a or 32a of 32.
  • the optical section 300 is located in the +z-axis direction of the light source section 30.
  • the optical section 300 is a light guide projection optical element composed of a single optical component.
  • Optical section 300 is composed of a single lens.
  • a plurality of lights emitted from the light emitting surfaces 31 a and 32 a of the light source section 30 enter the optical section 300 .
  • the optical section 300 projects projection light consisting of a plurality of segments forward (in the +z-axis direction).
  • the plurality of lights emitted from the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32 pass through two optical surfaces among the plurality of optical surfaces of the optical section 300, and are projected as a plurality of projection lights L31 and L32. be done.
  • the entrance surface 310 of the optical section 300 has, for example, at least one condensing region that condenses the light emitted from the light source section 30. That is, the incident surface 310 has a light condensing region 310a and an optical axis A310a.
  • the focal point of the condensing region 310a is, for example, a plane F parallel to the xy plane and on the end face of the optical section 300 facing in the -z axis direction. Note that the incident surface 310 may not include a light condensing region.
  • the optical section 300 is, for example, integrally formed of the same material.
  • the optical section 300 is made of, for example, transparent resin.
  • the optical section 300 is, for example, a light guide/projection optical element whose interior is filled with a refractive material and which guides light incident from an entrance surface 310 and projects it from an output surface 320 .
  • the optical surfaces of the optical section 300 through which one light beam passes are two surfaces: an entrance surface 310 and an exit surface 320.
  • the entrance surface 310 is provided at the end of the optical section 300 in the -z axis direction.
  • the incident surface 310 is arranged at a distance from the light source section 30 in the +y-axis direction of the light source section 30 .
  • the entrance surface 310 has, for example, positive power.
  • the shape of the entrance surface 310 may be independent of the position in the x-axis direction to facilitate manufacturing.
  • the expression representing the amount of sag in the x-axis direction of the incident surface 310 may be different from the expression representing the amount of sag in the y-axis direction.
  • the formula expressing the amount of sag on the incident surface 310 may be different between a region where y ⁇ 0 and a region where y ⁇ 0, assuming that the y-coordinate of the top of the condensing region 310a is 0.
  • the incident surface 310 (for example, the light condensing region 310a) may be a free-form surface.
  • the optical axis A320a of the condensing region 310a of the incident surface 310 may be eccentric with respect to the optical axes A31 and A32 of the light sources 31 and 32.
  • the entrance surface 310 may be discontinuous. That is, the entrance surface 310 may have a discontinuous portion such as a step.
  • the light that has passed through the entrance surface 310 (for example, the light that has been collected by the condensing region 310a) is projected by the projection region 320a of the exit surface 320 into an area in front of the vehicle equipped with the headlamp device 3 (in the +z-axis direction). is projected on.
  • the exit surface 320 has at least one projection area that has a projection function. That is, the output surface 320 has a projection area 320a and its optical axis A320a.
  • the plurality of lights emitted from the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32 are projected onto individual irradiation areas as projection lights L31 and L32 via the optical section 300, respectively.
  • the focal point in the projection area 320a of the output surface 320 is set in the optical section so that the image condensed by the condensing area 310a of the input surface 310 is respectively projected by the projection area 320a of the output surface 320.
  • 300 may be provided.
  • the projection area 320a of the output surface 320 may be a spherical surface.
  • the projection area 320a of the output surface 320 may be an aspherical surface.
  • the expression representing the amount of sag in the x-axis direction of the output surface 320 may be different from the expression representing the amount of sag in the y-axis direction.
  • the formula expressing the sag amount of the output surface 320 may be different between a region where y ⁇ 0 and a region where y ⁇ 0, assuming that the y coordinate of the top of the projection region 320a is 0.
  • the output surface 320 (for example, the projection area 320a) may be a free-form surface.
  • the optical axis A320a of the projection area 320a of the output surface 320 is eccentric with respect to the optical axes A31 and A32 of the light sources 31 and 32 in at least one of the x-axis direction and the y-axis direction.
  • the output surface 320 may have discontinuous portions. That is, the output surface 320 may have a discontinuous portion such as a step.
  • the shapes of each projection area 320a are all the same. However, the shapes of the projection areas 320a may be different from each other.
  • the number of optical surfaces of the optical section 300 through which one ray emitted from the light emitting surface of the light source passes may be three or more.
  • FIGS. 9(B) and (C) show an example of the irradiation range divided into two segments, that is, an example of the light distribution pattern of the headlamp device 3. .
  • the light emitted from each of the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32 passes through the optical section 300 and is projected into different projection lights L31 and L32 (i.e., a plurality of segments) in front of the headlamp device 3. ) to illuminate different irradiation ranges.
  • the light distribution has, for example, the same number of segments as the number of light emitting surfaces 31a and 32a.
  • the interval between the plurality of segments of the projected light L31, L32 is determined by the eccentricity of the light sources 31, 32 with respect to the optical axis A31, A32 in the optical axis A320a of the projection area 320a of the output surface 320, and the interval between the light sources 31, 32. determined by.
  • the optical axis A320a of the projection area 320a of the output surface 320 is eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap).
  • the boundary of the segment represents the boundary line where the luminous intensity is 625 cd at the end of the segment. Touching means that both boundary lines of adjacent segments touch, or that both boundary lines are located on adjacent segments.
  • the distance between adjacent light sources 31 and 32, the position of openings 341 and 342 of shade 340, and the eccentricity of optical axis A320a of output surface 320 with respect to optical axes A31 and A32 of light sources 31 and 32 By using it as a parameter, the size of the interval between segments can be designed in detail.
  • the light flux contributing to the light distribution is restricted by the shade 340, it is possible to reduce the degree of influence that appears on the projected lights L31 and L32 due to variations in the arrangement of the light sources 31 and 32 in the light distribution. .
  • the curvature in the x-axis direction can be reduced in the equation expressing the amount of sag in the x-axis direction for the entrance surface 310 of the optical section 300. Can be done. Moreover, thereby, the shape of the optical section 300 can be simplified.
  • the direction in which the width of each of the projected lights L31 and L32 is narrowed by the shade 340 is not limited to the x-axis direction, but may be the y-axis direction or both the x-axis and y-axis directions.
  • the third embodiment is the same as the first or second embodiment.
  • FIG. 10 is a perspective view schematically showing the main structure of the headlamp device 4 according to the fourth embodiment.
  • FIG. 11 is a side view schematically showing the main configuration of the headlamp device 4.
  • the headlamp device 4 includes a light source section 40 having a plurality of light sources 41 to 44, a shade 440 as a light shielding member, and a light guide having an entrance surface 410 and an exit surface 420.
  • a single optical section 400 that is a projection optical element (for example, a lens) is provided.
  • the plurality of lights emitted from the light emitting surfaces of the plurality of light sources 41 to 44 respectively pass through the openings 441 to 444 of the shade 440, proceed toward the entrance surface 410, and enter the optical section 400 from the entrance surface 410. .
  • the plurality of lights that have entered the optical section 400 are projected from the projection areas 420a and 420b of the output surface 420 as a plurality of projection lights L41 to L44.
  • La indicates an example of a light ray that travels through the optical section 400 and is emitted from the output surface 420.
  • the output surface 420 of the optical section 400 has one or more projection areas (here, two projection areas 420a and 420b) through which the plurality of projection lights L41 to L44 respectively pass.
  • the optical axes A420a and A420b of the projection areas 420a and 420b of the output surface 420 may be eccentric with respect to the optical axes A41 to A44 of the plurality of light sources 41 to 44. Note that the configuration of the headlamp device 4 is not limited to that shown in FIGS. 10 and 11.
  • the optical axes A420a, A420b being eccentric with respect to the optical axes A41 to A44 means a state in which the optical axes A420a, A420b and the optical axes A41 to A44 do not overlap with each other (that is, in the x direction and the y direction). a state in which the optical axes A420a and A420b are deviated from each other in at least one direction), a state in which the directions of the optical axes A420a and A420b are different from the directions of the optical axes A41 to A44 (that is, a state in which they are tilted), or both of these states.
  • the light source section 40 includes a plurality of light emitting elements as a plurality of light sources 41 to 44.
  • FIG. 12(A) is a front view showing the light source section 40 of the headlamp device 4, and FIGS. 12(B) and (C) are diagrams showing an example of the irradiation range divided into four segments. be.
  • the surfaces of the light sources 41 to 44 facing the +z-axis direction are light emitting surfaces 41a to 44a.
  • the light source section 40 includes a plurality (that is, N) of light emitting surfaces 41a to 44a.
  • the light emitting surfaces 41a to 44a may be arranged on the same plane (ie, a plane parallel to the xy plane).
  • N is 4, but N is not limited to 4. Note that N is an integer of 2 or more.
  • the light emitting surfaces 41a and 42a are arranged linearly in the x-axis direction, and the light emitting surfaces 43a and 44a are arranged linearly in the x-axis direction. Furthermore, in the fourth embodiment, the light emitting surfaces 41a and 43a are arranged in the y-axis direction, and the light emitting surfaces 42a and 44a are arranged in the y-axis direction.
  • Each of the light emitting surfaces 41a to 44a has a rectangular shape such as a square, for example. However, each of the light emitting surfaces 41a to 44a is not limited to a rectangular shape. Each of the light emitting surfaces 41a to 44a may have another shape such as a circular shape.
  • ⁇ Shade 440> In the headlamp device 4, a shade 440 is installed in the +z-axis direction of the light source section 30, as shown in FIGS. 10 and 11.
  • the shade 440 has openings 441 to 444 facing the light emitting surfaces 41a to 44a of the light sources 41 to 44, and contributes to light distribution by blocking the ends of the light emitted from the light emitting surfaces 41a to 44a in the x direction. This limits the luminous flux.
  • the shade 440 has a structure that limits the size of the beam diameter of the plurality of lights emitted from the light emitting surfaces 41a to 44a of the plurality of light sources 41 to 44, respectively.
  • the shade 440 limits the luminous flux that contributes to light distribution by blocking both the ends in the x direction and the ends in the y direction of the light emitted from the light emitting surfaces 41a to 44a of the light sources 41 to 44. It's okay.
  • the shapes of the openings 441 to 444 of the shade 440 are, for example, rectangular.
  • the shapes of the openings 441 to 444 of the shade 440 are not limited to rectangular shapes.
  • the optical section 400 is located in the +z-axis direction of the light source section 40.
  • the optical section 400 is a light guide projection optical element composed of a single optical component.
  • Optical section 400 is composed of a single lens. A plurality of lights emitted from the light emitting surfaces 41a to 44a of the light source section 40 enter the optical section 400.
  • the optical section 400 projects projection lights L41 to L44 made up of a plurality of segments forward (in the +z-axis direction).
  • the entrance surface 410 of the optical section 400 has, for example, at least one condensing region that condenses the light emitted from the light source section 40.
  • the entrance surface 410 has a plurality of light condensing regions 410a, 410b and a plurality of optical axes A410a, A410b.
  • the entrance surface 110 of the optical section 100 may have a single light condensing region and its optical axis. In FIGS. 10 and 11, the entrance surface 110 has two light condensing regions 410a and 410b.
  • the focal point of the light condensing regions 410a and 410b is, for example, a plane F parallel to the xy plane and located on the end face of the optical section 400 facing in the -z axis direction. Note that the incident surface 410 may not include a light condensing region.
  • the optical section 400 is, for example, integrally formed of the same material.
  • the optical section 400 is made of, for example, transparent resin.
  • the optical section 400 is, for example, a light guide/projection optical element whose interior is filled with a refractive material and which guides light incident from an entrance surface 410 and projects it from an output surface 420 .
  • it is desirable that the number of optical surfaces of the optical section 400 through which one light beam passes is small.
  • the entrance surface 410 is provided at the end of the optical section 400 in the -z axis direction.
  • the incident surface 410 is arranged in the +y-axis direction of the light source section 40 and in the +y-axis direction of the shade 440 with a space therebetween.
  • the entrance surface 410 has, for example, positive power.
  • the shape of the entrance surface 410 is the same as the shape of the entrance surface 110 in the first embodiment.
  • the light that has passed through the incident surface 410 (for example, the light that has been condensed by the condensing regions 410a and 410b) is directed toward the front of the vehicle equipped with the headlamp device 4 (+z axis direction).
  • the exit surface 420 has at least one projection area that has a projection function. That is, the output surface 420 has a plurality of projection areas 420a, 420b and a plurality of optical axes A420a, A420b. For example, the output surface 420 has a plurality of projection areas 420a, 420b and a plurality of optical axes A420a, A420b.
  • the output surface 420 of the optical section 400 may have a single projection area and its optical axis.
  • the output surface 420 has, for example, positive power.
  • the shape of the output surface 420 is the same as the shape of the output surface 120 in the first embodiment.
  • FIGS. 12(B) and (C) show an example of the irradiation range divided into four segments, that is, an example of the light distribution pattern of the headlamp device 4. .
  • the light emitted from each of the light emitting surfaces 11a to 14a of the plurality of light sources 41 to 44 passes through the openings 441 to 444 of the shade 440, passes through the optical section 400, and is directed to the front of the headlamp device 4.
  • Different projection lights L41 to L44 ie, a plurality of segments
  • the light distribution has, for example, the same number of segments as the number of light emitting surfaces 41a to 44a.
  • the output surface 420 of the optical section 400 has a plurality of optical axes. It is desirable that the projection lights of adjacent segments are emitted from projection areas 420a and 420b having mutually different optical axes A420a and A420b on the output surface 420.
  • the intervals between the plurality of segments of the projected light are determined by the eccentricity of the optical axes A420a and A420b of the projection areas 420a and 420b of the output surface 420 with respect to the optical axes A41 to A44 of the light sources 41 to 44, and the distance between the light sources 41 to 44. Determined by size.
  • the optical axes A420a and A420b of the projection areas 420a and 420b of the output surface 420 are eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap).
  • intervals between the segments emitted from the projection area including the same optical axis on the output surface 420 are all the same, but the intervals between the segments do not have to be the same.
  • the width in at least one of the x-axis direction (horizontal direction of the vehicle) and the y-axis direction (vertical direction of the vehicle) is equal to each other.
  • the focal lengths in the projection areas 420a and 420b corresponding to each optical axis are all equal.
  • each segment of the light distribution may have unequal widths in at least one of the horizontal and vertical directions.
  • the areas of the light emitting surfaces 41a to 44a corresponding to each segment may be different from each other.
  • the focal lengths in the projection areas corresponding to each optical axis may be different.
  • the distance between adjacent light sources 41 to 44, the positions of openings 441 to 444 of shade 440, and the eccentricity of optical axes A420a and A420b of output surface 420 with respect to optical axes A41 to A44 of light sources 41 to 44 By using as a parameter, the size of the interval between segments can be designed in detail.
  • the width of each of the projected lights L41 to L44 using the shade 440 it is possible to reduce the curvature in the x-axis direction in the equation expressing the amount of sag in the x-axis direction for the entrance surface 410 of the optical section 400. Can be done. Moreover, thereby, the shape of the optical section 400 can be simplified. Note that the direction in which the width of each of the projected lights L41 to L44 is narrowed by the shade 440 is not limited to the x-axis direction, but may be the y-axis direction or both the x-axis and y-axis directions.
  • adjacent segments among the plurality of segments of the projection lights L41 to L44 are projected from projection areas 420a and 420b of mutually different optical axes A420a and A420b, as shown in FIGS. 12(B) and 12(C). Since the projected light segments are segmented, the influence of light seepage into adjacent segments on light distribution can be reduced.
  • Embodiment 4 is the same as any of Embodiments 1 to 3.
  • FIG. 13A is a perspective view schematically showing a shade 740 as a light shielding member of a headlamp device according to a modification of the fourth embodiment.
  • FIG. 13(B) is a diagram showing an example of an irradiation range divided into four segments when the shade 740 is used.
  • a headlamp device according to a modification of the fourth embodiment is one in which the shade 440 of the headlamp device 4 shown in FIG. 10 is replaced with a shade 740 shown in FIG. 13(A).
  • the shade 740 has openings 741 to 744 that are through holes.
  • the shape of the openings 741 to 744 increases in width in a direction perpendicular to the predetermined direction (in the illustrated example, the width in the x-axis direction) as it advances in a predetermined direction (in the illustrated example, the ⁇ y-axis direction). It has a narrow shape. In other words, the shapes of the openings 741 to 744 are such that the width gradually narrows in a predetermined direction.
  • the shape of the openings 741 to 744 is a shape in which the hypotenuse (that is, the longest side) of a right triangle is bulged into an arc shape (that is, a shape that is outwardly convex). However, the shapes of the openings 741 to 744 may be other shapes.
  • the shapes of the openings 741 to 744 may be other shapes in which the width in the direction orthogonal to a predetermined direction becomes narrower as the openings advance in a predetermined direction.
  • the number of openings 741 to 744 is not limited to four.
  • the shapes and sizes of the openings 741 to 744 are the same, but they can be made to have different shapes and sizes depending on the required light distribution. It is.
  • FIG. 14 is a perspective view schematically showing the main structure of a headlamp device 5 according to the fifth embodiment.
  • FIG. 15 is a side view schematically showing the main configuration of the headlamp device 5.
  • the incident surface 410 of the optical section 400 is provided with two convex condensing regions 410a and 410b having apexes extending in the An example in which projection areas 420a and 420b, which are shaped parts, are provided has been described.
  • a single convex condensing region 510a is provided on the entrance surface 510 of the optical section 500, and a single condensing region 510a is provided on the exit surface 520.
  • a projection area 520a which is a convex portion, is provided will be described.
  • the headlamp device 5 includes a light source section 50 having a plurality of light sources 51 to 54, a shade 540 as a light shielding member, and a unit that is a light guiding and projecting optical element (for example, a lens) having an entrance surface 510 and an exit surface 520. 1 optical section 500.
  • a plurality of lights emitted from the light emitting surfaces of the plurality of light sources 51 to 54 pass through openings 541 to 544 of the shade 540, respectively, and enter the optical section 500 from the entrance surface 510.
  • the shade 540 has a structure that limits the size of the beam diameter of the plurality of lights emitted from the light emitting surfaces 51a to 54a of the plurality of light sources 51 to 54, respectively.
  • the plurality of lights that have entered the optical section 500 are projected from the projection area 520a of the output surface 520 as a plurality of projection lights L51 to L54.
  • La indicates an example of a light ray that travels through the optical section 500 and is emitted from the output surface 520.
  • the shapes of the openings 541 to 542 may be other shapes, such as the opening shown in FIG. 13(A), for example.
  • optical axis A520a of the projection area 520a of the output surface 520 is eccentric with respect to the optical axes A51 to A54 of the plurality of light sources 51 to 54.
  • FIG. 16(A) is a front view showing the light source section 50 of the headlamp device 5, and FIGS. 16(B) and (C) are diagrams showing an example of the irradiation range divided into four segments.
  • the surfaces of the light sources 51 to 54 facing the +z-axis direction are light emitting surfaces 51a to 54a.
  • the light source section 50 includes a plurality of light emitting surfaces 51a to 54a.
  • the light emitting surfaces 51a to 54a are arranged, for example, on the same plane (that is, a plane parallel to the xy plane).
  • light emitting surfaces 51a and 52a are arranged in the x-axis direction
  • light emitting surfaces 53a and 54a are arranged in the x-axis direction.
  • the light emitting surfaces 51a and 53a are arranged in the y-axis direction
  • the light emitting surfaces 52a and 54a are arranged in the y-axis direction.
  • the optical section 500 is located in the +z-axis direction of the light source section 50. A plurality of lights emitted from the light emitting surfaces 51a to 54a of the light source section 50 enter the optical section 500.
  • the optical section 500 projects projection light consisting of a plurality of segments forward (in the +z-axis direction).
  • the entrance surface 510 of the optical section 500 has, for example, a single condensing region 510a that condenses the light emitted from the light source section 50.
  • the entrance surface 510 has a single condensing region 510a and a single optical axis A510a.
  • the entrance surface 510 of the optical section 500 may have a plurality of light condensing regions and their optical axes.
  • the focal point of the condensing region 510a is, for example, a plane F parallel to the xy plane and on the end face of the optical section 500 facing in the -z axis direction.
  • the shape of the condensing region 510a of the entrance surface 510 is similar to that of the condensing region in the first to fourth embodiments.
  • the optical section 500 is configured by a single optical element, the focal position of the exit surface 520 with respect to the entrance surface 510 is fixed. Therefore, variations in the position of the optical section 500 have little effect on the light distribution.
  • the distance between adjacent light sources 51 to 54, the position of the openings 541 to 544 of the shade 540, and the eccentricity of the optical axis A520a of the exit surface 520 with respect to the optical axes A51 to A54 of the light sources 51 to 54 By changing this as a parameter, the size of the interval between segments can be designed in detail.
  • the light flux contributing to the light distribution is restricted by the shade 540, it is possible to reduce the degree of influence that appears on the projected lights L51 and L52 due to variations in the arrangement of the light sources 51 and 52 in the light distribution. .
  • Embodiment 5 is the same as any of Embodiments 1 to 4.
  • FIG. 17 is a perspective view schematically showing the main structure of a headlamp device 6 according to the sixth embodiment.
  • FIG. 18 is a side view schematically showing the main structure of the headlamp device 6.
  • the headlamp device 6 includes a light source section 60 having a plurality of light sources 61 and 62, and a light guide projection optical element (for example, a lens) having an entrance surface 610 and an exit surface 620.
  • a single optical section 600 is provided.
  • the shade 340 limits the width of the plurality of lights emitted from the light emitting surfaces of the light sources 31 and 32, but in the sixth embodiment, as the plurality of light sources 61 and 62, It uses a light emitting element whose width of emitted light is limited. That is, in the sixth embodiment, each of the plurality of light sources 61 and 62 has a structure that limits the size of the luminous flux diameter of the plurality of lights emitted from the respective light emitting surfaces. A plurality of lights emitted from the light sources 61 and 62 travel toward the entrance surface 410 and enter the optical section 600 from the entrance surface 610.
  • the plurality of lights that have entered the optical section 600 are projected from the projection areas 620a and 620b of the output surface 620 as a plurality of projection lights L61 and L62.
  • La indicates an example of a light ray that travels inside the optical section 600 and is emitted from the output surface 620.
  • FIG. 19(A) is a front view showing the light source section 60 of the headlamp device 6, and FIGS. 19(B) and (C) are diagrams showing an example of the irradiation range divided into two segments.
  • the surfaces of the light sources 61 and 62 facing the +z-axis direction are light emitting surfaces 61a and 62a.
  • the light source section 60 includes a plurality of light emitting surfaces 61a and 62a.
  • the light emitting surfaces 61a and 62a are arranged, for example, on the same plane (that is, a plane parallel to the xy plane). In the sixth embodiment, the light emitting surfaces 61a and 62a are arranged in the x-axis direction.
  • the optical section 600 is located in the +z-axis direction of the light source section 60. A plurality of lights emitted from the light emitting surfaces 61 a and 62 a of the light source section 60 enter the optical section 600 .
  • the optical section 600 projects projection lights L61 and L62 consisting of a plurality of segments forward (in the +z-axis direction).
  • the entrance surface 610 of the optical section 600 does not include a region that condenses the light emitted from the light source section 60.
  • the optical section 600 may include a condensing region similar to that in the second embodiment.
  • the intervals between the plurality of segments of the projected lights L61 and L62 are determined by the eccentricity of the light sources 61 and 62 with respect to the optical axes A61 and A62 in the optical axis A620a of the projection area 620a of the output surface 620, and the magnitude of the interval between the light sources 61 and 62. determined by.
  • the optical axis A620a of the projection area 620a of the output surface 620 is eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap).
  • the optical section 600 is configured by a single optical element, the focal position of the exit surface 620 with respect to the entrance surface 610 is fixed. Therefore, variations in the position of the optical section 600 have little effect on the light distribution.
  • the distance between the segments can be changed.
  • the size can be designed in detail.
  • Embodiment 6 is the same as any of Embodiments 1 to 5.
  • 1-6 Headlight device 10, 20, 30, 40, 50, 60 Light source section, 11-14, 21-24, 31, 32, 41-44, 51-54, 61, 62 Light source, 11a-14a , 21a to 24a, 31a, 32a, 41a to 44a, 51a to 54a, 61a, 62a Light emitting surface, 100, 200, 300, 400, 500, 600 Optical section (lens), 110, 210, 310, 410, 510, 610 Incident surface, 110a, 110b, 210a, 310a, 410a, 410b, 510a Condensing region, 120, 220, 320, 420, 520, 620 Output surface, 120a, 120b, 220a, 320a, 420a, 420b, 520 a, 620a Projection area, 340, 440, 540, 740 Shade (light shielding member), 341, 342, 441-444, 541-544, 741-744 Opening, A11-A14, A21

