WO2024001765A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024001765A1
WO2024001765A1 PCT/CN2023/100029 CN2023100029W WO2024001765A1 WO 2024001765 A1 WO2024001765 A1 WO 2024001765A1 CN 2023100029 W CN2023100029 W CN 2023100029W WO 2024001765 A1 WO2024001765 A1 WO 2024001765A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
information
jitter
core network
service
Prior art date
Application number
PCT/CN2023/100029
Other languages
English (en)
French (fr)
Inventor
窦凤辉
薛祎凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001765A1 publication Critical patent/WO2024001765A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a communication method and device.
  • This application provides a communication method and device that can reduce the duration of invalid PDCCH monitoring, thereby reducing the power consumption of terminal equipment.
  • this application adopts the following technical solutions:
  • the first aspect is to provide a communication method.
  • the execution subject of the method may be the first core network device, or may be a chip applied in the first core network device.
  • the following description takes the execution subject being the first core network device as an example.
  • the method includes: the first core network device obtains the first information.
  • the first information includes first jitter information, the first jitter information indicates a first jitter range, the first jitter range is related to a first partial period, the first partial period is located in the duration period of the first service, and the first service is related to the first partial period. related to a terminal device.
  • the first core network device sends the first information to the access network device.
  • the first information is associated with the setting of discontinuous reception DRX parameters.
  • the access network device can set the DRX parameters according to the first jitter information, such as determining the time domain position at which the first terminal device starts monitoring the PDCCH. That is to say, the first terminal equipment monitors the PDCCH for a part of the duration in the DRX cycle, and does not need to continuously monitor the PDCCH during the entire duration, thereby reducing the duration of ineffective monitoring of the PDCCH and reducing the power consumption of the terminal equipment.
  • the first jitter information such as determining the time domain position at which the first terminal device starts monitoring the PDCCH. That is to say, the first terminal equipment monitors the PDCCH for a part of the duration in the DRX cycle, and does not need to continuously monitor the PDCCH during the entire duration, thereby reducing the duration of ineffective monitoring of the PDCCH and reducing the power consumption of the terminal equipment.
  • the first information when the first core network device sends the first information to the access network device in the duration period, the first information also includes second jitter information.
  • the second jitter information indicates a second jitter range, and the second jitter range is the jitter range of the entire period in the duration period of the first service.
  • the first information when the first core network device sends the first information to the access network device for the first time in the duration period, the first information also includes the second jitter information.
  • the second jitter information indicates a second jitter range, and the second jitter range is the jitter range of the entire period in the duration period of the first service.
  • the first core network device when the first core network device provides the first jitter information to the access network device for the first time during the duration of the first service, it also provides the second jitter information.
  • the method before the first core network device sends the first information to the access network device, the method further includes: the first core network device sends second jitter information to the access network device.
  • the second jitter information indicates a second jitter range, and the second jitter range is the jitter range of the entire period in the duration period of the first service.
  • the first core network device first provides the first jitter information to the access network device, and then provides the second jitter information to the access network device.
  • the first jitter range is smaller than the second jitter range.
  • the first core network device obtaining the first information includes: the first core network device receiving the first information from the application server. That is to say, the first core network device can obtain the first information from the application server.
  • the first core network device obtains the first information, including: the first core network device determines the first information based on the first data and/or the second data.
  • the first data includes the time deviation when the application server generates the service data of the first service
  • the second data includes the jitter generated by the service data of the first service in the following process: the transmission process from the application server to the second core network device. , and/or, the transmission process from the second core network device to the access network device.
  • the first core network device when determining the first information, the first core network device also determines the first information based on at least one of cell information and quality of service QoS flow information.
  • the cell information indicates the cell where the first terminal device is located
  • the QoS flow is used to carry the service data of the first service sent by the second core network device to the first terminal device
  • the QoS flow is configured by the first core network device to the second core network device.
  • the first core network device can also determine the jitter range of which cell or which QoS flow.
  • the first core network device obtaining the first information includes: the first core network device receiving the first information from the third core network device. That is to say, the first core network device can obtain the first information from other core network devices.
  • the first information is determined by the third core network device based on at least one of the first data and the second data.
  • the first data includes the time deviation when the application server generates the service data of the first service
  • the second data includes the jitter generated by the service data of the first service in the following process: the transmission process from the application server to the second core network device. , and/or, the transmission process from the second core network device to the access network device.
  • the first information is determined by the third core network device based on at least one of cell information and QoS flow information.
  • the cell information indicates the cell where the first terminal device is located
  • the QoS flow is used to carry the service data of the first service sent by the second core network device to the first terminal device
  • the QoS flow is configured by the first core network device to the second core network device.
  • the method before the first core network device receives the first information from the third core network device, the method further includes: the first core network device sends a subscription message to the third core network device.
  • the subscription message includes an analysis identification ID, and the analysis ID is used to request analysis of jitter information of the first service, so that the third core network device sends a request to the first service.
  • the core network equipment provides jitter information of the first service.
  • the method further includes: the first core network device obtains third jitter information.
  • the third jitter information indicates a third jitter range, the third jitter range is related to the second partial period, and the second partial period is located in the duration period of the first service.
  • the first core network device sends the third jitter information to the access network device.
  • the third jitter information is associated with the setting of the DRX parameter.
  • the access network equipment updates the DRX parameters based on the third jitter information, such as updating the time domain in which the first terminal equipment starts monitoring the PDCCH in the second partial period. location, thereby reducing the power consumption of the first terminal device.
  • the first core network device obtains the third jitter information, including: the first core network device determines the third jitter information based on the data arrival information within the first movement time window, or the first core network device The device determines the third jitter information based on the data arrival information of the first moving time window and the first jitter information.
  • the first moving time window is before the second partial period.
  • the data arrival information indicates the time when the service data of the first service reaches the second core network device.
  • the first core network device performs statistical analysis on the data arrival information within the first moving time window to determine whether to update the jitter range in the local period.
  • the first moving time window has a first length.
  • the first information also includes third jitter information.
  • the third jitter information indicates a third jitter range
  • the third jitter range is related to the second partial period
  • the second partial period is located in the duration period of the first service.
  • the first core network device provides the access network device with jitter ranges in at least two local time periods at one time, so that the access network device uses different DRX parameters in different local time periods.
  • the first terminal device uses different DRX parameters in different local time periods.
  • the time domain position at which the PDCCH starts to be monitored is different in the local period, thereby reducing power consumption on the first terminal equipment side.
  • the first core network device sends the first information to the access network device, including: the first core network device sends control plane signaling to the access network device.
  • the first core network device is a session management network element, and the control plane signaling includes the first information. That is to say, the first core network device sends the first information to the access network device through control.
  • control plane signaling is an N2 session management message.
  • the first core network device sends the first information to the access network device, including: the first core network device sends the user data packet to the access network device.
  • the first core network device is a user plane network element, and the user data packet includes the first information. That is to say, the first core network device sends the first information to the access network device through the user.
  • the user data packet includes a General Packet Radio Service Tunneling Protocol user plane GTP-U header, and the GTP-U header includes first information.
  • sending the first information to the access network device by the first core network device includes: the first core network device sends the first information to the access network device through the fourth core network device. That is to say, the first core network device sends the first information to the access network device through other core network devices.
  • the first core network device is a session management network element
  • the fourth core network device is a user plane network element.
  • the first core network device is a user plane network element
  • the fourth core network device is a session management network element
  • the second aspect is to provide a communication method.
  • the execution subject of this method may be the third core network device, or may be a chip applied in the third core network device.
  • the following description takes the execution subject being the third core network device as an example.
  • the method includes: the third core network device receives a subscription message from the first core network device.
  • the subscription message includes an analysis identification ID, and the analysis ID is used to request analysis of the jitter range of the first service, and the first service is related to the first terminal device.
  • the third core network device obtains at least one piece of information from the first data and the second data according to the subscription message.
  • the first data includes the time deviation when the application server generates the service data of the first service
  • the second data includes the jitter generated by the service data of the first service in the following process: the transmission process from the application server to the second core network device. , and/or, the transmission process from the second core network device to the access network device.
  • the third core network device determines the jitter range learning result of the first service based on the obtained information.
  • the third core network device sends the jitter range learning result of the first service to the first core network device.
  • the third core network device can perform statistical analysis on the first data and/or the second data to obtain the jitter range learning result of the first service.
  • the third core network device can provide the jitter range learning result of the first service to the first core network device, so that the access network device can adjust the jitter range of the first service according to the first service.
  • the jitter information is used to set DRX parameters, such as determining the time domain position at which the first terminal equipment starts monitoring the PDCCH.
  • the first terminal equipment monitors the PDCCH for a part of the duration in the DRX cycle, and does not need to continuously monitor the PDCCH during the entire duration, thereby reducing the duration of ineffective monitoring of the PDCCH and reducing the power consumption of the terminal equipment.
  • the third core network device determines the jitter range learning result of the first service, it also determines the jitter range learning result of the first service based on at least one of the following: cell information, and the cell information indicates the cell in which the first terminal device is located. Or, the information of the quality of service QoS flow.
  • the QoS flow is used to carry the service data of the first service sent by the second core network device to the first terminal device.
  • the QoS flow is configured by the first core network device to the second core network device and accessed. network equipment and first terminal equipment.
  • the third core network device can also perform statistical analysis on the QoS flow or the cell where the first terminal device is located to obtain learning results for a certain cell or a certain QoS flow.
  • the jitter range learning result of the first service includes at least one of the first jitter range and the second jitter range.
  • the first jitter range is related to the first partial period
  • the first partial period is located in the duration period of the first service
  • the first service is related to the first terminal device.
  • the second jitter range is the jitter range of the entire period in the duration period of the first service.
  • the first core network device can provide the jitter range of the first service period or a partial period to the access network device, so that the access network device can determine the time domain position at which the first terminal device starts monitoring the PDCCH. , and the starting position of the duration in the DRX cycle.
  • the jitter range learning result of the first service also includes time information.
  • the time information indicates the estimated time when the service data of the first service reaches the second core network device.
  • the first core network device can provide the access network device with an estimated time for the service data of the first service to arrive at the second core network device, so that the access network device can more accurately determine that the first terminal device starts monitoring The time domain position of the PDCCH, and the starting position of the duration in the DRX cycle.
  • the analysis ID is also used to request that the business data of the first business be analyzed to reach the second core.
  • the third core network device is a data analysis network element.
  • the third aspect is to provide a communication method.
  • the execution subject of this method may be an access network device or a chip applied in the access network device.
  • the following description takes the execution subject being the access network device as an example.
  • the method includes: the access network device receives first information from the first core network device. Wherein, the first information includes first jitter information, the first jitter information indicates a first jitter range, the first jitter range is related to a first partial period, the first partial period is located in the duration period of the first service, and the first service is related to the first partial period. related to a terminal device. Then, the access network device configures the discontinuous reception DRX parameter for the first terminal device in the first partial period according to the first information.
  • the access network device when the access network device receives the first information from the first core network device in a sustained period, the first information also includes second jitter information.
  • the second jitter information indicates a second jitter range, and the second jitter range is the jitter range of the entire period in the duration period of the first service.
  • the access network device when the access network device receives the first information from the first core network device for the first time in the duration period, the first information also includes the second jitter information.
  • the second jitter information indicates a second jitter range, and the second jitter range is the jitter range of the entire period in the duration period of the first service.
  • the method before the access network device receives the first information from the first core network device, the method further includes: the access network device receives second jitter information from the first core network device.
  • the second jitter information indicates a second jitter range, and the second jitter range is the jitter range of the entire period in the duration period of the first service.
  • the first jitter range is smaller than the second jitter range.
  • the method further includes: the access network device receives third jitter information from the first core network device.
  • the third jitter information indicates a third jitter range
  • the third jitter range is related to the second partial period
  • the second partial period is located in the duration period of the first service.
  • the access network device configures the DRX parameters for the first terminal device in the second partial period according to the third jitter information.
  • the first information also includes third jitter information.
  • the third jitter information indicates a third jitter range
  • the third jitter range is related to the second partial period
  • the second partial period is located in the duration period of the first service.
  • the access network device configures DRX parameters for the first terminal device in the first partial period according to the first information, including: the access network device determines that in the first partial period according to the first jitter information The first terminal equipment starts monitoring the time domain position of the PDCCH to prevent the first terminal equipment from starting to monitor the PDCCH prematurely, thereby reducing power consumption on the first terminal equipment side.
  • the second jitter information is used by the access network device to configure the length of the duration in the DRX cycle, so that the first terminal device determines the time domain position to stop monitoring the PDCCH, thereby reducing the first terminal device side. power consumption.
  • the time domain position of the PDCCH is within the duration of the DRX cycle, and the DRX cycle is within the first partial period.
  • the method further includes: the access network device receiving time information from the first core network device.
  • the time information is used by the access network device to determine at least one of the following: the time domain position at which the first terminal device starts monitoring the PDCCH in the first partial period, and/or the position for the duration.
  • the access network device determines at least one of the following based on the time information: in the first partial period
  • the first terminal equipment starts to monitor the time domain position and/or the duration position of the PDCCH with higher accuracy.
  • the time information includes first time information and second time information.
  • the first time information is used by the access network device to determine the time domain position at which the first terminal device starts monitoring the PDCCH in the first partial period.
  • the second time information is used by the access network device to determine the location of the duration.
  • the access network device determines the time domain position at which the first terminal device starts monitoring the PDCCH based on the first time information and the first jitter information.
  • the access network device determines the position of the duration in the DRX cycle based on the second time information and the second jitter information. That is to say, the access network device refers to different time information to determine the time domain position and the starting position of the duration to start monitoring the PDCCH. In this way, even if there is a certain deviation between the service cycle and the DRX cycle, the access network equipment can accurately set the DRX parameters.
  • the access network device receiving the first information from the first core network device includes: the access network device receiving control plane signaling from the first core network device.
  • the first core network device is a session management network element, and the control plane signaling includes the first information.
  • control plane signaling is an N2 session management message.
  • the access network device receiving the first information from the first core network device includes: the access network device receiving the user data packet from the first core network device.
  • the first core network device is a user plane network element, and the user data packet includes the first information.
  • the user data packet includes a General Packet Radio Service Tunneling Protocol user plane GTP-U header, and the GTP-U header includes first information.
  • the first core network device is a session management network element
  • the fourth core network device is a user plane network element.
  • the first core network device is a user plane network element
  • the fourth core network device is a session management network element
  • a communication device in a fourth aspect, includes: a processor; the processor is coupled to a memory, and is used to read instructions in the memory and execute them, so that the communication device performs any of the above aspects or any possible design of any aspect.
  • the method executed by the first core network device may be the first core network device in the above-mentioned first aspect or any possible design of the first aspect, or a chip that implements the function of the above-mentioned first core network device.
  • a fifth aspect provides a chip.
  • the chip includes processing circuits and input and output interfaces. Among them, the input and output interfaces are used to communicate with modules outside the chip.
  • the chip may be a chip that implements the function of the first core network device in the first aspect or any possible design of the first aspect.
  • the processing circuit is used to run computer programs or instructions to implement the method in the above first aspect or any possible design of the first aspect.
  • a communication device in a sixth aspect, includes: a processor; the processor is coupled to a memory, and is used to read instructions in the memory and execute them, so that the communication device performs any of the above aspects or any possible design of any aspect.
  • the communication device may be the third core network device in the above-mentioned second aspect or any possible design of the second aspect, or a chip that implements the function of the above-mentioned third core network device.
  • a seventh aspect provides a chip.
  • the chip includes processing circuits and input and output interfaces. Among them, input and output Interfaces are used to communicate with modules outside the chip.
  • the chip may be a chip that implements the function of the third core network device in the above second aspect or any possible design of the second aspect.
  • the processing circuit is used to run computer programs or instructions to implement the above second aspect or any method in the possible design of the second aspect.
  • a communication device in an eighth aspect, includes: a processor; the processor is coupled to a memory, and is used to read instructions in the memory and execute them, so that the communication device performs any of the above aspects or any possible design of any aspect.
  • the method performed by the access network device may be an access network device in the above-mentioned third aspect or any possible design of the third aspect, or a chip that implements the functions of the above-mentioned access network device.
  • a ninth aspect provides a chip.
  • the chip includes processing circuits and input and output interfaces. Among them, the input and output interfaces are used to communicate with modules outside the chip.
  • the chip may be a chip that implements the functions of the access network equipment in the third aspect or any possible design of the third aspect.
  • the processing circuit is used to run computer programs or instructions to implement the method in the above third aspect or any possible design of the third aspect.
  • a computer-readable storage medium stores instructions, which when run on a computer, enable the computer to perform any of the methods in any of the above aspects.
  • a twelfth aspect provides a circuit system.
  • the circuitry includes processing circuitry configured to perform a method as in any one of the above aspects.
  • a communication system including: a first core network device and an access network device.
  • the first core network device is used to perform the method described in the first aspect
  • the access network device is used to perform the method described in the third aspect.
  • the communication system also includes: a third core network device.
  • the third core network device is used to perform the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is an architectural schematic diagram of yet another communication system provided by an embodiment of the present application.
  • Figure 3a is an architectural schematic diagram of another communication system provided by an embodiment of the present application.
  • Figure 3b is an architectural schematic diagram of another communication system provided by an embodiment of the present application.
  • Figure 4a is a schematic diagram of a DRX mechanism configuration provided by an embodiment of the present application.
  • Figure 4b is a schematic diagram of yet another DRX mechanism configuration provided by an embodiment of the present application.
  • Figure 5a is a schematic diagram of a data scheduling scenario provided by an embodiment of the present application.
  • Figure 5b is a schematic diagram of yet another data scheduling scenario provided by an embodiment of the present application.
  • Figure 5c is a schematic diagram of another data scheduling scenario provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a jitter range provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 8a is a schematic diagram of a jitter range provided by an embodiment of the present application.
  • Figure 8b is a schematic diagram of another data scheduling scenario provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of another data scheduling scenario provided by an embodiment of the present application.
  • Figure 10 is a schematic flowchart of yet another communication method provided by an embodiment of the present application.
  • Figure 11a is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 11b is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 11c is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 11d is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 12 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 13 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of another data scheduling scenario provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of another data scheduling scenario provided by an embodiment of the present application.
  • Figure 16 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 17 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the words “exemplary” or “such as” is intended to present the concept in a concrete manner.
  • two or more includes two itself. Multiple can include two, three, or more.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • IoT Internet of things
  • NB-IoT narrowband-internet of things
  • Wi-Fi wireless fidelity
  • 5G fifth generation
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes terminal equipment, access network equipment and core network.
  • terminal equipment includes equipment that provides voice and/or data connectivity to users. Specifically, it includes equipment that provides voice to users, or includes equipment that provides data connectivity to users, or includes equipment that provides voice and data connectivity to users. sexual equipment. This may include, for example, a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (D2D) terminal equipment, vehicle to everything (V2X) terminal equipment equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscription station ( subscriber station), mobile station, remote station, access point (AP), remote terminal, access terminal, user terminal, User agent (user agent), or user device (user device), etc.
  • this may include a mobile phone (or "cellular" phone), a computer with a mobile terminal device, a portable, pocket-sized, handheld, computer-built-in mobile device, etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning systems (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning systems
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example. ).
  • OBU on-board unit
  • the terminal device may also include a relay. Or it can be understood that anything that can perform data communication with the base station can be regarded as a terminal device.
  • the device used to implement the functions of the terminal device may be a terminal device, or may be a device that can support the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device for realizing the functions of the terminal is a terminal device as an example for introduction.
  • the access network device may be an access point for wireless communication or wired communication, such as a base station or base station controller, a Wi-Fi access point or Wi-Fi controller, or an access point for fixed network access, etc.
  • the base station may include various types of base stations, such as micro base stations (also called small stations), macro base stations, relay stations, access points, etc., which are not specifically limited in the embodiments of this application.
