WO2020161846A1 - Projection device - Google Patents

Projection device Download PDF

Info

Publication number
WO2020161846A1
WO2020161846A1 PCT/JP2019/004348 JP2019004348W WO2020161846A1 WO 2020161846 A1 WO2020161846 A1 WO 2020161846A1 JP 2019004348 W JP2019004348 W JP 2019004348W WO 2020161846 A1 WO2020161846 A1 WO 2020161846A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
unit
projection device
image forming
Prior art date
Application number
PCT/JP2019/004348
Other languages
French (fr)
Japanese (ja)
Inventor
将利 西村
旭洋 山田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/004348 priority Critical patent/WO2020161846A1/en
Priority to JP2020570279A priority patent/JP7191130B2/en
Publication of WO2020161846A1 publication Critical patent/WO2020161846A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a projection device.
  • Patent Document 1 proposes a traffic information system in which a light pattern is drawn on the road surface by projecting light on the road surface.
  • a beam deflector scans a light beam forming a light spot. The scanning of the light beam causes the light spot to move in the projection area of the road surface. A pattern of light is displayed by the moving light spot.
  • Japanese Patent Publication No. 2006-525590 (eg, paragraphs 0014 to 0019, FIG. 1)
  • the above traffic information system includes the beam deflector and its control circuit, there is a problem that the configuration becomes complicated.
  • the present invention has been made to solve the above problems, and provides a projection device that can switch between a state of a function of illuminating illumination light and a state of a function of projecting an image with a simple configuration.
  • the purpose is to do.
  • a projection apparatus includes a light source section that emits first light, and a first optical section that emits second light whose divergence angle is changed based on the first light emitted by the light source section.
  • An image forming area where an image is formed and the second light is an image light containing information of the image, and a peripheral area which is located on the peripheral side of the image forming area and uses the second light as illumination light.
  • An image forming unit including the image forming unit and a second optical unit that projects the image light to form a projected image based on the image, and changes the divergence angle to change the amount of the image light and the amount of the illumination light. Change the ratio with.
  • the projecting device can be switched to a state of a function of illuminating illumination light or a state of a function of projecting an image with a simple configuration.
  • FIG. 3 is a diagram schematically showing a main configuration in a projection function state of the projection device according to the first embodiment.
  • FIG. 3 is a diagram showing a main configuration in a lighting function state of the projection apparatus according to the first embodiment and a main path of light passing through a first optical unit in a lighting function state.
  • FIG. 3 is a diagram showing a main configuration in a projection function state of the projection apparatus according to the first embodiment and a main path of light passing through a first optical unit in the projection function state.
  • FIG. 9A and 9B are a side view and a front view schematically showing the outer appearance of the first optical unit of the projection device according to the first embodiment.
  • 6A and 6B are a side view and a front view schematically showing the outer appearance of the image forming unit of the projection device according to the first embodiment.
  • FIG. 3 is a diagram showing a main path of light passing through a second optical unit of the projection device according to the first embodiment.
  • 7A and 7B are a side view and a front view schematically showing the outer appearance of the second optical unit of the projection device according to the first embodiment. It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 2 of this invention, and the main path
  • FIG. 9 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the second embodiment. It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 3 of this invention, and the main path
  • FIG. 13 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the third embodiment. It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 4 of this invention, and the main path
  • FIG. 9 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the second embodiment. It is a figure which shows the main structures in the state of the illumination function of the projection
  • FIG. 16 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the fourth embodiment. It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 5 of this invention, and the main path
  • FIG. 16 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the fifth embodiment.
  • FIG. 8 is a diagram showing a schematic cross-sectional structure of a second optical section of a projection device according to the first modification of the first to fifth embodiments and a main path of light passing through the second optical section.
  • FIG. 9 is a diagram showing a schematic cross-sectional structure of a second optical unit of a projection device according to Modification 2 of Embodiments 1 to 5 and a main path of light passing through the second optical unit.
  • FIG. 9 is a diagram showing a schematic cross-sectional structure of a second optical unit of a projection device according to Modification 3 of Embodiments 1 to 5 and a main path of light passing through the second optical unit.
  • the projection device according to the embodiment can switch between the state of the illumination function and the state of the projection function.
  • the state of the illumination function indicates that the projection device is in a state in which it can perform the illumination function or that the projection device is in the state of exhibiting the illumination function.
  • the “state of the illumination function” indicates that the projection device is in a state in which it can emit the illumination light or that the projection device is in the state of emitting the illumination light.
  • the projection device is configured as an illumination device. That is, in the "state of the illumination function", the respective constituent elements of the projection device are arranged in a state of exhibiting the function of the illumination device.
  • the state of the projection function indicates that the projection device is in a state where it can perform the projection function, or that the projection device is in the state where it is performing the projection function.
  • the “projection function state” indicates that the projection device can project an image or that the projection device is projecting an image.
  • the projection device is configured as a projection device. That is, in the “projection function state”, each component of the projection device is arranged in a state in which the function of the projection device is exerted.
  • the light source may be turned off. That is, it suffices if each component of the projection device is arranged at a position where it can perform its function.
  • the illumination light is applied to the target area. That is, in the state of the illumination function, the illumination light is applied to the illuminated area.
  • the image light including the image information is projected on the target area.
  • the image light is light containing image information. That is, in the state of the projection function, the image light is projected onto the illuminated area. At this time, the image is projected on the target area. Therefore, the projection device according to the embodiment is a projection device with a lighting function. Alternatively, the projection device according to the embodiment is a lighting device with a projection function.
  • the target area to which the illumination light is applied is the same as the target area to which the image light is projected.
  • the same target area includes the case where the target area to which the illumination light is irradiated includes the target area to which the image light is projected.
  • the “same target area” includes the case where the target area onto which the image light is projected includes the target area onto which the illumination light is applied.
  • the projection device is, for example, a spotlight, a downlight, a ceiling light, or a vehicle lamp.
  • a spotlight is a lighting device that illuminates one point in a concentrated manner.
  • the downlight is a small lighting device that is mounted so as to be embedded in the ceiling.
  • a ceiling lamp is a lighting device attached to the ceiling.
  • the vehicle lighting device is, for example, a vehicle headlight device, a daylight, or a fog light.
  • the daylight is a light that is turned on in the daytime to improve the visibility from the surroundings of a running vehicle.
  • Fog lights are lights that illuminate the road surface when the field of view in front is limited due to heavy fog.
  • the size of the illumination range of the illumination light and the size of the projected image are not particularly limited.
  • the projection device projects an image on the target area by projecting image light in the state of the projection function.
  • image includes characters, still images, and moving images.
  • Project is to project an image.
  • the “target area” is the irradiated area. Areas of interest include floors, road surfaces, walls, and other areas on the surface of an object.
  • the projected “image” is, for example, an arrow mark displayed on the road surface for guiding a pedestrian, a caution mark, a warning mark, or a display indicating a delay.
  • the Z axis is a coordinate axis parallel to the optical axis of the projection device.
  • the +Z axis direction is the irradiation direction of light emitted from the projection device.
  • the central ray of the light emitted from the projection device travels in the +Z axis direction.
  • the Z-axis direction is a direction inclined with respect to the road surface. That is, the Z-axis direction is not parallel to the road surface.
  • the +Z axis direction is the front of the vehicle and the ⁇ Z axis direction is the rear of the vehicle.
  • the projection device may be mounted behind the vehicle. In this case, the +Z axis direction is the rear side of the vehicle and the ⁇ Z axis direction is the front side of the vehicle.
  • the central ray can be, for example, a ray in the angular direction that is a weighted average of the light intensity distribution with respect to the emission angle of light. Also, the central ray can be, for example, a ray in the main direction in which most of the light travels.
  • the ray on the principal optical axis can be the central ray.
  • the principal optical axis is not the geometric center axis of the lighting device, but the optical center axis emitted by its light source.
  • the principal optical axis is generally the direction of emission of highest intensity. Further, the axis that overlaps this central ray can be the optical axis of the projection device 100.
  • the optical axis is an axis that passes through the center of the light emitting surface of the light source 1 and is perpendicular to the light emitting surface. Then, normally, the central ray is a ray on the optical axis.
  • the X axis is the coordinate axis in the direction orthogonal to the Z axis.
  • the X-axis direction is the left-right direction of the vehicle. That is, the X-axis direction is the width direction of the vehicle.
  • the left direction is the +X axis direction and the right direction is the -X axis direction.
  • the Y axis is a coordinate axis in a direction orthogonal to the Z axis and the X axis.
  • the Y-axis direction is the vertical direction of the vehicle.
  • the upward direction of the vehicle is the +Y-axis direction
  • the downward direction of the vehicle is the -Y-axis direction. That is, the direction of the sky is the +Y axis direction
  • the direction of the road surface is the ⁇ Y axis direction.
  • the optical parts 2 and 4 will be described as the shape of a rotating body centered on the optical axes C2 and C4.
  • the optical parts 2 and 4 can take shapes other than the shape of the rotating body.
  • surfaces having different curvatures in two orthogonal axial directions can be adopted.
  • a surface having two different axial curvatures that are orthogonal to each other is a toroidal surface.
  • the toroidal surface includes a cylindrical surface.
  • the cylindrical surface has a curvature in one direction (first direction) and does not have a curvature in a direction (second direction) perpendicular to the direction (first direction).
  • the optical units 2 and 4 have no curvature in the X-axis direction.
  • the optical parts 2 and 4 have a symmetrical shape with respect to the optical axes C2 and C4.
  • the shapes of the optical parts 2 and 4 can be one side with respect to the optical axes C2 and C4.
  • the outside of the optical units 2 and 4 indicates a position far from the optical axes C2 and C4.
  • FIG. 1 is a diagram schematically showing a main configuration of projector 100 according to the first embodiment in a state of an illumination function.
  • FIG. 2 is a diagram schematically showing the main configuration of the projection apparatus 100 in the projection function state. 1 and 2 show a sectional structure in which a member of the optical system is cut along a plane parallel to the YZ plane. 1 and 2, constituent elements of the control system are shown by functional blocks.
  • the projection device 100 includes a light source unit 1, an optical unit 2, an image forming unit 3, and an optical unit 4.
  • the projection device 100 can include a moving unit 5, a light source driving unit 81, a movement control unit 82, a display control unit 83, and a control unit 84.
  • Light source unit 1 The light source unit 1 emits the light R1.
  • the light source unit 1 emits the light R1 in the +Z-axis direction.
  • the light source unit 1 emits the light R1 toward the optical unit 2.
  • “Emitting” means emitting light in a certain direction.
  • the optical axis of the light source unit 1 is indicated by C1.
  • the light source unit 1 is, for example, a light source component.
  • the light emitting surface 11 of the light source unit 1 is a surface that emits light.
  • the light emitting surface 11 is, for example, a light emitting surface.
  • the light emitting surface 11 has, for example, a circular shape or a rectangular shape.
  • the light source unit 1 includes, for example, a solid-state light source or a lamp light source.
  • the solid-state light source is, for example, a semiconductor light source.
  • the semiconductor light source is, for example, a light emitting diode (LED) or a laser diode (LD).
  • the solid-state light source may be a light source using organic electroluminescence (organic EL).
  • the solid-state light source may be a light source including a phosphor and an excitation light source that irradiates the phosphor with excitation light.
  • the phosphor is applied in a planar shape, for example.
  • the light source unit 1 includes a solid-state light source, the luminous efficiency and directivity can be increased as compared with the case where the light source unit includes a lamp light source.
  • the light source unit 1 includes a solid-state light source, the weight and power consumption of the projection device 100 can be reduced.
  • the lamp light source is, for example, an incandescent lamp, a halogen lamp or a fluorescent lamp.
  • the lamp light source may include a reflector.
  • the reflector is, for example, a reflecting mirror.
  • the reflector reflects the light emitted from the light emitter.
  • the luminous body is a part that emits light. By providing the reflector, the light emitted from the light emitter can have directivity.
  • Directivity is a property in which the intensity of the output light varies depending on the direction when the light is output from the light source section into the space. “Having directivity” means that, for example, light travels in front of the light emitting surface and does not travel behind the light emitting surface. That is, the divergence angle of the light emitted from the light source section having directivity is 180 degrees or less.
  • the light source unit 1 shown in the following embodiments is, for example, a light source unit having directivity.
  • the optical unit 2 changes the distribution of incident light.
  • the optical unit 2 changes the divergence angle of incident light.
  • the optical unit 2 can collect the light R1 emitted from the light source unit 1.
  • the optical unit 2 can focus light on the optical axis C2, for example.
  • Condensing means collecting light. That is, the divergence angle of the emitted light is smaller than the divergence angle of the incident light.
  • the “light distribution” is a luminous intensity distribution with respect to the space of the light source. That is, the light distribution is the spatial distribution of the light emitted from the light source. The light distribution indicates in what direction (angle) the light is emitted from the light source and at what intensity.
  • the "divergence angle" is the angle at which light spreads. The divergence angle also includes the angle of the condensed light.
  • the optical unit 2 is, for example, an optical component.
  • Optical unit 2 enters light R1.
  • the optical unit 2 converts the incident light R1 into light R2.
  • the light R2 includes at least one of a converging light component and a diverging light component.
  • the optical unit 2 changes the traveling direction of the light R1 by at least one of refraction of light and reflection of light.
  • the optical unit 2 changes the traveling direction of the light R1 and emits the light R2.
  • the optical unit 2 is a light deflection unit.
  • the optical unit 2 changes the divergence angle of the incident light R1.
  • the divergence angle of the light R2 is smaller than the divergence angle of the light R1.
  • the light R2 can include convergent light, parallel light, and divergent light.
  • the optical unit 2 is also called a light collecting unit.
  • the optical axis of the optical unit 2 is indicated by C2.
  • the optical axis C1 and the optical axis C2 are located on the same axis.
  • the light source unit 1 and the optical unit 2 may be arranged so that the optical axis C2 is inclined with respect to the optical axis C1.
  • the light source unit 1 and the optical unit 2 may be arranged so that the optical axis C2 is eccentric with respect to the optical axis C1.
  • FIG. 3 is a diagram showing a main configuration and a main path of light passing through the optical unit 2 in the case of the illumination function of the projection device 100.
  • FIG. 4 is a diagram showing a main configuration and a main path of light passing through the optical unit 2 in the case of the projection function of the projection device 100.
  • 5A and 5B are a side view and a front view schematically showing the outer appearance of the optical unit 2 of the projection device 100.
  • the optical section 2 has a central portion 20a and a peripheral portion 20b.
  • the central portion 20a is a part of the optical unit 2.
  • the optical axis C2 of the optical unit 2 passes through the central portion 20a. That is, the optical axis C2 exists in the central portion 20a of the optical unit 2.
  • the central portion 20a is, for example, the central portion of the optical unit 2 centered on the optical axis C2.
  • the central portion 20a is also called the first central portion.
  • the central portion 20a has an entrance surface 21 and an exit surface 23.
  • the incident surface 21 receives the light R1.
  • the emission surface 23 emits the light R2.
  • the light R2 includes light R2a and light R2b.
  • the light R2 includes light R2c and light R2d.
  • the entrance surface 21 becomes narrower, for example, in the +Z axis direction.
  • the incident surface 21 has a tapered shape.
  • the tapered shape is the shape of a rotating body centered on the optical axis C2.
  • the rotating body is a solid figure obtained by rotating a plane curve with a straight line in the same plane as a rotation axis.
  • the cross section of the entrance surface 21 on the plane including the optical axis C2 is, for example, a curved surface shape that is convex toward the exit surface 23 side.
  • the light R1 is refracted when entering from the entrance surface 21, for example.
  • the incident surface 21 has an intersection with the optical axis C2 of the optical unit 2.
  • the incident surface 21 includes a surface 21a and a surface 21b.
  • a surface 21b is formed at the top of the convex shape.
  • a surface 21a is formed at the portion reaching the apex of the convex shape.
  • the convex shape is a truncated cone shape
  • the surface 21b corresponds to the upper surface.
  • the upper surface is a small circular surface of a truncated cone.
  • the bottom surface is a large circular surface of a truncated cone.
  • the surface 21a corresponds to the side surface.
  • the light R1 is deflected by the surface 21a toward the reflecting surface 22.
  • the light R1 transmitted through the surface 21a reaches the reflecting surface 22.
  • the light R1 is not deflected by the surface 21b toward the reflecting surface 22.
  • the light R1 transmitted through the surface 21b reaches the emission surface 23.
  • the shape of the incident surface 21 is not limited to that shown in the figure.
  • the incident surface 21 may have another shape such as a polygonal shape in which a plurality of flat surfaces are connected.
  • the polygonal shape can be a shape approximate to a curved surface shape.
  • the exit surface 23 is formed on the +Z axis direction side of the entrance surface 21.
  • the emission surface 23 has an intersection with the optical axis C2 of the optical unit 2.
  • the shape of the emitting surface 23 is not limited to that shown in the figure.
  • the emission surface 23 may have a concave shape, a convex shape, or a polygonal shape in which a plurality of flat surfaces are connected.
  • the peripheral portion 20b is another part of the optical unit 2. That is, the peripheral portion 20b is a part of the optical unit 2 different from the central portion 20a.
  • the peripheral portion 20b is a portion outside the central portion 20a in the radial direction with the optical axis C2 as the center.
  • the peripheral portion 20b is located on the outer peripheral side of the central portion 20a with the optical axis C2 as the center.
  • the peripheral part 20b is a part inside the outer peripheral surface of the optical part 2 and outside the central part 20a.
  • the peripheral portion 20b is also referred to as a first peripheral portion.
  • the peripheral portion 20b has a reflection surface 22 that reflects the light R1.
  • the peripheral portion 20b includes an emission surface 24 that emits the light R1.
  • the reflecting surface 22 reflects the incident light.
  • the reflecting surface 22 reflects the light R1 incident from the incident surface 21.
  • the reflecting surface 22 is, for example, an outer peripheral surface of the optical unit 2.
  • the reflecting surface 22 reflects the light R1 in a direction in which the light R1 approaches the optical axis C2.
  • the reflection surface 22 is, for example, a total reflection surface.
  • the cross section of the reflecting surface 22 on a plane including the optical axis C2 is, for example, a concave shape when viewed from the light traveling inside the optical unit 2.
  • the cross section of the reflection surface 22 is, for example, a concave curved surface shape.
  • the shape of the reflecting surface 22 is not limited to that shown in the figure.
  • the reflecting surface 22 may have another shape such as a polygonal shape in which a plurality of flat surfaces are connected.
  • the polygonal shape can be a shape approximate to a curved surface shape.
  • the emission surface 24 emits the light R1 reflected by the reflection surface 22.
  • the emission surface 24 is located on the outer peripheral side of the emission surface 23 around the optical axis C2.
  • the emission surface 23 and the emission surface 24 form the same plane, for example. This same plane is the exit surface 25.
  • the emission surface 25 includes an emission surface 23 and an emission surface 24.
  • the emission surfaces 23 and 24 are the areas 23 and 24 of the emission surface 25. Note that a different step can be provided by providing a step or the like between the emission surface 23 and the emission surface 24.
  • the shape of the emitting surface 24 is not limited to that shown in the figure.
  • the emission surface 24 may have a concave shape, a convex shape, or a polygonal shape in which a plurality of flat surfaces are connected.
  • the central portion 20a and the peripheral portion 20b are integrally formed of the same material, for example. However, the central portion 20a and the peripheral portion 20b may be formed of different materials, for example.
  • the optical part 2 may be a combination of the central portion 20a and the peripheral portion 20b.
  • Optical part 2 is made of, for example, a transparent resin.
  • the material of the optical unit 2 is not limited to the transparent resin.
  • the material of the optical unit 2 may be a photorefractive material of another material that transmits light.
  • the photorefractive material is a material that refracts light.
  • the incident surface 21 is formed in the central portion 20a.
  • the light R1 that reaches the incident surface 21 is refracted at the incident surface 21. That is, the light R1 is deflected by the incident surface 21.
  • the light R1 refracted at the incident surface 21 travels toward the reflective surface 22.
  • the light R1 refracted at the incident surface 21 travels in a direction toward the reflecting surface 22.
  • the direction toward the reflecting surface 22 is such that as the light R1 advances, the distance from the optical axis C2 increases.
  • the light deflected by the incident surface 21 reaches the reflecting surface 22. However, a part of the light deflected by the entrance surface 21 reaches the exit surface 23 or the exit surface 24 directly.
  • the light R2a shown in FIG. 3, for example, is emitted from the emission surface 23.
  • the light R2c shown in FIG. 4 is emitted from the emission surface 23.
  • the light R2a and the light R2c are a part of the light R2 emitted from the optical unit 2.
  • the light R2a and the light R2c are light that is incident from the incident surface 21 and directly emitted from the emitting surface 23.
  • the light R2a and the light R2c reach the image forming area 31 of the image forming unit 3.
  • the light R2a is light in a state where the distance P is the distance P1. That is, the light R2a is light in a state where the projection device 100 has an illumination function.
  • the light R2c is light in a state where the distance P is the distance P2. That is, the light R2c is light in a state where the projection device 100 has a projection function.
  • the distance P is the distance from the light source unit 1 to the optical unit 2.
  • the distance P is the distance from the light emitting surface 11 of the light source unit 1 to the optical unit 2.
  • the light R2a and the light R2c are incident from the plane-shaped portion (that is, the surface 21b) formed at the +Z-axis side end of the incident surface 21.
  • This plane-shaped portion is, for example, a plane perpendicular to the optical axis C2.
  • the light R2a and the light R2c are lights that are not deflected by the incident surface 21 toward the reflecting surface 22.
  • the light R2b shown in FIG. 3, for example, is emitted from the emission surface 24.
  • the light R2d shown in FIG. 4 is emitted from the emission surface 24.
  • the light R2b and the light R2d are a part of the light R2 emitted from the optical unit 2.
  • the light R2b and the light R2d are light that enters from the incident surface 21, is reflected by the reflecting surface 22, and exits from the emitting surface 24.
  • the light R2b reaches the peripheral area 32 of the image forming unit 3.
  • the light R2b is light in a state where the distance P is the distance P1. That is, the light R2b is light in a state where the projection device 100 has an illumination function.
  • the light R2d reaches the image forming area 31 of the image forming unit 3.
  • the light R2d is light in a state where the distance P is the distance P2. That is, the light R2d is light in a state where the projection device 100 has a projection function.
  • the optical unit 2 is a single optical component.
  • the optical unit 2 may be configured by combining a plurality of optical components.
  • Image forming unit 3 converts incident light into image light.
  • the image forming unit 3 includes an image forming area 31 and a peripheral area 32.
  • the light R2 emitted from the optical unit 2 enters at least one of the image forming area 31 and the peripheral area 32.
  • the image forming unit 3 is, for example, an image forming component.
  • 6A and 6B are a side view and a front view schematically showing the outer appearance of the image forming unit 3 of the projection device 100.
  • the image forming area 31 forms an image.
  • the image forming area 31 converts the incident light R2 into image light.
  • the image formed in the image forming area 31 is projected by the optical unit 4.
  • the image 33 formed in the image forming area 31 corresponds to the image 72 projected in the target area 6.
  • the image 72 is a projection image of the image 33.
  • "Projection” is to transfer the shape of an object to some surface.
  • the "projected image” is an image that has been projected.
  • the surface on which the projected image is projected is the target area 6.
  • the image forming area 31 includes an intersection with the optical axis C2 of the optical unit 2.
  • the light R2 passes through the image forming area 31 and becomes image light.
  • a light transmitting area and a light shielding area are formed in the image forming area 31 in the image forming area 31, a light transmitting area and a light shielding area are formed.
  • An image 33 is formed in the image forming area 31 by the light transmitting area and the light shielding area. That is, the image forming area 31 transmits a part of the light R2 emitted from the optical unit 2. Further, the image forming area 31 blocks the other part of the light R2 emitted from the optical unit 2.
  • the incident light R2 is converted into image light by the image forming area 31.
  • the image light passes through the optical unit 4 and is projected onto the target area 6.
  • the image 72 is projected on the target area 6 by the projection of the image light.
  • the image forming area 31 is, for example, a liquid crystal element.
  • the liquid crystal element is also called a liquid crystal panel or a liquid crystal light valve.
  • the liquid crystal panel transmits a part of the incident light and blocks another part of the incident light by the polarization filter.
  • an image signal is input to the image forming unit 3.
  • the image signal is a signal including image information.
  • the image forming unit 3 forms an image 33 based on the image signal in the image forming area 31.
  • the liquid crystal panel can change the projected image 72 according to the input image signal. Further, the liquid crystal panel can make the projected image 72 a moving image.
  • a region including the image forming region 31 and the peripheral region 32 can be a liquid crystal element.
  • the region of the liquid crystal element corresponding to the peripheral region 32 transmits light when the illumination function is selected. Further, the region of the liquid crystal element corresponding to the peripheral region 32 can block light when the projection function is selected.
  • the image forming area 31 may be, for example, a light shielding plate including an area that blocks light.
  • the image forming area 31 may be a light blocking plate having an arrow-shaped opening. This opening allows light to pass through.
  • the light blocking plate may be formed of a light blocking film that blocks light.
  • the light shielding film is an example of a light shielding plate. In this case, the image 72 corresponding to the opening is projected.
  • the light shield plate is, for example, a metal plate such as stainless steel.
  • the light shielding plate may be composed of, for example, a base material such as glass and a light shielding film such as chromium or aluminum applied to the base material.
  • the baffle does not change the projected image 72.
  • the image forming unit 3 projects one type of image 72.
  • the image forming unit 3 can project an image 72 of any of a plurality of types of images by replacing a light blocking plate having a certain opening with a light blocking plate having another opening.
  • the light shielding plate may be composed of a rotating plate provided so as to rotate.
  • the rotary plate is a light blocking member including a plurality of images. In this case, by rotating the light shielding plate, any one of the plurality of types of images becomes the image 33 of the image forming area 31.
  • the image forming unit 3 can project the image 72 based on the selected image 33.
  • the image forming unit 3 may be, for example, a display element including a plurality of micromirrors.
  • This display element includes, for example, a plurality of micromirrors arranged two-dimensionally.
  • the image 33 is formed by tilting a plurality of micromirrors.
  • This display element is, for example, DLP (Digital Light Processing, registered trademark) or DMD (Digital Micromirror Device, registered trademark) using MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS Micro Electro Mechanical Systems
  • the display element using the micromirror can change the projected image 72 based on the image information. Further, when the image forming unit 3 employs a display element using a micromirror, the projected image 72 can be a moving image.
  • the projection device 100 increases the light R2 transmitted through the image forming area 31.
  • the light R2 transmitted through the image forming area 31 is, for example, the light R2c and the light R2d shown in FIG.
  • the peripheral area 32 is formed on the outer peripheral side of the image forming area 31 around the optical axis C2.
  • the peripheral area 32 is located on the peripheral side of the image forming area 31.
  • the peripheral region 32 transmits, for example, light.
  • the peripheral region 32 is formed of, for example, a light transmissive member.
  • the light transmissive member is a member that transmits light.
  • the peripheral region 32 does not necessarily have to be formed of a light transmissive member.
  • the peripheral region 32 may be a space through which light passes. That is, the image forming unit 3 may include only the image forming area 31.
  • the light R2 passes through the peripheral region 32 and becomes the illumination light 71.
  • the peripheral region 32 can change the light distribution of the transmitted light by providing a lens surface or the like.
  • the peripheral area 32 is made of, for example, glass or transparent resin.
  • the projection device 100 increases the light R2 transmitted through the peripheral region 32.
  • the light R2 transmitted through the peripheral region 32 is, for example, the light R2b shown in FIG.
  • the peripheral area 32 can also have a function as a holding unit that holds the image forming area 31. Therefore, the size or thickness of the peripheral region 32 may be set to a desired size and thickness. That is, the peripheral region 32 is not particularly limited as long as it is configured to transmit the light R2.
  • Optical unit 4 projects the incident light.
  • the optical unit 4 enters the light R3.
  • the light R3 includes light R31 and light R32.
  • the optical unit 4 converts the incident light R3 into light R4.
  • the light R4 includes at least one of illumination light and image light.
  • the light R4 includes light R4a and light R4b.
  • the optical unit 4 changes the traveling direction of the light R3 by at least one of refraction of light and reflection of light.
  • the optical unit 4 changes the traveling direction of the light R3 and emits the light R4.
  • the optical unit 4 is a light deflection unit.
  • the optical unit 4 is, for example, an optical component.
  • the optical unit 4 irradiates the target area 6 with the illumination light 71.
  • the optical unit 4 directs the light R4b that has passed through the peripheral region 32 of the image forming unit 3 to the target region 6.
  • the optical unit 4 deflects the light transmitted through the peripheral region 32 of the image forming unit 3 and directs the light toward the target region 6.
  • the light R4b is projected as the illumination light 71 on the target area 6.
  • the light R4b is projected on the target area 6.
  • the optical unit 4 projects the image 72 on the target region 6.
  • the optical unit 4 directs the light R4a that has passed through the image forming area 31 of the image forming unit 3 to the target area 6.
  • the optical unit 4 deflects the light transmitted through the image forming area 31 of the image forming unit 3 and directs the light toward the target area 6.
  • the light R4a is projected as an image 72 on the target area 6.
  • the light R4a is projected on the target area 6.
  • the light R4a is also called image light.
  • the optical unit 4 is also called a projection unit.
  • the optical axis of the optical unit 4 is indicated by C4.
  • the optical axis C2 and the optical axis C4 coincide with each other. That is, the optical axis C2 and the optical axis C4 are located on the same axis.
  • the optical unit 4 and the optical unit 2 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2. Further, the optical unit 4 and the optical unit 2 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
  • FIG. 7 is a diagram showing the optical unit 4 of the projection device 100 and a main path of light passing through the optical unit 4.
  • 8A and 8B are a side view and a front view schematically showing the outer appearance of the optical unit 4 of the projection device 100.
  • the optical unit 4 includes, for example, refracting surfaces 41, 42, 44 and a reflecting surface 43.
  • the optical unit 4 is, for example, a lens.
  • the reflection surface 43 is, for example, a total reflection surface.
  • the optical unit 4 has a central portion 40a and a peripheral portion 40b.
  • the central portion 40a is a part of the optical unit 4.
  • the optical axis C4 of the optical unit 4 passes through the central portion 40a. That is, the optical axis C4 of the optical unit 4 exists within the central portion 40a.
  • the central portion 40a is the central portion of the optical unit 4 centered on the optical axis C4.
  • the central portion 40a is also called the second central portion.
  • the optical axis of the central portion 40a is the optical axis C4.
  • the central portion 40a projects image light.
  • the central portion 40 a projects the image light emitted from the image forming area 31 of the image forming section 3 onto the target area 6.
  • the central portion 40 a projects the image 33 formed in the image forming area 31 of the image forming unit 3 onto the target area 6 as the image 72.
  • the central portion 40a is, for example, a projection lens.
  • the central portion 40a is, for example, a convex lens.
  • the central portion 40a includes, for example, a convex lens.
  • the central portion 40a may be a biconvex lens or a plano-convex lens.
  • the central portion 40a may be, for example, a cylindrical lens or a toroidal lens.
  • the central portion 40a includes an entrance surface 41 and an exit surface 44.
  • the incident surface 41 receives the light R3.
  • the emission surface 44 emits the light R4.
  • the image 72 projected on the target area 6 is an image based on the image 33 formed on the image forming area 31.
  • the optical unit 4 enlarges the image 33 formed in the image forming area 31 and projects it on the target area 6.
  • the projected image 72 is an enlargement of the image 33 formed in the image forming area 31. Further, the projected image 72 is the image formed in the image forming area 31 with the vertical and horizontal directions reversed.
  • the peripheral portion 40b is another part of the optical unit 4.
  • the peripheral portion 40b is a part of the optical unit 4 different from the central portion 40a.
  • the peripheral portion 40b is formed on the outer peripheral side of the central portion 40a with the optical axis C4 as the center. That is, the peripheral portion 40b is arranged outside the center portion 40a in the radial direction with the optical axis C4 as the center.
  • the peripheral portion 40b is also referred to as a second peripheral portion.
  • the optical axis of the peripheral portion 40b is the optical axis C4.
  • the peripheral portion 40b emits the light R32 as the illumination light 71.
  • the peripheral portion 40b irradiates the target region 6 with the light R32 as the illumination light 71.
  • the light R32 is light emitted from the peripheral region 32 on the image forming unit 3.
  • the peripheral portion 40b has an incident surface 42.
  • the peripheral portion 40b includes a reflective surface 43.
  • the peripheral portion 40b includes an emission surface 45.
  • the incident surface 42 is formed on the outer peripheral side of the incident surface 41 centered on the optical axis C4.
  • the outer peripheral end 42a of the incident surface 42 is located on the ⁇ Z axis direction side of the inner peripheral end 42b of the incident surface 42.
  • the outer peripheral end 42 a of the incident surface 42 is located closer to the image forming unit 3 side than the inner peripheral end 42 b of the incident surface 42.
  • the incident surface 42 is in the shape of a rotating body with the optical axis C4 as the central axis.
  • the shape of the incident surface 42 is not limited to that shown in the figure.
  • the incident surface 42 may have a curved surface shape or a polygonal shape in which a plurality of flat surfaces are connected.
  • An outer end 41 a of the incident surface 41 is connected to an inner end 42 b of the incident surface 42.
  • the reflecting surface 43 is the outer peripheral surface of the optical unit 4.
  • the cross section of the reflecting surface 43 is, for example, a concave shape when viewed from the light traveling inside the optical unit 4.
  • the cross section of the reflecting surface 43 has, for example, a curved shape.
  • the reflecting surface 43 has a rotating body shape with the optical axis C4 as the central axis.
  • the outer peripheral side end 43 a of the reflecting surface 43 is connected to the outer peripheral side end 45 a of the emitting surface 45.
  • the shape of the reflecting surface 43 is not limited to that shown in the figure.
  • the reflecting surface 43 may have another shape such as a polygonal shape in which a plurality of flat surfaces are connected.
  • the polygonal shape can be a shape approximate to a curved surface shape.
  • the emission surface 45 is formed on the outer peripheral side of the emission surface 44 centered on the optical axis C4. In the first embodiment, the emission surface 45 is located on the +Z axis direction side of the emission surface 44.
  • the connection surface 46 connects the outer peripheral side end 44 a of the emitting surface 44 and the inner peripheral side end 45 b of the emitting surface 45.
  • the emission surface 45 is, for example, a surface perpendicular to the optical axis C4.
  • the shape of the emitting surface 45 is not limited to that shown in the figure.
  • the emission surface 45 may have a curved surface shape or a polygonal shape in which a plurality of flat surfaces are connected.
  • the central portion 40a and the peripheral portion 40b are integrally formed of the same material, for example.
  • the optical part 4 may be one in which the central portion 40a and the peripheral portion 40b are joined.
  • the optical part 4 is made of, for example, a transparent resin.
  • the material of the optical unit 4 is not limited to the transparent resin.
  • the material of the optical unit 4 may be a photorefractive material of another material that transmits light.
  • the optical unit 4 is a single optical component.
  • the optical unit 4 may be composed of a combination of a plurality of optical components.
  • the moving unit 5 moves a member of the optical system.
  • the moving unit 5 changes the distance P from the light source unit 1 to the optical unit 2.
  • the moving unit 5 changes the distance P in the optical axis C1 direction between the light source unit 1 and the optical unit 2.
  • the optical axis C1 direction is, for example, the Z-axis direction.
  • the moving unit 5 changes the distance P in the optical axis C2 direction between the light source unit 1 and the optical unit 2.
  • the optical axis C2 direction is, for example, the Z-axis direction.
  • the moving unit 5 switches the state of the projection device 100 to the state of the illumination function or the state of the projection function.
  • the moving unit 5 is, for example, a moving component.
  • the moving unit 5 is a component that switches the state of the projection device 100 to the state of the illumination function or the state of the projection function.
  • the moving unit 5 moves at least one of the light source unit 1 and the optical unit 2. In the first embodiment, the moving unit 5 moves the optical unit 2. The moving unit 5 moves the optical unit 2 with respect to the light source unit 1. The moving unit 5 moves the optical unit 2 in a direction parallel to the optical axis C1. The moving unit 5 moves the optical unit 2 in a direction parallel to the optical axis C2. In FIG. 1, the moving unit 5 moves the optical unit 2 in the Z-axis direction.
  • the moving unit 5 may move the light source unit 1 instead of the optical unit 2 or in addition to the optical unit 2.
  • the moving unit 5 moves the light source unit 1.
  • the moving unit 5 moves the light source unit 1 in a direction parallel to the optical axis C1.
  • the moving unit 5 moves the light source unit 1 in a direction parallel to the optical axis C2.
  • the moving unit 5 moves the light source unit 1 with respect to the optical unit 2.
  • the moving unit 5 moves at least one of the light source unit 1 and the optical unit 2.
  • the moving unit 5 changes the traveling direction of the light R2 emitted from the optical unit 2.
  • the moving unit 5 is an example of a changing unit that changes the traveling direction of the light R2 emitted from the optical unit 2.
  • FIG 1 and 3 show a state in which the optical unit 2 of the projection device 100 is in the initial position. At this time, the projection device 100 functions as a lighting device. At this time, the distance P from the light source unit 1 to the optical unit 2 is P1.
  • 2 and 4 show a state in which the optical unit 2 of the projection device 100 is in another position.
  • 2 and 4 show a state in which the optical unit 2 of the projection device 100 is at a position different from the initial position.
  • the projection device 100 functions as a projection device.
  • the distance P from the light source unit 1 to the optical unit 2 is P2.
  • the distance P2 is longer than the distance P1 (P2>P1). That is, the movement amount of the optical unit 2 is a value (P2-P1) obtained by subtracting the distance P1 from the distance P2.
  • the moving unit 5 includes a support mechanism 51 and a driving force generating unit 52.
  • the support mechanism 51 supports the optical unit 2.
  • the support mechanism 51 is an example of a support part. When moving the optical unit 2, the support mechanism 51 may support the light source unit 1 instead of the optical unit 2.
  • the driving force generation unit 52 provides the optical unit 2 with linear movement.
  • the driving force generator 52 provides a linear motion to the optical unit 2 via the support mechanism 51.
  • the driving force generator 52 is, for example, a driving mechanism using a feed screw.
  • a feed screw is a mechanical component that converts a rotational movement into a linear movement by using a screw shaft and a nut.
  • the screw shaft is also called a lead screw.
  • the driving force generator 52 includes, for example, a screw shaft and a nut portion.
  • the optical section 2 is supported by the nut section via the support mechanism 51, for example.
  • the nut portion meshes with the screw shaft.
  • the moving unit 5 rotates the screw shaft.
  • a motor rotates a screw shaft.
  • the nut portion moves in the longitudinal direction of the screw shaft as the screw shaft rotates.
  • the driving force generation unit 52 can employ a driving mechanism using another magnetic force. Further, the moving unit 5 may employ a rack and pinion mechanism instead of the feed screw mechanism.
  • the distance P is the distance from the light source unit 1 to the optical unit 2.
  • FIG. 1 shows a state in which the distance P is the distance P1.
  • FIG. 2 shows a state in which the distance P is the distance P2.
  • the light quantity Q1c is the light quantity of the light R2 incident on the image forming area 31 when the distance P is the distance P1.
  • the light quantity Q2c is the light quantity of the light R2 incident on the image forming area 31 when the distance P is the distance P2.
  • the light quantity Q1c is smaller than the light quantity Q2c.
  • the amount of the light R2 incident on the image forming area 31 is larger than that in the case of the distance P1.
  • the image 72 projected on the target area 6 is displayed brighter than in the case of FIG.
  • the light quantity Q1p is the light quantity of the light R2 incident on the peripheral region 32 when the distance P is the distance P1.
  • the light amount Q2p is the light amount of the light R2 incident on the peripheral region 32 when the distance P is the distance P2.
  • the light quantity Q1p is larger than the light quantity Q2p.
  • the illumination light 71 projected on the target area 6 is brighter than in the case of FIG. Further, the projected image 72 is displayed in an unclear state with low illuminance.
  • the projector 100 changes the ratio of the amount of light R2 entering the image forming area 31 and the amount of light R2 entering the peripheral area 32 by changing the light distribution.
  • the light source drive unit 81 is, for example, a circuit that drives the light source unit 1.
  • the light source drive unit 81 turns on or off the light source unit 1 or changes the light amount.
  • the movement control unit 82 is, for example, a circuit that drives the movement unit 5.
  • the movement control unit 82 moves the optical unit 2 via the moving unit 5.
  • the display control unit 83 is, for example, a circuit that drives the image forming area 31 of the image forming unit 3.
  • the display control unit 83 displays an image in the image forming area 31, for example.
  • the display control unit 83 causes the image forming area 31 to display the image 33 based on a signal including image information.
  • the display control unit 83 rotates the rotating plate to select the image 33 to be displayed.
  • the image forming area 31 is a light blocking plate that displays one type of image 33, the projection device 100 does not have to include the display control unit 83.
  • the control unit 84 is, for example, a circuit that controls the entire device.
  • the control unit 84 drives at least one of the light source drive unit 81, the movement control unit 82, the display control unit 83, and the control unit 84.
  • the control unit 84 includes, for example, a memory and a processor.
  • the memory is a storage unit that stores a program.
  • the processor is an arithmetic unit that executes a program.
  • the user may manually move the optical unit 2 supported by the moving unit 5.
  • the projection device 100 may not include the movement control unit 82.
  • FIG. 3 shows a state of the illumination function of the projection device 100.
  • the optical unit 2 In the state of the illumination function, for example, the optical unit 2 is in the initial position. At this time, the distance P from the light source unit 1 to the optical unit 2 is P1.
  • the light R2b is condensed between the optical section 2 and the image forming section 3.
  • the light R1 emitted from the light source unit 1 reaches the incident surface 21 of the optical unit 2.
  • the light R1 that reaches the incident surface 21 is refracted by the incident surface 21. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 21.
  • the light R1 is, for example, deflected and travels in a direction away from the optical axis C2.
  • a part of the light R1 deflected by the entrance surface 21 passes through the central portion 20a and exits from the exit surface 23. That is, the light R2a is emitted from the emission surface 23.
  • the light R2a emitted from the emission surface 23 travels toward the image forming area 31.
  • the light R2a emitted from the central portion 20a enters the image forming area 31 of the image forming unit 3. That is, the light R2a enters the image forming area 31.
  • the light R2a is converted into image light by the image forming area 31.
  • the light R1 incident on the incident surface 21b is emitted from the emitting surface 23 as the light R2a.
  • the incident surface 21b is a plane perpendicular to the optical axis C2, the deflection amount of the light R1 is small.
  • the reflecting surface 22 is an outer peripheral surface of the optical unit 2.
  • the light R2b reflected by the reflecting surface 22 travels toward the emitting surface 24.
  • the reflection of the light R2b on the reflection surface 22 is, for example, total reflection.
  • the light R1 incident on the incident surface 21a reaches the reflecting surface 22.
  • Total reflection refers to the effect that incident light is reflected without passing through the boundary surface.
  • the boundary surface is the reflecting surface 22.
  • peripheral portion 20b is shown separately from the peripheral portions 20b 1 and 20b 2 for ease of explanation.
  • peripheral region 32 of the image forming unit 3 is shown separately from the peripheral regions 32a and 32b for ease of description.
  • the light R2b reflected by the reflecting surface 22 is emitted from the peripheral portion 20b of the optical unit 2.
  • the light R2b reflected by the reflecting surface 22 is emitted from the emitting surface 24.
  • the light R2b emitted from the peripheral portion 20b of the optical unit 2 reaches the peripheral region 32 of the image forming unit 3 on the opposite side of the optical axis C2.
  • the light R2b emitted from the peripheral portion 20b 1 shown in the upper side of FIG. 3 to reach the peripheral region 32b shown on the lower side of FIG.
  • light R2b emitted from the peripheral portion 20b 2 shown on the lower side of FIG. 3 to reach the peripheral region 32a shown in the upper side of FIG.
  • the light R2b emitted from the peripheral portion 20b reaches the peripheral region 32.
  • the light R2b emitted from the peripheral portion 20b reaches the peripheral area 32 on the opposite side across the optical axis C2.
  • the light R2 reflected by the reflecting surface 22 reaches the peripheral region 32 located on the opposite side of the reflected reflecting surface 22 with respect to the optical axis C2.
  • the light that has passed through the peripheral region 32 is projected onto the target region 6 as the illumination light 71 by the optical unit 4.
  • the reflecting surface 22 of the optical unit 2 may be a mirror surface.
  • the mirror surface is, for example, a surface formed by vapor deposition of a metal for a mirror on the surface of the base material.
  • the optical part 2 does not need to be a refractive material.
  • the optical unit 2 is, for example, a tubular member having a hollow inside.
  • the tubular shape is, for example, a shape formed by the side surface of a truncated cone.
  • the mirror surface is formed inside the cylindrical side surface.
  • the reflection surface 22 of the optical unit 2 be a total reflection surface. This is because the total reflection surface has a higher reflectance than the mirror surface and can improve the light utilization efficiency.
  • the light R2a emitted from the optical unit 2 is unnecessary light. This is because the light R2a is converted into image light by the image forming area 31 of the image forming unit 3.
  • “Unnecessary light” is light that is unnecessary for the product.
  • the light distribution in the state of the illumination function is mainly formed by the light R2b. Therefore, it is desirable that the light amount of the light R2a toward the image forming area 31 is small.
  • the image forming area 31 can change the amount of light transmission like a liquid crystal element, the image forming area 31 may be set in a state of high light transmittance and the light R2a may be used as illumination light. ..
  • FIG. 4 shows a state of the projection function of the projection apparatus 100.
  • the optical unit 2 is at the position moved in the +Z-axis direction from the initial position.
  • the distance P from the light source unit 1 to the optical unit 2 is P2.
  • the distance P2 is longer than the distance P1 (P2>P1).
  • the light R2d is condensed on the image forming unit 3.
  • the distance from the optical part 2 of the light R2d to the condensing position is longer than the distance from the optical part 2 of the light R2b to the condensing position. This is because the distance P becomes P2 and the angle of incidence of the light R1 on the reflecting surface 22 becomes large.
  • the light R1 emitted from the light source unit 1 reaches the incident surface 21 of the central portion 20a of the optical unit 2.
  • the light R1 that reaches the incident surface 21 is refracted by the incident surface 21. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 21.
  • the light R1 is, for example, deflected and travels in a direction away from the optical axis C2.
  • a part of the light R1 deflected by the entrance surface 21 passes through the central portion 20a and exits from the exit surface 23. That is, the light R2c is emitted from the emission surface 23.
  • the light R2c emitted from the emission surface 23 travels toward the image forming area 31.
  • the light R2c emitted from the central portion 20a enters the image forming area 31 of the image forming unit 3. That is, the light R2c emitted from the emission surface 23 enters the image forming area 31.
  • the light R2c is converted into image light by the image forming area 31.
  • the light R1 incident on the incident surface 21b is emitted from the emitting surface 23 as the light R2c.
  • the incident surface 21b is a plane perpendicular to the optical axis C2, the deflection amount of the light R1 is small.
  • the route of the light R2c is the same as the route of the light R2a in FIG.
  • the light R2d is reflected by the reflecting surface 22.
  • the light R2d reflected by the reflecting surface 22 travels toward the emitting surface 24.
  • the reflection of the light R2d on the reflection surface 22 is, for example, total reflection.
  • the light R1 incident on the incident surface 21a reaches the reflecting surface 22.
  • the light R2d reflected by the reflecting surface 22 is emitted from the peripheral portion 20b of the optical unit 2.
  • the light R2d reflected by the reflecting surface 22 is emitted from the emitting surface 24.
  • the light R2d emitted from the emission surface 24 travels toward the image forming area 31.
  • the light R2d emitted from the peripheral portion 20b enters the image forming area 31 of the image forming unit 3. That is, the light R2d enters the image forming area 31.
  • the light R2d is converted into image light by the image forming area 31.
  • the path of the light R2d is different from the path of the light R2b in FIG.
  • the path of the light R2d is different from the path of the light R2b in that the light R2d reaches the image forming area 31 of the image forming unit 3.
  • the light R2d is emitted from the peripheral portion 20b of the optical unit 2. That is, in FIG. 4, the light R2d emitted from the peripheral portion 20b 1 of the optical unit 2 reaches the image forming area 31 of the image forming unit 3. Similarly, in FIG. 4, the light R2d emitted from the peripheral portion 20b 2 of the optical unit 2 reaches the image forming area 31 of the image forming section 3.
  • the light R2d and the light R2c are converted into image light by the image forming area 31.
  • the image light is projected by the optical unit 4.
  • the image 72 is projected onto the target area 6.
  • the light R2d is condensed on the image forming unit 3 by the optical unit 2, for example.
  • the light R2c does not necessarily need to be condensed on the image forming unit 3.
  • the light R2d and the light R2c may be applied to the image forming area 31.
  • FIG. 7 shows main paths of light passing through the optical unit 4 of the projection device 100.
  • FIG. 7 is a diagram showing the relationship between the optical unit 4, the image forming unit 3, and the target area 6 of the projection device 100.
  • both the light R4a and the light R4b are shown.
  • the light R4a is light in a state where the projection device 100 has a projection function.
  • the light R4b is light with which the projection device 100 is in the illumination function.
  • the light R32 is light emitted from the peripheral region 32. Then, the light R32 is incident on the peripheral portion 40b of the optical unit 4. That is, when the projection device 100 is in the illumination function state, the light R32 follows the light path shown in FIG. The light R32 indicates the main light emitted from the peripheral region 32. Therefore, not all the light emitted from the image forming unit 3 follows the same light path as the light R32.
  • the peripheral portion 40b includes an entrance surface 42, a reflection surface 43, and an exit surface 45.
  • the light R32 is incident on the incident surface 42 of the optical unit 4.