Abstract

This headlight device (1) comprises: a light source unit (10) having a plurality of light sources (11 to 14); and a single optical unit (100) having an incident surface (110) and an emission surface (120), a plurality of lights generated respectively from light-generating surfaces (11a to 14a) of the plurality of light sources (11 to 14) impinging on the optical unit (100) from the incident surface (110), the plurality of impinging lights being emitted as a plurality of projection lights (L11 to L14) from the emission surface (120), and a light distribution being formed by the plurality of projection lights (L11 to L14). The emission surface (120) has one or more projection regions (120a, 120b) through which each of the plurality of projection lights (L11 to L14) passes. The optical axis of the emission surface (120) in each of the one or more projection regions (120a, 120b) is biased with respect to the optical axes (A11 to A14) of the plurality of light sources (11 to 14).

Description

前照灯装置headlight device
 本開示は、前照灯装置に関する。 The present disclosure relates to a headlamp device.
 複数の光源(例えば、発光ダイオード(LED))と複数のレンズとを光学部品として有する前照灯装置であって、配光分布をセグメント化し(すなわち、光の照射範囲を複数のセグメントで構成し)、複数のセグメントにそれぞれ対応する複数の光源を個別に点灯制御する前照灯装置が提案されている(例えば、特許文献1を参照)。この前照灯装置は、先行車又は対向車などの車両のいるエリアを照射範囲から除外することで車両の運転者の眩惑を防ぐ機能を備えている。 A headlamp device that has multiple light sources (e.g., light emitting diodes (LEDs)) and multiple lenses as optical components, and the light distribution is segmented (that is, the light irradiation range is configured with multiple segments). ), a headlamp device that individually controls lighting of a plurality of light sources corresponding to a plurality of segments has been proposed (see, for example, Patent Document 1). This headlamp device has a function of preventing the driver of the vehicle from being dazzled by excluding an area where a vehicle such as a preceding vehicle or an oncoming vehicle is present from the irradiation range.
特開2019-114425号公報JP2019-114425A
 しかしながら、上記前照灯装置は、複数の光源と複数のレンズとから構成されており、光学部品の点数が多いので、誤差(特に、組立誤差)が大きくなりやすく(すなわち、位置精度が低くなりやすく)、所望の配光分布を得ることが難しいという問題がある。 However, since the above-mentioned headlight device is composed of multiple light sources and multiple lenses and has a large number of optical components, errors (especially assembly errors) tend to increase (that is, positional accuracy decreases). However, there is a problem in that it is difficult to obtain a desired light distribution.
 本開示は、上記課題を解決するためになされたものであり、所望の配光分布を得ることができる前照灯装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a headlamp device that can obtain a desired light distribution.
 本開示に係る前照灯装置は、複数の光源を有する光源部と、入射面及び出射面を有し、前記複数の光源の発光面からそれぞれ発せられた複数の光が前記入射面から入射し、入射した前記複数の光を前記出射面から複数の投射光として出射し、前記複数の投射光で配光を形成する単一の光学部と、を備え、前記出射面は、前記複数の投射光がそれぞれ通過する1つ以上の投射領域を有し、前記1つ以上の投射領域の各々における前記出射面の光軸は、前記複数の光源の光軸に対して偏心していることを特徴とする。 A headlamp device according to the present disclosure includes a light source section having a plurality of light sources, an entrance surface and an exit surface, and a plurality of lights emitted from the light emitting surfaces of the plurality of light sources enter from the entrance surface. , a single optical section that outputs the plurality of incident lights as a plurality of projection lights from the exit surface and forms a light distribution with the plurality of projection lights, the exit surface is configured to output the plurality of projection lights from the exit surface. It has one or more projection areas through which light passes, and the optical axis of the exit surface in each of the one or more projection areas is eccentric with respect to the optical axis of the plurality of light sources. do.
 本開示によれば、所望の配光分布を得ることができる。 According to the present disclosure, a desired light distribution can be obtained.
実施の形態1に係る前照灯装置の主要な構成を概略的に示す斜視図である。1 is a perspective view schematically showing the main configuration of a headlamp device according to Embodiment 1. FIG. 図1の前照灯装置の主要な構成を概略的に示す側面図である。FIG. 2 is a side view schematically showing the main configuration of the headlamp device of FIG. 1. FIG. (A)は、図1及び図2の前照灯装置の光源部を示す正面図であり、(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。(A) is a front view showing the light source part of the headlamp device of FIGS. 1 and 2, and (B) and (C) are views showing an example of the irradiation range divided into four segments. be. 実施の形態2に係る前照灯装置の主要な構成を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing the main configuration of a headlamp device according to a second embodiment. 図4の前照灯装置の主要な構成を概略的に示す側面図である。5 is a side view schematically showing the main structure of the headlamp device of FIG. 4. FIG. (A)は、図4及び図5の前照灯装置の光源部を示す正面図であり、(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。(A) is a front view showing the light source part of the headlamp device of FIGS. 4 and 5, and (B) and (C) are views showing an example of the irradiation range divided into four segments. be. 実施の形態3に係る前照灯装置の主要な構成を概略的に示す斜視図である。FIG. 3 is a perspective view schematically showing the main configuration of a headlamp device according to a third embodiment. 図7の前照灯装置の主要な構成を概略的に示す側面図である。8 is a side view schematically showing the main structure of the headlamp device of FIG. 7. FIG. (A)は、図7及び図8の前照灯装置の光源部を示す正面図であり、(B)及び(C)は、2つのセグメントに分割されている照射範囲の例を示す図である。(A) is a front view showing the light source part of the headlamp device of FIGS. 7 and 8, and (B) and (C) are views showing an example of the irradiation range divided into two segments. be. 実施の形態4に係る前照灯装置の主要な構成を概略的に示す斜視図である。FIG. 7 is a perspective view schematically showing the main configuration of a headlamp device according to a fourth embodiment. 図10の前照灯装置の主要な構成を概略的に示す側面図である。11 is a side view schematically showing the main structure of the headlamp device of FIG. 10. FIG. (A)は、図10及び図11の前照灯装置の光源部を示す正面図であり、(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。(A) is a front view showing the light source part of the headlamp device of FIGS. 10 and 11, and (B) and (C) are views showing an example of the irradiation range divided into four segments. be. (A)は、実施の形態4の変形例に係る前照灯装置のシェードを概略的に示す斜視図であり、(B)は、4つのセグメントに分割されている照射範囲の例を示す図である。(A) is a perspective view schematically showing a shade of a headlamp device according to a modification of Embodiment 4, and (B) is a diagram showing an example of an irradiation range divided into four segments. It is. 実施の形態5に係る前照灯装置の主要な構成を概略的に示す斜視図である。FIG. 7 is a perspective view schematically showing the main structure of a headlamp device according to a fifth embodiment. 図14の前照灯装置の主要な構成を概略的に示す側面図である。15 is a side view schematically showing the main structure of the headlamp device of FIG. 14. FIG. (A)は、図14及び図15の前照灯装置の光源部を示す正面図であり、(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。(A) is a front view showing the light source part of the headlamp device of FIGS. 14 and 15, and (B) and (C) are views showing an example of the irradiation range divided into four segments. be. 実施の形態6に係る前照灯装置の主要な構成を概略的に示す斜視図である。FIG. 7 is a perspective view schematically showing the main structure of a headlamp device according to a sixth embodiment. 図17の前照灯装置の主要な構成を概略的に示す側面図である。18 is a side view schematically showing the main structure of the headlamp device of FIG. 17. FIG. (A)は、図17及び図18の前照灯装置の光源部を示す正面図であり、(B)及び(C)は、2つのセグメントに分割されている照射範囲の例を示す図である。(A) is a front view showing the light source part of the headlamp device of FIGS. 17 and 18, and (B) and (C) are views showing an example of the irradiation range divided into two segments. be.
 以下に、実施の形態に係る前照灯装置を、図面を参照しながら説明する。なお、以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。 Hereinafter, a headlamp device according to an embodiment will be described with reference to the drawings. Note that the following embodiments are merely examples, and the embodiments can be combined as appropriate and each embodiment can be changed as appropriate.
 実施の形態に係る前照灯装置は、例えば、車両に搭載される車両用前照灯装置である。車両は、例えば、自動四輪車、自動三輪車、自動二輪車などである。 The headlamp device according to the embodiment is, for example, a vehicle headlamp device mounted on a vehicle. The vehicle is, for example, a four-wheeled motor vehicle, a three-wheeled motor vehicle, a two-wheeled motor vehicle, or the like.
 以下の実施の形態では、前照灯装置から照射される光の照射状態が走行時の状態であるハイビ-ムである例を説明する。照射状態がハイビ-ムであるときに前照灯装置から照射される光の配光分布(すなわち、配光パターン)は、照射状態が車両のすれ違い時の状態であるロービームであるときに前照灯装置から照射される光の配光分布よりも、広範囲で且つ高照度である。そのため、前照灯装置の照射状態がハイビ-ムであるときには、その前照灯装置を備えた車両の運転者の視界が良好に確保される。ただし、照射状態がハイビ-ムであるときには、ハイビームの照明光が先行車又は対向車の運転者を眩惑させる可能性がある。この眩惑を生じさせないために、実施の形態に係る前照灯装置では、光の配光配光分布を調節する制御、例えば、ヘッドランプのADB(Adaptive Driving Beam)制御が行われる。実施の形態に係る前照灯装置では、目標とする領域(例えば、先行車及び対向車を除く前方の領域)が光の照射領域となるように、ハイビ-ムによって照射される光の配光分布が調節される。 In the following embodiments, an example will be described in which the irradiation state of light emitted from the headlamp device is high beam, which is the state during driving. The light distribution (i.e., light distribution pattern) of the light emitted from the headlamp device when the illumination state is high beam is different from that of the headlamp when the illumination state is low beam, which is the state when vehicles pass each other. It has a wider range and higher illuminance than the light distribution of light emitted from the lighting device. Therefore, when the illumination state of the headlamp device is high beam, good visibility for the driver of the vehicle equipped with the headlamp device is ensured. However, when the illumination state is high beam, the high beam illumination light may dazzle the driver of a preceding vehicle or an oncoming vehicle. In order to prevent this dazzling, the headlamp device according to the embodiment performs control to adjust the light distribution of light, for example, ADB (Adaptive Driving Beam) control of the headlamp. In the headlamp device according to the embodiment, the light distribution of the light emitted by the high beam is such that the target area (for example, the area in front excluding the preceding vehicle and oncoming vehicle) becomes the light irradiation area. The distribution is adjusted.
 また、以下の実施の形態では、前照灯装置が、1つの前照灯モジュールを有する例を説明する。そのため、各実施の形態では、前照灯装置は、前照灯モジュールとも呼ばれる。ただし、各実施の形態に係る前照灯装置は、前照灯モジュールを複数台有するものであってもよい。 Furthermore, in the following embodiments, an example will be described in which a headlamp device has one headlamp module. Therefore, in each embodiment, the headlamp device is also referred to as a headlamp module. However, the headlamp device according to each embodiment may include a plurality of headlamp modules.
 図面には、説明の理解を容易にするためにxyz直交座標系の座標軸が示されている。x軸は、前照灯装置が備えられた車両の左右方向に平行な座標軸である。すなわち、x軸方向は、車両の幅方向である。車両の前方を向いたときに、左方向が+x軸方向、右方向が-x軸方向である。y軸は、車両の上下方向に平行な座標軸である。車両の上方向が+y軸方向であり、車両の下方向が-y軸方向である。すなわち、車両の+y軸側は空側であり、-y軸側は路面側である。z軸は、x軸及びy軸に直交する座標軸である。z軸方向は、車両の進行方向である。以下の説明では、+z軸方向を、前方とも呼ぶ。 In the drawings, coordinate axes of an xyz orthogonal coordinate system are shown to facilitate understanding of the explanation. The x-axis is a coordinate axis parallel to the left-right direction of the vehicle equipped with the headlamp device. That is, the x-axis direction is the width direction of the vehicle. When facing the front of the vehicle, the left direction is the +x-axis direction, and the right direction is the -x-axis direction. The y-axis is a coordinate axis parallel to the vertical direction of the vehicle. The upward direction of the vehicle is the +y-axis direction, and the downward direction of the vehicle is the -y-axis direction. That is, the +y-axis side of the vehicle is the empty side, and the -y-axis side is the road surface side. The z-axis is a coordinate axis perpendicular to the x-axis and the y-axis. The z-axis direction is the direction in which the vehicle travels. In the following description, the +z-axis direction is also referred to as the front.
《1》実施の形態1
《1-1》構成
〈構成全体の説明〉
 図1は、実施の形態1に係る前照灯装置1の主要な構成を概略的に示す斜視図である。図2は、前照灯装置1の主要な構成を概略的に示す側面図である。図1及び図2に示されるように、前照灯装置1は、複数の光源11~14を有する光源部10と、入射面110及び出射面120を有する導光投射光学素子(例えば、レンズ)である単一の光学部100とを備えている。複数の光源11~14の発光面11a~14aからそれぞれ発せられた複数の光は、入射面110から光学部100内に入射する。光学部100内に入射した複数の光は、光学部100内を進み、出射面120の投射領域120a、120bから複数の投射光L11~L14として投射される。図2において、Laは、光学部100内を進み、出射面120から出射される光線の一例を示す。複数の光源11~14を個別に点灯制御(例えば、オン・オフ制御又は調光制御)することによって、複数の投射光L11~L14によって形成される配光分布(すなわち、配光パターン)が調節される。
<<1>> Embodiment 1
《1-1》Configuration〈Explanation of the entire configuration〉
FIG. 1 is a perspective view schematically showing the main configuration of a headlamp device 1 according to the first embodiment. FIG. 2 is a side view schematically showing the main configuration of the headlamp device 1. As shown in FIG. As shown in FIGS. 1 and 2, the headlamp device 1 includes a light source section 10 having a plurality of light sources 11 to 14, and a light guide projection optical element (for example, a lens) having an entrance surface 110 and an exit surface 120. A single optical section 100 is provided. A plurality of lights emitted from the light emitting surfaces 11a to 14a of the plurality of light sources 11 to 14 enter into the optical section 100 from the entrance surface 110. The plurality of lights that have entered the optical section 100 travel within the optical section 100 and are projected from the projection areas 120a and 120b of the exit surface 120 as a plurality of projection lights L11 to L14. In FIG. 2, La indicates an example of a light ray that travels through the optical section 100 and is emitted from the output surface 120. By individually controlling the lighting of the plurality of light sources 11 to 14 (for example, on/off control or dimming control), the light distribution (i.e., the light distribution pattern) formed by the plurality of projected lights L11 to L14 can be adjusted. be done.
 光学部100の出射面120は、複数の投射光L11~L14がそれぞれ通過する1つ以上の投射領域(ここでは、2つの投射領域120a、120b)を有している。出射面120の投射領域120a、120bの光軸A120a、A120bは、複数の光源11~14の光軸A11~A14に対して偏心していてもよい。なお、前照灯装置1の構成は、図1及び図2に示されるものに限定されない。本開示で、光軸A120a、A120bが光軸A11~A14に対して偏心しているとは、光軸A120a、A120bと光軸A11~A14とが互いに重ならない状態(すなわち、x方向及びy方向の少なくとも一方の方向にずれている状態)、光軸A120a、A120bの向きと光軸A11~A14の向きとが異なる状態(すなわち、傾斜している状態)、又はこれらの両方の状態をいう。 The output surface 120 of the optical section 100 has one or more projection areas (here, two projection areas 120a and 120b) through which the plurality of projection lights L11 to L14 respectively pass. The optical axes A120a and A120b of the projection areas 120a and 120b of the exit surface 120 may be eccentric with respect to the optical axes A11 to A14 of the plurality of light sources 11 to 14. Note that the configuration of the headlamp device 1 is not limited to that shown in FIGS. 1 and 2. In the present disclosure, the optical axes A120a, A120b being eccentric with respect to the optical axes A11 to A14 means a state in which the optical axes A120a, A120b and the optical axes A11 to A14 do not overlap with each other (that is, in the x direction and the y direction). a state in which the optical axes A120a and A120b are deviated from each other in at least one direction), a state in which the directions of the optical axes A120a and A120b are different from the directions of the optical axes A11 to A14 (that is, a state in which they are tilted), or both of these states.
〈光源部10〉
 図1に示されるように、実施の形態1では、光源部10は、複数の光源11~14としての複数の発光素子を含んでいる。本開示において、発光素子は、固体光源である。固体光源は、指向性を持つ光源である。固体光源は、例えば、半導体光源である。光源11~14は、例えば、発光ダイオ-ド(LED)である。なお、固体光源は、有機エレクトロルミネッセンス光源であってもよい。また、光源11~14は、平面上に塗布された蛍光体に励起光を照射することによって発光する光源であってもよい。モジュ-ルが小さく、アレイ状にすることが容易である点、高輝度である点、安全である点、及び低コストである点から、光源11~14としてはLEDが好ましい。
<Light source section 10>
As shown in FIG. 1, in the first embodiment, the light source unit 10 includes a plurality of light emitting elements as a plurality of light sources 11 to 14. In this disclosure, the light emitting device is a solid state light source. A solid state light source is a directional light source. The solid state light source is, for example, a semiconductor light source. The light sources 11 to 14 are, for example, light emitting diodes (LEDs). Note that the solid-state light source may be an organic electroluminescence light source. Further, the light sources 11 to 14 may be light sources that emit light by irradiating excitation light onto a phosphor coated on a flat surface. LEDs are preferable as the light sources 11 to 14 because the modules are small, easy to form into an array, have high brightness, are safe, and are low cost.
 図3(A)は、前照灯装置1の光源部10を示す正面図であり、図3(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。光源11~14の+z軸方向を向く面は、発光面11a~14aである。光源部10は、複数(すなわち、N個)の発光面11a~14aを含む。発光面11a~14aは、同一平面(すなわち、xy面に平行な平面)上に配置されていてもよい。実施の形態1では、Nは4であるが、Nは4に限定されない。なお、Nは2以上の整数である。また、実施の形態1では、発光面11a、12aがx軸方向に直線状に配列され、発光面13a、14aがx軸方向に直線状に配列されている。また、実施の形態1では、発光面11a、13aがy軸方向に配列され、発光面12a、14aがy軸方向に配列されている。 FIG. 3(A) is a front view showing the light source section 10 of the headlamp device 1, and FIGS. 3(B) and (C) are diagrams showing an example of the irradiation range divided into four segments. be. The surfaces of the light sources 11 to 14 facing the +z-axis direction are light emitting surfaces 11a to 14a. The light source section 10 includes a plurality (that is, N) of light emitting surfaces 11a to 14a. The light emitting surfaces 11a to 14a may be arranged on the same plane (ie, a plane parallel to the xy plane). In the first embodiment, N is 4, but N is not limited to 4. Note that N is an integer of 2 or more. Further, in the first embodiment, the light emitting surfaces 11a and 12a are arranged linearly in the x-axis direction, and the light emitting surfaces 13a and 14a are arranged linearly in the x-axis direction. Further, in the first embodiment, the light emitting surfaces 11a and 13a are arranged in the y-axis direction, and the light emitting surfaces 12a and 14a are arranged in the y-axis direction.
 発光面11a~14aの各々は、例えば、正方形などの矩形状である。ただし、発光面11a~14aの各々は、矩形状に限定されない。発光面11a~14aの各々は、円形状などの他の形状であってもよい。 Each of the light emitting surfaces 11a to 14a has a rectangular shape such as a square, for example. However, each of the light emitting surfaces 11a to 14a is not limited to a rectangular shape. Each of the light emitting surfaces 11a to 14a may have another shape such as a circular shape.
〈光学部100〉
 光学部100は、光源部10の+z軸方向に位置している。光学部100は、単一の光学部品で構成された導光投射光学素子である。光学部100は、単一のレンズで構成されている。光学部100には、光源部10の発光面11a~14aから発せられた複数の光が入射する。光学部100は、前方(+z軸方向)に複数のセグメントからなる投射光L11~L14を投射する。
<Optical Department 100>
The optical section 100 is located in the +z-axis direction of the light source section 10. The optical section 100 is a light guide projection optical element composed of a single optical component. Optical section 100 is composed of a single lens. A plurality of lights emitted from the light emitting surfaces 11a to 14a of the light source section 10 enter the optical section 100. The optical section 100 projects projection lights L11 to L14 made up of a plurality of segments forward (in the +z-axis direction).
 光学部100の入射面110は、例えば、光源部10から発せられた光を集光する領域(すなわち、集光機能を持つ領域)である少なくとも1つの集光領域を有している。例えば、入射面110は、複数の集光領域110a、110bと複数の光軸A110a、A110bを有している。ただし、光学部100の入射面110は、単一の集光領域とその光軸とを有してもよい。図1及び図2では、入射面110は、2つの集光領域110a、110bを有している。集光領域110a、110bは、光源部10に向けて(すなわち、-z軸方向に向けて)突き出ており、予め決められた延在方向(実施の形態1では、x軸方向)に延在する頂部(すなわち、-z軸方向を高さ方向とみなした場合における頂部)を持つ凸状部を有している。また、集光領域110a、110bのプロファイル(例えば、非球面形状のプロファイル)は、凸状部の頂部(すなわち、x軸方向に延在する稜線)を間に挟んで一方(例えば、+y軸方向)の側と他方(例えば、-y軸方向)の側とで互いに異なる。言い換えれば、集光領域110a、110bのプロファイルを示すサグ量(すなわち、プロファイルを光軸からの距離の関数として示す量)は、凸状部の頂部を間に挟んで一方の側と他方の側とで互いに異なる。図示の例では、集光領域110a、110bは、凸状部の頂部の+y軸方向の側の傾斜は緩やかであり、-y軸方向の側の傾斜が急である。集光領域110a、110bの焦点は、例えば、xy平面に平行な面Fであって、光学部100の-z軸方向を向く端面上にある。 The entrance surface 110 of the optical section 100 has, for example, at least one condensing region that condenses the light emitted from the light source section 10 (that is, a region having a condensing function). For example, the entrance surface 110 has a plurality of condensing regions 110a, 110b and a plurality of optical axes A110a, A110b. However, the entrance surface 110 of the optical section 100 may have a single light condensing region and its optical axis. In FIGS. 1 and 2, the entrance surface 110 has two light collection areas 110a and 110b. The light condensing regions 110a and 110b protrude toward the light source section 10 (that is, toward the −z-axis direction), and extend in a predetermined extension direction (in the first embodiment, the x-axis direction). It has a convex portion having a top portion (that is, a top portion when the −z-axis direction is regarded as the height direction). Further, the profiles of the light condensing regions 110a and 110b (for example, an aspherical profile) are arranged such that one side (for example, in the +y-axis direction) with the top of the convex portion (that is, the ridgeline extending in the x-axis direction) sandwiched therebetween. ) side and the other side (for example, -y axis direction) are different from each other. In other words, the amount of sag that indicates the profile of the light focusing regions 110a, 110b (i.e., the amount that indicates the profile as a function of distance from the optical axis) is different from one side to the other with the top of the convex portion in between. and are different from each other. In the illustrated example, in the condensing regions 110a and 110b, the tops of the convex portions have a gentle slope on the +y-axis direction side, and a steep slope on the -y-axis direction side. The focal point of the light condensing regions 110a and 110b is, for example, a plane F parallel to the xy plane and on the end face of the optical section 100 facing in the -z axis direction.