  • the base station may be a global system for mobile communication (GSM), a base transceiver station (BTS) in code division multiple access (CDMA), or a broadband Base station (node B) in code division multiple access (wideband code division multiple access, WCDMA), evolutionary base station (evolutional node B, eNB or e-NodeB) in LTE, eNB in IoT or NB-IoT, 5G communication
  • GSM global system for mobile communication
  • BTS base transceiver station
  • CDMA code division multiple access
  • WCDMA broadband Base station
  • evolutionary base station evolutional node B, eNB or e-NodeB
  • LTE long term division multiple access
  • eNB wideband code division multiple access
  • eNB wideband code division multiple access
  • 5G communication The system or the base station in the public land mobile network (public land mobile network, PLMN) that will evolve in the future, this embodiment of the present application does not impose any restrictions on this.
  • PLMN public
  • the core network includes various core network equipment, as shown in Figure 2.
  • the core network equipment includes network slice selection function (NSSF) network elements, network exposure function (NEF) network elements, and network function storage.
  • Function network exposure function repository function, NRF) network element, policy control function (PCF) network element, unified data management (UDM) network element, application function (AF) network element, Authentication server function (AUSF) network element, access and mobility management Access and mobility management function (AMF) network element, session management function (SMF) network element, service communication proxy (SCP) network element, user plane function (UPF) network Yuan, and data network (DN), etc.
  • NRF network slice selection function
  • NRF network exposure function repository function
  • PCF policy control function
  • UDM unified data management
  • AF application function
  • AUSF Authentication server function
  • AMF access and mobility management Access and mobility management function
  • SCP service communication proxy
  • UPF user plane function
  • DN data network
  • each core network equipment the functions of each core network equipment are introduced as follows:
  • UPF network elements The main functions of UPF network elements are packet routing and forwarding, mobility anchors, uplink classifiers to support routing service flows to DN, and branch points to support multi-homing protocol data unit (PDU) sessions. wait.
  • PDU protocol data unit
  • DN is an operator network that provides data transmission services to users, such as operator services, Internet access, or third-party services.
  • AUSF network element is mainly responsible for providing authentication services.
  • the AMF network element is responsible for mobility management in mobile networks. Its main functions include managing user registration, reachability detection, SMF node selection, and mobility state transition management.
  • the SMF network element is responsible for session management in the mobile network. Its main function is to control the establishment, modification and deletion of sessions, and the selection of user plane nodes.
  • SCP network element is mainly responsible for indirect communication between network elements and corresponding network element services.
  • NSSF network element is mainly responsible for selecting network slices for terminal devices.
  • the NEF network element is mainly responsible for opening network capability information or providing external information with external third-party applications.
  • NRF network elements are used in operator networks to open data in the network to third-party application servers, or to receive data provided by third-party application servers for the network.
  • the PCF network element is mainly responsible for providing policies, such as quality of service (QoS) policies, slice selection policies, etc.
  • policies such as quality of service (QoS) policies, slice selection policies, etc.
  • UDM network elements are mainly used to store user data, such as contract information, authentication/authorization information, etc.
  • N1 is the interface between the terminal device and the AMF network element.
  • N2 is the interface between the access network equipment and the AMF network element, and is used for sending non-access layer (non-access-stratum, NAS) messages, etc.
  • N3 is the interface between the access network equipment and the UPF network element, and is used to transmit user plane data, etc.
  • N4 is the interface between the SMF network element and the UPF network element, and is used to transmit information such as tunnel identification information of the N3 connection, data cache indication information, and downlink data notification messages.
  • the N6 interface is the interface between the UPF network element and the DN, and is used to transmit user plane data, etc.
  • N9 is the interface between UPF network elements.
  • Nausf is the service-based interface displayed by the AUSF network element
  • Namf is the service-based interface displayed by the AMF network element
  • Nsmf is the service-based interface displayed by the SMF network element
  • Nnssf is the service-based interface displayed by the NSSF network element
  • Nnef is The service-based interface displayed by the NEF network element
  • Nnrf is the service-based interface displayed by the NRF network element
  • Npcf is the service-based interface displayed by the PCF network element
  • Nudm is the service-based interface displayed by the UDM network element
  • Naf is the service-based interface displayed by the AF network element. Meta-exposed service-based interface.
  • N1, N2, N3, N4, N6, N9, etc. shown in Figure 2 are all interface serial numbers.
  • the above interface serial number The meaning of can be found in the meaning defined in the 3GPP standard protocol. This application does not limit the meaning of the above interface serial number.
  • each of the above-mentioned core network devices such as the above-mentioned SMF and AMF
  • SMF and AMF are just a name and do not limit the device itself. It can be understood that in 5G networks and other networks in the future, other names may also be used, and the embodiments of this application do not specifically limit this.
  • the AMF network element may also be called AMF or AMF entity, which will be described uniformly here and will not be described in detail below.
  • the core network device can be implemented by one device, or it can be implemented by multiple devices, or it can be a functional module in one device, which is not specifically limited in the embodiments of this application.
  • the above functional modules may be network elements in hardware devices, software functional modules running on dedicated hardware, or virtualized functional modules instantiated on a platform (for example, a cloud platform).
  • FIG. 3a and FIG. 3b are schematic architectural diagrams of yet another communication system provided by embodiments of the present application.
  • the communication system includes a network data analysis function (NWDAF) network element and other network elements that interact with the NWDAF network element.
  • NWDAF network data analysis function
  • Figure 3a shows the architecture used in data collection, that is, the NWDAF network element calls the services of other 5G core network elements to collect input information required for network analysis.
  • Figure 3b shows the architecture used when data is open, that is, the NWDAF network element sends analysis data to network elements that subscribe or request the analysis data by providing NWDAF services.
  • NWDAF represents the network analysis logic function managed by the operator.
  • NWDAF network elements provide slice-level network data analysis for other network elements and provide network analysis information at the network slice instance level without knowing the current subscribers using the slice.
  • Any NF shown in Figure 3a and Figure 3b represents any network function network element, and "Nnf” and “Nnwdaf” represent the name of the service interface. For details, please refer to the relevant description in the 3GPP standard protocol, which will not be repeated here.
  • the access network equipment can configure the DRX mechanism to the terminal equipment.
  • the DRX mechanism can be divided into two types: idle DRX and connected mode discontinuous reception (C-DRX). These two implementation mechanisms are different. The details are as follows:
  • the terminal equipment In idle DRX, the terminal equipment mainly monitors the paging of the access network equipment, and the terminal equipment monitors the paging occasion (paging occasion) in a DRX cycle.
  • a DRX cycle includes at least a DRX duration timer (drx-on Duration Timer) time and a possible sleep (opportunity for drx) time. Among them, the time of a DRX duration timer is also called "on duration”.
  • the access network device configures DRX parameters to the terminal device through radio resource control (RRC) signaling, such as DRX cycle length (DRX cycle length), DRX duration timer, and DRX inactivity timer (drx-InactivityTimer).
  • RRC radio resource control
  • DRX hybrid auto repeat request round trip timer (drx-HARQ-RTT-Timer), DRX retransmission timer (drx-RetransmissionTimer) and other parameters.
  • the terminal equipment needs to be activated during the DRX duration timer, DRX inactivation timer, downlink (DL) DRX retransmission timer and uplink (uplink, UL) DRX retransmission timer. Monitor PDCCH, these times are also collectively called activation time (Active Time). The rest of the time is collectively referred to as the activation time outside (outside Active Time). Outside the activation time, the terminal device does not need to monitor the PDCCH. At this time, the terminal device can enter the sleep state to save power consumption.
  • the above-mentioned DRX duration timer indicates the length of time for the terminal equipment to continuously monitor the PDCCH at the beginning of the DRX cycle.
  • the above-mentioned DRX inactivation timer indicates how long the terminal equipment starts (or restarts) the timer and keeps monitoring the PDCCH continuously when it detects that the PDCCH is used to schedule the initial transmission of uplink or downlink data.
  • the DRX parameters also include the DRX long cycle and start offset (drx-LongCycleStartOffset), which is used to configure the length of the long DRX cycle and the starting position of a DRX cycle (whether it is a long DRX cycle or a short DRX cycle). offset value.
  • the length of the long DRX cycle is in milliseconds (ms)
  • the configuration granularity of the starting offset is 1ms.
  • the DRX parameters also include the DRX slot offset value (drx-SlotOffset), which is used to configure the delay value before starting drx-onDurationTimer.
  • the DRX parameters may also include short DRX, which is used to configure the length of the short DRX cycle.
  • short DRX which is used to configure the length of the short DRX cycle.
  • drx-LongCycleStartOffset and/or shortDRX can be used to determine the DRX cycle
  • drx-LongCycleStartOffset and/or drx-SlotOffset can be used to determine the starting offset value of DRX.
  • the DRX cycle can be understood to be determined based on drx-LongCycleStartOffset and/or shortDRX; the DRX start offset value can be understood to be determined based on drx-LongCycleStartOffset and/or drx-SlotOffset.
  • the cycle lengths supported in the C-DRX mechanism are introduced as follows: the length of the long DRX cycle is ⁇ 10, 20, 32,... ⁇ ms, which can be understood as the length of the long DRX cycle is 10ms, 20ms, or 32ms. wait.
  • the length of the short DRX cycle is ⁇ 2,3,4,5,6,7,8,10,14,16,20,30,32,... ⁇ ms. It can be understood that the length of the short DRX cycle is 2ms. 3ms, 4ms, 5ms, 6ms, 7ms, 8ms, 10ms, 14ms, 16ms, 20ms, 30ms, or 32ms etc.
  • the terminal equipment After entering a DRX cycle, during the duration (on duration) period, the terminal equipment begins to continuously monitor the PDCCH:
  • the terminal device directly enters the sleep period after the duration period is over, as shown in Figure 4a.
  • the terminal device receives the data according to the received scheduling information (i.e. Receive PDSCH) and start the DRX inactivation timer.
  • the DRX inactivation timer is started (or restarted) once.
  • the terminal equipment is in the DRX inactivation timer period. , continue to monitor the PDCCH until the DRX inactivation timer times out (expire), and the terminal device enters the sleep period, as shown in Figure 4b.
  • the terminal equipment periodically monitors the PDCCH within a time period of each duration, and the time periods of the duration are represented by solid line squares in Figures 4a and 4b.
  • XR refers to a human-computer interaction environment that is a combination of real and virtual, generated through computer technology and wearable devices.
  • XR is proposed based on augmented reality (AR), virtual reality (VR) and mixed reality (MR).
  • AR augmented reality
  • VR virtual reality
  • MR mixed reality
  • AR augmented reality
  • MR mixed reality
  • the purpose of XR business is to use high-speed networks and 360-degree imaging and other technologies to achieve an interactive and immersive experience.
  • XR business has the following characteristics: large business volume, high transmission delay requirements (that is, the transmission delay needs to be reduced as much as possible), short arrival intervals of data frames, or obvious business periodicity, etc.
  • the data frames have obvious periodicity. For example, when the data frame rate is 60 frames per second (fps), adjacent The average arrival time interval of the service data corresponding to the two data frames is 16.67ms. The ideal arrival time interval of data frames on the terminal device side can be 16.67ms.
  • the data frame is defined from the perspective of the application layer, and a data frame can also be replaced by a video frame.
  • a protocol data unit set includes business data in a frame (frame) data frame. PDU set is defined from the MAC layer perspective. A data frame can also be replaced by a PDU set.
  • the access network device can configure the DRX cycle length for the terminal device that is relatively close to the data frame arrival time interval, for example, it can be 16 ms or 17 ms.
  • the access network device can configure the DRX cycle length equal to the data frame arrival time interval for the terminal device, that is, 16.67ms.
  • the starting position of the duration in the DRX cycle may coincide with the service cycle of the XR service (as shown by the dotted line position). In this case, it can also be described as that the DRX cycle matches the business cycle. Alternatively, the starting position of the duration in the DRX cycle may not coincide with the business cycle of the XR service (such as the position shown by the dotted line), and the difference is within a certain range. Or, in some DRX cycles, the starting position of the duration coincides with the business cycle of the XR service (as shown by the dotted line), and the starting position of the duration in its DRX cycle coincides with the business cycle of the XR service ( As shown by the dotted line, the gap is within a certain range. In this case, it can also be described as that the DRX cycle approximately matches the business cycle. In the embodiment of this application, the matching of the DRX cycle and the service cycle is taken as an example for introduction.
  • the XR business as a whole has obvious periodicity, due to the application server processing different data frames at different speeds, and different data frames arrive from the application server through the Internet and the core network to the access network equipment (such as the base station) Due to different routing methods and changes in system load, the actual time when the data frame reaches the access network equipment (such as the base station) may cause jitter. That is, the original periodicity has a certain jitter. Correspondingly, the data frame reaches the terminal The device's time may also jitter. For example, the duration of jitter may be 0 to 8ms.
  • the arrival time of the data frame may be delayed by 0 to 8ms, that is, the time interval between the arrival of the data frame fluctuates between 16.67ms and 24.67ms. If the actual arrival time of the data frame is outside the duration of the DRX cycle, that is, the terminal device does not receive the data schedule within the duration, the terminal device does not monitor the PDCCH after the duration. In this case, the access network device delays the data frame to the next DRX cycle for scheduling. Since the length of the DRX cycle is about 16ms to 17ms, delaying scheduling in the next DRX cycle results in a large delay in the data frame of the XR service on the terminal device side, which may cause lag and affect the user experience of the XR service.
  • the access network device can configure the duration in the DRX cycle to be longer, which can solve the problem of delayed arrival of data frames due to jitter and make the arrival time of the data frame within the duration as much as possible.
  • configure the starting position of the duration at the earliest possible position of the data frame and configure the length of the duration to cover the maximum jitter range, so that the length of the duration is sufficient to cover all possible arrivals of the data frame.
  • Time period for example, the duration is configured as 8ms.
  • the DRX duration configuration is too long, the activation time of the terminal equipment will be too long. In this way, the terminal equipment will perform invalid operations in the period before the PDCCH arrives.
  • PDCCH monitoring that is, the PDCCH is monitored but no data scheduling information is received
  • the duration (on duration) in the DRX cycle (DRX cycle) and the timing of monitoring the PDCCH are not properly set, then the terminal equipment must monitor the PDCCH before the PDCCH is detected.
  • the PDCCH monitoring performed is meaningless, wastes power consumption, and is difficult to achieve energy saving effects.
  • FIG. 6 shows the jitter size of a service.
  • the horizontal axis is the index of the data frame of the XR service
  • the vertical axis is the size of the jitter. It can be seen from Figure 6 that the jitter value of each data frame fluctuates around 0.
  • the jitter range of all data frames in Figure 6 is the range indicated by the vertical double arrow c, or the range represented by the two horizontal dashed lines in Figure 6.
  • this jitter range is described as the second
  • the jitter range can also be understood as the estimation result of the jitter range of a certain service during a sustained period of time by communication equipment (such as terminal equipment, access network equipment, and core network equipment).
  • communication equipment such as terminal equipment, access network equipment, and core network equipment.
  • the jitter range of data frames within a period of time is relatively small.
  • the variation amplitude of the jitter of the data frame in a short period of time is smaller than that in a long period of time, and there is a "slow change" trend as a whole (as shown by the dotted curve in Figure 6).
  • the jitter range indicated by the double arrow a and the vertical double arrow b is described as the first jitter range, which can also be understood as the jitter range of the communication equipment (such as terminal equipment, access network equipment, core network equipment) for a certain service Jitter range estimation results for local periods within the duration period. It is easy to understand that the first jitter range is smaller than the second jitter range.
  • the terminal device can use the arrival position of the current data frame as a reference and combine it with the first jitter range to determine the fluctuation range of the arrival position of the next data frame.
  • the terminal equipment can only monitor the PDCCH within the small fluctuation range (that is, the fluctuation range of the arrival position of the data frame determined in conjunction with the first jitter range) instead of monitoring the PDCCH within the second jitter range, thereby reducing the difficulty of the terminal equipment monitoring the PDCCH. power consumption.
  • the first core network device obtains the first information.
  • the first information includes first jitter information
  • the first jitter information indicates a first jitter range
  • the first jitter range is related to a first partial period
  • the first partial period is located in the duration period of the first service
  • the first service is related to the first partial period. related to a terminal device.
  • the first core network device sends first information to the access network device, where the first information is associated with the setting of the DRX parameter.
  • the access network device can set the DRX parameters according to the first jitter information, such as determining the time domain position at which the first terminal device starts monitoring the PDCCH.
  • the first terminal equipment monitors the PDCCH for a part of the duration in the DRX cycle, and does not need to continuously monitor the PDCCH during the entire duration, thereby reducing the duration of ineffective monitoring of the PDCCH and reducing the power consumption of the terminal equipment.
  • the communication method 700 proposed in the embodiment of this application includes the following steps:
  • the first core network device obtains the first information.
  • the first core network device may be a user plane management network element, such as the UPF network element in Figure 2.
  • the first core network device may be a session management network element, such as the SMF network element in Figure 2.
  • the jitter information in the first information indicates the jitter range of the first service.
  • the first information indicates The jitter range of can be the jitter range estimation result, such as the jitter range estimation result obtained by estimating based on historical data.
  • the jitter information in the first information is introduced through four examples (examples 1 to 4 below):
  • Example 1 the first information includes the first jitter information, but does not include the second jitter information.
  • the first information includes first jitter information and second jitter information.
  • Example 3 the first information includes the first jitter information and the third jitter information, but does not include the second jitter information.
  • the first information includes first jitter information, second jitter information and third jitter information.
  • the first jitter information is introduced as follows:
  • the first jitter information indicates a first jitter range.
  • the first jitter range is related to the first partial period, the first partial period is located in the duration period of the first service, and the first service is related to the first terminal device. That is to say, the first jitter range is the jitter range estimation result of the first partial period in the duration period of the first service.
  • the first service may be an XR service, such as VR video, AR video, or cloud gaming service.
  • XR service such as VR video, AR video, or cloud gaming service.
  • the duration period of the first service can be understood as the time period during which the first terminal device is continuously served by the first service.
  • a certain game application is running on the first terminal device.
  • the application server can provide the first terminal device with continuous service of the first business. This period is also the continuous service of the first business on the first terminal device. time period.
  • the start time and end time of the duration period of the first service are not fixed and are determined based on the time period during which a certain application is run on the first terminal device.
  • the first partial period can be understood as a partial period in the duration period of the first service.
  • the starting time of the first partial period may refer to the time when the first core network device executes S702, or the time when the access network device executes S702.
  • the end time of the first partial period may refer to the moment when the first core network device executes S705, or the moment when the access network device executes S705.
  • the start time and end time of the first partial period are not fixed and are determined based on the execution time of S702 and S705. In this case, it can be understood that the first core network device updates the jitter range of the local period (ie, the small jitter range) in real time.
  • the end time of the first partial period may refer to the next partial period (hereinafter the second partial period) of the first partial period. ), as shown in Figure 8b.
  • the first jitter range is [-2, 2] ms.
  • the second jitter information is introduced as follows:
  • the second jitter information indicates a second jitter range.
  • the second jitter range is the jitter range of the entire period in the duration period of the first service. That is to say, the second jitter range is the jitter range estimation result of the entire period in the duration period of the first service.
  • the duration period of the first service and the first service please refer to the above introduction of the first jitter information, and will not be described again here.
  • the second jitter range is [-4, 4] ms.
  • the first jitter range is smaller than the second jitter range.
  • the first jitter range is within the second jitter range, as shown in Figure 8a.
  • the third jitter information is introduced as follows:
  • the third jitter information indicates a third jitter range.
  • the third jitter range is related to the second partial period, and the second partial period is located in the duration period of the first service. That is to say, the third jitter range is the jitter range estimation result of the second partial period in the duration period of the first service.
  • the duration period of the first service and the first service please refer to the above introduction of the first jitter information, and will not be described again here.
  • the second partial period can be understood as a partial part of the duration of the first service. part.
  • the start time of the second partial period may refer to the end time of the first partial period. That is to say, the first partial period and the second partial period are different partial periods, and the first partial period and the second partial period are continuous in the time domain.
  • the end time of the second partial period is not fixed.
  • the end time of the second partial period may refer to the starting time of the next partial period (such as the third partial period) after the second partial period, as shown in FIG. 8b.
