WO2024001963A1 - 卫星系统端站分组方法、控制器、卫星系统以及存储介质 - Google Patents

卫星系统端站分组方法、控制器、卫星系统以及存储介质 Download PDF

Info

Publication number
WO2024001963A1
WO2024001963A1 PCT/CN2023/102143 CN2023102143W WO2024001963A1 WO 2024001963 A1 WO2024001963 A1 WO 2024001963A1 CN 2023102143 W CN2023102143 W CN 2023102143W WO 2024001963 A1 WO2024001963 A1 WO 2024001963A1
Authority
WO
WIPO (PCT)
Prior art keywords
end station
metric value
metric
control information
stations
Prior art date
Application number
PCT/CN2023/102143
Other languages
English (en)
French (fr)
Inventor
魏艺璇
刘樵文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024001963A1 publication Critical patent/WO2024001963A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of satellite communication technology, and specifically to a satellite system end station grouping method, a controller, a satellite system and a storage medium.
  • the master station obtains the control information reported by each end station, and then performs centralized processing and further scheduling.
  • the end stations are grouped and a dedicated control channel divided into time slots is used to control the information. Report, thereby reducing the number of end stations competing in a control channel time slot to obtain a smaller collision probability and smaller delay;
  • the end stations under the control channel divided into time slots are grouped in a random grouping manner. After determining the number of groups, the corresponding number of end stations are randomly placed into the end station group.
  • the end stations in the same group only send control information on the control channel time slot corresponding to the end station group, but there is competition between the end stations in the same group when sending control information, and the collision probability is high when the control information is reported, causing the communication process
  • the system scheduling delay in the medium system is large and the reporting capacity is small, which affects the communication quality.
  • Embodiments of the present application provide a satellite system end station grouping method, a controller, a satellite system, and a storage medium.
  • embodiments of the present application provide a method for grouping satellite system end stations.
  • the method includes: obtaining control information parameters of multiple end stations.
  • the control information parameters include control information reporting probabilities. According to the control information
  • the parameters are used to obtain the metric values of multiple end stations, the upper limit metric value is obtained based on the metric values of the multiple end stations and the preset grouping number N, and the multiple end stations are calculated based on the preset grouping principle and the upper limit metric value.
  • the stations are grouped into groups to obtain N end station groups.
  • embodiments of the present application provide an end station group controller, which includes a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the The computer program implements the satellite system end station grouping method as described in any embodiment of the first aspect.
  • an embodiment of the present application provides a satellite system, including an end station group controller as described in any embodiment of the second aspect.
  • embodiments of the present application provide a computer-readable storage medium that stores computer-executable instructions.
  • the computer-executable instructions are used to execute the satellite system end station grouping as described in any embodiment of the first aspect. method.
  • Figure 1 is a schematic structural diagram of a satellite communication system proposed in an embodiment of the present application.
  • Figure 2 is a method flow chart of a satellite system end station grouping method proposed by another embodiment of the present application.
  • Figure 3 is a flow chart of a method for obtaining metric values in the satellite system end station grouping method proposed by another embodiment of the present application;
  • Figure 4 is a flow chart of another method for obtaining metric values in the satellite system end station grouping method proposed by another embodiment of the present application;
  • Figure 5 is a flow chart of a method for setting weight coefficients to obtain metric values in the satellite system terminal station grouping method proposed by another embodiment of the present application;
  • Figure 6 is a method flow chart corresponding to S-shaped grouping in the terminal station grouping method proposed by another embodiment of the present application.
  • Figure 7 is a schematic diagram of S-shaped grouping in the terminal station grouping method proposed by another embodiment of the present application.
  • Figure 8 is a method flow chart corresponding to segmented grouping in the terminal station grouping method proposed by another embodiment of the present application.
  • Figure 9 is a method flow chart of the terminal station grouping method proposed by another embodiment of the present application.
  • Figure 10 is a performance curve diagram proposed by another embodiment of the present application.
  • Figure 11 is a structural diagram of an end station group controller proposed by another embodiment of the present application.
  • the functional modules are divided in the system schematic diagram and the logical sequence is shown in the flow chart, in some cases, the module division in the system or the order in the flow chart may be different.
  • the steps shown or described The terms first, second, etc. in the description, claims, and above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • the master station obtains the control information reported by each end station, and then performs centralized processing and further scheduling.
  • the end stations under the control channel divided into time slots are grouped randomly.
  • the number of end stations in each group can be determined.
  • the corresponding number of end stations are randomly placed into the end station group.
  • the end stations in the same group are only in the end station group. Control information is sent on the corresponding control channel time slot, but there is a competition relationship between end stations in the same group, and the control information may collide, causing information loss.
  • this application discloses a satellite system end station grouping method, controller, satellite system and storage medium.
  • the control information parameters of multiple end stations are obtained.
  • the control information parameters include the control information reporting probability.
  • the measurement values of multiple end stations are obtained.
  • the upper limit measurement values are obtained based on the measurement values of multiple end stations and the preset grouping number N. According to the preset grouping principle and the upper limit The measurement value is used to group multiple end stations to obtain N end station groups.
  • the measurement values of each group are averaged in a low-complexity grouping method, effectively reducing the It reduces the collision probability of control information, improves the success rate of control information reporting and the amount of reported data.
  • Figure 1 is a schematic structural diagram of a satellite communication system proposed by an embodiment of the present application.
  • the satellite communication system with the star network structure in Figure 1 mainly includes three parts: the main station 1, the satellite 2, and the end station 3.
  • the end station 3 is the one that needs satellite communication.
  • Terminal, the main station 1 is the control station for information processing and scheduling in satellite communications.
  • the main station 1 plays the role of the control center and is the interface between the satellite system and the ground public network.
  • Ground users can access the satellite system through the ground station to form Link;
  • Satellite 2 acts as a relay station in the air, amplifying the electromagnetic waves sent by the ground station and then returning them to another ground station.
  • transponders In order to facilitate amplification, transmission and reduce modulation interference, a number of transponders are generally installed on the satellite, each of which The transponder allocates a certain working frequency band; the end station 3 contains various user terminals, such as mobile phones, laptops, etc.
  • the communication between end station 3 and end station 3 will be uniformly processed and forwarded at master station 1 through satellite 2.
  • Master station 1 controls all end stations 3 in the community. 3 are interconnected with two hops.
  • the uplink for data transmission is divided into multiple time slots.
  • the master station 1 allocates uplink resources to each end station 3 according to the transmission and reporting status of the end station 3.
  • the control information of station 3 also needs to be scheduled by master station 1 before it can be reported, or it must be reported on a dedicated channel.
  • multiple end stations 3 communicate with the main station 1 through the satellite 2.
  • the main station 1 centrally processes and further schedules resources based on the control information content reported by the end station 3. , allocate resources for each end station 3 in the uplink frame.
  • the control channel method of dividing time slots is used to report the control information of end station 3, which means to divide a dedicated part of the channel resources and divide them into multiple time slots (including but not limited to dividing from time domain and frequency domain). All end stations 3 are also divided into a corresponding number of end station groups, and one end station group may contain multiple end stations 3 . End station groups correspond to control channel time slots one-to-one. End stations in the same end station group can only use the control channel time slots corresponding to their own group to send control information.
  • Figure 2 is a method flow chart of an end station grouping method proposed by another embodiment of the present application.
  • This embodiment of the present application provides a satellite system end station grouping method.
  • the grouping method at least includes the following steps S210-S240.
  • Step S210 Obtain control information parameters of multiple end stations, where the control information parameters include control information reporting probabilities.
  • the control information is used by the terminal station to apply for scheduling resources from the main station. source or authorized resources.
  • a master station connects multiple end stations through satellites for communication. The master station centrally processes and further schedules resources based on the control information content reported by the end stations.
  • the uplink frame it provides each end station with For resource allocation, the communication between the end station and the end station is not completed directly, but the source end station first transmits the information to the main station through the satellite, and then the main station transmits the information to the destination end station through the satellite. Due to all The end stations will all transmit data to the main station. Orderly uploading and avoiding conflicts are particularly important, so the end stations need to be grouped.
  • the end stations are grouped according to the control information parameters of multiple end stations.
  • the control information parameters are: The control information reporting probability of the end station corresponding to the control information and the parameters of the size of the buffer status request information in the control information can effectively reduce the collision probability of the control information and improve the success rate of control information reporting and the amount of reported data.