  • the light R32 incident on the incident surface 42 is refracted. Further, the light R32 incident from the incident surface 42 is reflected by the reflecting surface 43. Then, the light R32 reflected by the reflecting surface 43 is emitted from the peripheral portion 40b.
  • the light R32 reflected by the reflecting surface 43 is emitted from the emitting surface 45.
  • the light R32 reflected by the reflecting surface 43 is emitted as the light R4b.
  • the light R4b is applied to the area of the illumination light 71 on the target area 6.
  • the light R31 is incident on the central portion 40a of the optical unit 4.
  • the light R31 is light emitted from the image forming area 31. That is, the light R31 is image light.
  • the light R31 follows the light path shown in FIG.
  • the light R31 indicates the main light emitted from the image forming area 31. Therefore, not all light emitted from the image forming area 31 follows the same light path as the light R31.
  • the central portion 40a includes an entrance surface 41 and an exit surface 44.
  • the light R31 is incident on the incident surface 41 of the optical unit 4.
  • the light R31 incident on the incident surface 41 is refracted.
  • the light R31 incident from the incident surface 41 is emitted from the central portion 40a.
  • the light R31 incident from the incident surface 41 is emitted from the emission surface 44.
  • the light emitted from the emission surface 44 is the light R4a.
  • the light R4a is applied to the area of the image 72 on the target area 6.
  • the image forming area 31 and the target area 6 are optically conjugate with each other. Further, with the light R4b, the image forming area 31 and the target area 6 are not optically conjugate with each other.
  • “Optically conjugated” refers to a relationship in which light emitted from one point forms an image on another point. That is, as shown in FIG. 7, the light R31 emitted from the image forming area 31 forms an image on the target area 6. As a result, the image 33 formed in the image forming area 31 is projected as the image 72 on the target area 6. At this time, the image 72 is inverted and enlarged and projected onto the target area 6.
  • the optical unit 4 emits the illumination light 71 in the state of the illumination function. Further, the optical unit 4 projects the image 72 in the state of the projection function.
  • the projection of the illumination light 71 and the projection of the image 72 can be switched with a simple configuration. it can.
  • FIG. 9 is a diagram showing a main configuration and a main path of light passing through the optical unit 220 in the state of the illumination function of the projection device according to the second embodiment of the present invention.
  • FIG. 10 is a diagram showing a main configuration and a main path of light passing through the optical unit 220 in a projection function state of the projection device according to the second embodiment.
  • 9 and 10 the same or corresponding components as those shown in FIGS. 3 and 4 are designated by the same reference numerals as those shown in FIGS. 3 and 4, and the description thereof is omitted.
  • the projection apparatus according to the second embodiment differs from the projection apparatus 100 according to the first embodiment in the shape of the optical unit 220.
  • the optical unit 220 has a convex lens shape.
  • the optical unit 220 is, for example, a convex lens.
  • the optical unit 220 condenses the light on the optical axis C2.
  • a plano-convex lens is shown as the optical unit 220.
  • the optical unit 220 may be a biconvex lens.
  • the optical unit 220 may include a plurality of lenses.
  • the optical unit 220 may be formed by combining a plurality of lenses.
  • the optical section 220 has an entrance surface 221.
  • the optical section 220 includes an emission surface 222.
  • the entrance surface 221 has a planar shape.
  • the emission surface 222 has a convex shape.
  • the optical section 220 includes a central portion 220a and a peripheral portion 220b.
  • the central portion 220a is a part of the optical unit 220.
  • the optical axis C2 of the optical section 220 passes through the central portion 220a. That is, the optical axis C2 of the optical section 220 exists within the central portion 220a.
  • the central portion 220a is a central portion of the optical section 220 centered on the optical axis C2.
  • the central portion 220a is also called the first central portion.
  • the central portion 220a includes a convex lens.
  • the peripheral part 220b is another part of the optical part 220. That is, the peripheral portion 220b is a part of the optical unit 220 that is different from the central portion 220a.
  • the peripheral portion 220b is formed on the outer peripheral side of the central portion 220a with the optical axis C2 as the center.
  • the peripheral portion 220b is a portion inside the outer peripheral surface of the optical portion 220 and outside the central portion 220a.
  • the peripheral portion 220b is also referred to as a first peripheral portion.
  • the peripheral portion 220b includes a convex lens.
  • FIG. 9 shows a state in which the optical unit 220 of the projection device is in the initial position.
  • FIG. 9 shows a case where the projection device is in the state of the illumination function.
  • the distance P from the light source unit 1 to the optical unit 220 is P1.
  • the position of the focal point F of the optical unit 220 is on the ⁇ Z axis direction side of the light source unit 1.
  • the position of the focal point F of the optical unit 220 is on the ⁇ Z axis direction side of the light emitting surface 11.
  • the distance P1 from the optical section 220 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 220.
  • the focal length f1 is the distance from the incident surface 221 of the optical unit 220 to the focus F.
  • the light R1 emitted from the light source unit 1 is refracted by the incident surface 221 of the optical unit 220. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 221.
  • the light R1 deflected by the incident surface 221 passes through the optical unit 220.
  • the light R2 that has passed through the optical unit 220 is emitted from the emission surface 222.
  • the light R2 emitted from the emission surface 222 is divergent light.
  • the light R2a emitted from the central portion 220a travels toward the image forming area 31 of the image forming unit 3.
  • the light R2a emitted from the central portion 220a enters the image forming area 31.
  • the light R2a emitted from the emission surface 222 enters the image forming area 31.
  • the light R2a passing through the image forming area 31 becomes image light.
  • the light R2b emitted from the peripheral portion 220b travels toward the peripheral region 32 of the image forming unit 3.
  • the light R2b emitted from the emission surface 222 enters the peripheral region 32.
  • the light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
  • FIG. 10 shows a state in which the optical unit 220 of the projection device is at a position different from the initial position.
  • FIG. 10 shows a case where the projection device is in the projection function.
  • the distance P from the light source unit 1 to the optical unit 220 is P2.
  • the distance P2 is longer than the distance P1 (P2>P1).
  • the position of the focus F of the optical section 220 is between the light source section 1 and the optical section 220.
  • the position of the focal point F of the optical unit 220 is between the light emitting surface 11 of the light source unit 1 and the optical unit 220.
  • the distance P2 from the optical section 220 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 220.
  • the optical unit 220 moves in the +Z axis direction as compared with the state of the illumination function.
  • the light R1 emitted from the light source unit 1 is refracted by the incident surface 221 of the optical unit 220. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 221. The light R1 deflected by the incident surface 221 passes through the optical unit 220. The light R2 that has passed through the optical unit 220 is emitted from the emission surface 222. The light R2 emitted from the emission surface 222 is convergent light.
  • the light R2c emitted from the central portion 220a travels toward the image forming area 31 of the image forming unit 3.
  • the light R2c emitted from the central portion 220a enters the image forming area 31.
  • the light R2c emitted from the emission surface 222 enters the image forming area 31.
  • the light R2c passing through the image forming area 31 becomes image light.
  • the light R2d emitted from the peripheral portion 220b travels toward the image forming area 31 of the image forming unit 3.
  • the light R2d emitted from the peripheral portion 220b enters the image forming area 31.
  • the light R2d emitted from the emission surface 222 enters the image forming area 31.
  • the light R2d passing through the image forming area 31 becomes image light.
  • the projection device can switch between illumination light projection and image projection with a simple configuration.
  • the projection apparatus according to the second embodiment is the same as the projection apparatus 100 according to the first embodiment except for the points described above.
  • FIG. 11 is a diagram showing a main configuration and a main path of light passing through the optical unit 230 in the state of the illumination function of the projection device according to the third embodiment of the present invention.
  • FIG. 12 is a diagram showing a main configuration and a main path of light passing through the optical unit 230 in a projection function state of the projection device according to the third embodiment. 11 and 12, constituent elements that are the same as or correspond to the constituent elements shown in FIGS. 9 and 10 are given the same reference numerals as those shown in FIGS. 9 and 10, and description thereof is omitted.
  • the projection apparatus according to the third embodiment differs from the projection apparatus according to the second embodiment in the shape of the optical unit 230.
  • the optical unit 230 has a Fresnel lens shape.
  • the optical section 230 includes a Fresnel lens shape.
  • the optical section 230 has the same performance as the optical section 220.
  • Fresnel lenses are a series of grooves that replace the curved surface of an optical lens. These grooves act as refracting surfaces individually, and for example, bend the optical paths of parallel rays to collect light at the focal position.
  • the shape of the mountain formed by the groove will be referred to as a prism.
  • the surface forming the prism is also called a prism surface.
  • the prism shown in the following embodiments includes a shape in which a lens-shaped prism surface is replaced with a surface parallel to a plane in contact with the lens-shaped prism surface. That is, the prism of the Fresnel lens includes a prism in which both the prism surface on the optical axis side and the prism surface on the peripheral side are flat.
  • the Fresnel lens prism includes a prism whose two surfaces are flat.
  • the optical unit 230 for example, a prism having two flat surfaces can be arranged around the lens.
  • the optical unit 220 may include a plurality of Fresnel lenses.
  • the optical unit 220 may be formed by a combination of optical components in which prisms are arranged around a plurality of lenses.
  • the optical section 230 has an entrance surface 231.
  • the optical section 230 includes emission surfaces 232 and 233.
  • the emission surface 233 is the emission surface of the central portion 230a.
  • the emission surface 233 has the shape of a lens surface.
  • the emission surface 232 is an emission surface of the peripheral portion 230b.
  • the emission surface 232 has a Fresnel shape.
  • the emission surface 232 has a prism shape.
  • the entrance surface 231 has a planar shape. Further, the emission surfaces 232 and 233 have a convex shape.
  • the optical section 230 includes a central portion 230a and a peripheral portion 230b.
  • the central part 230a is a part of the optical part 230.
  • the optical axis C2 of the optical section 230 passes through the central portion 230a. That is, the optical axis C2 of the optical section 230 exists within the central portion 230a.
  • the central portion 230a is the central portion of the optical section 230 centered on the optical axis C2.
  • the central portion 230a is also called the first central portion.
  • the central portion 230a is, for example, a convex lens.
  • the central portion 230a collects light.
  • the central portion 230a has an emission surface 233.
  • the emission surface 233 has, for example, a convex shape.
  • the convex structure of the emission surface 233 may be provided on the incident surface 231 side instead of the emission surface 233.
  • the convex structure may be provided on the incident surface 231 side in addition to the emission surface 233.
  • the peripheral part 230b is another part of the optical part 230. That is, the peripheral portion 230b is a part of the optical unit 230 different from the central portion 230a.
  • the peripheral portion 230b is formed on the outer peripheral side of the central portion 230a with the optical axis C2 as the center.
  • the peripheral portion 230b is a portion inside the outer peripheral surface of the optical portion 230 and outside the central portion 230a.
  • the peripheral portion 230b is also referred to as a first peripheral portion.
  • the peripheral portion 230b is, for example, a Fresnel lens.
  • the peripheral portion 230b is, for example, a prism.
  • the peripheral portion 230b collects light.
  • the peripheral portion 230b includes an emission surface 232.
  • the emission surface 232 includes a plurality of prism shapes.
  • the prism shape is, for example, an annular shape when viewed from the Z-axis direction.
  • the plurality of prism shapes are arranged concentrically when viewed from the Z-axis direction.
  • the optical unit 230 may have a prism shape on the incident surface 231.
  • the optical unit 230 may have a Fresnel shape on the incident surface 231.
  • the optical unit 230 may be a combination of a plurality of lenses having a prism shape.
  • the optical unit 230 may be a combination of a plurality of lenses having a Fresnel shape.
  • FIG. 11 shows a state in which the optical unit 230 of the projection device is in the initial position.
  • FIG. 11 shows a case where the projection device is in the state of the illumination function.
  • the distance P from the light source unit 1 to the optical unit 230 is P1.
  • the position of the focal point F of the optical unit 230 is on the ⁇ Z axis direction side of the light source unit 1.
  • the position of the focus F of the optical unit 230 is on the ⁇ Z axis direction side of the light emitting surface 11.
  • the distance P1 from the optical section 230 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 230.
  • the focal length f1 is the distance from the incident surface 231 of the optical unit 230 to the focus F.
  • the light R1 emitted from the light source unit 1 is refracted by the incident surface 231 of the optical unit 230. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 231.
  • the light R1 deflected by the incident surface 231 passes through the optical unit 230.
  • the light R2 that has passed through the optical unit 230 is emitted from the emission surfaces 232 and 233.
  • the light R2 emitted from the emission surfaces 232 and 233 is divergent light.
  • the light R2a emitted from the central portion 230a travels toward the image forming area 31 of the image forming unit 3.
  • the light R2a emitted from the central portion 230a enters the image forming area 31.
  • the light R2a emitted from the emission surface 233 enters the image forming area 31.
  • the light R2a passing through the image forming area 31 becomes image light.
  • the light R2b emitted from the peripheral portion 230b travels toward the peripheral region 32 of the image forming unit 3.
  • the light R2b emitted from the emission surface 232 enters the peripheral region 32.
  • the light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
  • FIG. 12 shows a state in which the optical unit 230 of the projection device is in a position different from the initial position.
  • FIG. 12 shows a case where the projection device is in the projection function.
  • the distance P from the light source unit 1 to the optical unit 230 is P2.
  • the distance P2 is longer than the distance P1 (P2>P1).
  • the position of the focus F of the optical section 230 is between the light source section 1 and the optical section 230.
  • the position of the focus F of the optical unit 230 is between the light emitting surface 11 of the light source unit 1 and the optical unit 230.
  • the distance P2 from the optical section 230 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 230.
  • the optical unit 230 moves in the +Z axis direction as compared with the state of the illumination function.
  • the light R1 emitted from the light source unit 1 is refracted at the incident surface 231 of the optical unit 230. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 231. The light R1 deflected by the incident surface 231 passes through the optical unit 230. The light R2 that has passed through the optical unit 230 is emitted from the emission surfaces 232 and 233. The light R2 emitted from the emission surfaces 232 and 233 is convergent light.
  • the light R2c emitted from the central portion 230a travels toward the image forming area 31 of the image forming unit 3.
  • the light R2c emitted from the central portion 230a enters the image forming area 31.
  • the light R2c emitted from the emission surface 233 enters the image forming area 31.
  • the light R2c passing through the image forming area 31 becomes image light.
  • the light R2d emitted from the peripheral portion 230b travels toward the image forming area 31 of the image forming unit 3.
  • the light R2d emitted from the peripheral portion 230b enters the image forming area 31.
  • the light R2d emitted from the emission surface 232 enters the image forming area 31.
  • the light R2d passing through the image forming area 31 becomes image light.
  • the projection device As described above, according to the projection device according to the third embodiment, it is possible to switch between illumination light projection and image projection with a simple configuration.
  • the projection apparatus according to the third embodiment is the same as the projection apparatus 100 according to the first embodiment or the projection apparatus according to the second embodiment, except for the points described above.
  • FIG. 13 is a diagram showing a main configuration and a main path of light passing through the optical unit 240 in the state of the illumination function of the projection device according to the fourth embodiment of the present invention.
  • FIG. 14 is a diagram showing a main configuration and a main path of light passing through the optical section 240 in a projection function state of the projection device according to the fourth embodiment. 13 and 14, components that are the same as or correspond to the components shown in FIGS. 9 and 10 are given the same reference numerals as those shown in FIGS. 9 and 10, and description thereof is omitted.
  • the projection apparatus according to the fourth embodiment differs from the projection apparatus according to the second embodiment in the shape of the optical section 240. That is, the projection apparatus according to the fourth embodiment differs from the projection apparatus according to the second embodiment in that the optical section 240 includes the light blocking section 243.
  • the optical unit 240 has the same convex lens shape as the optical unit 220. Therefore, regarding the shape of the convex lens, the description of the optical unit 240 will be used instead of the description of the optical unit 220.
  • the components 240a, 240b, 241, 242 correspond to the components 220a, 220b, 221, 222, respectively.
  • the optical section 240 includes a light shielding section 243 on the side of the emission surface 242.
  • the central portion 240a includes a light shielding portion 243 on the side of the emission surface 242.
  • the light shield 243 is a member that absorbs light.
  • the light shield 243 is a member that reflects light.
  • the light blocking unit 243 has a function of reducing unnecessary light that enters the image forming area 31 in the state of the illumination function. That is, the light shielding unit 243 reduces the amount of unnecessary light in the state of the illumination function.
  • FIG. 13 shows a state in which the optical unit 240 of the projection device is in the initial position.
  • FIG. 13 shows a case where the projection device is in the illumination function.
  • the distance P from the light source unit 1 to the optical unit 240 is P1.
  • the position of the focus F of the optical section 240 is on the ⁇ Z axis direction side of the light source section 1.
  • the position of the focal point F of the optical unit 240 is on the ⁇ Z axis direction side of the light emitting surface 11.
  • the distance P1 from the optical section 240 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 240.
  • the focal length f1 is the distance from the incident surface 241 of the optical unit 240 to the focus F.
  • the light R1 emitted from the light source unit 1 is refracted by the incident surface 241 of the optical unit 240. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 241. The light R1 deflected by the incident surface 241 passes through the optical unit 240. The light R2 that has passed through the optical unit 240 is emitted from the emission surface 242. The light R2 emitted from the emission surface 242 is divergent light.
  • the light R1 incident on the central portion 240a passes through the central portion 240a and reaches the light shielding portion 243.
  • the light R1 incident on the central portion 240a reaches the light blocking portion 243.
  • the light R1 that reaches the light blocking portion 243 is blocked by the light blocking portion 243.
  • the light R1 that reaches the light shield 243 is absorbed by the light shield 243.
  • the light R1 that reaches the light shield 243 is reflected by the light shield 243. That is, the light R1a incident on the central portion 240a is not emitted from the central portion 240a toward the image forming unit 3. Therefore, in the case of the state of the illumination function, it is possible to reduce unnecessary light entering the image forming area 31.
  • the light R2b emitted from the peripheral portion 240b travels toward the peripheral region 32 of the image forming unit 3.
  • the light R2b emitted from the emission surface 242 is incident on the peripheral region 32.
  • the light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
  • FIG. 14 shows a state in which the optical unit 240 of the projection device is at a position different from the initial position.
  • FIG. 14 shows a case where the projection device is in the projection function.
  • the distance P from the light source unit 1 to the optical unit 240 is P2.
  • the distance P2 is longer than the distance P1 (P2>P1).
  • the position of the focus F of the optical section 240 is between the light source section 1 and the optical section 240.
  • the position of the focal point F of the optical section 240 is between the light emitting surface 11 of the light source section 1 and the optical section 240.
  • the distance P2 from the optical section 240 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 240.
  • the optical unit 240 is moved in the +Z axis direction as compared with the state of the illumination function.
  • the light R1 emitted from the light source unit 1 is refracted at the incident surface 241 of the optical unit 240. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 241. The light R1 deflected by the incident surface 241 passes through the optical unit 240. The light R2 that has passed through the optical unit 240 is emitted from the emission surface 242. The light R2 emitted from the emission surface 242 is convergent light.
  • the light R1 incident on the central portion 240a passes through the central portion 240a and reaches the light shielding portion 243.
  • the light R1 incident on the central portion 240a reaches the light blocking portion 243.
  • the light R1 that reaches the light blocking portion 243 is blocked by the light blocking portion 243.
  • the light R1 that reaches the light shield 243 is absorbed by the light shield 243.
  • the light R1 that reaches the light shield 243 is reflected by the light shield 243. That is, the light incident on the central portion 240a is not emitted from the central portion 240a toward the image forming unit 3.
  • the light R2d emitted from the peripheral portion 240b travels toward the image forming area 31 of the image forming unit 3.
  • the light R2d emitted from the peripheral portion 240b enters the image forming area 31.
  • the light R2d emitted from the emission surface 242 is incident on the image forming area 31. At this time, the light R2d passing through the image forming area 31 becomes image light.
  • the projection device can switch between illumination light projection and image projection with a simple configuration.
  • the projection apparatus according to the fourth embodiment can reduce the light incident on the image forming area 31 in the case of the state of the illumination function, as shown in FIG. Therefore, it is possible to prevent the image 72 from being superimposed on the illumination light 71 in the state of the illumination function. In the state of the lighting function, the projection device is not intended to display the image 72.
  • the projection apparatus according to the fourth embodiment is the same as the projection apparatus according to the first, second, or third embodiment.
  • the light blocking portion 243 can be adopted in the optical portion 230 of the third embodiment.
  • FIG. 15 is a diagram showing a main configuration and a main path of light passing through the optical unit 250 in the state of the illumination function of the projection device according to the fifth embodiment of the present invention.
  • FIG. 16 is a diagram showing a main configuration and a main path of light passing through the optical unit 250 in a projection function state of the projection device according to the fifth embodiment. 15 and 16, the same or corresponding components as those shown in FIGS. 9 and 10 are designated by the same reference numerals as those shown in FIGS. 9 and 10, and the description thereof is omitted.
  • the projection apparatus according to the fifth embodiment differs from the projection apparatus according to the second embodiment in the shape of the optical unit 250. That is, the projection apparatus according to the fifth embodiment differs from the projection apparatus according to the second embodiment in that the optical section 250 includes the light diverging section 253.
  • the optical unit 250 has a convex lens shape similar to that of the optical unit 220. Therefore, regarding the shape of the convex lens, the description of the optical unit 220 will be used instead.
  • the constituent elements 250a, 250b, 251, 252 correspond to the constituent elements 220a, 220b, 221, 222, respectively.
  • the optical unit 250 includes a light diverging unit 253.
  • the central portion 250a includes a light diverging portion 253.
  • the light diverging unit 253 increases the divergence angle of light.
  • the light diverging portion 253 is provided on the emission surface 252 side.
  • the light diverging section 253 may be provided on the incident surface 251 side.
  • the light diverging portion 253 has a concave shape.
  • the light diverging portion 253 has the shape of a concave lens.
  • the peripheral portion 230b has the shape of a convex lens that collects light. That is, the peripheral portion 230b reduces the divergence angle of light.
  • the light diverging unit 253 has a function of reducing unnecessary light incident on the image forming area 31 in the state of the illumination function. That is, the light shielding unit 243 reduces the amount of unnecessary light in the state of the illumination function.
  • FIG. 15 shows a state in which the optical unit 250 of the projection device is in the initial position.
  • FIG. 15 shows a case where the projection device is in the state of the illumination function.
  • the distance P from the light source unit 1 to the optical unit 250 is P1.
  • the position of the focus F of the optical section 250 is on the ⁇ Z axis direction side of the light source section 1.
  • the position of the focal point F of the optical unit 250 is on the ⁇ Z axis direction side of the light emitting surface 11.
  • the distance P1 from the optical section 250 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 250.
  • the focal length f1 is the distance from the incident surface 251 of the optical unit 250 to the focus F.
  • the light R1 emitted from the light source unit 1 is refracted by the incident surface 251 of the optical unit 250. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 251. The light R1 deflected by the incident surface 251 passes through the optical unit 250. The light R2 transmitted through the optical section 250 is emitted from the emission surface 252 and the light diverging section 253.
  • the light R1 incident on the central portion 250a passes through the central portion 250a and reaches the light diverging portion 253.
  • the light R1 incident on the central portion 250a reaches the light diverging portion 253.
  • the light R1 that has reached the light diverging unit 253 is diverged by the light diverging unit 253.
  • the light R2a is emitted from the light diverging unit 253. That is, the light R1a incident on the central portion 250a is emitted from the light diverging portion 253.
  • the light R2 emitted from the light diverging unit 253 is divergent light.
  • the light R2a emitted from the central portion 250a travels toward the image forming area 31 and the peripheral area 32 of the image forming unit 3. That is, the light R2a emitted from the light diverging portion 253 enters the image forming area 31 and the peripheral area 32. At this time, the light R2a passes through the image forming area 31 and becomes image light. The light R2a passes through the peripheral region 32 and becomes the illumination light 71. Therefore, the light utilization efficiency of the illumination light 71 is improved. Further, the amount of light R2a incident on the image forming area 31 is smaller than that of the optical section 220. Therefore, the visibility of the image 72 projected on the target area 6 is lower than that of the optical unit 220.
  • the light R2b emitted from the peripheral portion 250b travels toward the peripheral region 32 of the image forming unit 3.
  • the light R2b emitted from the emission surface 252 enters the peripheral region 32.
  • the light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
  • FIG. 16 shows a state in which the optical unit 250 of the projection device is at a position different from the initial position.
  • FIG. 16 shows a case where the projection apparatus is in the projection function state.
  • the distance P from the light source unit 1 to the optical unit 250 is P2.
  • the distance P2 is longer than the distance P1 (P2>P1).
  • the position of the focal point F of the optical section 250 is between the light source section 1 and the optical section 250.
  • the position of the focus F of the optical section 250 is between the light emitting surface 11 of the light source section 1 and the optical section 250.
  • the distance P2 from the optical section 250 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 250.
  • the optical unit 250 moves in the +Z-axis direction as compared with the illumination function state.
  • the light R1 emitted from the light source unit 1 is refracted by the incident surface 251 of the optical unit 250. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 251. The light R1 deflected by the incident surface 251 passes through the optical unit 250. The light R2 transmitted through the optical unit 250 is emitted from the emission surface 252. The light R2 emitted from the emission surface 252 is convergent light.
  • the light R1 incident on the central portion 250a passes through the central portion 250a and reaches the light diverging portion 253.
  • the light R1a incident on the central portion 250a reaches the light diverging portion 253.
  • the light R1 that has reached the light diverging unit 253 is diverged by the light diverging unit 253.
  • the light R2c is emitted from the light diverging unit 253.
  • the light R2 emitted from the light diverging unit 253 is divergent light.
  • the light R2c emitted from the central portion 250a travels toward the image forming area 31 and the peripheral area 32 of the image forming unit 3. That is, the light R2c emitted from the light diverging portion 253 enters the image forming area 31 and the peripheral area 32. At this time, the light R2c passes through the image forming area 31 and becomes image light. The light R2c passes through the peripheral region 32 and becomes the illumination light 71.
  • the light R2d emitted from the peripheral portion 250b travels toward the image forming area 31 of the image forming unit 3.
  • the light R2d emitted from the peripheral portion 250b enters the image forming area 31.
  • the light R2d emitted from the emission surface 252 enters the image forming area 31.
  • the light R2d passing through the image forming area 31 becomes image light.
  • the shape of the light diverging portion 253 is shown as a concave shape. However, the light diverging portion 253 may have another shape as long as it has a configuration for diverging light.
  • the light diverging portion 253 may be, for example, a light diffusing surface.
  • the light diffusing surface of the light diverging portion 253 is, for example, a surface having a minute uneven shape on the emitting surface 252 side.
  • the light diverging portion 253 may be, for example, a light diffusion layer.
  • the light diffusion layer contains, for example, light diffusion particles on the emission surface 252 side of the central portion 250a of the optical section 250.
  • the central portion 250a contains light diffusing particles.
  • the central portion 250a contains a large number of light diffusing particles.
  • the light diffusion particles are scattered.
  • the light diffusion particles are minute particles.
  • the light diverging portion 253 includes a light diffusing surface or a light diffusing layer.
  • the projection device can switch between illumination light projection and image projection with a simple configuration.
  • the projection apparatus can use the light R2a as the illumination light in the case of the state of the illumination function, as shown in FIG. Therefore, the light utilization efficiency can be improved. Further, the amount of light R2a incident on the image forming area 31 is smaller than that of the optical section 220. Therefore, the visibility of the image 72 projected on the target area 6 is lower than that of the optical unit 220.
  • the projection apparatus according to the fifth embodiment is the same as the projection apparatus according to the first, second, third, or fourth embodiment.
  • the light diverging section 253 can be adopted in the optical section 230 of the third embodiment.
  • FIG. 17 is a diagram showing a schematic cross-sectional structure of the optical unit 420 of the projection device according to the first modification of the first to fifth embodiments and a main path of light passing through the optical unit 420.
  • FIG. 17 shows a sectional structure in which the optical section 420 is cut along a plane parallel to the YZ plane.
  • the projection apparatus according to Modification 1 includes an optical section 420 shown in FIG. 17, instead of the optical section 4 in the first to fifth embodiments.
  • the optical section 420 includes a central portion 420a and a peripheral portion 420b.
  • the central portion 420a has an entrance surface 421 and an exit surface 422.
  • the optical axis C4 of the optical section 420 passes through the central portion 420a. That is, the optical axis C4 of the optical section 420 exists within the central portion 420a.
  • the central portion 420a is also called the second central portion.
  • the optical unit 2 and the optical unit 420 may be arranged so that the optical axis C4 is located on the same axis as the optical axis C2.
  • the optical unit 2 and the optical unit 420 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2.
  • the optical unit 2 and the optical unit 420 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
  • the central portion 420a is similar to the central portion 40a of the optical unit 4.
  • the incident surface 421 corresponds to the incident surface 41.
  • the emission surface 422 corresponds to the emission surface 44.
  • the description of the central portion 420a is substituted by the description of the central portion 40a.
  • the optical axis of the central portion 420a is the optical axis C4.
  • the image light R31 transmitted through the image forming area 31 enters the central portion 420a.
  • the image light R31 incident on the central portion 420a is applied to the target area 6.
  • the image light R31 emitted from the image forming area 31 is applied to the target area 6 as the image light R4c.
  • the image light R4c is projected onto the target area 6. As a result, the image 72 is projected on the target area 6.
  • the peripheral part 420b is another part of the optical part 420. That is, the peripheral portion 420b is a part of the optical portion 420 different from the central portion 420a.
  • the peripheral portion 420b includes a holding portion 423 and a reflector 424.
  • the peripheral portion 420b is formed on the outer peripheral side of the central portion 420a with the optical axis C4 as the center. That is, the peripheral portion 420b is arranged radially outside the central portion 420a with the optical axis C4 as the center.
  • the peripheral portion 420b is also referred to as a second peripheral portion.
  • the optical axis of the peripheral portion 420b is the optical axis C4.
  • the central portion 420a and the peripheral portion 420b may be integrally formed of the same material. Further, the central portion 420a and the peripheral portion 420b may be formed of different members.
  • the holding portion 423 holds the central portion 420a.
  • the holder 423 is held by the reflector 424.
  • the holding portion 423 is preferably a transparent member.
  • the reflector 424 has a light reflecting surface.
  • the light reflecting surface is formed inside the reflector 424.
  • the reflector 424 reflects light.
  • the reflector 424 is, for example, a concave mirror.
  • the reflector 424 has a tubular shape.
  • the inner surface (light reflecting surface) side of the reflector 424 has, for example, the shape of a side wall of a truncated cone.
  • the inside of the optical unit 420 is hollow. "Hollow" means that the inside of an object is made up of a hollow material.
  • the reflector 424 may be a structure in which a plurality of light reflecting members are combined.
  • the light reflecting surface of the reflector 424 may have an aspherical shape.
  • the optical axis of the reflector 424 is the optical axis C4.
  • the light applied to the peripheral area 32 of the image forming unit 3 passes through the peripheral area 32 and enters the peripheral portion 420b.
  • the light incident on the peripheral portion 420b passes through the holding portion 423 and is irradiated on the target area 6.
  • the holding unit 423 transmits the light R32 emitted from the peripheral region 32.
  • the holding unit 423 transmits the light R32 reflected by the reflector 424.
  • the light that has entered the peripheral portion 420b is reflected by the reflector 424 and is applied to the target region 6.
  • the light R32 emitted from the peripheral region 32 is the light R4d.
  • the light R4d is applied to the area of the illumination light 71 on the target area 6.
  • the projection device can project the illumination light 71 and the image 72 with a simple configuration.
  • FIG. 18 is a diagram showing a schematic cross-sectional structure of the optical unit 430 of the projection device according to the second modification of the first to fifth embodiments and a main path of light passing through the optical unit 430.
  • FIG. 18 shows a sectional structure in which the optical section 430 is cut along a plane parallel to the YZ plane.
  • the projection apparatus according to Modification 2 includes an optical section 430 shown in FIG. 18 instead of the optical section 4 in the first to fifth embodiments.
  • the optical unit 430 includes a central portion 430a and a peripheral portion 430b.
  • the central portion 430a has an entrance surface 431 and an exit surface 433.
  • the optical axis C4 of the optical unit 430 passes through the central portion 430a. That is, the optical axis C4 of the optical unit 430 exists within the central portion 430a.
  • the central portion 430a is also referred to as the second central portion.
  • the optical unit 2 and the optical unit 430 may be arranged so that the optical axis C4 is located on the same axis as the optical axis C2.
  • the optical unit 2 and the optical unit 430 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2.
  • the optical unit 2 and the optical unit 430 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
  • the central portion 430a is similar to the central portion 40a of the optical unit 4.
  • the incident surface 431 corresponds to the incident surface 41.
  • the emission surface 433 corresponds to the emission surface 44.
  • the description of the central portion 430a is substituted by the description of the central portion 40a.
  • the optical axis of the central portion 430a is the optical axis C4.
  • the image light R31 transmitted through the image forming area 31 is incident on the central portion 430a.
  • the image light R31 incident on the central portion 430a is applied to the target region 6.
  • the image light R31 emitted from the image forming area 31 is applied to the target area 6 as the image light R4e.
  • the image light R4e is projected on the target area 6.
  • the image 72 is projected on the target area 6.
  • the peripheral part 430b is another part of the optical part 430. That is, the peripheral portion 430b is a part of the optical unit 430 different from the central portion 430a.
  • the peripheral portion 430b includes an entrance surface 432 and an exit surface 434.
  • the peripheral portion 430b is formed on the outer peripheral side of the central portion 430a with the optical axis C4 as the center. That is, the peripheral portion 430b is arranged outside the central portion 430a in the radial direction with the optical axis C4 as the center.
  • the peripheral portion 430b is also referred to as a second peripheral portion.
  • the peripheral portion 430b includes a lens.
  • the peripheral portion 430b is formed of a lens.
  • the peripheral portion 430b includes a convex lens.
  • the peripheral portion 430b is formed of a convex lens.
  • the peripheral portion 430b is formed of, for example, a plano-convex lens.
  • the peripheral portion 430b may be formed of, for example, a biconvex lens.
  • the optical axis of the peripheral portion 430b is the optical axis C4.
  • the peripheral portion 430b may include a concave lens.
  • the peripheral portion 430b may be formed of a concave lens.
  • the light R32 that has entered the concave lens of the peripheral portion 430b is emitted as diverged light R4f.
  • the light applied to the peripheral area 32 of the image forming unit 3 passes through the peripheral area 32 and is incident on the peripheral portion 430b.
  • the light incident on the peripheral portion 430b is refracted to become the light R4f.
  • the light R4f is directed to the target area 6.
  • the light R4f is projected as the illumination light 71 on the target area 6.
  • the central portion 430a and the peripheral portion 430b are integrally formed of the same material. However, the central portion 430a and the peripheral portion 430b may be formed of different members.
  • the optical unit 430 may be formed by combining a plurality of lenses.
  • the projection device according to the second modification can project the illumination light 71 and the image 72 with a simple configuration.
  • FIG. 19 is a diagram showing a schematic cross-sectional structure of an optical unit 440 and a main path of light passing through the optical unit 440 of the projection device according to the third modification of the first to fifth embodiments.
  • FIG. 19 shows a sectional structure of the optical section 440 cut along a plane parallel to the YZ plane.
  • the projection apparatus according to Modification 3 includes an optical section 440 shown in FIG. 19 instead of the optical section 4 in the first to fifth embodiments.
  • the optical unit 440 includes a central portion 440a and a peripheral portion 440b.
  • the central portion 440a has an entrance surface 441 and an exit surface 443.
  • the optical axis C4 of the optical section 440 passes through the central portion 440a. That is, the optical axis C4 of the optical unit 440 exists within the central portion 440a.
  • Central portion 440a is also referred to as the second central portion.
  • the optical unit 2 and the optical unit 440 may be arranged so that the optical axis C4 is located on the same axis as the optical axis C2.
  • the optical unit 2 and the optical unit 440 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2.
  • the optical unit 2 and the optical unit 440 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
  • the central portion 440a is similar to the central portion 40a of the optical unit 4.
  • the incident surface 441 corresponds to the incident surface 41.
  • the emission surface 443 corresponds to the emission surface 44.
  • the description of the central portion 440a is substituted by the description of the central portion 40a.
  • the optical axis of the central portion 440a is the optical axis C4.
  • the image light R31 transmitted through the image forming area 31 is incident on the central portion 440a.
  • the image light R31 incident on the central portion 440a is applied to the target area 6.
  • the image light R31 emitted from the image forming area 31 is applied to the target area 6 as the image light R4g.
  • the image light R4g is projected on the target area 6.
  • the image 72 is projected on the target area 6.
  • the peripheral part 440b is another part of the optical part 440. That is, the peripheral portion 440b is a part of the optical unit 440 different from the central portion 440a.
  • the peripheral portion 440b includes an entrance surface 442 and an exit surface 444.
  • the peripheral portion 440b is formed on the outer peripheral side of the central portion 440a with the optical axis C4 as the center. That is, the peripheral portion 440b is arranged outside the center portion 440a in the radial direction around the optical axis C4.
  • the peripheral portion 440b is also referred to as a second peripheral portion.
  • the peripheral portion 440b includes, for example, a Fresnel lens.
  • the peripheral portion 440b is, for example, a Fresnel lens.
  • the peripheral portion 440b is formed of a Fresnel lens.
  • the peripheral portion 440b has a Fresnel lens shape.
  • the peripheral portion 440b may include a Fresnel lens shape in a partial area.
  • the partial region is, for example, a region around the peripheral portion 440b.
  • the peripheral portion 440b is formed of a Fresnel-shaped convex lens.
  • the peripheral portion 440b is formed of, for example, a Fresnel-shaped plano-convex lens.
  • the peripheral portion 440b may be formed of, for example, a Fresnel-shaped biconvex lens. Further, similar to the optical unit 430, the peripheral portion 440b may include a concave lens.
  • the emission surface 444 includes a Fresnel shape.
  • the Fresnel shape is, for example, an annular shape when viewed from the Z-axis direction.
  • the Fresnel shapes are arranged concentrically when viewed from the Z-axis direction.
  • the peripheral portion 440b may have a Fresnel shape on the incident surface 442.
  • the peripheral portion 440b may be a combination of a plurality of lenses having a Fresnel shape.
  • the peripheral portion 440b may include, for example, a prism having two flat surfaces.
  • the peripheral portion 440b is, for example, a prism.
  • the peripheral portion 440b is formed of a prism.
  • the peripheral portion 440b has a prism shape.
  • the peripheral portion 440b includes a plurality of prisms.
  • the lens surface of the Fresnel-shaped lens is formed as a flat surface.
  • the peripheral portion 440b may include a prism shape in a part of the area.
  • the partial region is, for example, a region around the peripheral portion 440b.
  • the emitting surface 444 includes a plurality of prism shapes.
  • the prism shape is, for example, an annular shape when viewed from the Z-axis direction.
  • the plurality of prism shapes are arranged concentrically when viewed from the Z-axis direction.
  • the incident surface 442 of the peripheral portion 440b may have a prism shape.
  • the peripheral portion 440b may be a combination of a plurality of lenses having a prism shape.
  • the peripheral portion 440b has the same performance as the peripheral portion 430b.
  • the peripheral portion 440b collects light.
  • the light applied to the peripheral area 32 of the image forming unit 3 passes through the peripheral area 32 and enters the peripheral portion 440b.
  • the light incident on the peripheral portion 440b is refracted to become the light R4h.
  • the light R4h is directed to the target area 6.
  • the light R4h is projected onto the target area 6 as the illumination light 71.
  • the central portion 440a and the peripheral portion 440b are integrally formed of the same material. However, the central portion 440a and the peripheral portion 440b may be formed of different members.
  • the optical unit 440 may be formed by combining a plurality of lenses.
  • the projection device according to the third modification can project the illumination light 71 and the image 72 with a simple configuration.
  • the terms such as “parallel”, “vertical”, “center”, and the like, the positions of the parts, the positional relationship between the parts, or the terms indicating the shapes of the parts are defined by manufacturing tolerances and assembly ranges. This is a range that takes into consideration variations and the like. For this reason, in the present application, terms such as “parallel”, “vertical”, “center”, etc., indicating the position of parts, the positional relationship between parts, or the shape of parts are used without describing “substantially”. When used, the ranges indicated by these terms mean a range that takes into consideration manufacturing tolerances, assembly variations, and the like.
  • a projection device in which the condensed light is irradiated to the image forming area or a peripheral area around the image forming area by changing a condensing position of the light emitted from the first optical unit.
  • the first optical unit includes an incident surface that deflects light incident on the first central portion by refraction in a peripheral direction, and has a reflection surface that collects light incident on the first peripheral portion by reflection.
  • the projection device according to supplementary note 1 or 2.
  • Appendix 7 3. The projection device according to appendix 1 or 2, wherein the first optical unit includes a prism surface that collects light incident on the first peripheral portion by refraction.
  • Appendix 8> 8 The projection device according to appendix 6 or 7, wherein the first optical unit includes a light blocking unit that blocks light that has entered the first central portion.
  • Appendix 9 8. The projection device according to appendix 6 or 7, wherein the first optical unit includes a light diverging unit that diverges light that has entered the first central portion.
  • the second optical unit is located at a second central portion through which a second optical axis of the second optical unit passes and a second optical unit located around the second central portion around the second optical axis. Including the periphery of The projection device according to any one of appendices 1 to 11, wherein the second center portion projects the image light.
  • Appendix 14 The projection device according to appendix 12 or 13, wherein the light emitted to the peripheral area is incident on the second peripheral portion and projected.
  • Appendix 18 The projection device according to any one of appendices 1 to 17, wherein the image forming region is a liquid crystal element.
  • a light source unit that emits first light
  • a first optical unit that converts the first light into second light including a light component that converges or diverges
  • An image forming section including an image forming area on which an image is formed, wherein the second light is incident on the image forming area and a peripheral area outside the image forming area
  • a second optical unit that projects image light that is the second light that has passed through the image forming region and illumination light that is the second light that has passed through the peripheral region onto a target region
  • a change unit that changes the traveling direction of the second light emitted from the first optical unit; Equipped with A projection device in which an amount of the second light incident on the image forming region and an amount of the second light incident on the peripheral region are changed by changing the traveling direction of the second light.
  • ⁇ Appendix 4>> The amount of the second light incident on the peripheral area when the distance is the first distance is incident on the peripheral area when the distance is the second distance that is longer than the first distance.
  • ⁇ Appendix 5> 5 The projection device according to any one of appendices 1 to 4, wherein the changing unit includes a supporting unit that movably supports at least one of the light source unit and the first optical unit.
  • the second light passing through the peripheral region includes the light that is incident on the peripheral region after being condensed between the first optical unit and the image forming unit.
  • Projection device according to item 1.
  • the first optical portion includes a first central portion where the optical axis of the first optical portion is present, and a first peripheral portion outside the first central portion,
  • the first central portion includes an incident surface that deflects incident light toward the periphery,
  • the projection device according to any one of appendices 1 to 7, wherein the first peripheral portion includes a light reflecting surface that collects the incident light by reflecting the incident light.
  • Appendix 10 10. The projection device according to appendix 8 or 9, wherein the first optical unit includes a lens unit that collects the incident light by refracting the light incident on the first peripheral portion.
  • the first optical portion includes a first central portion where the optical axis of the first optical portion is present, and a first peripheral portion outside the first central portion,
  • the projection device according to any one of appendices 1 to 7, wherein the first optical unit includes a light blocking unit that blocks light that has entered the first central portion.
  • the first optical portion includes a first central portion where the optical axis of the first optical portion is present, and a first peripheral portion outside the first central portion, 8.
  • the projection device according to any one of appendices 1 to 7, wherein the first optical unit includes a light diverging unit that diverges the light incident on the first central portion.
  • Appendix 14> 14 The projection device according to appendix 13, wherein the light diverging portion is a concave lens or a diffusion portion that diffuses incident light.
  • the second optical portion is located outside the second central portion around the second central portion where the optical axis of the second optical portion exists and the optical axis of the second optical portion. Including a second peripheral portion, 15.
  • Appendix 17 17. The projection device according to appendix 15 or 16, wherein the light emitted to the peripheral area is incident on the second peripheral portion and projected.
  • Appendix 18 The projection device according to any one of appendices 15 to 17, wherein the second peripheral portion includes a reflector that reflects incident light.
  • a light source unit that emits a first light
  • a first optical unit that receives the first light, changes the light distribution of the first light, and emits the second light as second light
  • An image forming unit including an image forming region that receives the second light and converts it into image light and emits the image light, and a peripheral region that receives the second light and emits it as illumination light.
  • a second optical unit that projects the image light to form a projected image
  • a projection device that changes the ratio of the amount of the second light incident on the image forming area and the amount of the second light incident on the peripheral area by changing the light distribution.
  • ⁇ Appendix 2>> The light distribution is changed by changing the distance from the light source unit to the first optical unit, The projection device according to attachment 1, wherein the distance includes a first distance and a second distance that is longer than the first distance.
  • Appendix 6 The projection device according to appendix 5, wherein the changing unit moves at least one of the light source unit and the first optical unit.
  • Appendix 7 7.
  • the first optical part is located outside the first central part with a first central part through which the first optical axis of the first optical part passes and the first optical part as a center.
  • the first central portion includes an incident surface that deflects the incident first light toward a first peripheral portion,
  • the projection apparatus according to appendix 8 wherein the first peripheral portion includes a reflecting surface that reflects the deflected first light.
  • the second light incident on the peripheral region includes the light condensed between the first optical unit and the image forming unit. 11.
  • ⁇ Appendix 14> If the distance is a first distance, 14.
  • the first optical part is located outside the first central part with a first central part through which the first optical axis of the first optical part passes and the first optical part as a center.
  • the first central portion includes an incident surface that deflects the incident first light toward a first peripheral portion
  • the projection device according to appendix 25 wherein the first peripheral portion includes a reflecting surface that reflects the deflected first light.
  • ⁇ Appendix 34> 33 The projection device according to any one of appendices 28 to 32, wherein the first central portion includes a light diverging portion that diverges the incident first light.
  • the second optical portion is located outside the second central portion around the second central portion through which the second optical axis of the second optical portion passes and the second optical axis. Including the peripheral part of 2, 37.
  • the projection device according to any one of appendices 1 to 36, wherein the second central portion projects the image light.
  • ⁇ Appendix 40> 40 The projection device according to any one of appendices 37 to 39, wherein the second peripheral portion includes a reflecting surface that reflects the incident illumination light.
  • ⁇ Appendix 44> The projection device according to any one of appendices 41 to 43, wherein the lens includes a Fresnel shape.
  • ⁇ Appendix 45> The projection device according to attachment 44, wherein the Fresnel-shaped prism has a planar shape in which a lens surface is parallel to a plane in contact with the lens surface.
  • Appendix 49 The projection device according to any one of appendices 1 to 47, wherein the image forming region is a light shielding plate including an opening.
  • ⁇ Appendix 50> The projection device according to any one of appendices 1 to 47, wherein the image forming region is a display element using a micromirror.
  • Appendix 51 The projection device according to any one of appendices 1 to 50, wherein the light distribution is a divergence angle of the second light.
  • ⁇ Appendix 52> 52 The projection device according to any one of appendices 1 to 51, which changes a ratio between the amount of the image light and the amount of the illumination light by changing the light distribution.
  • the projection device according to any one of appendices 1 to 53, wherein at least one of the light source unit and the first optical unit moves in a direction parallel to the optical axis of the light source unit.
  • ⁇ Appendix 55> 54 The projection device according to any one of appendices 1 to 53, wherein at least one of the light source unit and the first optical unit moves in a direction parallel to the optical axis of the first optical unit.
  • 1 light source 11 light emitting surface, 2, 220, 230, 240, 250 optical part, 20a, 220a, 230a, 240a, 250a central part (first central part), 20b, 220b, 230b, 240b, 250b peripheral part ( (First peripheral portion), 21, 21a, 21b, 221, 231, 241, 251 incident surface, 22 reflection surface, 23, 24, 25, 222, 232, 233, 242, 252 emission surface, 243 light-shielding portion, 253
  • Light diverging section 3 image forming section, 31 image forming area, 32 peripheral area, 33 image, 4,420, 430, 440 optical section, 40a, 420a, 430a, 440a central part (second central part), 40b, 420b, 430b, 440b peripheral part (second peripheral part), 423 holding part, 424 reflector, 41, 42, 421, 431, 432, 441, 442 incident surface, 43 reflective surface, 44, 45, 422, 433.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)

