WO2024001657A1 - 一种适配电路及具有其的led灯 - Google Patents

一种适配电路及具有其的led灯 Download PDF

Info

Publication number
WO2024001657A1
WO2024001657A1 PCT/CN2023/097535 CN2023097535W WO2024001657A1 WO 2024001657 A1 WO2024001657 A1 WO 2024001657A1 CN 2023097535 W CN2023097535 W CN 2023097535W WO 2024001657 A1 WO2024001657 A1 WO 2024001657A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
adapter
dimming
lamp bead
power supply
Prior art date
Application number
PCT/CN2023/097535
Other languages
English (en)
French (fr)
Inventor
廖易仑
付伟浩
彭毅
周健
谭金龙
Original Assignee
桂林智神信息技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221653543.XU external-priority patent/CN217604042U/zh
Priority claimed from CN202222447569.5U external-priority patent/CN218634349U/zh
Application filed by 桂林智神信息技术股份有限公司 filed Critical 桂林智神信息技术股份有限公司
Publication of WO2024001657A1 publication Critical patent/WO2024001657A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the present invention proposes an adaptation circuit so that different types of adapters can be directly applied to electronic devices, including protocol circuits and transformer circuits.
  • the output end of the adapter is connected to the protocol circuit.
  • the input end of the protocol circuit is connected to the input end of the transformer circuit, and the output end of the transformer circuit is connected to the electronic device; with the voltage of the adapter detected by the protocol circuit gear, driving the transformer circuit to adjust the voltage input by the adapter so that the voltage output by the transformer circuit is within the operating voltage range of the electronic device.
  • the adaptation circuit further includes an energy storage unit connected to the output end of the transformer circuit, The current level of the adapter is detected through the protocol circuit, and power distribution is achieved between the electronic device and the energy storage unit based on the current level.
  • the present invention also proposes an LED lamp, which includes a lamp bead combination and an adaptation circuit as described above.
  • the output end of the transformer circuit is connected to the lamp bead combination.
  • the LED lamp further includes a dimming circuit and a first boost circuit.
  • the output end of the transformer circuit is combined with the lamp bead through the dimming circuit.
  • Different dimming circuits are composed of different PWM pulse control, each of the dimming circuits is connected to at least one of the lamp bead combinations;
  • the first boost circuit is disposed between the transformer circuit and the dimming circuit, the transformer circuit and the lamp bead combination, and is used to boost the voltage output by the transformer circuit.
  • the power supply circuit includes a charging interface and a second boost circuit, the charging interface is used to connect to an external power source, and the charging interface is connected to the second boost circuit;
  • the boost circuit is connected to the buck dimming module, and the buck dimming module is connected to all lamp bead combinations on the LED lamp to light up the lamp beads corresponding to the connected external power supply. Combinations; different charging interfaces correspond to different combinations of lamp beads.
  • the power supply circuit further includes a fast charging protocol chip, and each of the charging interfaces is connected to a fast charging protocol chip.
  • the fast charging protocol chip is used when the charging interface is connected to an external power supply through an external charger. , identify the type of fast charging protocol supported by the charger to adjust the voltage transmitted by the transmission line from the charging interface to the boost circuit.
  • a diode parallel bus circuit is also included.
  • the output voltages provided by each power supply circuit to the second boost circuit are the same.
  • the second boost circuit is connected in parallel through the diode parallel bus circuit. step down dimming module;
  • the step-down dimming module includes a plurality of sub-modules, and the diode parallel bus circuit is connected to all of the sub-modules; different sub-modules are connected to different combinations of lamp beads.
  • the LED lamp includes several lamp bead combinations, and the lamp beads of all the lamp bead combinations are evenly distributed on the light-emitting surface of the LED lamp;
  • the lamp beads of the lamp bead combination corresponding to each charging interface are evenly distributed on the light-emitting surface.
  • the adaptation circuit proposed by the present invention enables the applied electronic device to be used with most adapters, has wide applicability, can enable adapters of various specifications to be applied to the electronic device, and saves the use cost of the electronic device;
  • the adaptation circuit proposed by the present invention also includes an energy storage unit and an on-off circuit, which can provide part of the power provided by the adapter to the energy storage unit through the on and off functions of the on-off circuit, making full use of the adapter. power, eliminating potential safety hazards when using electronic devices, and ensuring the service life of the adapter circuit and electronic devices;
  • the LED lamp proposed by the present invention applies this adaptation circuit, so that the LED lamp can support the use of most adapters on the market, reducing the cost for users to purchase and use LED lamps, and realizes it through the dimming circuit and the first boost circuit.