  • all end stations in the same end station group share the same control channel time slot resource, and there is a competition relationship. If two or more end stations in the group report control information at the same time, the control information will A collision occurs, resulting in information loss; and during the process of reporting control information by the end station, the buffer status size information that needs to be uploaded is reported in absolute value, as long as the last report is successful, which reduces the impact of collision of reported information on the reporting capacity, but Collision of reported information will still affect the reporting delay, resulting in untimely reporting of control information. Therefore, the embodiment of this application uses metric values to quantify the reporting situation of end stations, and designs the end station grouping strategy based on the metric values, which can significantly reduce the overall control Information collision probability, optimize system scheduling delay, and improve communication reliability.
  • Step S220 Obtain the measurement values of multiple end stations according to the control information parameters.
  • the metric value is data that quantitatively describes the access situation of the end station, and is used to reflect the reporting status of the end station control information, such as the probability of reporting control information, the size of the buffer status request information that needs to be reported in the control information, etc.
  • the specific calculation formula can be set manually. The larger the measurement value of the end station, the more important the control information of the end station is. It needs to be reported more securely and takes up more reporting resources.
  • control information reporting probability is calculated by using historical data before the system performs grouping, and calculates the probability that the end station sends control information to the master station to request resources within a certain period of time.
  • the control information reporting probability is determined by the usage of the end station. Proportional, so the control information parameters including the control information reporting probability can be used as control information parameters to determine the metric value of the end station.
  • the buffer status request information BSR (Buffer Status Report) is sent by the end station to the main station to inform the main station how much data needs to be sent in the uplink buffer of the end station, where the terminal device and the interface
  • BSR Buffer Status Report
  • the terminal device needs to send uplink data to the access node, it must have uplink resources. If there are no uplink resources, the terminal device needs to apply for uplink resources from the access node first. During the process of applying for uplink resources, buffer status request information needs to be reported to the access node so that the access node can schedule appropriate uplink resources for the terminal device.
  • Step S230 Obtain an upper limit metric value based on the metric values of multiple end stations and the preset number of packets N.
  • obtaining the upper limit metric value based on the metric values of multiple end stations and the preset number of packets includes: obtaining the total metric value based on the metric values of the multiple end stations, and obtaining the upper limit metric value based on the total metric value and the preset number of packets.
  • To limit the measurement value divide the total measurement value by the preset number of groups to obtain the upper limit measurement value, and then in the subsequent process, Multiple end stations are grouped according to the preset grouping principles and upper limit metric values to obtain N end station groups, so that the metric values of each group are as even as possible, effectively reducing the collision probability of control information and improving the success of control information reporting. rate and reported data volume.
  • Step S240 Group multiple end stations according to the preset grouping principle and upper limit metric value to obtain N end station groups.
  • this application uses metric values to quantify the reporting status of end stations for the end station grouping method of dedicated control channels in satellite communication systems, and obtains control information parameters of multiple end stations.
  • the control information parameters include control information reporting probabilities. , obtain the metric values of multiple end stations according to the control information parameters, obtain the upper limit metric value based on the metric values of multiple end stations and the preset grouping number, and group multiple end stations according to the preset grouping principle and upper limit metric value , so that each end station group occupies the same control channel time slot, can allocate resources more reasonably, and report control information, which improves the fairness of system scheduling and solves the problem that random grouping does not consider the reporting situations of different end stations, such as Reporting probability, reporting buffer request capacity, etc., the grouping results are uncontrollable, resulting in poor reporting fairness between different end stations, large differences in reporting delay and collision probability, resulting in low overall reporting capacity, and long-term reporting of some end stations Unsuccessful reporting and failure to obtain scheduling lead to large
  • the preset grouping principle is used to ensure that the metric value of each end station group reaches as much as possible but does not exceed the upper limit of the metric value to ensure the relative fairness of the end stations.
  • the metric value of the end station group is the end station within the group.
  • the sum of the metric values, the upper limit of the metric value of the end station group is the metric value of all end stations divided by the number of groups.
  • the grouping methods that follow this preset grouping principle include but are not limited to: S-shaped grouping method, segmented grouping Way.
  • the grouping methods for classifying end station groups in this application are S-type grouping methods, segmented grouping methods, and other less complex grouping methods.
  • the satellite system can reduce the burden on the end stations.
  • the complexity of grouping can effectively improve the efficiency of low-satellite systems when grouping end stations.
  • Figure 3 is a method flow chart of an end station grouping method proposed by another embodiment of the present application.
  • This embodiment of the present application provides a satellite system end station grouping method.
  • the grouping method at least includes the following step S310.
  • Step S310 Determine the control information reporting probability as the metric value of the end station.
  • obtaining the metric values of multiple end stations according to the control information parameters includes determining the control information reporting probability as the metric value of the end station, where the control information reporting probability is based on historical data before the system performs grouping. Calculate the probability that the end station sends control information to the master station to request resources within a certain period of time.
  • the control information reporting probability is proportional to the usage of the end station. Therefore, the control information reporting probability can represent the weight of the end station being used and can be used as a control information parameter. Determine the metric value of the end station.
  • Figure 4 is a method flow chart of an end station grouping method proposed by another embodiment of the present application.
  • This embodiment of the present application provides a satellite system end station grouping method.
  • the grouping method at least includes the following step S410.
  • Step S410 The product of the control information reporting probability and the buffer request capacity is determined as the degree of the end station. magnitude.
  • the buffer request capacity represents the size of the buffer request information that needs to be reported in the control information.
  • the buffer request information size represents the specific value of the end station requesting scheduling resources or authorized resources from the master station. The larger the specific value, the larger the request size. It means that the higher the occupancy rate of the channel when the end station communicates with the master station, so the buffer request capacity is proportional to the usage of the end station.
  • the buffer request capacity can represent the weight of the end station being used.
  • the control information reporting probability and The product of the buffer request capacity is determined as the metric value of the end station, which can better quantify the weight of each end station.
  • grouping is performed to make the metric values of each group as average as possible, which can effectively reduce the collision probability of control information and improve Control the success rate of information reporting and the amount of reported data.
  • Figure 5 is a method flow chart of an end station grouping method proposed by another embodiment of the present application.
  • This embodiment of the present application provides a satellite system end station grouping method.
  • the grouping method at least includes the following steps S510-S530.
  • Step S510 Obtain the first calculated value according to the control information reporting probability and the first preset weight coefficient.
  • Step S520 Obtain a second calculated value based on the buffer request capacity and the second preset weight coefficient.
  • Step S530 Determine the sum of the first calculated value and the second calculated value as the metric value of the corresponding end station.
  • the first calculated value is obtained according to the control information reporting probability and the first preset weight coefficient
  • the second calculated value is obtained according to the buffer request capacity and the second preset weight coefficient
  • the first calculated value and the second The sum of the calculated values is determined as the metric value of the corresponding end station.
  • the buffer request information reporting probability and the impact of the buffer request information size on the end station metric value can be adjusted according to the preset weight coefficient, thereby better quantifying each end station.
  • the weight and weight coefficient of each end station can be obtained based on historical data, or can be set by those skilled in the relevant field. The specific value of the weight coefficient does not limit this application.
  • the multiple buffer request capacities corresponding to the end station are normalized to obtain the normalized buffer request capacity, Make buffer request capacity easy to calculate uniformly.
  • the multiple metric values corresponding to the end station are normalized according to the maximum value to obtain the normalized metric value, which can better Quantify the weight of each end station for subsequent grouping processing.
  • Figure 6 is a method flow chart of an end station grouping method proposed by another embodiment of the present application.
  • This embodiment of the present application provides a satellite system end station grouping method.
  • the grouping method at least includes the following steps S610-S650.
  • Step S610 Sort the N end station groups to obtain the first end station group sequence.
  • Step S620 Sort multiple metric values in descending order to obtain a first metric value sequence.
  • Step S630 When the group metric value of the end station group is less than or equal to the upper limit metric value, based on the first end station group sequence and the first metric value sequence, the end stations corresponding to the metric value are grouped in an S-shaped manner. Assigned to the end station group.
  • Step S640 In the case of allocation failure, the end station group is skipped.
  • the allocation failure indicates that the sum of the current group metric value of the end station group and the metric value allocated according to the S-shaped grouping method is greater than the upper limit metric value.
  • Step S650 When the number of consecutive allocation failures is equal to N, compare the unallocated metric values to The corresponding end stations are assigned to the end station group.
  • the end stations corresponding to the unallocated metric values are allocated to the end station group, wherein the end stations corresponding to the unallocated metric values are allocated
  • the grouping methods to end station groups include but are not limited to: randomly allocating end stations corresponding to unallocated metric values to the end station group; evenly allocating end stations corresponding to unallocated metric values to the end station group; according to multiple end stations