Abstract

Provided is a projection device that can switch between a functional state of projecting illumination light and a functional state of projecting an image. A projection device (100) is provided with a light source (1), an optical unit (2), an image forming unit (3), and an optical unit (4). The light source (1) emits light (R1). The optical unit (2) receives the light (R1), and outputs light (R2) obtained by changing light distribution of the light (R1). The image forming unit (3) includes an image forming region (31) where the light (R2) is received, and changed into and outputted as image light (R31), and a peripheral region (32) where the light (R2) is received, and outputted as illumination light (R32). The optical unit (4) projects the image light (R31), and forms a projection image. The projection device (100) changes, by changing the light distribution, the ratio of the amount of light (R2) received in the image forming region (31) and the amount of light (R2) received in the peripheral region (32).

Description

投影装置Projector
 本発明は、投影装置に関する。 The present invention relates to a projection device.
 例えば、特許文献1は、路面に光を投射することで、路面に光のパターンを描く交通情報システムを提案している。この交通情報システムでは、ビーム偏向器によって、光スポットを形成する光ビームがスキャンされる。光ビームのスキャンにより、路面の投射エリアで光スポットが移動する。移動する光スポットによって光のパターンが表示される。 For example, Patent Document 1 proposes a traffic information system in which a light pattern is drawn on the road surface by projecting light on the road surface. In this traffic information system, a beam deflector scans a light beam forming a light spot. The scanning of the light beam causes the light spot to move in the projection area of the road surface. A pattern of light is displayed by the moving light spot.
特表2006-525590号公報(例えば、段落0014~0019、図1)Japanese Patent Publication No. 2006-525590 (eg, paragraphs 0014 to 0019, FIG. 1)
 しかしながら、上記交通情報システムは、ビーム偏向器及びその制御回路を備えているので、構成が複雑になるという課題がある。 However, since the above traffic information system includes the beam deflector and its control circuit, there is a problem that the configuration becomes complicated.
 本発明は、上記課題を解決するためになされたものであり、簡易な構成によって、照明光を照射する機能の状態又は画像を投影する機能の状態のいずれかに切り替えることができる投影装置を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a projection device that can switch between a state of a function of illuminating illumination light and a state of a function of projecting an image with a simple configuration. The purpose is to do.
 本発明に係る投影装置は、第1の光を発する光源部と、前記光源部が発した前記第1の光を基に発散角を変更した第2の光を出射する第1の光学部と、画像を形成して前記第2の光を前記画像の情報を含む画像光とする画像形成領域および前記画像形成領域の周辺側に位置して前記第2の光を照明光とする周辺領域を含む画像形成部と、前記画像光を投射して前記画像を基に投影像を形成する第2の光学部とを備え、前記発散角の変更によって、前記画像光の量と前記照明光の量との比率を変更する。 A projection apparatus according to the present invention includes a light source section that emits first light, and a first optical section that emits second light whose divergence angle is changed based on the first light emitted by the light source section. An image forming area where an image is formed and the second light is an image light containing information of the image, and a peripheral area which is located on the peripheral side of the image forming area and uses the second light as illumination light. An image forming unit including the image forming unit and a second optical unit that projects the image light to form a projected image based on the image, and changes the divergence angle to change the amount of the image light and the amount of the illumination light. Change the ratio with.
 本発明によれば、簡易な構成によって、照明光を照射する機能の状態又は画像を投影する機能の状態に投影装置を切り替えることができる。 According to the present invention, the projecting device can be switched to a state of a function of illuminating illumination light or a state of a function of projecting an image with a simple configuration.
本発明の実施の形態1に係る投影装置の照明機能の状態における主要な構成を概略的に示す図である。It is a figure which shows schematically the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る投影装置の投影機能の状態における主要な構成を概略的に示す図である。FIG. 3 is a diagram schematically showing a main configuration in a projection function state of the projection device according to the first embodiment. 実施の形態1に係る投影装置の照明機能の状態における主要な構成及び照明機能の状態に第1の光学部を通過する光の主要な経路を示す図である。FIG. 3 is a diagram showing a main configuration in a lighting function state of the projection apparatus according to the first embodiment and a main path of light passing through a first optical unit in a lighting function state. 実施の形態1に係る投影装置の投影機能の状態における主要な構成及び投影機能の状態に第1の光学部を通過する光の主要な経路を示す図である。FIG. 3 is a diagram showing a main configuration in a projection function state of the projection apparatus according to the first embodiment and a main path of light passing through a first optical unit in the projection function state. (A)及び(B)は、実施の形態1に係る投影装置の第1の光学部の外観を概略的に示す側面図及び正面図である。9A and 9B are a side view and a front view schematically showing the outer appearance of the first optical unit of the projection device according to the first embodiment. (A)及び(B)は、実施の形態1に係る投影装置の画像形成部の外観を概略的に示す側面図及び正面図である。6A and 6B are a side view and a front view schematically showing the outer appearance of the image forming unit of the projection device according to the first embodiment. 実施の形態1に係る投影装置の第2の光学部を通過する光の主要な経路を示す図である。FIG. 3 is a diagram showing a main path of light passing through a second optical unit of the projection device according to the first embodiment. (A)及び(B)は、実施の形態1に係る投影装置の第2の光学部の外観を概略的に示す側面図及び正面図である。7A and 7B are a side view and a front view schematically showing the outer appearance of the second optical unit of the projection device according to the first embodiment. 本発明の実施の形態2に係る投影装置の照明機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 2 of this invention, and the main path|route of the light which passes a 1st optical part. 実施の形態2に係る投影装置の投影機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。FIG. 9 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the second embodiment. 本発明の実施の形態3に係る投影装置の照明機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 3 of this invention, and the main path|route of the light which passes a 1st optical part. 実施の形態3に係る投影装置の投影機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。FIG. 13 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the third embodiment. 本発明の実施の形態4に係る投影装置の照明機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 4 of this invention, and the main path|route of the light which passes a 1st optical part. 実施の形態4に係る投影装置の投影機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。FIG. 16 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the fourth embodiment. 本発明の実施の形態5に係る投影装置の照明機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。It is a figure which shows the main structures in the state of the illumination function of the projection apparatus which concerns on Embodiment 5 of this invention, and the main path|route of the light which passes a 1st optical part. 実施の形態5に係る投影装置の投影機能の状態における主要な構成と第1の光学部を通過する光の主要な経路とを示す図である。FIG. 16 is a diagram showing a main configuration and a main path of light passing through a first optical unit in a projection function state of the projection device according to the fifth embodiment. 実施の形態1から5の変形例1に係る投影装置の第2の光学部の概略的な断面構造と第2の光学部を通過する光の主要な経路を示す図である。FIG. 8 is a diagram showing a schematic cross-sectional structure of a second optical section of a projection device according to the first modification of the first to fifth embodiments and a main path of light passing through the second optical section. 実施の形態1から5の変形例2に係る投影装置の第2の光学部の概略的な断面構造と第2の光学部を通過する光の主要な経路を示す図である。FIG. 9 is a diagram showing a schematic cross-sectional structure of a second optical unit of a projection device according to Modification 2 of Embodiments 1 to 5 and a main path of light passing through the second optical unit. 実施の形態1から5の変形例3に係る投影装置の第2の光学部の概略的な断面構造と第2の光学部を通過する光の主要な経路を示す図である。FIG. 9 is a diagram showing a schematic cross-sectional structure of a second optical unit of a projection device according to Modification 3 of Embodiments 1 to 5 and a main path of light passing through the second optical unit.
 以下に、本発明の実施の形態に係る投影装置を、図面を参照しながら説明する。実施の形態に係る投影装置は、照明機能の状態と投影機能の状態とを切り替えることができる。 A projection device according to an embodiment of the present invention will be described below with reference to the drawings. The projection device according to the embodiment can switch between the state of the illumination function and the state of the projection function.
 「照明機能の状態」は、投影装置が照明機能を発揮できる状態であること又は投影装置が照明機能を発揮している状態であることを示す。「照明機能の状態」は、投影装置が照明光を照射できる状態であること又は投影装置が照明光を照射している状態であることを示す。「照明機能の状態」では、投影装置は照明装置として構成されている。つまり、「照明機能の状態」では、投影装置の各構成要素が照明装置の機能を発揮する状態で配置されている。 “The state of the illumination function” indicates that the projection device is in a state in which it can perform the illumination function or that the projection device is in the state of exhibiting the illumination function. The “state of the illumination function” indicates that the projection device is in a state in which it can emit the illumination light or that the projection device is in the state of emitting the illumination light. In the "state of illumination function", the projection device is configured as an illumination device. That is, in the "state of the illumination function", the respective constituent elements of the projection device are arranged in a state of exhibiting the function of the illumination device.
 「投影機能の状態」は、投影装置が投影機能を発揮できる状態であること又は投影装置が投影機能を発揮している状態であることを示す。「投影機能の状態」は、投影装置が画像を投影できる状態であること又は投影装置が画像を投影している状態であることを示す。「投影機能の状態」では、投影装置は投影装置として構成されている。つまり、「投影機能の状態」では、投影装置の各構成要素が投影装置の機能を発揮する状態で配置されている。 “The state of the projection function” indicates that the projection device is in a state where it can perform the projection function, or that the projection device is in the state where it is performing the projection function. The “projection function state” indicates that the projection device can project an image or that the projection device is projecting an image. In the “state of projection function”, the projection device is configured as a projection device. That is, in the “projection function state”, each component of the projection device is arranged in a state in which the function of the projection device is exerted.
 なお、「照明機能の状態」および「投影機能の状態」では、光源の点灯は必須ではない。「照明機能の状態」および「投影機能の状態」において、光源は消灯された状態でも良い。つまり、投影装置の各構成要素が、各々の機能を発揮できる状態の位置に配置されていれば十分である。 Note that it is not necessary to turn on the light source in the “lighting function state” and the “projection function state”. In the "state of the illumination function" and the "state of the projection function", the light source may be turned off. That is, it suffices if each component of the projection device is arranged at a position where it can perform its function.
 照明機能の状態では、照明光が対象領域に照射される。つまり、照明機能の状態では、照明光が被照射領域に照射される。投影機能の状態では、画像情報を含む画像光が対象領域に投射される。画像光は、画像情報を含む光である。つまり、投影機能の状態では、画像光が被照射領域に投射される。このとき、対象領域に画像が投影される。したがって、実施の形態に係る投影装置は、照明機能付きの投影装置である。または、実施の形態に係る投影装置は、投影機能付きの照明装置である。  In the state of the illumination function, the illumination light is applied to the target area. That is, in the state of the illumination function, the illumination light is applied to the illuminated area. In the state of the projection function, the image light including the image information is projected on the target area. The image light is light containing image information. That is, in the state of the projection function, the image light is projected onto the illuminated area. At this time, the image is projected on the target area. Therefore, the projection device according to the embodiment is a projection device with a lighting function. Alternatively, the projection device according to the embodiment is a lighting device with a projection function.
 照明光が照射される対象領域は、画像光が投射される対象領域と同じである。ここで、「同じ対象領域」は、照明光の照射される対象領域が画像光の投射される対象領域を含む場合を含んでいる。また、「同じ対象領域」は、画像光の投射される対象領域が照明光の照射される対象領域を含む場合を含んでいる。 The target area to which the illumination light is applied is the same as the target area to which the image light is projected. Here, "the same target area" includes the case where the target area to which the illumination light is irradiated includes the target area to which the image light is projected. The “same target area” includes the case where the target area onto which the image light is projected includes the target area onto which the illumination light is applied.
 実施の形態に係る投影装置は、例えば、スポットライト、ダウンライト、天井灯、又は車両用灯具などである。スポットライトは、一点を集中的に照らす照明装置である。ダウンライトは、天井に埋め込まれるように取り付けられる小型の照明装置である。天井灯は、天井に取り付けられる照明装置である。車両用灯具は、例えば、車両の前照灯装置、デイライトまたはフォグライトなどである。デイライトは、昼間に点灯して走行中の車に対する周囲からの視認性を向上させるライトである。フォグライトは、濃霧などで前方の視界が制限された際に路面を照らすライトである。実施の形態に係る投影装置において、照明光の照明範囲の大きさ及び投影される画像の大きさは、特に限定されない。 The projection device according to the embodiment is, for example, a spotlight, a downlight, a ceiling light, or a vehicle lamp. A spotlight is a lighting device that illuminates one point in a concentrated manner. The downlight is a small lighting device that is mounted so as to be embedded in the ceiling. A ceiling lamp is a lighting device attached to the ceiling. The vehicle lighting device is, for example, a vehicle headlight device, a daylight, or a fog light. The daylight is a light that is turned on in the daytime to improve the visibility from the surroundings of a running vehicle. Fog lights are lights that illuminate the road surface when the field of view in front is limited due to heavy fog. In the projection device according to the embodiment, the size of the illumination range of the illumination light and the size of the projected image are not particularly limited.
 実施の形態に係る投影装置は、投影機能の状態で画像光を投射することによって対象領域に画像を投影する。本出願において、「画像」は、文字、静止画、及び動画を含む。「投影」とは、像を映し出すことである。「対象領域」は、被照射領域である。対象領域は、床面、路面、壁面、及びその他の対象物の表面上の領域を含む。投影される「画像」は、例えば、歩行者を誘導するために路面に表示される矢印マーク、注意喚起のマーク、警告マークまたは遅延を示す表示などである。 The projection device according to the embodiment projects an image on the target area by projecting image light in the state of the projection function. In the present application, “image” includes characters, still images, and moving images. "Projection" is to project an image. The “target area” is the irradiated area. Areas of interest include floors, road surfaces, walls, and other areas on the surface of an object. The projected “image” is, for example, an arrow mark displayed on the road surface for guiding a pedestrian, a caution mark, a warning mark, or a display indicating a delay.
 以下において、説明を容易にするためにXYZ直交座標系が用いられる。Z軸は、投影装置の光軸に平行な座標軸である。+Z軸方向は、投影装置から出射される光の照射方向である。投影装置から出射される光の中心光線は、+Z軸方向に進む。投影装置が車両に搭載された前照灯装置である場合には、Z軸方向は、路面に対して傾斜した方向である。つまり、Z軸方向は、路面に対して平行ではない。例えば、投影装置が車両の前方に搭載される場合には、+Z軸方向は車両の前方であり、-Z軸方向は車両の後方である。しかし、投影装置が車両の後方に搭載される場合もある。この場合には、+Z軸方向は車両の後方であり、-Z軸方向は車両の前方である。 In the following, an XYZ Cartesian coordinate system will be used for ease of explanation. The Z axis is a coordinate axis parallel to the optical axis of the projection device. The +Z axis direction is the irradiation direction of light emitted from the projection device. The central ray of the light emitted from the projection device travels in the +Z axis direction. When the projection device is a headlight device mounted on a vehicle, the Z-axis direction is a direction inclined with respect to the road surface. That is, the Z-axis direction is not parallel to the road surface. For example, when the projection device is mounted in the front of the vehicle, the +Z axis direction is the front of the vehicle and the −Z axis direction is the rear of the vehicle. However, the projection device may be mounted behind the vehicle. In this case, the +Z axis direction is the rear side of the vehicle and the −Z axis direction is the front side of the vehicle.
 中心光線は、例えば、光の放射角度に対する光強度分布の加重平均となる角度方向の光線とすることができる。また、中心光線は、例えば、光の大部分が進行する主な方向の光線とすることができる。主光軸上の光線を中心光線とすることができる。主光軸は、照明装置の幾何学的中心軸ではなく、その光源が放射する光学的中心軸である。主光軸は、一般に、最高光度の放射方向である。また、この中心光線と重なる軸を投影装置100の光軸とすることができる。通常、放射角度に対して中心の光強度が最も高いので、光軸は、光源1の発光面の中心を通り発光面に垂直な軸となる。そして、通常、中心光線は、光軸上の光線となる。 The central ray can be, for example, a ray in the angular direction that is a weighted average of the light intensity distribution with respect to the emission angle of light. Also, the central ray can be, for example, a ray in the main direction in which most of the light travels. The ray on the principal optical axis can be the central ray. The principal optical axis is not the geometric center axis of the lighting device, but the optical center axis emitted by its light source. The principal optical axis is generally the direction of emission of highest intensity. Further, the axis that overlaps this central ray can be the optical axis of the projection device 100. Usually, since the central light intensity is highest with respect to the emission angle, the optical axis is an axis that passes through the center of the light emitting surface of the light source 1 and is perpendicular to the light emitting surface. Then, normally, the central ray is a ray on the optical axis.
 X軸は、Z軸に直交する方向の座標軸である。投影装置が車両に搭載された前照灯装置である場合には、X軸方向は、車両の左右方向である。つまり、X軸方向は、車両の幅方向である。車両の前方を向いたときに、左方向が+X軸方向であり、右方向が-X軸方向である。 The X axis is the coordinate axis in the direction orthogonal to the Z axis. When the projection device is a headlight device mounted on a vehicle, the X-axis direction is the left-right direction of the vehicle. That is, the X-axis direction is the width direction of the vehicle. When facing the front of the vehicle, the left direction is the +X axis direction and the right direction is the -X axis direction.
 Y軸は、Z軸及びX軸に直交する方向の座標軸である。投影装置が車両に搭載される場合には、Y軸方向は、車両の上下方向である。車両の上方向が+Y軸方向であり、車両の下方向が-Y軸方向である。つまり、空の方向が+Y軸方向であり、路面の方向が-Y軸方向である。 The Y axis is a coordinate axis in a direction orthogonal to the Z axis and the X axis. When the projection device is mounted on a vehicle, the Y-axis direction is the vertical direction of the vehicle. The upward direction of the vehicle is the +Y-axis direction, and the downward direction of the vehicle is the -Y-axis direction. That is, the direction of the sky is the +Y axis direction, and the direction of the road surface is the −Y axis direction.
 以下の実施の形態では、光学部2,4を光軸C2,C4を中心とした回転体の形状として説明する。しかし、光学部2,4は回転体の形状以外の形状を取ることができる。光学部2,4は、例えば、直交する2つの軸方向の曲率が異なる面を採用できる。直交する2つの軸方向の曲率が異なる面は、トロイダル面である。トロイダル面は、シリンドリカル面を含む。シリンドリカル面は、一つの方向(第1の方向)に曲率を有し、その方向(第1の方向)に垂直な方向(第2の方向)に曲率を有さない。例えば、以下の実施の形態でYZ平面上に示された図において、光学部2,4はX軸方向に曲率を有さない。 In the following embodiments, the optical parts 2 and 4 will be described as the shape of a rotating body centered on the optical axes C2 and C4. However, the optical parts 2 and 4 can take shapes other than the shape of the rotating body. For the optical units 2 and 4, for example, surfaces having different curvatures in two orthogonal axial directions can be adopted. A surface having two different axial curvatures that are orthogonal to each other is a toroidal surface. The toroidal surface includes a cylindrical surface. The cylindrical surface has a curvature in one direction (first direction) and does not have a curvature in a direction (second direction) perpendicular to the direction (first direction). For example, in the drawings shown on the YZ plane in the following embodiments, the optical units 2 and 4 have no curvature in the X-axis direction.
 また、以下の実施の形態では、光学部2,4は光軸C2,C4に対して対称な形状をしている。しかし、光学部2,4の形状は光軸C2,C4に対して片側とすることができる。この場合には、光学部2,4の外側は光軸C2,C4から遠い位置を示す。 Also, in the following embodiments, the optical parts 2 and 4 have a symmetrical shape with respect to the optical axes C2 and C4. However, the shapes of the optical parts 2 and 4 can be one side with respect to the optical axes C2 and C4. In this case, the outside of the optical units 2 and 4 indicates a position far from the optical axes C2 and C4.
《1》実施の形態1
《1-1》投影装置100の構成
 図1は、実施の形態1に係る投影装置100の照明機能の状態の場合における主要な構成を概略的に示す図である。図2は、投影装置100の投影機能の状態の場合における主要な構成を概略的に示す図である。図1及び図2には、光学系の部材をYZ平面に平行な面で切る断面構造が示されている。また、図1及び図2には、制御系の構成要素が機能ブロックで示されている。
<<1>> Embodiment 1
<<1-1>> Configuration of Projector 100 FIG. 1 is a diagram schematically showing a main configuration of projector 100 according to the first embodiment in a state of an illumination function. FIG. 2 is a diagram schematically showing the main configuration of the projection apparatus 100 in the projection function state. 1 and 2 show a sectional structure in which a member of the optical system is cut along a plane parallel to the YZ plane. 1 and 2, constituent elements of the control system are shown by functional blocks.
 投影装置100は、光源部1、光学部2、画像形成部3および光学部4を備える。投影装置100は、移動部5、光源駆動部81、移動制御部82、表示制御部83および制御部84を備えることができる。 The projection device 100 includes a light source unit 1, an optical unit 2, an image forming unit 3, and an optical unit 4. The projection device 100 can include a moving unit 5, a light source driving unit 81, a movement control unit 82, a display control unit 83, and a control unit 84.
《1-2》光源部1
 光源部1は、光R1を出射する。光源部1は、光R1を+Z軸方向出射する。光源部1は、光学部2に向けて光R1を出射する。「出射」とは、ある方向に光を発することである。光源部1の光軸は、C1で示される。光源部1は、例えば、光源部品である。
<<1-2>> Light source unit 1
The light source unit 1 emits the light R1. The light source unit 1 emits the light R1 in the +Z-axis direction. The light source unit 1 emits the light R1 toward the optical unit 2. "Emitting" means emitting light in a certain direction. The optical axis of the light source unit 1 is indicated by C1. The light source unit 1 is, for example, a light source component.
 光源部1の光出射面11は、光を出射する面である。光出射面11は、例えば、発光面である。光出射面11は、例えば、円形形状又は矩形形状などである。 The light emitting surface 11 of the light source unit 1 is a surface that emits light. The light emitting surface 11 is, for example, a light emitting surface. The light emitting surface 11 has, for example, a circular shape or a rectangular shape.
 光源部1は、例えば、固体光源又はランプ光源を備えている。 The light source unit 1 includes, for example, a solid-state light source or a lamp light source.
 固体光源は、例えば、半導体光源である。半導体光源は、例えば、発光ダイオード(LED)又はレーザーダイオード(LD)などである。固体光源は、有機エレクトロルミネッセンス(有機EL)を用いた光源であってもよい。或いは、固体光源は、蛍光体と蛍光体に励起光を照射する励起光源とを備える光源であってもよい。蛍光体は、例えば、面状に塗布されている。光源部1が固体光源を備える場合には、ランプ光源を備える場合に比べて、発光効率及び指向性を高くすることができる。また、光源部1が固体光源を備える場合には、投影装置100を軽量化及び省電力化することができる。 The solid-state light source is, for example, a semiconductor light source. The semiconductor light source is, for example, a light emitting diode (LED) or a laser diode (LD). The solid-state light source may be a light source using organic electroluminescence (organic EL). Alternatively, the solid-state light source may be a light source including a phosphor and an excitation light source that irradiates the phosphor with excitation light. The phosphor is applied in a planar shape, for example. When the light source unit 1 includes a solid-state light source, the luminous efficiency and directivity can be increased as compared with the case where the light source unit includes a lamp light source. In addition, when the light source unit 1 includes a solid-state light source, the weight and power consumption of the projection device 100 can be reduced.
 ランプ光源は、例えば、白熱電球、ハロゲンランプ又は蛍光ランプなどである。ランプ光源は、リフレクタを備えてもよい。リフレクタは、例えば、反射鏡などである。リフレクタは、発光体から放射された光を反射する。発光体は、光を発する部分である。リフレクタを備えることによって、発光体から出射される光は指向性を有することができる。 The lamp light source is, for example, an incandescent lamp, a halogen lamp or a fluorescent lamp. The lamp light source may include a reflector. The reflector is, for example, a reflecting mirror. The reflector reflects the light emitted from the light emitter. The luminous body is a part that emits light. By providing the reflector, the light emitted from the light emitter can have directivity.
 「指向性」とは、光源部から空間中に光が出力されるときに、出力される光の強度が方向によって異なる性質である。「指向性を有する」とは、例えば、発光面の前方に光が進行して、発光面の後方には光が進行しないことをいう。つまり、指向性を有する光源部から出射される光の発散角は、180度以下である。以下の実施の形態で示す光源部1は、一例として、指向性を有する光源部である。 ▽ "Directivity" is a property in which the intensity of the output light varies depending on the direction when the light is output from the light source section into the space. “Having directivity” means that, for example, light travels in front of the light emitting surface and does not travel behind the light emitting surface. That is, the divergence angle of the light emitted from the light source section having directivity is 180 degrees or less. The light source unit 1 shown in the following embodiments is, for example, a light source unit having directivity.
《1-3》光学部2
 光学部2は、入射した光の配光を変更する。光学部2は、入射した光の発散角を変更する。光学部2は、光源部1から出射された光R1を集光することができる。光学部2は、例えば、光軸C2上に光を集光することができる。「集光」とは、光を集めることである。つまり、出射する光の発散角は、入射する光の発散角よりも小さい。「配光」とは、光源の空間に対する光度分布である。つまり、配光は光源から出る光の空間的分布である。配光は光源からどの方向(角度)に光がどれぐらいの強さで発しているかを示すものである。「発散角」とは、光の広がる角度である。なお、発散角は、集光される光の角度も含む。光学部2は、例えば、光学部品である。
<<1-3>> Optical unit 2
The optical unit 2 changes the distribution of incident light. The optical unit 2 changes the divergence angle of incident light. The optical unit 2 can collect the light R1 emitted from the light source unit 1. The optical unit 2 can focus light on the optical axis C2, for example. "Condensing" means collecting light. That is, the divergence angle of the emitted light is smaller than the divergence angle of the incident light. The “light distribution” is a luminous intensity distribution with respect to the space of the light source. That is, the light distribution is the spatial distribution of the light emitted from the light source. The light distribution indicates in what direction (angle) the light is emitted from the light source and at what intensity. The "divergence angle" is the angle at which light spreads. The divergence angle also includes the angle of the condensed light. The optical unit 2 is, for example, an optical component.
 光学部2は、光R1を入射する。光学部2は、入射した光R1を光R2に変換する。光R2は、少なくとも収束する光成分及び発散する光成分のいずれか1つを含む。光学部2は、少なくとも光の屈折及び光の反射のいずれかによって光R1の進行方向を変える。光学部2は、光R1の進行方向を変えて光R2を出射する。光学部2は、光偏向部である。 Optical unit 2 enters light R1. The optical unit 2 converts the incident light R1 into light R2. The light R2 includes at least one of a converging light component and a diverging light component. The optical unit 2 changes the traveling direction of the light R1 by at least one of refraction of light and reflection of light. The optical unit 2 changes the traveling direction of the light R1 and emits the light R2. The optical unit 2 is a light deflection unit.
 例えば、光学部2は、入射する光R1の発散角を変更する。光R2の発散角は、光R1の発散角よりも小さい。光R2は、収束光、平行光、及び発散光を含むことができる。光学部2は、集光部とも呼ばれる。 For example, the optical unit 2 changes the divergence angle of the incident light R1. The divergence angle of the light R2 is smaller than the divergence angle of the light R1. The light R2 can include convergent light, parallel light, and divergent light. The optical unit 2 is also called a light collecting unit.
 光学部2の光軸は、C2で示される。実施の形態1において、光軸C1と光軸C2とは同一の軸上に位置する。ただし、光軸C2が光軸C1に対して傾斜するように、光源部1および光学部2を配置してもよい。また、光軸C2が光軸C1に対して偏心するように、光源部1および光学部2を配置してもよい。 The optical axis of the optical unit 2 is indicated by C2. In the first embodiment, the optical axis C1 and the optical axis C2 are located on the same axis. However, the light source unit 1 and the optical unit 2 may be arranged so that the optical axis C2 is inclined with respect to the optical axis C1. The light source unit 1 and the optical unit 2 may be arranged so that the optical axis C2 is eccentric with respect to the optical axis C1.
 図3は、投影装置100の照明機能の場合の主要な構成及び光学部2を通過する光の主要な経路を示す図である。図4は、投影装置100の投影機能の場合の主要な構成及び光学部2を通過する光の主要な経路を示す図である。図5(A)及び図5(B)は、投影装置100の光学部2の外観を概略的に示す側面図及び正面図である。 FIG. 3 is a diagram showing a main configuration and a main path of light passing through the optical unit 2 in the case of the illumination function of the projection device 100. FIG. 4 is a diagram showing a main configuration and a main path of light passing through the optical unit 2 in the case of the projection function of the projection device 100. 5A and 5B are a side view and a front view schematically showing the outer appearance of the optical unit 2 of the projection device 100.
 光学部2は、中心部分20aと、周辺部分20bとを備えている。 The optical section 2 has a central portion 20a and a peripheral portion 20b.
 中心部分20aは、光学部2の一部である。光学部2の光軸C2は、中心部分20aを通っている。つまり、光軸C2は、光学部2の中心部分20a内に存在する。中心部分20aは、例えば、光軸C2を中心とした光学部2の中心部分である。中心部分20aは、第1の中心部分とも呼ばれる。 The central portion 20a is a part of the optical unit 2. The optical axis C2 of the optical unit 2 passes through the central portion 20a. That is, the optical axis C2 exists in the central portion 20a of the optical unit 2. The central portion 20a is, for example, the central portion of the optical unit 2 centered on the optical axis C2. The central portion 20a is also called the first central portion.
 なお、実施の形態の説明の中で用いる「第1」および「第2」などは、実施の形態の説明を容易にするためのもので、実施の形態以外の記載とは関係がない。 Note that the terms "first" and "second" used in the description of the embodiment are for facilitating the description of the embodiment and have no relation to the description other than the embodiment.
 中心部分20aは、入射面21と出射面23とを備えている。入射面21は光R1を入射する。出射面23は光R2を出射する。光R2は、光R2aおよび光R2bを含んでいる。また、光R2は、光R2cおよび光R2dを含んでいる。 The central portion 20a has an entrance surface 21 and an exit surface 23. The incident surface 21 receives the light R1. The emission surface 23 emits the light R2. The light R2 includes light R2a and light R2b. The light R2 includes light R2c and light R2d.
 入射面21は、例えば、+Z軸方向に進むほど狭くなっている。入射面21は、先細りの形状である。実施の形態1では、先細りの形状は、光軸C2を中心とした回転体の形状をしている。回転体は、平面曲線を同一の平面内の直線を回転軸として回転させることによって得られる立体図形である。光軸C2を含む平面上での入射面21の断面は、例えば、出射面23側に向けて凸形状の曲面形状である。光R1は、例えば、入射面21から入射する際に屈折する。入射面21は、光学部2の光軸C2との交点を有する。 The entrance surface 21 becomes narrower, for example, in the +Z axis direction. The incident surface 21 has a tapered shape. In the first embodiment, the tapered shape is the shape of a rotating body centered on the optical axis C2. The rotating body is a solid figure obtained by rotating a plane curve with a straight line in the same plane as a rotation axis. The cross section of the entrance surface 21 on the plane including the optical axis C2 is, for example, a curved surface shape that is convex toward the exit surface 23 side. The light R1 is refracted when entering from the entrance surface 21, for example. The incident surface 21 has an intersection with the optical axis C2 of the optical unit 2.
 入射面21は、面21aと面21bとを含んでいる。凸形状の頂点の部分には、面21bが形成されている。凸形状の頂点に至る部分には、面21aが形成されている。例えば、凸形状を円錐台形状とすると、面21bは上面に相当する。上面は円錐台の小さな円形状の面である。なお、底面は円錐台の大きな円形状の面である。また、面21aは側面に相当する。光R1は、面21aで反射面22に向けて偏向される。そして、面21aを透過した光R1は反射面22に到達する。光R1は、面21bで反射面22に向けて偏向されない。そして、面21bを透過した光R1は出射面23に到達する。 The incident surface 21 includes a surface 21a and a surface 21b. A surface 21b is formed at the top of the convex shape. A surface 21a is formed at the portion reaching the apex of the convex shape. For example, if the convex shape is a truncated cone shape, the surface 21b corresponds to the upper surface. The upper surface is a small circular surface of a truncated cone. The bottom surface is a large circular surface of a truncated cone. The surface 21a corresponds to the side surface. The light R1 is deflected by the surface 21a toward the reflecting surface 22. Then, the light R1 transmitted through the surface 21a reaches the reflecting surface 22. The light R1 is not deflected by the surface 21b toward the reflecting surface 22. Then, the light R1 transmitted through the surface 21b reaches the emission surface 23.
 入射面21の形状は、図示のものに限定されない。例えば、入射面21は、複数の平面を連結した多角形状などの他の形状であってもよい。この場合、多角形状は、曲面形状に近似した形状とすることができる。 The shape of the incident surface 21 is not limited to that shown in the figure. For example, the incident surface 21 may have another shape such as a polygonal shape in which a plurality of flat surfaces are connected. In this case, the polygonal shape can be a shape approximate to a curved surface shape.
 出射面23は、入射面21の+Z軸方向側に形成されている。出射面23は、光学部2の光軸C2との交点を有する。 The exit surface 23 is formed on the +Z axis direction side of the entrance surface 21. The emission surface 23 has an intersection with the optical axis C2 of the optical unit 2.
 出射面23の形状は、図示のものに限定されない。例えば、出射面23は、凹面形状、凸面形状、又は複数の平面を連結した多角形状などであってもよい。 The shape of the emitting surface 23 is not limited to that shown in the figure. For example, the emission surface 23 may have a concave shape, a convex shape, or a polygonal shape in which a plurality of flat surfaces are connected.
 周辺部分20bは、光学部2の他の一部である。つまり、周辺部分20bは、中心部分20aとは別の光学部2の一部である。周辺部分20bは、光軸C2を中心として中心部分20aの半径方向の外側の部分である。周辺部分20bは、光軸C2を中心として中心部分20aの外周側に位置する。周辺部分20bは、光学部2の外周面より内側であって、中心部分20aの外側の部分である。周辺部分20bは、第1の周辺部分とも呼ばれる。 The peripheral portion 20b is another part of the optical unit 2. That is, the peripheral portion 20b is a part of the optical unit 2 different from the central portion 20a. The peripheral portion 20b is a portion outside the central portion 20a in the radial direction with the optical axis C2 as the center. The peripheral portion 20b is located on the outer peripheral side of the central portion 20a with the optical axis C2 as the center. The peripheral part 20b is a part inside the outer peripheral surface of the optical part 2 and outside the central part 20a. The peripheral portion 20b is also referred to as a first peripheral portion.
 周辺部分20bは、光R1を反射する反射面22を備えている。周辺部分20bは、光R1を出射する出射面24を備えている。 The peripheral portion 20b has a reflection surface 22 that reflects the light R1. The peripheral portion 20b includes an emission surface 24 that emits the light R1.
 反射面22は、入射した光を反射する。反射面22は、入射面21から入射した光R1を反射する。反射面22は、例えば、光学部2の外周面である。反射面22は、光R1が光軸C2に近づく方向に光R1を反射する。反射面22は、例えば、全反射面である。また、光軸C2を含む平面上での反射面22の断面は、例えば、光学部2の内部を進む光から見て凹形状である。反射面22の断面は、例えば、凹形状の曲面形状である。 The reflecting surface 22 reflects the incident light. The reflecting surface 22 reflects the light R1 incident from the incident surface 21. The reflecting surface 22 is, for example, an outer peripheral surface of the optical unit 2. The reflecting surface 22 reflects the light R1 in a direction in which the light R1 approaches the optical axis C2. The reflection surface 22 is, for example, a total reflection surface. In addition, the cross section of the reflecting surface 22 on a plane including the optical axis C2 is, for example, a concave shape when viewed from the light traveling inside the optical unit 2. The cross section of the reflection surface 22 is, for example, a concave curved surface shape.
 反射面22の形状は、図示のものに限定されない。例えば、反射面22は、複数の平面を連結した多角形状などの他の形状であってもよい。この場合、多角形状は、曲面形状に近似した形状とすることができる。 The shape of the reflecting surface 22 is not limited to that shown in the figure. For example, the reflecting surface 22 may have another shape such as a polygonal shape in which a plurality of flat surfaces are connected. In this case, the polygonal shape can be a shape approximate to a curved surface shape.
 出射面24は、反射面22で反射された光R1を出射する。出射面24は、光軸C2を中心として出射面23の外周側に位置する。実施の形態1では、出射面23と出射面24とは、例えば、同一の平面を形成する。この同一の平面は、出射面25である。出射面25は、出射面23と出射面24とを含んでいる。このような場合には、出射面23,24は、出射面25の領域23,24である。なお、出射面23と出射面24との間に段差などを設けて、異なる出射面とすることができる。 The emission surface 24 emits the light R1 reflected by the reflection surface 22. The emission surface 24 is located on the outer peripheral side of the emission surface 23 around the optical axis C2. In the first embodiment, the emission surface 23 and the emission surface 24 form the same plane, for example. This same plane is the exit surface 25. The emission surface 25 includes an emission surface 23 and an emission surface 24. In such a case, the emission surfaces 23 and 24 are the areas 23 and 24 of the emission surface 25. Note that a different step can be provided by providing a step or the like between the emission surface 23 and the emission surface 24.
 出射面24の形状は、図示のものに限定されない。例えば、出射面24は、凹面形状、凸面形状、又は複数の平面を連結した多角形状などであってもよい。 The shape of the emitting surface 24 is not limited to that shown in the figure. For example, the emission surface 24 may have a concave shape, a convex shape, or a polygonal shape in which a plurality of flat surfaces are connected.
 中心部分20aと周辺部分20bとは、例えば、同じ材質で一体に形成されている。ただし、中心部分20aと周辺部分20bとは、例えば、異なる材質で形成されてもよい。光学部2は、中心部分20aと周辺部分20bとを接合したものであってもよい。 The central portion 20a and the peripheral portion 20b are integrally formed of the same material, for example. However, the central portion 20a and the peripheral portion 20b may be formed of different materials, for example. The optical part 2 may be a combination of the central portion 20a and the peripheral portion 20b.
 光学部2は、例えば、透明樹脂で製作される。光学部2の材質は、透明樹脂に限らない。光学部2の材質は、光を透過する他の材質の光屈折材であってもよい。光屈折材は、光を屈折する材料である。 Optical part 2 is made of, for example, a transparent resin. The material of the optical unit 2 is not limited to the transparent resin. The material of the optical unit 2 may be a photorefractive material of another material that transmits light. The photorefractive material is a material that refracts light.
 入射面21は、中心部分20aに形成されている。入射面21に到達した光R1は、入射面21で屈折する。つまり、光R1は、入射面21で偏向される。入射面21で屈折した光R1は、反射面22に向かう。入射面21で屈折した光R1は、反射面22に向かう方向に進む。反射面22に向かう方向は、光R1が進むほど光軸C2から遠ざかる方向である。入射面21で偏向された光は、反射面22に到達する。ただし、入射面21で偏向された光の一部は、出射面23又は出射面24に直接到達する。 The incident surface 21 is formed in the central portion 20a. The light R1 that reaches the incident surface 21 is refracted at the incident surface 21. That is, the light R1 is deflected by the incident surface 21. The light R1 refracted at the incident surface 21 travels toward the reflective surface 22. The light R1 refracted at the incident surface 21 travels in a direction toward the reflecting surface 22. The direction toward the reflecting surface 22 is such that as the light R1 advances, the distance from the optical axis C2 increases. The light deflected by the incident surface 21 reaches the reflecting surface 22. However, a part of the light deflected by the entrance surface 21 reaches the exit surface 23 or the exit surface 24 directly.
 出射面23からは、例えば、図3に示される光R2aが出射される。または、出射面23からは、例えば、図4に示される光R2cが出射される。光R2a及び光R2cは、光学部2から出射される光R2の一部である。光R2a及び光R2cは、入射面21から入射して直接、出射面23から出射した光である。 The light R2a shown in FIG. 3, for example, is emitted from the emission surface 23. Alternatively, for example, the light R2c shown in FIG. 4 is emitted from the emission surface 23. The light R2a and the light R2c are a part of the light R2 emitted from the optical unit 2. The light R2a and the light R2c are light that is incident from the incident surface 21 and directly emitted from the emitting surface 23.
 光R2a及び光R2cは、画像形成部3の画像形成領域31に到達する。光R2aは、距離Pが距離P1である状態の光である。つまり、光R2aは、投影装置100が照明機能である状態の光である。光R2cは、距離Pが距離P2である状態の光である。つまり、光R2cは、投影装置100が投影機能である状態の光である。距離Pは、光源部1から光学部2までの距離である。距離Pは、光源部1の光出射面11から光学部2までの距離である。 The light R2a and the light R2c reach the image forming area 31 of the image forming unit 3. The light R2a is light in a state where the distance P is the distance P1. That is, the light R2a is light in a state where the projection device 100 has an illumination function. The light R2c is light in a state where the distance P is the distance P2. That is, the light R2c is light in a state where the projection device 100 has a projection function. The distance P is the distance from the light source unit 1 to the optical unit 2. The distance P is the distance from the light emitting surface 11 of the light source unit 1 to the optical unit 2.