  • the third jitter range is [-3,3]ms.
  • the first information may also include jitter information of multiple local periods.
  • the first information includes jitter information for N local periods.
  • N is a positive integer.
  • the N local time periods are respectively recorded as local time period 1, local time period 2,..., local time period N-1, and local time period N.
  • Partial period 1 to partial period N may be different local periods in the duration period of the first service.
  • the starting time of partial period 1 may refer to the time when the first core network device executes S702, or the time when the access network device executes S702.
  • the starting time of partial period 2 may refer to the end time of partial period 1.
  • the end time of the partial period N may be a certain time in the duration period of the first service.
  • the first core network device acquires multiple first jitter ranges, and thereby delivers multiple jitter ranges to the access network device at one time.
  • Method 1 is represented by the minimum value and maximum value, for example, recorded as [minimum value, maximum value].
  • the first jitter range is [-2,2]ms
  • the second jitter range is [-4,4]ms.
  • the first jitter range is represented by the second jitter range and deviation. For example, if the second jitter range is [-4,4]ms and the deviation is 2ms, then based on the deviation information, it can be determined that the starting position of the first jitter range is -2ms.
  • the first jitter range is represented by the second jitter range, deviation and length.
  • the second jitter range is [-4,4]ms
  • the deviation is 2ms
  • the length is 4ms
  • it can be determined that the starting position of the first jitter range is -2ms and the end position is 2ms.
  • the reference range is determined based on the first jitter range and the second jitter range, and the length information indicates the length of the first jitter range.
  • the second jitter range is [-4,4]ms and the first jitter range is [-2,2]ms.
  • it can be expressed as [-2,4], and a length information [4].
  • the first core network device After obtaining the first information, the first core network device executes S702:
  • the first core network device sends the first information to the access network device.
  • the access network device receives the first information from the first core network device.
  • the first information in S702 is consistent with the first information in S701, which will not be described again here.
  • the first information may be transmitted through control plane signaling.
  • the first information may be transmitted through user plane data.
  • the implementation process of S702 can be found in the introduction of S702a ⁇ S702d, which will not be described here.
  • the access network device sets the DRX parameters of the first terminal device according to the first information, thereby performing a power saving operation on the first terminal device during the first partial period.
  • the first information in S703 is consistent with the first information in S702, which will not be described again here. Available from S703 It is known that the first information is associated with the setting of the DRX parameter.
  • S703 performed by the access network device includes: the access network device determines, based on the first jitter information, that in the first In the local period, the first terminal equipment starts to monitor the time domain position of the PDCCH.
  • the access network device does not perform a power saving operation on the first terminal device according to the first information.
  • the first terminal equipment starts monitoring the PDCCH at the starting position of the duration in DRX cycle 1, as shown by the thick solid arrow in DRX cycle 1, and continues to monitor the PDCCH during the entire duration.
  • the access network device sets DRX parameters for the first terminal device according to the first jitter information.
  • the first terminal equipment starts monitoring the PDCCH at a certain position in the duration of DRX cycle 1, as shown by the thick solid arrow in DRX cycle 1.
  • the time domain position at which the first terminal equipment starts monitoring the PDCCH is determined based on the first jitter range.
  • the first jitter range represents the offset relative to the starting position of DRX cycle 2.
  • the first jitter range is [1,3]ms. That is to say, in DRX cycle 2, the time domain position at which the first terminal equipment starts monitoring the PDCCH is: 1 ms after the starting position of DRX cycle 2.
  • S703 performed by the access network device includes: the access network device determines, based on the second jitter information, that the The starting position of the DRX cycle duration (OnDuration) in the duration of a service. That is to say, the access network equipment determines the starting position of the duration of the DRX cycle based on the jitter range of the entire period (ie, the large jitter range). Wherein, the time domain position of the PDCCH is within the duration of the DRX cycle, and the first partial period includes one or more DRX cycles. In this way, the access network device sends the PDCCH to the first terminal device during the duration of the DRX cycle. Correspondingly, the first terminal equipment has started to monitor the PDCCH and can receive the PDCCH from the access network equipment.
  • OnDuration The starting position of the DRX cycle duration in the duration of a service. That is to say, the access network equipment determines the starting position of the duration of the DRX cycle based on the jitter range of the entire period (
  • the access network device sets DRX parameters for the first terminal device according to the second jitter information.
  • the length of the duration (OnDuration) in DRX cycle 4 is equal to the second jitter range.
  • the length of the duration (OnDuration) in DRX cycle 4 and DRX cycle 3 is different.
  • the length of the duration (OnDuration) in DRX cycle 4 is determined based on the third jitter information.
  • the third jitter range is [0.5,4]ms. That is to say, in DRX cycle 4, the time domain position at which the first terminal equipment starts monitoring the PDCCH is: 0.5 ms after the starting position of DRX cycle 4.
  • the length of the duration (OnDuration) in DRX cycle 3 is determined based on the preconfigured parameters of the access network device.
  • S703 performed by the access network device includes: the access network device determines that the jitter is in the third jitter based on the third jitter information.
  • the terminal equipment starts to monitor the time domain position of the PDCCH.
  • the access network device sets DRX parameters for the first terminal device according to the third jitter information.
  • the first terminal equipment starts monitoring the PDCCH at a certain position in the duration of DRX cycle 3, as shown by the thick solid arrow in DRX cycle 3.
  • the time domain position at which the first terminal equipment starts monitoring the PDCCH is determined based on the third jitter range.
  • the third jitter range represents the offset relative to the starting position of DRX cycle 3.
  • the third jitter range is [2,3]ms. That is to say, in DRX cycle 3, the time domain position at which the first terminal equipment starts monitoring the PDCCH is: 2 ms after the starting position of DRX cycle 3.
  • S701 includes S701a:
  • the application server sends the first information to the first core network device.
  • the first core network device receives the first information from the application server.
  • the application server may be the AF network element in Figure 2.
  • the jitter information in the first information can be understood as the time deviation at which the application server generates the service data of the first service.
  • the application server has an inherent jitter range when generating business data.
  • the jitter information in S701a only considers the inherent jitter.
  • S701 includes S701b:
  • the first core network device determines the first information based on at least one of the following:
  • the first data includes a time offset at which the application server generates service data of the first service. Due to application server performance, load, etc., the inherent jitter range when the application server generates business data, such as the first jitter range (that is, the local range of inherent jitter, or described as an inherent small jitter range), and/or, the second jitter range Jitter range (i.e., the overall range of inherent jitter, or the large intrinsic jitter range described as such). It can also be understood that the first data represents the jitter range of the application layer, such as the large jitter range of the application layer and the small jitter range of the application layer. It should be understood that the first data in S701b is provided by the application server to the first core network device.
  • the second data includes the jitter generated by the service data of the first service during the following processes: the transmission process from the application server to the second core network device, and/or the transmission process from the second core network device to the access network device. transmission process.
  • the second core network device may be a user plane network element, such as the UPF network element in Figure 2.
  • the second data represents the jitter caused by network transmission. It should be understood that when the first core network device is a UPF network element, the first core network device and the second core network device are the same device. When the first core network device is an SMF network element, the first core network device and the second core network device are different devices.
  • the first core network device determines the first information based on the first data, for example, uses the first data as the first information. Or, as another possible way, the first core network device determines the first information based on the second data, for example, uses the second data as the first information. Or, as another possible way, the first core network device determines the first information based on the first data and the second data. For example, after performing a certain operation on the first data and the second data, the operation result is used as the first information.
  • the jitter generated in the transmission process from the application server to the second core network device can be characterized by the data provided by the second core network device to the first core network device, such as the jitter information measured by the UPF network element, that is, AF The superposition of jitter and fixed network jitter.
  • AF jitter refers to the first data.
  • Fixed network jitter refers to the jitter generated from the application server to the UPF network element of the 3GPP network.
  • the jitter generated in the transmission process from the application server to the access network device can be characterized by the data provided by the access network device to the first core network device, such as the jitter information measured by the access network device, that is, the jitter measured by the UPF network element. Jitter and jitter generated from UPF network elements to access network equipment.
  • the first core network device when the first core network device determines the first information, it also determines the first information based on at least one of the following:
  • the cell information indicates the cell in which the terminal device is located.
  • the cell information includes cell identity, frequency point information, signal strength, signal quality, etc.
  • QoS flow information such as QoS identification, QoS configuration parameters, etc.
  • the QoS flow is used to carry service data for the application server to provide the first service to the first terminal device.
  • the QoS flow is configured by the first core network device to the second core network device, the access network device and the first terminal device.
  • S701 includes S701c:
  • the third core network device sends the first information to the first core network device.
  • the first core network device receives the first information from the third core network device.
  • the third core network device may be a data analysis network element, such as the NWDAF network element in Figure 2.
  • NWDAF data analysis network element
  • the process of the third core network device obtaining the first information please refer to the introduction of the jitter range learning result of the first service in Figure 16, which will not be described again here.
  • the first core network device sends a subscription message to the third core network device.
  • the third core network device receives the subscription message from the first core network device.
  • the subscription message includes an analytics ID (Analytics ID), and the analytics ID is used to request analysis of the jitter information of the first service.
  • Analytics ID Jitter
  • application which can be understood as the analysis ID is used to request analysis of jitter information of a certain application.
  • the application is used to provide the first terminal device with a continuous service of the first business.
  • S702 is introduced as follows:
  • S702 includes S702a:
  • the first core network device sends control plane signaling to the access network device.
  • the access network device receives the control plane signaling from the first core network device.
  • the control plane signaling includes first information.
  • the control plane signaling is the signaling in the following process: establishing a PDU session process for transmitting the first service, as shown in Figure 11b, or establishing a QoS flow process for transmitting the first service, or modifying the first
  • the PDU session process of the service is shown in Figure 11b.
  • the control plane signaling in S702a is an N2 session management message.
  • S702a may include step 3a in Figure 11c.
  • S702a may include step 3 in Figure 11d.
  • the PDU session establishment process includes the following steps:
  • the AF network element sends a session and service quality creation request to the NEF network element.
  • the NEF network element receives the session and service quality creation request from the AF network element.
  • Nnef_AF_sessionWith QoS create request includes the jitter range of the application layer, such as large jitter range and small jitter range.
  • the NEF network element sends a policy authorization creation update request to the PCF network element.
  • the PCF network element receives the policy authorization creation and update request from the NEF network element.
  • the policy authorization create update request can be recorded as Npcf_Policy Authorization Create update request.
  • Npcf_Policy Authorization Create update request includes the jitter range of the application layer, such as a large jitter range and a small jitter range.
  • the AF network element sends a policy authorization creation update request to the PCF network element.
  • the PCF network element receives the policy authorization creation and update request from the AF network element.
  • the policy authorization creation update request in S11b can be found in the introduction of S12, and will not be described again here.
  • the PCF network element sends a session management policy authorization control update notification to the SMF network element.
  • the SMF network element receives the session management policy authorization control update notification from the PCF network element.
  • the session management policy authorization control update notification can be recorded as Npcf_SMPolicyControl_Update Notify.
  • Npcf_SMPolicyControl_Update Notify includes the jitter range of the application layer, such as large jitter range and small jitter range.
  • the first terminal device sends a PDU session establishment request to the SMF network element.
  • the SMF network element receives the PDU session establishment request from the first terminal device.
  • the PDU session establishment request can be recorded as PDU session establishment.
  • the PDU session requested to be established by the first terminal device is used to transmit service data of the first service.
  • the SMF network element determines the first jitter information and the second jitter information.
  • the SMF network element sends the N2 session management message to the access network device.
  • the access network device receives the N2 session management message from the SMF network element.
  • the N2 session management message can be recorded as N2 SM message.
  • N2 SM message is included in N2 message.
  • N2 message also includes messages sent by the SMF network element to the first terminal device through the access network device, such as PDU session establishment (PDU session establishment) acceptance message.
  • PDU session establishment PDU session establishment
  • the format of N2 message is as follows: N2 message(N1 SM container(PDU session establishment accept), N2 SM container(large Jitter range, small Jitter range)).
  • N2 SM container and N2 SM message are equivalent concepts.
  • the first terminal device, the access network device, the AMF network element, the SMF network element, the UPF network element and the PCF network element jointly perform the remaining PDU session establishment steps.
  • the first terminal device and the access network device determine the DRX parameters based on the service cycle, the first jitter information and the second jitter information.
  • the PDU session modification process includes the following steps:
  • the AF network element sends a session and service quality update request to the NEF network element.
  • the NEF network element receives session and service quality update requests from the AF network element.
  • Nnef_AF_sessionWith QoS update request includes the jitter range of the application layer, such as large jitter range and small jitter range.
  • the NEF network element sends a policy authorization creation update request to the PCF network element.
  • the PCF network element receives the policy authorization creation and update request from the NEF network element.
  • the policy authorization creation update request in S22 can be found in the introduction of S12 and will not be described again here.
  • the AF network element sends a policy authorization creation update request to the PCF network element.
  • the PCF network element receives the policy authorization creation and update request from the AF network element.
  • the PCF network element sends a session management policy authorization control update notification to the SMF network element.
  • SMF receives the session management policy authorization control update notification from the PCF network element.
  • the session management policy authorization control update notification in S23a can be found in the introduction of S13a, and will not be described again here.
  • the first terminal device sends a PDU session modification request to the SMF network element.
  • the SMF network element receives the PDU session modification request from the first terminal device.
  • the PDU session modification request can be recorded as PDU session modification.
  • the first terminal device requests to establish a QoS flow through a PDU session modification request to transmit the service data of the first service.
  • the SMF network element determines the first jitter information and the second jitter information.
  • the SMF network element sends the N2 session management message to the access network device.
  • the access network device receives the N2 session management message from the SMF network element.
  • N2 session management message of S26 can be found in the introduction of S16 and will not be described again here.
  • the first terminal device, the access network device, the AMF network element, the SMF network element, the UPF network element and the PCF network element jointly perform the remaining PDU session modification steps.
  • the first terminal device and the access network device determine the DRX parameters based on the service cycle, the first jitter information and the second jitter information.
  • the AF network element if the AF network element and the PCF network element cannot communicate directly, for example, the AF network element is a third-party application server, not the operator's own application server. For operators, AF network elements are untrusted servers. In this case, the AF network element executes S11a (or S21a). For operators, if the AF network element is a trusted server, the AF network element and the PCF network element can communicate directly. In this case, the AF network element executes S11b (or S21b).
  • the first core network device provides the first information to the access network device through control plane signaling.
  • S702 includes S702b:
  • the first core network device sends the user data packet to the access network device.
  • the access network device receives the user data packet from the first core network device.
  • the user data packet includes first information.
  • the user data packet includes a general packet radio service tunneling protocol user plane (GTP-U) header, and the GTP-U header includes first information.
  • GTP-U general packet radio service tunneling protocol user plane
  • S702b may include step 4 in Figure 11c.
  • S702b may include step 2b in Figure 11d.
  • the first core network device provides the first information to the access network device through user plane data.
  • S702 includes S702c and S702d:
  • the first core network device sends the first information to the fourth core network device.
  • the fourth core network device receives the first information from the first core network device.
  • the first core network equipment and the fourth core network equipment are introduced as follows:
  • the first core network device is a session management network element, such as an SMF network element.
  • the fourth core network equipment is a user plane network element, such as a UPF network element.
  • S702c may include step 3b in Figure 11c.
  • the first information is carried in control plane signaling.
  • the first core network device is a user plane network element, such as a UPF network element.
  • the fourth core network device is a session management network element, such as an SMF network element.
  • S702c may include step 2a in Figure 11c.
  • the first information is carried in control plane signaling.
  • the fourth core network device sends the first information to the access network device.
  • the access network device receives the first information from the fourth core network device.
  • the fourth core network device in S702d is the same as the fourth core network device in S702c, and will not be described again here.
  • the fourth core network device is a user plane network element, such as a UPF network element.
  • S702c may include step 4 in Figure 11c.
  • the first information is carried in user plane data.
  • the fourth core network device is a session management network element, such as an SMF network element.
  • S702c may include step 3 in Figure 11d.
  • the first information is carried in control plane signaling.
  • the first core network device provides the first information to the access network device through other core network devices.
  • the first core network device performs S702, which can be understood as: the first core network device sends the first jitter information to the first jitter information.
  • the terminal device provides a jitter range of a local period (that is, the above-mentioned first jitter information, or described as a small jitter range). Further, the first core device may send the second jitter information to the access network device before performing S702.
  • the first core network device first provides the access network device with a large jitter range (ie, the above-mentioned second jitter information), and then provides the access network device with a small jitter range (ie, the above-mentioned first jitter information).
  • S702 is further introduced in two ways:
  • each time the first core network device executes S702 it provides the first terminal device with a jitter range of a local period (i.e., the above-mentioned first jitter information, or described as a small jitter range) and The jitter range of an entire period (the above-mentioned second jitter information, or described as a large jitter range). That is to say, every time the first core network device sends the first information to the access network device during the duration of the first service, the first information includes the first jitter information and the second jitter information.
  • the first information when the first core network device performs S702 for the first time, includes first jitter information and second jitter information. That is to say, when the first core network device sends the first information to the access network device for the first time in the duration of the first service, the first information includes the first jitter information and the second jitter information.
  • the first information for the first core network device, during the duration of the first service, when the first core network device sends the first information to the access network device several times after executing S702 for the first time, the first information includes first jitter information and second jitter information. For example, during the duration of the first service, when the first core network device sends the first information to the access network device for the second, fourth, or seventh time, the first information includes the first jitter information and the first jitter information. 2. Jitter information.
  • the first core network device executes S702. It can be understood that the first core network device provides the first terminal device with a jitter range of at least two local periods (i.e., the above-mentioned first jitter information and third jitter information).
  • the first core network device performs S702, which can be understood as, the first core network device once
  • the first terminal device is provided with the jitter range of at least two partial periods (ie, the above-mentioned first jitter information and the third jitter information) and the jitter range of an entire period (the above-mentioned second jitter information).
  • the first core network device can also update the jitter range of the local period (ie, the small jitter range) in real time.
  • the communication method 700 in the embodiment of this application also includes S704, S705 and S706:
  • the first core network device obtains the third jitter information.
  • the first core network device After the first core network device executes S701, it executes S704.
  • the local period corresponding to the first jitter information is recorded as the first partial period.
  • the partial period corresponding to the third jitter information is recorded as the second partial period.
  • the end time of the first partial period coincides with the start time of the second partial period.
  • S704 includes S704a:
  • the first core network device determines the third jitter information based on the data arrival information within the first movement time window.
  • the first moving time window is before the second partial period and is adjacent to the second partial period.
  • the first moving time window has a first length, for example, the length of the first moving time window is M service cycles. Among them, M is a positive integer.
  • the business cycle refers to the business cycle of the first business. Taking Figure 14 as an example, the length of the first moving time window is equal to the sum of the lengths of four service cycles.
  • the first moving time window includes business cycle 1 to business cycle 3.
  • the first moving time window includes business cycle 5 to business cycle 8.
  • the first moving time window may also have other names, such as sliding window, observation window, etc.
  • the first moving time window is taken as an example for introduction.
  • the data arrival information indicates the time when the service data of the first service reaches the second core network device. Taking Figure 14 as an example, at time t1, the data arrival information includes: in service cycle 1 to service cycle 3, the time when the service data of the first service in each service cycle reaches the session management network element (such as the UPF network element). At time t2, the data arrival information includes: in service cycle 5 to service cycle 8, the time when the service data of the first service in each service cycle reaches the session management network element (such as the UPF network element).
  • the first core network device observes the data arrival information of service period 1 to service period 3 to obtain the jitter range estimation result of a certain local period. If the jitter range estimation result corresponding to time t1 is greater than the threshold, the first core network device uses this result as the third jitter information. On the contrary, if the jitter range estimation result corresponding to time t1 is less than the threshold, the first core network device continues to observe and moves the first moving time window to the right.
  • the first core network equipment observes the data arrival information of business cycle 5 to business cycle 8 to obtain the jitter range estimation result of a certain local period, and then compares the jitter range estimation result corresponding to the time period with the threshold, To determine whether to use the jitter range as the third jitter information, the cycle continues until the first core network device obtains a jitter range estimation result that is greater than the threshold, and uses the jitter range estimation result as the third jitter range.