  • the current group metric values of the station group are sorted in ascending order to obtain the second end station group sequence. According to the first metric value sequence, the end stations corresponding to the unassigned metric values are assigned to the end station group in sequence according to the second end station group sequence. .
  • the end stations corresponding to the unallocated metric values are randomly assigned or evenly assigned to the end station group, so that the end station grouping can be completed more efficiently; And perform ascending order processing according to the current group metric values of multiple end station groups to obtain the second end station group sequence.
  • the end stations corresponding to the unallocated metric values are sorted in sequence according to the second end station group sequence. Assigning to end station groups can make the measurement values of each group more even, more effectively reduce the collision probability of control information, and improve the success rate of control information reporting and the amount of reported data.
  • S-type grouping means that the end station with the largest metric value is assigned to the end station group, and the end station with the second largest metric value is assigned to the next end station group after the end station group until it is assigned to end station group N, and then the end station group with the second largest metric value is assigned to the end station group.
  • Station group N allocates end stations forward, and the overall shape is S-shaped.
  • the product of the control information reporting probability and the buffer request capacity is determined as the metric value of the end station, the value of N is 3, and the 10 end stations are grouped according to the preset grouping principle and the upper limit metric value,
  • the specific process of obtaining three terminal groups is as follows:
  • the end station metric values are shown in Table (1), where the upper limit of the end station group metric value is calculated to be 18.33;
  • the end stations corresponding to the metric values are grouped in an S-shaped manner.
  • the station is assigned to the end station group. If the allocation fails, the end station group is skipped.
  • the failure of allocation indicates that the sum of the current group metric value of the end station group and the metric value allocated according to the S-type grouping method is greater than the upper limit metric value.
  • sorting is performed in ascending order according to the current group metric values of multiple end station groups to obtain the second end station group sequence.
  • the metric value sequence allocates unallocated metric values to end station groups.
  • S-shaped grouping is performed first, and the end stations with metric values 12, 11, and 7 are assigned to end station groups 1, 2, and 3; then the metric values are End stations with a metric value of 7, 5, and 4 are assigned to end station groups 3, 2, and 1; when an end station with a metric value of 3 tries to join end station groups 1 and 2, it will exceed the upper limit of the end station group metric value, so the attempt fails.
  • assigned to end station group 3 after the end station with a metric value of 3 encounters three consecutive failed attempts, it will be grouped according to the minimum metric value from then on, and the grouping results are shown in Table (3):
  • the measurement values are used to quantify the reporting status of the end stations, and the end station grouping strategy is designed in a low-complexity way to optimize the performance of different systems to the greatest extent, and try to distribute the measurement values evenly to each end station.
  • end stations in the same group occupy the same control channel time slot.
  • the control information is reported on the corresponding control channel time slot, which improves the fairness of system scheduling and can significantly reduce the overall control Information collision probability, optimize system scheduling delay, obtain larger system reporting capacity, and improve communication quality.
  • Figure 8 is a method flow chart of an end station grouping method proposed by another embodiment of the present application.
  • This embodiment of the present application provides a satellite system end station grouping method.
  • the grouping method at least includes the following steps S810-S840.
  • Step S810 Sort the N end station groups to obtain a third end station group sequence.
  • Step S820 Sort multiple metric values in descending order to obtain a second metric value sequence.
  • Step S830 Perform segmentation processing on the second metric value sequence to obtain N metric value segments.
  • Step S840 Add the end station corresponding to the target metric value in each metric value segment to the end station group according to the third end station group sequence, and remove the target metric value in each metric value segment.
  • the target metric value is the metric value.
  • the end station corresponding to the target metric value in each metric value segment is added to the end station group according to the third end station group sequence, and the target metric value in each metric value segment is removed.
  • the end stations are grouped into segments, where the target metric value is the metric value with the smallest difference from the target value of the end station group in the metric value segment, and the target value is the difference between the group metric value of the end station group and the upper limit metric value Values, grouped by segments End station grouping can be completed with lower complexity and improve grouping efficiency.
  • Figure 9 is a method flow chart of an end station grouping method proposed by another embodiment of the present application.
  • This embodiment of the present application provides a satellite system end station grouping method.
  • the grouping method at least includes the following steps S910-S920.
  • Step S910 From unallocated end stations, add end stations whose metric value is less than or equal to the target metric value to the end station group.
  • the target metric value is the upper limit metric value and the metric values of all end stations in the current end station group. The difference between and.
  • Step S920 When the metric values of all unassigned end stations are greater than the target metric value, allocate the unallocated end stations to the end station group.
  • the specific allocation method for step S910 includes but is not limited to: from the unallocated end stations and the metric value is less than or equal to the target metric value, add the end station with the largest metric value to all unallocated end stations.
  • the above-mentioned terminal station group; or, any terminal station with a metric value less than or equal to the target metric value is added to the terminal station group from the unallocated terminal stations.
  • Personnel skilled in the relevant field can adjust the above allocation method according to the actual situation.
  • the specific allocation method does not matter. constitute a limitation on this application.
  • the terminal station group can be allocated one by one until the terminal station group cannot be allocated by the allocation method in step S910, and then the next terminal station group is allocated;
  • the end station group is sorted according to the allocation method in step S910, and one end station is allocated to the end station group in the sorting order each time until allocation cannot be made through the allocation method in step S910.
  • Persons skilled in the relevant field can determine the end station group according to the actual situation. Adjust the above allocation method, and the specific allocation method will not limit this application.
  • the metric values of the remaining unallocated end stations are all greater than the target metric value, proving that continuing to allocate end stations to any end station group will exceed the current target metric value, then you can allocate the end station with the largest metric value among the remaining unallocated end stations to the terminal group with the largest current target metric value, and then continue to assign another current target according to this allocation method.
  • the end station group with the largest metric value is allocated, and so on, until all end stations are allocated; or, multiple end station groups are randomly allocated from the remaining unallocated end stations in turn until all end stations are allocated.
  • the second end station group sequence is obtained, and the unassigned end stations are sequentially assigned to the end station group according to the second end station group sequence.
  • the solution of the present application groups the control channels of end stations through quantified metric values and low-complexity grouping methods to ensure the fairness of system scheduling.
  • Different metric values can be determined to optimize different System performance, as shown in Table (4), Table (4) is the communication parameter table of satellite systems in different grouping methods;
  • the policy grouping ( Prob ) represents the grouping method that determines the control information reporting probability as the metric value of the end station
  • the policy grouping ( Prob *BSR) represents the product of the control information reporting probability and the buffer request capacity that is determined as the end station. It can be seen from Table (4) that the satellite system end station grouping method of this application effectively reduces the collision probability and delay of the system and improves the reporting capacity of the system.
  • Figure 10 is the curve of the performance of the random grouping strategy changing with the number of groups in the policy grouping (P rob ) of this solution and related technical solutions.
  • P rob policy grouping
  • the embodiment of the present application also provides an end station group controller 1100, which includes: a memory 1120, a processor 1110, and a computer program stored in the memory and executable on the processor.
  • the processor 1110 executes the computer program.
  • the embodiment of the present application also provides a satellite system, which includes the above-mentioned controller. Since the satellite system of the embodiment of the present application has the controller of the above-mentioned embodiment, and the controller of the above-mentioned embodiment can perform the above-mentioned Therefore, the specific implementation manner and technical effects of the satellite system in the embodiments of this application can be referred to the specific implementation methods and technical effects of the satellite system end station grouping method in any of the above embodiments.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors, for example, execute The above-described method steps S210 to S240 in Fig. 2, method step S310 in Fig. 3, method step S410 in Fig. 4, method steps S510 to S530 in Fig. 5, method steps S610 to S660 in Fig. 6, Fig. Method steps S810 to S840 in 8, method steps in Fig. 9 S910 to S920.
  • control information parameters of multiple end stations are obtained.
  • the control information parameters include control information reporting probabilities, and multiple control information parameters are obtained according to the control information parameters.
  • the metric value of the end station is obtained by obtaining an upper limit metric value based on the metric values of multiple end stations and the preset grouping number N, and the multiple end stations are grouped according to the preset grouping principle and the upper limit metric value, N end station groups are obtained, among which, by using different metric values to quantify the weight of each end station, the metric values of each group are averaged in a low-complexity grouping method, which effectively reduces the collision probability of control information and improves control.
  • the success rate of information reporting and the amount of data reported are performed.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种卫星系统端站分组方法、控制器、卫星系统以及计算机存储介质,其中,卫星系统端站分组方法包括,获取多个端站的控制信息参数(S210),控制信息参数包括控制信息上报概率,根据控制信息参数得到多个端站的度量值(S220),根据多个端站的度量值和预设分组数量N得到上限度量值(S230),根据预设分组原则和上限度量值对多个端站进行分组,得到N个端站组(S240),其中,通过采用不同的度量值量化每个端站的权重,以低复杂度的分组方式使各个组的度量值平均。