 光R2a及び光R2cは、入射面21の+Z軸側の端部に形成された平面形状の部分(すなわち、面21b)から入射している。この平面形状の部分は、例えば、光軸C2に垂直な平面である。光R2a及び光R2cは、入射面21で反射面22に向けて偏向されなかった光である。 The light R2a and the light R2c are incident from the plane-shaped portion (that is, the surface 21b) formed at the +Z-axis side end of the incident surface 21. This plane-shaped portion is, for example, a plane perpendicular to the optical axis C2. The light R2a and the light R2c are lights that are not deflected by the incident surface 21 toward the reflecting surface 22.
 出射面24からは、例えば、図3に示される光R2bが出射される。または、出射面24からは、例えば、図4に示される光R2dが出射される。光R2b及び光R2dは、光学部2から出射される光R2の一部である。光R2b及び光R2dは、入射面21から入射して、反射面22で反射し、出射面24から出射した光である。 The light R2b shown in FIG. 3, for example, is emitted from the emission surface 24. Alternatively, for example, the light R2d shown in FIG. 4 is emitted from the emission surface 24. The light R2b and the light R2d are a part of the light R2 emitted from the optical unit 2. The light R2b and the light R2d are light that enters from the incident surface 21, is reflected by the reflecting surface 22, and exits from the emitting surface 24.
 光R2bは、画像形成部3の周辺領域32に到達する。光R2bは、距離Pが距離P1である状態の光である。つまり、光R2bは、投影装置100が照明機能である状態の光である。光R2dは、画像形成部3の画像形成領域31に到達する。光R2dは、距離Pが距離P2である状態の光である。つまり、光R2dは、投影装置100が投影機能である状態の光である。 The light R2b reaches the peripheral area 32 of the image forming unit 3. The light R2b is light in a state where the distance P is the distance P1. That is, the light R2b is light in a state where the projection device 100 has an illumination function. The light R2d reaches the image forming area 31 of the image forming unit 3. The light R2d is light in a state where the distance P is the distance P2. That is, the light R2d is light in a state where the projection device 100 has a projection function.
 実施の形態1では、光学部2は、単一の光学部品である。ただし、光学部2は、複数の光学部品の組み合わせで構成されてもよい。 In the first embodiment, the optical unit 2 is a single optical component. However, the optical unit 2 may be configured by combining a plurality of optical components.
《1-4》画像形成部3
 画像形成部3は、入射した光を画像光に変換する。画像形成部3は、画像形成領域31および周辺領域32を含む。光学部2から出射された光R2は、少なくとも画像形成領域31及び周辺領域32のいずれか1つに入射する。画像形成部3は、例えば、画像形成部品である。
<<1-4>> Image forming unit 3
The image forming unit 3 converts incident light into image light. The image forming unit 3 includes an image forming area 31 and a peripheral area 32. The light R2 emitted from the optical unit 2 enters at least one of the image forming area 31 and the peripheral area 32. The image forming unit 3 is, for example, an image forming component.
 図6(A)及び図6(B)は、投影装置100の画像形成部3の外観を概略的に示す側面図及び正面図である。 6A and 6B are a side view and a front view schematically showing the outer appearance of the image forming unit 3 of the projection device 100.
 画像形成領域31は、画像を形成する。画像形成領域31は、入射した光R2を画像光に変換する。画像形成領域31に形成される画像は、光学部4によって投影される。画像形成領域31に形成される画像33は、対象領域6に投影される画像72に対応する。画像72は、画像33の投影像である。「投影」は、物の姿を何かの面にうつすことである。「投影像」は、うつし出された像である。ここで、投影像がうつし出される面は、対象領域6である。例えば、画像形成領域31は、光学部2の光軸C2との交点を含む。光R2は、画像形成領域31を通過して画像光になる。 The image forming area 31 forms an image. The image forming area 31 converts the incident light R2 into image light. The image formed in the image forming area 31 is projected by the optical unit 4. The image 33 formed in the image forming area 31 corresponds to the image 72 projected in the target area 6. The image 72 is a projection image of the image 33. "Projection" is to transfer the shape of an object to some surface. The "projected image" is an image that has been projected. Here, the surface on which the projected image is projected is the target area 6. For example, the image forming area 31 includes an intersection with the optical axis C2 of the optical unit 2. The light R2 passes through the image forming area 31 and becomes image light.
 画像形成領域31には、光を透過する領域と、光を遮光する領域とが形成される。光を透過する領域と光を遮光する領域とによって、画像形成領域31には画像33が形成される。つまり、画像形成領域31は、光学部2から出射された光R2の一部を透過する。また、画像形成領域31は、光学部2から出射される光R2の他の一部を遮光する。 In the image forming area 31, a light transmitting area and a light shielding area are formed. An image 33 is formed in the image forming area 31 by the light transmitting area and the light shielding area. That is, the image forming area 31 transmits a part of the light R2 emitted from the optical unit 2. Further, the image forming area 31 blocks the other part of the light R2 emitted from the optical unit 2.
 画像形成領域31によって、入射した光R2は画像光に変換される。画像光は、光学部4を通過して対象領域6に投射される。画像光の投射によって、対象領域6に画像72が投影される。 The incident light R2 is converted into image light by the image forming area 31. The image light passes through the optical unit 4 and is projected onto the target area 6. The image 72 is projected on the target area 6 by the projection of the image light.
 画像形成領域31は、例えば、液晶素子である。液晶素子は、液晶パネル又は液晶ライトバルブとも呼ばれる。液晶パネルは、偏光フィルターによって入射する光の一部を透過させ、入射する光の他の一部を遮光する。例えば、画像形成部3には、画像信号が入力される。画像信号は、画像情報を含む信号である。画像形成部3は、画像形成領域31に画像信号に基づく画像33を形成する。液晶パネルは、入力される画像信号に応じて、投影される画像72を変更することができる。また、液晶パネルは、投影される画像72を動画とすることができる。なお、画像形成領域31及び周辺領域32を含む領域を液晶素子とすることができる。周辺領域32に相当する液晶素子の領域は、照明機能が選択されている場合には、光を透過する。また、周辺領域32に相当する液晶素子の領域は、投影機能が選択されている場合には、光を遮光することができる。 The image forming area 31 is, for example, a liquid crystal element. The liquid crystal element is also called a liquid crystal panel or a liquid crystal light valve. The liquid crystal panel transmits a part of the incident light and blocks another part of the incident light by the polarization filter. For example, an image signal is input to the image forming unit 3. The image signal is a signal including image information. The image forming unit 3 forms an image 33 based on the image signal in the image forming area 31. The liquid crystal panel can change the projected image 72 according to the input image signal. Further, the liquid crystal panel can make the projected image 72 a moving image. A region including the image forming region 31 and the peripheral region 32 can be a liquid crystal element. The region of the liquid crystal element corresponding to the peripheral region 32 transmits light when the illumination function is selected. Further, the region of the liquid crystal element corresponding to the peripheral region 32 can block light when the projection function is selected.
 画像形成領域31は、例えば、光を遮断する領域を含む遮光板であってもよい。例えば、画像形成領域31は、矢印形状の開口を持つ遮光板であってもよい。この開口は、光を通過させる。遮光板は、光を遮断する遮光膜によって形成されてもよい。遮光膜は、遮光板の一例である。この場合には、開口に対応する画像72が投影される。 The image forming area 31 may be, for example, a light shielding plate including an area that blocks light. For example, the image forming area 31 may be a light blocking plate having an arrow-shaped opening. This opening allows light to pass through. The light blocking plate may be formed of a light blocking film that blocks light. The light shielding film is an example of a light shielding plate. In this case, the image 72 corresponding to the opening is projected.
 遮光板は、例えば、ステンレス鋼などの金属板である。遮光板は、例えば、ガラスなどの基材と、これに塗布されたクロム又はアルミニウムなどの遮光膜とから構成されてもよい。遮光板は、投影される画像72を変更しない。遮光板を採用した場合には、画像形成部3は、一種類の画像72を投影する。なお、画像形成部3は、ある開口を持つ遮光板を他の開口を持つ遮光板と取り替えることで、複数の種類の画像のうちのいずれかの画像72を投影することができる。 The light shield plate is, for example, a metal plate such as stainless steel. The light shielding plate may be composed of, for example, a base material such as glass and a light shielding film such as chromium or aluminum applied to the base material. The baffle does not change the projected image 72. When the light shielding plate is used, the image forming unit 3 projects one type of image 72. The image forming unit 3 can project an image 72 of any of a plurality of types of images by replacing a light blocking plate having a certain opening with a light blocking plate having another opening.
 また、遮光板は、回転するように備えられた回転板で構成されてもよい。回転板は、複数の画像を含む遮光部材である。この場合、遮光板を回転させることで、複数の種類の画像のいずれかの画像が画像形成領域31の画像33となる。画像形成部3は、選択された画像33に基づく画像72を投影することができる。 Also, the light shielding plate may be composed of a rotating plate provided so as to rotate. The rotary plate is a light blocking member including a plurality of images. In this case, by rotating the light shielding plate, any one of the plurality of types of images becomes the image 33 of the image forming area 31. The image forming unit 3 can project the image 72 based on the selected image 33.
 画像形成部3は、例えば、複数のマイクロミラーを含む表示素子であってもよい。この表示素子は、例えば、2次元に配列された複数のマイクロミラーを備えている。画像33は、複数のマイクロミラーの傾斜によって形成される。この表示素子は、例えば、MEMS(Micro Electro Mechanical Systems)技術を用いたDLP(Digital Light Processing、登録商標)又はDMD(Digital Micromirror Device、登録商標)などである。「MEMS」は、微小な電気部品と機械部品とを一つの基板上に組み込んだデバイス又はシステムである。マイクロミラーを用いた表示素子は、画像情報に基づいて、投影される画像72を変更することができる。また、画像形成部3がマイクロミラーを用いた表示素子を採用する場合には、投影される画像72を動画とすることができる。 The image forming unit 3 may be, for example, a display element including a plurality of micromirrors. This display element includes, for example, a plurality of micromirrors arranged two-dimensionally. The image 33 is formed by tilting a plurality of micromirrors. This display element is, for example, DLP (Digital Light Processing, registered trademark) or DMD (Digital Micromirror Device, registered trademark) using MEMS (Micro Electro Mechanical Systems) technology. “MEMS” is a device or system in which minute electric components and mechanical components are incorporated on one substrate. The display element using the micromirror can change the projected image 72 based on the image information. Further, when the image forming unit 3 employs a display element using a micromirror, the projected image 72 can be a moving image.
 投影機能が選択されているときには、投影装置100は、画像形成領域31を透過する光R2を増加させる。画像形成領域31を透過する光R2は、例えば、図4に示される光R2c及び光R2dである。 When the projection function is selected, the projection device 100 increases the light R2 transmitted through the image forming area 31. The light R2 transmitted through the image forming area 31 is, for example, the light R2c and the light R2d shown in FIG.
 周辺領域32は、光軸C2を中心として画像形成領域31の外周側に形成されている。周辺領域32は、画像形成領域31の周辺側に位置している。周辺領域32は、例えば、光を透過する。周辺領域32は、例えば、光透過性部材で形成されている。光透過性部材は、光を透過する部材である。ただし、周辺領域32は、必ずしも光透過性部材で形成される必要はない。周辺領域32は、光が通過する空間であってもよい。つまり、画像形成部3は、画像形成領域31のみを備えてもよい。光R2は、周辺領域32を通過して照明光71となる。なお、周辺領域32は、レンズ面などを備えることで透過する光の配光を変更することができる。 The peripheral area 32 is formed on the outer peripheral side of the image forming area 31 around the optical axis C2. The peripheral area 32 is located on the peripheral side of the image forming area 31. The peripheral region 32 transmits, for example, light. The peripheral region 32 is formed of, for example, a light transmissive member. The light transmissive member is a member that transmits light. However, the peripheral region 32 does not necessarily have to be formed of a light transmissive member. The peripheral region 32 may be a space through which light passes. That is, the image forming unit 3 may include only the image forming area 31. The light R2 passes through the peripheral region 32 and becomes the illumination light 71. The peripheral region 32 can change the light distribution of the transmitted light by providing a lens surface or the like.
 周辺領域32は、例えば、ガラス又は透明樹脂などによって構成される。照明機能が選択されているときには、投影装置100は、周辺領域32を透過する光R2を増加させる。周辺領域32を透過する光R2は、例えば、図3に示される光R2bである。 The peripheral area 32 is made of, for example, glass or transparent resin. When the illumination function is selected, the projection device 100 increases the light R2 transmitted through the peripheral region 32. The light R2 transmitted through the peripheral region 32 is, for example, the light R2b shown in FIG.
 周辺領域32は、画像形成領域31を保持する保持部としての機能を持つこともできる。そのため、周辺領域32の大きさ又は厚みは、所望の大きさ及び厚みに設定してもよい。つまり、周辺領域32は、光R2を透過する構成であれば、特に制限されない。 The peripheral area 32 can also have a function as a holding unit that holds the image forming area 31. Therefore, the size or thickness of the peripheral region 32 may be set to a desired size and thickness. That is, the peripheral region 32 is not particularly limited as long as it is configured to transmit the light R2.
《1-5》光学部4
 光学部4は、入射した光を投射する。光学部4は、光R3を入射する。光R3は、光R31および光R32を含んでいる。光学部4は、入射した光R3を光R4に変換する。光R4は、少なくとも照明光及び画像光のいずれか1つを含む。光R4は、光R4aおよび光R4bを含んでいる。光学部4は、少なくとも光の屈折及び光の反射のいずれかによって光R3の進行方向を変える。光学部4は、光R3の進行方向を変えて光R4を出射する。光学部4は、光偏向部である。光学部4は、例えば、光学部品である。
<<1-5>> Optical unit 4
The optical unit 4 projects the incident light. The optical unit 4 enters the light R3. The light R3 includes light R31 and light R32. The optical unit 4 converts the incident light R3 into light R4. The light R4 includes at least one of illumination light and image light. The light R4 includes light R4a and light R4b. The optical unit 4 changes the traveling direction of the light R3 by at least one of refraction of light and reflection of light. The optical unit 4 changes the traveling direction of the light R3 and emits the light R4. The optical unit 4 is a light deflection unit. The optical unit 4 is, for example, an optical component.
 図1に示されるように、光学部4は、照明光71を対象領域6上に照射する。光学部4は、画像形成部3の周辺領域32を通過した光R4bを対象領域6に向ける。光学部4は、画像形成部3の周辺領域32を透過した光を偏向して、対象領域6に向ける。光R4bは、対象領域6に照明光71として投射される。光R4bは、対象領域6に投射される。 As shown in FIG. 1, the optical unit 4 irradiates the target area 6 with the illumination light 71. The optical unit 4 directs the light R4b that has passed through the peripheral region 32 of the image forming unit 3 to the target region 6. The optical unit 4 deflects the light transmitted through the peripheral region 32 of the image forming unit 3 and directs the light toward the target region 6. The light R4b is projected as the illumination light 71 on the target area 6. The light R4b is projected on the target area 6.
 また、図2に示されるように、光学部4は、画像72を対象領域6上に投影する。光学部4は、画像形成部3の画像形成領域31を通過した光R4aを対象領域6に向ける。光学部4は、画像形成部3の画像形成領域31を透過した光を偏向して、対象領域6に向ける。光R4aは、対象領域6に画像72として投射される。光R4aは、対象領域6に投射される。光R4aは、画像光とも呼ばれる。光学部4は、投影部とも呼ばれる。 Further, as shown in FIG. 2, the optical unit 4 projects the image 72 on the target region 6. The optical unit 4 directs the light R4a that has passed through the image forming area 31 of the image forming unit 3 to the target area 6. The optical unit 4 deflects the light transmitted through the image forming area 31 of the image forming unit 3 and directs the light toward the target area 6. The light R4a is projected as an image 72 on the target area 6. The light R4a is projected on the target area 6. The light R4a is also called image light. The optical unit 4 is also called a projection unit.
 光学部4の光軸は、C4で示される。実施の形態1において、光軸C2と光軸C4とは一致する。つまり、光軸C2と光軸C4とは同一の軸上に位置する。ただし、光軸C4が光軸C2に対して傾斜するように、光学部4および光学部2を配置してもよい。また、光軸C4が光軸C2に対して偏心するように、光学部4および光学部2を配置してもよい。 The optical axis of the optical unit 4 is indicated by C4. In the first embodiment, the optical axis C2 and the optical axis C4 coincide with each other. That is, the optical axis C2 and the optical axis C4 are located on the same axis. However, the optical unit 4 and the optical unit 2 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2. Further, the optical unit 4 and the optical unit 2 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
 図7は、投影装置100の光学部4及び光学部4を通過する光の主要な経路を示す図である。図8(A)及び図8(B)は、投影装置100の光学部4の外観を概略的に示す側面図及び正面図である。 FIG. 7 is a diagram showing the optical unit 4 of the projection device 100 and a main path of light passing through the optical unit 4. 8A and 8B are a side view and a front view schematically showing the outer appearance of the optical unit 4 of the projection device 100.
 光学部4は、例えば、屈折面41,42,44と反射面43とを備える。光学部4は、例えば、レンズである。反射面43は、例えば、全反射面である。 The optical unit 4 includes, for example, refracting surfaces 41, 42, 44 and a reflecting surface 43. The optical unit 4 is, for example, a lens. The reflection surface 43 is, for example, a total reflection surface.
 光学部4は、中心部分40aと、周辺部分40bとを備えている。 The optical unit 4 has a central portion 40a and a peripheral portion 40b.
 中心部分40aは、光学部4の一部である。光学部4の光軸C4は、中心部分40aを通っている。つまり、光学部4の光軸C4は、中心部分40a内に存在する。中心部分40aは、光軸C4を中心とした光学部4の中心部分である。中心部分40aは、第2の中心部分とも呼ばれる。中心部分40aの光軸は、光軸C4である。 The central portion 40a is a part of the optical unit 4. The optical axis C4 of the optical unit 4 passes through the central portion 40a. That is, the optical axis C4 of the optical unit 4 exists within the central portion 40a. The central portion 40a is the central portion of the optical unit 4 centered on the optical axis C4. The central portion 40a is also called the second central portion. The optical axis of the central portion 40a is the optical axis C4.
 中心部分40aは、画像光を投射する。中心部分40aは、画像形成部3の画像形成領域31から出射された画像光を対象領域6上に投射する。中心部分40aは、画像形成部3の画像形成領域31に形成された画像33を対象領域6上に画像72として投影する。 The central portion 40a projects image light. The central portion 40 a projects the image light emitted from the image forming area 31 of the image forming section 3 onto the target area 6. The central portion 40 a projects the image 33 formed in the image forming area 31 of the image forming unit 3 onto the target area 6 as the image 72.
 中心部分40aは、例えば、投影レンズである。中心部分40aは、例えば、凸レンズである。中心部分40aは、例えば、凸レンズを含んでいる。中心部分40aは、両凸レンズ又は平凸レンズであってもよい。中心部分40aは、例えば、シリンドリカルレンズ又はトロイダルレンズなどであってもよい。中心部分40aは、入射面41と出射面44とを備えている。入射面41は光R3を入射する。出射面44は光R4を出射する。 The central portion 40a is, for example, a projection lens. The central portion 40a is, for example, a convex lens. The central portion 40a includes, for example, a convex lens. The central portion 40a may be a biconvex lens or a plano-convex lens. The central portion 40a may be, for example, a cylindrical lens or a toroidal lens. The central portion 40a includes an entrance surface 41 and an exit surface 44. The incident surface 41 receives the light R3. The emission surface 44 emits the light R4.
 対象領域6に投影される画像72は、画像形成領域31に形成される画像33を基とした画像である。光学部4は、画像形成領域31に形成された画像33を拡大して対象領域6に投影する。投影された画像72は、画像形成領域31に形成された画像33を拡大したものである。また、投影された画像72は、画像形成領域31に形成された画像の上下方向及び左右方向を反転したものである。 The image 72 projected on the target area 6 is an image based on the image 33 formed on the image forming area 31. The optical unit 4 enlarges the image 33 formed in the image forming area 31 and projects it on the target area 6. The projected image 72 is an enlargement of the image 33 formed in the image forming area 31. Further, the projected image 72 is the image formed in the image forming area 31 with the vertical and horizontal directions reversed.
 周辺部分40bは、光学部4の他の一部である。周辺部分40bは、中心部分40aとは別の光学部4の一部である。周辺部分40bは、光軸C4を中心とした中心部分40aの外周側に形成されている。つまり、周辺部分40bは、光軸C4を中心とした中心部分40aの半径方向の外側に配置されている。周辺部分40bは、第2の周辺部分とも呼ばれる。周辺部分40bの光軸は、光軸C4である。 The peripheral portion 40b is another part of the optical unit 4. The peripheral portion 40b is a part of the optical unit 4 different from the central portion 40a. The peripheral portion 40b is formed on the outer peripheral side of the central portion 40a with the optical axis C4 as the center. That is, the peripheral portion 40b is arranged outside the center portion 40a in the radial direction with the optical axis C4 as the center. The peripheral portion 40b is also referred to as a second peripheral portion. The optical axis of the peripheral portion 40b is the optical axis C4.
 周辺部分40bは、光R32を照明光71として照射する。周辺部分40bは、光R32を対象領域6上に照明光71として照射する。光R32は、画像形成部3上の周辺領域32から出射された光である。 The peripheral portion 40b emits the light R32 as the illumination light 71. The peripheral portion 40b irradiates the target region 6 with the light R32 as the illumination light 71. The light R32 is light emitted from the peripheral region 32 on the image forming unit 3.
 周辺部分40bは、入射面42を備えている。周辺部分40bは、反射面43を備えている。周辺部分40bは、出射面45を備えている。 The peripheral portion 40b has an incident surface 42. The peripheral portion 40b includes a reflective surface 43. The peripheral portion 40b includes an emission surface 45.
 入射面42は、光軸C4を中心とした入射面41の外周側に形成されている。入射面42の外周側の端部42aは、入射面42の内周側の端部42bよりも-Z軸方向側に位置している。入射面42の外周側の端部42aは、入射面42の内周側の端部42bよりも画像形成部3側に位置している。入射面42は、光軸C4を中心軸とした回転体形状をしている。入射面42の形状は、図示のものに限定されない。例えば、入射面42は、曲面形状又は複数の平面を連結した多角形状などであってもよい。入射面41の外周側の端部41aは、入射面42の内周側の端部42bと接続されている。 The incident surface 42 is formed on the outer peripheral side of the incident surface 41 centered on the optical axis C4. The outer peripheral end 42a of the incident surface 42 is located on the −Z axis direction side of the inner peripheral end 42b of the incident surface 42. The outer peripheral end 42 a of the incident surface 42 is located closer to the image forming unit 3 side than the inner peripheral end 42 b of the incident surface 42. The incident surface 42 is in the shape of a rotating body with the optical axis C4 as the central axis. The shape of the incident surface 42 is not limited to that shown in the figure. For example, the incident surface 42 may have a curved surface shape or a polygonal shape in which a plurality of flat surfaces are connected. An outer end 41 a of the incident surface 41 is connected to an inner end 42 b of the incident surface 42.
 反射面43は、光学部4の外周面である。反射面43の断面は、例えば、光学部4の内部を進む光から見て凹形状である。反射面43の断面は、例えば、曲面形状である。反射面43は、光軸C4を中心軸とした回転体形状をしている。反射面43の外周側の端部43aは、出射面45の外周側の端部45aと接続されている。 The reflecting surface 43 is the outer peripheral surface of the optical unit 4. The cross section of the reflecting surface 43 is, for example, a concave shape when viewed from the light traveling inside the optical unit 4. The cross section of the reflecting surface 43 has, for example, a curved shape. The reflecting surface 43 has a rotating body shape with the optical axis C4 as the central axis. The outer peripheral side end 43 a of the reflecting surface 43 is connected to the outer peripheral side end 45 a of the emitting surface 45.
 反射面43の形状は、図示のものに限定されない。例えば、反射面43は、複数の平面を連結した多角形状などの他の形状であってもよい。この場合、多角形状は、曲面形状に近似した形状とすることができる。 The shape of the reflecting surface 43 is not limited to that shown in the figure. For example, the reflecting surface 43 may have another shape such as a polygonal shape in which a plurality of flat surfaces are connected. In this case, the polygonal shape can be a shape approximate to a curved surface shape.
 出射面45は、光軸C4を中心とした出射面44の外周側に形成されている。実施の形態1では、出射面45は出射面44よりも+Z軸方向側に位置している。接続面46は、出射面44の外周側の端部44aと出射面45の内周側の端部45bとを繋いでいる。出射面45は、例えば、光軸C4に垂直な面である。 The emission surface 45 is formed on the outer peripheral side of the emission surface 44 centered on the optical axis C4. In the first embodiment, the emission surface 45 is located on the +Z axis direction side of the emission surface 44. The connection surface 46 connects the outer peripheral side end 44 a of the emitting surface 44 and the inner peripheral side end 45 b of the emitting surface 45. The emission surface 45 is, for example, a surface perpendicular to the optical axis C4.
 出射面45の形状は、図示のものに限定されない。例えば、出射面45は、曲面形状又は複数の平面を連結した多角形状などであってもよい。 The shape of the emitting surface 45 is not limited to that shown in the figure. For example, the emission surface 45 may have a curved surface shape or a polygonal shape in which a plurality of flat surfaces are connected.
 中心部分40aと周辺部分40bとは、例えば、同じ材質で一体に形成されている。ただし、光学部4は、中心部分40aと周辺部分40bとを接合したものであってもよい。 The central portion 40a and the peripheral portion 40b are integrally formed of the same material, for example. However, the optical part 4 may be one in which the central portion 40a and the peripheral portion 40b are joined.
 光学部4は、例えば、透明樹脂で製作される。光学部4の材質は、透明樹脂に限らない。光学部4の材質は、光を透過する他の材質の光屈折材であってもよい。 The optical part 4 is made of, for example, a transparent resin. The material of the optical unit 4 is not limited to the transparent resin. The material of the optical unit 4 may be a photorefractive material of another material that transmits light.
 実施の形態1では、光学部4は、単一の光学部品である。ただし、光学部4は、複数の光学部品の組み合わせで構成されてもよい。 In the first embodiment, the optical unit 4 is a single optical component. However, the optical unit 4 may be composed of a combination of a plurality of optical components.
《1-6》移動部5および制御部81,82,83,84
 移動部5は、光学系の部材を移動させる。移動部5は、光源部1から光学部2までの距離Pを変更する。移動部5は、光源部1と光学部2との間の光軸C1方向の距離Pを変更する。光軸C1方向は、例えば、Z軸方向である。移動部5は、光源部1と光学部2との間の光軸C2方向の距離Pを変更する。光軸C2方向は、例えば、Z軸方向である。
<<1-6>> moving unit 5 and control units 81, 82, 83, 84
The moving unit 5 moves a member of the optical system. The moving unit 5 changes the distance P from the light source unit 1 to the optical unit 2. The moving unit 5 changes the distance P in the optical axis C1 direction between the light source unit 1 and the optical unit 2. The optical axis C1 direction is, for example, the Z-axis direction. The moving unit 5 changes the distance P in the optical axis C2 direction between the light source unit 1 and the optical unit 2. The optical axis C2 direction is, for example, the Z-axis direction.
 移動部5は、投影装置100の状態を照明機能の状態又は投影機能の状態に切り替える。移動部5は、例えば、移動部品である。移動部5は、投影装置100の状態を照明機能の状態又は投影機能の状態に切り替える部品である。 The moving unit 5 switches the state of the projection device 100 to the state of the illumination function or the state of the projection function. The moving unit 5 is, for example, a moving component. The moving unit 5 is a component that switches the state of the projection device 100 to the state of the illumination function or the state of the projection function.
 移動部5は、少なくとも光源部1及び光学部2のいずれか1つを移動させる。実施の形態1において、移動部5は光学部2を移動させる。移動部5は光源部1に対して光学部2を移動させる。移動部5は光学部2を光軸C1に平行な方向に移動させる。移動部5は光学部2を光軸C2に平行な方向に移動させる。図1では、移動部5が光学部2をZ軸方向に移動させる。 The moving unit 5 moves at least one of the light source unit 1 and the optical unit 2. In the first embodiment, the moving unit 5 moves the optical unit 2. The moving unit 5 moves the optical unit 2 with respect to the light source unit 1. The moving unit 5 moves the optical unit 2 in a direction parallel to the optical axis C1. The moving unit 5 moves the optical unit 2 in a direction parallel to the optical axis C2. In FIG. 1, the moving unit 5 moves the optical unit 2 in the Z-axis direction.
 なお、光学部2の代わりに、または、光学部2に加えて、移動部5は光源部1を移動させても良い。移動部5は光源部1を移動させる。移動部5は光源部1を光軸C1に平行な方向に移動させる。移動部5は光源部1を光軸C2に平行な方向に移動させる。移動部5は光学部2に対して光源部1を移動させる。移動部5は、光源部1及び光学部2の少なくとも一方を移動させる。 The moving unit 5 may move the light source unit 1 instead of the optical unit 2 or in addition to the optical unit 2. The moving unit 5 moves the light source unit 1. The moving unit 5 moves the light source unit 1 in a direction parallel to the optical axis C1. The moving unit 5 moves the light source unit 1 in a direction parallel to the optical axis C2. The moving unit 5 moves the light source unit 1 with respect to the optical unit 2. The moving unit 5 moves at least one of the light source unit 1 and the optical unit 2.
 移動部5は、光学部2から出射される光R2の進行方向を変更する。移動部5は、光学部2から出射される光R2の進行方向を変更する変更部の一例である。 The moving unit 5 changes the traveling direction of the light R2 emitted from the optical unit 2. The moving unit 5 is an example of a changing unit that changes the traveling direction of the light R2 emitted from the optical unit 2.
 光学部2から出射される光R2の進行方向が変更されると、画像形成領域31に入射する光R2の量と周辺領域32に入射する光R2の量とが変更される。 When the traveling direction of the light R2 emitted from the optical unit 2 is changed, the amount of the light R2 entering the image forming area 31 and the amount of the light R2 entering the peripheral area 32 are changed.
 図1及び図3は、投影装置100の光学部2が初期位置にある状態を示す。このとき、投影装置100は、照明装置として機能する。このとき、光源部1から光学部2までの距離Pは、P1である。 1 and 3 show a state in which the optical unit 2 of the projection device 100 is in the initial position. At this time, the projection device 100 functions as a lighting device. At this time, the distance P from the light source unit 1 to the optical unit 2 is P1.
 図2及び図4は、投影装置100の光学部2が他の位置にある状態を示す。図2及び図4は、投影装置100の光学部2が初期位置と異なる位置にある状態を示す。このとき、投影装置100は、投影装置として機能する。このとき、光源部1から光学部2までの距離Pは、P2である。距離P2は距離P1よりも長い(P2>P1)。つまり、光学部2の移動量は、距離P2から距離P1を引いた値(P2-P1)である。 2 and 4 show a state in which the optical unit 2 of the projection device 100 is in another position. 2 and 4 show a state in which the optical unit 2 of the projection device 100 is at a position different from the initial position. At this time, the projection device 100 functions as a projection device. At this time, the distance P from the light source unit 1 to the optical unit 2 is P2. The distance P2 is longer than the distance P1 (P2>P1). That is, the movement amount of the optical unit 2 is a value (P2-P1) obtained by subtracting the distance P1 from the distance P2.
 移動部5は、支持機構51および駆動力発生部52を備えている。 The moving unit 5 includes a support mechanism 51 and a driving force generating unit 52.
 支持機構51は、光学部2を支持している。支持機構51は、支持部の一例である。なお、光学部2を移動させる場合には、支持機構51は、光学部2の代わりに、光源部1を支持してもよい。 The support mechanism 51 supports the optical unit 2. The support mechanism 51 is an example of a support part. When moving the optical unit 2, the support mechanism 51 may support the light source unit 1 instead of the optical unit 2.
 駆動力発生部52は、光学部2に直線運動を提供する。駆動力発生部52は、支持機構51を介して光学部2に直線運動を提供する。駆動力発生部52は、例えば、送りねじを用いた駆動機構である。送りねじは、ねじ軸とナットとを用いて、回転の動きを直進の動きに変換する機械部品である。ねじ軸はリードスクリューとも呼ばれる。 The driving force generation unit 52 provides the optical unit 2 with linear movement. The driving force generator 52 provides a linear motion to the optical unit 2 via the support mechanism 51. The driving force generator 52 is, for example, a driving mechanism using a feed screw. A feed screw is a mechanical component that converts a rotational movement into a linear movement by using a screw shaft and a nut. The screw shaft is also called a lead screw.
 駆動力発生部52は、例えば、ねじ軸とナット部とを備えている。実施の形態1では、光学部2は、例えば、支持機構51を介してナット部に支持されている。ナット部は、ねじ軸に噛み合っている。移動部5は、ねじ軸を回転させる。例えば、モータがねじ軸を回転させる。ねじ軸が回転することで、ナット部は、ねじ軸の長手方向に移動する。ただし、移動部5の構成は、上記の例に限定されない。駆動力発生部52は、他の磁力を利用した駆動機構などを採用することができる。また、移動部5は、送りねじの機構の代わりに、ラック・アンド・ピニオンの機構を採用することができる。 The driving force generator 52 includes, for example, a screw shaft and a nut portion. In the first embodiment, the optical section 2 is supported by the nut section via the support mechanism 51, for example. The nut portion meshes with the screw shaft. The moving unit 5 rotates the screw shaft. For example, a motor rotates a screw shaft. The nut portion moves in the longitudinal direction of the screw shaft as the screw shaft rotates. However, the configuration of the moving unit 5 is not limited to the above example. The driving force generation unit 52 can employ a driving mechanism using another magnetic force. Further, the moving unit 5 may employ a rack and pinion mechanism instead of the feed screw mechanism.
 距離Pは、光源部1から光学部2までの距離である。図1は、距離Pが距離P1である状態を示している。図2は、距離Pが距離P2である状態を示している。 The distance P is the distance from the light source unit 1 to the optical unit 2. FIG. 1 shows a state in which the distance P is the distance P1. FIG. 2 shows a state in which the distance P is the distance P2.
 光量Q1cは、距離Pが距離P1である場合の画像形成領域31に入射する光R2の光量である。光量Q2cは、距離Pが距離P2である場合の画像形成領域31に入射する光R2の光量である。光量Q1cは、光量Q2cよりも少ない。図2に示されるように、距離P2の場合には、画像形成領域31に入射する光R2の量は距離P1の場合よりも多い。このとき、対象領域6に投影される画像72は、図1の場合より明るく表示される。 The light quantity Q1c is the light quantity of the light R2 incident on the image forming area 31 when the distance P is the distance P1. The light quantity Q2c is the light quantity of the light R2 incident on the image forming area 31 when the distance P is the distance P2. The light quantity Q1c is smaller than the light quantity Q2c. As shown in FIG. 2, in the case of the distance P2, the amount of the light R2 incident on the image forming area 31 is larger than that in the case of the distance P1. At this time, the image 72 projected on the target area 6 is displayed brighter than in the case of FIG.
 光量Q1pは、距離Pが距離P1である場合の周辺領域32に入射する光R2の光量である。光量Q2pは、距離Pが距離P2である場合の周辺領域32に入射する光R2の光量である。光量Q1pは、光量Q2pよりも多い。図1に示されるように、距離P1の場合には、周辺領域32に入射する光R2の量が距離P2の場合よりも多い。このとき、対象領域6に投射される照明光71は、図2の場合より明るい。また、投影される画像72は、不明瞭な状態で低い照度で表示される。 The light quantity Q1p is the light quantity of the light R2 incident on the peripheral region 32 when the distance P is the distance P1. The light amount Q2p is the light amount of the light R2 incident on the peripheral region 32 when the distance P is the distance P2. The light quantity Q1p is larger than the light quantity Q2p. As shown in FIG. 1, in the case of the distance P1, the amount of the light R2 incident on the peripheral region 32 is larger than that in the case of the distance P2. At this time, the illumination light 71 projected on the target area 6 is brighter than in the case of FIG. Further, the projected image 72 is displayed in an unclear state with low illuminance.
 投影装置100は、配光の変更によって、画像形成領域31に入射する光R2の量と周辺領域32に入射する光R2の量との比率を変更する。 The projector 100 changes the ratio of the amount of light R2 entering the image forming area 31 and the amount of light R2 entering the peripheral area 32 by changing the light distribution.
 光源駆動部81は、例えば、光源部1を駆動する回路である。光源駆動部81は、光源部1の点灯、消灯または光量の変更を行う。移動制御部82は、例えば、移動部5を駆動する回路である。移動制御部82は、移動部5を介して光学部2を移動させる。 The light source drive unit 81 is, for example, a circuit that drives the light source unit 1. The light source drive unit 81 turns on or off the light source unit 1 or changes the light amount. The movement control unit 82 is, for example, a circuit that drives the movement unit 5. The movement control unit 82 moves the optical unit 2 via the moving unit 5.
 表示制御部83は、例えば、画像形成部3の画像形成領域31を駆動する回路である。表示制御部83は、例えば、画像形成領域31に画像を表示させる。画像形成領域31が液晶素子または複数のマイクロミラーを含む表示素子などの場合には、表示制御部83は画像情報を含む信号を基に画像形成領域31に画像33を表示させる。画像形成領域31が複数の画像を含む遮光部材の回転板である場合には、表示制御部83は回転板を回転させて表示する画像33を選択する。なお、画像形成領域31が一種類の画像33を表示する遮光板の場合には、投影装置100は、表示制御部83を備えなくてもよい。 The display control unit 83 is, for example, a circuit that drives the image forming area 31 of the image forming unit 3. The display control unit 83 displays an image in the image forming area 31, for example. When the image forming area 31 is a liquid crystal element or a display element including a plurality of micromirrors, the display control unit 83 causes the image forming area 31 to display the image 33 based on a signal including image information. When the image forming area 31 is the rotating plate of the light blocking member including a plurality of images, the display control unit 83 rotates the rotating plate to select the image 33 to be displayed. When the image forming area 31 is a light blocking plate that displays one type of image 33, the projection device 100 does not have to include the display control unit 83.
 制御部84は、例えば、装置全体を制御する回路である。制御部84は、少なくとも光源駆動部81、移動制御部82、表示制御部83、及び制御部84のいずれか1つを駆動する。制御部84は、例えば、メモリおよびプロセッサを備える。メモリは、プログラムを記憶する記憶部である。プロセッサは、プログラムを実行する演算部である。 The control unit 84 is, for example, a circuit that controls the entire device. The control unit 84 drives at least one of the light source drive unit 81, the movement control unit 82, the display control unit 83, and the control unit 84. The control unit 84 includes, for example, a memory and a processor. The memory is a storage unit that stores a program. The processor is an arithmetic unit that executes a program.
 また、移動部5によって支持されている光学部2をユーザが手で移動させてもよい。この場合には、投影装置100は、移動制御部82を備えなくてもよい。 Alternatively, the user may manually move the optical unit 2 supported by the moving unit 5. In this case, the projection device 100 may not include the movement control unit 82.
《1-7》投影装置100の動作
《1-7-1》照明機能の状態
 図3は、投影装置100の照明機能の状態を示す。照明機能の状態の場合には、例えば、光学部2は初期位置にある。このとき、光源部1から光学部2までの距離Pは、P1である。
<<1-7>> Operation of Projection Device 100 <<1-7-1>> State of Illumination Function FIG. 3 shows a state of the illumination function of the projection device 100. In the state of the illumination function, for example, the optical unit 2 is in the initial position. At this time, the distance P from the light source unit 1 to the optical unit 2 is P1.
 照明機能の状態の場合には、光R2bは、光学部2と画像形成部3との間で集光している。 In the state of the illumination function, the light R2b is condensed between the optical section 2 and the image forming section 3.
 図3に示されるように、照明機能の状態の場合に、光源部1から出射された光R1は、光学部2の入射面21に到達する。入射面21に到達した光R1は、入射面21によって屈折する。つまり、光源部1から出射された光R1は、入射面21によって偏向される。光R1は、例えば、偏向されて光軸C2から離れる方向に進行する。 As shown in FIG. 3, in the state of the illumination function, the light R1 emitted from the light source unit 1 reaches the incident surface 21 of the optical unit 2. The light R1 that reaches the incident surface 21 is refracted by the incident surface 21. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 21. The light R1 is, for example, deflected and travels in a direction away from the optical axis C2.
 入射面21によって偏向された光R1の一部は、中心部分20aを透過して、出射面23から出射する。つまり、光R2aは、出射面23から出射される。出射面23から出射された光R2aは、画像形成領域31に向って進む。中心部分20aから出射された光R2aは、画像形成部3の画像形成領域31に入射する。つまり、光R2aは、画像形成領域31に入射する。光R2aは、画像形成領域31によって画像光に変換される。図3では、入射面21bに入射した光R1は出射面23から光R2aとして出射されている。なお、入射面21bが光軸C2に垂直な平面の場合には、光R1の偏向量は小さい。 A part of the light R1 deflected by the entrance surface 21 passes through the central portion 20a and exits from the exit surface 23. That is, the light R2a is emitted from the emission surface 23. The light R2a emitted from the emission surface 23 travels toward the image forming area 31. The light R2a emitted from the central portion 20a enters the image forming area 31 of the image forming unit 3. That is, the light R2a enters the image forming area 31. The light R2a is converted into image light by the image forming area 31. In FIG. 3, the light R1 incident on the incident surface 21b is emitted from the emitting surface 23 as the light R2a. When the incident surface 21b is a plane perpendicular to the optical axis C2, the deflection amount of the light R1 is small.
 入射面21によって偏向された光の他の一部は、反射面22に到達する。つまり、光R2bは、反射面22で反射される。反射面22は、光学部2の外周面である。反射面22で反射された光R2bは、出射面24に向かって進む。反射面22における光R2bの反射は、例えば、全反射である。図3では、入射面21aに入射した光R1は、反射面22に到達している。 Another part of the light deflected by the incident surface 21 reaches the reflecting surface 22. That is, the light R2b is reflected by the reflecting surface 22. The reflecting surface 22 is an outer peripheral surface of the optical unit 2. The light R2b reflected by the reflecting surface 22 travels toward the emitting surface 24. The reflection of the light R2b on the reflection surface 22 is, for example, total reflection. In FIG. 3, the light R1 incident on the incident surface 21a reaches the reflecting surface 22.
 「全反射」とは、入射する光が境界面を透過せずに反射される作用を指す。ここでは、光学部2内を進む光が、光学部2とその外部の空間との境界面に達したときに、境界面を透過せずに、反射される作用を指す。図3において、境界面は反射面22である。 ▽ "Total reflection" refers to the effect that incident light is reflected without passing through the boundary surface. Here, when the light traveling in the optical unit 2 reaches the boundary surface between the optical unit 2 and the space outside the optical unit 2, the light is reflected without being transmitted through the boundary surface. In FIG. 3, the boundary surface is the reflecting surface 22.
 図3及び図4において、周辺部分20bは、説明を容易にするために、周辺部分20b,20bと区別して表記される。同様に、図3及び図4において、画像形成部3の周辺領域32は、説明を容易にするために、周辺領域32a,32bと区別して表記される。 In FIGS. 3 and 4, the peripheral portion 20b is shown separately from the peripheral portions 20b 1 and 20b 2 for ease of explanation. Similarly, in FIG. 3 and FIG. 4, the peripheral region 32 of the image forming unit 3 is shown separately from the peripheral regions 32a and 32b for ease of description.