  • the dimming function of LED facilitates users to customize and adjust according to the scene, optimizing the user experience;
  • the LED lamp proposed by the present invention also includes a light power supply circuit.
  • the light power supply circuit adopts a dual-channel charging interface power supply method, and can use the high-power charging head device held by the user to power the high-power fill-in light, which is more convenient. , compared with the original power supply method, the required cost is greatly reduced.
  • the present invention provides an adapter circuit and an LED lamp having the same.
  • the adapter circuit proposed by the present invention has a wide range of applicability, so that users do not need to use adapters of specific specifications when using electronic devices, thus saving the use of electronic devices. cost.
  • the LED lamp using the adapter circuit proposed by the present invention has light and dark and strobe adjustment functions.
  • the light power supply circuit it contains can provide high-power power supply, while reducing the required cost and improving the user experience.
  • Figure 1 is a schematic diagram of the overall module structure of the adaptation circuit provided in Embodiment 1;
  • Figure 2(a) ⁇ (e) is a schematic diagram of the circuit structure of the protocol circuit
  • Figure 4 is a schematic diagram of the overall module structure of the LED lamp provided in Embodiment 2;
  • Figure 5(a) ⁇ (f) is a schematic diagram of the circuit structure of the dimming circuit
  • Figure 6 is a schematic diagram of the circuit structure of the first boost circuit
  • Figure 7 is a block diagram of the overall circuit structure of the lighting power supply circuit
  • Figure 8(a) is a schematic diagram of the circuit structure of TYPE-C
  • Figure 8(b) is a schematic diagram of the circuit structure of the PD protocol communication chip
  • Figure 9 is a schematic diagram of the circuit structure of the BOOST boost circuit
  • Figure 10 is a schematic diagram of the circuit structure of a diode parallel bus circuit
  • Figure 11 (a) ⁇ (d) are schematic circuit structure diagrams of current-type LED constant current drivers
  • Figure 12 is a block diagram of the overall circuit structure of another embodiment of the light power supply circuit.
  • Figure 13(a) ⁇ (d) are schematic circuit structure diagrams of the 100W buck dimming drive circuit respectively.
  • the adaptation circuit proposed in this embodiment includes a protocol circuit 4 and a transformer circuit 5.
  • the output end of the adapter 1 is connected to the input end of the protocol circuit 4, and the output end of the protocol circuit 4 is connected to the input end of the transformer circuit 5.
  • the output end of the transformer circuit 5 is connected to the electronic device 2 .
  • the output end of the adapter 1 includes the interface 11 .
  • the input voltage of adapter 1 when the input voltage of adapter 1 is low, electronic device 2 may not work properly and needs to The input voltage of adapter 1 needs to be boosted to adapt to the working voltage of electronic device 2; when the input voltage of adapter 1 is high, the use of electronic device 2 has safety risks and may affect the adaption circuit and electronic device 2. During the service life, the input voltage of adapter 1 also needs to be stepped down to adapt to the working voltage of electronic device 2;
  • Adapter 1 generally has a variety of output voltage/current levels. Take the common Type-C interface PD adapter on the market as an example. This PD adapter has 5V/2A, 9V/2A, 12V/2A, 15V/3A, 20V /3.25A, 20V/5A and other voltage/current gears. Therefore, the protocol circuit 4 is used to detect the voltage/current gear of the adapter 1 and send the detection result to the transformer circuit 5 through a signal to drive the transformer circuit 5 Adjust the voltage input to adapter 1.
  • the working voltage of the electronic device 2 has a certain range. If the input voltage of the adapter 1 is lower than the lowest working voltage of the electronic device 2, the driving transformer circuit 5 boosts the input voltage so that the voltage is not lower than the minimum working voltage of the electronic device 2. The minimum operating voltage of the electronic device 2;
  • the driving transformer circuit 5 reduces the input voltage so that the voltage is not higher than the lowest operating voltage of the electronic device 2 .
  • the electronic device 2 needs to be driven by electric energy transmitted through the adapter 1. If the power supply to the electronic device 2 is limited to a wired connection, there will be relatively large limitations. Therefore, the electronic device 2 proposed by the present invention is also provided with an energy storage unit 6 , and the energy storage unit 6 is connected to the output end of the transformer circuit 5 .
  • the energy storage unit 6 in this embodiment includes a battery. By using the battery as the power source of the electronic device 2, a current with stable voltage, stable current, stable power supply for a long time, and little influence from the outside world can be obtained. At the same time, the battery has It has the advantages of simple structure, easy portability, and stable and reliable battery performance.