Description

卫星系统端站分组方法、控制器、卫星系统以及存储介质
相关申请的交叉引用
本申请基于申请号为202210767619.X、申请日为2022年7月1日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及卫星通信技术领域,具体涉及一种卫星系统端站分组方法、控制器、卫星系统以及存储介质。
背景技术
在卫星通信过程中,主站获取各个端站上报的控制信息,然后进行集中处理以及进一步的调度,当端站数量较多时,对端站进行分组,采用划分时隙的专用控制信道进行控制信息上报,进而降低在一个控制信道时隙中竞争的端站数量,以获得较小的碰撞概率以及较小的延迟;
然而,传统通信技术中,划分时隙的控制信道下的端站采用随机分组的方式进行分组,在确定分组数量,随机将对应数量的端站放入端站组中,在之后的通信过程中,同组内的端站只在端站组对应的控制信道时隙上发送控制信息,但同组端站之间在发送控制信息时存在竞争关系,控制信息上报时碰撞概率高,导致通信过程中系统调度延时大,上报容量小,影响通信质量。
发明内容
本申请实施例提供一种卫星系统端站分组方法、控制器、卫星系统以及存储介质。
第一方面,本申请实施例提供了一种卫星系统端站分组方法,所述方法包括:获取多个端站的控制信息参数,所述控制信息参数包括控制信息上报概率,根据所述控制信息参数得到多个所述端站的度量值,根据多个所述端站的度量值和预设分组数量N得到上限度量值,根据预设分组原则和上限度量值对多个所述端站进行分组,得到N个端站组。
第二方面,本申请实施例提供了一种端站分组控制器,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面中任意一项实施例所述的卫星系统端站分组方法。
第三方面,本申请实施例提供了一种卫星系统,包括如第二方面中任意一项实施例所述的端站分组控制器。
第四方面,本申请实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行如第一方面中任意一项实施例所述的卫星系统端站分组方法。
附图说明
图1为本申请一实施例提出的卫星通信系统的结构示意图;
图2为本申请另一实施例提出的卫星系统端站分组方法的方法流程图;
图3为本申请另一实施例提出的卫星系统端站分组方法中,获取度量值的方法流程图;
图4为本申请另一实施例提出的卫星系统端站分组方法中,获取度量值的另一方法流程图;
图5为本申请另一实施例提出的卫星系统端站分组方法中,设置权重系数获取度量值的方法流程图;
图6为本申请另一实施例提出的端站分组方法中,S型分组对应的方法流程图;
图7为本申请另一实施例提出的端站分组方法中,S型分组的示意图;
图8为本申请另一实施例提出的端站分组方法中,分段分组对应的方法流程图;
图9为本申请另一实施例提出的端站分组方法的方法流程图;
图10为本申请另一实施例提出的性能曲线图
图11为本申请另一实施例提出的端站分组控制器的结构图。
附图标记:1、主站;2、卫星;3、端站。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
在一些实施例中,虽然在系统示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于系统中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语第一、第二等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在卫星通信过程中,主站获取各个端站上报的控制信息,然后进行集中处理以及进一步的调度,当端站数量较多时,划分时隙的控制信道下的端站采用随机分组的方式进行分组,确定分组数量后,每个组内的端站数量即可确定,随机将对应数量的端站放入端站组中,在之后的通信过程中,同组内的端站只在端站组对应的控制信道时隙上发送控制信息,但同组端站间存在竞争关系,控制信息可能碰撞,造成信息丢失。
为至少解决上述问题,本申请公开了一种卫星系统端站分组方法、控制器、卫星系统以及存储介质,通过本申请提出的卫星系统端站分组方法,获取多个端站的控制信息参数,控制信息参数包括控制信息上报概率,根据控制信息参数得到多个端站的度量值,根据多个端站的度量值和预设分组数量N得到上限度量值,根据预设分组原则和上限度量值对多个端站进行分组,得到N个端站组,其中,通过采用不同的度量值量化每个端站的权重,以低复杂度的分组方式使各个组的度量值平均,有效降低了控制信息的碰撞概率,提高了控制信息上报的成功率及上报数据量。
下面结合附图,对本申请实施例作进一步描述。
参考图1,图1为本申请一实施例提出的卫星通信系统的结构示意图。
在一些实施例中,如图1所示,在图1的星型网络结构的卫星通信系统中,主要包含主站1、卫星2、端站3三部分,端站3为需要进行卫星通信的终端,主站1为卫星通信中进行信息处理和调度的控制站,其中主站1起到控制中心的作用,是卫星系统和地面公众网的接口,地面用户可以通过地面站接入卫星系统形成链路;卫星2在空中起中继站的作用,把地面站发上来的电磁波放大后再返回送给另一地面站,为了便于放大、发射及减少变调干扰,星上一般设置若干转发器,每个转发器分配一定的工作频带;端站3包含各种用户终端,如手机、笔记本电脑等。
在一些实施例中,卫星通信系统中,端站3和端站3之间的通信会通过卫星2在主站1处统一处理和转发,主站1控制小区内的所有端站3,端站3之间以两跳互联,同时,进行数据传输的上行链路划分成多个时隙,主站1每个调度周期根据端站3传输和上报情况将上行资源分配给各个端站3,端站3的控制信息也需要得到主站1的调度才能上报,或者是在专用的信道上进行上报。
在一些实施例中,在卫星2通信系统中,多个端站3通过卫星2连接主站1进行通信,主站1根据端站3上报的控制信息内容,对资源进行集中处理和进一步的调度,在上行帧中为每个端站3进行资源分配,为了提高上报效率,采用划分时隙的控制信道方法进行端站3控制信息的上报,就是划分出专用的一部分信道资源,并将之划分成多个时隙(包括但不限于从时域、频域划分)。所有端站3也划分成对应数量的端站组,一个端站组内可能包含多个端站3。端站组与控制信道时隙一一对应,同一个端站组内的端站发送控制信息只能使用自己组对应的控制信道时隙。
参考图2,图2为本申请另一实施例提出的端站分组方法的方法流程图,本申请实施例提供了一种卫星系统端站分组方法,分组方法至少包括以下步骤S210-S240。
步骤S210,获取多个端站的控制信息参数,控制信息参数包括控制信息上报概率。
在一些实施例中,在卫星通信系统中,控制信息用于端站向主站申请调度资 源或授权资源,一个主站通过卫星连接多个端站进行通信,主站根据端站上报的控制信息内容,对资源进行集中处理和进一步的调度,同时,在上行帧中为每个端站进行资源分配,端站和端站之间的通信不是直接完成的,而是源端站通过卫星先将信息传输到主站,然后由主站通过卫星再将信息传输到目的端站,由于所有端站都会向主站传输数据,有序上传、避免冲突就显得尤为重要,故需要对端站进行分组,而本申请根据多个端站的控制信息参数度端站进行分组,控制信息参数为控制信息对应的端站的控制信息上报概率、控制信息中缓冲区状态请求信息的大小的参数,能有效降低控制信息的碰撞概率,提高了控制信息上报的成功率及上报数据量。
在一些实施例中,同一端站组内的所有端站共享同一个控制信道时隙资源,存在竞争关系,如果组内同一时间有两个或以上的端站进行控制信息上报,控制信息就会发生碰撞,造成信息丢失;且端站上报控制信息的过程中,需要上传的缓冲区状态大小信息采取绝对值上报,只要最后一次上报成功即可,降低了上报信息碰撞对上报容量的影响,但是上报信息碰撞仍会影响上报的时延,导致控制信息上报不及时,故本申请实施例采用度量值量化端站的上报情况,并根据度量值设计了端站分组策略,可以显著降低整体的控制信息碰撞概率,优化系统调度延时,提高通信可靠性。
步骤S220,根据控制信息参数得到多个端站的度量值。