 反射面22で反射された光R2bは、光学部2の周辺部分20bから出射される。反射面22で反射された光R2bは、出射面24から出射される。 The light R2b reflected by the reflecting surface 22 is emitted from the peripheral portion 20b of the optical unit 2. The light R2b reflected by the reflecting surface 22 is emitted from the emitting surface 24.
 図3に示されるように、光学部2の周辺部分20bから出射された光R2bは、光軸C2に対して反対側の画像形成部3の周辺領域32に到達する。例えば、図3の上側に示される周辺部分20bから出射された光R2bは、図3の下側に示される周辺領域32bに到達する。同様に、図3の下側に示される周辺部分20bから出射された光R2bは、図3の上側に示される周辺領域32aに到達する。 As shown in FIG. 3, the light R2b emitted from the peripheral portion 20b of the optical unit 2 reaches the peripheral region 32 of the image forming unit 3 on the opposite side of the optical axis C2. For example, the light R2b emitted from the peripheral portion 20b 1 shown in the upper side of FIG. 3, to reach the peripheral region 32b shown on the lower side of FIG. Similarly, light R2b emitted from the peripheral portion 20b 2 shown on the lower side of FIG. 3, to reach the peripheral region 32a shown in the upper side of FIG.
 つまり、照明機能の状態では、周辺部分20bから出射した光R2bは、周辺領域32に到達する。照明機能の状態では、周辺部分20bから出射した光R2bは、光軸C2を挟んで反対側の周辺領域32に到達する。反射面22で反射された光R2は、光軸C2に対して、反射された反射面22と反対側に位置する周辺領域32に到達する。周辺領域32を通過した光は、光学部4によって照明光71として対象領域6に投射される。 That is, in the state of the illumination function, the light R2b emitted from the peripheral portion 20b reaches the peripheral region 32. In the state of the illumination function, the light R2b emitted from the peripheral portion 20b reaches the peripheral area 32 on the opposite side across the optical axis C2. The light R2 reflected by the reflecting surface 22 reaches the peripheral region 32 located on the opposite side of the reflected reflecting surface 22 with respect to the optical axis C2. The light that has passed through the peripheral region 32 is projected onto the target region 6 as the illumination light 71 by the optical unit 4.
 なお、光学部2の反射面22は、ミラー面であってもよい。ミラー面は、例えば、基材の表面にミラー用の金属の蒸着によって形成された面である。この場合には、光学部2は、屈折材である必要はない。この場合には、光学部2は、例えば、内部が空洞である筒形状の部材である。筒形状は、例えば、円錐台の側面で形成される形状である。ミラー面は、筒形状の側面の内側に形成されている。 The reflecting surface 22 of the optical unit 2 may be a mirror surface. The mirror surface is, for example, a surface formed by vapor deposition of a metal for a mirror on the surface of the base material. In this case, the optical part 2 does not need to be a refractive material. In this case, the optical unit 2 is, for example, a tubular member having a hollow inside. The tubular shape is, for example, a shape formed by the side surface of a truncated cone. The mirror surface is formed inside the cylindrical side surface.
 しかし、光学部2の反射面22は、全反射面であることが望ましい。全反射面は、ミラー面よりも反射率が高く、光の利用効率を向上できるからである。 However, it is desirable that the reflection surface 22 of the optical unit 2 be a total reflection surface. This is because the total reflection surface has a higher reflectance than the mirror surface and can improve the light utilization efficiency.
 投影装置100が照明機能の状態である場合には、光学部2から出射する光R2aは、不要光である。光R2aは、画像形成部3の画像形成領域31によって画像光に変換されるからである。「不要光」とは、製品上は不必要な光である。ただし、光R2aの光量を光R2bの光量に対して少なくすることで、画像光の影響を少なくすることができる。照明機能の状態である場合の配光は、主に光R2bによって形成される。そのため、画像形成領域31に向かう光R2aの光量は、少ないことが望ましい。また、画像形成領域31が液晶素子のように光の透過量を変更できる場合には、画像形成領域31を光透過率の高い状態にして、光R2aを照明用の光として利用してもよい。 When the projection device 100 is in the illumination function state, the light R2a emitted from the optical unit 2 is unnecessary light. This is because the light R2a is converted into image light by the image forming area 31 of the image forming unit 3. “Unnecessary light” is light that is unnecessary for the product. However, the influence of the image light can be reduced by reducing the light amount of the light R2a with respect to the light amount of the light R2b. The light distribution in the state of the illumination function is mainly formed by the light R2b. Therefore, it is desirable that the light amount of the light R2a toward the image forming area 31 is small. Further, when the image forming area 31 can change the amount of light transmission like a liquid crystal element, the image forming area 31 may be set in a state of high light transmittance and the light R2a may be used as illumination light. ..
《1-7-2》投影機能の状態
 図4は、投影装置100の投影機能の状態を示す。投影機能の状態の場合には、例えば、光学部2は、初期位置から+Z軸方向に移動した位置にある。このとき、光源部1から光学部2までの距離Pは、P2である。距離P2は距離P1よりも長い(P2>P1)。
<<1-7-2>> State of Projection Function FIG. 4 shows a state of the projection function of the projection apparatus 100. In the case of the state of the projection function, for example, the optical unit 2 is at the position moved in the +Z-axis direction from the initial position. At this time, the distance P from the light source unit 1 to the optical unit 2 is P2. The distance P2 is longer than the distance P1 (P2>P1).
 投影機能の状態の場合には、光R2dは、画像形成部3上で集光している。光R2dの光学部2から集光位置までの距離は、光R2bの光学部2から集光位置までの距離よりも長い。これは、距離PがP2となることで、光R1の反射面22への入射角が大きくなったためである。 In the case of the projection function state, the light R2d is condensed on the image forming unit 3. The distance from the optical part 2 of the light R2d to the condensing position is longer than the distance from the optical part 2 of the light R2b to the condensing position. This is because the distance P becomes P2 and the angle of incidence of the light R1 on the reflecting surface 22 becomes large.
 図4に示されるように、投影機能の状態の場合に、光源部1から出射された光R1は、光学部2の中心部分20aの入射面21に到達する。入射面21に到達した光R1は、入射面21によって屈折する。つまり、光源部1から出射された光R1は、入射面21によって偏向される。光R1は、例えば、偏向されて光軸C2から離れる方向に進行する。 As shown in FIG. 4, in the case of the projection function state, the light R1 emitted from the light source unit 1 reaches the incident surface 21 of the central portion 20a of the optical unit 2. The light R1 that reaches the incident surface 21 is refracted by the incident surface 21. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 21. The light R1 is, for example, deflected and travels in a direction away from the optical axis C2.
 入射面21によって偏向された光R1の一部は、中心部分20aを透過して、出射面23から出射する。つまり、光R2cは、出射面23から出射される。出射面23から出射された光R2cは、画像形成領域31に向って進む。中心部分20aから出射された光R2cは、画像形成部3の画像形成領域31に入射する。つまり、出射面23から出射された光R2cは、画像形成領域31に入射する。このとき、光R2cは、画像形成領域31によって画像光に変換される。図4では、入射面21bに入射した光R1は出射面23から光R2cとして出射されている。なお、入射面21bが光軸C2に垂直な平面の場合には、光R1の偏向量は小さい。 A part of the light R1 deflected by the entrance surface 21 passes through the central portion 20a and exits from the exit surface 23. That is, the light R2c is emitted from the emission surface 23. The light R2c emitted from the emission surface 23 travels toward the image forming area 31. The light R2c emitted from the central portion 20a enters the image forming area 31 of the image forming unit 3. That is, the light R2c emitted from the emission surface 23 enters the image forming area 31. At this time, the light R2c is converted into image light by the image forming area 31. In FIG. 4, the light R1 incident on the incident surface 21b is emitted from the emitting surface 23 as the light R2c. When the incident surface 21b is a plane perpendicular to the optical axis C2, the deflection amount of the light R1 is small.
 光R2cの経路は、図3における光R2aの経路と同様である。 The route of the light R2c is the same as the route of the light R2a in FIG.
 入射面21によって偏向された光の他の一部は、反射面22に到達する。つまり、光R2dは、反射面22で反射される。反射面22で反射された光R2dは、出射面24に向かって進む。反射面22における光R2dの反射は、例えば、全反射である。図4では、入射面21aに入射した光R1は、反射面22に到達している。 Another part of the light deflected by the incident surface 21 reaches the reflecting surface 22. That is, the light R2d is reflected by the reflecting surface 22. The light R2d reflected by the reflecting surface 22 travels toward the emitting surface 24. The reflection of the light R2d on the reflection surface 22 is, for example, total reflection. In FIG. 4, the light R1 incident on the incident surface 21a reaches the reflecting surface 22.
 反射面22で反射された光R2dは、光学部2の周辺部分20bから出射される。反射面22で反射された光R2dは、出射面24から出射される。 The light R2d reflected by the reflecting surface 22 is emitted from the peripheral portion 20b of the optical unit 2. The light R2d reflected by the reflecting surface 22 is emitted from the emitting surface 24.
 出射面24から出射された光R2dは、画像形成領域31に向って進む。周辺部分20bから出射された光R2dは、画像形成部3の画像形成領域31に入射する。つまり、光R2dは、画像形成領域31に入射する。光R2dは、画像形成領域31によって画像光に変換される。 The light R2d emitted from the emission surface 24 travels toward the image forming area 31. The light R2d emitted from the peripheral portion 20b enters the image forming area 31 of the image forming unit 3. That is, the light R2d enters the image forming area 31. The light R2d is converted into image light by the image forming area 31.
 光R2dの経路は、図3における光R2bの経路と異なる。図4において、光R2dが画像形成部3の画像形成領域31に到達する点で、光R2dの経路は光R2bの経路と異なる。光R2dは、光学部2の周辺部分20bから出射される。つまり、図4では、光学部2の周辺部分20bから出射された光R2dは、画像形成部3の画像形成領域31に到達する。同様に、図4では、光学部2の周辺部分20bから出射された光R2dは、画像形成部3の画像形成領域31に到達する。 The path of the light R2d is different from the path of the light R2b in FIG. In FIG. 4, the path of the light R2d is different from the path of the light R2b in that the light R2d reaches the image forming area 31 of the image forming unit 3. The light R2d is emitted from the peripheral portion 20b of the optical unit 2. That is, in FIG. 4, the light R2d emitted from the peripheral portion 20b 1 of the optical unit 2 reaches the image forming area 31 of the image forming unit 3. Similarly, in FIG. 4, the light R2d emitted from the peripheral portion 20b 2 of the optical unit 2 reaches the image forming area 31 of the image forming section 3.
 光R2d及び光R2cは、画像形成領域31によって画像光に変換される。画像光は、光学部4によって投射される。その結果、画像72が対象領域6に投影される。 The light R2d and the light R2c are converted into image light by the image forming area 31. The image light is projected by the optical unit 4. As a result, the image 72 is projected onto the target area 6.
 投影機能の状態の場合には、光R2dは、例えば、光学部2によって画像形成部3上に集光される。しかし、光R2dが画像形成領域31に入射する場合には、光R2cは必ずしも画像形成部3上に集光される必要はない。光R2d及び光R2cが画像形成領域31に照射されればよい。 In the state of the projection function, the light R2d is condensed on the image forming unit 3 by the optical unit 2, for example. However, when the light R2d enters the image forming area 31, the light R2c does not necessarily need to be condensed on the image forming unit 3. The light R2d and the light R2c may be applied to the image forming area 31.
《1-7-3》光学部4の光の投射
 図7は、投影装置100の光学部4を通過する光の主要な経路を示す。図7は、投影装置100の光学部4、画像形成部3、及び対象領域6との関係を示す図である。図7では、光R4aと光R4bとの両方の光を示している。光R4aは、投影装置100が投影機能の状態の光である。光R4bは、投影装置100が照明機能の状態の光である。
<<1-7-3>> Projection of Light of Optical Unit 4 FIG. 7 shows main paths of light passing through the optical unit 4 of the projection device 100. FIG. 7 is a diagram showing the relationship between the optical unit 4, the image forming unit 3, and the target area 6 of the projection device 100. In FIG. 7, both the light R4a and the light R4b are shown. The light R4a is light in a state where the projection device 100 has a projection function. The light R4b is light with which the projection device 100 is in the illumination function.
 光R32は、周辺領域32から出射される光である。そして、光R32は、光学部4の周辺部分40bに入射する。つまり、投影装置100が照明機能の状態の場合に、光R32は、図7に示す光の経路をたどる。また、光R32は、周辺領域32から出射される主要な光を示す。そのため、画像形成部3から出射された光のすべてが光R32と同様の光の経路をたどるとは限らない。 The light R32 is light emitted from the peripheral region 32. Then, the light R32 is incident on the peripheral portion 40b of the optical unit 4. That is, when the projection device 100 is in the illumination function state, the light R32 follows the light path shown in FIG. The light R32 indicates the main light emitted from the peripheral region 32. Therefore, not all the light emitted from the image forming unit 3 follows the same light path as the light R32.
 周辺部分40bは、入射面42、反射面43及び出射面45を含んでいる。光R32は、光学部4の入射面42に入射する。入射面42に入射した光R32は屈折される。また、入射面42から入射した光R32は、反射面43で反射される。そして、反射面43で反射された光R32は、周辺部分40bから出射される。反射面43で反射された光R32は、出射面45から出射される。反射面43で反射された光R32は、光R4bとして出射される。光R4bは、対象領域6上に照明光71の領域に照射される。 The peripheral portion 40b includes an entrance surface 42, a reflection surface 43, and an exit surface 45. The light R32 is incident on the incident surface 42 of the optical unit 4. The light R32 incident on the incident surface 42 is refracted. Further, the light R32 incident from the incident surface 42 is reflected by the reflecting surface 43. Then, the light R32 reflected by the reflecting surface 43 is emitted from the peripheral portion 40b. The light R32 reflected by the reflecting surface 43 is emitted from the emitting surface 45. The light R32 reflected by the reflecting surface 43 is emitted as the light R4b. The light R4b is applied to the area of the illumination light 71 on the target area 6.
 光R31は、光学部4の中心部分40aに入射する。光R31は、画像形成領域31から出射される光である。つまり、光R31は画像光である。投影装置100が投影機能の状態の場合に、光R31は、図7に示す光の経路をたどる。また、光R31は、画像形成領域31から出射された主要な光を示す。そのため、画像形成領域31から出射された全ての光が光R31と同様の光の経路をたどるとは限らない。 The light R31 is incident on the central portion 40a of the optical unit 4. The light R31 is light emitted from the image forming area 31. That is, the light R31 is image light. When the projection device 100 is in the projection function state, the light R31 follows the light path shown in FIG. The light R31 indicates the main light emitted from the image forming area 31. Therefore, not all light emitted from the image forming area 31 follows the same light path as the light R31.
 中心部分40aは、入射面41及び出射面44を含んでいる。光R31は、光学部4の入射面41に入射する。入射面41に入射する光R31は屈折される。そして、入射面41から入射した光R31は、中心部分40aから出射される。入射面41から入射した光R31は、出射面44から出射される。出射面44から出射される光は、光R4aである。光R4aは、対象領域6上に画像72の領域に照射される。 The central portion 40a includes an entrance surface 41 and an exit surface 44. The light R31 is incident on the incident surface 41 of the optical unit 4. The light R31 incident on the incident surface 41 is refracted. Then, the light R31 incident from the incident surface 41 is emitted from the central portion 40a. The light R31 incident from the incident surface 41 is emitted from the emission surface 44. The light emitted from the emission surface 44 is the light R4a. The light R4a is applied to the area of the image 72 on the target area 6.
 光R4aでは、画像形成領域31と対象領域6とは光学的に共役の位置にある。また、光R4bでは、画像形成領域31と対象領域6とは光学的に共役の位置とならない。「光学的に共役」とは、1つの点から発した光が他の1つの点に結像する関係のことをいう。つまり、図7に示されるように、画像形成領域31から出射された光R31は、対象領域6上で結像する。これによって、画像形成領域31で形成された画像33は、対象領域6上で画像72として投影される。このとき、画像72は、反転及び拡大して対象領域6上に投影される。 In the light R4a, the image forming area 31 and the target area 6 are optically conjugate with each other. Further, with the light R4b, the image forming area 31 and the target area 6 are not optically conjugate with each other. “Optically conjugated” refers to a relationship in which light emitted from one point forms an image on another point. That is, as shown in FIG. 7, the light R31 emitted from the image forming area 31 forms an image on the target area 6. As a result, the image 33 formed in the image forming area 31 is projected as the image 72 on the target area 6. At this time, the image 72 is inverted and enlarged and projected onto the target area 6.
 つまり、光学部4は、照明機能の状態の場合には、照明光71を照射する。また、光学部4は、投影機能の状態の場合には、画像72を投影する。 That is, the optical unit 4 emits the illumination light 71 in the state of the illumination function. Further, the optical unit 4 projects the image 72 in the state of the projection function.
《1-8》投影装置100による効果
 以上に説明したように、実施の形態1に係る投影装置100によれば、簡易な構成で、照明光71の投射と画像72の投影とを切り替えることができる。
<<1-8>> Effects of Projection Device 100 As described above, according to the projection device 100 according to the first embodiment, the projection of the illumination light 71 and the projection of the image 72 can be switched with a simple configuration. it can.
《2》実施の形態2
 図9は、本発明の実施の形態2に係る投影装置の照明機能の状態における主要な構成と光学部220を通過する光の主要な経路とを示す図である。図10は、実施の形態2に係る投影装置の投影機能の状態における主要な構成と光学部220を通過する光の主要な経路とを示す図である。図9及び図10において、図3及び図4に示される構成要素と同一又は対応する構成要素には、図3及び図4に示される符号と同じ符号を付し、その説明を省略する。実施の形態2に係る投影装置は、光学部220の形状の点において、実施の形態1に係る投影装置100と相違する。
<<2>> Embodiment 2
FIG. 9 is a diagram showing a main configuration and a main path of light passing through the optical unit 220 in the state of the illumination function of the projection device according to the second embodiment of the present invention. FIG. 10 is a diagram showing a main configuration and a main path of light passing through the optical unit 220 in a projection function state of the projection device according to the second embodiment. 9 and 10, the same or corresponding components as those shown in FIGS. 3 and 4 are designated by the same reference numerals as those shown in FIGS. 3 and 4, and the description thereof is omitted. The projection apparatus according to the second embodiment differs from the projection apparatus 100 according to the first embodiment in the shape of the optical unit 220.
《2-1》光学部220の構成
 実施の形態2に係る投影装置において、光学部220は、凸レンズ形状である。光学部220は、例えば、凸レンズである。光学部220は、光軸C2上に光を集光する。図9及び図10には、光学部220として平凸レンズが示されている。ただし、光学部220は、両凸レンズであってもよい。また、光学部220は、複数のレンズを備えることができる。光学部220は、複数枚のレンズの組み合わせによって形成されてもよい。
<<2-1>> Configuration of Optical Unit 220 In the projection device according to the second embodiment, the optical unit 220 has a convex lens shape. The optical unit 220 is, for example, a convex lens. The optical unit 220 condenses the light on the optical axis C2. In FIGS. 9 and 10, a plano-convex lens is shown as the optical unit 220. However, the optical unit 220 may be a biconvex lens. In addition, the optical unit 220 may include a plurality of lenses. The optical unit 220 may be formed by combining a plurality of lenses.
 光学部220は、入射面221を備えている。光学部220は、出射面222を備えている。実施の形態2では、入射面221は平面形状である。また、出射面222は凸面形状である。 The optical section 220 has an entrance surface 221. The optical section 220 includes an emission surface 222. In the second embodiment, the entrance surface 221 has a planar shape. The emission surface 222 has a convex shape.
 光学部220は、中心部分220aと、周辺部分220bとを備えている。 The optical section 220 includes a central portion 220a and a peripheral portion 220b.
 中心部分220aは、光学部220の一部である。光学部220の光軸C2は、中心部分220aを通っている。つまり、光学部220の光軸C2は、中心部分220a内に存在する。中心部分220aは、光軸C2を中心とした光学部220の中心部分である。中心部分220aは、第1の中心部分とも呼ばれる。中心部分220aは、凸レンズを含んでいる。 The central portion 220a is a part of the optical unit 220. The optical axis C2 of the optical section 220 passes through the central portion 220a. That is, the optical axis C2 of the optical section 220 exists within the central portion 220a. The central portion 220a is a central portion of the optical section 220 centered on the optical axis C2. The central portion 220a is also called the first central portion. The central portion 220a includes a convex lens.
 周辺部分220bは、光学部220の他の一部である。つまり、周辺部分220bは、中心部分220aとは別の光学部220の一部である。周辺部分220bは、光軸C2を中心とした中心部分220aの外周側に形成されている。周辺部分220bは、光学部220の外周面より内側であって、中心部分220aの外側の部分である。周辺部分220bは、第1の周辺部分とも呼ばれる。周辺部分220bは、凸レンズを含んでいる。 The peripheral part 220b is another part of the optical part 220. That is, the peripheral portion 220b is a part of the optical unit 220 that is different from the central portion 220a. The peripheral portion 220b is formed on the outer peripheral side of the central portion 220a with the optical axis C2 as the center. The peripheral portion 220b is a portion inside the outer peripheral surface of the optical portion 220 and outside the central portion 220a. The peripheral portion 220b is also referred to as a first peripheral portion. The peripheral portion 220b includes a convex lens.
《2-2》照明機能の状態
 図9は、投影装置の光学部220が初期位置にある状態を示す。図9は、投影装置が照明機能の状態の場合を示している。このとき、光源部1から光学部220までの距離Pは、P1である。また、光学部220の焦点Fの位置は、光源部1より-Z軸方向側にある。光学部220の焦点Fの位置は、光出射面11より-Z軸方向側にある。光学部220から光源部1の光出射面11までの距離P1は、光学部220の焦点距離f1よりも短い。ここで、焦点距離f1は、光学部220の入射面221から焦点Fまでの距離である。
<<2-2>> State of Illumination Function FIG. 9 shows a state in which the optical unit 220 of the projection device is in the initial position. FIG. 9 shows a case where the projection device is in the state of the illumination function. At this time, the distance P from the light source unit 1 to the optical unit 220 is P1. The position of the focal point F of the optical unit 220 is on the −Z axis direction side of the light source unit 1. The position of the focal point F of the optical unit 220 is on the −Z axis direction side of the light emitting surface 11. The distance P1 from the optical section 220 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 220. Here, the focal length f1 is the distance from the incident surface 221 of the optical unit 220 to the focus F.
 照明機能の状態の場合には、光源部1から出射された光R1は、光学部220の入射面221で屈折される。つまり、光源部1から出射された光R1は、入射面221によって偏向される。入射面221によって偏向された光R1は、光学部220を透過する。光学部220を透過した光R2は出射面222から出射される。出射面222から出射される光R2は、発散光である。 In the state of the illumination function, the light R1 emitted from the light source unit 1 is refracted by the incident surface 221 of the optical unit 220. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 221. The light R1 deflected by the incident surface 221 passes through the optical unit 220. The light R2 that has passed through the optical unit 220 is emitted from the emission surface 222. The light R2 emitted from the emission surface 222 is divergent light.
 中心部分220aから出射された光R2aは、画像形成部3の画像形成領域31に向けて進む。中心部分220aから出射された光R2aは、画像形成領域31に入射する。出射面222から出射された光R2aは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2aは、画像光となる。 The light R2a emitted from the central portion 220a travels toward the image forming area 31 of the image forming unit 3. The light R2a emitted from the central portion 220a enters the image forming area 31. The light R2a emitted from the emission surface 222 enters the image forming area 31. At this time, the light R2a passing through the image forming area 31 becomes image light.
 周辺部分220bから出射された光R2bは、画像形成部3の周辺領域32に向けて進む。出射面222から出射された光R2bは、周辺領域32に入射する。周辺領域32に入射した光R2bは、周辺領域32を通過して照明光71となる。 The light R2b emitted from the peripheral portion 220b travels toward the peripheral region 32 of the image forming unit 3. The light R2b emitted from the emission surface 222 enters the peripheral region 32. The light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
《2-3》投影機能の状態
 図10は、投影装置の光学部220が初期位置と異なる位置にある状態を示す。図10は、投影装置が投影機能の状態の場合を示している。このとき、光源部1から光学部220までの距離Pは、P2である。距離P2は距離P1よりも長い(P2>P1)。また、光学部220の焦点Fの位置は、光源部1と光学部220との間にある。光学部220の焦点Fの位置は、光源部1の光出射面11と光学部220との間にある。光学部220から光源部1の光出射面11までの距離P2は、光学部220の焦点距離f1よりも長い。投影機能の状態では、光学部220は照明機能の状態よりも+Z軸方向に移動している。
<<2-3>> State of Projection Function FIG. 10 shows a state in which the optical unit 220 of the projection device is at a position different from the initial position. FIG. 10 shows a case where the projection device is in the projection function. At this time, the distance P from the light source unit 1 to the optical unit 220 is P2. The distance P2 is longer than the distance P1 (P2>P1). Further, the position of the focus F of the optical section 220 is between the light source section 1 and the optical section 220. The position of the focal point F of the optical unit 220 is between the light emitting surface 11 of the light source unit 1 and the optical unit 220. The distance P2 from the optical section 220 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 220. In the state of the projection function, the optical unit 220 moves in the +Z axis direction as compared with the state of the illumination function.
 投影機能の状態の場合には、光源部1から出射された光R1は、光学部220の入射面221で屈折される。つまり、光源部1から出射された光R1は、入射面221によって偏向される。入射面221によって偏向された光R1は、光学部220を透過する。光学部220を透過した光R2は出射面222から出射される。出射面222から出射される光R2は、収束光である。 In the state of the projection function, the light R1 emitted from the light source unit 1 is refracted by the incident surface 221 of the optical unit 220. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 221. The light R1 deflected by the incident surface 221 passes through the optical unit 220. The light R2 that has passed through the optical unit 220 is emitted from the emission surface 222. The light R2 emitted from the emission surface 222 is convergent light.
 中心部分220aから出射された光R2cは、画像形成部3の画像形成領域31に向けて進む。中心部分220aから出射された光R2cは、画像形成領域31に入射する。出射面222から出射された光R2cは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2cは、画像光となる。 The light R2c emitted from the central portion 220a travels toward the image forming area 31 of the image forming unit 3. The light R2c emitted from the central portion 220a enters the image forming area 31. The light R2c emitted from the emission surface 222 enters the image forming area 31. At this time, the light R2c passing through the image forming area 31 becomes image light.
 周辺部分220bから出射された光R2dは、画像形成部3の画像形成領域31に向けて進む。周辺部分220bから出射された光R2dは、画像形成領域31に入射する。出射面222から出射された光R2dは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2dは、画像光となる。 The light R2d emitted from the peripheral portion 220b travels toward the image forming area 31 of the image forming unit 3. The light R2d emitted from the peripheral portion 220b enters the image forming area 31. The light R2d emitted from the emission surface 222 enters the image forming area 31. At this time, the light R2d passing through the image forming area 31 becomes image light.
 以上に説明したように、実施の形態2に係る投影装置によれば、簡易な構成で、照明光の投射と画像の投影とを切り替えることができる。 As described above, the projection device according to the second embodiment can switch between illumination light projection and image projection with a simple configuration.
 なお、上記以外の点について、実施の形態2に係る投影装置は、実施の形態1に係る投影装置100と同じである。 Note that the projection apparatus according to the second embodiment is the same as the projection apparatus 100 according to the first embodiment except for the points described above.
《3》実施の形態3
 図11は、本発明の実施の形態3に係る投影装置の照明機能の状態における主要な構成と光学部230を通過する光の主要な経路とを示す図である。図12は、実施の形態3に係る投影装置の投影機能の状態における主要な構成と光学部230を通過する光の主要な経路とを示す図である。図11及び図12において、図9及び図10に示される構成要素と同一又は対応する構成要素には、図9及び図10に示される符号と同じ符号を付し、その説明を省略する。実施の形態3に係る投影装置は、光学部230の形状の点において、実施の形態2に係る投影装置と相違する。
<<3>> Embodiment 3
FIG. 11 is a diagram showing a main configuration and a main path of light passing through the optical unit 230 in the state of the illumination function of the projection device according to the third embodiment of the present invention. FIG. 12 is a diagram showing a main configuration and a main path of light passing through the optical unit 230 in a projection function state of the projection device according to the third embodiment. 11 and 12, constituent elements that are the same as or correspond to the constituent elements shown in FIGS. 9 and 10 are given the same reference numerals as those shown in FIGS. 9 and 10, and description thereof is omitted. The projection apparatus according to the third embodiment differs from the projection apparatus according to the second embodiment in the shape of the optical unit 230.
《3-1》光学部230の構成
 実施の形態3に係る投影装置において、光学部230は、フレネルレンズ形状である。光学部230は、フレネルレンズ形状を含んでいる。光学部230は、光学部220と同様の性能を有する。
<<3-1>> Configuration of Optical Unit 230 In the projection device according to the third embodiment, the optical unit 230 has a Fresnel lens shape. The optical section 230 includes a Fresnel lens shape. The optical section 230 has the same performance as the optical section 220.
 フレネルレンズは、光学レンズが持つ曲面を一連の溝に置き換えたものである。これらの溝が屈折面として個々に働き、例えば、平行光線の光路を曲げて焦点位置に光を集める。以下において、この溝によって形成される山の形状をプリズムと呼ぶ。また、プリズムを形成する面をプリズム面とも呼ぶ。 Fresnel lenses are a series of grooves that replace the curved surface of an optical lens. These grooves act as refracting surfaces individually, and for example, bend the optical paths of parallel rays to collect light at the focal position. Hereinafter, the shape of the mountain formed by the groove will be referred to as a prism. Further, the surface forming the prism is also called a prism surface.
 以下の実施の形態で示すプリズムは、レンズ形状のプリズム面を、そのレンズ形状のプリズム面に接する平面に平行な面で置き換えた形状を含む。つまり、フレネルレンズのプリズムは、光軸側のプリズム面と周辺側のプリズム面との両方が平面で形成されたプリズムを含む。フレネルレンズのプリズムは、2つの面が平面形状のプリズムを含む。 The prism shown in the following embodiments includes a shape in which a lens-shaped prism surface is replaced with a surface parallel to a plane in contact with the lens-shaped prism surface. That is, the prism of the Fresnel lens includes a prism in which both the prism surface on the optical axis side and the prism surface on the peripheral side are flat. The Fresnel lens prism includes a prism whose two surfaces are flat.
 光学部230は、例えば、レンズの周辺に2つの面が平面形状のプリズムを配置することができる。また、光学部220は、複数のフレネルレンズを備えることができる。光学部220は、複数枚のレンズの周辺にプリズムを配置した光学部品の組み合わせによって形成されてもよい。 In the optical unit 230, for example, a prism having two flat surfaces can be arranged around the lens. In addition, the optical unit 220 may include a plurality of Fresnel lenses. The optical unit 220 may be formed by a combination of optical components in which prisms are arranged around a plurality of lenses.
 光学部230は、入射面231を備えている。光学部230は、出射面232,233を備えている。出射面233は、中心部分230aの出射面である。出射面233は、レンズ面の形状である。出射面232は、周辺部分230bの出射面である。出射面232は、フレネル形状である。または、出射面232は、プリズム形状である。実施の形態3では、入射面231は平面形状である。また、出射面232,233は凸面形状である。 The optical section 230 has an entrance surface 231. The optical section 230 includes emission surfaces 232 and 233. The emission surface 233 is the emission surface of the central portion 230a. The emission surface 233 has the shape of a lens surface. The emission surface 232 is an emission surface of the peripheral portion 230b. The emission surface 232 has a Fresnel shape. Alternatively, the emission surface 232 has a prism shape. In the third embodiment, the entrance surface 231 has a planar shape. Further, the emission surfaces 232 and 233 have a convex shape.
 光学部230は、中心部分230aと、周辺部分230bとを備えている。 The optical section 230 includes a central portion 230a and a peripheral portion 230b.
 中心部分230aは、光学部230の一部である。光学部230の光軸C2は、中心部分230aを通っている。つまり、光学部230の光軸C2は、中心部分230a内に存在する。中心部分230aは、光軸C2を中心とした光学部230の中心部分である。中心部分230aは、第1の中心部分とも呼ばれる。 The central part 230a is a part of the optical part 230. The optical axis C2 of the optical section 230 passes through the central portion 230a. That is, the optical axis C2 of the optical section 230 exists within the central portion 230a. The central portion 230a is the central portion of the optical section 230 centered on the optical axis C2. The central portion 230a is also called the first central portion.
 中心部分230aは、例えば、凸レンズである。中心部分230aは、光を集光する。中心部分230aは、出射面233を備えている。出射面233は、例えば、凸面状である。出射面233の凸面状の構造は、出射面233の代わりに、入射面231側に備えられてもよい。凸面状の構造は、出射面233に加えて、入射面231側に備えられてもよい。 The central portion 230a is, for example, a convex lens. The central portion 230a collects light. The central portion 230a has an emission surface 233. The emission surface 233 has, for example, a convex shape. The convex structure of the emission surface 233 may be provided on the incident surface 231 side instead of the emission surface 233. The convex structure may be provided on the incident surface 231 side in addition to the emission surface 233.
 周辺部分230bは、光学部230の他の一部である。つまり、周辺部分230bは、中心部分230aとは別の光学部230の一部である。周辺部分230bは、光軸C2を中心とした中心部分230aの外周側に形成されている。周辺部分230bは、光学部230の外周面より内側であって、中心部分230aの外側の部分である。周辺部分230bは、第1の周辺部分とも呼ばれる。 The peripheral part 230b is another part of the optical part 230. That is, the peripheral portion 230b is a part of the optical unit 230 different from the central portion 230a. The peripheral portion 230b is formed on the outer peripheral side of the central portion 230a with the optical axis C2 as the center. The peripheral portion 230b is a portion inside the outer peripheral surface of the optical portion 230 and outside the central portion 230a. The peripheral portion 230b is also referred to as a first peripheral portion.
 周辺部分230bは、例えば、フレネルレンズである。周辺部分230bは、例えば、プリズムである。周辺部分230bは、光を集光する。周辺部分230bは、出射面232を備えている。 The peripheral portion 230b is, for example, a Fresnel lens. The peripheral portion 230b is, for example, a prism. The peripheral portion 230b collects light. The peripheral portion 230b includes an emission surface 232.
 出射面232は、複数のプリズム形状を含んでいる。プリズム形状は、Z軸方向から見た場合、例えば、円環状である。複数のプリズム形状は、Z軸方向から見た場合、同心円状に配置されている。なお、光学部230は、入射面231にプリズム形状を備えてもよい。光学部230は、入射面231にフレネル形状を備えてもよい。或いは、光学部230は、プリズム形状を備えた複数のレンズの組み合わせであってもよい。光学部230は、フレネル形状を備えた複数のレンズの組み合わせであってもよい。 The emission surface 232 includes a plurality of prism shapes. The prism shape is, for example, an annular shape when viewed from the Z-axis direction. The plurality of prism shapes are arranged concentrically when viewed from the Z-axis direction. The optical unit 230 may have a prism shape on the incident surface 231. The optical unit 230 may have a Fresnel shape on the incident surface 231. Alternatively, the optical unit 230 may be a combination of a plurality of lenses having a prism shape. The optical unit 230 may be a combination of a plurality of lenses having a Fresnel shape.
《3-2》照明機能の状態
 図11は、投影装置の光学部230が初期位置にある状態を示す。図11は、投影装置が照明機能の状態の場合を示している。このとき、光源部1から光学部230までの距離Pは、P1である。また、光学部230の焦点Fの位置は、光源部1より-Z軸方向側にある。光学部230の焦点Fの位置は、光出射面11より-Z軸方向側にある。光学部230から光源部1の光出射面11までの距離P1は、光学部230の焦点距離f1よりも短い。ここで、焦点距離f1は、光学部230の入射面231から焦点Fまでの距離である。
<<3-2>> State of Illumination Function FIG. 11 shows a state in which the optical unit 230 of the projection device is in the initial position. FIG. 11 shows a case where the projection device is in the state of the illumination function. At this time, the distance P from the light source unit 1 to the optical unit 230 is P1. The position of the focal point F of the optical unit 230 is on the −Z axis direction side of the light source unit 1. The position of the focus F of the optical unit 230 is on the −Z axis direction side of the light emitting surface 11. The distance P1 from the optical section 230 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 230. Here, the focal length f1 is the distance from the incident surface 231 of the optical unit 230 to the focus F.
 照明機能の状態の場合には、光源部1から出射された光R1は、光学部230の入射面231で屈折される。つまり、光源部1から出射された光R1は、入射面231によって偏向される。入射面231によって偏向された光R1は、光学部230を透過する。光学部230を透過した光R2は出射面232,233から出射される。出射面232,233から出射される光R2は、発散光である。 In the state of the illumination function, the light R1 emitted from the light source unit 1 is refracted by the incident surface 231 of the optical unit 230. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 231. The light R1 deflected by the incident surface 231 passes through the optical unit 230. The light R2 that has passed through the optical unit 230 is emitted from the emission surfaces 232 and 233. The light R2 emitted from the emission surfaces 232 and 233 is divergent light.
 中心部分230aから出射された光R2aは、画像形成部3の画像形成領域31に向けて進む。中心部分230aから出射された光R2aは、画像形成領域31に入射する。出射面233から出射された光R2aは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2aは、画像光となる。 The light R2a emitted from the central portion 230a travels toward the image forming area 31 of the image forming unit 3. The light R2a emitted from the central portion 230a enters the image forming area 31. The light R2a emitted from the emission surface 233 enters the image forming area 31. At this time, the light R2a passing through the image forming area 31 becomes image light.
 周辺部分230bから出射された光R2bは、画像形成部3の周辺領域32に向けて進む。出射面232から出射された光R2bは、周辺領域32に入射する。周辺領域32に入射した光R2bは、周辺領域32を通過して照明光71となる。 The light R2b emitted from the peripheral portion 230b travels toward the peripheral region 32 of the image forming unit 3. The light R2b emitted from the emission surface 232 enters the peripheral region 32. The light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
《3-3》投影機能の状態
 図12は、投影装置の光学部230が初期位置と異なる位置にある状態を示す。図12は、投影装置が投影機能の状態の場合を示している。このとき、光源部1から光学部230までの距離Pは、P2である。距離P2は距離P1よりも長い(P2>P1)。また、光学部230の焦点Fの位置は、光源部1と光学部230との間にある。光学部230の焦点Fの位置は、光源部1の光出射面11と光学部230との間にある。光学部230から光源部1の光出射面11までの距離P2は、光学部230の焦点距離f1よりも長い。投影機能の状態では、光学部230は照明機能の状態よりも+Z軸方向に移動している。
<<3-3>> State of Projection Function FIG. 12 shows a state in which the optical unit 230 of the projection device is in a position different from the initial position. FIG. 12 shows a case where the projection device is in the projection function. At this time, the distance P from the light source unit 1 to the optical unit 230 is P2. The distance P2 is longer than the distance P1 (P2>P1). Further, the position of the focus F of the optical section 230 is between the light source section 1 and the optical section 230. The position of the focus F of the optical unit 230 is between the light emitting surface 11 of the light source unit 1 and the optical unit 230. The distance P2 from the optical section 230 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 230. In the state of the projection function, the optical unit 230 moves in the +Z axis direction as compared with the state of the illumination function.
 投影機能の状態の場合には、光源部1から出射された光R1は、光学部230の入射面231で屈折される。つまり、光源部1から出射された光R1は、入射面231によって偏向される。入射面231によって偏向された光R1は、光学部230を透過する。光学部230を透過した光R2は出射面232,233から出射される。出射面232,233から出射される光R2は、収束光である。 In the case of the projection function state, the light R1 emitted from the light source unit 1 is refracted at the incident surface 231 of the optical unit 230. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 231. The light R1 deflected by the incident surface 231 passes through the optical unit 230. The light R2 that has passed through the optical unit 230 is emitted from the emission surfaces 232 and 233. The light R2 emitted from the emission surfaces 232 and 233 is convergent light.
 中心部分230aから出射された光R2cは、画像形成部3の画像形成領域31に向けて進む。中心部分230aから出射された光R2cは、画像形成領域31に入射する。出射面233から出射された光R2cは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2cは、画像光となる。 The light R2c emitted from the central portion 230a travels toward the image forming area 31 of the image forming unit 3. The light R2c emitted from the central portion 230a enters the image forming area 31. The light R2c emitted from the emission surface 233 enters the image forming area 31. At this time, the light R2c passing through the image forming area 31 becomes image light.
 周辺部分230bから出射された光R2dは、画像形成部3の画像形成領域31に向けて進む。周辺部分230bから出射された光R2dは、画像形成領域31に入射する。出射面232から出射された光R2dは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2dは、画像光となる。 The light R2d emitted from the peripheral portion 230b travels toward the image forming area 31 of the image forming unit 3. The light R2d emitted from the peripheral portion 230b enters the image forming area 31. The light R2d emitted from the emission surface 232 enters the image forming area 31. At this time, the light R2d passing through the image forming area 31 becomes image light.
 以上に説明したように、実施の形態3に係る投影装置によれば、簡易な構成で、照明光の投射と画像の投影とを切り替えることができる。 As described above, according to the projection device according to the third embodiment, it is possible to switch between illumination light projection and image projection with a simple configuration.
 なお、上記以外の点について、実施の形態3に係る投影装置は、実施の形態1に係る投影装置100または実施の形態2に係る投影装置と同じである。 Note that the projection apparatus according to the third embodiment is the same as the projection apparatus 100 according to the first embodiment or the projection apparatus according to the second embodiment, except for the points described above.
《4》実施の形態4