 光学部100は、例えば、同じ材料によって一体に形成されている。光学部100は、例えば、透明な樹脂などによって作製される。光学部100は、例えば、内部が屈折材で満たされ、入射面110から入射した光を導光し、出射面120から投射する導光投射光学素子である。光利用効率を高くするために、1本の光線が通過する光学部100の光学面の数は少ないことが望ましい。実施の形態1では、1本の光線が通過する光学部100の光学面は、入射面110と出射面120の2つの面である。 The optical section 100 is, for example, integrally formed of the same material. The optical section 100 is made of, for example, transparent resin. The optical section 100 is, for example, a light guide/projection optical element whose interior is filled with a refractive material and which guides light incident from an entrance surface 110 and projects it from an output surface 120 . In order to increase light utilization efficiency, it is desirable that the number of optical surfaces of the optical section 100 through which one light beam passes is small. In the first embodiment, the optical surfaces of the optical section 100 through which one light ray passes are two surfaces: the entrance surface 110 and the exit surface 120.
 入射面110は、光学部100の-z軸方向の端部に設けられている。入射面110は、光源部10の+y軸方向に、光源部10から間隔を開けて配置されている。 The entrance surface 110 is provided at the end of the optical section 100 in the -z axis direction. The incident surface 110 is arranged at a distance from the light source section 10 in the +y-axis direction of the light source section 10 .
 入射面110は、例えば、正のパワーを持つ。入射面110の形状は、製造が容易になるように、x軸方向の位置に依存しない形状であってもよい。入射面110のx軸方向についてのサグ量を表す式は、y軸方向についてのサグ量を表す式と異なっていてもよい。また、入射面110のサグ量を表す式は、集光領域110a、110bの頂部のy座標を0とした場合、y≧0の領域とy<0の領域とで異なっていてもよい。また、入射面110(例えば、集光領域110a、110b)は、自由曲面であってもよい。 The entrance surface 110 has, for example, positive power. The shape of the entrance surface 110 may be independent of the position in the x-axis direction so as to facilitate manufacturing. The expression representing the amount of sag in the x-axis direction of the incident surface 110 may be different from the expression representing the amount of sag in the y-axis direction. Furthermore, the formula expressing the amount of sag on the incident surface 110 may be different between a region where y≧0 and a region where y<0, assuming that the y coordinate of the top of the condensing regions 110a and 110b is 0. Furthermore, the incident surface 110 (for example, the light condensing regions 110a and 110b) may be a free-form surface.
 入射面110の集光領域110a、110bの光軸A120a、A120bは、光源11~14の光軸A11~A14に対して偏心していてもよい。また、入射面110は、不連続であってもよい。つまり、入射面110は、段差などの不連続部分を有してもよい。 The optical axes A120a and A120b of the condensing regions 110a and 110b of the incident surface 110 may be eccentric with respect to the optical axes A11 to A14 of the light sources 11 to 14. Furthermore, the entrance surface 110 may be discontinuous. That is, the entrance surface 110 may have a discontinuous portion such as a step.
 入射面110が複数の集光領域110a、110bを持つ場合、各集光領域110a、110bは、全て同一形状である。ただし、複数の集光領域110a、110bは、互いに異なる形状であってもよい。 When the entrance surface 110 has a plurality of light condensing regions 110a and 110b, each of the light converging regions 110a and 110b all have the same shape. However, the plurality of light condensing regions 110a and 110b may have mutually different shapes.
 入射面110を通過した光(例えば、集光領域110a、110bによって集光された光)は、出射面120の投射領域120a、120bにより、前照灯装置1を備えた車両の前方(+z軸方向)の領域に投射される。出射面120は、投射機能を持つ領域である少なくとも1つの投射領域を有している。つまり、出射面120は、複数の投射領域120a、120bとそれらの複数の光軸A120a、A120bを有している。つまり、出射面120は、複数の投射領域120a、120bと複数の光軸A120a、A120bを有してもよい。ただし、光学部100の出射面120は、単一の投射領域とその光軸とを有してもよい。図1及び図2では、出射面120は、2つの投射領域120a、120bを有している。 The light that has passed through the incident surface 110 (for example, the light that has been condensed by the condensing regions 110a and 110b) is directed toward the front of the vehicle equipped with the headlamp device 1 (+z axis direction). The exit surface 120 has at least one projection area that has a projection function. That is, the output surface 120 has a plurality of projection areas 120a, 120b and a plurality of optical axes A120a, A120b. That is, the output surface 120 may have a plurality of projection areas 120a, 120b and a plurality of optical axes A120a, A120b. However, the output surface 120 of the optical section 100 may have a single projection area and its optical axis. In FIGS. 1 and 2, the exit surface 120 has two projection areas 120a and 120b.
 また、光学部100は、入射面110の集光領域110a、110bによって集光された像が出射面120の投射領域120a、120bによってそれぞれ投射されるように、出射面120の投射領域120a、120bにおける焦点は、光学部100の内部に設けられていてもよい。出射面120の投射領域120a、120bは、球面であってもよい。出射面120の投射領域120a、120bは、非球面であってもよい。出射面120のx軸方向についてのプロファイル(例えば、非球面形状のプロファイル)を示すは、y軸方向についてのプロファイル(例えば、非球面形状のプロファイル)と異なっていてもよい。言い換えれば、出射面120のx軸方向についてのプロファイル(例えば、非球面形状のプロファイル)を示すサグ量を表す式は、y軸方向についてのプロファイル(例えば、非球面形状のプロファイル)を示すサグ量を表す式と異なっていてもよい。また、出射面120のサグ量を表す式は、投射領域120a、120bの頂部のy座標を0とした場合、y≧0の領域とy<0の領域とで異なっていてもよい。また、出射面120(例えば、投射領域120a、120b)は、自由曲面であってもよい。なお、サグ量を表す式は、非球面形状のプロファイルを光軸からの距離の関数として表す式であり、公知の式である。 The optical unit 100 also includes projection areas 120a and 120b of the exit surface 120 such that images focused by the light collection regions 110a and 110b of the entrance surface 110 are projected by projection regions 120a and 120b of the exit surface 120, respectively. The focal point in may be provided inside the optical section 100. The projection areas 120a and 120b of the output surface 120 may be spherical. The projection areas 120a and 120b of the output surface 120 may be aspherical. The profile of the exit surface 120 in the x-axis direction (for example, an aspherical profile) may be different from the profile in the y-axis direction (for example, an aspherical profile). In other words, the formula representing the sag amount indicating the profile in the x-axis direction of the output surface 120 (for example, an aspherical profile) is the sag amount indicating the profile in the y-axis direction (for example, an aspherical profile) may be different from the expression representing Moreover, the formula expressing the sag amount of the output surface 120 may be different between the area where y≧0 and the area where y<0, assuming that the y coordinate of the top of the projection areas 120a and 120b is 0. Further, the output surface 120 (for example, the projection areas 120a, 120b) may be a free-form surface. The formula representing the sag amount is a known formula that represents the profile of an aspherical surface as a function of the distance from the optical axis.
 出射面120の投射領域120a、120bの光軸A120a、A120bは、光源11~14の光軸A11~A14に対してx軸方向又はy軸方向の少なくとも一方について偏心している。また、前照灯装置1は、出射面120の投射領域120a、120bの光軸A120a、A120bが、対応する光源の光軸に対する偏心の大きさが互いに異なるように、構成されてもよい。つまり、投射領域120aの光軸A120aが光源11の光軸A11(又は光源12の光軸A12)に対する偏心の大きさ(すなわち、ずれ量)は、投射領域120bの光軸A120bが光源13の光軸A13(又は光源14の光軸A14)に対する偏心の大きさ(すなわち、ずれ量)と異なっていてもよい。 The optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 are eccentric in at least one of the x-axis direction and the y-axis direction with respect to the optical axes A11 to A14 of the light sources 11 to 14. Further, the headlamp device 1 may be configured such that the optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 have different degrees of eccentricity with respect to the optical axis of the corresponding light source. In other words, the degree of eccentricity (that is, the amount of deviation) of the optical axis A120a of the projection area 120a with respect to the optical axis A11 of the light source 11 (or the optical axis A12 of the light source 12) is such that the optical axis A120b of the projection area 120b is It may be different from the magnitude of eccentricity (that is, the amount of deviation) with respect to the axis A13 (or the optical axis A14 of the light source 14).
 また、出射面120は、不連続な部分を有してもよい。つまり、出射面120は、段差などの不連続部分を有してもよい。 Furthermore, the output surface 120 may have discontinuous portions. That is, the output surface 120 may have a discontinuous portion such as a step.
 出射面120が集光機能を有する複数の投射領域120a、120bを持つ場合、各投射領域120a、120bの形状は、全て同一である。ただし、投射領域120a、120bの形状は、互いに異なっていてもよい。 When the output surface 120 has a plurality of projection areas 120a and 120b having a light condensing function, the shapes of each projection area 120a and 120b are all the same. However, the shapes of the projection areas 120a and 120b may be different from each other.
 図1及び図2に示されるように、入射面110が持つ集光領域110a、110bの数と出射面120が持つ投射領域120a、120bの数が等しく、集光領域110a、110bと投射領域120a、120bとが1対1に対応している。また、集光領域110aと投射領域120aとの組み合わせと、集光領域110bと投射領域120bとの組み合わせは、互いに同様の形状をなしていている。ただし、集光領域110aと投射領域120aとの組み合わせと、集光領域110bと投射領域120bとの組み合わせは、互いに異なる形状であってもよい。 As shown in FIGS. 1 and 2, the number of light converging regions 110a, 110b that the entrance surface 110 has and the number of projection regions 120a, 120b that the exit surface 120 has are equal, and the number of light converging regions 110a, 110b and the projection region 120a are equal. , 120b have a one-to-one correspondence. Further, the combination of the light condensing region 110a and the projection region 120a and the combination of the light condensing region 110b and the projection region 120b have the same shape. However, the combination of the light collection area 110a and the projection area 120a and the combination of the light collection area 110b and the projection area 120b may have different shapes.
 なお、光源の発光面から発せられた1本の光線が通過する光学部100の光学面は、3つ以上であってもよい。 Note that the number of optical surfaces of the optical section 100 through which one light beam emitted from the light emitting surface of the light source passes may be three or more.
《1-2》配光
 図3(B)及び(C)には、4つのセグメントに分割されている照射範囲の例、つまり、前照灯装置1の配光パターンの例が示されている。複数の光源11~14の発光面11a~14aの各々から発せられた光は、光学部100を通過して前照灯装置1の前方において、互いに異なる投射光L11~L14(すなわち、複数のセグメント)となって、異なる照射範囲を照明する。配光は、例えば、発光面11a~14aの数と等しい数のセグメントを持つ。
<<1-2>> Light distribution Figures 3 (B) and (C) show an example of the irradiation range divided into four segments, that is, an example of the light distribution pattern of the headlamp device 1. . The light emitted from each of the light emitting surfaces 11a to 14a of the plurality of light sources 11 to 14 passes through the optical section 100 and is projected into different projection lights L11 to L14 (that is, a plurality of segments) in front of the headlamp device 1. ) to illuminate different irradiation ranges. The light distribution has, for example, the same number of segments as the number of light emitting surfaces 11a to 14a.
 複数の投射光L11~L14で形成される配光は、予め決められた第1の方向(例えば、x軸方向又はy軸方向)及び第1の方向に直交する第2の方向(例えば、y軸方向又はx軸方向)のうちの少なくとも一方を配列方向として並ぶ複数のセグメントからなる照射範囲を含む。複数のセグメントのうちの隣り合うセグメントの配列方向における端部が互いに接するように(例えば、図3(B)のように)、1つ以上の投射領域120a、120bの各々における出射面120の光軸A120a、A120bの位置及び方向が設定されてもよい。複数の光源11~14の発光面11a~14aから発せられる複数の光が、光学部100の出射面120から複数の投射光L11~L14として、互いに異なるセグメントに照射されるように、複数の光源11~14及び光学部100が形成されている。 The light distribution formed by the plurality of projection lights L11 to L14 is directed in a predetermined first direction (for example, the x-axis direction or the y-axis direction) and a second direction orthogonal to the first direction (for example, the y-axis direction). The irradiation range includes a plurality of segments arranged in at least one of the axial direction and the x-axis direction. The light emitting surface 120 in each of the one or more projection areas 120a, 120b is arranged such that the ends of adjacent segments in the arrangement direction of the plurality of segments touch each other (for example, as shown in FIG. 3(B)). The positions and directions of the axes A120a and A120b may be set. A plurality of light sources are arranged so that a plurality of lights emitted from light emitting surfaces 11a to 14a of a plurality of light sources 11 to 14 are irradiated to mutually different segments from an exit surface 120 of the optical section 100 as a plurality of projection lights L11 to L14. 11 to 14 and an optical section 100 are formed.
 配光の形成において、光学部100の出射面120は複数の光軸を持っていることが望ましい。隣り合うセグメントの投射光(例えば、図3(B)(C)におけるL12とL14、L14とL11、及びL11とL13)は、出射面120において互いに異なる光軸A120a、A120bを持つ投射領域120a、120bから出射されたものであることが望ましい。 In forming the light distribution, it is desirable that the output surface 120 of the optical section 100 has a plurality of optical axes. Projection lights of adjacent segments (for example, L12 and L14, L14 and L11, and L11 and L13 in FIGS. 3B and 3C) have a projection area 120a having mutually different optical axes A120a and A120b on the exit surface 120, It is desirable that the light be emitted from 120b.
 互いに異なる出射面120、すなわち、投射領域120a、120bから出た光を隣合わせることで、図3(B)に示されるように、発光面11a、12aに対応するセグメントと同じx軸方向の列上に、発光面13a、14aに対応するセグメントがを配置することができる。 By arranging the light emitted from different emission surfaces 120, that is, the projection areas 120a and 120b next to each other, as shown in FIG. On top, segments corresponding to the light emitting surfaces 13a, 14a can be arranged.
 投射光の複数のセグメントの間隔は、出射面120の投射領域120a、120bの光軸A120a、A120bの、光源11~14の光軸A11~A14に対する偏心の大きさと、光源11~14の間隔の大きさと、によって決定される。 The intervals between the plurality of segments of the projected light are determined by the eccentricity of the optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 with respect to the optical axes A11 to A14 of the light sources 11 to 14, and the distance between the light sources 11 to 14. Determined by size.
 図3(C)に示されるように、投射光の隣り合うセグメントの端部が一部重なりを持つように接することが望ましい。出射面120の投射領域120a、120bの光軸A120a、A120bは、配光においてセグメントの境界が接するように(部分的に重なる場合を含む)ように偏心している。本開示において、セグメントの境界とは、セグメントの端部において、光度が625cdとなる境界線を表す。接するとは、隣り合うセグメントの両方の境界線が接すること、又は両方の境界線が隣のセグメント上に位置することを表す。 As shown in FIG. 3(C), it is desirable that the ends of adjacent segments of the projected light touch so that they partially overlap. The optical axes A120a and A120b of the projection areas 120a and 120b of the output surface 120 are eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap). In this disclosure, the boundary of a segment refers to the boundary line where the luminous intensity is 625 cd at the end of the segment. Touching means that both boundary lines of adjacent segments touch, or that both boundary lines are located on adjacent segments.
 出射面120において同じ光軸を含む投射領域から出射されるセグメント同士の間隔は、全て同一であるが、セグメント同士の間隔は同一でなくてもよい。 The intervals between the segments emitted from the projection area including the same optical axis on the output surface 120 are all the same, but the intervals between the segments do not have to be the same.
 配光の各セグメントについて、x軸方向(車両の水平方向)とy軸方向(車両の垂直方向)の少なくとも一方における幅は、互いに等しい。つまり、光源11~14を全て同様の形状とした条件下で、光学部100の出射面120が複数の光軸を持つ場合、各光軸に対応する投射領域120a、120bにおける焦点距離は、全て等しい。ただし、配光の各セグメントの、水平方向と垂直方向の少なくとも一方における幅は、等しくない幅のものを含んでもよい。各セグメントに対応する発光面11a~14aの面積は、互いに異なっていてもよい。また、出射面120が複数の光軸を持つ場合、各光軸に対応する投射領域における焦点距離は、異なっていてもよい。 For each segment of the light distribution, the width in at least one of the x-axis direction (horizontal direction of the vehicle) and the y-axis direction (vertical direction of the vehicle) is equal to each other. In other words, when the light sources 11 to 14 are all of the same shape and the output surface 120 of the optical section 100 has a plurality of optical axes, the focal lengths in the projection areas 120a and 120b corresponding to each optical axis are all equal. However, each segment of the light distribution may have unequal widths in at least one of the horizontal and vertical directions. The areas of the light emitting surfaces 11a to 14a corresponding to each segment may be different from each other. Moreover, when the output surface 120 has a plurality of optical axes, the focal length in the projection area corresponding to each optical axis may be different.
《1-3》効果
 実施の形態1によれば、光学部100は、単一の光学素子によって構成されていることから、入射面110に対する出射面120の焦点位置は、固定される。そのため、光学部100の位置のばらつきが配光分布に与える影響は小さい。
<<1-3>> Effects According to the first embodiment, since the optical section 100 is constituted by a single optical element, the focal position of the exit surface 120 with respect to the entrance surface 110 is fixed. Therefore, variations in the position of the optical section 100 have little effect on the light distribution.
 また、出射面120が複数の光軸A120a、A120bを有することから、それぞれの光軸A120a、A120bにおける、光源11~14の光軸A11~A14に対する偏心の大きさによって、配光分布を形成する投射光L11~L14の出射方向は、任意に設計することができる。言い換えれば、光学部100の光軸A120a、A120bに対する、光源11~14の光軸A11~A14の偏心を調節すれば、配光分布を形成する投射光のセグメントの位置を設定することができる。 Furthermore, since the output surface 120 has a plurality of optical axes A120a and A120b, a light distribution is formed depending on the eccentricity of each of the optical axes A120a and A120b with respect to the optical axes A11 to A14 of the light sources 11 to 14. The emission directions of the projection lights L11 to L14 can be arbitrarily designed. In other words, by adjusting the eccentricity of the optical axes A11 to A14 of the light sources 11 to 14 with respect to the optical axes A120a and A120b of the optical section 100, the positions of the segments of the projected light that form the light distribution can be set.
 また、隣り合う光源11~14間の間隔と、出射面120の光軸A120a、A120bの、光源11~14の光軸A11~A14に対する偏心の大きさとを、パラメータとすることで、セグメント間の間隔の大きさを細かく設計することができる。そのため、照明光の輝度ムラの発生が軽減される。 Furthermore, by using the distance between adjacent light sources 11 to 14 and the eccentricity of the optical axes A120a and A120b of the light emitting surface 120 with respect to the optical axes A11 to A14 of the light sources 11 to 14 as parameters, it is possible to The size of the interval can be designed in detail. Therefore, the occurrence of uneven brightness of illumination light is reduced.
 また、投射光の複数のセグメントのうちの隣り合うセグメントを、図3(B)、(C)に示されるように、互いに異なる光軸A120a、A120bの投射領域120a、120bから投射された投射光のセグメントとしているので、隣り合うセグメントへの光の染み出しが配光に与える影響を軽減できる。 In addition, adjacent segments among the plurality of segments of the projected light are projected from projection areas 120a and 120b with mutually different optical axes A120a and A120b, as shown in FIGS. 3(B) and 3(C). Since the segments are set to 1, it is possible to reduce the influence of light seepage into adjacent segments on light distribution.
《2》実施の形態2
 図4は、実施の形態2に係る前照灯装置2の主要な構成を概略的に示す斜視図である。図5は、前照灯装置2の主要な構成を概略的に示す側面図である。上記実施の形態1では、光学部100の入射面110に2つのx軸方向に延在する頂部を持つ凸状部である集光領域110a、110bが設けられており、出射面120に2つの凸状部である投射領域120a、120bが設けられている例を説明した。実施の形態2では、図4及び図5に示されるように、光学部200の入射面210に単一のx軸方向に延在する頂部を持つ凸状部である集光領域210aが設けられており、出射面220に単一の凸状部である投射領域220aが設けられている例を説明する。ただし、投射領域の個数は、1つ以上であれば、2個以上であってもよい。
《2》Embodiment 2
FIG. 4 is a perspective view schematically showing the main structure of the headlamp device 2 according to the second embodiment. FIG. 5 is a side view schematically showing the main configuration of the headlamp device 2. As shown in FIG. In the first embodiment described above, the incident surface 110 of the optical section 100 is provided with two condensing regions 110a and 110b having apex extending in the x-axis direction, and the exit surface 120 is provided with two converging regions 110a and 110b. An example in which projection areas 120a and 120b, which are convex portions, are provided has been described. In the second embodiment, as shown in FIGS. 4 and 5, a condensing region 210a, which is a convex portion having a single apex extending in the x-axis direction, is provided on the entrance surface 210 of the optical section 200. An example will be described in which a projection area 220a, which is a single convex portion, is provided on the output surface 220. However, the number of projection areas may be two or more as long as it is one or more.