在一些实施例中,度量值为定量描述端站接入情况的数据,用于反映端站控制信息的上报情况,如控制信息上报概率、控制信息中需要上报的缓冲区状态请求信息大小等和上报相关或上报内容相关的信息,具体计算公式可以人为设置,端站的度量值越大表明这个端站的控制信息更重要,需要更稳妥的上报,要占据更多的上报资源。
在一些实施例中,控制信息上报概率为在系统进行分组前,通过历史数据,计算在一定时间内端站向主站发送控制信息请求资源的概率,控制信息上报概率和端站的使用情况成正比,故包括控制信息上报概率的控制信息参数可以作为控制信息参数确定端站的度量值。
在一些实施例中,缓冲区状态请求信息BSR(Buffer Status Report)由端站发送至主站,用于告知主站,端站在上行缓冲区中有多少数据需要发送,其中,终端设备与接入节点建立连接后,当终端设备需要向接入节点发送上行数据的时候,必须要有上行资源,如果没有上行资源则终端设备需要先向接入节点申请上行资源,在终端设备向接入节点申请上行资源的过程中,需要向接入节点上报缓冲区状态请求信息,以便接入节点为终端设备调度适当的上行资源。
步骤S230,根据多个端站的度量值和预设分组数量N得到上限度量值。
在一些实施例中,根据多个端站的度量值和预设分组数量得到上限度量值包括,根据多个端站的度量值得到总度量值,根据总度量值和预设分组数量得到上限度量值,将总度量值除以预设分组数量得到上限度量值,进而在后续过程中, 根据预设分组原则和上限度量值对多个端站进行分组,得到N个端站组,使各个组的度量值尽量平均,有效降低了控制信息的碰撞概率,提高了控制信息上报的成功率及上报数据量。
步骤S240,根据预设分组原则和上限度量值对多个端站进行分组,得到N个端站组。
在一些实施例中,本申请针对卫星通信系统中专用控制信道的端站分组方式,采用度量值量化端站的上报情况,获取多个端站的控制信息参数,控制信息参数包括控制信息上报概率,根据控制信息参数得到多个端站的度量值,根据多个端站的度量值和预设分组数量得到上限度量值,根据预设分组原则和上限度量值对多个端站进行分组,使各端站组占据同一个控制信道时隙,能更加合理的分配资源,并对控制信息进行上报,提高了系统调度的公平性,解决了随机分组没有考虑不同端站的上报情况,如上报概率、上报缓冲区请求容量大小等,分组结果不可控,导致不同端站之间的上报公平性差,上报时延和碰撞概率差异大,导致整体的上报容量较低,且部分端站长时间上报不成功,无法得到调度,导致通信过程中系统调度延时大,上报容量小,影响通信质量的问题,可以显著降低整体的控制信息碰撞概率,优化系统调度延时,获得较大的系统上报容量,提高通信质量。
在一些实施例中,预设分组原则用于保证每个端站组的度量值尽可能达到但是不超过度量值上限,保障端站的相对公平性,端站组的度量值为组内端站度量值之和,端站组的度量值上限为所有端站的度量值除以分组数量的值,其中,遵循这预设分组原则的分组方式包括但不限于:S型分组方式,分段分组方式。
在一些实施例中,本申请中对端站组进行分类的分组方式,为S型分组方式、分段分组方式等复杂度较低的分组方式,通过该分组方式可以降低卫星系统对端站进行分组时的复杂度,能有效提高低卫星系统对端站进行分组时的效率。
参考图3,图3为本申请另一实施例提出的端站分组方法的方法流程图,本申请实施例提供了一种卫星系统端站分组方法,分组方法至少包括以下步骤S310。
步骤S310,将控制信息上报概率确定为端站的度量值。
在一些实施例中,根据控制信息参数得到多个端站的度量值包括,将控制信息上报概率确定为端站的度量值,其中,控制信息上报概率为在系统进行分组前,通过历史数据,计算在一定时间内端站向主站发送控制信息请求资源的概率,控制信息上报概率和端站的使用情况成正比,故控制信息上报概率可以代表端站被使用的权重,可以作为控制信息参数确定端站的度量值。
参考图4,图4为本申请另一实施例提出的端站分组方法的方法流程图,本申请实施例提供了一种卫星系统端站分组方法,分组方法至少包括以下步骤S410。
步骤S410,将控制信息上报概率和缓冲区请求容量的乘积确定为端站的度 量值。
在一些实施例中,缓冲区请求容量代表控制信息中需要上报的缓冲区请求信息大小,缓冲区请求信息大小代表端站向主站请求调度资源或授权资源的具体数值,该具体数值越大则代表该端站与主站通信时对信道的占用率越高,故缓冲区请求容量和端站的使用情况成正比,缓冲区请求容量可以代表端站被使用的权重,将控制信息上报概率和缓冲区请求容量的乘积确定为端站的度量值,能更好的量化每个端站的权重,同时,进行分组使各个组的度量值尽量平均,能有效降低控制信息的碰撞概率,提高了控制信息上报的成功率及上报数据量。
参考图5,图5为本申请另一实施例提出的端站分组方法的方法流程图,本申请实施例提供了一种卫星系统端站分组方法,分组方法至少包括以下步骤S510-S530。
步骤S510,根据控制信息上报概率和第一预设权重系数得到第一计算值。
步骤S520,根据缓冲区请求容量和第二预设权重系数得到第二计算值。
步骤S530,将第一计算值和第二计算值的和确定为对应端站的度量值。
在一些实施例中,根据控制信息上报概率和第一预设权重系数得到第一计算值,根据缓冲区请求容量和第二预设权重系数得到第二计算值,将第一计算值和第二计算值的和确定为对应端站的度量值,其中,可以根据预设的权重系数调整缓冲区请求信息上报概率和缓冲区请求信息大小对端站度量值影响的比例,进而更好的量化每个端站的权重,权重系数可以根据历史数据得出,也可以由相关领域技术人员进行设定,权重系数的具体取值不对本申请构成限制。
在一些实施例中,在获取端站对应的多个缓冲区请求容量之后,会对端站对应的多个缓冲区请求容量进行归一化处理,得到归一化处理后的缓冲区请求容量,使缓冲区请求容量便于统一计算。
在一些实施例中,在获取端站对应的多个度量值之后,会对端站对应的多个度量值按照最大值进行归一化处理,得到归一化处理后的度量值,能更好的量化每个端站的权重,进而进行后续分组处理。
参考图6,图6为本申请另一实施例提出的端站分组方法的方法流程图,本申请实施例提供了一种卫星系统端站分组方法,分组方法至少包括以下步骤S610-S650。
步骤S610,对N个端站组进行排序,得到第一端站组序列。
步骤S620,对多个度量值进行降序排序处理,得到第一度量值序列。
步骤S630,在端站组的组度量值小于或等于上限度量值的情况下,基于第一端站组序列和第一度量值序列,按照S型分组的方式将度量值对应的端站分配至端站组。
步骤S640,在分配失败的情况下,跳过端站组,分配失败表征端站组的当前组度量值和按照S型分组的方式所分配的度量值的和大于上限度量值。
步骤S650,在连续分配失败的次数等于N的情况下,将未分配的度量值对 应的端站分配至端站组。
在一些实施例中,在连续分配失败的次数等于预设分组数量的情况下,将未分配的度量值对应的端站分配至端站组,其中,将未分配的度量值对应的端站分配至端站组的分组方式包括但不限于:将未分配的度量值对应的端站随机分配至端站组;将未分配的度量值对应的端站均匀分配至端站组;根据多个端站组的当前组度量值进行升序排序处理,得到第二端站组序列,根据第一度量值序列将未分配的度量值对应的端站按照第二端站组序列依次分配至端站组。
在一些实施例中,在连续分配失败的次数等于预设分组数量的情况下,将未分配的度量值对应的端站随机分配或均匀分配至端站组,能更高效的完成端站分组;而根据多个端站组的当前组度量值进行升序排序处理,得到第二端站组序列,根据第一度量值序列将未分配的度量值对应的端站按照第二端站组序列依次分配至端站组,能使各个组的度量值更加平均,更加有效的降低了控制信息的碰撞概率,提高了控制信息上报的成功率及上报数据量。
S型分组指将度量值最大的端站分给端站组,度量值第二大的端站分给端站组后的下一个端站组,直到分到端站组N,然后再从端站组N向前进行端站分配,整体呈现S型。
在一些实施例中,将控制信息上报概率和缓冲区请求容量的乘积确定为端站的度量值,N取值为3,根据预设分组原则和上限度量值对10个端站进行分组,得到3个端站组的具体过程如下:
端站度量值如表(1)所示,其中,计算得出端站组度量值上限为18.33;
表(1)端站度量值表
将度量值从大到小排序如表(2)所示:
表(2)端站度量值序列
参考图7,在端站组的组度量值小于或等于上限度量值的情况下,基于第一端站组序列和第一度量值序列,按照S型分组的方式将度量值对应的端站分配至端站组,在分配失败的情况下,跳过端站组,分配失败表征端站组的当前组度量值和按照S型分组的方式所分配的度量值的和大于上限度量值,在连续分配失败的次数等于预设分组数量的情况下,根据多个端站组的当前组度量值进行升序排序处理,得到第二端站组序列,根据第二端站组序列和第一度量值序列将未分配的度量值分配至端站组,其中,先S型分组,将度量值为12、11、7的端站分给端站组1、2、3;再将度量值为7、5、4的端站分给端站组3、2、1;接下来度量值为3的端站尝试加入端站组1和2后都会超过端站组度量值上限,所以尝试失败,分给端站组3;度量值为3的端站遇到连续3次尝试失败后,从此之后按照最小度量值分组,得到分组结果如表(3)所示:
表(3)分组结果
综上,采用度量值量化端站的上报情况,以一种低复杂度的方式设计了端站分组策略进行分组,以最大程度优化不同的系统性能,尽量将度量值平均地分到各个端站组中,同一组内的端站占据同一个控制信道时隙,在上层控制信息到达时,在对应的控制信道时隙上上报控制信息,提高了系统调度的公平性,可以显著降低整体的控制信息碰撞概率,优化系统调度延时,获得较大的系统上报容量,提高通信质量。
参考图8,图8为本申请另一实施例提出的端站分组方法的方法流程图,本申请实施例提供了一种卫星系统端站分组方法,分组方法至少包括以下步骤S810-S840。
步骤S810,对N个端站组进行排序,得到第三端站组序列。
步骤S820,对多个度量值进行降序排序处理,得到第二度量值序列。
步骤S830,对第二度量值序列进行分段处理得到N个度量值分段。
步骤S840,根据第三端站组序列将各度量值分段中的目标度量值对应的端站加入到端站组,并去除各度量值分段中的目标度量值,目标度量值为度量值分段中与端站组的目标值的差值最小的度量值,目标值为端站组的组度量值与上限度量值的差值。
在一些实施例中,通过根据第三端站组序列将各度量值分段中的目标度量值对应的端站加入到端站组,并去除各度量值分段中的目标度量值的方式对端站进行分段分组,其中,目标度量值为度量值分段中与端站组的目标值的差值最小的度量值,目标值为端站组的组度量值与上限度量值的差值,通过分段分组的方式 能以更低的复杂度完成端站分组,提高分组效率。
参考图9,图9为本申请另一实施例提出的端站分组方法的方法流程图,本申请实施例提供了一种卫星系统端站分组方法,分组方法至少包括以下步骤S910-S920。
步骤S910,从未分配的端站中,将度量值小于或者等于目标度量值的端站加入到端站组,目标度量值为上限度量值与当前端站组内所有端站的度量值之和的差。
步骤S920,在所有未分配的端站的度量值均大于目标度量值的情况下,将未分配的端站分配至端站组。
在一些实施例中,对于步骤S910的具体分配方式包括但不限于:从未分配的且所述度量值小于或者等于目标度量值的端站中,将所述度量值最大的端站加入到所述端站组;或者,从未分配的端站中将任意度量值小于或者等于目标度量值的端站加入到端站组,相关领域技术人员可以根据实际情况调整上述分配方式,具体分配方式不对本申请构成限制。
需要说明的是,在步骤S910分配的过程中,可以以端站组为单位进行逐一分配,直至该端站组无法通过步骤S910的分配方法进行分配为止,再对下一个端站组进行分配;或者,按步骤S910的分配方式,对端站组进行排序,每次按排序顺序向端站组分配一个端站,直至无法通过步骤S910的分配方法进行分配为止,相关领域技术人员可以根据实际情况调整上述分配方式,具体分配方式不对本申请构成限制。
在一些实施例中,经过上述实施例的步骤S910的分配之后,剩下的未分配的端站中的度量值均大于目标度量值,证明继续向任意一个端站组分配端站均会超过当前的目标度量值,那么此时可以对当前的目标度量值最大的端站组分配剩下的未分配的端站中的度量值最大的端站,然后继续按此分配方法对另外一个当前的目标度量值最大的端站组进行分配,如此类推,直至分配完所有端站为止;或者,从剩下的未分配的端站中随机对多个端站组轮流进行分配,直至分配完所有端站为止;或者,将未分配的端站随机分配至端站组;或者,将未分配的端站均匀分配至端站组;或者,根据多个端站组的当前组度量值进行升序排序处理,得到第二端站组序列,将未分配的端站按照第二端站组序列依次分配至端站组,相关领域技术人员可以根据实际情况调整上述分配方式,具体分配方式不对本申请构成限制。
在一实施例中,本申请方案通过量化的度量值和低复杂度的分组方式,对端站进行控制信道的分组,保证了系统调度的公平性,可以通过确定不同的度量值,优化不同的系统性能,如表(4)所示,表(4)为不同分组方式中卫星系统的通信参数表;
表(4)不同分组方式系统性能对比
其中,策略分组(Prob)代表将控制信息上报概率确定为端站的度量值的分组方式,策略分组(Prob*BSR)代表将控制信息上报概率和缓冲区请求容量的乘积确定为端站的度量值的分组方式,通过表(4)可以看出,通过本申请的卫星系统端站分组方法,有效降低了系统的碰撞概率和时延和提高了系统的上报容量。
参考图10,图10为本方案的策略分组(Prob)和相关的技术方案中随机分组策略的性能随分组数变化的曲线,在分组数较大的时候,本方案在有效授权数、平均时延、碰撞概率、上报BSR大小上均优于随机分组策略,且本方案的上报容量更加稳定,本方案通过采用不同的度量值量化每个端站的权重,以低复杂度的分组方式使各个组的度量值平均,有效降低了控制信息的碰撞概率,提高了控制信息上报的成功率及上报数据量。
参考图11,本申请实施例还提供了一种端站分组控制器1100,包括:存储器1120、处理器1110及存储在存储器上并可在处理器上运行的计算机程序,处理器1110执行计算机程序时实现如上述实施例中任意一项的端站分组方法,例如,执行以上描述的图2中的方法步骤S210至S240、图3中的方法步骤S310、图4中的方法步骤S410、图5中的方法步骤S510至S530、图6中的方法步骤S610至S660、图8中的方法步骤S810至S840、图9中的方法步骤S910至S920。
此外,本申请实施例的还提供了一种卫星系统,该卫星系统包括上述的控制器,由于本申请实施例的卫星系统具有上述实施例的控制器,并且上述实施例的控制器能够执行上述实施例的卫星系统端站分组方法,因此,本申请实施例的卫星系统的具体实施方式和技术效果,可以参照上述任一实施例的卫星系统端站分组方法的具体实施方式和技术效果。
此外,本申请的一实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,执行以上描述的图2中的方法步骤S210至S240、图3中的方法步骤S310、图4中的方法步骤S410、图5中的方法步骤S510至S530、图6中的方法步骤S610至S660、图8中的方法步骤S810至S840、图9中的方法步骤 S910至S920。
本申请至少具有以下有益效果:通过本申请提出的卫星系统端站分组方法,获取多个端站的控制信息参数,所述控制信息参数包括控制信息上报概率,根据所述控制信息参数得到多个所述端站的度量值,根据多个所述端站的度量值和预设分组数量N得到上限度量值,根据预设分组原则和上限度量值对多个所述端站进行分组,得到N个端站组,其中,通过采用不同的度量值量化每个端站的权重,以低复杂度的分组方式使各个组的度量值平均,有效降低了控制信息的碰撞概率,提高了控制信息上报的成功率及上报数据量。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如总处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (13)