 図13は、本発明の実施の形態4に係る投影装置の照明機能の状態における主要な構成と光学部240を通過する光の主要な経路とを示す図である。図14は、実施の形態4に係る投影装置の投影機能の状態における主要な構成と光学部240を通過する光の主要な経路とを示す図である。図13及び図14において、図9及び図10に示される構成要素と同一又は対応する構成要素には、図9及び図10に示される符号と同じ符号を付し、その説明を省略する。実施の形態4に係る投影装置は、光学部240の形状の点において、実施の形態2に係る投影装置と相違する。つまり、実施の形態4に係る投影装置は、光学部240が遮光部243を備えている点において、実施の形態2に係る投影装置と相違する。
<<4>> Fourth Embodiment
FIG. 13 is a diagram showing a main configuration and a main path of light passing through the optical unit 240 in the state of the illumination function of the projection device according to the fourth embodiment of the present invention. FIG. 14 is a diagram showing a main configuration and a main path of light passing through the optical section 240 in a projection function state of the projection device according to the fourth embodiment. 13 and 14, components that are the same as or correspond to the components shown in FIGS. 9 and 10 are given the same reference numerals as those shown in FIGS. 9 and 10, and description thereof is omitted. The projection apparatus according to the fourth embodiment differs from the projection apparatus according to the second embodiment in the shape of the optical section 240. That is, the projection apparatus according to the fourth embodiment differs from the projection apparatus according to the second embodiment in that the optical section 240 includes the light blocking section 243.
《4-1》光学部240の構成
 実施の形態4に係る投影装置において、光学部240は、光学部220と同様の凸レンズ形状である。そのため、凸レンズ形状に関しては、光学部220の説明で光学部240の説明を代用する。構成要素240a,240b,241,242は、各々構成要素220a,220b,221,222に相当する。
<<4-1>> Configuration of Optical Unit 240 In the projection apparatus according to the fourth embodiment, the optical unit 240 has the same convex lens shape as the optical unit 220. Therefore, regarding the shape of the convex lens, the description of the optical unit 240 will be used instead of the description of the optical unit 220. The components 240a, 240b, 241, 242 correspond to the components 220a, 220b, 221, 222, respectively.
 光学部240は、出射面242側に遮光部243を備えている。中心部分240aは、出射面242側に遮光部243を備えている。遮光部243は、光を吸収する部材である。或いは、遮光部243は、光を反射する部材である。 The optical section 240 includes a light shielding section 243 on the side of the emission surface 242. The central portion 240a includes a light shielding portion 243 on the side of the emission surface 242. The light shield 243 is a member that absorbs light. Alternatively, the light shield 243 is a member that reflects light.
 遮光部243は、照明機能の状態の場合に、画像形成領域31に入射する不要光を減らす機能を持つ。つまり、遮光部243は、照明機能の状態の場合において、不要光の光量を低減する。 The light blocking unit 243 has a function of reducing unnecessary light that enters the image forming area 31 in the state of the illumination function. That is, the light shielding unit 243 reduces the amount of unnecessary light in the state of the illumination function.
《4-2》照明機能の状態
 図13は、投影装置の光学部240が初期位置にある状態を示す。図13は、投影装置が照明機能の状態の場合を示している。このとき、光源部1から光学部240までの距離Pは、P1である。また、光学部240の焦点Fの位置は、光源部1より-Z軸方向側にある。光学部240の焦点Fの位置は、光出射面11より-Z軸方向側にある。光学部240から光源部1の光出射面11までの距離P1は、光学部240の焦点距離f1よりも短い。ここで、焦点距離f1は、光学部240の入射面241から焦点Fまでの距離である。
<<4-2>> State of Illumination Function FIG. 13 shows a state in which the optical unit 240 of the projection device is in the initial position. FIG. 13 shows a case where the projection device is in the illumination function. At this time, the distance P from the light source unit 1 to the optical unit 240 is P1. Further, the position of the focus F of the optical section 240 is on the −Z axis direction side of the light source section 1. The position of the focal point F of the optical unit 240 is on the −Z axis direction side of the light emitting surface 11. The distance P1 from the optical section 240 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 240. Here, the focal length f1 is the distance from the incident surface 241 of the optical unit 240 to the focus F.
 照明機能の状態の場合には、光源部1から出射された光R1は、光学部240の入射面241で屈折される。つまり、光源部1から出射された光R1は、入射面241によって偏向される。入射面241によって偏向された光R1は、光学部240を透過する。光学部240を透過した光R2は出射面242から出射される。出射面242から出射される光R2は、発散光である。 In the state of the illumination function, the light R1 emitted from the light source unit 1 is refracted by the incident surface 241 of the optical unit 240. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 241. The light R1 deflected by the incident surface 241 passes through the optical unit 240. The light R2 that has passed through the optical unit 240 is emitted from the emission surface 242. The light R2 emitted from the emission surface 242 is divergent light.
 中心部分240aに入射した光R1は、中心部分240aを透過して、遮光部243に到達する。中心部分240aに入射した光R1は、遮光部243に到達する。遮光部243に到達した光R1は、遮光部243で遮光される。遮光部243に到達した光R1は、遮光部243で吸収される。遮光部243に到達した光R1は、遮光部243で反射される。つまり、中心部分240aに入射した光R1aは、中心部分240aから画像形成部3に向けて出射されない。このため、照明機能の状態の場合には、画像形成領域31に入射する不要光を減らすことができる。 The light R1 incident on the central portion 240a passes through the central portion 240a and reaches the light shielding portion 243. The light R1 incident on the central portion 240a reaches the light blocking portion 243. The light R1 that reaches the light blocking portion 243 is blocked by the light blocking portion 243. The light R1 that reaches the light shield 243 is absorbed by the light shield 243. The light R1 that reaches the light shield 243 is reflected by the light shield 243. That is, the light R1a incident on the central portion 240a is not emitted from the central portion 240a toward the image forming unit 3. Therefore, in the case of the state of the illumination function, it is possible to reduce unnecessary light entering the image forming area 31.
 周辺部分240bから出射された光R2bは、画像形成部3の周辺領域32に向けて進む。出射面242から出射された光R2bは、周辺領域32に入射する。周辺領域32に入射した光R2bは、周辺領域32を通過して照明光71となる。 The light R2b emitted from the peripheral portion 240b travels toward the peripheral region 32 of the image forming unit 3. The light R2b emitted from the emission surface 242 is incident on the peripheral region 32. The light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
《4-3》投影機能の状態
 図14は、投影装置の光学部240が初期位置と異なる位置にある状態を示す。図14は、投影装置が投影機能の状態の場合を示している。このとき、光源部1から光学部240までの距離Pは、P2である。距離P2は距離P1よりも長い(P2>P1)。また、光学部240の焦点Fの位置は、光源部1と光学部240との間にある。光学部240の焦点Fの位置は、光源部1の光出射面11と光学部240との間にある。光学部240から光源部1の光出射面11までの距離P2は、光学部240の焦点距離f1よりも長い。投影機能の状態では、光学部240は照明機能の状態よりも+Z軸方向に移動している。
<<4-3>> State of Projection Function FIG. 14 shows a state in which the optical unit 240 of the projection device is at a position different from the initial position. FIG. 14 shows a case where the projection device is in the projection function. At this time, the distance P from the light source unit 1 to the optical unit 240 is P2. The distance P2 is longer than the distance P1 (P2>P1). The position of the focus F of the optical section 240 is between the light source section 1 and the optical section 240. The position of the focal point F of the optical section 240 is between the light emitting surface 11 of the light source section 1 and the optical section 240. The distance P2 from the optical section 240 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 240. In the state of the projection function, the optical unit 240 is moved in the +Z axis direction as compared with the state of the illumination function.
 投影機能の状態の場合には、光源部1から出射された光R1は、光学部240の入射面241で屈折される。つまり、光源部1から出射された光R1は、入射面241によって偏向される。入射面241によって偏向された光R1は、光学部240を透過する。光学部240を透過した光R2は出射面242から出射される。出射面242から出射される光R2は、収束光である。 In the case of the projection function state, the light R1 emitted from the light source unit 1 is refracted at the incident surface 241 of the optical unit 240. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 241. The light R1 deflected by the incident surface 241 passes through the optical unit 240. The light R2 that has passed through the optical unit 240 is emitted from the emission surface 242. The light R2 emitted from the emission surface 242 is convergent light.
 中心部分240aに入射した光R1は、中心部分240aを透過して、遮光部243に到達する。中心部分240aに入射した光R1は、遮光部243に到達する。遮光部243に到達した光R1は、遮光部243で遮光される。遮光部243に到達した光R1は、遮光部243で吸収される。遮光部243に到達した光R1は、遮光部243で反射される。つまり、中心部分240aに入射した光は、中心部分240aから画像形成部3に向けて出射されない。 The light R1 incident on the central portion 240a passes through the central portion 240a and reaches the light shielding portion 243. The light R1 incident on the central portion 240a reaches the light blocking portion 243. The light R1 that reaches the light blocking portion 243 is blocked by the light blocking portion 243. The light R1 that reaches the light shield 243 is absorbed by the light shield 243. The light R1 that reaches the light shield 243 is reflected by the light shield 243. That is, the light incident on the central portion 240a is not emitted from the central portion 240a toward the image forming unit 3.
 周辺部分240bから出射された光R2dは、画像形成部3の画像形成領域31に向けて進む。周辺部分240bから出射された光R2dは、画像形成領域31に入射する。出射面242から出射された光R2dは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2dは、画像光となる。 The light R2d emitted from the peripheral portion 240b travels toward the image forming area 31 of the image forming unit 3. The light R2d emitted from the peripheral portion 240b enters the image forming area 31. The light R2d emitted from the emission surface 242 is incident on the image forming area 31. At this time, the light R2d passing through the image forming area 31 becomes image light.
 以上に説明したように、実施の形態4に係る投影装置によれば、簡易な構成で、照明光の投射と画像の投影とを切り替えることができる。 As described above, the projection device according to the fourth embodiment can switch between illumination light projection and image projection with a simple configuration.
 また、実施の形態4に係る投影装置は、図13に示されるように、照明機能の状態の場合に、画像形成領域31に入射する光を減らすことができる。このため、照明機能の状態の場合に、照明光71に画像72が重畳されることを防ぐことができる。照明機能の状態の場合には、投影装置は画像72を表示することを意図されていない。 Further, the projection apparatus according to the fourth embodiment can reduce the light incident on the image forming area 31 in the case of the state of the illumination function, as shown in FIG. Therefore, it is possible to prevent the image 72 from being superimposed on the illumination light 71 in the state of the illumination function. In the state of the lighting function, the projection device is not intended to display the image 72.
 なお、上記以外の点について、実施の形態4に係る投影装置は、実施の形態1、2又は3に係る投影装置と同じである。実施の形態3の光学部230に遮光部243を採用することができる。 Note that, except for the points described above, the projection apparatus according to the fourth embodiment is the same as the projection apparatus according to the first, second, or third embodiment. The light blocking portion 243 can be adopted in the optical portion 230 of the third embodiment.
《5》実施の形態5
 図15は、本発明の実施の形態5に係る投影装置の照明機能の状態における主要な構成と光学部250を通過する光の主要な経路とを示す図である。図16は、実施の形態5に係る投影装置の投影機能の状態における主要な構成と光学部250を通過する光の主要な経路とを示す図である。図15及び図16において、図9及び図10に示される構成要素と同一又は対応する構成要素には、図9及び図10に示される符号と同じ符号を付し、その説明を省略する。実施の形態5に係る投影装置は、光学部250の形状の点において、実施の形態2に係る投影装置と相違する。つまり、実施の形態5に係る投影装置は、光学部250が光発散部253を備えている点において、実施の形態2に係る投影装置と相違する。
<<5>> Embodiment 5
FIG. 15 is a diagram showing a main configuration and a main path of light passing through the optical unit 250 in the state of the illumination function of the projection device according to the fifth embodiment of the present invention. FIG. 16 is a diagram showing a main configuration and a main path of light passing through the optical unit 250 in a projection function state of the projection device according to the fifth embodiment. 15 and 16, the same or corresponding components as those shown in FIGS. 9 and 10 are designated by the same reference numerals as those shown in FIGS. 9 and 10, and the description thereof is omitted. The projection apparatus according to the fifth embodiment differs from the projection apparatus according to the second embodiment in the shape of the optical unit 250. That is, the projection apparatus according to the fifth embodiment differs from the projection apparatus according to the second embodiment in that the optical section 250 includes the light diverging section 253.
《5-1》光学部250の構成
 実施の形態5に係る投影装置において、光学部250は、光学部220と同様の凸レンズ形状である。そのため、凸レンズ形状に関しては、光学部220の説明で光学部250の説明を代用する。構成要素250a,250b,251,252は、各々構成要素220a,220b,221,222に相当する。
<<5-1>> Configuration of Optical Unit 250 In the projection device according to the fifth embodiment, the optical unit 250 has a convex lens shape similar to that of the optical unit 220. Therefore, regarding the shape of the convex lens, the description of the optical unit 220 will be used instead. The constituent elements 250a, 250b, 251, 252 correspond to the constituent elements 220a, 220b, 221, 222, respectively.
 光学部250は、光発散部253を備えている。中心部分250aは、光発散部253を備えている。光発散部253は、光の発散角を増加させる。光発散部253は、出射面252側に備えられている。光発散部253は、入射面251側に備えられてもよい。光発散部253は、凹面状をしている。光発散部253は、凹レンズの形状をしている。周辺部分230bは、光を集光する凸レンズの形状をしている。つまり、周辺部分230bは、光の発散角を減少させる。 The optical unit 250 includes a light diverging unit 253. The central portion 250a includes a light diverging portion 253. The light diverging unit 253 increases the divergence angle of light. The light diverging portion 253 is provided on the emission surface 252 side. The light diverging section 253 may be provided on the incident surface 251 side. The light diverging portion 253 has a concave shape. The light diverging portion 253 has the shape of a concave lens. The peripheral portion 230b has the shape of a convex lens that collects light. That is, the peripheral portion 230b reduces the divergence angle of light.
 光発散部253は、照明機能の状態の場合に、画像形成領域31に入射する不要光を減らす機能を持つ。つまり、遮光部243は、照明機能の状態の場合において、不要光の光量を低減する。 The light diverging unit 253 has a function of reducing unnecessary light incident on the image forming area 31 in the state of the illumination function. That is, the light shielding unit 243 reduces the amount of unnecessary light in the state of the illumination function.
《5-2》照明機能の状態
 図15は、投影装置の光学部250が初期位置にある状態を示す。図15は、投影装置が照明機能の状態の場合を示している。このとき、光源部1から光学部250までの距離Pは、P1である。また、光学部250の焦点Fの位置は、光源部1より-Z軸方向側にある。光学部250の焦点Fの位置は、光出射面11より-Z軸方向側にある。光学部250から光源部1の光出射面11までの距離P1は、光学部250の焦点距離f1よりも短い。ここで、焦点距離f1は、光学部250の入射面251から焦点Fまでの距離である。
<<5-2>> State of Illumination Function FIG. 15 shows a state in which the optical unit 250 of the projection device is in the initial position. FIG. 15 shows a case where the projection device is in the state of the illumination function. At this time, the distance P from the light source unit 1 to the optical unit 250 is P1. Further, the position of the focus F of the optical section 250 is on the −Z axis direction side of the light source section 1. The position of the focal point F of the optical unit 250 is on the −Z axis direction side of the light emitting surface 11. The distance P1 from the optical section 250 to the light emitting surface 11 of the light source section 1 is shorter than the focal length f1 of the optical section 250. Here, the focal length f1 is the distance from the incident surface 251 of the optical unit 250 to the focus F.
 照明機能の状態の場合には、光源部1から出射された光R1は、光学部250の入射面251で屈折される。つまり、光源部1から出射された光R1は、入射面251によって偏向される。入射面251によって偏向された光R1は、光学部250を透過する。光学部250を透過した光R2は出射面252および光発散部253から出射される。 In the state of the illumination function, the light R1 emitted from the light source unit 1 is refracted by the incident surface 251 of the optical unit 250. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 251. The light R1 deflected by the incident surface 251 passes through the optical unit 250. The light R2 transmitted through the optical section 250 is emitted from the emission surface 252 and the light diverging section 253.
 中心部分250aに入射した光R1は、中心部分250aを透過して、光発散部253に到達する。中心部分250aに入射した光R1は、光発散部253に到達する。光発散部253に到達した光R1は、光発散部253で発散される。光R2aは、光発散部253から出射される。つまり、中心部分250aに入射した光R1aは、光発散部253から出射される。光発散部253から出射される光R2は、発散光である。 The light R1 incident on the central portion 250a passes through the central portion 250a and reaches the light diverging portion 253. The light R1 incident on the central portion 250a reaches the light diverging portion 253. The light R1 that has reached the light diverging unit 253 is diverged by the light diverging unit 253. The light R2a is emitted from the light diverging unit 253. That is, the light R1a incident on the central portion 250a is emitted from the light diverging portion 253. The light R2 emitted from the light diverging unit 253 is divergent light.
 中心部分250aから出射された光R2aは、画像形成部3の画像形成領域31および周辺領域32に向けて進む。つまり、光発散部253から出射された光R2aは、画像形成領域31および周辺領域32に入射する。このとき、光R2aは、画像形成領域31を透過して画像光となる。光R2aは、周辺領域32を通過して照明光71となる。このため、照明光71の光利用効率は向上する。また、画像形成領域31に入射する光R2aの光量は、光学部220よりも減少する。そのため、対象領域6に投影される画像72の視認性は、光学部220よりも低下する。 The light R2a emitted from the central portion 250a travels toward the image forming area 31 and the peripheral area 32 of the image forming unit 3. That is, the light R2a emitted from the light diverging portion 253 enters the image forming area 31 and the peripheral area 32. At this time, the light R2a passes through the image forming area 31 and becomes image light. The light R2a passes through the peripheral region 32 and becomes the illumination light 71. Therefore, the light utilization efficiency of the illumination light 71 is improved. Further, the amount of light R2a incident on the image forming area 31 is smaller than that of the optical section 220. Therefore, the visibility of the image 72 projected on the target area 6 is lower than that of the optical unit 220.
 周辺部分250bから出射された光R2bは、画像形成部3の周辺領域32に向けて進む。出射面252から出射された光R2bは、周辺領域32に入射する。周辺領域32に入射した光R2bは、周辺領域32を通過して照明光71となる。 The light R2b emitted from the peripheral portion 250b travels toward the peripheral region 32 of the image forming unit 3. The light R2b emitted from the emission surface 252 enters the peripheral region 32. The light R2b incident on the peripheral region 32 passes through the peripheral region 32 and becomes the illumination light 71.
《5-3》投影機能の状態
 図16は、投影装置の光学部250が初期位置と異なる位置にある状態を示す。図16は、投影装置が投影機能の状態の場合を示している。このとき、光源部1から光学部250までの距離Pは、P2である。距離P2は距離P1よりも長い(P2>P1)。また、光学部250の焦点Fの位置は、光源部1と光学部250との間にある。光学部250の焦点Fの位置は、光源部1の光出射面11と光学部250との間にある。光学部250から光源部1の光出射面11までの距離P2は、光学部250の焦点距離f1よりも長い。投影機能の状態では、光学部250は照明機能の状態よりも+Z軸方向に移動している。
<<5-3>> State of Projection Function FIG. 16 shows a state in which the optical unit 250 of the projection device is at a position different from the initial position. FIG. 16 shows a case where the projection apparatus is in the projection function state. At this time, the distance P from the light source unit 1 to the optical unit 250 is P2. The distance P2 is longer than the distance P1 (P2>P1). Further, the position of the focal point F of the optical section 250 is between the light source section 1 and the optical section 250. The position of the focus F of the optical section 250 is between the light emitting surface 11 of the light source section 1 and the optical section 250. The distance P2 from the optical section 250 to the light emitting surface 11 of the light source section 1 is longer than the focal length f1 of the optical section 250. In the projection function state, the optical unit 250 moves in the +Z-axis direction as compared with the illumination function state.
 投影機能の状態の場合には、光源部1から出射された光R1は、光学部250の入射面251で屈折される。つまり、光源部1から出射された光R1は、入射面251によって偏向される。入射面251によって偏向された光R1は、光学部250を透過する。光学部250を透過した光R2は出射面252から出射される。出射面252から出射される光R2は、収束光である。 In the state of the projection function, the light R1 emitted from the light source unit 1 is refracted by the incident surface 251 of the optical unit 250. That is, the light R1 emitted from the light source unit 1 is deflected by the incident surface 251. The light R1 deflected by the incident surface 251 passes through the optical unit 250. The light R2 transmitted through the optical unit 250 is emitted from the emission surface 252. The light R2 emitted from the emission surface 252 is convergent light.
 中心部分250aに入射した光R1は、中心部分250aを透過して、光発散部253に到達する。中心部分250aに入射した光R1aは、光発散部253に到達する。光発散部253に到達した光R1は、光発散部253で発散される。光R2cは、光発散部253から出射される。光発散部253から出射される光R2は、発散光である。 The light R1 incident on the central portion 250a passes through the central portion 250a and reaches the light diverging portion 253. The light R1a incident on the central portion 250a reaches the light diverging portion 253. The light R1 that has reached the light diverging unit 253 is diverged by the light diverging unit 253. The light R2c is emitted from the light diverging unit 253. The light R2 emitted from the light diverging unit 253 is divergent light.
 中心部分250aから出射された光R2cは、画像形成部3の画像形成領域31および周辺領域32に向けて進む。つまり、光発散部253から出射された光R2cは、画像形成領域31および周辺領域32に入射する。このとき、光R2cは、画像形成領域31を透過して画像光となる。光R2cは、周辺領域32を透過して照明光71となる。 The light R2c emitted from the central portion 250a travels toward the image forming area 31 and the peripheral area 32 of the image forming unit 3. That is, the light R2c emitted from the light diverging portion 253 enters the image forming area 31 and the peripheral area 32. At this time, the light R2c passes through the image forming area 31 and becomes image light. The light R2c passes through the peripheral region 32 and becomes the illumination light 71.
 周辺部分250bから出射された光R2dは、画像形成部3の画像形成領域31に向けて進む。周辺部分250bから出射された光R2dは、画像形成領域31に入射する。出射面252から出射された光R2dは、画像形成領域31に入射する。このとき、画像形成領域31を通過する光R2dは、画像光となる。 The light R2d emitted from the peripheral portion 250b travels toward the image forming area 31 of the image forming unit 3. The light R2d emitted from the peripheral portion 250b enters the image forming area 31. The light R2d emitted from the emission surface 252 enters the image forming area 31. At this time, the light R2d passing through the image forming area 31 becomes image light.
 光発散部253の形状を凹面形状で示している。しかし、光発散部253は、光を発散する構成を備えれば他の形状であってもよい。光発散部253は、例えば、光拡散面であってもよい。光発散部253の光拡散面は、例えば、出射面252側に微小な凹凸形状を備えた面である。また、光発散部253は、例えば、光拡散層であってもよい。光拡散層は、例えば、光学部250の中心部分250aの出射面252側に光拡散粒子を含有している。中心部分250aは、光拡散粒子を含んでいる。中心部分250aは、多数の光拡散粒子を含んでいる。光拡散粒子は、点在している。光拡散粒子は、微小な粒子である。光発散部253は光拡散面または光拡散層を含んでいる。 The shape of the light diverging portion 253 is shown as a concave shape. However, the light diverging portion 253 may have another shape as long as it has a configuration for diverging light. The light diverging portion 253 may be, for example, a light diffusing surface. The light diffusing surface of the light diverging portion 253 is, for example, a surface having a minute uneven shape on the emitting surface 252 side. Further, the light diverging portion 253 may be, for example, a light diffusion layer. The light diffusion layer contains, for example, light diffusion particles on the emission surface 252 side of the central portion 250a of the optical section 250. The central portion 250a contains light diffusing particles. The central portion 250a contains a large number of light diffusing particles. The light diffusion particles are scattered. The light diffusion particles are minute particles. The light diverging portion 253 includes a light diffusing surface or a light diffusing layer.
 以上に説明したように、実施の形態5に係る投影装置によれば、簡易な構成で、照明光の投射と画像の投影とを切り替えることができる。 As described above, the projection device according to the fifth embodiment can switch between illumination light projection and image projection with a simple configuration.
 また、実施の形態5に係る投影装置は、図15に示されるように、照明機能の状態の場合に、光R2aを照明光として利用できる。このため、光利用効率を高めることができる。また、画像形成領域31に入射する光R2aの光量は、光学部220よりも減少する。そのため、対象領域6に投影される画像72の視認性は、光学部220よりも低下する。 Further, the projection apparatus according to the fifth embodiment can use the light R2a as the illumination light in the case of the state of the illumination function, as shown in FIG. Therefore, the light utilization efficiency can be improved. Further, the amount of light R2a incident on the image forming area 31 is smaller than that of the optical section 220. Therefore, the visibility of the image 72 projected on the target area 6 is lower than that of the optical unit 220.
 なお、上記以外の点について、実施の形態5に係る投影装置は、実施の形態1、2、3又は4に係る投影装置と同じである。実施の形態3の光学部230に光発散部253を採用することができる。 Note that, except for the points described above, the projection apparatus according to the fifth embodiment is the same as the projection apparatus according to the first, second, third, or fourth embodiment. The light diverging section 253 can be adopted in the optical section 230 of the third embodiment.
《6》実施の形態1~5の変形例1
 図17は、実施の形態1から5の変形例1に係る投影装置の光学部420の概略的な断面構造と光学部420を通過する光の主要な経路を示す図である。図17は、光学部420をYZ平面に平行な面で切る断面構造を示している。変形例1に係る投影装置は、実施の形態1から5における光学部4の代わりに、図17に示される光学部420を備えている。
<<6>> Modification 1 of Embodiments 1 to 5
FIG. 17 is a diagram showing a schematic cross-sectional structure of the optical unit 420 of the projection device according to the first modification of the first to fifth embodiments and a main path of light passing through the optical unit 420. FIG. 17 shows a sectional structure in which the optical section 420 is cut along a plane parallel to the YZ plane. The projection apparatus according to Modification 1 includes an optical section 420 shown in FIG. 17, instead of the optical section 4 in the first to fifth embodiments.
 光学部420は、中心部分420aと、周辺部分420bとを備えている。 The optical section 420 includes a central portion 420a and a peripheral portion 420b.
 中心部分420aは、入射面421と、出射面422とを備えている。光学部420の光軸C4は、中心部分420aを通っている。つまり、光学部420の光軸C4は、中心部分420a内に存在する。中心部分420aは、第2の中心部分とも呼ばれる。光軸C4が光軸C2と同一の軸上に位置するように、光学部2および光学部420を配置してもよい。光軸C4が光軸C2に対して傾斜するように、光学部2および光学部420を配置してもよい。光軸C4が光軸C2に対して偏心するように、光学部2および光学部420を配置してもよい。 The central portion 420a has an entrance surface 421 and an exit surface 422. The optical axis C4 of the optical section 420 passes through the central portion 420a. That is, the optical axis C4 of the optical section 420 exists within the central portion 420a. The central portion 420a is also called the second central portion. The optical unit 2 and the optical unit 420 may be arranged so that the optical axis C4 is located on the same axis as the optical axis C2. The optical unit 2 and the optical unit 420 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2. The optical unit 2 and the optical unit 420 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
 中心部分420aは、光学部4の中心部分40aと同様である。入射面421は、入射面41に相当する。出射面422は、出射面44に相当する。中心部分420aの説明は、中心部分40aの説明で代用する。中心部分420aの光軸は、光軸C4である。 The central portion 420a is similar to the central portion 40a of the optical unit 4. The incident surface 421 corresponds to the incident surface 41. The emission surface 422 corresponds to the emission surface 44. The description of the central portion 420a is substituted by the description of the central portion 40a. The optical axis of the central portion 420a is the optical axis C4.
 画像形成領域31を透過した画像光R31は中心部分420aに入射する。中心部分420aに入射した画像光R31は、対象領域6に照射される。画像形成領域31から出射された画像光R31は、画像光R4cとして対象領域6に照射される。画像光R4cは、対象領域6に投射される。これによって、対象領域6に画像72が投影される。 The image light R31 transmitted through the image forming area 31 enters the central portion 420a. The image light R31 incident on the central portion 420a is applied to the target area 6. The image light R31 emitted from the image forming area 31 is applied to the target area 6 as the image light R4c. The image light R4c is projected onto the target area 6. As a result, the image 72 is projected on the target area 6.
 周辺部分420bは、光学部420の他の一部である。つまり、周辺部分420bは、中心部分420aとは別の光学部420の一部である。周辺部分420bは、保持部423と、リフレクタ424とを備えている。周辺部分420bは、光軸C4を中心とした中心部分420aの外周側に形成されている。つまり、周辺部分420bは、光軸C4を中心とした中心部分420aの半径方向の外側に配置されている。周辺部分420bは、第2の周辺部分とも呼ばれる。周辺部分420bの光軸は、光軸C4である。 The peripheral part 420b is another part of the optical part 420. That is, the peripheral portion 420b is a part of the optical portion 420 different from the central portion 420a. The peripheral portion 420b includes a holding portion 423 and a reflector 424. The peripheral portion 420b is formed on the outer peripheral side of the central portion 420a with the optical axis C4 as the center. That is, the peripheral portion 420b is arranged radially outside the central portion 420a with the optical axis C4 as the center. The peripheral portion 420b is also referred to as a second peripheral portion. The optical axis of the peripheral portion 420b is the optical axis C4.
 中心部分420aと周辺部分420bとは、同じ材質で一体に形成されてもよい。また、中心部分420aと周辺部分420bとは、互いに異なる部材で形成されてもよい。 The central portion 420a and the peripheral portion 420b may be integrally formed of the same material. Further, the central portion 420a and the peripheral portion 420b may be formed of different members.
 保持部423は、中心部分420aを保持している。保持部423は、リフレクタ424によって保持されている。保持部423は、透明な部材であることが望ましい。 The holding portion 423 holds the central portion 420a. The holder 423 is held by the reflector 424. The holding portion 423 is preferably a transparent member.
 リフレクタ424は、光反射面を備えている。光反射面は、リフレクタ424の内側に形成されている。リフレクタ424は光を反射する。リフレクタ424は、例えば、凹面鏡である。リフレクタ424は、筒形の形状である。リフレクタ424の内面(光反射面)側は、例えば、円錐台の側壁の形状をしている。光学部420の内部は中空である。「中空」とは、物の内部がからになっていることである。リフレクタ424は、複数の光反射部材を組み合わせた構造物であってもよい。リフレクタ424の光反射面は、非球面形状であってもよい。リフレクタ424の光軸は、光軸C4である。 The reflector 424 has a light reflecting surface. The light reflecting surface is formed inside the reflector 424. The reflector 424 reflects light. The reflector 424 is, for example, a concave mirror. The reflector 424 has a tubular shape. The inner surface (light reflecting surface) side of the reflector 424 has, for example, the shape of a side wall of a truncated cone. The inside of the optical unit 420 is hollow. "Hollow" means that the inside of an object is made up of a hollow material. The reflector 424 may be a structure in which a plurality of light reflecting members are combined. The light reflecting surface of the reflector 424 may have an aspherical shape. The optical axis of the reflector 424 is the optical axis C4.
 画像形成部3の周辺領域32に照射された光は、周辺領域32を通過して周辺部分420bに入射する。周辺部分420bに入射した光は、保持部423を透過して対象領域6に照射される。保持部423は、周辺領域32から出射された光R32を透過する。保持部423は、リフレクタ424で反射された光R32を透過する。周辺部分420bに入射した光は、リフレクタ424で反射されて対象領域6に照射される。周辺領域32から出射された光R32は、光R4dである。光R4dは、対象領域6上の照明光71の領域に照射される。 The light applied to the peripheral area 32 of the image forming unit 3 passes through the peripheral area 32 and enters the peripheral portion 420b. The light incident on the peripheral portion 420b passes through the holding portion 423 and is irradiated on the target area 6. The holding unit 423 transmits the light R32 emitted from the peripheral region 32. The holding unit 423 transmits the light R32 reflected by the reflector 424. The light that has entered the peripheral portion 420b is reflected by the reflector 424 and is applied to the target region 6. The light R32 emitted from the peripheral region 32 is the light R4d. The light R4d is applied to the area of the illumination light 71 on the target area 6.
 以上に説明したように、変形例1に係る投影装置によれば、簡易な構成によって、照明光71の投射と画像72の投影とを行うことができる。 As described above, the projection device according to the first modification can project the illumination light 71 and the image 72 with a simple configuration.
《7》実施の形態1~5の変形例2
 図18は、実施の形態1から5の変形例2に係る投影装置の光学部430の概略的な断面構造と光学部430を通過する光の主要な経路を示す図である。図18は、光学部430をYZ平面に平行な面で切る断面構造を示している。変形例2に係る投影装置は、実施の形態1から5における光学部4の代わりに、図18に示される光学部430を備えている。
<<7>> Modification 2 of Embodiments 1 to 5
FIG. 18 is a diagram showing a schematic cross-sectional structure of the optical unit 430 of the projection device according to the second modification of the first to fifth embodiments and a main path of light passing through the optical unit 430. FIG. 18 shows a sectional structure in which the optical section 430 is cut along a plane parallel to the YZ plane. The projection apparatus according to Modification 2 includes an optical section 430 shown in FIG. 18 instead of the optical section 4 in the first to fifth embodiments.
 光学部430は、中心部分430aと、周辺部分430bとを備えている。 The optical unit 430 includes a central portion 430a and a peripheral portion 430b.
 中心部分430aは、入射面431と、出射面433とを備えている。光学部430の光軸C4は、中心部分430aを通っている。つまり、光学部430の光軸C4は、中心部分430a内に存在する。中心部分430aは、第2の中心部分とも呼ばれる。光軸C4が光軸C2と同一の軸上に位置するように、光学部2および光学部430を配置してもよい。光軸C4が光軸C2に対して傾斜するように、光学部2および光学部430を配置してもよい。光軸C4が光軸C2に対して偏心するように、光学部2および光学部430を配置してもよい。 The central portion 430a has an entrance surface 431 and an exit surface 433. The optical axis C4 of the optical unit 430 passes through the central portion 430a. That is, the optical axis C4 of the optical unit 430 exists within the central portion 430a. The central portion 430a is also referred to as the second central portion. The optical unit 2 and the optical unit 430 may be arranged so that the optical axis C4 is located on the same axis as the optical axis C2. The optical unit 2 and the optical unit 430 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2. The optical unit 2 and the optical unit 430 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
 中心部分430aは、光学部4の中心部分40aと同様である。入射面431は、入射面41に相当する。出射面433は、出射面44に相当する。中心部分430aの説明は、中心部分40aの説明で代用する。中心部分430aの光軸は、光軸C4である。 The central portion 430a is similar to the central portion 40a of the optical unit 4. The incident surface 431 corresponds to the incident surface 41. The emission surface 433 corresponds to the emission surface 44. The description of the central portion 430a is substituted by the description of the central portion 40a. The optical axis of the central portion 430a is the optical axis C4.
 画像形成領域31を透過した画像光R31は中心部分430aに入射する。中心部分430aに入射した画像光R31は、対象領域6に照射される。画像形成領域31から出射された画像光R31は、画像光R4eとして対象領域6に照射される。画像光R4eは、対象領域6に投射される。これによって、対象領域6に画像72が投影される。 The image light R31 transmitted through the image forming area 31 is incident on the central portion 430a. The image light R31 incident on the central portion 430a is applied to the target region 6. The image light R31 emitted from the image forming area 31 is applied to the target area 6 as the image light R4e. The image light R4e is projected on the target area 6. As a result, the image 72 is projected on the target area 6.
 周辺部分430bは、光学部430の他の一部である。つまり、周辺部分430bは、中心部分430aとは別の光学部430の一部である。周辺部分430bは、入射面432と、出射面434とを備えている。周辺部分430bは、光軸C4を中心とした中心部分430aの外周側に形成されている。つまり、周辺部分430bは、光軸C4を中心とした中心部分430aの半径方向の外側に配置されている。周辺部分430bは、第2の周辺部分とも呼ばれる。 The peripheral part 430b is another part of the optical part 430. That is, the peripheral portion 430b is a part of the optical unit 430 different from the central portion 430a. The peripheral portion 430b includes an entrance surface 432 and an exit surface 434. The peripheral portion 430b is formed on the outer peripheral side of the central portion 430a with the optical axis C4 as the center. That is, the peripheral portion 430b is arranged outside the central portion 430a in the radial direction with the optical axis C4 as the center. The peripheral portion 430b is also referred to as a second peripheral portion.
 周辺部分430bは、レンズを含んでいる。周辺部分430bは、レンズで形成されている。周辺部分430bは、凸レンズを含んでいる。周辺部分430bは、凸レンズで形成されている。周辺部分430bは、例えば、平凸レンズで形成されている。周辺部分430bは、例えば、両凸レンズで形成されてもよい。周辺部分430bの光軸は、光軸C4である。また、周辺部分430bは、凹レンズを含むことができる。周辺部分430bは、凹レンズで形成されることができる。周辺部分430bの凹レンズに入射した光R32は、発散された光R4fとして出射される。 The peripheral portion 430b includes a lens. The peripheral portion 430b is formed of a lens. The peripheral portion 430b includes a convex lens. The peripheral portion 430b is formed of a convex lens. The peripheral portion 430b is formed of, for example, a plano-convex lens. The peripheral portion 430b may be formed of, for example, a biconvex lens. The optical axis of the peripheral portion 430b is the optical axis C4. In addition, the peripheral portion 430b may include a concave lens. The peripheral portion 430b may be formed of a concave lens. The light R32 that has entered the concave lens of the peripheral portion 430b is emitted as diverged light R4f.
 画像形成部3の周辺領域32に照射された光は、周辺領域32を通過して周辺部分430bに入射する。周辺部分430bに入射した光は、屈折して光R4fとなる。光R4fは、対象領域6に向けられる。光R4fは、照明光71として対象領域6に投射される。 The light applied to the peripheral area 32 of the image forming unit 3 passes through the peripheral area 32 and is incident on the peripheral portion 430b. The light incident on the peripheral portion 430b is refracted to become the light R4f. The light R4f is directed to the target area 6. The light R4f is projected as the illumination light 71 on the target area 6.
 中心部分430aと周辺部分430bとは、同じ材質で一体に形成されている。ただし、中心部分430aと周辺部分430bとは、互いに異なる部材で形成されてもよい。光学部430は、複数のレンズの組み合わせによって形成されてもよい。 The central portion 430a and the peripheral portion 430b are integrally formed of the same material. However, the central portion 430a and the peripheral portion 430b may be formed of different members. The optical unit 430 may be formed by combining a plurality of lenses.
 以上に説明したように、変形例2に係る投影装置によれば、簡易な構成によって、照明光71の投射と画像72の投影とを行うことができる。 As described above, the projection device according to the second modification can project the illumination light 71 and the image 72 with a simple configuration.
《8》実施の形態1~5の変形例3
 図19は、実施の形態1から5の変形例3に係る投影装置の光学部440の概略的な断面構造と光学部440を通過する光の主要な経路を示す図である。図19は、光学部440をYZ平面に平行な面で切る断面構造を示している。変形例3に係る投影装置は、実施の形態1から5における光学部4の代わりに、図19に示される光学部440を備えている。
<<8>> Modification 3 of Embodiments 1 to 5
FIG. 19 is a diagram showing a schematic cross-sectional structure of an optical unit 440 and a main path of light passing through the optical unit 440 of the projection device according to the third modification of the first to fifth embodiments. FIG. 19 shows a sectional structure of the optical section 440 cut along a plane parallel to the YZ plane. The projection apparatus according to Modification 3 includes an optical section 440 shown in FIG. 19 instead of the optical section 4 in the first to fifth embodiments.
 光学部440は、中心部分440aと、周辺部分440bとを備えている。 The optical unit 440 includes a central portion 440a and a peripheral portion 440b.
 中心部分440aは、入射面441と、出射面443とを備えている。光学部440の光軸C4は、中心部分440aを通っている。つまり、光学部440の光軸C4は、中心部分440a内に存在する。中心部分440aは、第2の中心部分とも呼ばれる。光軸C4が光軸C2と同一の軸上に位置するように、光学部2および光学部440を配置してもよい。光軸C4が光軸C2に対して傾斜するように、光学部2および光学部440を配置してもよい。光軸C4が光軸C2に対して偏心するように、光学部2および光学部440を配置してもよい。 The central portion 440a has an entrance surface 441 and an exit surface 443. The optical axis C4 of the optical section 440 passes through the central portion 440a. That is, the optical axis C4 of the optical unit 440 exists within the central portion 440a. Central portion 440a is also referred to as the second central portion. The optical unit 2 and the optical unit 440 may be arranged so that the optical axis C4 is located on the same axis as the optical axis C2. The optical unit 2 and the optical unit 440 may be arranged so that the optical axis C4 is inclined with respect to the optical axis C2. The optical unit 2 and the optical unit 440 may be arranged so that the optical axis C4 is eccentric with respect to the optical axis C2.
 中心部分440aは、光学部4の中心部分40aと同様である。入射面441は、入射面41に相当する。出射面443は、出射面44に相当する。中心部分440aの説明は、中心部分40aの説明で代用する。中心部分440aの光軸は、光軸C4である。 The central portion 440a is similar to the central portion 40a of the optical unit 4. The incident surface 441 corresponds to the incident surface 41. The emission surface 443 corresponds to the emission surface 44. The description of the central portion 440a is substituted by the description of the central portion 40a. The optical axis of the central portion 440a is the optical axis C4.