 前照灯装置2は、複数の光源21~24を有する光源部20と、入射面210及び出射面220を有する導光投射光学素子(例えば、レンズ)である単一の光学部200とを備えている。複数の光源21~24の発光面からそれぞれ発せられた複数の光は、入射面210から光学部200内に入射する。図5において、Laは、光学部200内を進み、出射面220から出射される光線の一例を示す。光学部200内に入射した複数の光は、出射面220の投射領域220aから複数の投射光L21~L24として投射される。複数の光源21~24を個別に点灯制御することによって、複数の投射光L21~L24によって形成される配光分布が調節される。 The headlamp device 2 includes a light source section 20 having a plurality of light sources 21 to 24, and a single optical section 200 that is a light guiding and projecting optical element (for example, a lens) having an entrance surface 210 and an exit surface 220. ing. A plurality of lights emitted from the light emitting surfaces of the plurality of light sources 21 to 24 enter into the optical section 200 from the entrance surface 210. In FIG. 5, La indicates an example of a light ray that travels within the optical section 200 and is emitted from the output surface 220. The plurality of lights that have entered the optical section 200 are projected from the projection area 220a of the output surface 220 as a plurality of projection lights L21 to L24. By individually controlling the lighting of the plurality of light sources 21 to 24, the light distribution formed by the plurality of projection lights L21 to L24 is adjusted.
 また、出射面220の投射領域220aの光軸A220aは、複数の光源21~24の光軸A21~A24に対して偏心している。 Further, the optical axis A220a of the projection area 220a of the output surface 220 is eccentric with respect to the optical axes A21 to A24 of the plurality of light sources 21 to 24.
 図6(A)は、前照灯装置2の光源部20を示す正面図であり、図6(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。光源21~24の+z軸方向を向く面は、発光面21a~24aである。光源部20は、複数の発光面21a~24aを含む。発光面21a~24aは、例えば、同一平面(すなわち、xy面に平行な平面)上に配置されている。実施の形態2では、発光面21a、22aがx軸方向に配列され、発光面23a、24aがx軸方向に配列されている。また、発光面21a、23aがy軸方向に配列され、発光面22a、24aがy軸方向に配列されている。 FIG. 6(A) is a front view showing the light source section 20 of the headlamp device 2, and FIGS. 6(B) and (C) are diagrams showing an example of the irradiation range divided into four segments. be. The surfaces of the light sources 21 to 24 facing the +z-axis direction are light emitting surfaces 21a to 24a. The light source section 20 includes a plurality of light emitting surfaces 21a to 24a. The light emitting surfaces 21a to 24a are arranged, for example, on the same plane (that is, a plane parallel to the xy plane). In the second embodiment, the light emitting surfaces 21a and 22a are arranged in the x-axis direction, and the light emitting surfaces 23a and 24a are arranged in the x-axis direction. Further, the light emitting surfaces 21a and 23a are arranged in the y-axis direction, and the light emitting surfaces 22a and 24a are arranged in the y-axis direction.
 光学部200は、光源部20の+z軸方向に位置している。光学部200には、光源部20の発光面21a~24aから発せられた複数の光が入射する。光学部200は、前方(+z軸方向)に複数のセグメントからなる投射光L21~L24を投射する。 The optical section 200 is located in the +z-axis direction of the light source section 20. A plurality of lights emitted from the light emitting surfaces 21a to 24a of the light source section 20 enter the optical section 200. The optical section 200 projects projection lights L21 to L24 made up of a plurality of segments forward (in the +z-axis direction).
 光学部200の入射面210は、例えば、光源部20から発せられた光を集光する領域である単一の集光領域210aを有している。つまり、入射面210は、単一の集光領域210aと単一の光軸A210aとを有している。ただし、光学部200の入射面210は、複数の集光領域とそれらの光軸とを有してもよい。集光領域210aの焦点は、例えば、xy平面に平行な面Fであって、光学部200の-z軸方向を向く端面上である。入射面210の集光領域210aの形状は、実施の形態1における集光領域110aのものと同様である。 The entrance surface 210 of the optical section 200 has, for example, a single condensing region 210a that condenses the light emitted from the light source section 20. In other words, the entrance surface 210 has a single condensing region 210a and a single optical axis A210a. However, the entrance surface 210 of the optical section 200 may have a plurality of light condensing regions and their optical axes. The focal point of the condensing region 210a is, for example, a plane F parallel to the xy plane and on the end face of the optical section 200 facing in the -z axis direction. The shape of the condensing region 210a of the incident surface 210 is similar to that of the condensing region 110a in the first embodiment.
 以上に説明したように、実施の形態2によれば、光学部200は、単一の光学素子によって構成されていることから、入射面210に対する出射面220の焦点位置は、固定される。そのため、光学部200の位置のばらつきが配光分布に与える影響は小さい。 As described above, according to the second embodiment, since the optical section 200 is constituted by a single optical element, the focal position of the exit surface 220 with respect to the entrance surface 210 is fixed. Therefore, variations in the position of the optical section 200 have little effect on the light distribution.
 また、隣り合う光源21~24間の間隔と、出射面220の光軸A220aの、光源21~24の光軸A21~A24に対する偏心の大きさとを、パラメータとして変更することで、セグメント間の間隔の大きさを細かく設計することができる。 In addition, by changing the distance between adjacent light sources 21 to 24 and the eccentricity of the optical axis A220a of the light emitting surface 220 with respect to the optical axes A21 to A24 of the light sources 21 to 24 as parameters, the distance between segments can be changed. The size can be designed in detail.
 なお、上記以外に関し、実施の形態2は、実施の形態1と同じである。 Note that the second embodiment is the same as the first embodiment except for the above.
《3》実施の形態3
《3-1》構成
 図7は、実施の形態3に係る前照灯装置3の主要な構成を概略的に示す斜視図である。図8は、前照灯装置3の主要な構成を概略的に示す側面図である。図7及び図8に示されるように、前照灯装置3は、複数の光源31、32を有する光源部30と、入射面310及び出射面320を有する導光投射光学素子(例えば、レンズ)である単一の光学部300と、遮光部材であるシェード340とを備えている。複数の光源31、32の発光面からそれぞれ発せられた複数の光は、シェード340の開口341、342を通して入射面310から光学部300内に入射する。光学部300内に入射した複数の光は、出射面320の投射領域320aから複数の投射光L31、L34として投射される。図8において、Laは、光学部300内を進み、出射面320から出射される光線の一例を示す。複数の光源31、32を個別に点灯制御(例えば、オン・オフ制御又は調光制御)することによって、複数の投射光L31、L32によって形成される配光分布が調節される。
<3> Embodiment 3
<<3-1>> Configuration FIG. 7 is a perspective view schematically showing the main configuration of the headlamp device 3 according to the third embodiment. FIG. 8 is a side view schematically showing the main structure of the headlamp device 3. As shown in FIG. As shown in FIGS. 7 and 8, the headlamp device 3 includes a light source section 30 having a plurality of light sources 31 and 32, and a light guide projection optical element (for example, a lens) having an entrance surface 310 and an exit surface 320. It includes a single optical section 300 and a shade 340 that is a light shielding member. A plurality of lights emitted from the light emitting surfaces of the plurality of light sources 31 and 32 enter into the optical section 300 from the entrance surface 310 through the openings 341 and 342 of the shade 340. The plurality of lights that have entered the optical section 300 are projected from the projection area 320a of the output surface 320 as a plurality of projection lights L31 and L34. In FIG. 8, La indicates an example of a light ray that travels within the optical section 300 and is emitted from the output surface 320. By individually controlling the lighting of the plurality of light sources 31 and 32 (for example, on/off control or dimming control), the light distribution formed by the plurality of projection lights L31 and L32 is adjusted.
 光学部300の出射面320は、複数の投射光L11~L14がそれぞれ通過する投射領域320aを有している。出射面320の投射領域320aの光軸A320aは、複数の光源31、32の光軸A31、A34に対して偏心していてもよい。なお、前照灯装置3の構成は、図7及び図8に示されるものに限定されない。ここで、光軸A320aが光軸A31、A32に対して偏心しているとは、光軸A320aと光軸A31、A32とが互いに重ならない状態(すなわち、x方向及びy方向の少なくとも一方の方向にずれている状態)、光軸A320aの向きと光軸A31、A32の向きとが異なる状態(すなわち、傾斜している状態)、又はこれらの両方の状態をいう。 The output surface 320 of the optical section 300 has a projection area 320a through which each of the plurality of projection lights L11 to L14 passes. The optical axis A320a of the projection area 320a of the output surface 320 may be eccentric with respect to the optical axes A31 and A34 of the plurality of light sources 31 and 32. Note that the configuration of the headlamp device 3 is not limited to that shown in FIGS. 7 and 8. Here, the optical axis A320a being eccentric with respect to the optical axes A31 and A32 means a state in which the optical axis A320a and the optical axes A31 and A32 do not overlap each other (that is, in at least one of the x direction and the y direction). A state in which the optical axis A320a and the directions of the optical axes A31 and A32 are different from each other (that is, a state in which they are tilted), or both of these states.
〈光源部30〉
 図7に示されるように、実施の形態3では、光源部30は、複数の光源31、32としての複数の発光素子を含んでいる。発光素子は、実施の形態1で説明したものと同じである。
<Light source section 30>
As shown in FIG. 7, in the third embodiment, the light source section 30 includes a plurality of light emitting elements as a plurality of light sources 31 and 32. The light emitting element is the same as that described in Embodiment 1.
 図9(A)は、前照灯装置3の光源部30を示す正面図であり、図9(B)及び(C)は、2つのセグメントに分割されている照射範囲の例を示す図である。光源31、32の+z軸方向を向く面は、発光面31a、32aである。光源部30は、複数(すなわち、N個)の発光面31a、32aを含む。発光面31a、32aは、同一平面(すなわち、xy面に平行な平面)上に配置されていてもよい。実施の形態3では、Nは2であるが、Nは2に限定されない。なお、Nは2以上の整数である。また、実施の形態3では、発光面31a、32aがx軸方向に配列されている。発光面31a、32aの各々の形状は、実施の形態1で説明したものと同じである。 FIG. 9(A) is a front view showing the light source section 30 of the headlamp device 3, and FIGS. 9(B) and (C) are diagrams showing an example of the irradiation range divided into two segments. be. The surfaces of the light sources 31 and 32 facing the +z-axis direction are light emitting surfaces 31a and 32a. The light source section 30 includes a plurality (that is, N) of light emitting surfaces 31a and 32a. The light emitting surfaces 31a and 32a may be arranged on the same plane (that is, a plane parallel to the xy plane). In the third embodiment, N is 2, but N is not limited to 2. Note that N is an integer of 2 or more. Further, in the third embodiment, the light emitting surfaces 31a and 32a are arranged in the x-axis direction. The shapes of the light emitting surfaces 31a and 32a are the same as those described in the first embodiment.
〈シェード340〉
 前照灯装置3では、図7及び図8に示されるように光源部30の+z軸方向にシェード340が設置されている。シェード340は、各光源31、32の発光面31a、32aに向かい合う開口341、342を有し、発光面31a、32aから発せられる光のx方向の端部を遮光することで、配光に寄与する光束を制限している。つまり、シェード340は、複数の光源31、32の発光面31a、32aからそれぞれ発せられた複数の光の光束径の大きさを制限する構造である。また、各光源31、32の発光面31a、32aから発せられる光のx方向の端部とy方向の端部の両方を遮光することで、配光に寄与する光束を制限してもよい。
<Shade 340>
In the headlamp device 3, a shade 340 is installed in the +z-axis direction of the light source section 30, as shown in FIGS. 7 and 8. The shade 340 has openings 341 and 342 facing the light emitting surfaces 31a and 32a of the light sources 31 and 32, and contributes to light distribution by blocking the ends of the light emitted from the light emitting surfaces 31a and 32a in the x direction. This limits the luminous flux. In other words, the shade 340 has a structure that limits the size of the luminous flux diameter of the plurality of lights emitted from the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32, respectively. Furthermore, the light flux contributing to the light distribution may be limited by blocking both the x-direction end and the y-direction end of the light emitted from the light emitting surfaces 31a, 32a of each light source 31, 32.
 シェード340の開口341、342の形状は、例えば、矩形である。シェード340の開口341、342の形状は、矩形に限定されない。例えば、開口341、342の形状は、後述の図13(A)に示される開口のように、他の形状であってもよい。シェード340は、例えば、ステンレスなどの金属によって作製されている。複数の光の内の複数の開口341、342のいずれかを通過して入射面310に当たる入射光の入射領域の面積は、複数の光源31、32のうちの、入射光に対応する光源31又は32の発光面31a又は32aの面積より小さい。 The shape of the openings 341 and 342 of the shade 340 is, for example, rectangular. The shape of the openings 341 and 342 of the shade 340 is not limited to a rectangle. For example, the shapes of the openings 341 and 342 may be other shapes, such as the openings shown in FIG. 13(A), which will be described later. The shade 340 is made of metal such as stainless steel, for example. The area of the incident area of the incident light that passes through any one of the plurality of apertures 341 and 342 among the plurality of light sources and hits the entrance surface 310 is determined by the area of the light source 31 corresponding to the incident light among the plurality of light sources 31 and 32. It is smaller than the area of the light emitting surface 31a or 32a of 32.
〈光学部300〉
 光学部300は、光源部30の+z軸方向に位置している。光学部300は、単一の光学部品で構成された導光投射光学素子である。光学部300は、単一のレンズで構成されている。光学部300には、光源部30の発光面31a、32aから発せられた複数の光が入射する。光学部300は、前方(+z軸方向)に複数のセグメントからなる投射光を投射する。複数の光源31、32の発光面31a、32aから発せられた複数の光は、光学部300の複数の光学面のうちの2つの光学面を通過して、複数の投射光L31、L32として投射される。
<Optical section 300>
The optical section 300 is located in the +z-axis direction of the light source section 30. The optical section 300 is a light guide projection optical element composed of a single optical component. Optical section 300 is composed of a single lens. A plurality of lights emitted from the light emitting surfaces 31 a and 32 a of the light source section 30 enter the optical section 300 . The optical section 300 projects projection light consisting of a plurality of segments forward (in the +z-axis direction). The plurality of lights emitted from the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32 pass through two optical surfaces among the plurality of optical surfaces of the optical section 300, and are projected as a plurality of projection lights L31 and L32. be done.
 光学部300の入射面310は、例えば、光源部30から発せられた光を集光する領域である少なくとも1つの集光領域を有している。つまり、入射面310は、集光領域310aと光軸A310aを有している。集光領域310aの焦点は、例えば、xy平面に平行な面Fであって、光学部300の-z軸方向を向く端面上にある。なお、入射面310は、集光領域を備えないことも可能である。 The entrance surface 310 of the optical section 300 has, for example, at least one condensing region that condenses the light emitted from the light source section 30. That is, the incident surface 310 has a light condensing region 310a and an optical axis A310a. The focal point of the condensing region 310a is, for example, a plane F parallel to the xy plane and on the end face of the optical section 300 facing in the -z axis direction. Note that the incident surface 310 may not include a light condensing region.
 光学部300は、例えば、同じ材料によって一体に形成されている。光学部300は、例えば、透明な樹脂などによって作製される。光学部300は、例えば、内部が屈折材で満たされ、入射面310から入射した光を導光し、出射面320から投射する導光投射光学素子である。光利用効率を高くするために、1本の光線が通過する光学部300の光学面の数は少ないことが望ましい。実施の形態3では、1本の光線が通過する光学部300の光学面は、入射面310と出射面320の2つの面である。 The optical section 300 is, for example, integrally formed of the same material. The optical section 300 is made of, for example, transparent resin. The optical section 300 is, for example, a light guide/projection optical element whose interior is filled with a refractive material and which guides light incident from an entrance surface 310 and projects it from an output surface 320 . In order to increase light utilization efficiency, it is desirable that the number of optical surfaces of the optical section 300 through which one light beam passes is small. In the third embodiment, the optical surfaces of the optical section 300 through which one light ray passes are two surfaces: an entrance surface 310 and an exit surface 320.
 入射面310は、光学部300の-z軸方向の端部に設けられている。入射面310は、光源部30の+y軸方向に、光源部30から間隔を開けて配置されている。 The entrance surface 310 is provided at the end of the optical section 300 in the -z axis direction. The incident surface 310 is arranged at a distance from the light source section 30 in the +y-axis direction of the light source section 30 .
 入射面310は、例えば、正のパワーを持つ。入射面310の形状は、製造が容易になるように、x軸方向の位置に依存しない形状であってもよい。入射面310のx軸方向についてのサグ量を表す式は、y軸方向についてのサグ量を表す式と異なっていてもよい。また、入射面310のサグ量を表す式は、集光領域310aの頂部のy座標を0とした場合、y≧0の領域とy<0の領域とで異なっていてもよい。また、入射面310(例えば、集光領域310a)は、自由曲面であってもよい。 The entrance surface 310 has, for example, positive power. The shape of the entrance surface 310 may be independent of the position in the x-axis direction to facilitate manufacturing. The expression representing the amount of sag in the x-axis direction of the incident surface 310 may be different from the expression representing the amount of sag in the y-axis direction. Furthermore, the formula expressing the amount of sag on the incident surface 310 may be different between a region where y≧0 and a region where y<0, assuming that the y-coordinate of the top of the condensing region 310a is 0. Furthermore, the incident surface 310 (for example, the light condensing region 310a) may be a free-form surface.
 入射面310の集光領域310aの光軸A320aは、光源31、32の光軸A31、A32に対して偏心していてもよい。また、入射面310は、不連続であってもよい。つまり、入射面310は、段差などの不連続部分を有してもよい。 The optical axis A320a of the condensing region 310a of the incident surface 310 may be eccentric with respect to the optical axes A31 and A32 of the light sources 31 and 32. Furthermore, the entrance surface 310 may be discontinuous. That is, the entrance surface 310 may have a discontinuous portion such as a step.
 入射面310を通過した光(例えば、集光領域310aによって集光された光)は、出射面320の投射領域320aにより、前照灯装置3を備えた車両の前方(+z軸方向)の領域に投射される。出射面320は、投射機能を持つ領域である少なくとも1つの投射領域を有している。つまり、出射面320は、投射領域320aとその光軸A320aとを有している。複数の光源31、32の発光面31a、32aから発せられた複数の光は、光学部300を介して、投射光L31、L32として、それぞれ個別の照射領域に投射される。 The light that has passed through the entrance surface 310 (for example, the light that has been collected by the condensing region 310a) is projected by the projection region 320a of the exit surface 320 into an area in front of the vehicle equipped with the headlamp device 3 (in the +z-axis direction). is projected on. The exit surface 320 has at least one projection area that has a projection function. That is, the output surface 320 has a projection area 320a and its optical axis A320a. The plurality of lights emitted from the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32 are projected onto individual irradiation areas as projection lights L31 and L32 via the optical section 300, respectively.
 また、光学部300は、入射面310の集光領域310aによって集光された像が出射面320の投射領域320aによってそれぞれ投射されるように、出射面320の投射領域320aにおける焦点は、光学部300の内部に設けられていてもよい。出射面320の投射領域320aは、球面であってもよい。出射面320の投射領域320aは、非球面であってもよい。出射面320のx軸方向についてのサグ量を表す式は、y軸方向についてのサグ量を表す式と異なっていてもよい。また、出射面320のサグ量を表す式は、投射領域320aの頂部のy座標を0とした場合、y≧0の領域とy<0の領域とで異なっていてもよい。また、出射面320(例えば、投射領域320a)は、自由曲面であってもよい。 Further, in the optical section 300, the focal point in the projection area 320a of the output surface 320 is set in the optical section so that the image condensed by the condensing area 310a of the input surface 310 is respectively projected by the projection area 320a of the output surface 320. 300 may be provided. The projection area 320a of the output surface 320 may be a spherical surface. The projection area 320a of the output surface 320 may be an aspherical surface. The expression representing the amount of sag in the x-axis direction of the output surface 320 may be different from the expression representing the amount of sag in the y-axis direction. Further, the formula expressing the sag amount of the output surface 320 may be different between a region where y≧0 and a region where y<0, assuming that the y coordinate of the top of the projection region 320a is 0. Furthermore, the output surface 320 (for example, the projection area 320a) may be a free-form surface.
 出射面320の投射領域320aの光軸A320aは、光源31、32の光軸A31、A32に対してx軸方向又はy軸方向の少なくとも一方について偏心している。 The optical axis A320a of the projection area 320a of the output surface 320 is eccentric with respect to the optical axes A31 and A32 of the light sources 31 and 32 in at least one of the x-axis direction and the y-axis direction.
 また、出射面320は、不連続な部分を有してもよい。つまり、出射面320は、段差などの不連続部分を有してもよい。 Furthermore, the output surface 320 may have discontinuous portions. That is, the output surface 320 may have a discontinuous portion such as a step.
 出射面320が集光機能を有する複数の投射領域320aを持つ場合、各投射領域320aの形状は、全て同一である。ただし、投射領域320aの形状は、互いに異なっていてもよい。 When the output surface 320 has a plurality of projection areas 320a having a light condensing function, the shapes of each projection area 320a are all the same. However, the shapes of the projection areas 320a may be different from each other.
 なお、光源の発光面から発せられた1本の光線が通過する光学部300の光学面は、3つ以上であってもよい。 Note that the number of optical surfaces of the optical section 300 through which one ray emitted from the light emitting surface of the light source passes may be three or more.
《3-2》配光
 図9(B)及び(C)には、2つのセグメントに分割されている照射範囲の例、つまり、前照灯装置3の配光パターンの例が示されている。複数の光源31、32の発光面31a、32aの各々から発せられた光は、光学部300を通過して前照灯装置3の前方において、互いに異なる投射光L31、L32(すなわち、複数のセグメント)となって、異なる照射範囲を照明する。配光は、例えば、発光面31a、32aの数と等しい数のセグメントを持つ。