  • S704 includes S704b:
  • the first core network device determines the third jitter information based on the data arrival information of the first moving time window and the first jitter information.
  • the first core network device determines the jitter range of the second partial period, that is, the above-mentioned third jitter information, based on the jitter range estimation result of the first moving time window and the first jitter range of the first partial period.
  • the first core network equipment can update the small jitter and jitter range of the local time period in real time.
  • the first core network device sends the third jitter information to the access network device.
  • the access network device receives the third jitter information from the first core network device.
  • the third jitter information in S705 is consistent with the third jitter information in S704, which will not be described again here.
  • the third jitter information is transmitted through the control plane signaling of the following process: modifying the PDU session process of the first service.
  • the access network device sets the DRX parameter of the first terminal device according to the third jitter information, thereby performing a power saving operation on the first terminal device during the second partial period.
  • the third jitter information in S706 is consistent with the third jitter information in S705, which will not be described again here.
  • the first information in S701 also includes time information.
  • the time information indicates the time when the service data of the first service reaches the second core network device.
  • the time information in the first information is introduced as follows:
  • the time information includes one piece of information, for example, the time information in the first information includes time information 1.
  • the access network device determines at least one of the following based on time information 1:
  • the first item is the time position at which the first terminal equipment starts monitoring the PDCCH.
  • the access network device determines the time domain range corresponding to the first jitter range according to the time point indicated by time information 1. Specifically, the time point indicated by time information 1 is used as the center point of the first jitter range.
  • the minimum value point corresponding to the first jitter range is the time position when the first terminal equipment starts monitoring the PDCCH.
  • the second item the starting position of the duration in the DRX cycle.
  • the access network device determines the time domain range corresponding to the second jitter range based on the time point indicated by time information 1. Specifically, the time point indicated by time information 1 is used as the center point of the second jitter range.
  • the minimum value point corresponding to the second jitter range is the starting position of the duration in the DRX cycle.
  • the time information includes two pieces of information.
  • the time information in the first information includes time information 2 and time information 3.
  • time information 2 is used by the access network device to determine the time domain position at which the first terminal device starts monitoring the PDCCH in the local period
  • time information 3 is used by the access network device to determine the position for the duration. For the specific process, see Time The introduction of information 1 will not be repeated here.
  • the starting position of the duration in the DRX cycle is determined based on the DRX cycle length and the DRX start offset value.
  • the DRX start offset value is determined according to one or more parameters in drx-LongCycleStartOffset and drx-SlotOffset.
  • the cycle length of DRX is determined based on one or more parameters of drx-LongCycleStartOffset and shortDRX.
  • the DRX cycle length is 16ms.
  • the length of the duration in the DRX cycle is set according to the second jitter range.
  • the center point corresponding to the first jitter range is 0 ms
  • the time position corresponding to the first jitter range is [-2, 2] ms
  • the time position when the first terminal equipment starts monitoring the PDCCH is -2 ms.
  • the center point corresponding to the first jitter range is 16 ms
  • the time position corresponding to the first jitter range is [14,18] ms
  • the time position when the first terminal equipment starts monitoring the PDCCH is 14 ms.
  • the center point corresponding to the second jitter range is 0ms
  • the duration in the DRX cycle is [-4,4]ms
  • the center point corresponding to the second jitter range is 16ms
  • the duration in the DRX cycle is [12,20]ms.
  • Time information 1 indicates time point X, and time point X can be an absolute position, such as the 2ms, 18ms, and 34ms.
  • the time point X can also be a relative position, such as an offset relative to the starting position of the DRX cycle, such as an offset of 2ms.
  • the unit of time point X can be one of the following: symbols, slots, mini-slots, subframes, frames, ms, etc.
  • the definitions of symbols, micro-slots, time slots, subframes, and frames in the embodiments of this application may refer to the relevant technical specifications of the 3rd generation partnership project (3GPP).
  • the center point corresponding to the first jitter range is 2 ms
  • the time position corresponding to the first jitter range is [0, 4] ms
  • the time position when the first terminal equipment starts monitoring the PDCCH is 0 ms.
  • the center point corresponding to the first jitter range is 18 ms
  • the time position corresponding to the first jitter range is [16, 20] ms
  • the time position when the first terminal equipment starts monitoring the PDCCH is 16 ms.
  • the center point corresponding to the second jitter range is 0ms
  • the duration in the DRX cycle is [-2,6]ms
  • the center point corresponding to the second jitter range is 16ms
  • the duration in the DRX cycle is [12,20]ms.
  • Time information 2 indicates time point Y
  • time information 3 indicates time point Z.
  • the center point corresponding to the first jitter range is 4.5 ms
  • the time position corresponding to the first jitter range is [2.5, 6.5] ms
  • the time position when the first terminal equipment starts monitoring the PDCCH is 2.5 ms.
  • the center point corresponding to the first jitter range is 20.5 ms
  • the time position corresponding to the first jitter range is [18.5, 22.5] ms
  • the time position when the first terminal equipment starts monitoring the PDCCH is 18.5 ms.
  • the center point corresponding to the second jitter range is 3ms
  • the duration in the DRX cycle is [-1,7]ms.
  • the center point corresponding to the second jitter range is 19ms
  • the duration in the DRX cycle is [15,23]ms.
  • the starting position of the DRX cycle can better match the arrival information of the XR service, avoiding the problem of high power consumption caused by the first terminal equipment starting to monitor the PDCCH prematurely. It can also avoid the problem of missed detection caused by the first terminal equipment starting to monitor the PDCCH too late.
  • the communication method in this embodiment of the present application also includes the following steps:
  • the first core network device sends a subscription message to the third core network device.
  • the third core network device receives the subscription message from the first core network device.
  • the subscription message includes an analysis ID, and the analysis ID is used to request analysis of the jitter range of the first service.
  • the analysis ID is used to request the analysis of the jitter range of the first service in a local period (it can be understood that the analysis ID is used to request the analysis of a small jitter range), and/or the analysis ID is used to request the analysis of the first service in the sustained period.
  • jitter range It can be understood that the analysis ID is used to request analysis of a large jitter range).
  • the first core network device is an SMF network element
  • the third core network device is an NWDAF network element.
  • the SMF network element sends a subscription message to the NWDAF network element.
  • the third core network device obtains the first data and/or the second data according to the subscription message.
  • the first data may be jitter information on the AF network element side, such as jitter size, application (application, APP) identifier, first terminal device identifier, IP five-element Group ID.
  • the second data may include at least one of the following: jitter information measured by the UPF network element, and jitter information measured by the access network equipment.
  • the jitter information measured by UPF network elements can be understood as the superposition of AF jitter and fixed network jitter.
  • AF jitter refers to the first data.
  • Fixed network jitter refers to the jitter generated from the application server to the UPF network element of the 3GPP network.
  • the jitter information measured by the UPF network element includes: the jitter size measured by the UPF network element, GTP tunnel information and IP five-tuple identification.
  • the jitter information measured by the access network equipment can be understood as the jitter measured by the UPF network element and the jitter generated by the UPF network element to the access network equipment.
  • the jitter information measured by the access network equipment includes: the jitter size measured by the access network equipment and GTP tunnel information.
  • the third core network device determines the jitter range learning result of the first service based on the obtained information.
  • the jitter range learning result of the first service includes: the jitter range estimation result of the first service.
  • the jitter range estimation result of the first service includes at least one of the first jitter range and the second jitter range.
  • the jitter range estimation result of the first service includes the first jitter range.
  • the jitter range estimation result of the first service includes the second jitter range.
  • the third core network device sends the jitter range learning result of the first service to the first core network device.
  • the first core network device is an SMF network element
  • the third core network device is an NWDAF network element.
  • the NWDAF network element sends a notification message to the SMF network element.
  • the notification message includes the jitter range learning result of the first service.
  • the first core network device can provide jitter information of the first service to the access network device, so that the access network device can perform jitter according to the first For the jitter range of the service, set the DRX parameters of the first terminal device. For details, see the introduction of S702 and S703, which will not be described again here.
  • the third core network device when determining the jitter range learning result of the first service, the third core network device also uses cell information and/or QoS flow information.
  • cell information and QoS flow information please refer to the introduction of S701b and will not be described again here.
  • the cell information may be information provided by the OAM network element to the third core network device, such as cell identification, frequency information, signal strength, signal quality, etc.
  • the information of the QoS flow may be information provided by the SMF network element to the third core network device, such as the QoS flow identifier, QoS parameters, the identifier of the first terminal device, etc.