 画像形成領域31を透過した画像光R31は中心部分440aに入射する。中心部分440aに入射した画像光R31は、対象領域6に照射される。画像形成領域31から出射された画像光R31は、画像光R4gとして対象領域6に照射される。画像光R4gは、対象領域6に投射される。これによって、対象領域6に画像72が投影される。 The image light R31 transmitted through the image forming area 31 is incident on the central portion 440a. The image light R31 incident on the central portion 440a is applied to the target area 6. The image light R31 emitted from the image forming area 31 is applied to the target area 6 as the image light R4g. The image light R4g is projected on the target area 6. As a result, the image 72 is projected on the target area 6.
 周辺部分440bは、光学部440の他の一部である。つまり、周辺部分440bは、中心部分440aとは別の光学部440の一部である。周辺部分440bは、入射面442と、出射面444とを備えている。周辺部分440bは、光軸C4を中心とした中心部分440aの外周側に形成されている。つまり、周辺部分440bは、光軸C4を中心とした中心部分440aの半径方向の外側に配置されている。周辺部分440bは、第2の周辺部分とも呼ばれる。 The peripheral part 440b is another part of the optical part 440. That is, the peripheral portion 440b is a part of the optical unit 440 different from the central portion 440a. The peripheral portion 440b includes an entrance surface 442 and an exit surface 444. The peripheral portion 440b is formed on the outer peripheral side of the central portion 440a with the optical axis C4 as the center. That is, the peripheral portion 440b is arranged outside the center portion 440a in the radial direction around the optical axis C4. The peripheral portion 440b is also referred to as a second peripheral portion.
 周辺部分440bは、例えば、フレネルレンズを含んでいる。周辺部分440bは、例えば、フレネルレンズである。周辺部分440bは、フレネルレンズで形成されている。周辺部分440bは、フレネルレンズ形状である。また、周辺部分440bは、一部の領域にフレネルレンズ形状を含むことができる。ここで一部の領域は、例えば、周辺部分440bの周辺の領域である。 The peripheral portion 440b includes, for example, a Fresnel lens. The peripheral portion 440b is, for example, a Fresnel lens. The peripheral portion 440b is formed of a Fresnel lens. The peripheral portion 440b has a Fresnel lens shape. In addition, the peripheral portion 440b may include a Fresnel lens shape in a partial area. Here, the partial region is, for example, a region around the peripheral portion 440b.
 周辺部分440bは、フレネル形状の凸レンズで形成されている。周辺部分440bは、例えば、フレネル形状の平凸レンズで形成されている。周辺部分440bは、例えば、フレネル形状の両凸レンズで形成されてもよい。また、光学部430と同様に、周辺部分440bは、凹レンズを含むことができる。 The peripheral portion 440b is formed of a Fresnel-shaped convex lens. The peripheral portion 440b is formed of, for example, a Fresnel-shaped plano-convex lens. The peripheral portion 440b may be formed of, for example, a Fresnel-shaped biconvex lens. Further, similar to the optical unit 430, the peripheral portion 440b may include a concave lens.
 出射面444は、フレネル形状を含んでいる。フレネル形状は、Z軸方向から見た場合、例えば、円環状である。フレネル形状は、Z軸方向から見た場合、同心円状に配置されている。なお、周辺部分440bは、入射面442にフレネル形状を備えてもよい。或いは、周辺部分440bは、フレネル形状を備えた複数のレンズの組み合わせであってもよい。 The emission surface 444 includes a Fresnel shape. The Fresnel shape is, for example, an annular shape when viewed from the Z-axis direction. The Fresnel shapes are arranged concentrically when viewed from the Z-axis direction. The peripheral portion 440b may have a Fresnel shape on the incident surface 442. Alternatively, the peripheral portion 440b may be a combination of a plurality of lenses having a Fresnel shape.
 また、周辺部分440bは、例えば、2つの面が平面で形成されたプリズムを含んでもよい。周辺部分440bは、例えば、プリズムである。周辺部分440bは、プリズムで形成されている。周辺部分440bは、プリズム形状である。周辺部分440bは、複数のプリズムを備えている。周辺部分440bは、フレネル形状のレンズのレンズ面が平面で形成されている。また、周辺部分440bは、一部の領域にプリズム形状を含むことができる。ここで一部の領域は、例えば、周辺部分440bの周辺の領域である。 Further, the peripheral portion 440b may include, for example, a prism having two flat surfaces. The peripheral portion 440b is, for example, a prism. The peripheral portion 440b is formed of a prism. The peripheral portion 440b has a prism shape. The peripheral portion 440b includes a plurality of prisms. In the peripheral portion 440b, the lens surface of the Fresnel-shaped lens is formed as a flat surface. In addition, the peripheral portion 440b may include a prism shape in a part of the area. Here, the partial region is, for example, a region around the peripheral portion 440b.
 出射面444は、複数のプリズム形状を含んでいる。プリズム形状は、Z軸方向から見た場合、例えば、円環状である。複数のプリズム形状は、Z軸方向から見た場合、同心円状に配置されている。なお、周辺部分440bは、入射面442にプリズム形状を備えてもよい。或いは、周辺部分440bは、プリズム形状を備えた複数のレンズの組み合わせであってもよい。 The emitting surface 444 includes a plurality of prism shapes. The prism shape is, for example, an annular shape when viewed from the Z-axis direction. The plurality of prism shapes are arranged concentrically when viewed from the Z-axis direction. The incident surface 442 of the peripheral portion 440b may have a prism shape. Alternatively, the peripheral portion 440b may be a combination of a plurality of lenses having a prism shape.
 例えば、周辺部分440bは、周辺部分430bと同様の性能を有する。周辺部分440bは、光を集光する。 For example, the peripheral portion 440b has the same performance as the peripheral portion 430b. The peripheral portion 440b collects light.
 画像形成部3の周辺領域32に照射された光は、周辺領域32を通過して周辺部分440bに入射する。周辺部分440bに入射した光は、屈折して光R4hとなる。光R4hは対象領域6に向けられる。光R4hは、照明光71として対象領域6に投射される。 The light applied to the peripheral area 32 of the image forming unit 3 passes through the peripheral area 32 and enters the peripheral portion 440b. The light incident on the peripheral portion 440b is refracted to become the light R4h. The light R4h is directed to the target area 6. The light R4h is projected onto the target area 6 as the illumination light 71.
 中心部分440aと周辺部分440bとは、同じ材質で一体に形成されている。ただし、中心部分440aと周辺部分440bとは、互いに異なる部材で形成されてもよい。光学部440は、複数のレンズの組み合わせによって形成されてもよい。 The central portion 440a and the peripheral portion 440b are integrally formed of the same material. However, the central portion 440a and the peripheral portion 440b may be formed of different members. The optical unit 440 may be formed by combining a plurality of lenses.
 以上に説明したように、変形例3に係る投影装置によれば、簡易な構成によって、照明光71の投射と画像72の投影とを行うことができる。 As described above, the projection device according to the third modification can project the illumination light 71 and the image 72 with a simple configuration.
《9》他の変形例
 上記実施の形態1~5及びそれらの変形例1~3に係る投影装置は、例にすぎず、本発明の範囲内で、種々の変更が可能である。本発明はこれらの実施の形態に限るものではない。
<<9>> Other Modifications The projection devices according to the first to fifth embodiments and their modifications 1 to 3 are merely examples, and various modifications can be made within the scope of the present invention. The present invention is not limited to these embodiments.
 本出願において、「平行」、「垂直」、又は「中心」などのような部品の位置、部品間の位置関係、又は部品の形状を示す用語が示す範囲は、製造上の公差及び組立て上のばらつきなどを考慮に入れた範囲である。このため、本出願においては、「略」を記載せずに「平行」、「垂直」、又は「中心」などのような部品の位置、部品間の位置関係、又は部品の形状を示す用語を用いた場合、これらの用語が示す範囲は、製造上の公差及び組立て上のばらつきなどを考慮に入れた範囲を意味する。 In the present application, the terms such as “parallel”, “vertical”, “center”, and the like, the positions of the parts, the positional relationship between the parts, or the terms indicating the shapes of the parts are defined by manufacturing tolerances and assembly ranges. This is a range that takes into consideration variations and the like. For this reason, in the present application, terms such as “parallel”, “vertical”, “center”, etc., indicating the position of parts, the positional relationship between parts, or the shape of parts are used without describing “substantially”. When used, the ranges indicated by these terms mean a range that takes into consideration manufacturing tolerances, assembly variations, and the like.
 以上の各実施の形態を基にして、以下に発明の内容を付記(1)から付記(3)として記載する。付記(1)から付記(3)とは、各々独立して符号を付している。そのため、例えば、付記(1)から付記(3)のそれぞれに、「付記1」が存在する。 Based on each of the above embodiments, the contents of the invention will be described below as appendices (1) to (3). The reference numerals (1) to (3) are independently assigned. Therefore, for example, “Supplementary Note 1” exists in each of Supplementary Note (1) to Supplementary Note (3).
 また、付記(1)の特徴と付記(2)の特徴と付記(3)の特徴とを組み合わせることができる。 Also, the features of Appendix (1), the features of Appendix (2), and the features of Appendix (3) can be combined.
《付記(1)》
《付記1》
 光を発する光源部と、
 前記光源部が発した前記光を入射して集光する第1の光学部と、
 前記第1の光学部で集光された光を画像光に変換する画像形成領域を含む画像形成部と、
 前記画像光を投影する第2の光学部と
を備え、
 前記第1の光学部は、前記第1の光学部の第1の光軸を含む第1の中心部と前記第1の光軸を中心として前記第1の中心部の周辺に位置する第1の周辺部とを含み、
 前記集光された光は、前記第1の周辺部から出射される光であり、
 前記第1の光学部から出射される光の集光位置を変更することで、前記集光された光は前記画像形成領域または前記画像形成領域の周辺の周辺領域に照射される投影装置。
<<Appendix (1)>>
<<Appendix 1>>
A light source section that emits light,
A first optical unit that receives and collects the light emitted from the light source unit;
An image forming section including an image forming area for converting the light condensed by the first optical section into image light;
A second optical unit for projecting the image light,
The first optical unit is located at a first central portion including a first optical axis of the first optical unit and a first central portion around the first optical axis. Including the periphery of
The condensed light is light emitted from the first peripheral portion,
A projection device in which the condensed light is irradiated to the image forming area or a peripheral area around the image forming area by changing a condensing position of the light emitted from the first optical unit.
《付記2》
 前記光源部から前記第1の光学部までの距離を変更することで前記集光位置を変更する付記1に記載の投影装置。
<<Appendix 2>>
The projection device according to appendix 1, wherein the condensing position is changed by changing a distance from the light source unit to the first optical unit.
《付記3》
 前記周辺領域に照射される光は、前記第1の光学部と前記画像形成部との間に集光される付記1または2に記載の投影装置。
<<Appendix 3>>
The projection device according to appendix 1 or 2, wherein the light with which the peripheral region is irradiated is condensed between the first optical unit and the image forming unit.
《付記4》
 前記第1の光学部は、前記第1の中心部に入射した光を周辺方向に屈折によって偏向する入射面を備え、前記第1の周辺部に入射した光を反射によって集光する反射面を備える付記1または2に記載の投影装置。
<<Appendix 4>>
The first optical unit includes an incident surface that deflects light incident on the first central portion by refraction in a peripheral direction, and has a reflection surface that collects light incident on the first peripheral portion by reflection. The projection device according to supplementary note 1 or 2.
《付記5》
 前記入射面で偏向された光は、前記反射面に到達する付記4に記載の投影装置。
<Appendix 5>
The projection device according to attachment 4, wherein the light deflected by the incident surface reaches the reflection surface.
《付記6》
 前記第1の光学部は、前記第1の周辺部に入射した光を屈折によって集光するレンズ面を備える付記1または2に記載の投影装置。
<Appendix 6>
3. The projection device according to appendix 1 or 2, wherein the first optical unit includes a lens surface that collects the light incident on the first peripheral portion by refraction.
《付記7》
 前記第1の光学部は、前記第1の周辺部に入射した光を屈折によって集光するプリズム面を備える付記1または2に記載の投影装置。
<Appendix 7>
3. The projection device according to appendix 1 or 2, wherein the first optical unit includes a prism surface that collects light incident on the first peripheral portion by refraction.
《付記8》
 前記第1の光学部は、前記第1の中心部に入射した光を遮光する遮光部を備える付記6または7に記載の投影装置。
<Appendix 8>
8. The projection device according to appendix 6 or 7, wherein the first optical unit includes a light blocking unit that blocks light that has entered the first central portion.
《付記9》
 前記第1の光学部は、前記第1の中心部に入射した光を発散させる光発散部を備える付記6または7に記載の投影装置。
<Appendix 9>
8. The projection device according to appendix 6 or 7, wherein the first optical unit includes a light diverging unit that diverges light that has entered the first central portion.
《付記10》
 前記光発散部は、凹面レンズである付記9に記載の投影装置。
<Appendix 10>
The projection device according to attachment 9, wherein the light diverging portion is a concave lens.
《付記11》
 前記光発散部は、入射した光を拡散させる拡散部である付記9に記載の投影装置。
<<Appendix 11>>
10. The projection device according to attachment 9, wherein the light diverging unit is a diffusion unit that diffuses incident light.
《付記12》
 前記第2の光学部は、前記第2の光学部の第2の光軸が通る第2の中心部と前記第2の光軸を中心として前記第2の中心部の周辺に位置する第2の周辺部とを含み、
 前記第2の中心部は、前記画像光を投影する付記1から11のいずれか1つに記載の投影装置。
<Appendix 12>
The second optical unit is located at a second central portion through which a second optical axis of the second optical unit passes and a second optical unit located around the second central portion around the second optical axis. Including the periphery of
The projection device according to any one of appendices 1 to 11, wherein the second center portion projects the image light.
《付記13》
 前記第2の中心部は凸レンズである付記12に記載の投影装置。
<<Appendix 13>>
The projection device according to attachment 12, wherein the second central portion is a convex lens.
《付記14》
 前記周辺領域に照射された光は、前記第2の周辺部に入射して、投射される付記12または13に記載の投影装置。
<Appendix 14>
The projection device according to appendix 12 or 13, wherein the light emitted to the peripheral area is incident on the second peripheral portion and projected.
《付記15》
 前記第2の周辺部は、入射した光を反射するリフレクタである付記12から14のいずれか1つに記載の投影装置。
<Appendix 15>
15. The projection device according to any one of appendices 12 to 14, wherein the second peripheral portion is a reflector that reflects incident light.
《付記16》
 前記第2の周辺部は、入射した光を屈折するレンズである付記12から14のいずれか1つに記載の投影装置。
<Appendix 16>
15. The projection device according to any one of appendices 12 to 14, wherein the second peripheral portion is a lens that refracts incident light.
《付記17》
 前記第2の周辺部は、入射した光を屈折するプリズムである付記12から14のいずれか1つに記載の投影装置。
<Appendix 17>
15. The projection device according to any one of appendices 12 to 14, wherein the second peripheral portion is a prism that refracts incident light.
《付記18》
 前記画像形成領域は、液晶素子である付記1から17のいずれか1つに記載の投影装置。
<Appendix 18>
The projection device according to any one of appendices 1 to 17, wherein the image forming region is a liquid crystal element.
《付記19》
 前記画像形成領域では、透過領域と遮光領域とによって画像情報が形成される付記1から17のいずれか1つに記載の投影装置。
<<Appendix 19>>
18. The projection device according to any one of appendices 1 to 17, wherein image information is formed by a transmissive region and a light-shielded region in the image forming region.
《付記20》
 前記周辺領域は光を透過する付記1から19のいずれか1つに記載の投影装置。
<<Appendix 20>>
The projection device according to any one of appendices 1 to 19, wherein the peripheral region transmits light.
《付記(2)》
《付記1》
 第1の光を出射する光源部と、
 前記第1の光を、収束又は発散する光成分を含む第2の光に変換する第1の光学部と、
 画像が形成される画像形成領域を含み、前記第2の光が前記画像形成領域及び前記画像形成領域の外側の周辺領域に入射する画像形成部と、
 前記画像形成領域を通過した前記第2の光である画像光及び前記周辺領域を通過した前記第2の光である照明光を対象領域に投射する第2の光学部と、
 前記第1の光学部から出射される前記第2の光の進行方向を変更する変更部と、
 を備え、
 前記第2の光の前記進行方向の変更によって、前記画像形成領域に入射する前記第2の光の量と前記周辺領域に入射する前記第2の光の量とが変更される投影装置。
<<Appendix (2)>>
<<Appendix 1>>
A light source unit that emits first light;
A first optical unit that converts the first light into second light including a light component that converges or diverges;
An image forming section including an image forming area on which an image is formed, wherein the second light is incident on the image forming area and a peripheral area outside the image forming area;
A second optical unit that projects image light that is the second light that has passed through the image forming region and illumination light that is the second light that has passed through the peripheral region onto a target region;
A change unit that changes the traveling direction of the second light emitted from the first optical unit;
Equipped with
A projection device in which an amount of the second light incident on the image forming region and an amount of the second light incident on the peripheral region are changed by changing the traveling direction of the second light.
《付記2》
 前記変更部は、前記光源部から前記第1の光学部までの距離を変更する付記1に記載の投影装置。
<<Appendix 2>>
The projection device according to appendix 1, wherein the changing unit changes a distance from the light source unit to the first optical unit.
《付記3》
 前記距離が第1の距離であるときに前記画像形成領域に入射する前記第2の光の量は、前記距離が前記第1の距離より長い第2の距離であるときに前記画像形成領域に入射する前記第2の光の量より少ない付記2に記載の投影装置。
<<Appendix 3>>
The amount of the second light incident on the image forming area when the distance is the first distance is equal to the image forming area when the distance is a second distance that is longer than the first distance. 3. The projection device according to attachment 2, which is smaller than the amount of the second light that is incident.
《付記4》
 前記距離が第1の距離であるときに前記周辺領域に入射する前記第2の光の量は、前記距離が前記第1の距離より長い第2の距離であるときに前記周辺領域に入射する前記第2の光の量より多い付記2又は3に記載の投影装置。
<<Appendix 4>>
The amount of the second light incident on the peripheral area when the distance is the first distance is incident on the peripheral area when the distance is the second distance that is longer than the first distance. The projection device according to appendix 2 or 3, wherein the projection light amount is larger than the second light amount.
《付記5》
 前記変更部は、前記光源部及び前記第1の光学部の少なくとも一方を移動できるように支持する支持部を含む付記1から4のいずれか1つに記載の投影装置。
<Appendix 5>
5. The projection device according to any one of appendices 1 to 4, wherein the changing unit includes a supporting unit that movably supports at least one of the light source unit and the first optical unit.
《付記6》
 前記変更部は、前記光源部及び前記第1の光学部の少なくとも一方を移動させる駆動部を含む付記5に記載の投影装置。
<Appendix 6>
6. The projection device according to appendix 5, wherein the changing unit includes a drive unit that moves at least one of the light source unit and the first optical unit.
《付記7》
 前記周辺領域を通過する前記第2の光は、前記第1の光学部と前記画像形成部との間で集光した後、前記周辺領域に入射する光を含む付記1から6のいずれか1つに記載の投影装置。
<Appendix 7>
The second light passing through the peripheral region includes the light that is incident on the peripheral region after being condensed between the first optical unit and the image forming unit. Projection device according to item 1.
《付記8》
 前記第1の光学部は、前記第1の光学部の光軸が存在する第1の中心部分と、前記第1の中心部分の外側の第1の周辺部分とを備え、
 前記第1の中心部分は、入射した光を周辺に向かうように偏向する入射面を含み、
 前記第1の周辺部分は、前記入射した光を反射することによって集光する光反射面を含む
 付記1から7のいずれか1つに記載の投影装置。
<Appendix 8>
The first optical portion includes a first central portion where the optical axis of the first optical portion is present, and a first peripheral portion outside the first central portion,
The first central portion includes an incident surface that deflects incident light toward the periphery,
The projection device according to any one of appendices 1 to 7, wherein the first peripheral portion includes a light reflecting surface that collects the incident light by reflecting the incident light.
《付記9》
 前記入射面で偏向された光は、前記光反射面に到達する付記8に記載の投影装置。
<Appendix 9>
The projection device according to attachment 8, wherein the light deflected by the incident surface reaches the light reflecting surface.
《付記10》
 前記第1の光学部は、前記第1の周辺部分に入射した光を屈折させることによって、前記入射した光を集光するレンズ部を備える付記8又は9に記載の投影装置。
<Appendix 10>
10. The projection device according to appendix 8 or 9, wherein the first optical unit includes a lens unit that collects the incident light by refracting the light incident on the first peripheral portion.
《付記11》
 前記第1の光学部は、前記第1の周辺部分に入射した光を屈折させることによって、前記入射した光を集光するプリズム部を含む付記8又は9に記載の投影装置。
<<Appendix 11>>
10. The projection device according to appendix 8 or 9, wherein the first optical unit includes a prism unit that collects the incident light by refracting the light incident on the first peripheral portion.
《付記12》
 前記第1の光学部は、前記第1の光学部の光軸が存在する第1の中心部分と、前記第1の中心部分の外側の第1の周辺部分とを備え、
 前記第1の光学部は、前記第1の中心部分に入射した光を遮光する遮光部を備える
 付記1から7のいずれか1つに記載の投影装置。
<Appendix 12>
The first optical portion includes a first central portion where the optical axis of the first optical portion is present, and a first peripheral portion outside the first central portion,
The projection device according to any one of appendices 1 to 7, wherein the first optical unit includes a light blocking unit that blocks light that has entered the first central portion.
《付記13》
 前記第1の光学部は、前記第1の光学部の光軸が存在する第1の中心部分と、前記第1の中心部分の外側の第1の周辺部分とを備え、
 前記第1の光学部は、前記第1の中心部分に入射した光を発散させる光発散部を備える付記1から7のいずれか1つに記載の投影装置。
<<Appendix 13>>
The first optical portion includes a first central portion where the optical axis of the first optical portion is present, and a first peripheral portion outside the first central portion,
8. The projection device according to any one of appendices 1 to 7, wherein the first optical unit includes a light diverging unit that diverges the light incident on the first central portion.
《付記14》
 前記光発散部は、凹面レンズ又は入射した光を拡散させる拡散部である付記13に記載の投影装置。
<Appendix 14>
14. The projection device according to appendix 13, wherein the light diverging portion is a concave lens or a diffusion portion that diffuses incident light.
《付記15》
 前記第2の光学部は、前記第2の光学部の光軸が存在する第2の中心部分と、前記第2の光学部の光軸を中心として前記第2の中心部分の外側に位置する第2の周辺部分とを含み、
 前記第2の中心部分は、前記画像光を投射する付記1から14のいずれか1つに記載の投影装置。
<Appendix 15>
The second optical portion is located outside the second central portion around the second central portion where the optical axis of the second optical portion exists and the optical axis of the second optical portion. Including a second peripheral portion,
15. The projection device according to any one of appendices 1 to 14, wherein the second central portion projects the image light.
《付記16》
 前記第2の中心部分は、凸レンズである付記15に記載の投影装置。
<Appendix 16>
The projection device according to attachment 15, wherein the second central portion is a convex lens.
《付記17》
 前記周辺領域に照射された光は、前記第2の周辺部分に入射して、投射される付記15又は16に記載の投影装置。
<Appendix 17>
17. The projection device according to appendix 15 or 16, wherein the light emitted to the peripheral area is incident on the second peripheral portion and projected.
《付記18》
 前記第2の周辺部分は、入射した光を反射するリフレクタを含む付記15から17のいずれか1つに記載の投影装置。
<Appendix 18>
The projection device according to any one of appendices 15 to 17, wherein the second peripheral portion includes a reflector that reflects incident light.
《付記19》
 前記第2の周辺部分は、入射した光を屈折するレンズ部を含む付記15から17のいずれか1つに記載の投影装置。
<<Appendix 19>>
The projection device according to any one of appendices 15 to 17, wherein the second peripheral portion includes a lens portion that refracts incident light.
《付記20》
 前記第2の周辺部分は、入射した光を屈折するプリズム部を含む付記15から17のいずれか1つに記載の投影装置。
<<Appendix 20>>
The projection apparatus according to any one of appendices 15 to 17, wherein the second peripheral portion includes a prism portion that refracts incident light.
《付記21》
 前記画像形成領域は、画像情報に基づく画像を表示する装置である付記1から20のいずれか1つに記載の投影装置。
<<Appendix 21>>
21. The projection device according to any one of appendices 1 to 20, wherein the image forming area is a device that displays an image based on image information.
《付記22》
 前記画像形成領域は、液晶素子である付記21に記載の投影装置。
<<Appendix 22>>
22. The projection device according to attachment 21, wherein the image forming region is a liquid crystal element.
《付記(3)》
《付記1》
 第1の光を発する光源部と、
 前記第1の光を入射して当該第1の光の配光を変更して第2の光として出射する第1の光学部と、
 前記第2の光を入射して画像光に変更して出射する画像形成領域および前記第2の光を入射して照明光として出射する周辺領域を含む画像形成部と、
 前記画像光を投射して投影像を形成する第2の光学部と
を備え、
 前記配光の変更によって、前記画像形成領域に入射する前記第2の光の量と前記周辺領域に入射する前記第2の光の量との比率を変更する投影装置。
<<Appendix (3)>>
<<Appendix 1>>
A light source unit that emits a first light;
A first optical unit that receives the first light, changes the light distribution of the first light, and emits the second light as second light;
An image forming unit including an image forming region that receives the second light and converts it into image light and emits the image light, and a peripheral region that receives the second light and emits it as illumination light.
A second optical unit that projects the image light to form a projected image,
A projection device that changes the ratio of the amount of the second light incident on the image forming area and the amount of the second light incident on the peripheral area by changing the light distribution.
《付記2》
 前記光源部から前記第1の光学部までの距離を変更することで前記配光の変更を行い、
 前記距離は、第1の距離および前記第1の距離より長い第2の距離を含む
付記1に記載の投影装置。
<<Appendix 2>>
The light distribution is changed by changing the distance from the light source unit to the first optical unit,
The projection device according to attachment 1, wherein the distance includes a first distance and a second distance that is longer than the first distance.
《付記3》
 前記距離が前記第1の距離であるときの前記画像形成領域に入射する前記第2の光の量は、前記距離が前記第2の距離であるときの前記画像形成領域に入射する前記第2の光の量より少ない付記2に記載の投影装置。
<<Appendix 3>>
The amount of the second light incident on the image forming area when the distance is the first distance is equal to the second amount of light incident on the image forming area when the distance is the second distance. The projection device according to attachment 2, which is less than the amount of light.
《付記4》
 前記距離が前記第1の距離であるときの前記周辺領域に入射する前記第2の光の量は、前記距離が前記第2の距離であるときの前記周辺領域に入射する前記第2の光の量より多い付記2又は3に記載の投影装置。
<<Appendix 4>>
The amount of the second light incident on the peripheral region when the distance is the first distance is equal to the amount of the second light incident on the peripheral region when the distance is the second distance. The projection device according to appendix 2 or 3, which is larger than the amount of
《付記5》
 前記距離の変更を行う変更部を備える付記2から4のいずれか1つに記載の投影装置。
<Appendix 5>
5. The projection device according to any one of appendices 2 to 4, comprising a changing unit that changes the distance.
《付記6》
 前記変更部は、前記光源部及び前記第1の光学部の少なくとも一方を移動させる付記5に記載の投影装置。
<Appendix 6>
The projection device according to appendix 5, wherein the changing unit moves at least one of the light source unit and the first optical unit.
《付記7》
 前記変更部の制御を行う移動制御部を備える付記5または6に記載の投影装置。
<Appendix 7>
7. The projection device according to appendix 5 or 6, further comprising a movement control unit that controls the changing unit.
《付記8》
 前記第1の光学部は、前記第1の光学部の第1の光軸が通る第1の中心部分と、前記第1の光軸を中心として前記第1の中心部分の外側に位置する第1の周辺部分とを備える付記2から7のいずれか1つに記載の投影装置。
<Appendix 8>
The first optical part is located outside the first central part with a first central part through which the first optical axis of the first optical part passes and the first optical part as a center. 8. The projection device according to any one of appendices 2 to 7, further comprising:
《付記9》
 前記第1の中心部分は、入射した前記第1の光を第1の周辺部分の方向に偏向する入射面を含み、
 前記第1の周辺部分は、偏向された前記第1の光を反射する反射面を含む
 付記8に記載の投影装置。
<Appendix 9>
The first central portion includes an incident surface that deflects the incident first light toward a first peripheral portion,
The projection apparatus according to appendix 8, wherein the first peripheral portion includes a reflecting surface that reflects the deflected first light.
《付記10》
 前記反射面は、前記第1の光が前記第1の光軸に近づく方向に前記第1の光を反射する付記9に記載の投影装置。
<Appendix 10>
10. The projection device according to attachment 9, wherein the reflective surface reflects the first light in a direction in which the first light approaches the first optical axis.
《付記11》
 前記距離が第1の距離である場合には、前記反射面で反射された前記第1の光は、前記第1の光軸に対して、反射された前記反射面と反対側に位置する前記周辺領域に到達する付記9または10に記載の投影装置。
<<Appendix 11>>
When the distance is a first distance, the first light reflected by the reflecting surface is located on the side opposite to the reflected reflecting surface with respect to the first optical axis. The projection device according to supplementary note 9 or 10, which reaches the peripheral region.
《付記12》
 前記距離が第1の距離である場合には、前記周辺領域に入射する前記第2の光は、前記第1の光学部と前記画像形成部との間で集光する光を含む付記9から11のいずれか1つに記載の投影装置。
<Appendix 12>
When the distance is the first distance, the second light incident on the peripheral region includes the light condensed between the first optical unit and the image forming unit. 11. The projection device according to any one of 11.
《付記13》
 前記第1の光学部は、凸レンズを含む付記8に記載の投影装置。
<<Appendix 13>>
The projection device according to attachment 8, wherein the first optical unit includes a convex lens.
《付記14》
 前記距離が第1の距離である場合には、
前記凸レンズの焦点から前記第1の光学部までの距離は、前記第1の距離よりも長い付記13に記載の投影装置。
<Appendix 14>
If the distance is a first distance,
14. The projection device according to attachment 13, wherein the distance from the focal point of the convex lens to the first optical unit is longer than the first distance.
《付記15》
 前記距離が第2の距離である場合には、
前記凸レンズの焦点から前記第1の光学部までの距離は、前記第2の距離よりも短い付記13または14に記載の投影装置。
<Appendix 15>
If the distance is a second distance,
15. The projection device according to appendix 13 or 14, wherein the distance from the focal point of the convex lens to the first optical unit is shorter than the second distance.
《付記16》
 前記距離が第2の距離である場合には、
前記凸レンズの焦点は、前記光源部と前記第1の光学部との間に位置する付記13から15のいずれか1つに記載の投影装置。
<Appendix 16>
If the distance is a second distance,
The projection device according to any one of appendices 13 to 15, wherein the focal point of the convex lens is located between the light source unit and the first optical unit.
《付記17》
 前記第1の中心部分は、前記凸レンズを含む付記13から16のいずれか1つに記載の投影装置。
<Appendix 17>
The projection device according to any one of appendices 13 to 16, wherein the first central portion includes the convex lens.
《付記18》
 前記第1の周辺部分は、前記凸レンズを含む付記13から17のいずれか1つに記載の投影装置。
<Appendix 18>
The projection device according to any one of appendices 13 to 17, wherein the first peripheral portion includes the convex lens.
《付記19》
 前記第1の周辺部分の前記凸レンズは、フレネル形状を含む付記18に記載の投影装置。
<<Appendix 19>>
19. The projection device according to attachment 18, wherein the convex lens of the first peripheral portion includes a Fresnel shape.
《付記20》
 前記フレネル形状のプリズムは、レンズ面が前記レンズ面に接する平面に平行な平面形状である付記19に記載の投影装置。
<<Appendix 20>>
20. The projection device according to Note 19, wherein the Fresnel-shaped prism has a planar shape in which a lens surface is parallel to a plane in contact with the lens surface.
《付記21》
 前記第1の中心部分は、入射した前記第1の光を遮光する遮光部を備える付記13から20のいずれか1つに記載の投影装置。
<<Appendix 21>>
21. The projection device according to any one of appendices 13 to 20, wherein the first central portion includes a light blocking portion that blocks the incident first light.
《付記22》
 前記第1の中心部分は、入射した前記第1の光を発散させる光発散部を備える付記13から20のいずれか1つに記載の投影装置。
<<Appendix 22>>
21. The projection device according to any one of appendices 13 to 20, wherein the first central portion includes a light diverging portion that diverges the incident first light.
《付記23》
 前記光発散部は、凹面レンズである付記22に記載の投影装置。
<Appendix 23>
23. The projection device according to attachment 22, wherein the light diverging portion is a concave lens.
《付記24》
 前記光発散部は、入射した前記第1の光を拡散させる光拡散面または光拡散層を含む付記22に記載の投影装置。
<<Appendix 24>>
23. The projection device according to attachment 22, wherein the light diverging unit includes a light diffusing surface or a light diffusing layer that diffuses the incident first light.
《付記25》
 前記第1の光学部は、前記第1の光学部の第1の光軸が通る第1の中心部分と、前記第1の光軸を中心として前記第1の中心部分の外側に位置する第1の周辺部分とを備える付記1に記載の投影装置。
<Appendix 25>
The first optical part is located outside the first central part with a first central part through which the first optical axis of the first optical part passes and the first optical part as a center. 1. The projection apparatus according to appendix 1, further comprising:
《付記26》
 前記第1の中心部分は、入射した前記第1の光を第1の周辺部分の方向に偏向する入射面を含み、
 前記第1の周辺部分は、偏向された前記第1の光を反射する反射面を含む
 付記25に記載の投影装置。
<Appendix 26>
The first central portion includes an incident surface that deflects the incident first light toward a first peripheral portion,
The projection device according to appendix 25, wherein the first peripheral portion includes a reflecting surface that reflects the deflected first light.
《付記27》
 前記反射面は、前記第1の光が前記第1の光軸に近づく方向に前記第1の光を反射する付記26に記載の投影装置。
<Appendix 27>
27. The projection device according to appendix 26, wherein the reflecting surface reflects the first light in a direction in which the first light approaches the first optical axis.
《付記28》
 前記第1の光学部は、凸レンズを含む付記25に記載の投影装置。
<Appendix 28>
26. The projection device according to attachment 25, wherein the first optical unit includes a convex lens.
《付記29》
 前記第1の中心部分は、前記凸レンズを含む付記28に記載の投影装置。
<Appendix 29>
29. The projection device according to attachment 28, wherein the first central portion includes the convex lens.
《付記30》
 前記第1の周辺部分は、前記凸レンズを含む付記28または29に記載の投影装置。
<Appendix 30>
30. The projection device according to attachment 28 or 29, wherein the first peripheral portion includes the convex lens.
《付記31》
 前記第1の周辺部分の前記凸レンズは、フレネル形状を含む付記30に記載の投影装置。
<<Appendix 31>>
31. The projection device according to attachment 30, wherein the convex lens of the first peripheral portion includes a Fresnel shape.
《付記32》
 前記フレネル形状のプリズムは、レンズ面が前記レンズ面に接する平面に平行な平面形状である付記31に記載の投影装置。
<Appendix 32>
32. The projection device according to attachment 31, wherein the Fresnel-shaped prism has a planar shape in which a lens surface is parallel to a plane in contact with the lens surface.
《付記33》
 前記第1の中心部分は、入射した前記第1の光を遮光する遮光部を備える付記28から32のいずれか1つに記載の投影装置。
<Appendix 33>
33. The projection device according to any one of appendices 28 to 32, wherein the first central portion includes a light blocking portion that blocks the incident first light.
《付記34》
 前記第1の中心部分は、入射した前記第1の光を発散させる光発散部を備える付記28から32のいずれか1つに記載の投影装置。
<Appendix 34>
33. The projection device according to any one of appendices 28 to 32, wherein the first central portion includes a light diverging portion that diverges the incident first light.
《付記35》
 前記光発散部は、凹面レンズである付記34に記載の投影装置。
<Appendix 35>
The projection device according to attachment 34, wherein the light diverging portion is a concave lens.
《付記36》
 前記光発散部は、入射した前記第1の光を拡散させる光拡散面または光拡散層を含む付記34に記載の投影装置。
<Appendix 36>
35. The projection device according to attachment 34, wherein the light diverging portion includes a light diffusing surface or a light diffusing layer that diffuses the incident first light.
《付記37》
 前記第2の光学部は、前記第2の光学部の第2の光軸が通る第2の中心部分と、前記第2の光軸を中心として前記第2の中心部分の外側に位置する第2の周辺部分とを含み、
 前記第2の中心部分は、前記画像光を投射する付記1から36のいずれか1つに記載の投影装置。
<Appendix 37>
The second optical portion is located outside the second central portion around the second central portion through which the second optical axis of the second optical portion passes and the second optical axis. Including the peripheral part of 2,
37. The projection device according to any one of appendices 1 to 36, wherein the second central portion projects the image light.
《付記38》
 前記第2の中心部分は、凸レンズを含む付記37に記載の投影装置。
<Appendix 38>
38. The projection device according to attachment 37, wherein the second central portion includes a convex lens.
《付記39》
 前記第2の周辺部分は、前記周辺領域から出射された前記照明光を入射して、投射する付記37又は38に記載の投影装置。
<Appendix 39>
39. The projection device according to appendix 37 or 38, wherein the second peripheral portion receives the illumination light emitted from the peripheral region and projects the illumination light.
《付記40》
 前記第2の周辺部分は、入射した前記照明光を反射する反射面を含む付記37から39のいずれか1つに記載の投影装置。
<Appendix 40>
40. The projection device according to any one of appendices 37 to 39, wherein the second peripheral portion includes a reflecting surface that reflects the incident illumination light.
《付記41》
 前記第2の周辺部分は、入射した前記照明光を屈折するレンズを含む付記37から39のいずれか1つに記載の投影装置。
<<Appendix 41>>
40. The projection device according to any one of appendices 37 to 39, wherein the second peripheral portion includes a lens that refracts the incident illumination light.
《付記42》
 前記レンズは凸レンズを含む付記41に記載の投影装置。
<Appendix 42>
42. The projection device according to attachment 41, wherein the lens includes a convex lens.
《付記43》
 前記レンズは凹レンズを含む付記41に記載の投影装置。
<Appendix 43>
42. The projection device according to attachment 41, wherein the lens includes a concave lens.
《付記44》
 前記レンズは、フレネル形状を含む付記41から43のいずれか1つに記載の投影装置。
<Appendix 44>
The projection device according to any one of appendices 41 to 43, wherein the lens includes a Fresnel shape.
《付記45》
 前記フレネル形状のプリズムは、レンズ面が前記レンズ面に接する平面に平行な平面形状である付記44に記載の投影装置。
<Appendix 45>
The projection device according to attachment 44, wherein the Fresnel-shaped prism has a planar shape in which a lens surface is parallel to a plane in contact with the lens surface.
《付記46》
 前記周辺領域は、前記画像形成領域の周辺側に位置している付記1から45のいずれか1つに記載の投影装置。
<Appendix 46>
46. The projection device according to any one of appendices 1 to 45, wherein the peripheral area is located on the peripheral side of the image forming area.
《付記47》
 前記画像形成領域は、前記第2の光の透過および遮光によって画像を形成する付記1から46のいずれか1つに記載の投影装置。
<Appendix 47>
47. The projection device according to any one of appendices 1 to 46, wherein the image forming region forms an image by transmitting and blocking the second light.
《付記48》
 前記画像形成領域は、液晶素子である付記1から47のいずれか1つに記載の投影装置。
<Appendix 48>
48. The projection device according to any one of appendices 1 to 47, wherein the image forming area is a liquid crystal element.
《付記49》
 前記画像形成領域は、開口を含む遮光板である付記1から47のいずれか1つに記載の投影装置。
<Appendix 49>
The projection device according to any one of appendices 1 to 47, wherein the image forming region is a light shielding plate including an opening.
《付記50》
 前記画像形成領域は、マイクロミラーを用いた表示素子である付記1から47のいずれか1つに記載の投影装置。
<Appendix 50>
The projection device according to any one of appendices 1 to 47, wherein the image forming region is a display element using a micromirror.
《付記51》
 前記配光は、前記第2の光の発散角である付記1から50のいずれか1つに記載の投影装置。
<Appendix 51>
The projection device according to any one of appendices 1 to 50, wherein the light distribution is a divergence angle of the second light.
《付記52》
 前記配光の変更によって、前記画像光の量と前記照明光の量との比率を変更する付記1から51のいずれか1つに記載の投影装置。
<Appendix 52>
52. The projection device according to any one of appendices 1 to 51, which changes a ratio between the amount of the image light and the amount of the illumination light by changing the light distribution.
《付記53》
 前記画像光と前記照明光とは、同じ対象領域に照射される付記1から52のいずれか1つに記載の投影装置。
<Appendix 53>
53. The projection device according to any one of appendices 1 to 52, wherein the image light and the illumination light are applied to the same target area.
《付記54》
 前記光源部及び前記第1の光学部の少なくとも一方は、前記光源部の光軸に平行な方向に移動する付記1から53のいずれか1つに記載の投影装置。
<Appendix 54>
54. The projection device according to any one of appendices 1 to 53, wherein at least one of the light source unit and the first optical unit moves in a direction parallel to the optical axis of the light source unit.
《付記55》
 前記光源部及び前記第1の光学部の少なくとも一方は、前記第1の光学部の光軸に平行な方向に移動する付記1から53のいずれか1つに記載の投影装置。
<Appendix 55>
54. The projection device according to any one of appendices 1 to 53, wherein at least one of the light source unit and the first optical unit moves in a direction parallel to the optical axis of the first optical unit.
 1 光源、 11 発光面、 2,220,230,240,250 光学部、 20a,220a,230a,240a,250a 中心部分(第1の中心部分)、 20b,220b,230b,240b,250b 周辺部分(第1の周辺部分)、 21,21a,21b,221,231,241,251 入射面、 22 反射面、 23,24,25,222,232,233,242,252 出射面、 243 遮光部、 253 光発散部、 3 画像形成部、 31 画像形成領域、 32 周辺領域、 33 画像、 4,420,430,440 光学部、 40a,420a,430a,440a 中心部分(第2の中心部分)、 40b,420b,430b,440b 周辺部分(第2の周辺部分)、 423 保持部、 424 リフレクタ、 41,42,421,431,432,441,442 入射面、 43 反射面、 44,45,422,433,434,443,444 出射面、 46 接続面、 5 移動部(変更部)、 6 対象領域、 71 照明光、 72 画像、 100 投影装置、 C1 光源部の光軸、 C2 第1の光学部の光軸、 C4 第2の光学部の光軸。 1 light source, 11 light emitting surface, 2, 220, 230, 240, 250 optical part, 20a, 220a, 230a, 240a, 250a central part (first central part), 20b, 220b, 230b, 240b, 250b peripheral part ( (First peripheral portion), 21, 21a, 21b, 221, 231, 241, 251 incident surface, 22 reflection surface, 23, 24, 25, 222, 232, 233, 242, 252 emission surface, 243 light-shielding portion, 253 Light diverging section, 3 image forming section, 31 image forming area, 32 peripheral area, 33 image, 4,420, 430, 440 optical section, 40a, 420a, 430a, 440a central part (second central part), 40b, 420b, 430b, 440b peripheral part (second peripheral part), 423 holding part, 424 reflector, 41, 42, 421, 431, 432, 441, 442 incident surface, 43 reflective surface, 44, 45, 422, 433. 434, 443, 444 emission surface, 46 connection surface, 5 moving part (change part), 6 target area, 71 illumination light, 72 image, 100 projection device, C1 light source optical axis, C2 first optical part light Axis, the optical axis of the C4 second optical section.