  • the input voltage of adapter 1 when the input voltage of adapter 1 is high, the input voltage of adapter 1 can be stepped down to adapt to the working voltage of electronic device 2. However, if the power of adapter 1 is too high, the use of electronic device 2 still has Safety risks, and may also affect the service life of the adapter circuit and electronic device 2, need to use the excess power provided by the adapter 1. In order to fully utilize the power of the adapter 1, the excess power can be allocated to charging the battery. .
  • the maximum power of the adapter 1 is greater than the maximum operating power of the electronic device 2,
  • the part of the adapter 1 whose power is higher than the maximum working power of the electronic device 2 is used to charge the battery;
  • the maximum power of adapter 1 is not greater than the maximum working power of electronic device 2, all the power of adapter 1 is used to power electronic device 2, or a part of the power of adapter 1 is used to power electronic device 2 according to a preset ratio, The rest of the adapter 1 power is used to charge the battery.
  • the preset ratio of the power of the adapter 1 for charging the battery can be adjusted by the user. Furthermore, all the power of the adapter 1 can be used to charge the battery.
  • an on-off circuit 7 is also provided between the transformer circuit 5 and the battery.
  • the on-off circuit 7 includes a MOS tube, and the MOS tube is used to conduct or cut off the adapter 1 through the protocol circuit 4 and the transformer circuit 5 supplies energy to the battery.
  • the output end of the transformer circuit 5 is connected to the battery through a MOS tube.
  • the MOS tube is an N-type metal oxide semiconductor field effect transistor (negative channel metal oxide semiconductor, NMOS).
  • NMOS negative channel metal oxide semiconductor
  • the The first pole of the MOS tube is the drain D, and the second pole is the source S.
  • the gate G of the MOS tube receives a high-level signal
  • the MOS tube is in a conducting state
  • the MOS tube is in a cut-off state.
  • the adapter 1 If the maximum power of the adapter 1 is greater than the maximum working power of the electronic device 2, send a high-level signal to the gate G of the MOS tube, turn on the energy supply of the battery by the protocol circuit 4 and the transformer circuit 5, and distribute the adapter 1.
  • the part with power higher than the maximum operating power of the electronic device 2 is used to charge the battery;
  • the maximum power of the adapter 1 is not greater than the maximum working power of the electronic device 2, send a low-level signal to the gate G of the MOS tube to cut off the energy supply of the battery by the protocol circuit 4 and the transformer circuit 5, so that the adapter All the power of 1 is used to power the electronic device 2; or send a high-level signal to the gate G of the MOS tube to turn on the protocol circuit 4 and the transformer circuit 5 to power the battery, according to the preset A portion of the adapter 1 power is proportionally allocated to power the electronic device 2, and the remaining portion of the adapter 1 power is used to charge the battery.
  • the adapter 1 includes a PD adapter
  • the protocol circuit 4 includes a PD protocol circuit
  • the interface 11 includes a Type-C interface, a USB interface or a lightning interface.
  • the LED lamp 3 includes at least one lamp bead combination 31 and an adaptation circuit as proposed in Embodiment 1.
  • the output end of the transformer circuit 5 is connected to the lamp.
  • the bead combination 31 enables different types of adapters 1 to be directly applied to the LED lamp 3 .
  • the output end of the transformer circuit 5 can be connected to several lamp bead combinations 31. Please refer to Figure 4 again. Exemplarily, Figure 4 shows that the output end of the transformer circuit 5 is connected to two lamp bead combinations. 31, but it cannot be understood as a limit on the number of lamp bead combinations 31 connected to the output end of the transformer circuit 5.
  • the number of lamp bead combinations 31 can be adjusted according to the requirements of parameters such as LED operating power, for example, more than two or Less than two.
  • the lamp bead assembly 31 includes 3 LED lamp beads.
  • the LED lamp 3 also includes a dimming circuit 32.
  • the dimming circuit 32 is connected to the output end of the transformer circuit 5 for adjusting the brightness of the lamp bead combination 31.
  • the brightness of the LED is adjusted through PWM pulses to achieve linear dimming.
  • Each dimming circuit 32 is connected to at least one lamp bead combination 31.
  • the dimming circuit 32 and the lamp bead combination 31 are connected in a one-to-one correspondence.
  • each of the dimming circuits 32 is controlled by different PWM pulses, which can achieve different dimming effects for several lamp bead combinations 31 .
  • the input voltage of adapter 1 when the input voltage of adapter 1 is high, the input voltage of adapter 1 can be stepped down to adapt to the working voltage of lamp bead assembly 31. However, if the power of adapter 1 is too high, the LED lamp 3 will still be used. It has safety risks and may also affect the service life of the adapter circuit and the LED light 3. It is necessary to use the excess power provided by the adapter 1. In order to fully utilize the power of the adapter 1, the excess power can be applied to the battery. Charge.