  • the analysis ID is used to request analysis of the time when the service data of the first service reaches the second core network device.
  • Analytics ID data arrival information
  • application which can be understood as the analytics ID is used to request
  • the data arrival information of a certain application is analyzed, that is, the time when the service data of the service reaches the second core network device.
  • the application is used to provide the first terminal device with continuous service of the first service.
  • the jitter range learning result of the first service also includes time information.
  • the time information indicates the estimated time at which the service data of the first service reaches the second core network device. For details, please refer to the introduction to the time information in the first information, which will not be described again here.
  • embodiments of the present application also provide a communication device.
  • the communication device may be the network element in the above method embodiment, or a device including the above network element, or a component that can be used for the network element.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • FIG. 18 shows a schematic structural diagram of a communication device 1800.
  • the communication device 1800 includes: a processor 1801, a communication interface 1802, and a memory 1803.
  • the communication device may also include a bus 1804.
  • the communication interface 1802, the processor 1801 and the memory 1803 can be connected to each other through the bus 1804;
  • the bus 1804 can be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus 1804 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 18, but it does not mean that there is only one bus or one type of bus.
  • the processor 1801 can be a CPU, a general-purpose processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of DSP and microprocessors, and so on.
  • the communication device 1800 in Figure 18 may be an access network device in the communication method 700 of this embodiment of the present application, and the processor 1801 is used to support the access network device to perform processing operations, such as S703.
  • the communication interface 1802 is used to support the access network device to perform sending and receiving operations, such as S702.
  • the communication device 1800 in Figure 18 may be the first core network device in the communication method 700 in this embodiment of the present application, and the processor 1801 is used to support the first core network device to perform processing operations, such as S701.
  • the communication interface 1802 is used to support the first core network device to perform sending and receiving operations, such as S702.
  • the communication device 1800 in FIG. 18 may be the third core network device in the communication method 700 according to the embodiment of the present application, and the processor 1801 is used to support the third core network device to perform processing operations, such as S1602 and S1603.
  • the communication interface 1802 is used to support the third core network device to perform sending and receiving operations, such as S1601 and S1604.
  • embodiments of the present application also provide a computer program product carrying computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute the method described in the above embodiments.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute the steps described in the above embodiments. Shao's method.
  • the embodiment of the present application also provides a chip, including: a processing circuit and a transceiver circuit.
  • the processing circuit and the transceiver circuit are used to implement the method introduced in the above embodiment.
  • the processing circuit is used to perform the processing actions in the corresponding method, and the transceiver circuit is used to perform the receiving/transmitting actions in the corresponding method.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., digital video discs (DVD)), or semiconductor media (e.g., solid state drives (SSD)) wait.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple devices. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the present application can be implemented by means of software plus necessary general hardware. Of course, it can also be implemented by hardware, but in many cases the former is a better implementation. . Based on this understanding, the essence or the contribution part of the technical solution of the present application can be embodied in the form of a software product.
  • the computer software product is stored in a readable storage medium, such as a computer floppy disk, a hard disk or an optical disk. etc., including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,涉及无线通信技术领域,能够减少无效监测物理下行控制信道PDCCH的时长,从而降低终端设备的功耗。该方法包括:第一核心网设备获取第一信息。其中,第一信息包括第一抖动信息,第一抖动信息指示第一抖动范围,第一抖动范围与第一局部时段有关,第一局部时段位于第一业务的持续时段中,第一业务与第一终端设备有关。然后,第一核心网设备向接入网设备发送第一信息。其中,第一信息与非连续接收DRX参数的设置关联。

Description

一种通信方法及装置
本申请要求于2022年06月27日提交国家知识产权局、申请号为202210743780.3、发明名称为“一种功耗控制方法、终端设备、网络设备”的中国专利申请的优先权,以及2022年07月25日提交国家知识产权局、申请号为202210879015.4、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中,终端设备需要监测物理下行控制信道(physical downlink control channel,PDCCH),以确定网络设备是否有调度信息。网络设备可以为终端设备配置非连续接收(discontinuous reception,DRX)机制来降低终端设备的功耗。
发明内容
在扩展现实(extended reality,XR)业务中,数据帧通常具有周期性,但不同数据帧在应用服务器和接入网设备之间的传输过程中,由于选择不同的路由方式以及负载的变化,数据帧到达接入网设备的时间发生抖动(jitter),即原有的周期性具有一定的抖动。在数据帧的周期与DRX机制的周期匹配的情况下,若DRX周期(DRX cycle)中的持续时间(on duration)以及监测PDCCH的时机设置不合理,则终端设备在监测到PDCCH前,所执行的PDCCH监测无意义,浪费功耗。
本申请提供一种通信方法及装置,能够减少无效监测PDCCH的时长,从而降低终端设备的功耗。为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该方法的执行主体可以是第一核心网设备,也可以是应用于第一核心网设备中的芯片。下面以执行主体是第一核心网设备为例进行描述。该方法包括:第一核心网设备获取第一信息。其中,第一信息包括第一抖动信息,第一抖动信息指示第一抖动范围,第一抖动范围与第一局部时段有关,第一局部时段位于第一业务的持续时段中,第一业务与第一终端设备有关。然后,第一核心网设备向接入网设备发送第一信息。其中,第一信息与非连续接收DRX参数的设置关联。
如此,接入网设备即可根据第一抖动信息来设置DRX参数,如确定第一终端设备开始监测PDCCH的时域位置。也就是说,第一终端设备在DRX周期中持续时间的一部分时段上监测PDCCH,无需在整个持续时间期间持续监测PDCCH,从而减少无效监测PDCCH的时长,以降低终端设备的功耗。
在一种可能的设计中,第一核心网设备在持续时段中向接入网设备发送第一信息时,第一信息还包括第二抖动信息。其中,第二抖动信息指示第二抖动范围,第二抖动范围为第一业务的持续时段中整体时段的抖动范围。
也就是说,第一核心网设备在每次向接入网设备提供第一抖动信息时,还提供第二 抖动信息。
在一种可能的设计中,第一核心网设备在持续时段中首次向接入网设备发送第一信息时,第一信息还包括第二抖动信息。其中,第二抖动信息指示第二抖动范围,第二抖动范围为第一业务的持续时段中整体时段的抖动范围。
也就是说,第一核心网设备在第一业务的持续时间中首次向接入网设备提供第一抖动信息时,还提供第二抖动信息。
在一种可能的设计中,第一核心网设备向接入网设备发送第一信息之前,该方法还包括:第一核心网设备向接入网设备发送第二抖动信息。其中,第二抖动信息指示第二抖动范围,第二抖动范围为第一业务的持续时段中整体时段的抖动范围。
也就是说,第一抖动信息和第二抖动信息是分开发送的。第一核心网设备先向接入网设备提供第一抖动信息,再向接入网设备提供第二抖动信息。
在一种可能的设计中,第一抖动范围小于第二抖动范围。
在一种可能的设计中,第一核心网设备获取第一信息,包括:第一核心网设备接收来自应用服务器的第一信息。也就是说,第一核心网设备可以从应用服务器获取第一信息。
在一种可能的设计中,第一核心网设备获取第一信息,包括:第一核心网设备根据第一数据和/或第二数据确定第一信息。其中,第一数据包括应用服务器产生第一业务的业务数据的时刻偏差,第二数据包括第一业务的业务数据在以下过程中所产生的抖动:从应用服务器到第二核心网设备的传输过程,和/或,从第二核心网设备到接入网设备的传输过程。
在一种可能的设计中,第一核心网设备在确定第一信息时,还根据小区信息和服务质量QoS流的信息中的至少一项。其中,小区信息指示第一终端设备所处的小区,QoS流用于承载第二核心网设备向第一终端设备发送的第一业务的业务数据,QoS流是第一核心网设备配置给第二核心网设备、接入网设备和第一终端设备的。也就是说,第一核心网设备还能够确定是哪一小区或哪一QoS流的抖动范围。
在一种可能的设计中,第一核心网设备获取第一信息,包括:第一核心网设备接收来自第三核心网设备的第一信息。也就是说,第一核心网设备可以从其他核心网设备获取第一信息。
在一种可能的设计中,第一信息是第三核心网设备根据第一数据和第二数据中的至少一项确定的。其中,第一数据包括应用服务器产生第一业务的业务数据的时刻偏差,第二数据包括第一业务的业务数据在以下过程中所产生的抖动:从应用服务器到第二核心网设备的传输过程,和/或,从第二核心网设备到接入网设备的传输过程。
在一种可能的设计中,第一信息是第三核心网设备还根据小区信息和QoS流的信息中的至少一项确定的。其中,小区信息指示第一终端设备所处的小区,QoS流用于承载第二核心网设备向第一终端设备发送的第一业务的业务数据,QoS流是第一核心网设备配置给第二核心网设备、接入网设备和第一终端设备的。
在一种可能的设计中,第一核心网设备接收来自第三核心网设备的第一信息之前,该方法还包括:第一核心网设备向第三核心网设备发送订阅消息。其中,订阅消息包括分析标识ID,分析ID用于请求分析第一业务的抖动信息,以使第三核心网设备向第一 核心网设备提供第一业务的抖动信息。
在一种可能的设计中,第一核心网设备向接入网设备发送第一信息之后,该方法还包括:第一核心网设备获取第三抖动信息。其中,第三抖动信息指示第三抖动范围,第三抖动范围与第二局部时段有关,第二局部时段位于第一业务的持续时段中。然后,第一核心网设备向接入网设备发送第三抖动信息。其中,第三抖动信息与DRX参数的设置关联。
由于第三抖动范围更能够表征第二局部时段的抖动特征,所以,接入网设备基于第三抖动信息来更新DRX参数,如更新第一终端设备在第二局部时段上开始监测PDCCH的时域位置,从而降低第一终端设备的功耗。
在一种可能的设计中,第一核心网设备获取第三抖动信息,包括:第一核心网设备根据第一移动时间窗内的数据到达信息,确定第三抖动信息,或者,第一核心网设备根据第一移动时间窗的数据到达信息,以及第一抖动信息,确定第三抖动信息。其中,第一移动时间窗在第二局部时段之前。数据达到信息指示第一业务的业务数据到达第二核心网设备的时刻。
也就是说,第一核心网设备对第一移动时间窗内的数据达到信息进行统计分析,以确定是否更新局部时段上的抖动范围。
在一种可能的设计中,第一移动时间窗具有第一长度。
在一种可能的设计中,第一信息还包括第三抖动信息。其中,第三抖动信息指示第三抖动范围,第三抖动范围与第二局部时段有关,第二局部时段位于第一业务的持续时段中。
也就是说,第一核心网设备向接入网设备一次性提供至少两个局部时段上的抖动范围,以使接入网设备在不同局部时段采用不同的DRX参数,如第一终端设备在不同局部时段上开始监测PDCCH的时域位置不同,从而降低第一终端设备侧的功耗。
在一种可能的设计中,第一核心网设备向接入网设备发送第一信息,包括:第一核心网设备向接入网设备发送控制面信令。其中,第一核心网设备为会话管理网元,控制面信令包括第一信息。也就是说,第一核心网设备通过控制面向接入网设备发送第一信息。
在一种可能的设计中,控制面信令为N2会话管理消息。
在一种可能的设计中,第一核心网设备向接入网设备发送第一信息,包括:第一核心网设备向接入网设备发送用户数据包。其中,第一核心网设备为用户面网元,用户数据包包括第一信息。也就是说,第一核心网设备通过用户面向接入网设备发送第一信息。
在一种可能的设计中,用户数据包包括通用分组无线服务隧道协议用户面GTP-U包头,GTP-U包头包括第一信息。
在一种可能的设计中,第一核心网设备向接入网设备发送第一信息,包括:第一核心网设备通过第四核心网设备向接入网设备发送第一信息。也就是说,第一核心网设备通过其他核心网设备向接入网设备发送第一信息。
在一种可能的设计中,第一核心网设备为会话管理网元,第四核心网设备为用户面网元。
在一种可能的设计中,第一核心网设备为用户面网元,第四核心网设备为会话管理网元。
第二方面,提供一种通信方法。该方法的执行主体可以是第三核心网设备,也可以是应用于第三核心网设备中的芯片。下面以执行主体是第三核心网设备为例进行描述。该方法包括:第三核心网设备接收来自第一核心网设备的订阅消息。其中,订阅消息包括分析标识ID,分析ID用于请求分析第一业务的抖动范围,第一业务与第一终端设备有关。第三核心网设备根据订阅消息,获取第一数据和第二数据中的至少一项信息。其中,第一数据包括应用服务器产生第一业务的业务数据的时刻偏差,第二数据包括第一业务的业务数据在以下过程中所产生的抖动:从应用服务器到第二核心网设备的传输过程,和/或,从第二核心网设备到接入网设备的传输过程。第三核心网设备根据获取的信息,确定第一业务的抖动范围学习结果。第三核心网设备向第一核心网设备发送第一业务的抖动范围学习结果。
也就是说,第三核心网设备能够对第一数据和/或第二数据进行统计分析,以得到第一业务的抖动范围学习结果。在第一核心网设备订阅第一业务的抖动信息的情况下,第三核心网设备即可向第一核心网设备提供第一业务的抖动范围学习结果,以使接入网设备根据第一业务的抖动信息来设置DRX参数,如确定第一终端设备开始监测PDCCH的时域位置。也就是说,第一终端设备在DRX周期中持续时间的一部分时段上监测PDCCH,无需在整个持续时间期间持续监测PDCCH,从而减少无效监测PDCCH的时长,以降低终端设备的功耗。
在一种可能的设计中,第三核心网设备在确定第一业务的抖动范围学习结果时,还根据以下至少一项:小区信息,小区信息指示第一终端设备所处的小区。或者,服务质量QoS流的信息,QoS流用于承载第二核心网设备向第一终端设备发送的第一业务的业务数据,QoS流是第一核心网设备配置给第二核心网设备、接入网设备和第一终端设备的。
也就是说,第三核心网设备还能够针对QoS流或第一终端设备所处的小区进行统计分析,以得到针对某一小区或某一QoS流的学习结果。
在一种可能的设计中,第一业务的抖动范围学习结果包括第一抖动范围和第二抖动范围中的至少一项。其中,第一抖动范围与第一局部时段有关,第一局部时段位于第一业务的持续时段中,第一业务与第一终端设备有关。第二抖动范围为第一业务的持续时段中整体时段的抖动范围。
这样一来,第一核心网设备即可向接入网设备提供第一业务的持续时段或局部时段上的抖动范围,从而使得接入网设备能够确定第一终端设备开始监测PDCCH的时域位置,以及DRX周期中持续时间的起始位置。
在一种可能的设计中,第一业务的抖动范围学习结果还包括时间信息。其中,时间信息指示第一业务的业务数据到达第二核心网设备的估计时间。
这样一来,第一核心网设备即可向接入网设备提供第一业务的业务数据到达第二核心网设备的估计时间,从而使得接入网设备能够更精准地确定第一终端设备开始监测PDCCH的时域位置,以及DRX周期中持续时间的起始位置。
在一种可能的设计中,分析ID还用于请求分析第一业务的业务数据到达第二核心 网设备的估计时间,以使第三核心网设备向第一核心网设备提供时间信息。
在一种可能的设计中,第三核心网设备为数据分析网元。
第三方面,提供一种通信方法。该方法的执行主体可以是接入网设备,也可以是应用于接入网设备中的芯片。下面以执行主体是接入网设备为例进行描述。该方法包括:接入网设备接收来自第一核心网设备的第一信息。其中,第一信息包括第一抖动信息,第一抖动信息指示第一抖动范围,第一抖动范围与第一局部时段有关,第一局部时段位于第一业务的持续时段中,第一业务与第一终端设备有关。然后,接入网设备根据第一信息,在第一局部时段对第一终端设备配置非连续接收DRX参数。
在一种可能的设计中,接入网设备在持续时段中接收来自第一核心网设备的第一信息时,第一信息还包括第二抖动信息。其中,第二抖动信息指示第二抖动范围,第二抖动范围为第一业务的持续时段中整体时段的抖动范围。
在一种可能的设计中,接入网设备在持续时段中首次接收来自第一核心网设备的第一信息时,第一信息还包括第二抖动信息。其中,第二抖动信息指示第二抖动范围,第二抖动范围为第一业务的持续时段中整体时段的抖动范围。
在一种可能的设计中,接入网设备接收来自第一核心网设备的第一信息之前,该方法还包括:接入网设备接收来自第一核心网设备的第二抖动信息。其中,第二抖动信息指示第二抖动范围,第二抖动范围为第一业务的持续时段中整体时段的抖动范围。
在一种可能的设计中,第一抖动范围小于第二抖动范围。
在一种可能的设计中,接入网设备接收来自第一核心网设备的第一信息之后,该方法还包括:接入网设备接收来自第一核心网设备的第三抖动信息。其中,第三抖动信息指示第三抖动范围,第三抖动范围与第二局部时段有关,第二局部时段位于第一业务的持续时段中。然后,接入网设备根据第三抖动信息,在第二局部时段对第一终端设备配置DRX参数。
在一种可能的设计中,第一信息还包括第三抖动信息。其中,第三抖动信息指示第三抖动范围,第三抖动范围与第二局部时段有关,第二局部时段位于第一业务的持续时段中。
在一种可能的设计中,接入网设备根据第一信息,在第一局部时段对第一终端设备配置DRX参数,包括:接入网设备根据第一抖动信息,确定在第一局部时段中第一终端设备开始监测PDCCH的时域位置,以避免第一终端设备过早地开始监测PDCCH,从而降低第一终端设备侧的功耗。
在一种可能的设计中,第二抖动信息用于接入网设备配置DRX周期中持续时间的长度,以使得第一终端设备确定停止监测PDCCH的时域位置,从而降低第一终端设备侧的功耗。其中,PDCCH的时域位置在DRX周期的持续时间中,DRX周期在第一局部时段中。
在一种可能的设计中,该方法还包括:接入网设备接收来自第一核心网设备的时间信息。其中,时间信息用于接入网设备确定以下至少一项:第一局部时段中第一终端设备开始监测PDCCH的时域位置,和/或,持续时间的位置。
由于第一核心网设备提供的时间信息更能够表征第一业务的业务数据到达第二核心网设备的时间,所以,接入网设备根据时间信息来确定以下至少一项:第一局部时段中 第一终端设备开始监测PDCCH的时域位置,和/或,持续时间的位置,准确性更高。
在一种可能的设计中,时间信息包括第一时间信息和第二时间信息。其中,第一时间信息用于接入网设备确定第一局部时段中第一终端设备开始监测PDCCH的时域位置。第二时间信息用于接入网设备确定持续时间的位置。
相应的,接入网设备根据第一时间信息和第一抖动信息确定第一终端设备开始监测PDCCH的时域位置。接入网设备根据第二时间信息和第二抖动信息确定DRX周期中持续时间的位置。也就是说,接入网设备参考了不同的时间信息来确定开始监测PDCCH的时域位置和持续时间的起始位置。这样一来,即使业务周期与DRX周期之间存在一定的偏差,接入网设备也能够准确地设置DRX参数。
在一种可能的设计中,接入网设备接收来自第一核心网设备的第一信息,包括:接入网设备接收来自第一核心网设备的控制面信令。其中,第一核心网设备为会话管理网元,控制面信令包括第一信息。
在一种可能的设计中,控制面信令为N2会话管理消息。
在一种可能的设计中,接入网设备接收来自第一核心网设备的第一信息,包括:接入网设备接收来自第一核心网设备的用户数据包。其中,第一核心网设备为用户面网元,用户数据包包括第一信息。