Claims (10)

  1.  第1の光を発する光源部と、
     前記第1の光を入射して当該第1の光の配光を変更して第2の光として出射する第1の光学部と、
     前記第2の光を入射して画像光に変更して出射する画像形成領域および前記第2の光を入射して照明光として出射する周辺領域を含む画像形成部と、
     前記画像光を投射して投影像を形成する第2の光学部と
    を備え、
     前記配光の変更によって、前記画像形成領域に入射する前記第2の光の量と前記周辺領域に入射する前記第2の光の量との比率を変更する投影装置。
    A light source unit that emits a first light;
    A first optical unit that receives the first light, changes the light distribution of the first light, and emits the second light as second light;
    An image forming unit including an image forming region that receives the second light and converts it into image light and emits the image light, and a peripheral region that receives the second light and emits it as illumination light.
    A second optical unit that projects the image light to form a projected image,
    A projection device that changes the ratio of the amount of the second light incident on the image forming area and the amount of the second light incident on the peripheral area by changing the light distribution.
  2.  前記光源部から前記第1の光学部までの距離を変更することで前記配光の変更を行い、
     前記距離は、第1の距離および前記第1の距離より長い第2の距離を含む
    請求項1に記載の投影装置。
    The light distribution is changed by changing the distance from the light source unit to the first optical unit,
    The projection device according to claim 1, wherein the distance includes a first distance and a second distance that is longer than the first distance.
  3.  前記距離が前記第1の距離であるときの前記画像形成領域に入射する前記第2の光の量は、前記距離が前記第2の距離であるときの前記画像形成領域に入射する前記第2の光の量より少ない請求項2に記載の投影装置。 The amount of the second light incident on the image forming area when the distance is the first distance is equal to the second amount of light incident on the image forming area when the distance is the second distance. The projection device according to claim 2, wherein the amount of light is less than that of the projection device.
  4.  前記第1の光学部は、前記第1の光学部の第1の光軸が通る第1の中心部分と、前記第1の光軸を中心として前記第1の中心部分の外側に位置する第1の周辺部分とを備える請求項1に記載の投影装置。 The first optical part is located outside the first central part with a first central part through which the first optical axis of the first optical part passes and the first optical part as a center. 1. The projection device according to claim 1, comprising one peripheral portion.
  5.  前記第1の中心部分は、入射した前記第1の光を第1の周辺部分の方向に偏向する入射面を含み、
     前記第1の周辺部分は、偏向された前記第1の光を反射する反射面を含む
     請求項4に記載の投影装置。
    The first central portion includes an incident surface that deflects the incident first light toward a first peripheral portion,
    The projection device according to claim 4, wherein the first peripheral portion includes a reflecting surface that reflects the deflected first light.
  6.  前記第1の光学部は、凸レンズを含む請求項4に記載の投影装置。 The projection device according to claim 4, wherein the first optical unit includes a convex lens.
  7.  前記第1の中心部分は、前記凸レンズを含む請求項6に記載の投影装置。 The projection device according to claim 6, wherein the first central portion includes the convex lens.
  8.  前記第1の周辺部分は、前記凸レンズを含む請求項6または7に記載の投影装置。 The projection device according to claim 6 or 7, wherein the first peripheral portion includes the convex lens.
  9.  前記第2の光学部は、前記第2の光学部の第2の光軸が通る第2の中心部分と、前記第2の光軸を中心として前記第2の中心部分の外側に位置する第2の周辺部分とを含み、
     前記第2の中心部分は、前記画像光を投射する請求項1から8のいずれか1項に記載の投影装置。
    The second optical portion is located outside the second central portion around the second central portion through which the second optical axis of the second optical portion passes and the second optical axis. Including the peripheral part of 2,
    The projection device according to claim 1, wherein the second central portion projects the image light.
  10.  前記周辺領域は、前記画像形成領域の周辺側に位置している請求項1から9のいずれか1項に記載の投影装置。 The projection device according to any one of claims 1 to 9, wherein the peripheral area is located on the peripheral side of the image forming area.
PCT/JP2019/004348 2019-02-07 2019-02-07 Projection device WO2020161846A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/004348 WO2020161846A1 (en) 2019-02-07 2019-02-07 Projection device
JP2020570279A JP7191130B2 (en) 2019-02-07 2019-02-07 projection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004348 WO2020161846A1 (en) 2019-02-07 2019-02-07 Projection device

Publications (1)

Publication Number Publication Date
WO2020161846A1 true WO2020161846A1 (en) 2020-08-13

Family

ID=71948176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004348 WO2020161846A1 (en) 2019-02-07 2019-02-07 Projection device

Country Status (2)

Country Link
JP (1) JP7191130B2 (en)
WO (1) WO2020161846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003967A1 (en) * 2022-06-27 2024-01-04 三菱電機株式会社 Headlight device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162832A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Projector
US20130135588A1 (en) * 2011-11-29 2013-05-30 Milan Momcilo Popovich 3D display apparatus
WO2016147236A1 (en) * 2015-03-19 2016-09-22 パナソニックIpマネジメント株式会社 Illumination device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010046034A1 (en) 2000-02-18 2001-11-29 Gold Robert J. Machine for creating handheld illumination and projectable multimedia presentations
JP6229972B2 (en) * 2013-11-05 2017-11-15 パナソニックIpマネジメント株式会社 Lighting device
JP6931820B2 (en) 2016-02-12 2021-09-08 パナソニックIpマネジメント株式会社 Lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162832A (en) * 2004-12-06 2006-06-22 Seiko Epson Corp Projector
US20130135588A1 (en) * 2011-11-29 2013-05-30 Milan Momcilo Popovich 3D display apparatus
WO2016147236A1 (en) * 2015-03-19 2016-09-22 パナソニックIpマネジメント株式会社 Illumination device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024003967A1 (en) * 2022-06-27 2024-01-04 三菱電機株式会社 Headlight device

Also Published As

Publication number Publication date
JPWO2020161846A1 (en) 2021-12-02
JP7191130B2 (en) 2022-12-16

Similar Documents

Publication Publication Date Title
JP6918191B2 (en) Headlight module and vehicle headlight device
US6897459B2 (en) Compact elliptical infrared light unit for a motor vehicle
US7607811B2 (en) Lighting unit
JP6324635B2 (en) Headlight module and headlight device
CN112664899B (en) Headlight module
KR20210036929A (en) A light-emitting module that images the illuminated surface of the collector
US20060083002A1 (en) Lighting device
JP2020149975A (en) Luminous device that images illuminated surfaces of at least two collectors
CN108291704B (en) Light beam projection device comprising a digital screen and headlamp equipped with such a device
US10851960B2 (en) Vehicular lighting fixture
JP7023354B2 (en) Light irradiation device
JP2014120342A (en) Vehicle headlamp
CN104141925A (en) Lamp unit and light deflecting device
WO2023019640A1 (en) Adb high and low beam integrated vehicle lamp illumination module and vehicle lamp
CN114270097A (en) Headlamp module and headlamp device
JP4529946B2 (en) Vehicle lighting
WO2020161846A1 (en) Projection device
US20060209556A1 (en) Vehicle lamp
JP2007095681A (en) Floodlight system with multiple light sources and multiple light axes
JP2020061232A (en) Vehicular lighting tool
JP2004134357A (en) Indication lamp comprising optical piece for performing indicating function
JP5027898B2 (en) Lighting fixture
JP2018198165A (en) Collimator lens, light irradiation device, and vehicular lighting fixture
JP7545405B2 (en) Lighting unit
JP7273364B2 (en) vehicle lamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914377

Country of ref document: EP

Kind code of ref document: A1