  1. 一种卫星系统端站分组方法,包括:
    获取多个端站的控制信息参数,所述控制信息参数包括控制信息上报概率;
    根据所述控制信息参数得到多个所述端站的度量值;
    根据多个所述端站的度量值和预设分组数量N得到上限度量值;
    根据预设分组原则和上限度量值对多个所述端站进行分组,得到N个端站组。
  2. 根据权利要求1所述的卫星系统端站分组方法,其中,所述根据所述控制信息参数得到多个所述端站的度量值包括:
    将所述控制信息上报概率确定为所述端站的所述度量值。
  3. 根据权利要求1所述的卫星系统端站分组方法,其中,所述控制信息参数还包括缓冲区请求容量,所述根据所述控制信息参数得到多个所述端站的度量值包括:
    将所述控制信息上报概率和所述缓冲区请求容量的乘积确定为所述端站的所述度量值。
  4. 根据权利要求1所述的卫星系统端站分组方法,其中,所述控制信息参数还包括缓冲区请求容量,所述根据所述控制信息参数得到多个所述端站的度量值包括:
    根据所述控制信息上报概率和第一预设权重系数得到第一计算值;
    根据所述缓冲区请求容量和第二预设权重系数得到第二计算值;
    将所述第一计算值和所述第二计算值的和确定为对应所述端站的所述度量值。
  5. 根据权利要求1至4中任意一项所述的卫星系统端站分组方法,其中,根据预设分组原则和上限度量值对多个所述端站进行分组,得到N个端站组,包括:
    对N个端站组进行排序,得到第一端站组序列;
    对多个所述度量值进行降序排序处理,得到第一度量值序列;
    在所述端站组的组度量值小于或等于所述上限度量值的情况下,基于所述第一端站组序列和所述第一度量值序列,按照S型分组的方式将所述度量值对应的端站分配至所述端站组;
    在分配失败的情况下,跳过所述端站组,所述分配失败表征所述端站组的当前组度量值和按照S型分组的方式所分配的所述度量值的和大于所述上限度量值;
    在连续分配失败的次数等于N的情况下,将未分配的所述度量值对应的端站分配至所述端站组。
  6. 根据权利要求5所述的卫星系统端站分组方法,其中,所述在连续分配失败的次数等于N的情况下,将未分配的所述度量值对应的端站分配至所述端站 组,包括:
    根据多个所述端站组的当前组度量值进行升序排序处理,得到第二端站组序列;
    根据所述第一度量值序列将未分配的所述度量值对应的端站按照所述第二端站组序列依次分配至所述端站组。
  7. 根据权利要求1至4中任意一项所述的卫星系统端站分组方法,其中,所述根据预设分组原则和上限度量值对多个所述端站进行分组,得到N个端站组,包括:
    对N个端站组进行排序,得到第三端站组序列;
    对多个所述度量值进行降序排序处理,得到第二度量值序列;
    对所述第二度量值序列进行分段处理得到N个度量值分段;
    根据所述第三端站组序列将各所述度量值分段中的目标度量值对应的端站加入到所述端站组,并去除各所述度量值分段中的所述目标度量值,所述目标度量值为所述度量值分段中与所述端站组的目标值的差值最小的度量值,所述目标值为所述端站组的组度量值与所述上限度量值的差值。
  8. 根据权利要求1至4中任意一项所述的卫星系统端站分组方法,其中,所述根据预设分组原则和上限度量值对多个所述端站进行分组,得到N个端站组,包括:
    从未分配的端站中,将所述度量值小于或者等于目标度量值的端站加入到所述端站组,所述目标度量值为所述上限度量值与所述当前端站组内所有所述端站的度量值之和的差;
    在所有未分配的端站的度量值均大于所述目标度量值的情况下,将所述未分配的端站分配至所述端站组。
  9. 根据权利要求8所述的卫星系统端站分组方法,其中,所述从未分配的端站中,将所述度量值小于或者等于目标度量值的端站加入到所述端站组,包括:
    从未分配的且所述度量值小于或者等于目标度量值的端站中,将所述度量值最大的端站加入到所述端站组。
  10. 根据权利要求1所述的卫星系统端站分组方法,其中,所述根据多个所述端站的度量值和预设分组数量N得到上限度量值,包括:
    根据多个所述端站的度量值得到总度量值;
    根据总度量值和所述预设分组数量N得到所述上限度量值。
  11. 一种端站分组控制器,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至10中任意一项所述的卫星系统端站分组方法。
  12. 一种卫星系统,包括如权利要求11所述的端站分组控制器。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,其中,计算机可执行指令用于执行如权利要求1至10中任意一项所述的卫星系统端站分组方法。
PCT/CN2023/102143 2022-07-01 2023-06-25 卫星系统端站分组方法、控制器、卫星系统以及存储介质 WO2024001963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210767619.XA CN117375688A (zh) 2022-07-01 2022-07-01 卫星系统端站分组方法、控制器、卫星系统以及存储介质
CN202210767619.X 2022-07-01