在一种可能的设计中,用户数据包包括通用分组无线服务隧道协议用户面GTP-U包头,GTP-U包头包括第一信息。
在一种可能的设计中,接入网设备接收来自第一核心网设备的第一信息,包括:接入网设备通过第四核心网设备接收来自第一核心网设备的第一信息。
在一种可能的设计中,第一核心网设备为会话管理网元,第四核心网设备为用户面网元。
在一种可能的设计中,第一核心网设备为用户面网元,第四核心网设备为会话管理网元。
第四方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的第一核心网设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的第一核心网设备,或者实现上述第一核心网设备功能的芯片。
第五方面,提供一种芯片。该芯片包括处理电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信。例如,该芯片可以为实现上述第一方面或第一方面任一种可能的设计中的第一核心网设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第一方面或第一方面任一种可能的设计中的方法。
第六方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的第三核心网设备所执行的方法。该通信装置可以为上述第二方面或第二方面任一种可能的设计中的第三核心网设备,或者实现上述第三核心网设备功能的芯片。
第七方面,提供一种芯片。该芯片包括处理电路和输入输出接口。其中,输入输出 接口用于与芯片之外的模块通信。例如,该芯片可以为实现上述第二方面或第二方面任一种可能的设计中的第三核心网设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第二方面或第二方面任一种可能的设计中的方法。
第八方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的接入网设备所执行的方法。该通信装置可以为上述第三方面或第三方面任一种可能的设计中的接入网设备,或者实现上述接入网设备功能的芯片。
第九方面,提供一种芯片。该芯片包括处理电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信。例如,该芯片可以为实现上述第三方面或第三方面任一种可能的设计中的接入网设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第三方面或第三方面任一种可能的设计中的方法。
第十方面,提供一种计算机可读存储介质。该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十二方面,提供一种电路系统。电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的方法。
第十三方面,提供一种通信系统,包括:第一核心网设备和接入网设备。其中,第一核心网设备用于执行第一方面所述的方法,接入网设备用于执行第三方面所述的方法。
在一种可能的设计中,该通信系统还包括:第三核心网设备。其中,第三核心网设备用于执行第二方面所述的方法。
其中,第四方面至第十三方面中任一种设计所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的再一种通信系统的架构示意图;
图3a为本申请实施例提供的又一种通信系统的架构示意图;
图3b为本申请实施例提供的又一种通信系统的架构示意图;
图4a为本申请实施例提供的一种DRX机制配置示意图;
图4b为本申请实施例提供的再一种DRX机制配置示意图;
图5a为本申请实施例提供的一种数据调度的场景示意图;
图5b为本申请实施例提供的再一种数据调度的场景示意图;
图5c为本申请实施例提供的又一种数据调度的场景示意图;
图6为本申请实施例提供的一种抖动范围示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8a为本申请实施例提供的一种抖动范围示意图;
图8b为本申请实施例提供的又一种数据调度的场景示意图;
图9为本申请实施例提供的又一种数据调度的场景示意图;
图10为本申请实施例提供的再一种通信方法的流程示意图;
图11a为本申请实施例提供的又一种通信方法的流程示意图;
图11b为本申请实施例提供的又一种通信方法的流程示意图;
图11c为本申请实施例提供的又一种通信方法的流程示意图;
图11d为本申请实施例提供的又一种通信方法的流程示意图;
图12为本申请实施例提供的又一种通信方法的流程示意图;
图13为本申请实施例提供的又一种通信方法的流程示意图;
图14为本申请实施例提供的又一种数据调度的场景示意图;
图15为本申请实施例提供的又一种数据调度的场景示意图;
图16为本申请实施例提供的又一种通信方法的流程示意图;
图17为本申请实施例提供的又一种通信方法的流程示意图;
图18为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例中,两个以上包括两个本身。多个可以包括两个,也可以包括三个,还可以包括更多。
本申请提供的技术方案可以应用于各种通信系统,例如:长期演进(long termevolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、物联网(internet of things,IoT)系统、窄带物联网系统(narrow band-internet of things,NB-IoT)、无线保真(wireless fidelity,Wi-Fi)、第五代(5th generation,5G)通信系统或新空口(new radio,NR)、第六代移动通信系统等。
示例性的,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统包括终端设备、接入网设备和核心网。
其中,终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设 备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、签约单元(subscriber unit)、签约站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,进行介绍。
其中,接入网设备可以是无线通信或者有线通信的接入点,例如基站或基站控制器,Wi-Fi的接入点或者Wi-Fi控制器,或者固网接入的接入点等。其中,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信系统(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),LTE中的演进型基站(evolutional node B,eNB或e-NodeB),IoT或者NB-IoT中的eNB,5G通信系统或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。其中,接入网设备也可以描述为无线接入网(radio access network,RAN)设备。
核心网包括各种核心网设备,如图2所示,核心网设备包括网络切片选择功能(network slice selection function,NSSF)网元、网络开放功能(network exposure function,NEF)网元、网络功能存储功能(network exposure function repository function,NRF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元、认证服务器功能(authentication server function,AUSF)网元、接入与移动性管理 功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、服务通信代理(service communication proxy,SCP)网元、用户面功能(user plane function,UPF)网元,以及数据网络(data network,DN)等。
其中,各个核心网设备的功能介绍如下:
UPF网元,主要功能是数据包路由和转发、移动性锚点、上行分类器来支持路由业务流到DN、以及分支点来支持多归属协议数据单元(protocol data unit,PDU)会话(session)等。
DN是为用户提供数据传输服务的运营商网络,例如运营商服务、互联网接入或者第三方服务等。
AUSF网元,主要负责提供鉴权服务。
AMF网元,负责移动网络中的移动性管理,主要功能包含管理用户注册、可达性检测、SMF节点的选择、以及移动状态转换管理等。
SMF网元,负责移动网络中的会话管理,主要功能是控制会话的建立、修改和删除,用户面节点的选择等。
SCP网元,主要负责网元与对应网元服务之间的间接通信。
NSSF网元,主要负责为终端设备选择网络切片。
NEF网元,主要负责与外部第三方应用之间进行网络能力信息开放或外部信息提供。
NRF网元,用于运营商网络将网络中的数据开放给第三方应用服务器,或接收第三方应用服务器为网络提供的数据。
PCF网元,主要负责提供策略,例如,服务质量(quality of service,QoS)策略、切片选择策略等。
UDM网元,主要用于存储用户数据,例如,签约信息、鉴权/授权信息等。
AF网元,主要负责向第三代合作伙伴计划(3rd generation partnership project,3GPP)网络提供业务,例如,影响业务路由、与PCF之间交互以进行策略控制等。
在图2所示的网络架构中,N1为终端设备和AMF网元之间的接口。N2为接入网设备和AMF网元之间的接口,用于非接入层(non-access-stratum,NAS)消息的发送等。N3为接入网设备和UPF网元之间的接口,用于传输用户面的数据等。N4为SMF网元和UPF网元之间的接口,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息。N6接口为UPF网元和DN之间的接口,用于传输用户面的数据等。N9为UPF网元之间的接口。Nausf为AUSF网元展现的基于服务的接口,Namf为AMF网元展现的基于服务的接口,Nsmf为SMF网元展现的基于服务的接口,Nnssf为NSSF网元展现的基于服务的接口,Nnef为NEF网元展现的基于服务的接口,Nnrf为NRF网元展现的基于服务的接口,Npcf为PCF网元展现的基于服务的接口,Nudm为UDM网元展现的基于服务的接口,Naf为AF网元展现的基于服务的接口。
应理解,图2所示的各个网元的详细功能或作用,可以参考相关协议或标准等,图2所示的N1、N2、N3、N4、N6、N9等均为接口序列号。示例性的,上述接口序列号 的含义可参见3GPP标准协议中定义的含义,本申请对于上述接口序列号的含义不做限制。
还应理解,对于上述各个核心网设备的名称,如上述SMF和AMF等,仅是一个名称,对设备本身不构成限定。可以理解的是,在5G网络以及未来其它的网络中,也可以是其他的名称,本申请实施例对此不作具体限定。例如,AMF网元还可以被称为AMF或者AMF实体,在此进行统一说明,以下不再赘述。
可选的,核心网设备可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能模块既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能模块,或者是平台(例如,云平台)上实例化的虚拟化功能模块。
示例性的,图3a和图3b为本申请实施例提供的再一种通信系统的架构示意图。该通信系统包括网络数据分析功能(network data analysis function,NWDAF)网元,以及与NWDAF网元交互的其他网元。图3a示出了数据收集时使用的架构,即NWDAF网元调用其他5G核心网的网元的服务,以收集网络分析所需的输入信息。图3b示出了数据开放时使用的架构,即NWDAF网元通过提供NWDAF服务,将分析数据发送给订阅或请求该分析数据的网元。其中,NWDAF代表运营商管理的网络分析逻辑功能。NWDAF网元为其他网元提供切片层面的网络数据分析,在网络切片实例级别上提供网络分析信息,而并不需要知道使用该切片的当前订阅用户。图3a和图3b所示的“Any NF”表示任何网络功能网元,“Nnf”和“Nnwdaf”表示服务化接口的名称,具体可参见3GPP标准协议中相关描述,此处不再赘述。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。应理解,这些说明仅为便于理解本申请实施例,而不应对本申请构成任何限定。
1、DRX机制
为了降低终端设备的功耗,接入网设备可以向终端设备配置DRX机制。DRX机制可以分为两种:空闲态(idle)的DRX和连接态的非连续接收(connected mode discontinuous reception,C-DRX),这两种实现机制有所不同,具体介绍如下:
在空闲态的DRX下,终端设备主要监听接入网设备的寻呼,终端设备在一个DRX周期(DRX cycle)监听一次寻呼时机(paging occasion)。
在C-DRX机制下,参见图4a,终端设备可以周期性的进入睡眠状态,不需要监测PDCCH。一个DRX周期至少包括一个DRX持续时间定时器(drx-on Duration Timer)的时间和可能的一段休眠(opportunity for drx)的时间。其中,一个DRX持续时间定时器的时间又称为“持续时间(on duration)”。接入网设备通过无线资源控制(radio resource control,RRC)信令向终端设备配置DRX参数,如DRX周期长度(DRX cycle length)、DRX持续时间定时器、DRX非激活定时器(drx-InactivityTimer)、DRX混合自动重传请求往返时间定时器(drx-hybrid auto repeat request round trip timer,drx-HARQ-RTT-Timer)、DRX重传定时器(drx-RetransmissionTimer)等参数。其中,终端设备在DRX持续时间定时器、DRX非激活定时器、下行链路(downlink,DL)的DRX重传定时器和上行链路(uplink,UL)的DRX重传定时器启动期间均需要监测PDCCH,这些时间也统称为激活时间(Active Time)。其余时间被统称为在激活时间 之外(outside Active Time)。在激活时间外,终端设备无需监测PDCCH,此时终端设备可以进入睡眠状态,以节省功耗。
应理解,上述DRX持续时间定时器,指示了终端设备在DRX周期开始时连续监测PDCCH的时长。上述DRX非激活定时器,指示了当终端设备监测到PDCCH用于调度上行链路或下行链路初传数据时,启动(或重启)该定时器并保持持续监测PDCCH的时长。
另外,DRX参数还包括DRX长周期和起始偏移(drx-LongCycleStartOffset),该参数用于配置长DRX周期的长度以及一个DRX周期(无论是长DRX周期还是短DRX周期)的起始位置的偏移值。其中,长DRX周期的长度以毫秒ms为单位,起始偏移的配置粒度为1ms。此外,DRX参数还包括DRX时隙偏移值(drx-SlotOffset),该参数用于配置启动drx-onDurationTimer之前的延迟值,其配置粒度为1/32ms,取值范围为0~31,即0ms~31/32ms。当接入网设备为终端设备使能DRX短周期时,DRX参数还可以包括短周期(shortDRX),该参数用于配置短DRX周期的长度。在上述参数中,drx-LongCycleStartOffset和/或shortDRX可以用于确定DRX周期,drx-LongCycleStartOffset和/或drx-SlotOffset可以用于确定DRX的起始偏移值。在本申请实施例中,DRX周期,可以理解是根据drx-LongCycleStartOffset和/或shortDRX确定的;DRX起始偏移值,可以理解是根据drx-LongCycleStartOffset和/或drx-SlotOffset确定的。
示例性的,C-DRX机制中支持的周期长度介绍如下:长DRX周期的长度为{10,20,32,……}ms,可以理解为,长DRX周期的长度为10ms,20ms,或32ms等。短DRX周期的长度为{2,3,4,5,6,7,8,10,14,16,20,30,32,……}ms,可以理解为,短DRX周期的长度为2ms,3ms,4ms,5ms,6ms,7ms,8ms,10ms,14ms,16ms,20ms,30ms,或32ms等。
以下行传输为例,DRX的大致过程:进入一个DRX周期后,在持续时间(on duration)的时间段内,终端设备开始持续监测PDCCH:
如果在持续时间的时间段内未监测到PDCCH,终端设备在持续时间的时间段结束后直接进入休眠期,如图4a所示。
如果在持续时间的时间段内监测到PDCCH,且该PDCCH用于调度新传的数据(即PDCCH用于传输初传调度的调度信息),那么,终端设备按照接收到的调度信息接收数据(即接收PDSCH),并且启动DRX非激活定时器,每当终端设备监测到初传调度的调度信息,该DRX非激活定时器就被启动(或重启)一次,终端设备在DRX非激活定时器定时期间,持续监测PDCCH,直至DRX非激活定时器超时(expire),终端设备进入休眠期,如图4b所示。
应理解,终端设备周期性的在各个持续时间的时间段内监测PDCCH,图4a和图4b中以实线方格表示持续时间的时间段。
2、XR
XR,是指通过计算机技术和可穿戴设备产生的一个真实与虚拟组合的、可人机交互的环境。XR是在增强现实(augmented reality,AR),虚拟现实(virtual reality,VR)和混合现实(mixed reality,MR)基础上提出的。换句话说,为了避免概念混 淆,XR其实是一个总称,包括了AR,VR和MR。XR业务的目的是利用高速网络,加上360度影像等技术,达到交互式的沉浸体验效果。XR业务具有如下特点:业务量较大,传输时延要求较高(即需要尽可能降低传输时延),数据帧到达间隔较短,或业务周期性比较明显等。
在接入网设备向终端设备传输XR或类似XR业务的数据帧场景中,数据帧具有明显的周期性,如当数据帧率为60每秒帧数(frame per second,fps)时,相邻两帧数据帧对应的业务数据的到达时间间隔平均为16.67ms。终端设备侧数据帧的理想到达时间间隔可以为16.67ms。应理解,数据帧是从应用层角度所定义的,一个数据帧也可以替换为一个视频帧。一个协议数据单元集合(protocol data unit set,PDU set)包括一帧(frame)数据帧中的业务数据。PDU set是从MAC层角度所定义的。一个数据帧也可以替换为一个PDU set。
如图5a所示,接入网设备可以为该终端设备配置比较接近数据帧到达时间间隔的DRX周期长度,例如可以为16ms,或者为17ms。或者,如图5b所示,接入网设备可以为该终端设备配置等于数据帧到达时间间隔的DRX周期长度,即16.67ms。
应理解,DRX周期中持续时间的起始位置可以与XR业务的业务周期(如虚线所示的位置)是重合的。此种情况下,也可以描述为,DRX周期与业务周期是匹配的。或者,DRX周期中持续时间的起始位置也可以与XR业务的业务周期(如虚线所示的位置)是不重合的,且差距在一定的范围内。或者,在某些DRX周期中持续时间的起始位置与XR业务的业务周期(如虚线所示的位置)是重合的,在其DRX周期中持续时间的起始位置与XR业务的业务周期(如虚线所示的位置)差距在一定的范围内。此种情况下,也可以描述为,DRX周期与业务周期是近似匹配的。在本申请实施例中,以DRX周期与业务周期匹配为例,进行介绍。
虽然,XR业务从总体上看具有较为明显的周期性,但是,由于应用服务器对不同数据帧的处理速度不同,并且不同数据帧从应用服务器通过互联网以及核心网到达接入网设备(如基站)的路由方式不同以及系统负载的变化,数据帧实际到达接入网设备(如基站)的时间可能出现抖动(jitter)现象,即原有的周期性具有一定的抖动,相应的,数据帧达到终端设备的时间也可能出现抖动。例如,抖动的时长可能为0~8ms。如图5b所示,数据帧的到达时间可能会延迟0~8ms,即数据帧到达的时间间隔在16.67ms~24.67ms之间波动。若数据帧实际到达时间处于DRX周期的持续时间之外,即终端设备在持续时间内未收到数据调度,则在持续时间之后终端设备不监测PDCCH。此种情况下,接入网设备将数据帧延迟到下一个DRX周期内进行调度。由于DRX周期长度约为16ms~17ms,延迟到下一个DRX周期内进行调度导致终端设备侧XR业务的数据帧延迟较大,可能造成卡顿现象,影响XR业务的用户体验。
在一些实施例中,接入网设备可以将DRX周期中的持续时间配置得较长,可以解决由于抖动引起的数据帧延迟到达的问题,尽可能使得数据帧到达时间处于持续时间内。如图5c所示,将持续时间的起始位置配置在数据帧可能达到的最早位置,将持续时间的长度配置为可以覆盖到最大抖动范围,使得持续时间的长度足以覆盖数据帧到达的所有可能时间段,如持续时间配置为8ms。但是,DRX的持续时间配置过长会导致终端设备的激活时间过长,如此,终端设备在PDCCH到达之前的时段内进行无效的 PDCCH监测(即监测了PDCCH但是没有收到数据调度信息),即DRX周期(DRX cycle)中的持续时间(on duration)以及监测PDCCH的时机设置不合理,则终端设备在监测到PDCCH前,所执行的PDCCH监测无意义,浪费功耗,难以达到节能的效果。
有鉴于此,本申请实施例提供两种通信方法,该方法可以应用于图1或图2的通信系统。下面,先介绍本申请实施例通信方法所依赖的基础假设。参见图6,图6示出了一种业务的抖动大小。以XR业务为例,在图6中,横轴为XR业务的数据帧的索引(index),纵轴为抖动的大小。从图6可知,各个数据帧的抖动的取值在0附近波动。并且,图6中的所有数据帧的抖动范围为纵向双箭头c指示的范围,或者说为图6中两条横虚线所表示的范围,本申请实施例中将此抖动范围,描述为第二抖动范围,也可以理解为,通信设备(如终端设备、接入网设备、核心网设备)对某一业务在持续时段内的抖动范围估计结果。而从局部来看,在一段时间内的数据帧(如相邻的几十个数据帧)的抖动范围相对较小。例如,图6中靠左的纵向双箭头a和纵向双箭头b所示。即,数据帧的抖动在短时间内的变化幅度相比在长时间内的变化幅度更小,并且,整体上存在一个“慢变”的趋势(如图6中虚曲线所示),本申请实施例中将双箭头a和纵向双箭头b所示的抖动范围,描述为第一抖动范围,也可以理解为,通信设备(如终端设备、接入网设备、核心网设备)对某一业务在持续时段内局部时段的抖动范围估计结果。容易理解的是,第一抖动范围小于第二抖动范围。
也就是说,相邻或相近的数据帧之间的抖动取值差别不会太大,具有一定的相关性。基于此,终端设备可以将当前数据帧的到达位置作为参考,再结合第一抖动范围,来确定下一个数据帧的到达位置的波动范围。终端设备可以仅在该小的波动范围内(即结合第一抖动范围所确定的数据帧到达位置的波动范围)监测PDCCH,而不用在第二抖动范围内监测PDCCH,从而降低终端设备监测PDCCH的功耗。
应理解,本申请下述实施例中各个设备之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
在本申请实施例提供的通信方法中,第一核心网设备获取第一信息。其中,第一信息包括第一抖动信息,第一抖动信息指示第一抖动范围,第一抖动范围与第一局部时段有关,第一局部时段位于第一业务的持续时段中,第一业务与第一终端设备有关。然后,第一核心网设备向接入网设备发送第一信息,其中,第一信息与DRX参数的设置关联。这样一来,接入网设备即可根据第一抖动信息来设置DRX参数,如确定第一终端设备开始监测PDCCH的时域位置。也就是说,第一终端设备在DRX周期中持续时间的一部分时段上监测PDCCH,无需在整个持续时间期间持续监测PDCCH,从而减少无效监测PDCCH的时长,以降低终端设备的功耗。
下面,结合图7至图17,对本申请实施例提出的通信方法进行详细介绍。本申请实施例提出的通信方法700包括如下步骤:
S701、第一核心网设备获取第一信息。
示例性的,第一核心网设备可以是用户面管理网元,如图2中的UPF网元。或者,第一核心网设备可以是会话管理网元,如图2中的SMF网元。
其中,第一信息中的抖动信息指示第一业务的抖动范围。示例性的,第一信息指示 的抖动范围可以是抖动范围估计结果,如根据历史数据进行估计,所得到的抖动范围估计结果。下面,通过4个示例(下述示例1~4)对第一信息中的抖动信息进行介绍:
示例1,第一信息包括第一抖动信息,但不包括第二抖动信息。
示例2,第一信息包括第一抖动信息和第二抖动信息。
示例3,第一信息包括第一抖动信息和第三抖动信息,但不包括第二抖动信息。
示例4,第一信息包括第一抖动信息、第二抖动信息和第三抖动信息。
其中,第一抖动信息的介绍如下:
第一抖动信息指示第一抖动范围。其中,第一抖动范围与第一局部时段有关,第一局部时段位于第一业务的持续时段中,第一业务与第一终端设备有关。也就是说,第一抖动范围是第一业务的持续时段中第一局部时段的抖动范围估计结果。
示例性的,第一业务可以是XR业务,如VR视频、AR视频、或云游戏业务。
示例性的,第一业务的持续时段,可以理解为,第一终端设备被第一业务持续服务的时间段。例如,第一终端设备上运行某一游戏应用,该游戏应用运行时间段,应用服务器可以为第一终端设备提供第一业务的持续服务,该时段也就是第一终端设备上第一业务的持续时段。相应的,第一业务的持续时段的起始时刻和结束时刻是不固定的,依据第一终端设备上运行某一应用的时间段来确定的。
示例性的,第一局部时段,可以理解为,上述第一业务的持续时段中局部的部分时段。例如,第一局部时段的起始时刻,可以是指,第一核心网设备执行S702的时刻,或者,接入网设备执行S702的时刻。在第一核心网设备实时更新局部时段的抖动范围的情况下,第一局部时段的结束时刻,可以是指,第一核心网设备执行S705的时刻,或者,接入网设备执行S705的时刻。相应的,第一局部时段的起始时刻和结束时刻是不固定的,依据S702和S705的执行时刻来确定的。此种情况下,可以理解为,第一核心网设备实时更新局部时段的抖动范围(即小的jitter范围)。
在第一核心网设备一次性下发多个局部时段的抖动范围的情况下,第一局部时段的结束时刻,可以是指,第一局部时段的下一个局部时段(下文中的第二局部时段)的起始时刻,如图8b所示。示例性的,如图8a所示,第一抖动范围为[-2,2]ms。
其中,第二抖动信息的介绍如下:
第二抖动信息指示第二抖动范围。其中,第二抖动范围为第一业务的持续时段中整体时段的抖动范围。也就是说,第二抖动范围是第一业务的持续时段中整体时段的抖动范围估计结果。其中,第一业务的持续时段,以及第一业务可以参见上述第一抖动信息的介绍,此处不再赘述。示例性的,如图8a所示,第二抖动范围为[-4,4]ms。
在本申请实施例中,第一抖动范围小于第二抖动范围。或者,第一抖动范围在第二抖动范围中,如图8a所示。
其中,第三抖动信息的介绍如下:
第三抖动信息指示第三抖动范围。其中,第三抖动范围与第二局部时段有关,第二局部时段位于第一业务的持续时段中。也就是说,第三抖动范围是第一业务的持续时段中第二局部时段的抖动范围估计结果。其中,第一业务的持续时段,以及第一业务可以参见上述第一抖动信息的介绍,此处不再赘述。