<<3-2>> Light distribution FIGS. 9(B) and (C) show an example of the irradiation range divided into two segments, that is, an example of the light distribution pattern of the headlamp device 3. . The light emitted from each of the light emitting surfaces 31a and 32a of the plurality of light sources 31 and 32 passes through the optical section 300 and is projected into different projection lights L31 and L32 (i.e., a plurality of segments) in front of the headlamp device 3. ) to illuminate different irradiation ranges. The light distribution has, for example, the same number of segments as the number of light emitting surfaces 31a and 32a.
 投射光L31、L32の複数のセグメントの間隔は、出射面320の投射領域320aの光軸A320aにおける、光源31、32の光軸A31、A32に対する偏心の大きさと、光源31、32の間隔の大きさと、によって決定される。 The interval between the plurality of segments of the projected light L31, L32 is determined by the eccentricity of the light sources 31, 32 with respect to the optical axis A31, A32 in the optical axis A320a of the projection area 320a of the output surface 320, and the interval between the light sources 31, 32. determined by.
 図9(C)に示されるように、投射光の隣り合うセグメントの端部が一部重なりを持つように接することが望ましい。出射面320の投射領域320aの光軸A320aは、配光においてセグメントの境界が接するように(部分的に重なる場合を含む)ように偏心している。セグメントの境界とは、セグメントの端部において、光度が625cdとなる境界線を表す。接するとは、隣り合うセグメントの両方の境界線が接すること、又は両方の境界線が隣のセグメント上に位置することを表す。 As shown in FIG. 9(C), it is desirable that the ends of adjacent segments of the projected light touch so that they partially overlap. The optical axis A320a of the projection area 320a of the output surface 320 is eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap). The boundary of the segment represents the boundary line where the luminous intensity is 625 cd at the end of the segment. Touching means that both boundary lines of adjacent segments touch, or that both boundary lines are located on adjacent segments.
 光源31、32から発せられた光は、一部が遮光され、配光に寄与する光束が制限されている。 Part of the light emitted from the light sources 31 and 32 is blocked, and the luminous flux contributing to light distribution is limited.
《3-3》効果
 以上に説明したように、実施の形態3によれば、光学部300は、単一の光学素子によって構成されていることから、入射面310に対する出射面320の焦点位置は、固定される。そのため、光学部300の位置のばらつきが配光分布に与える影響は小さい。
<<3-3>> Effects As explained above, according to the third embodiment, since the optical section 300 is constituted by a single optical element, the focal position of the exit surface 320 with respect to the entrance surface 310 is , fixed. Therefore, variations in the position of the optical section 300 have little effect on the light distribution.
 また、隣り合う光源31、32間の間隔と、シェード340の開口341、342の位置と、出射面320の光軸A320aの、光源31、32の光軸A31、A32に対する偏心の大きさとを、パラメータとすることで、セグメント間の間隔の大きさを細かく設計することができる。 In addition, the distance between adjacent light sources 31 and 32, the position of openings 341 and 342 of shade 340, and the eccentricity of optical axis A320a of output surface 320 with respect to optical axes A31 and A32 of light sources 31 and 32, By using it as a parameter, the size of the interval between segments can be designed in detail.
 また、シェード340によって配光に寄与する光束を制限しているので、配光において、光源31、32の配置のばらつきに起因して投射光L31、L32に現れる影響の程度を小さくすることができる。 Furthermore, since the light flux contributing to the light distribution is restricted by the shade 340, it is possible to reduce the degree of influence that appears on the projected lights L31 and L32 due to variations in the arrangement of the light sources 31 and 32 in the light distribution. .
 また、シェード340を用いて各投射光L31、L32の幅を小さくすることで、光学部300の入射面310についてのx軸方向のサグ量を表す式において、x軸方向における曲率を小さくすることができる。また、それにより、光学部300の形状は、簡易化できる。なお、シェード340により各投射光L31、L32の幅を絞る方向は、x軸方向に限定されず、y軸方向又はx軸とy軸の両方向であってもよい。 Furthermore, by reducing the width of each of the projected lights L31 and L32 using the shade 340, the curvature in the x-axis direction can be reduced in the equation expressing the amount of sag in the x-axis direction for the entrance surface 310 of the optical section 300. Can be done. Moreover, thereby, the shape of the optical section 300 can be simplified. Note that the direction in which the width of each of the projected lights L31 and L32 is narrowed by the shade 340 is not limited to the x-axis direction, but may be the y-axis direction or both the x-axis and y-axis directions.
 なお、上記以外に関し、実施の形態3は、実施の形態1又は2と同じである。 Note that, except for the above, the third embodiment is the same as the first or second embodiment.
《4》実施の形態4
《4-1》構成
〈構成全体の説明〉
 図10は、実施の形態4に係る前照灯装置4の主要な構成を概略的に示す斜視図である。図11は、前照灯装置4の主要な構成を概略的に示す側面図である。図10及び図11に示されるように、前照灯装置4は、複数の光源41~44を有する光源部40と、遮光部材としてのシェード440と、入射面410及び出射面420を有する導光投射光学素子(例えば、レンズ)である単一の光学部400とを備えている。複数の光源41~44の発光面からそれぞれ発せられた複数の光は、シェード440の開口441~444をそれぞれ通過して入射面410に向かって進み、入射面410から光学部400内に入射する。光学部400内に入射した複数の光は、出射面420の投射領域420a、420bから複数の投射光L41~L44として投射される。図11において、Laは、光学部400内を進み、出射面420から出射される光線の一例を示す。複数の光源41~44を個別に点灯制御(例えば、オン・オフ制御又は調光制御)することによって、複数の投射光L41~L44によって形成される配光分布が調節される。
<4> Embodiment 4
《4-1》Configuration〈Explanation of the entire configuration〉
FIG. 10 is a perspective view schematically showing the main structure of the headlamp device 4 according to the fourth embodiment. FIG. 11 is a side view schematically showing the main configuration of the headlamp device 4. As shown in FIG. As shown in FIGS. 10 and 11, the headlamp device 4 includes a light source section 40 having a plurality of light sources 41 to 44, a shade 440 as a light shielding member, and a light guide having an entrance surface 410 and an exit surface 420. A single optical section 400 that is a projection optical element (for example, a lens) is provided. The plurality of lights emitted from the light emitting surfaces of the plurality of light sources 41 to 44 respectively pass through the openings 441 to 444 of the shade 440, proceed toward the entrance surface 410, and enter the optical section 400 from the entrance surface 410. . The plurality of lights that have entered the optical section 400 are projected from the projection areas 420a and 420b of the output surface 420 as a plurality of projection lights L41 to L44. In FIG. 11, La indicates an example of a light ray that travels through the optical section 400 and is emitted from the output surface 420. By individually controlling the lighting of the plurality of light sources 41 to 44 (eg, on/off control or dimming control), the light distribution formed by the plurality of projection lights L41 to L44 is adjusted.
 光学部400の出射面420は、複数の投射光L41~L44がそれぞれ通過する1つ以上の投射領域(ここでは、2つの投射領域420a、420b)を有している。出射面420の投射領域420a、420bの光軸A420a、A420bは、複数の光源41~44の光軸A41~A44に対して偏心していてもよい。なお、前照灯装置4の構成は、図10及び図11に示されるものに限定されない。本開示で、光軸A420a、A420bが光軸A41~A44に対して偏心しているとは、光軸A420a、A420bと光軸A41~A44とが互いに重ならない状態(すなわち、x方向及びy方向の少なくとも一方の方向にずれている状態)、光軸A420a、A420bの向きと光軸A41~A44の向きとが異なる状態(すなわち、傾斜している状態)、又はこれらの両方の状態をいう。 The output surface 420 of the optical section 400 has one or more projection areas (here, two projection areas 420a and 420b) through which the plurality of projection lights L41 to L44 respectively pass. The optical axes A420a and A420b of the projection areas 420a and 420b of the output surface 420 may be eccentric with respect to the optical axes A41 to A44 of the plurality of light sources 41 to 44. Note that the configuration of the headlamp device 4 is not limited to that shown in FIGS. 10 and 11. In the present disclosure, the optical axes A420a, A420b being eccentric with respect to the optical axes A41 to A44 means a state in which the optical axes A420a, A420b and the optical axes A41 to A44 do not overlap with each other (that is, in the x direction and the y direction). a state in which the optical axes A420a and A420b are deviated from each other in at least one direction), a state in which the directions of the optical axes A420a and A420b are different from the directions of the optical axes A41 to A44 (that is, a state in which they are tilted), or both of these states.
〈光源部40〉
 図10に示されるように、実施の形態4では、光源部40は、複数の光源41~44としての複数の発光素子を含んでいる。
<Light source section 40>
As shown in FIG. 10, in the fourth embodiment, the light source section 40 includes a plurality of light emitting elements as a plurality of light sources 41 to 44.
 図12(A)は、前照灯装置4の光源部40を示す正面図であり、図12(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。光源41~44の+z軸方向を向く面は、発光面41a~44aである。光源部40は、複数(すなわち、N個)の発光面41a~44aを含む。発光面41a~44aは、同一平面(すなわち、xy面に平行な平面)上に配置されていてもよい。実施の形態4では、Nは4であるが、Nは4に限定されない。なお、Nは2以上の整数である。また、実施の形態4では、発光面41a、42aがx軸方向に直線状に配列され、発光面43a、44aがx軸方向に直線状に配列されている。また、実施の形態4では、発光面41a、43aがy軸方向に配列され、発光面42a、44aがy軸方向に配列されている。 FIG. 12(A) is a front view showing the light source section 40 of the headlamp device 4, and FIGS. 12(B) and (C) are diagrams showing an example of the irradiation range divided into four segments. be. The surfaces of the light sources 41 to 44 facing the +z-axis direction are light emitting surfaces 41a to 44a. The light source section 40 includes a plurality (that is, N) of light emitting surfaces 41a to 44a. The light emitting surfaces 41a to 44a may be arranged on the same plane (ie, a plane parallel to the xy plane). In the fourth embodiment, N is 4, but N is not limited to 4. Note that N is an integer of 2 or more. Furthermore, in the fourth embodiment, the light emitting surfaces 41a and 42a are arranged linearly in the x-axis direction, and the light emitting surfaces 43a and 44a are arranged linearly in the x-axis direction. Furthermore, in the fourth embodiment, the light emitting surfaces 41a and 43a are arranged in the y-axis direction, and the light emitting surfaces 42a and 44a are arranged in the y-axis direction.
 発光面41a~44aの各々は、例えば、正方形などの矩形状である。ただし、発光面41a~44aの各々は、矩形状に限定されない。発光面41a~44aの各々は、円形状などの他の形状であってもよい。 Each of the light emitting surfaces 41a to 44a has a rectangular shape such as a square, for example. However, each of the light emitting surfaces 41a to 44a is not limited to a rectangular shape. Each of the light emitting surfaces 41a to 44a may have another shape such as a circular shape.
〈シェード440〉
 前照灯装置4では、図10及び図11に示されるように光源部30の+z軸方向にシェード440が設置されている。シェード440は、各光源41~44の発光面41a~44aに向かい合う開口441~444を有し、発光面41a~44aから発せられる光のx方向の端部を遮光することで、配光に寄与する光束を制限している。つまり、シェード440は、複数の光源41~44の発光面41a~44aからそれぞれ発せられた複数の光の光束径の大きさを制限する構造である。また、シェード440は、各光源41~44の発光面41a~44aから発せられる光のx方向の端部とy方向の端部の両方を遮光することで、配光に寄与する光束を制限してもよい。シェード440の開口441~444の形状は、例えば、矩形である。シェード440の開口441~444の形状は、矩形に限定されない。
<Shade 440>
In the headlamp device 4, a shade 440 is installed in the +z-axis direction of the light source section 30, as shown in FIGS. 10 and 11. The shade 440 has openings 441 to 444 facing the light emitting surfaces 41a to 44a of the light sources 41 to 44, and contributes to light distribution by blocking the ends of the light emitted from the light emitting surfaces 41a to 44a in the x direction. This limits the luminous flux. In other words, the shade 440 has a structure that limits the size of the beam diameter of the plurality of lights emitted from the light emitting surfaces 41a to 44a of the plurality of light sources 41 to 44, respectively. Furthermore, the shade 440 limits the luminous flux that contributes to light distribution by blocking both the ends in the x direction and the ends in the y direction of the light emitted from the light emitting surfaces 41a to 44a of the light sources 41 to 44. It's okay. The shapes of the openings 441 to 444 of the shade 440 are, for example, rectangular. The shapes of the openings 441 to 444 of the shade 440 are not limited to rectangular shapes.
〈光学部400〉
 光学部400は、光源部40の+z軸方向に位置している。光学部400は、単一の光学部品で構成された導光投射光学素子である。光学部400は、単一のレンズで構成されている。光学部400には、光源部40の発光面41a~44aから発せられた複数の光が入射する。光学部400は、前方(+z軸方向)に、複数のセグメントからなる投射光L41~L44を投射する。
<Optical section 400>
The optical section 400 is located in the +z-axis direction of the light source section 40. The optical section 400 is a light guide projection optical element composed of a single optical component. Optical section 400 is composed of a single lens. A plurality of lights emitted from the light emitting surfaces 41a to 44a of the light source section 40 enter the optical section 400. The optical section 400 projects projection lights L41 to L44 made up of a plurality of segments forward (in the +z-axis direction).
 光学部400の入射面410は、例えば、光源部40から発せられた光を集光する領域である少なくとも1つの集光領域を有している。例えば、入射面410は、複数の集光領域410a、410bと複数の光軸A410a、A410bを有している。ただし、光学部100の入射面110は、単一の集光領域とその光軸とを有してもよい。図10及び図11では、入射面110は、2つの集光領域410a、410bを有している。集光領域410a、410bの焦点は、例えば、xy平面に平行な面Fであって、光学部400の-z軸方向を向く端面上にある。なお、入射面410は、集光領域を備えないことも可能である。 The entrance surface 410 of the optical section 400 has, for example, at least one condensing region that condenses the light emitted from the light source section 40. For example, the entrance surface 410 has a plurality of light condensing regions 410a, 410b and a plurality of optical axes A410a, A410b. However, the entrance surface 110 of the optical section 100 may have a single light condensing region and its optical axis. In FIGS. 10 and 11, the entrance surface 110 has two light condensing regions 410a and 410b. The focal point of the light condensing regions 410a and 410b is, for example, a plane F parallel to the xy plane and located on the end face of the optical section 400 facing in the -z axis direction. Note that the incident surface 410 may not include a light condensing region.
 光学部400は、例えば、同じ材料によって一体に形成されている。光学部400は、例えば、透明な樹脂などによって作製される。光学部400は、例えば、内部が屈折材で満たされ、入射面410から入射した光を導光し、出射面420から投射する導光投射光学素子である。光利用効率を高くするために、1本の光線が通過する光学部400の光学面の数は少ないことが望ましい。実施の形態1では、1本の光線が通過する光学部400の光学面は、入射面410と出射面420の2つの面である。 The optical section 400 is, for example, integrally formed of the same material. The optical section 400 is made of, for example, transparent resin. The optical section 400 is, for example, a light guide/projection optical element whose interior is filled with a refractive material and which guides light incident from an entrance surface 410 and projects it from an output surface 420 . In order to increase the light utilization efficiency, it is desirable that the number of optical surfaces of the optical section 400 through which one light beam passes is small. In the first embodiment, there are two optical surfaces of the optical section 400 through which one light ray passes, an entrance surface 410 and an exit surface 420.
 入射面410は、光学部400の-z軸方向の端部に設けられている。入射面410は、光源部40の+y軸方向であってシェード440の+y軸方向に、シェード440から間隔を開けて配置されている。 The entrance surface 410 is provided at the end of the optical section 400 in the -z axis direction. The incident surface 410 is arranged in the +y-axis direction of the light source section 40 and in the +y-axis direction of the shade 440 with a space therebetween.
 入射面410は、例えば、正のパワーを持つ。入射面410の形状は、実施の形態1における入射面110の形状と同じである。 The entrance surface 410 has, for example, positive power. The shape of the entrance surface 410 is the same as the shape of the entrance surface 110 in the first embodiment.
 入射面410を通過した光(例えば、集光領域410a、410bによって集光された光)は、出射面420の投射領域420a、420bにより、前照灯装置4を備えた車両の前方(+z軸方向)の領域に投射される。出射面420は、投射機能を持つ領域である少なくとも1つの投射領域を有している。つまり、出射面420は、複数の投射領域420a、420bとそれらの複数の光軸A420a、A420bを有している。例えば、出射面420は、複数の投射領域420a、420bと複数の光軸A420a、A420bを有している。ただし、光学部400の出射面420は、単一の投射領域とその光軸とを有してもよい。 The light that has passed through the incident surface 410 (for example, the light that has been condensed by the condensing regions 410a and 410b) is directed toward the front of the vehicle equipped with the headlamp device 4 (+z axis direction). The exit surface 420 has at least one projection area that has a projection function. That is, the output surface 420 has a plurality of projection areas 420a, 420b and a plurality of optical axes A420a, A420b. For example, the output surface 420 has a plurality of projection areas 420a, 420b and a plurality of optical axes A420a, A420b. However, the output surface 420 of the optical section 400 may have a single projection area and its optical axis.
 出射面420は、例えば、正のパワーを持つ。出射面420の形状は、実施の形態1における出射面120の形状と同じである。 The output surface 420 has, for example, positive power. The shape of the output surface 420 is the same as the shape of the output surface 120 in the first embodiment.
《4-2》配光
 図12(B)及び(C)には、4つのセグメントに分割されている照射範囲の例、つまり、前照灯装置4の配光パターンの例が示されている。複数の光源41~44の発光面11a~14aの各々から発せられた光は、シェード440の開口441~444をそれぞれ通過し、光学部400を通過して前照灯装置4の前方において、互いに異なる投射光L41~L44(すなわち、複数のセグメント)となって、異なる照射範囲を照明する。配光は、例えば、発光面41a~44aの数と等しい数のセグメントを持つ。
<<4-2>> Light distribution FIGS. 12(B) and (C) show an example of the irradiation range divided into four segments, that is, an example of the light distribution pattern of the headlamp device 4. . The light emitted from each of the light emitting surfaces 11a to 14a of the plurality of light sources 41 to 44 passes through the openings 441 to 444 of the shade 440, passes through the optical section 400, and is directed to the front of the headlamp device 4. Different projection lights L41 to L44 (ie, a plurality of segments) illuminate different irradiation ranges. The light distribution has, for example, the same number of segments as the number of light emitting surfaces 41a to 44a.
 配光の形成において、光学部400の出射面420は複数の光軸を持っていることが望ましい。隣り合うセグメントの投射光は、出射面420において互いに異なる光軸A420a、A420bを持つ投射領域420a、420bから出射されたものであることが望ましい。 In forming the light distribution, it is desirable that the output surface 420 of the optical section 400 has a plurality of optical axes. It is desirable that the projection lights of adjacent segments are emitted from projection areas 420a and 420b having mutually different optical axes A420a and A420b on the output surface 420.
 互いに異なる出射面420、すなわち、投射領域420a、420bから出た光を隣合わせることで、図12(B)に示されるように、発光面41a、42aに対応するセグメントと同じx軸方向の列上に、発光面43a、44aに対応するセグメントを配置することができる。 By arranging the light emitted from different emission surfaces 420, that is, the projection areas 420a and 420b next to each other, as shown in FIG. On top, segments corresponding to the light emitting surfaces 43a, 44a can be arranged.
 投射光の複数のセグメントの間隔は、出射面420の投射領域420a、420bの光軸A420a、A420bの、光源41~44の光軸A41~A44に対する偏心の大きさと、光源41~44の間隔の大きさと、によって決定される。 The intervals between the plurality of segments of the projected light are determined by the eccentricity of the optical axes A420a and A420b of the projection areas 420a and 420b of the output surface 420 with respect to the optical axes A41 to A44 of the light sources 41 to 44, and the distance between the light sources 41 to 44. Determined by size.
 図12(C)に示されるように、投射光の隣り合うセグメントの端部が一部重なりを持つように接することが望ましい。出射面420の投射領域420a、420bの光軸A420a、A420bは、配光においてセグメントの境界が接するように(部分的に重なる場合を含む)ように偏心している。 As shown in FIG. 12(C), it is desirable that the ends of adjacent segments of the projected light touch so that they partially overlap. The optical axes A420a and A420b of the projection areas 420a and 420b of the output surface 420 are eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap).
 出射面420において同じ光軸を含む投射領域から出射されるセグメント同士の間隔は、全て同一であるが、セグメント同士の間隔は同一でなくてもよい。 The intervals between the segments emitted from the projection area including the same optical axis on the output surface 420 are all the same, but the intervals between the segments do not have to be the same.
 配光の各セグメントについて、x軸方向(車両の水平方向)とy軸方向(車両の垂直方向)の少なくとも一方における幅は、互いに等しい。つまり、光源41~44を全て同様の形状とした条件下で、光学部400の出射面420が複数の光軸を持つ場合、各光軸に対応する投射領域420a、420bにおける焦点距離は、全て等しい。ただし、配光の各セグメントの、水平方向と垂直方向の少なくとも一方における幅は、等しくない幅のものを含んでもよい。各セグメントに対応する発光面41a~44aの面積は、互いに異なっていてもよい。また、出射面420が複数の光軸を持つ場合、各光軸に対応する投射領域における焦点距離は、異なっていてもよい。 For each segment of the light distribution, the width in at least one of the x-axis direction (horizontal direction of the vehicle) and the y-axis direction (vertical direction of the vehicle) is equal to each other. In other words, when the light sources 41 to 44 are all of the same shape and the output surface 420 of the optical section 400 has a plurality of optical axes, the focal lengths in the projection areas 420a and 420b corresponding to each optical axis are all equal. However, each segment of the light distribution may have unequal widths in at least one of the horizontal and vertical directions. The areas of the light emitting surfaces 41a to 44a corresponding to each segment may be different from each other. Moreover, when the output surface 420 has a plurality of optical axes, the focal lengths in the projection areas corresponding to each optical axis may be different.
《4-3》効果
 以上に説明したように、実施の形態4によれば、光学部400は、単一の光学素子によって構成されていることから、入射面410に対する出射面420の焦点位置は、固定される。そのため、光学部400の位置のばらつきが配光分布に与える影響は小さい。
<<4-3>> Effects As explained above, according to the fourth embodiment, since the optical section 400 is constituted by a single optical element, the focal position of the exit surface 420 with respect to the entrance surface 410 is , fixed. Therefore, variations in the position of the optical section 400 have little effect on the light distribution.