  • the part of the adapter 1 whose power is higher than the maximum working power of the lamp bead combination 31 is allocated to charge the battery;
  • the maximum power of adapter 1 is not greater than the maximum working power of lamp bead combination 31, all the power of adapter 1 is used to power lamp bead combination 31, or a part of the power of adapter 1 is allocated according to a preset ratio to power lamp bead combination 31. supply energy, the rest of the adapter 1 power is used to charge the battery.
  • the preset ratio of the power of the adapter 1 for charging the battery can be adjusted by the user. Furthermore, all the power of the adapter 1 can be used to charge the battery.
  • the output end of the transformer circuit 5 is connected to the battery through a MOS tube.
  • the MOS tube is an N-type metal oxide semiconductor field effect transistor (negative channel metal oxide semiconductor, NMOS).
  • NMOS negative channel metal oxide semiconductor
  • the The first pole of the MOS tube is the drain D, and the second pole is the source S.
  • the gate G of the MOS tube receives a high-level signal
  • the MOS tube is in a conducting state
  • the MOS tube is in a cut-off state.
  • the MOS tube is used to turn on or off the adapter 1 through the protocol circuit 4 and the transformer circuit 5.
  • the energy supply of the battery is specifically:
  • a low-level signal is sent to the gate G of the MOS tube to cut off the energy supply of the battery by the protocol circuit 4 and the transformer circuit 5, so that All the power of the adapter 1 is used to power the lamp bead combination 31; or it sends a high-level signal to the gate G of the MOS tube to turn on the protocol circuit 4 and the transformer circuit 5 to power the battery, or A part of the power of the adapter 1 is allocated according to a preset ratio to supply energy to the lamp bead assembly 31, and the remaining part of the power of the adapter 1 is used to charge the battery.
  • the LED lamp proposed in this embodiment also includes a light power supply circuit.
  • the light power supply circuit includes a step-down dimming module and at least two power supply circuits.
  • the step-down dimming module is connected to all the LED lights.
  • the lamp bead combination 31 has a power supply circuit including a charging interface, a fast charging protocol chip and a second boost circuit.
  • the charging interface is used to connect an external power supply through an external charger.
  • Each of the two charging interfaces is connected to a fast charging protocol chip.
  • the charging protocol chip is used to identify the type of fast charging protocol supported by the charger to adjust the input voltage transmitted by the transmission line from the charging interface to the second boost circuit, thereby realizing the fast charging function of the electrical appliance.
  • the charging interface may include a TYPE-C interface, a USB interface or a Lighting interface, and the lamp beads of the lamp bead assembly 31 may include LED lamp beads; in this specification, the charging interface takes the TYPE-C interface as an example, as shown in Figure 8( As shown in a), the external charger is a USB charger as an example, and the LED lamp is a COBLED lamp as an example.
  • the COBLED lamp includes several COB lamp bead combinations 31 , and the COB lamp bead combination 31 includes multiple integrated LED lamp beads.
  • the second boost circuit adopts the BOOST boost scheme.
  • the second boost circuit includes a BOOST boost circuit, which takes power from the TYPE-C interface through VBUS. After boosting, the second boost circuit boosts the voltage.
  • the output of the step-down dimming module is transmitted to the subsequent stage, so that the output end of the step-down dimming module is output to light up the COB lamp bead combination 31 corresponding to the connected external power supply.
  • the second boost circuit The buck dimming module adopts modular design.
  • VBUS line is the power line used by HOST/HUB to supply power to USB devices, which is the +5V of normal USB devices.
  • the fast charging protocol chip (shown in Figure 8(b)) can identify fast charging protocols such as PD fast charging protocol, QC fast charging protocol, CC fast charging protocol, etc. For example, if the fast charging protocol chip is set to identify the PD fast charging protocol first, then when the charger supports the PD fast charging protocol, the fast charging protocol chip matches the highest output voltage and power according to the PD protocol; when the charger only supports QC fast charging During the protocol, the fast charging protocol chip obtains the maximum supported voltage according to the QC protocol, and then obtains the maximum power of the charger according to the QC power control algorithm.
  • fast charging protocol chip shown in Figure 8(b)
  • fast charging protocol chip can identify fast charging protocols such as PD fast charging protocol, QC fast charging protocol, CC fast charging protocol, etc. For example, if the fast charging protocol chip is set to identify the PD fast charging protocol first, then when the charger supports the PD fast charging protocol, the fast charging protocol chip matches the highest output voltage and power according to the PD protocol; when the charger only supports QC fast charging
  • the input end of the TYPE-C interface is used to connect an external USB charger to connect to an external power supply, and the output end is connected to the second boost circuit.