示例性的,第二局部时段,可以理解为,上述第一业务的持续时段中局部的部分时 段。例如,第二局部时段的起始时刻,可以是指,第一局部时段的结束时刻。也就是说,第一局部时段与第二局部时段是不同的局部时段,第一局部时段与第二局部时段在时域上连续。
类似的,第二局部时段的结束时刻是不固定的。例如,第二局部时段的结束时刻,可以是指,第二局部时段的下一个局部时段(如第三局部时段)的起始时刻,如图8b所示。
示例性的,第三抖动范围为[-3,3]ms。
应理解,上述示例1~示例4,仅以第一抖动信息和第三抖动信息为例,对局部时段的抖动范围进行介绍。当然,第一信息还可以包括多个局部时段的抖动信息。例如,第一信息包括N个局部时段的抖动信息。其中,N为正整数。N个局部时段分别记为局部时段1,局部时段2,…,局部时段N-1,局部时段N。局部时段1~局部时段N,可以是上述第一业务的持续时段中局部的不同时段。局部时段1的起始时刻,可以是指,第一核心网设备执行S702的时刻,或者,接入网设备执行S702的时刻。局部时段2的起始时刻,可以是指,局部时段1的结束时刻。其他局部时段可以此类推。局部时段N的结束时刻,可以是上述第一业务的持续时段的某一个时刻。此种情况下,可以理解为,第一核心网设备获取多个第一抖动范围,从而向接入网设备一次性下发多个抖动范围。
另外,抖动范围的表示方式介绍如下:
方式1,通过最小值和最大值的方式来表示,比如,记为[最小值,最大值]。示例性的,第一抖动范围为[-2,2]ms,第二抖动范围为[-4,4]ms。
方式2,第一抖动范围通过第二抖动范围和偏差来表示。例如,第二抖动范围为[-4,4]ms,偏差为2ms,则根据偏差信息,可确定第一抖动范围的起始位置为-2ms。
方式3,第一抖动范围通过第二抖动范围、偏差和长度来表示。例如,第二抖动范围为[-4,4]ms,偏差为2ms,长度为4ms,则根据偏差信息和长度信息,可确定第一抖动范围的起始位置为-2ms,终止位置为2ms。
方式4,一个参考范围和一个长度信息。其中,参考范围是根据第一抖动范围和第二抖动范围确定的,长度信息指示第一抖动范围的长度。
例如,第二抖动范围为[-4,4]ms,第一抖动范围为[-2,2]ms。在该方式4中可以表示为[-2,4],以及一个长度信息[4]。
其中,S701的实现过程可以参见S701a~S701c的介绍,此处暂不赘述。
对于第一核心网设备而言,第一核心网设备获取第一信息之后,执行S702:
S702、第一核心网设备向接入网设备发送第一信息。相应的,接入网设备接收来自第一核心网设备的第一信息。
其中,S702中的第一信息与S701中的第一信息一致,此处不再赘述。
示例性的,在第一核心网设备是会话管理网元的情况下,第一信息可以通过控制面信令传输。在第一核心网设备是用户面管理网元的情况下,第一信息可以通过用户面数据传输。其中,S702的实现过程可以参见S702a~S702d的介绍,此处暂不赘述。
S703、接入网设备根据第一信息,设置第一终端设备的DRX参数,从而在第一局部时段对第一终端设备执行省电操作。
其中,S703中的第一信息与S702中的第一信息一致,此处不再赘述。由S703可 知,第一信息与DRX参数的设置关联。
例如,在第一信息包括第一抖动信息(如S701中的示例1~示例4)的情况下,接入网设备所执行的S703包括:接入网设备根据第一抖动信息,确定在第一局部时段中第一终端设备开始监测PDCCH的时域位置。
如图9所示,在DRX周期1中,接入网设备未根据第一信息对第一终端设备执行省电操作。相应的,第一终端设备在DRX周期1中持续时间的起始位置开始监测PDCCH,如DRX周期1中的粗实线箭头所示,并且,在整个持续时间期间持续监测PDCCH。
如图9所示,在DRX周期2中,接入网设备根据第一抖动信息对第一终端设备设置DRX参数。例如,第一终端设备在DRX周期1中持续时间的某一个位置开始监测PDCCH,如DRX周期1中的粗实线箭头所示。示例性的,第一终端设备开始监测PDCCH的时域位置的是基于第一抖动范围确定的。第一抖动范围表征了相对于DRX周期2的起始位置的偏移量。如第一抖动范围为[1,3]ms。也就是说,在DRX周期2中,第一终端设备开始监测PDCCH的时域位置为:DRX周期2的起始位置之后的1ms。
再如,在第一信息包括第二抖动信息(如S701中的示例2、示例4)的情况下,接入网设备所执行的S703包括:接入网设备根据第二抖动信息,确定在第一业务的持续时段中DRX周期的持续时间(OnDuration)起始位置。也就是说,接入网设备根据整体时段的抖动范围(即大的jitter范围)确定DRX周期的持续时间起始位置。其中,PDCCH的时域位置在DRX周期的持续时间中,第一局部时段包括一个或多个DRX周期。这样一来,接入网设备在DRX周期的持续时间向第一终端设备发送PDCCH。相应的,第一终端设备已经开始监测PDCCH,也就能够接收来自接入网设备的PDCCH。
如图9所示,在DRX周期4中,接入网设备根据第二抖动信息对第一终端设备设置DRX参数。例如,DRX周期4中持续时间(OnDuration)的长度等于第二抖动范围。DRX周期4与DRX周期3中持续时间(OnDuration)的长度不同。其中,DRX周期4中持续时间(OnDuration)的长度是基于第三抖动信息确定的。例如,第三抖动范围为[0.5,4]ms。也就是说,在DRX周期4中,第一终端设备开始监测PDCCH的时域位置为:DRX周期4的起始位置之后的0.5ms。DRX周期3中持续时间(OnDuration)的长度是基于接入网设备预配置的参数确定的。
又如,在第一信息包括第三抖动信息(如S701中的示例3、示例4)的情况下,接入网设备所执行的S703包括:接入网设备根据第三抖动信息,确定在第二局部时段中终端设备开始监测PDCCH的时域位置。
如图9所示,在DRX周期3中,接入网设备根据第三抖动信息对第一终端设备设置DRX参数。例如,第一终端设备在DRX周期3中持续时间的某一个位置开始监测PDCCH,如DRX周期3中的粗实线箭头所示。示例性的,第一终端设备开始监测PDCCH的时域位置的是基于第三抖动范围确定的。第三抖动范围表征了相对于DRX周期3的起始位置的偏移量。如第三抖动范围为[2,3]ms。也就是说,在DRX周期3中,第一终端设备开始监测PDCCH的时域位置为:DRX周期3的起始位置之后的2ms。
接下来,结合图10,对S701的实现过程进行介绍:
如图10中“方式一”所在的方框所示,S701包括S701a:
S701a、应用服务器向第一核心网设备发送第一信息。相应的,第一核心网设备接收来自应用服务器的第一信息。
示例性的,应用服务器可以是图2中的AF网元。此种情况下,第一信息中的抖动信息,可以理解为,应用服务器产生第一业务的业务数据的时刻偏差。例如,由于应用服务器性能、负载等原因,应用服务器产生业务数据时的固有jitter范围。也就是说,S701a中的抖动信息仅考虑了固有jitter。
如图10中“方式二”所在的方框所示,S701包括S701b:
S701b、第一核心网设备根据以下至少一项确定第一信息:
信息a1,第一数据。其中,第一数据包括应用服务器产生第一业务的业务数据的时刻偏差。由于应用服务器性能、负载等原因,应用服务器产生业务数据时的固有jitter范围,如第一抖动范围(即固有jitter的局部范围,或描述为固有的小的jitter范围),和/或,第二抖动范围(即固有jitter的总体范围,或描述为固有的大的jitter范围)。也可以理解为,第一数据表征了应用层的抖动范围,如应用层的大的jitter范围,应用层的小的jitter范围。应理解,S701b中的第一数据是应用服务器提供给第一核心网设备的。
信息a2,第二数据。其中,第二数据包括第一业务的业务数据在以下过程中所产生的抖动:从应用服务器到第二核心网设备的传输过程,和/或,从第二核心网设备到接入网设备的传输过程。第二核心网设备可以是用户面网元,如图2中的UPF网元。也就是说,第二数据表征了网络传输所造成的抖动。应理解,在第一核心网设备为UPF网元的情况下,第一核心网设备与第二核心网设备是同一设备。在第一核心网设备为SMF网元的情况下,第一核心网设备与第二核心网设备是不同设备。
在S701b中,作为一种可能的方式,第一核心网设备根据第一数据确定第一信息,例如,将第一数据作为第一信息。或者,作为再一种可能的方式,第一核心网设备根据第二数据确定第一信息,例如,将第二数据作为第一信息。或者,作为又一种可能的方式,第一核心网设备根据第一数据和第二数据确定第一信息,例如,对第一数据和第二数据进行一定的运算之后,将运算结果作为第一信息。
应理解,从应用服务器到第二核心网设备的传输过程所产生的抖动,可以通过第二核心网设备提供给第一核心网设备的数据来表征,如UPF网元测量的抖动信息,即AF jitter与固网jitter的叠加。其中,AF jitter是指第一数据。固网jitter是指从应用服务器到3GPP网络的UPF网元产生的抖动。从应用服务器到接入网设备的传输过程所产生的抖动,可以通过接入网设备提供给第一核心网设备的数据来表征,如接入网设备测量的抖动信息,即UPF网元测量的jitter与UPF网元到接入网设备产生的jitter。
在一些实施例中,第一核心网设备确定第一信息时,还根据以下至少一项:
信息a3,小区信息。其中,小区信息指示终端设备所处的小区。示例性的,小区信息包括小区标识、频点信息、信号强度、信号质量等。
信息a4,服务质量(quality of service,QoS)流的信息,如QoS标识、QoS配置参数等。其中,QoS流用于承载应用服务器向第一终端设备提供第一业务的业务数据。QoS流是第一核心网设备配置给第二核心网设备、接入网设备和第一终端设备的,QoS流的配置过程,可以参见相关技术,此处不再赘述。
如图10中“方式三”所在的方框所示,S701包括S701c:
S701c、第三核心网设备向第一核心网设备发送第一信息。相应的,第一核心网设备接收来自第三核心网设备的第一信息。
示例性的,第三核心网设备可以是数据分析网元,如图2中的NWDAF网元。其中,第三核心网设备获取第一信息的过程,可以参见图16中关于第一业务的抖动范围学习结果的介绍,此处暂不赘述。
在S701的方式三中,第一核心网设备执行S701c之前,还可以执行S701d:
S701d、第一核心网设备向第三核心网设备发送订阅消息。相应的,第三核心网设备接收来自第一核心网设备的订阅消息。
其中,订阅消息包括分析标识(Analytics ID),分析ID用于请求分析第一业务的抖动信息。例如,Analytics ID=Jitter,application,可以理解为,分析ID用于请求分析某一应用的抖动信息。该应用用于为第一终端设备提供第一业务的持续服务。
应理解,上述图10中的三种方式,适用于第一信息对应的4种情况(S701中的示例1~示例4)。
在一些实施例中,如图11a所示,S702的介绍如下:
如图11a中“方式一”所在的方框所示,若第一核心网设备为会话管理网元,如SMF网元,则S702包括S702a:
S702a、第一核心网设备向接入网设备发送控制面信令。相应的,接入网设备接收来自第一核心网设备的控制面信令。
其中,控制面信令包括第一信息。例如,控制面信令是如下过程中的信令:建立传输第一业务的PDU会话过程,如图11b所示,或者,建立传输第一业务的QoS流(flow)过程,或者,修改第一业务的PDU会话过程,如图11b所示。示例性的,S702a中控制面信令为N2会话管理消息,详见图11b中S16的介绍,此处暂不赘述。再以图11c为例,S702a可以包括图11c中的步骤3a。再以图11d为例,S702a可以包括图11d中的步骤3。
参见图11b,PDU会话建立过程包括如下步骤:
S11a、AF网元向NEF网元发送会话和服务质量创建请求。相应的,NEF网元接收来自AF网元的会话和服务质量创建请求。
其中,会话和服务质量创建请求可以记为Nnef_AF_sessionWith QoS create request。例如,Nnef_AF_sessionWith QoS create request包括应用层的抖动范围,如大的jitter范围、小的jitter范围。
S12、NEF网元向PCF网元发送策略授权创建更新请求。相应的,PCF网元接收来自NEF网元的策略授权创建更新请求。
其中,策略授权创建更新请求可以记为Npcf_Policy Authorization Create update request。例如,Npcf_Policy Authorization Create update request包括应用层的抖动范围,如大的jitter范围、小的jitter范围。
S11b、AF网元向PCF网元发送策略授权创建更新请求。相应的,PCF网元接收来自AF网元的策略授权创建更新请求。
其中,S11b中的策略授权创建更新请求,可以参见S12的介绍,此处不再赘述。
S13a、PCF网元向SMF网元发送会话管理策略授权控制更新通知。相应的,SMF网元接收来自PCF网元的会话管理策略授权控制更新通知。
其中,会话管理策略授权控制更新通知可以记为Npcf_SMPolicyControl_Update Notify。例如,Npcf_SMPolicyControl_Update Notify包括应用层的抖动范围,如大的jitter范围、小的jitter范围。
S14a、第一终端设备向SMF网元发送PDU会话建立请求。相应的,SMF网元接收来自第一终端设备的PDU会话建立请求。
其中,PDU会话建立请求可以记为PDU session establishment。
其中,第一终端设备请求建立的PDU会话,用于传输第一业务的业务数据。
S15、SMF网元确定第一抖动信息和第二抖动信息。
其中,S15的实现过程,可以参见S701的介绍,此处不再赘述。
S16、SMF网元向接入网设备发送N2会话管理消息。相应的,接入网设备接收来自SMF网元的N2会话管理消息。
其中,N2会话管理消息可以记为N2 SM message。N2 SM message包含在N2 message中。N2 message还包括SMF网元通过接入网设备发送给第一终端设备的消息,例如PDU会话建立(PDU session establishment)接受消息。N2 message的格式如下:N2 message(N1 SM container(PDU session establishment accept),N2 SM container(大的Jitter范围,小的Jitter范围))。其中,N2 SM container与N2 SM message是等同的概念。
S17、第一终端设备、接入网设备、AMF网元、SMF网元、UPF网元和PCF网元共同执行剩余PDU会话建立步骤。
其中,S17中剩余PDU会话建立步骤可以参见3GPP相关技术规范,此处不再赘述。
S18、第一终端设备和接入网设备基于业务周期、第一抖动信息和第二抖动信息,确定DRX参数。
其中,S18的实现过程,可以参见S703的介绍,此处不再赘述。
参见图11b,PDU会话修改过程包括如下步骤:
S21a、AF网元向NEF网元发送会话和服务质量更新请求。相应的,NEF网元接收来自AF网元的会话和服务质量更新请求。
其中,会话和服务质量更新请求可以记为Nnef_AF_sessionWith QoS update request。例如,Nnef_AF_sessionWith QoS update request包括应用层的抖动范围,如大的jitter范围、小的jitter范围。
S22、NEF网元向PCF网元发送策略授权创建更新请求。相应的,PCF网元接收来自NEF网元的策略授权创建更新请求。
其中,S22中的策略授权创建更新请求,可以参见S12的介绍,此处不再赘述。
S21b、AF网元向PCF网元发送策略授权创建更新请求。相应的,PCF网元接收来自AF网元的策略授权创建更新请求。
其中,S21b中的策略授权创建更新请求,可以参见S22的介绍,此处不再赘述。
S23a、PCF网元向SMF网元发送会话管理策略授权控制更新通知。相应的,SMF 网元接收来自PCF网元的会话管理策略授权控制更新通知。
其中,S23a中会话管理策略授权控制更新通知,可以参见S13a的介绍,此处不再赘述。
S24a、第一终端设备向SMF网元发送PDU会话修改请求。相应的,SMF网元接收来自第一终端设备的PDU会话修改请求。
其中,PDU会话修改请求可以记为PDU session modification。
其中,第一终端设备通过PDU会话修改请求,请求建立QoS流,以传输第一业务的业务数据。
S25、SMF网元确定第一抖动信息和第二抖动信息。
其中,S25的实现过程,可以参见S701的介绍,此处不再赘述。
S26、SMF网元向接入网设备发送N2会话管理消息。相应的,接入网设备接收来自SMF网元的N2会话管理消息。
其中,S26的N2会话管理消息,可以参见S16的介绍,此处不再赘述。
S27、第一终端设备、接入网设备、AMF网元、SMF网元、UPF网元和PCF网元共同执行剩余PDU会话修改步骤。
其中,S27中剩余PDU会话修改步骤可以参见3GPP相关技术规范,此处不再赘述。
S28、第一终端设备和接入网设备基于业务周期、第一抖动信息和第二抖动信息,确定DRX参数。
其中,S28的实现过程,可以参见S703的介绍,此处不再赘述。
应理解,对于AF网元而言,若AF网元与PCF网元不能直接通信时,如AF网元为第三方应用服务器,并非是运营商自身的应用服务器。对运营商来说,AF网元为非可信的服务器。此种情况下,AF网元执行S11a(或S21a)。对运营商来说,若AF网元为可信的服务器,则AF网元与PCF网元能够直接通信。此种情况下,AF网元执行S11b(或S21b)。
也就是说,第一核心网设备通过控制面信令向接入网设备提供第一信息。
如图11a中“方式二”所在的方框所示,若第一核心网设备为用户面网元,如UPF网元,则S702包括S702b:
S702b、第一核心网设备向接入网设备发送用户数据包。相应的,接入网设备接收来自第一核心网设备的用户数据包。
其中,用户数据包包括第一信息。示例性的,用户数据包包括通用分组无线服务隧道协议用户面(general packet radio service tunneling protocol user plane,GTP-U)包头,GTP-U包头包括第一信息。
再以图11c为例,S702b可以包括图11c中的步骤4。再以图11d为例,S702b可以包括图11d中的步骤2b。
也就是说,第一核心网设备通过用户面数据向接入网设备提供第一信息。
如图11a中“方式三”所在的方框所示,S702包括S702c和S702d:
S702c、第一核心网设备向第四核心网设备发送第一信息。相应的,第四核心网设备接收来自第一核心网设备的第一信息。
其中,第一核心网设备和第四核心网设备的介绍如下:
情况1,第一核心网设备为会话管理网元,如SMF网元。第四核心网设备为用户面网元,如UPF网元。再以图11c为例,S702c可以包括图11c中的步骤3b。此种情况下,第一信息承载于控制面信令。
情况2,第一核心网设备为用户面网元,如UPF网元。第四核心网设备为会话管理网元,如SMF网元。再以图11d为例,S702c可以包括图11c中的步骤2a。此种情况下,第一信息承载于控制面信令。
S702d、第四核心网设备向接入网设备发送第一信息。相应的,接入网设备接收来自第四核心网设备的第一信息。
其中,S702d中的第四核心网设备与S702c中的第四核心网设备一致,此处不再赘述。
情况1,第四核心网设备为用户面网元,如UPF网元。再以图11c为例,S702c可以包括图11c中的步骤4。此种情况下,第一信息承载于用户面数据。
情况2,第四核心网设备为会话管理网元,如SMF网元。再以图11d为例,S702c可以包括图11d中的步骤3。此种情况下,第一信息承载于控制面信令。
也就是说,第一核心网设备通过其他核心网设备向接入网设备提供第一信息。
在本申请实施例中,上述图11a中的三种方式,适用于第一信息对应的4种情况(S701中的示例1~示例4),具体地:
在第一信息对应示例1(即第一信息包括第一抖动信息,但不包括第二抖动信息)的情况下,第一核心网设备执行S702,可以理解为,第一核心网设备向第一终端设备提供了一个局部时段的抖动范围(即上述第一抖动信息,或描述为小的jitter范围)。进一步地,第一核心设备可以在执行S702之前,向接入网设备发送第二抖动信息。也就是说,第一核心网设备先向接入网设备提供大的jitter范围(即上述第二抖动信息),再向接入网设备提供小的jitter范围(即上述第一抖动信息)。
在第一信息对应示例2(即第一信息包括第一抖动信息和第二抖动信息)的情况下,通过两种方式对S702进一步介绍:
在一种可能的实现方式中,第一核心网设备每次执行S702时,都向第一终端设备提供一个局部时段的抖动范围(即上述第一抖动信息,或描述为小的jitter范围)以及一个整体时段的抖动范围(上述第二抖动信息,或描述为大的jitter范围)。也就是说,第一核心网设备在第一业务的持续时段中,每次向接入网设备发送第一信息时,第一信息包括第一抖动信息和第二抖动信息。
在另一种可能的实现方式中,第一核心网设备首次执行S702时,第一信息包括第一抖动信息和第二抖动信息。也就是说,第一核心网设备在第一业务的持续时段中首次向接入网设备发送第一信息时,第一信息包括第一抖动信息和第二抖动信息。此种情况下,对于第一核心网设备而言,在第一业务的持续时段中,第一核心网设备首次执行S702之后的若干次向接入网设备发送第一信息时,第一信息包括第一抖动信息和第二抖动信息。例如,在第一业务的持续时段中,第一核心网设备在第2次、第4次、或第7次向接入网设备发送第一信息时,第一信息包括第一抖动信息和第二抖动信息。
在第一信息对应示例3(即第一信息包括第一抖动信息和第三抖动信息,但不包括 第二抖动信息)的情况下,第一核心网设备执行S702,可以理解为,第一核心网设备一次性向第一终端设备提供了至少两个局部时段的抖动范围(即上述第一抖动信息和第三抖动信息)。
在第一信息对应示例4(即第一信息包括第一抖动信息、第二抖动信息和第三抖动信息)的情况下,第一核心网设备执行S702,可以理解为,第一核心网设备一次性向第一终端设备提供了至少两个局部时段的抖动范围(即上述第一抖动信息和第三抖动信息)以及一个整体时段的抖动范围(上述第二抖动信息)。
应理解,在第一信息对应示例1和示例2的情况下,第一核心网设备还能够实时更新局部时段的抖动范围(即小的jitter范围)。如图12所示,本申请实施例通信方法700还包括S704、S705和S706:
S704、第一核心网设备获取第三抖动信息。
其中,第三抖动信息可以参见S701中的介绍,此处不再赘述。
示例性的,对于第一核心网设备而言,第一核心网设备执行S701之后,执行S704。相应的,第一抖动信息对应的局部时段,记为第一局部时段。第三抖动信息对应的局部时段,记为第二局部时段。其中,第一局部时段的结束时刻,与第二局部时段的起始时刻重合。
示例性的,如图13所示,S704的介绍如下:
如图13中“方式一”所在的方框所示,S704包括S704a:
S704a、第一核心网设备根据第一移动时间窗内的数据到达信息,确定第三抖动信息。
其中,第一移动时间窗在第二局部时段之前,且与第二局部时段临近。第一移动时间窗具有第一长度,如第一移动时间窗的长度为M个业务周期。其中,M为正整数。业务周期是指第一业务的业务周期。以图14为例,第一移动时间窗的长度等于4个业务周期长度之和。在t1时刻,第一移动时间窗包括业务周期1~业务周期3。在t2时刻,第一移动时间窗包括业务周期5~业务周期8。应理解,第一移动时间窗,也可以有其他名称,如滑动窗,观察窗等,本申请实施例中以第一移动时间窗为例,进行介绍。
其中,数据达到信息指示第一业务的业务数据到达第二核心网设备的时刻。以图14为例,在t1时刻,数据达到信息包括:在业务周期1~业务周期3中,每个业务周期中第一业务的业务数据到达会话管理网元(如UPF网元)的时刻。在t2时刻,数据达到信息包括:在业务周期5~业务周期8中,每个业务周期中第一业务的业务数据到达会话管理网元(如UPF网元)的时刻。
示例性的,在t1时刻,第一核心网设备观测业务周期1~业务周期3的数据到达信息,以得到某一局部时段的抖动范围估计结果。若t1时刻对应的抖动范围估计结果大于阈值,则第一核心网设备将此结果作为第三抖动信息。反之,若t1时刻对应的抖动范围估计结果小于阈值,则第一核心网设备继续观测,将第一移动时间窗向右移动。例如,在t2时刻,第一核心网设备观测业务周期5~业务周期8的数据到达信息,以得到某一局部时段的抖动范围估计结果,再将该时刻对应的抖动范围估计结果与阈值比较,以确定是否作为第三抖动信息,如此循环,直至第一核心网设备得到大于阈值的抖动范围估计结果,并将该抖动范围估计结果作为第三抖动范围。
如图13中“方式二”所在的方框所示,S704包括S704b:
S704b、第一核心网设备根据第一移动时间窗的数据到达信息,以及第一抖动信息,确定第三抖动信息。
其中,第一移动时间窗和数据到达信息,可以参见S704a的介绍,此处不再赘述。
示例性的,第一核心网设备根据第一移动时间窗的抖动范围估计结果,以及第一局部时段的第一抖动范围,来确定第二局部时段的抖动范围,即上述第三抖动信息。
如此,第一核心网设备即可实时更新小的jitter,局部时段的抖动范围。
S705、第一核心网设备向接入网设备发送第三抖动信息。相应的,接入网设备接收来自第一核心网设备的第三抖动信息。
其中,S705中的第三抖动信息与S704中的第三抖动信息一致,此处不再赘述。
其中,S705的实现过程可以参见S702的介绍,此处不再赘述。
示例性的,第三抖动信息通过以下过程的控制面信令进行传输:修改第一业务的PDU会话过程。
S706、接入网设备根据第三抖动信息,设置第一终端设备的DRX参数,从而在第二局部时段对第一终端设备执行省电操作。
其中,S706中的第三抖动信息与S705中的第三抖动信息一致,此处不再赘述。
其中,S706的实现过程,可以参见S703中关于第三抖动信息的介绍,此处不再赘述。
在一些实施例中,S701中的第一信息还包括时间信息。其中,时间信息指示第一业务的业务数据达到第二核心网设备的时间。第一信息中的时间信息介绍如下:
情况1,时间信息包括一项信息,如第一信息中的时间信息包括时间信息1。此种情况下,接入网设备根据时间信息1确定以下至少一项:
第一项,第一终端设备开始监测PDCCH的时间位置。例如,接入网设备根据时间信息1指示的时间点,确定第一抖动范围对应的时域范围。具体的,时间信息1指示的时间点作为第一抖动范围的中心点。相应的,第一抖动范围对应的最小值点,即为第一终端设备开始监测PDCCH的时间位置。
第二项,DRX周期中持续时间的起始位置。例如,接入网设备根据时间信息1指示的时间点,确定第二抖动范围对应的时域范围。具体的,时间信息1指示的时间点作为第二抖动范围的中心点。相应的,第二抖动范围对应的最小值点,即为DRX周期中持续时间的起始位置。
情况2,时间信息包括两项信息,如第一信息中的时间信息包括时间信息2和时间信息3。此种情况下,时间信息2用于接入网设备确定局部时段中第一终端设备开始监测PDCCH的时域位置,时间信息3用于接入网设备确定持续时间的位置,具体过程可以参见时间信息1的介绍,此处不再赘述。
下面,结合图15,对第一信息中的时间信息进行介绍:
未参考时间信息的情况下,以图15为例,在图15的(a)中,DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。示例性的,DRX起始偏移值根据drx-LongCycleStartOffset和drx-SlotOffset中的一个或多个参数确定。DRX的周期长度根据drx-LongCycleStartOffset和shortDRX的一个或多个参数确定。在图15 的(a)中,DRX周期长度是16ms。DRX周期中持续时间的长度是根据第二抖动范围设置的。例如,在DRX周期1中,第一抖动范围对应的中心点为0ms,第一抖动范围对应的时间位置为[-2,2]ms,第一终端设备开始监测PDCCH的时间位置为-2ms。在DRX周期2中,第一抖动范围对应的中心点为16ms,第一抖动范围对应的时间位置为[14,18]ms,第一终端设备开始监测PDCCH的时间位置为14ms。在DRX周期1中,第二抖动范围对应的中心点为0ms,DRX周期中持续时间为[-4,4]ms。在DRX周期2中,第二抖动范围对应的中心点为16ms,DRX周期中持续时间为[12,20]ms。
参考时间信息1的情况下,以图15为例,在图15的(b)中,在每个DRX周期中,第一抖动范围与第二抖动范围的中心点重合。时间信息1指示时间点X,时间点X可以是绝对位置,如第2ms,第18ms,第34ms。时间点X也可以是相对位置,如相对于DRX周期起始位置的偏移量,如偏移量为2ms。时间点X的单位可以是以下其中一项:符号、时隙、微时隙、子帧、帧、ms等。其中,本申请实施例中的符号、微时隙、时隙、子帧、帧的定义可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。
在DRX周期1中,第一抖动范围对应的中心点为2ms,第一抖动范围对应的时间位置为[0,4]ms,第一终端设备开始监测PDCCH的时间位置为0ms。在DRX周期2中,第一抖动范围对应的中心点为18ms,第一抖动范围对应的时间位置为[16,20]ms,第一终端设备开始监测PDCCH的时间位置为16ms。在DRX周期1中,第二抖动范围对应的中心点为0ms,DRX周期中持续时间为[-2,6]ms。在DRX周期2中,第二抖动范围对应的中心点为16ms,DRX周期中持续时间为[12,20]ms。
参考时间信息2和时间信息3的情况下,以图15为例,在图15的(c)中,在每个DRX周期中,第一抖动范围与第二抖动范围的中心点可以重合,也可以不重合。时间信息2指示时间点Y,时间信息3指示时间点Z。
在DRX周期1中,第一抖动范围对应的中心点为4.5ms,第一抖动范围对应的时间位置为[2.5,6.5]ms,第一终端设备开始监测PDCCH的时间位置为2.5ms。在DRX周期2中,第一抖动范围对应的中心点为20.5ms,第一抖动范围对应的时间位置为[18.5,22.5]ms,第一终端设备开始监测PDCCH的时间位置为18.5ms。在DRX周期1中,第二抖动范围对应的中心点为3ms,DRX周期中持续时间为[-1,7]ms。在DRX周期2中,第二抖动范围对应的中心点为19ms,DRX周期中持续时间为[15,23]ms。
如此,在第一信息还包括时间信息的情况下,DRX周期的起始位置能够更好的匹配XR业务的到达信息,避免第一终端设备过早开始监测PDCCH所导致的功耗大的问题,也能够避免第一终端设备过晚开始监测PDCCH所导致的漏检问题。
接下来,以第三核心网设备的角度,对第三核心网设备的执行过程进行介绍:
如图16所示,本申请实施例通信方法还包括如下步骤:
S1601、第一核心网设备向第三核心网设备发送订阅消息。相应的,第三核心网设备接收来自第一核心网设备的订阅消息。
其中,订阅消息包括分析ID,分析ID用于请求分析第一业务的抖动范围。例如,分析ID用于请求分析第一业务在局部时段的抖动范围(可以理解为,分析ID用于请求分析小的jitter范围),和/或,分析ID用于请求分析第一业务在持续时段的抖动范围 (可以理解为,分析ID用于请求分析大的jitter范围)。
示例性的,以图17中的(b)为例,第一核心网设备为SMF网元,第三核心网设备为NWDAF网元。SMF网元向NWDAF网元发送订阅消息。
其中,S1601的实现过程,可以参见S701d的介绍,此处不再赘述。
S1602、第三核心网设备根据订阅消息,获取第一数据和/或第二数据。
示例性的,以图17中的(a)为例,第一数据可以是AF网元侧的抖动信息,如抖动大小、应用(application,APP)标识、第一终端设备的标识、IP五元组标识。
第二数据可以包括以下至少一项:UPF网元测量的抖动信息,接入网设备测量的抖动信息。其中,UPF网元测量的抖动信息,可以理解为,AF jitter与固网jitter的叠加。其中,AF jitter是指第一数据。固网jitter是指从应用服务器到3GPP网络的UPF网元产生的抖动。UPF网元测量的抖动信息包括:UPF网元测量的抖动大小,GTP隧道信息和IP五元组标识。
接入网设备测量的抖动信息,可以理解为,UPF网元测量的jitter与UPF网元到接入网设备产生的jitter。接入网设备测量的抖动信息包括:接入网设备测量的抖动大小,GTP隧道信息。
其中,第一数据和第二数据可以参见S701b的介绍,此处不再赘述。
S1603、第三核心网设备根据获取的信息,确定第一业务的抖动范围学习结果。
示例性的,第一业务的抖动范围学习结果包括:第一业务的抖动范围估计结果。
例如,在分析ID用于请求分析第一业务的抖动范围的情况下,第一业务的抖动范围估计结果包括第一抖动范围和第二抖动范围中的至少一项。
再如,在分析ID用于请求分析局部时段的抖动范围的情况下,第一业务的抖动范围估计结果包括第一抖动范围。
又如,在分析ID用于请求分析持续时段中整体时段的抖动范围的情况下,第一业务的抖动范围估计结果包括第二抖动范围。
S1604、第三核心网设备向第一核心网设备发送第一业务的抖动范围学习结果。
示例性的,以图17中的(b)为例,第一核心网设备为SMF网元,第三核心网设备为NWDAF网元。NWDAF网元向SMF网元发送通知消息。其中,通知消息包括第一业务的抖动范围学习结果。
应理解,对于第一核心网设备而言,第一核心网设备执行S1604之后,第一核心网设备即可向接入网设备提供第一业务的抖动信息,以使接入网设备根据第一业务的抖动范围,设置第一终端设备的DRX参数,详见S702和S703的介绍,此处不再赘述。
在一些实施例中,第三核心网设备在确定第一业务的抖动范围学习结果时,还根据小区信息和/或QoS流的信息。其中,小区信息和QoS流的信息可以参见S701b的介绍,此处不再赘述。示例性的,以图17中的(a)为例,小区信息可以是OAM网元向第三核心网设备提供的信息,如小区标识、频点信息、信号强度、信号质量等。QoS流的信息可以是SMF网元向第三核心网设备提供的信息,如QoS流标识、QoS参数、第一终端设备的标识等。
在一些实施例中,分析ID用于请求分析第一业务的业务数据到达第二核心网设备的时间。例如,Analytics ID=数据到达信息,application,可以理解为,分析ID用于请 求分析某一应用的数据到达信息,即该业务的业务数据到达第二核心网设备的时间该应用用于为第一终端设备提供第一业务的持续服务。相应的,第一业务的抖动范围学习结果还包括时间信息。其中,时间信息指示第一业务的业务数据到达第二核心网设备的估计时间,具体可以参见第一信息中关于时间信息的介绍,此处不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的网元,或者包含上述网元的装置,或者为可用于网元的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
示例性的,图18示出了一种通信装置1800的结构示意图。该通信装置1800包括:处理器1801、通信接口1802、存储器1803。可选的,通信装置还可以包括总线1804。其中,通信接口1802、处理器1801以及存储器1803可以通过总线1804相互连接;总线1804可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线1804可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,处理器1801可以是CPU,通用处理器,专用集成电路(application specific integrated circuit,ASIC),现场可编程逻辑门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
示例性的,图18的通信装置1800可以为本申请实施例通信方法700中的接入网设备,处理器1801用于支持接入网设备执行处理操作,如S703。通信接口1802用于支持接入网设备执行收发操作,如S702。
或者,图18的通信装置1800可以为本申请实施例通信方法700中的第一核心网设备,处理器1801用于支持第一核心网设备执行处理操作,如S701。通信接口1802用于支持第一核心网设备执行收发操作,如S702。
或者,图18的通信装置1800可以为本申请实施例通信方法700中的第三核心网设备,处理器1801用于支持第三核心网设备执行处理操作,如S1602、S1603。通信接口1802用于支持第三核心网设备执行收发操作,如S1601、S1604。
可选的,本申请实施例还提供一种携带计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行上述实施例所介绍的方法。
可选的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述实施例所介 绍的方法。
可选的,本申请实施例还提供一种芯片,包括:处理电路和收发电路,处理电路和收发电路用于实现上述实施例所介绍的方法。其中,处理电路用于执行相应方法中的处理动作,收发电路用于执行相应方法中的接收/发送的动作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state drive,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    第一核心网设备获取第一信息,其中,所述第一信息包括第一抖动信息,所述第一抖动信息指示第一抖动范围,所述第一抖动范围与第一局部时段有关,所述第一局部时段位于第一业务的持续时段中,所述第一业务与第一终端设备有关;
    所述第一核心网设备向接入网设备发送第一信息,其中,所述第一信息与非连续接收DRX参数的设置关联。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一核心网设备在所述持续时段中向所述接入网设备发送所述第一信息时,所述第一信息还包括第二抖动信息;
    其中,所述第二抖动信息指示第二抖动范围,所述第二抖动范围为所述第一业务的持续时段中整体时段的抖动范围。
  3. 根据权利要求1所述的方法,其特征在于,所述第一核心网设备向接入网设备发送第一信息之前,所述方法还包括:
    所述第一核心网设备向所述接入网设备发送第二抖动信息;
    其中,所述第二抖动信息指示第二抖动范围,所述第二抖动范围为所述第一业务的持续时段中整体时段的抖动范围。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述第一抖动范围小于所述第二抖动范围。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,
    所述第一核心网设备获取第一信息,包括:
    所述第一核心网设备接收来自应用服务器的所述第一信息;或者,
    所述第一核心网设备根据以下至少一项确定所述第一信息:
    第一数据,所述第一数据包括所述应用服务器产生所述第一业务的业务数据的时刻偏差;或者,
    第二数据,所述第二数据包括所述第一业务的业务数据在以下过程中所产生的抖动:
    从应用服务器到第二核心网设备的传输过程,和/或,从第二核心网设备到所述接入网设备的传输过程。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,
    所述第一核心网设备获取第一信息,包括:
    所述第一核心网设备接收来自第三核心网设备的所述第一信息。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一信息是所述第三核心网设备根据以下至少一项确定的:
    第一数据,所述第一数据包括应用服务器产生所述第一业务的业务数据的时刻偏差;或者,
    第二数据,所述第二数据包括所述第一业务的业务数据在以下过程中所产生的抖动:
    从应用服务器到第二核心网设备的传输过程,和/或,从第二核心网设备到所述接入网设备的传输过程。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一核心网设备接收来自第三核心网设备的所述第一信息之前,所述方法还包括:
    所述第一核心网设备向所述第三核心网设备发送订阅消息;
    其中,所述订阅消息包括分析标识ID,所述分析ID用于请求分析所述第一业务的抖动信息。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一核心网设备向接入网设备发送第一信息之后,所述方法还包括:
    所述第一核心网设备获取第三抖动信息,其中,所述第三抖动信息指示第三抖动范围,所述第三抖动范围与第二局部时段有关,所述第二局部时段位于所述第一业务的持续时段中;
    所述第一核心网设备向所述接入网设备发送所述第三抖动信息,其中,所述第三抖动信息与DRX参数的设置关联。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一核心网设备获取第三抖动信息,包括:
    所述第一核心网设备根据第一移动时间窗内的数据到达信息,确定所述第三抖动信息;或者,
    所述第一核心网设备根据所述第一移动时间窗的数据到达信息,以及所述第一抖动信息,确定所述第三抖动信息;
    其中,所述第一移动时间窗在所述第二局部时段之前;
    所述数据达到信息指示所述第一业务的业务数据到达第二核心网设备的时刻。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一移动时间窗具有第一长度。
  12. 根据权利要求1-8任一项所述的方法,其特征在于,
    所述第一信息还包括第三抖动信息;
    其中,所述第三抖动信息指示第三抖动范围,所述第三抖动范围与第二局部时段有关,所述第二局部时段位于所述第一业务的持续时段中。
  13. 一种通信方法,其特征在于,包括:
    接入网设备接收来自第一核心网设备的第一信息,其中,所述第一信息包括第一抖动信息,所述第一抖动信息指示第一抖动范围,所述第一抖动范围与第一局部时段有关,所述第一局部时段位于第一业务的持续时段中,所述第一业务与第一终端设备有关;
    所述接入网设备根据所述第一信息,在所述第一局部时段对所述第一终端设备配置非连续接收DRX参数。
  14. 根据权利要求13所述的方法,其特征在于,
    所述接入网设备在所述持续时段中接收来自所述第一核心网设备的所述第一信息时,所述第一信息还包括第二抖动信息;
    其中,所述第二抖动信息指示第二抖动范围,所述第二抖动范围为所述第一业务的持续时段中整体时段的抖动范围。
  15. 根据权利要求13所述的方法,其特征在于,所述接入网设备接收来自第一核心网设 备的第一信息之前,所述方法还包括:
    所述接入网设备接收来自所述第一核心网设备的第二抖动信息;
    其中,所述第二抖动信息指示第二抖动范围,所述第二抖动范围为所述第一业务的持续时段中整体时段的抖动范围。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述第一抖动范围小于所述第二抖动范围。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述接入网设备接收来自第一核心网设备的第一信息之后,所述方法还包括:
    所述接入网设备接收来自所述第一核心网设备的第三抖动信息,其中,所述第三抖动信息指示第三抖动范围,所述第三抖动范围与第二局部时段有关,所述第二局部时段位于所述第一业务的持续时段中;
    所述接入网设备根据所述第三抖动信息,在所述第二局部时段对所述第一终端设备配置DRX参数。
  18. 根据权利要求13-16任一项所述的方法,其特征在于,
    所述第一信息还包括第三抖动信息;
    其中,所述第三抖动信息指示第三抖动范围,所述第三抖动范围与第二局部时段有关,所述第二局部时段位于所述第一业务的持续时段中。
  19. 根据权利要求14-16任一项所述的方法,其特征在于,
    所述接入网设备根据所述第一信息,在所述第一局部时段对所述第一终端设备配置DRX参数,包括:
    所述接入网设备根据所述第一抖动信息,确定在所述第一局部时段中所述第一终端设备开始监测PDCCH的时域位置。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第二抖动信息用于所述接入网设备配置DRX周期中持续时间的长度;
    其中,所述PDCCH的时域位置在所述DRX周期的持续时间中,所述DRX周期在所述第一局部时段中。
  21. 一种第一核心网设备,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求1-12任一项所述的方法被实现。
  22. 一种接入网设备,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求13-20任一项所述的方法被实现。
  23. 一种芯片,其特征在于,包括处理器和输入输出接口,所述输入输出接口用于接收来自所述芯片之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述芯片之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-20任一项所述的方法。
  24. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1-20任一项所述的方法。
  25. 一种通信系统,其特征在于,包括第一核心网设备和接入网设备;
    其中,所述第一核心网设备,用于获取第一信息,其中,所述第一信息包括第一抖动信息,所述第一抖动信息指示第一抖动范围,所述第一抖动范围与第一局部时段有关,所述第一局部时段位于第一业务的持续时段中,所述第一业务与第一终端设备有关;
    所述第一核心网设备,用于向所述接入网设备发送第一信息,其中,所述第一信息与非连续接收DRX参数的设置关联;
    所述接入网设备,用于接收来自所述第一核心网设备的第一信息,其中,所述第一信息包括第一抖动信息,所述第一抖动信息指示第一抖动范围,所述第一抖动范围与第一局部时段有关,所述第一局部时段位于第一业务的持续时段中,所述第一业务与第一终端设备有关;
    所述接入网设备,用于还根据所述第一信息,在所述第一局部时段对所述第一终端设备配置非连续接收DRX参数。
  26. 根据权利要求25所述的系统,其特征在于,还包括第三核心网设备;
    其中,所述第三核心网设备,用于接收来自所述第一核心网设备的订阅消息,其中,所述订阅消息包括分析标识ID,所述分析ID用于请求分析第一业务的抖动范围;
    所述第三核心网设备,还用于根据所述订阅消息,获取以下至少一项信息:
    第一数据,所述第一数据包括应用服务器产生所述第一业务的业务数据的时刻偏差;或者,
    第二数据,所述第二数据包括所述第一业务的业务数据在以下过程中所产生的抖动:
    从应用服务器到第二核心网设备的传输过程,和/或,从第二核心网设备到接入网设备的传输过程;
    所述第三核心网设备,还用于根据所述获取的信息,确定所述第一业务的抖动范围学习结果;
    所述第三核心网设备,还用于向所述第一核心网设备发送所述第一业务的抖动范围学习结果。
PCT/CN2023/100029 2022-06-27 2023-06-13 一种通信方法及装置 WO2024001765A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210743780 2022-06-27
CN202210743780.3 2022-06-27
CN202210879015.4 2022-07-25
CN202210879015.4A CN117354899A (zh) 2022-06-27 2022-07-25 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024001765A1 true WO2024001765A1 (zh) 2024-01-04

Family

ID=89360088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100029 WO2024001765A1 (zh) 2022-06-27 2023-06-13 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117354899A (zh)
WO (1) WO2024001765A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180338344A1 (en) * 2015-11-19 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Active period of a discontinuous reception cycle
CN113596910A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 用于处理数据流的方法和通信装置
CN114080067A (zh) * 2020-08-20 2022-02-22 维沃移动通信有限公司 非连续接收drx配置方法、装置和设备
CN114124293A (zh) * 2020-08-31 2022-03-01 维沃移动通信有限公司 物理下行控制信道的监听方法、装置和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180338344A1 (en) * 2015-11-19 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Active period of a discontinuous reception cycle
CN113596910A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 用于处理数据流的方法和通信装置
CN114080067A (zh) * 2020-08-20 2022-02-22 维沃移动通信有限公司 非连续接收drx配置方法、装置和设备
CN114124293A (zh) * 2020-08-31 2022-03-01 维沃移动通信有限公司 物理下行控制信道的监听方法、装置和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Challenges and potential enhancements for XR", 3GPP TSG RAN WG1 #106E, R1-2106632, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), XP052037938 *

Also Published As

Publication number Publication date
CN117354899A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US11611949B2 (en) Keeping the UE awake
JP7433488B2 (ja) 無線アクセスネットワーク通知エリア(rna)更新の拒否時の構成を処理するための方法および装置
KR101299776B1 (ko) 롱 텀 이볼루션에서 데이터 전송의 종료를 표시함으로써 배터리에 대해 효율적인 상태 또는 구성으로 전환하는 방법 및 장치
RU2578666C2 (ru) Уменьшение избыточной сигнализации при переходах между состояниями управления радиоресурсами (rrc)
JP6068648B2 (ja) トランキングサービスを迅速に確立するための方法、関連する装置及びシステム
WO2023280121A1 (zh) 一种获取边缘服务的方法和装置
WO2014019552A1 (zh) 业务控制方法、终端和网络侧设备
WO2021242157A1 (en) Handling of qoe measurements in inactive state
WO2013174122A1 (zh) 一种ue上报辅助信息的方法
WO2019206322A1 (zh) 能力开放方法、相关装置及系统
WO2020199805A1 (en) Method and apparatus for user equipment behaviour parameters provisioning
Lin et al. A survey on DRX mechanism: Device power saving from LTE and 5G new radio to 6G communication systems
WO2022012466A1 (zh) 一种寻呼方法和通信装置
US20170164194A1 (en) Offloading of a wireless node authentication with core network
TWI549458B (zh) 行動通訊裝置及通信分類方法
WO2024001765A1 (zh) 一种通信方法及装置
WO2021163969A1 (zh) 数据传输方法、装置和通信设备
WO2024036527A1 (zh) 搜索空间配置方法、装置、通信设备及存储介质
WO2023179357A1 (zh) 一种通信方法及装置
WO2023213112A1 (zh) 通信方法和装置
WO2024021141A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2022152129A1 (zh) 上行数据发送增强流程的触发方法、装置及终端
WO2024098616A1 (en) Wireless network paging
WO2022213981A1 (zh) 信息处理方法、装置和通信设备
WO2024103375A1 (zh) 信息处理方法以及装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829948

Country of ref document: EP

Kind code of ref document: A1