 また、隣り合う光源41~44間の間隔と、シェード440の開口441~444の位置と、出射面420の光軸A420a、A420bの、光源41~44の光軸A41~A44に対する偏心の大きさとを、パラメータとすることで、セグメント間の間隔の大きさを細かく設計することができる。 Also, the distance between adjacent light sources 41 to 44, the positions of openings 441 to 444 of shade 440, and the eccentricity of optical axes A420a and A420b of output surface 420 with respect to optical axes A41 to A44 of light sources 41 to 44, By using as a parameter, the size of the interval between segments can be designed in detail.
 また、シェード440によって配光に寄与する光束を制限することによって、配光において、光源41~44の配置のばらつきに起因して投射光L41~L44に現れる影響の程度を小さくすることができる。 Furthermore, by limiting the light flux contributing to the light distribution by the shade 440, it is possible to reduce the degree of influence that appears on the projected lights L41 to L44 due to variations in the arrangement of the light sources 41 to 44 in the light distribution.
 また、シェード440を用いて各投射光L41~L44の幅を小さくすることで、光学部400の入射面410についてのx軸方向のサグ量を表す式において、x軸方向における曲率を小さくすることができる。また、それにより、光学部400の形状は、簡易化できる。なお、シェード440により各投射光L41~L44の幅を絞る方向は、x軸方向に限定されず、y軸方向又はx軸とy軸の両方向であってもよい。 Furthermore, by reducing the width of each of the projected lights L41 to L44 using the shade 440, it is possible to reduce the curvature in the x-axis direction in the equation expressing the amount of sag in the x-axis direction for the entrance surface 410 of the optical section 400. Can be done. Moreover, thereby, the shape of the optical section 400 can be simplified. Note that the direction in which the width of each of the projected lights L41 to L44 is narrowed by the shade 440 is not limited to the x-axis direction, but may be the y-axis direction or both the x-axis and y-axis directions.
 また、投射光L41~L44の複数のセグメントのうちの隣り合うセグメントを、図12(B)、(C)に示されるように、互いに異なる光軸A420a、A420bの投射領域420a、420bから投射された投射光のセグメントとしているので、隣り合うセグメントへの光の染み出しが配光に与える影響を軽減できる。 Further, adjacent segments among the plurality of segments of the projection lights L41 to L44 are projected from projection areas 420a and 420b of mutually different optical axes A420a and A420b, as shown in FIGS. 12(B) and 12(C). Since the projected light segments are segmented, the influence of light seepage into adjacent segments on light distribution can be reduced.
 なお、上記以外に関し、実施の形態4は、実施の形態1から3のいずれかと同じである。 Note that in respects other than the above, Embodiment 4 is the same as any of Embodiments 1 to 3.
《4-4》変形例
 図13(A)は、実施の形態4の変形例に係る前照灯装置の遮光部材としてのシェード740を概略的に示す斜視図である。図13(B)は、シェード740を使用した場合における、4つのセグメントに分割されている照射範囲の例を示す図である。実施の形態4の変形例に係る前照灯装置は、図10に示される前照灯装置4のシェード440を、図13(A)に示されるシェード740に置き換えたものである。シェード740は、貫通孔である開口741~744を有している。開口741~744の形状は、予め決められた方向(図示の例では、-y軸方向)に進むほど予め決められた方向に直交する方向の幅(図示の例では、x軸方向の幅)が狭くなっている形状である。つまり、開口741~744の形状は、予め決められた方向に向けて幅が徐々に狭くなる形状である。開口741~744の形状は、直角三角形の斜辺(すなわち、最も長い辺)を円弧状に膨らませた形状(すなわち、外向きに凸状にした形状)である。ただし、開口741~744の形状は、他の形状であってもよい。例えば、開口741~744の形状は、予め決められた方向に進むほどこの方向に直交する方向の幅が狭くなる他の形状であってもよい。また、開口741~744の個数は、4個に限定されない。また、開口741~744の形状及び大きさは、互いに同一であるが、要求される配光に応じて、互いの形状を異なる形状にすること及び互いの大きを異なる大きさにすることが可能である。
<4-4> Modification FIG. 13A is a perspective view schematically showing a shade 740 as a light shielding member of a headlamp device according to a modification of the fourth embodiment. FIG. 13(B) is a diagram showing an example of an irradiation range divided into four segments when the shade 740 is used. A headlamp device according to a modification of the fourth embodiment is one in which the shade 440 of the headlamp device 4 shown in FIG. 10 is replaced with a shade 740 shown in FIG. 13(A). The shade 740 has openings 741 to 744 that are through holes. The shape of the openings 741 to 744 increases in width in a direction perpendicular to the predetermined direction (in the illustrated example, the width in the x-axis direction) as it advances in a predetermined direction (in the illustrated example, the −y-axis direction). It has a narrow shape. In other words, the shapes of the openings 741 to 744 are such that the width gradually narrows in a predetermined direction. The shape of the openings 741 to 744 is a shape in which the hypotenuse (that is, the longest side) of a right triangle is bulged into an arc shape (that is, a shape that is outwardly convex). However, the shapes of the openings 741 to 744 may be other shapes. For example, the shapes of the openings 741 to 744 may be other shapes in which the width in the direction orthogonal to a predetermined direction becomes narrower as the openings advance in a predetermined direction. Furthermore, the number of openings 741 to 744 is not limited to four. Further, the shapes and sizes of the openings 741 to 744 are the same, but they can be made to have different shapes and sizes depending on the required light distribution. It is.
 図13(A)に示される開口741~744を持つシェード740を用いることにより、図13(B)に示されるように、投射光L71~L74が並ぶ配光分布を形成することができ、+y軸方向に進むほど徐々に照度が低下する配光分布(すなわち、なめらかに照度が変化する配光分布)を得ることができる。 By using the shade 740 having the openings 741 to 744 shown in FIG. 13(A), it is possible to form a light distribution in which the projected lights L71 to L74 are lined up as shown in FIG. 13(B), and +y A light distribution in which the illuminance gradually decreases as it advances in the axial direction (that is, a light distribution in which the illuminance changes smoothly) can be obtained.
《5》実施の形態5
 図14は、実施の形態5に係る前照灯装置5の主要な構成を概略的に示す斜視図である。図15は、前照灯装置5の主要な構成を概略的に示す側面図である。上記実施の形態4では、光学部400の入射面410に2つのx軸方向に延在する頂部を持つ凸状部の集光領域410a、410bが設けられており、出射面420に2つの凸状部である投射領域420a、420bが設けられている例を説明した。実施の形態5では、図14及び図15に示されるように、光学部500の入射面510に単一の凸状部である集光領域510aが設けられており、出射面520に単一の凸状部である投射領域520aが設けられている例を説明する。
<5> Embodiment 5
FIG. 14 is a perspective view schematically showing the main structure of a headlamp device 5 according to the fifth embodiment. FIG. 15 is a side view schematically showing the main configuration of the headlamp device 5. As shown in FIG. In the fourth embodiment, the incident surface 410 of the optical section 400 is provided with two convex condensing regions 410a and 410b having apexes extending in the An example in which projection areas 420a and 420b, which are shaped parts, are provided has been described. In the fifth embodiment, as shown in FIGS. 14 and 15, a single convex condensing region 510a is provided on the entrance surface 510 of the optical section 500, and a single condensing region 510a is provided on the exit surface 520. An example in which a projection area 520a, which is a convex portion, is provided will be described.
 前照灯装置5は、複数の光源51~54を有する光源部50と、遮光部材としてのシェード540と、入射面510及び出射面520を有する導光投射光学素子(例えば、レンズ)である単一の光学部500とを備えている。複数の光源51~54の発光面からそれぞれ発せられた複数の光は、シェード540の開口541~544をそれぞれ通過して、入射面510から光学部500内に入射する。シェード540は、複数の光源51~54の発光面51a~54aからそれぞれ発せられた複数の光の光束径の大きさを制限する構造である。光学部500内に入射した複数の光は、出射面520の投射領域520aから複数の投射光L51~L54として投射される。図15において、Laは、光学部500内を進み、出射面520から出射される光線の一例を示す。複数の光源51~54を個別に点灯制御することによって、複数の投射光L51~L54によって形成される配光分布が調節される。なお、開口541~542の形状は、例えば、図13(A)に示される開口のように、他の形状であってもよい。 The headlamp device 5 includes a light source section 50 having a plurality of light sources 51 to 54, a shade 540 as a light shielding member, and a unit that is a light guiding and projecting optical element (for example, a lens) having an entrance surface 510 and an exit surface 520. 1 optical section 500. A plurality of lights emitted from the light emitting surfaces of the plurality of light sources 51 to 54 pass through openings 541 to 544 of the shade 540, respectively, and enter the optical section 500 from the entrance surface 510. The shade 540 has a structure that limits the size of the beam diameter of the plurality of lights emitted from the light emitting surfaces 51a to 54a of the plurality of light sources 51 to 54, respectively. The plurality of lights that have entered the optical section 500 are projected from the projection area 520a of the output surface 520 as a plurality of projection lights L51 to L54. In FIG. 15, La indicates an example of a light ray that travels through the optical section 500 and is emitted from the output surface 520. By individually controlling the lighting of the plurality of light sources 51 to 54, the light distribution formed by the plurality of projection lights L51 to L54 is adjusted. Note that the shapes of the openings 541 to 542 may be other shapes, such as the opening shown in FIG. 13(A), for example.
 また、出射面520の投射領域520aの光軸A520aは、複数の光源51~54の光軸A51~A54に対して偏心している。 Furthermore, the optical axis A520a of the projection area 520a of the output surface 520 is eccentric with respect to the optical axes A51 to A54 of the plurality of light sources 51 to 54.
 図16(A)は、前照灯装置5の光源部50を示す正面図であり、図16(B)及び(C)は、4つのセグメントに分割されている照射範囲の例を示す図である。光源51~54の+z軸方向を向く面は、発光面51a~54aである。光源部50は、複数の発光面51a~54aを含む。発光面51a~54aは、例えば、同一平面(すなわち、xy面に平行な平面)上に配置されている。実施の形態5では、発光面51a、52aがx軸方向に配列され、発光面53a、54aがx軸方向に配列されている。また、発光面51a、53aがy軸方向に配列され、発光面52a、54aがy軸方向に配列されている。 FIG. 16(A) is a front view showing the light source section 50 of the headlamp device 5, and FIGS. 16(B) and (C) are diagrams showing an example of the irradiation range divided into four segments. be. The surfaces of the light sources 51 to 54 facing the +z-axis direction are light emitting surfaces 51a to 54a. The light source section 50 includes a plurality of light emitting surfaces 51a to 54a. The light emitting surfaces 51a to 54a are arranged, for example, on the same plane (that is, a plane parallel to the xy plane). In the fifth embodiment, light emitting surfaces 51a and 52a are arranged in the x-axis direction, and light emitting surfaces 53a and 54a are arranged in the x-axis direction. Further, the light emitting surfaces 51a and 53a are arranged in the y-axis direction, and the light emitting surfaces 52a and 54a are arranged in the y-axis direction.
 光学部500は、光源部50の+z軸方向に位置している。光学部500には、光源部50の発光面51a~54aから発せられた複数の光が入射する。光学部500は、前方(+z軸方向)に複数のセグメントからなる投射光を投射する。 The optical section 500 is located in the +z-axis direction of the light source section 50. A plurality of lights emitted from the light emitting surfaces 51a to 54a of the light source section 50 enter the optical section 500. The optical section 500 projects projection light consisting of a plurality of segments forward (in the +z-axis direction).
 光学部500の入射面510は、例えば、光源部50から発せられた光を集光する領域である単一の集光領域510aを有している。つまり、入射面510は、単一の集光領域510aと単一の光軸A510aとを有している。ただし、光学部500の入射面510は、複数の集光領域とそれらの光軸とを有してもよい。集光領域510aの焦点は、例えば、xy平面に平行な面Fであって、光学部500の-z軸方向を向く端面上である。入射面510の集光領域510aの形状は、実施の形態1から4における集光領域のものと同様である。 The entrance surface 510 of the optical section 500 has, for example, a single condensing region 510a that condenses the light emitted from the light source section 50. In other words, the entrance surface 510 has a single condensing region 510a and a single optical axis A510a. However, the entrance surface 510 of the optical section 500 may have a plurality of light condensing regions and their optical axes. The focal point of the condensing region 510a is, for example, a plane F parallel to the xy plane and on the end face of the optical section 500 facing in the -z axis direction. The shape of the condensing region 510a of the entrance surface 510 is similar to that of the condensing region in the first to fourth embodiments.
 以上に説明したように、実施の形態5によれば、光学部500は、単一の光学素子によって構成されていることから、入射面510に対する出射面520の焦点位置は、固定される。そのため、光学部500の位置のばらつきが配光分布に与える影響は小さい。 As explained above, according to the fifth embodiment, since the optical section 500 is configured by a single optical element, the focal position of the exit surface 520 with respect to the entrance surface 510 is fixed. Therefore, variations in the position of the optical section 500 have little effect on the light distribution.
 また、隣り合う光源51~54間の間隔と、シェード540の開口541~544の位置と、出射面520の光軸A520aの、光源51~54の光軸A51~A54に対する偏心の大きさとを、パラメータとして変更することで、セグメント間の間隔の大きさを細かく設計することができる。 In addition, the distance between adjacent light sources 51 to 54, the position of the openings 541 to 544 of the shade 540, and the eccentricity of the optical axis A520a of the exit surface 520 with respect to the optical axes A51 to A54 of the light sources 51 to 54, By changing this as a parameter, the size of the interval between segments can be designed in detail.
 また、シェード540によって配光に寄与する光束を制限しているので、配光において、光源51、52の配置のばらつきに起因して投射光L51、L52に現れる影響の程度を小さくすることができる。 Furthermore, since the light flux contributing to the light distribution is restricted by the shade 540, it is possible to reduce the degree of influence that appears on the projected lights L51 and L52 due to variations in the arrangement of the light sources 51 and 52 in the light distribution. .
 なお、上記以外に関し、実施の形態5は、実施の形態1から4のいずれかと同じである。 Note that in respects other than the above, Embodiment 5 is the same as any of Embodiments 1 to 4.
《6》実施の形態6
 図17は、実施の形態6に係る前照灯装置6の主要な構成を概略的に示す斜視図である。図18は、前照灯装置6の主要な構成を概略的に示す側面図である。図17及び図18に示されるように、前照灯装置6は、複数の光源61、62を有する光源部60と、入射面610及び出射面620を有する導光投射光学素子(例えば、レンズ)である単一の光学部600とを備えている。上記実施の形態3においては、シェード340によって光源31、32の発光面からそれぞれ発せられた複数の光の幅を制限していたが、実施の形態6においては、複数の光源61、62として、出射される光の幅が制限されている発光素子を採用している。つまり、実施の形態6では、複数の光源61、62の各々が、発光面からそれぞれ発せられた複数の光の光束径の大きさを制限する構造を有している。光源61、62から発せられた複数の光は入射面410に向かって進み、入射面610から光学部600内に入射する。光学部600内に入射した複数の光は、出射面620の投射領域620a、620bから複数の投射光L61、L62として投射される。図18において、Laは、光学部600内を進み、出射面620から出射される光線の一例を示す。複数の光源61、62を個別に点灯制御(例えば、オン・オフ制御又は調光制御)することによって、複数の投射光L61、L62によって形成される配光分布が調節される。
《6》Embodiment 6
FIG. 17 is a perspective view schematically showing the main structure of a headlamp device 6 according to the sixth embodiment. FIG. 18 is a side view schematically showing the main structure of the headlamp device 6. As shown in FIG. As shown in FIGS. 17 and 18, the headlamp device 6 includes a light source section 60 having a plurality of light sources 61 and 62, and a light guide projection optical element (for example, a lens) having an entrance surface 610 and an exit surface 620. A single optical section 600 is provided. In the third embodiment, the shade 340 limits the width of the plurality of lights emitted from the light emitting surfaces of the light sources 31 and 32, but in the sixth embodiment, as the plurality of light sources 61 and 62, It uses a light emitting element whose width of emitted light is limited. That is, in the sixth embodiment, each of the plurality of light sources 61 and 62 has a structure that limits the size of the luminous flux diameter of the plurality of lights emitted from the respective light emitting surfaces. A plurality of lights emitted from the light sources 61 and 62 travel toward the entrance surface 410 and enter the optical section 600 from the entrance surface 610. The plurality of lights that have entered the optical section 600 are projected from the projection areas 620a and 620b of the output surface 620 as a plurality of projection lights L61 and L62. In FIG. 18, La indicates an example of a light ray that travels inside the optical section 600 and is emitted from the output surface 620. By individually controlling the lighting of the plurality of light sources 61 and 62 (for example, on/off control or dimming control), the light distribution formed by the plurality of projection lights L61 and L62 is adjusted.
 図19(A)は、前照灯装置6の光源部60を示す正面図であり、図19(B)及び(C)は、2つのセグメントに分割されている照射範囲の例を示す図である。光源61、62の+z軸方向を向く面は、発光面61a、62aである。光源部60は、複数の発光面61a、62aを含む。発光面61a、62aは、例えば、同一平面(すなわち、xy面に平行な平面)上に配置されている。実施の形態6では、発光面61a、62aがx軸方向に配列されている。 FIG. 19(A) is a front view showing the light source section 60 of the headlamp device 6, and FIGS. 19(B) and (C) are diagrams showing an example of the irradiation range divided into two segments. be. The surfaces of the light sources 61 and 62 facing the +z-axis direction are light emitting surfaces 61a and 62a. The light source section 60 includes a plurality of light emitting surfaces 61a and 62a. The light emitting surfaces 61a and 62a are arranged, for example, on the same plane (that is, a plane parallel to the xy plane). In the sixth embodiment, the light emitting surfaces 61a and 62a are arranged in the x-axis direction.
 光学部600は、光源部60の+z軸方向に位置している。光学部600には、光源部60の発光面61a、62aから発せられた複数の光が入射する。光学部600は、前方(+z軸方向)に複数のセグメントからなる投射光L61、L62を投射する。 The optical section 600 is located in the +z-axis direction of the light source section 60. A plurality of lights emitted from the light emitting surfaces 61 a and 62 a of the light source section 60 enter the optical section 600 . The optical section 600 projects projection lights L61 and L62 consisting of a plurality of segments forward (in the +z-axis direction).
 光学部600の入射面610は、例えば、光源部60から発せられた光を集光する領域を備えていない。ただし、光学部600は、実施の形態2と同様の集光領域を備えてもよい。 For example, the entrance surface 610 of the optical section 600 does not include a region that condenses the light emitted from the light source section 60. However, the optical section 600 may include a condensing region similar to that in the second embodiment.
 投射光L61、L62の複数のセグメントの間隔は、出射面620の投射領域620aの光軸A620aにおける、光源61、62の光軸A61、A62に対する偏心の大きさと、光源61、62の間隔の大きさと、によって決定される。 The intervals between the plurality of segments of the projected lights L61 and L62 are determined by the eccentricity of the light sources 61 and 62 with respect to the optical axes A61 and A62 in the optical axis A620a of the projection area 620a of the output surface 620, and the magnitude of the interval between the light sources 61 and 62. determined by.
 図19(C)に示されるように、投射光の隣り合うセグメントの端部が一部重なりを持つように接することが望ましい。出射面620の投射領域620aの光軸A620aは、配光においてセグメントの境界が接するように(部分的に重なる場合を含む)ように偏心している。 As shown in FIG. 19(C), it is desirable that the ends of adjacent segments of the projected light touch so that they partially overlap. The optical axis A620a of the projection area 620a of the output surface 620 is eccentric so that the boundaries of the segments touch each other in light distribution (including cases where they partially overlap).
 以上に説明したように、実施の形態6によれば、光学部600は、単一の光学素子によって構成されていることから、入射面610に対する出射面620の焦点位置は、固定される。そのため、光学部600の位置のばらつきが配光分布に与える影響は小さい。 As described above, according to the sixth embodiment, since the optical section 600 is configured by a single optical element, the focal position of the exit surface 620 with respect to the entrance surface 610 is fixed. Therefore, variations in the position of the optical section 600 have little effect on the light distribution.
 また、隣り合う光源61、62間の間隔と、出射面620の光軸A620aの、光源61、62の光軸A61、A62に対する偏心の大きさとを、パラメータとして変更することで、セグメント間の間隔の大きさを細かく設計することができる。 In addition, by changing the distance between adjacent light sources 61 and 62 and the eccentricity of the optical axis A620a of the light emitting surface 620 with respect to the optical axes A61 and A62 of the light sources 61 and 62 as parameters, the distance between the segments can be changed. The size can be designed in detail.
 なお、上記以外に関し、実施の形態6は、実施の形態1から5のいずれかと同じである。 Note that in respects other than the above, Embodiment 6 is the same as any of Embodiments 1 to 5.
 1~6 前照灯装置、 10、20、30、40、50、60 光源部、 11~14、21~24、31、32、41~44、51~54、61、62 光源、 11a~14a、21a~24a、31a、32a、41a~44a、51a~54a、61a、62a 発光面、 100、200、300,400、500、600 光学部(レンズ)、 110、210、310、410、510、610 入射面、 110a、110b、210a、310a、410a、410b、510a 集光領域、 120、220、320、420、520、620 出射面、 120a、120b、220a、320a、420a、420b、520a、620a 投射領域、 340、440、540、740 シェード(遮光部材)、 341、342、441~444、541~544、741~744 開口、 A11~A14、A21~A24、A31、A32、A41~A44、A51~A54、A61、A62 光軸(光源の光軸)、 A110a、A110b、A210a、A310a、A410a、A410b、A510a 光軸(入射面の集光領域の光軸)、 A120a、A120b、A220a、A320a、A420a、A420b、A520a、A620a 光軸(出射面の投射領域の光軸)、 L11~L14、L21~L24、L31、L32、L41~L44、L51~L54、L61、L62、L71~L74 投射光。 1-6 Headlight device, 10, 20, 30, 40, 50, 60 Light source section, 11-14, 21-24, 31, 32, 41-44, 51-54, 61, 62 Light source, 11a-14a , 21a to 24a, 31a, 32a, 41a to 44a, 51a to 54a, 61a, 62a Light emitting surface, 100, 200, 300, 400, 500, 600 Optical section (lens), 110, 210, 310, 410, 510, 610 Incident surface, 110a, 110b, 210a, 310a, 410a, 410b, 510a Condensing region, 120, 220, 320, 420, 520, 620 Output surface, 120a, 120b, 220a, 320a, 420a, 420b, 520 a, 620a Projection area, 340, 440, 540, 740 Shade (light shielding member), 341, 342, 441-444, 541-544, 741-744 Opening, A11-A14, A21-A24, A31, A32, A41-A44, A51 ~A54, A61, A62 Optical axis (optical axis of light source), A110a, A110b, A210a, A310a, A410a, A410b, A510a Optical axis (optical axis of light condensing area of incident surface), A120a, A120b, A220a, A320a, A420a, A420b, A520a, A620a Optical axis (optical axis of the projection area of the output surface), L11 to L14, L21 to L24, L31, L32, L41 to L44, L51 to L54, L61, L62, L71 to L74 Projected light.