  • the second boost circuit is then connected to the COB lamp bead combination 31 through the step-down dimming module of the subsequent stage. After being processed by the step-down dimming module, the COB lamp bead combination 31 is lit.
  • the fast charging protocol chip is connected to the TYPE-C interface through the DM/DP/CC line.
  • DM data minus
  • DP data plus
  • the data line D+ and CC are used for PD device identification and carry USB-PD communication to request power supply from the power supply end.
  • the lamp beads in the lamp bead combination 31 are evenly distributed on the light-emitting surface of the LED lamp; when the buck dimming module includes multiple sub-modules, the lamp beads in the lamp bead combination 31 corresponding to each sub-module are evenly distributed.
  • the LED light can also obtain a uniform lighting effect.
  • the fast charging protocol chip includes the HUSB238 fast charging protocol chip, and the TYPE-C interface supports an input voltage of up to 20V and an input power of up to 100W.
  • a dual TYPE-C parallel power supply circuit is used as an example.
  • the dual TYPE-C parallel power supply circuit adopts a dual TYPE-C Parallel power supply design, each TYPE-C input port provides equal input power, and a 100W high-power boost circuit is designed inside each power supply circuit to achieve 200W power output, and high-precision sampling resistors are used to ensure that each The voltage output by the second boost circuit is the same or as close as possible.
  • the dual TYPE-C parallel power supply circuit also includes a diode parallel bus circuit, and the second boost circuit passes The diode parallel bus circuit is connected in parallel and then connected to the buck dimming module; after the input power of the dual TYPE-C interface is boosted by the BOOST boost circuit, the input power of the dual TYPE-C interface is summarized and combined through the diode parallel bus circuit. Perform overall output to isolate the voltage difference between the two circuits and prevent interference with each other's feedback loops.
  • the buck dimming module of the dual TYPE-C parallel power supply circuit adopts a current LED constant current driver parallel scheme.
  • the buck dimming module includes multiple sub-modules and a diode parallel bus circuit.
  • the sub-modules can use a parallel connection scheme of current-type LED constant-current drivers.
  • the buck dimming module includes two sub-modules.
  • Each sub-module includes a 200W common anode buck dimming drive circuit and a 200W common anode buck dimming drive circuit.
  • the voltage dimming drive circuit can be composed of two current-type LED constant current drivers connected in parallel; the lamp bead combination 31 includes a cold light COB lamp bead combination 31 and a warm light COB lamp bead combination 31, and a sub-module is connected to the cold light COB lamp.
  • the other module is connected to the warm COB lamp bead combination 31, so that the step-down dimming module can drive the cold COB lamp bead combination 31 and the warm COB lamp bead combination 31.
  • the diode parallel bus circuit is directly electrically connected to the cold light COB lamp bead combination 31 and the warm light COB lamp bead combination 31 at the same time.
  • the high-power COBLED lamp adopts the design of the universal cooling and heating 200W high-power COB lamp bead combination 31, which can achieve a maximum 200W cold and warm light output control. Compared with the solution of 4-channel 100W lamp bead combination 31, it will have a more uniform fill light effect.
  • the internal drive circuit works, and a maximum power output of 100W of cold light and warm light can be achieved; when two TYPE-C interfaces provide power at the same time, the internal drive circuit works, and the main The control chip obtains the maximum output power of each TYPE-C interface from the USB fast charging protocol chip. And dynamically limit the output power of COB lamp bead combination 31 to ensure stable operation of the system.
  • a dual TYPE-C independent power supply circuit is used as an example.
  • the dual TYPE-C independent power supply circuit adopts It adopts the design of dual-channel TYPE-C independent power supply.
  • Each TYPE-C input port provides equal input power to achieve 200W power output.
  • high-precision sampling resistors are used to ensure that the voltage output by the two second boost circuits is as high as possible. near.
  • the second boost circuit includes a 100W high-power boost circuit designed inside each power supply circuit
  • the buck dimming module includes at least two sets of buck dimming drive circuits.
  • the buck dimming module The set includes two sets of buck dimming drive circuits, including four 100W buck dimming drive circuits.
  • the COB lamp bead combination 31 adopts a multi-channel 100W power supply design.
  • the high-power COBLED lamp includes at least two groups of 100W cold light COB lamp bead combinations 31 and at least two groups of 100W warm light COB lamp bead combinations 31, and any two sets of buck dimming drive circuits connected to any second boost circuit
  • a set of step-down dimming drive circuits one step-down dimming drive circuit is connected to a set of 100W cold-light COB lamp bead combinations 31, and the other step-down dimming drive circuit is connected to a set of 100W warm-light COB lamp bead combinations 31;
  • Each 100W high-power boost circuit outputs voltage to two 100W buck dimming drive circuits respectively, so that each 100W buck dimming drive circuit can achieve 100W power output to the 100W COB lamp beads connected to it.