Publications (1)

Publication Number Publication Date
WO2024001963A1 true WO2024001963A1 (zh) 2024-01-04

Family

ID=89383214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102143 WO2024001963A1 (zh) 2022-07-01 2023-06-25 卫星系统端站分组方法、控制器、卫星系统以及存储介质

Country Status (2)

Country Link
CN (1) CN117375688A (zh)
WO (1) WO2024001963A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860469A (zh) * 2009-04-13 2010-10-13 华为技术有限公司 对点到点技术网络中的节点进行分组的方法和装置
EP3232595A1 (en) * 2014-12-08 2017-10-18 LG Electronics Inc. Method for transmitting uplink control information and device therefor
CN114223183A (zh) * 2019-08-20 2022-03-22 三菱电机株式会社 为工业通信系统提供网络协作的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860469A (zh) * 2009-04-13 2010-10-13 华为技术有限公司 对点到点技术网络中的节点进行分组的方法和装置
EP3232595A1 (en) * 2014-12-08 2017-10-18 LG Electronics Inc. Method for transmitting uplink control information and device therefor
CN114223183A (zh) * 2019-08-20 2022-03-22 三菱电机株式会社 为工业通信系统提供网络协作的方法

Also Published As

Publication number Publication date
CN117375688A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
CN109923930B (zh) 802.11ax网络中针对多用户EDCA传输模式的QoS管理
JP4053551B2 (ja) ランダムアクセスのためのチャンネル割当方法
CN111294775B (zh) 一种大规模mtc与h2h共存场景中基于h2h动态特性的资源分配方法
KR102574830B1 (ko) 자원 유닛들을 구현하는 802.11 네트워크에서의 회복된 공정성
CN101502164A (zh) 无线网络中控制与数据的分离
CN109962760B (zh) 一种适于无线tdma自组网的业务调度方法
US20210360651A1 (en) Uplink data transmission method and apparatus, device, and system
US20210282183A1 (en) Communication method, apparatus, computer-readable medium and electronic device
WO2020143773A1 (zh) 传输资源选择方法及装置
JP7334847B2 (ja) 無線ローカルエリアネットワーク(wlan)局におけるrtaキュー管理
JP4163698B2 (ja) 無線通信装置、帯域割当方法及びプログラム
CN111836370B (zh) 一种基于竞争的资源预约方法及设备
US11477817B2 (en) Systems and methods for prioritized channel access for 802.11ax clients in BSS with mixed clients
WO2024021860A1 (zh) 数据传输方法及其装置、存储介质、程序产品
WO2024001963A1 (zh) 卫星系统端站分组方法、控制器、卫星系统以及存储介质
CN112261693A (zh) 资源分配方法和装置
JP2023546232A (ja) 通信方法および装置
US20230095005A1 (en) Resource allocation for clients of multiple co-hosted vaps
WO2021114807A1 (zh) 一种传输速率配置方法及装置
CN113056010A (zh) 一种基于LoRa网络的预约时隙分配方法
CN109873723B (zh) 基于节点业务优先级的按需带宽分配方法
WO2023246773A1 (zh) 缓冲区状态请求信息的上报方法、控制器以及存储介质
CN110933699A (zh) 一种分组转发方法及装置
US11095488B2 (en) Optimized performance with mixed media access protocols
CN112969241B (zh) 一种多用户竞争通信的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830141

Country of ref document: EP

Kind code of ref document: A1