Claims (11)

  1.  複数の光源を有する光源部と、
     入射面及び出射面を有し、前記複数の光源の発光面からそれぞれ発せられた複数の光が前記入射面から入射し、入射した前記複数の光を前記出射面から複数の投射光として出射し、前記複数の投射光で配光を形成する単一の光学部と、
     を備え、
     前記出射面は、前記複数の投射光がそれぞれ通過する1つ以上の投射領域を有し、
     前記1つ以上の投射領域の各々における前記出射面の光軸は、前記複数の光源の光軸に対して偏心している
     ことを特徴とする前照灯装置。
    a light source section having a plurality of light sources;
    It has an entrance surface and an exit surface, a plurality of lights emitted from the light emitting surfaces of the plurality of light sources respectively enter from the entrance surface, and the plurality of incident lights are emitted from the exit surface as a plurality of projected lights. , a single optical section that forms a light distribution with the plurality of projected lights;
    Equipped with
    The exit surface has one or more projection areas through which each of the plurality of projection lights passes,
    A headlamp device, wherein an optical axis of the output surface in each of the one or more projection areas is eccentric with respect to an optical axis of the plurality of light sources.
  2.  前記出射面は、前記1つ以上の投射領域として複数の投射領域を有する
     ことを特徴とする請求項1に記載の前照灯装置。
    The headlamp device according to claim 1, wherein the output surface has a plurality of projection areas as the one or more projection areas.
  3.  前記複数の光源の各々は、前記複数の投射領域のいずれかに対応しており、
     前記複数の投射領域の各々に対応する光源の光軸に対する、前記複数の投射領域おける前記出射面の光軸の偏心の大きさは、互いに異なる
     ことを特徴とする請求項2に記載の前照灯装置。
    Each of the plurality of light sources corresponds to one of the plurality of projection areas,
    The headlight according to claim 2, wherein the eccentricity of the optical axis of the exit surface in the plurality of projection areas with respect to the optical axis of the light source corresponding to each of the plurality of projection areas is different from each other. Light device.
  4.  前記複数の投射光で形成される前記配光は、予め決められた第1の方向及び前記第1の方向に直交する第2の方向のうちの少なくとも一方を配列方向として並ぶ複数のセグメントからなる照射範囲を含む
     ことを特徴とする請求項1から3のいずれか1項に記載の前照灯装置。
    The light distribution formed by the plurality of projected lights is composed of a plurality of segments lined up with at least one of a predetermined first direction and a second direction perpendicular to the first direction as an arrangement direction. The headlamp device according to any one of claims 1 to 3, characterized in that the headlamp device includes an irradiation range.
  5.  前記複数のセグメントのうちの隣り合うセグメントの前記配列方向における端部が互いに接するように、前記複数の投射領域の各々における前記出射面の前記光軸の位置及び方向を設定する
     ことを特徴とする請求項2又は3に記載の前照灯装置。
    The position and direction of the optical axis of the output surface in each of the plurality of projection areas are set so that ends of adjacent segments among the plurality of segments in the arrangement direction are in contact with each other. The headlamp device according to claim 2 or 3.
  6.  前記複数の光源の前記発光面から発せられる前記複数の光が、前記光学部の前記出射面から前記複数の投射光として、互いに異なるセグメントに照射されるように、前記複数の光源及び前記光学部が形成されている
     ことを特徴とする請求項1から5のいずれか1項に記載の前照灯装置。
    The plurality of light sources and the optical section such that the plurality of lights emitted from the light emitting surfaces of the plurality of light sources are irradiated from the exit surface of the optical section to mutually different segments as the plurality of projection lights. The headlamp device according to any one of claims 1 to 5, characterized in that: is formed.
  7.  前記入射面は、集光機能を持つ領域である少なくとも1つの集光領域を有する
     ことを特徴とする請求項1から6のいずれか1項に記載の前照灯装置。
    The headlamp device according to any one of claims 1 to 6, wherein the entrance surface has at least one light condensing region having a light condensing function.
  8.  前記少なくとも1つの集光領域は、前記光源部に向けて突き出ており、予め決められた延在方向に延在する頂部を持つ凸状部を有し、
     前記延在方向に直交する方向に切る断面形状は、前記延在方向の位置に依存しない同じ形状である
     ことを特徴とする請求項7に記載の前照灯装置。
    The at least one light condensing region has a convex portion that protrudes toward the light source portion and has a top portion that extends in a predetermined extending direction,
    The headlamp device according to claim 7, wherein a cross-sectional shape cut in a direction perpendicular to the extending direction has the same shape independent of a position in the extending direction.
  9.  前記少なくとも1つの集光領域は、前記光源部に向けて突き出ており、予め決められた方向に延在する頂部を持つ凸状部を有し、
     前記少なくとも1つの前記集光領域のプロファイルは、前記凸状部の前記頂部を間に挟んで一方の側と他方の側とで互いに異なる
     請求項7に記載の前照灯装置。
    The at least one light condensing region has a convex portion that protrudes toward the light source and has an apex extending in a predetermined direction,
    The headlamp device according to claim 7, wherein the profile of the at least one light condensing region is different on one side and the other side with the apex of the convex portion interposed therebetween.
  10.  前記複数の光源の前記発光面からそれぞれ発せられる前記複数の光の各々が通過する前記光学部の光学面は、前記入射面と前記出射面である
     ことを特徴とする請求項1から9のいずれか1項に記載の前照灯装置。
    Any one of claims 1 to 9, wherein the optical surfaces of the optical section through which each of the plurality of lights emitted from the light emitting surfaces of the plurality of light sources passes are the entrance surface and the exit surface. The headlight device according to item 1.
  11.  前記複数の光源の前記発光面は、同一平面上に配置されている
     ことを特徴とする請求項1から10のいずれか1項に記載の前照灯装置。
    The headlamp device according to any one of claims 1 to 10, wherein the light emitting surfaces of the plurality of light sources are arranged on the same plane.
PCT/JP2022/025440 2022-06-27 2022-06-27 Headlight device WO2024003967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025440 WO2024003967A1 (en) 2022-06-27 2022-06-27 Headlight device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025440 WO2024003967A1 (en) 2022-06-27 2022-06-27 Headlight device