  • a boost dimming circuit when any TYPE-C interface is powered, a boost dimming circuit starts to work accordingly, which can meet the work requirements of a set of 100W cold light COB lamp beads and a set of 100W warm light COB lamp beads. Demand; when two TYPE-C interfaces provide power at the same time, the two boost dimming circuits work at the same time to meet the working needs of two sets of 100W cold light COB lamp beads and two sets of 100W warm light COB lamp beads.
  • the lighting power supply circuit has good scalability.
  • high-power COBLED lamps need to achieve power output of 300W and higher, this can be achieved by building multiple sets or more of boost and step-down dimming module circuits into the device.
  • the present invention provides an adapter circuit and an LED lamp having the same.
  • the adapter circuit proposed by the present invention has a wide range of applicability, so that users do not need to use adapters of specific specifications when using electronic devices, thereby saving electronic devices. usage cost.
  • the LED lamp using the adapter circuit proposed by the present invention has light and dark and strobe adjustment functions.
  • the light power supply circuit it contains can provide high-power power supply, while reducing the required cost and improving the user experience.

Abstract

本发明提供了一种适配电路及具有其的LED灯,适配电路使不同类型的适配器能够直接应用于电子器件,包括协议电路和变压电路,适配器的输出端连接协议电路的输入端,协议电路的输出端与变压电路的输入端连接,变压电路的输出端连接电子器件;以通过协议电路检测到的适配器的电压档位,驱动变压电路调节适配器输入的电压,以使变压电路输出的电压在电子器件的工作电压范围内。本发明提出的适配电路适用性较为广泛,使用户使用电子器件时不必使用特定规格的适配器,节约了电子器件的使用成本。本发明提出的使用该适配电路的LED灯具有明暗和频闪调节功能,其包含的灯光供电电路可提供大功率的供电,同时降低了所需的成本,提升了用户的使用体验。

Description

一种适配电路及具有其的LED灯 技术领域
本发明属于电子电路技术领域,具体涉及一种适配电路及具有其的LED灯。
背景技术
适配器是一个接口转换器,它可以是一个独立的硬件接口设备,允许硬件或电子接口与其它硬件或电子接口相连,也可以是信息接口,比如电源适配器、三角架基座转接部件、USB与串口的转接设备等。
适配器与电子产品搭配,可实现电子产品本身的功能,并对带有电池的电子产品进行充电,目前市面上各种电子产品甚至普通电器所配备的PD适配器在大多数场合下都可以轻松找到。以市面上常见的TYPE-C接口的PD适配器为例,其PD适配器一般具有多种输出的电压/电流档位,例如5V/2A、9V/2A、12V/2A、15V/3A、20V/3.25A、20V/5A等。
但是,现有的电子产品一般需要搭配特定规格的适配器才能正常工作使用及充电,而且这样的适配器也只能专制专用,适用性差而且制造成本较高,通常在损坏后也只能重新购买同一种规格的适配器,相对而言较为费时费力。
发明内容
为了克服上述现有技术的缺陷,本发明提出了一种适配电路,使不同类型的适配器能够直接应用于电子器件,包括协议电路和变压电路,所述适配器的输出端连接所述协议电路的输入端,所述协议电路的输出端与所述变压电路的输入端连接,所述变压电路的输出端连接所述电子器件;以通过所述协议电路检测到的所述适配器的电压档位,驱动所述变压电路调节所述适配器输入的电压,以使所述变压电路输出的电压在所述电子器件的工作电压范围内。
进一步地,适配电路还包括储能单元,所述储能单元连接所述变压电路的输出端, 以通过所述协议电路检测所述适配器的电流档位,并基于所述电流档位在所述电子器件与所述储能单元之间实现功率分配。
进一步地,适配电路还包括通断电路,所述通断电路设置于所述变压电路与所述储能单元间,用于导通或切断所述适配器对所述储能单元的供能。
本发明还提出了一种LED灯,包括灯珠组合和如前文所述的适配电路,所述变压电路的输出端连接所述灯珠组合。
可选地,LED灯还包括调光电路和第一升压电路,所述变压电路的输出端通过所述调光电路与所述灯珠组合连接,不同的所述调光电路由不同的PWM脉冲控制,每个所述调光电路至少连接一个所述灯珠组合;
所述第一升压电路设置于所述变压电路与所述调光电路、所述变压电路与所述灯珠组合之间,用于对所述变压电路输出的电压进行升压。
具体地,LED灯还包括灯光供电电路,所述灯光供电电路包括降压调光模组和至少两路供电电路;
所述供电电路包括充电接口和第二升压电路,所述充电接口用于连接外部电源,所述充电接口连接所述第二升压电路;
所述升压电路连接所述降压调光模组,所述降压调光模组连接所述LED灯上所有的灯珠组合,以点亮与所连接的外部电源对应的所述灯珠组合;不同的所述充电接口对应不同的所述灯珠组合。
进一步地,所述供电电路还包括快充协议芯片,所述充电接口各分别连接一所述快充协议芯片,所述快充协议芯片用于当所述充电接口通过外接充电器连接外部电源时,识别所述充电器支持的快充协议类型,以调整传输线路由所述充电接口传输至所述升压电路的电压。
可选地,还包括二极管并联汇流电路,各路所述供电电路提供给所述第二升压电路的输出电压相同,所述第二升压电路通过所述二极管并联汇流电路并联后连接所述降压 调光模组;
所述降压调光模组包括多个子模组,所述二极管并联汇流电路连接所有的所述子模组;不同的所述子模组连接不同的所述灯珠组合。
优选地,所述LED灯包括若干个灯珠组合,所有的所述灯珠组合的灯珠均匀分布在所述LED灯的发光面;
各所述充电接口对应的所述灯珠组合的灯珠均匀分布在所述发光面。
本发明至少具有以下有益效果:
本发明提出的适配电路使应用的电子器件能够配合绝大部分适配器进行使用,适用性广,能够使多种规格的适配器应用于该电子器件,节约了电子器件的使用成本;
进一步地,本发明提出的适配电路还包括储能单元与通断电路,能够通过通断电路的导通与切断功能,将部分适配器提供的功率提供给储能单元,充分利用了适配器的功率,消除了使用电子器件时的安全隐患,保证了适配电路及电子器件的使用寿命;
本发明提出的LED灯应用了该适配电路,使LED灯能够支持市面上绝大多数的适配器进行使用,降低用户购买使用LED灯的成本,并通过调光电路和第一升压电路实现了LED的调光功能,方便用户根据场景自定义调节使用,优化了用户的使用体验;
此外,本发明提出的LED灯还包括灯光供电电路,灯光供电电路采用了双路充电接口供电的方式,能够利用用户持有的大功率充电头设备实现为大功率补光灯的供电,较为便捷,相较于原有的供电方式,大大降低了所需的成本。
以此,本发明提供了一种适配电路及具有其的LED灯,本发明提出的适配电路适用性较为广泛,使用户使用电子器件时不必使用特定规格的适配器,节约了电子器件的使用成本。本发明提出的使用该适配电路的LED灯具有明暗和频闪调节功能,其包含的灯光供电电路可提供大功率的供电,同时降低了所需的成本,提升了用户的使用体验。
附图说明
图1为实施例1提供的适配电路的整体模块结构示意图;
图2(a)~(e)为协议电路的电路结构示意图;
图3为变压电路的电路结构示意图;
图4为实施例2提供的LED灯的整体模块结构示意图;
图5(a)~(f)为调光电路的电路结构示意图;
图6为第一升压电路的电路结构示意图;
图7为灯光供电电路的整体电路结构框图;
图8(a)为TYPE-C的电路结构示意图,图8(b)为PD协议通讯芯片的电路结构示意图;
图9为BOOST升压电路的电路结构示意图;
图10为二极管并联汇流电路的电路结构示意图;
图11(a)~(d)分别为电流型LED恒流驱动器的电路结构示意图;
图12为灯光供电电路的另一实施方式的整体电路结构框图;
图13(a)~(d)分别为100W降压调光驱动电路的电路结构示意图。
附图标记:
1-适配器;2-电子器件;3-LED灯;4-协议电路;5-变压电路;6-储能单元;7-通
断电路;11-接口;31-灯珠组合;32-调光电路;33-第一升压电路。
具体实施方式
实施例1