Publications (1)

Publication Number Publication Date
WO2024003967A1 true WO2024003967A1 (en) 2024-01-04

Family

ID=89381782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025440 WO2024003967A1 (en) 2022-06-27 2022-06-27 Headlight device

Country Status (1)

Country Link
WO (1) WO2024003967A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114425A (en) * 2017-12-25 2019-07-11 パナソニックIpマネジメント株式会社 Vehicular headlight
WO2020161846A1 (en) * 2019-02-07 2020-08-13 三菱電機株式会社 Projection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114425A (en) * 2017-12-25 2019-07-11 パナソニックIpマネジメント株式会社 Vehicular headlight
WO2020161846A1 (en) * 2019-02-07 2020-08-13 三菱電機株式会社 Projection device

Similar Documents

Publication Publication Date Title
JP6383043B2 (en) Headlight module
JP6709655B2 (en) Vehicle lamp and vehicle equipped with the vehicle lamp
JP6689198B2 (en) Lamp unit and vehicle headlight
CN211260667U (en) Optical unit for lamp of vehicle
JP6132684B2 (en) Vehicle lighting
JP6045719B2 (en) Headlight module and headlight device
EP2280214B1 (en) Vehicular lighting equipment
JP5475395B2 (en) Vehicle lighting
CN112805500A (en) Vehicle lamp
CN102901021A (en) Vehicular lamp
EP2500628B1 (en) Vehicle headlamp
JP6333470B2 (en) Headlight light source and headlight
WO2016190165A1 (en) Headlight module and headlight device
JP7023354B2 (en) Light irradiation device
US20190011103A1 (en) Headlight module
JP7474116B2 (en) Optical unit and vehicle lamp equipped with same
US20200072432A1 (en) Adaptive headlamp for optically and electronically shaping light
US10465875B2 (en) Vehicle headlight
JP5692520B2 (en) Lamp unit
JP2007234562A (en) Lamp unit for vehicular headlamp
JP6546284B2 (en) Lamp
WO2024003967A1 (en) Headlight device
WO2024003968A1 (en) Headlight device
JP7186570B2 (en) vehicle lamp
JP2018092762A (en) Vehicular lighting fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949246

Country of ref document: EP

Kind code of ref document: A1