本实施例提出一种适配电路,用于连接电子器件2,使不同类型的适配器1能够直接应用于该电子器件2,能够适用于市面上绝大多数适配器1,请参考图1-图3,本实施例提出的适配电路包括协议电路4和变压电路5,所述适配器1的输出端连接协议电路4的输入端,协议电路4的输出端与变压电路5的输入端连接,变压电路5的输出端连接所述电子器件2。本实施例中适配器1的输出端包括接口11。
需要说明的是,当适配器1的输入电压较低时,电子器件2可能无法正常工作,需 要对适配器1的输入电压进行升压以适配电子器件2的工作电压;当适配器1的输入电压较高时,使用电子器件2具有安全隐患,并且有可能影响适配电路及电子器件2的使用寿命,同样需要对适配器1的输入电压进行降压以适配电子器件2的工作电压;
适配器1一般具有多种输出的电压/电流档位,以市面上常见的Type-C接口的PD适配器为例,该PD适配器具有5V/2A、9V/2A、12V/2A、15V/3A、20V/3.25A、20V/5A等电压/电流档位,因此,协议电路4用于检测适配器1的电压/电流档位,并将检测结果通过信号发送至变压电路5,以驱动变压电路5调节适配器1输入的电压。
具体地,电子器件2的工作电压具有一定的范围,若所述适配器1的输入电压低于电子器件2的最低工作电压,驱动变压电路5对输入电压进行升压,使电压不低于所述电子器件2的最低工作电压;
若所述适配器1的输入电压高于电子器件2的最高工作电压,驱动变压电路5对输入电压进行降压,使电压不高于所述电子器件2的最低工作电压。
进一步地,电子器件2需要通过适配器1传递的电能驱动,若限定于通过有线连接的方式为电子器件2进行供电,会具有比较大的限制。因此,本发明提出的电子器件2还设置有储能单元6,所述储能单元6连接变压电路5的输出端。本实施例中所述储能单元6包括电池,利用电池作为电子器件2的电能来源,可以得到具有稳定电压、稳定电流、能长时间稳定供电、且受外界影响很小的电流,同时电池具有结构简单,携带方便的优点,且电池性能稳定可靠。
值得注意的是,当适配器1的输入电压较高时,能够对适配器1的输入电压进行降压以适配电子器件2的工作电压,但若适配器1的功率过高,使用电子器件2仍具有安全隐患,并且也有可能影响适配电路及电子器件2的使用寿命,需要将适配器1提供的功率中多余的部分,为了充分利用适配器1的功率,可将多余的功率分配于为所述电池充电。
优选地,本实施例中,若适配器1的最大功率大于电子器件2的最高工作功率,分 配适配器1功率高于电子器件2最高工作功率的部分用于为所述电池充电;
若适配器1的最大功率不大于电子器件2的最高工作功率,使适配器1的全部功率用于为电子器件2供能,或按预设比例分配一部分适配器1功率用于为电子器件2供能,其余部分适配器1功率用于为所述电池充电。
可选地,为所述电池充电的适配器1功率的预设比例可由使用者调节。进一步地,可使适配器1的全部功率用于为所述电池充电。
优选地,变压电路5与电池间还设置有通断电路7,本实施例中,所述通断电路7包括MOS管,通过所述MOS管导通或切断适配器1通过协议电路4和变压电路5对所述电池的供能。
具体地,变压电路5的输出端通过MOS管连接所述电池,所述MOS管为N型金属氧化物半导体场效应晶体管(negative channel metal oxide semiconductor,NMOS),在使用NMOS管情况下,所述MOS管的第一极为漏极D,第二级为源极S。所述MOS管的栅极G接收到高电平信号时,所述MOS管处于导通状态;所述MOS管的栅极G接收到低电平信号时,所述MOS管处于截止状态。
若适配器1的最大功率大于电子器件2的最高工作功率,发送高电平信号至所述MOS管的栅极G,导通协议电路4和变压电路5对所述电池的供能,分配适配器1功率高于电子器件2最高工作功率的部分用于为所述电池充电;
若适配器1的最大功率不大于电子器件2的最高工作功率,发送低电平信号至所述MOS管的栅极G,切断协议电路4和变压电路5对所述电池的供能,使适配器1的全部功率用于为电子器件2供能;或发送高电平信号至所述MOS管的栅极G,导通协议电路4和变压电路5对所述电池的供能,按预设比例分配一部分适配器1功率用于为电子器件2供能,其余部分适配器1功率用于为所述电池充电。
优选地,所述适配器1包括PD适配器,协议电路4包括PD协议电路,所述接口11包括Type-C接口、USB接口或lightning接口。
需要说明的是,PD即为USB PD(USB Power Delivery,功率传输协议),是由USB-IF组织制定的一种快速充电规范,是目前主流的快充协议之一。PD充电通过USB电缆和射频连接器改善电力工程运输,扩大USB应用中电缆系统总线的配电能力,该标准运输效率最高可达100瓦,可以任意改变电力工程的传输方向。
实施例2
请参考图4,本实施例还提出了一种LED灯3,所述LED灯3包括至少一个灯珠组合31和如实施例1中提出的适配电路,变压电路5的输出端连接灯珠组合31,使不同类型的适配器1能够直接应用于LED灯3。
需要说明的是,变压电路5的输出端可连接若干个灯珠组合31,请再次参考图4,示例性地,图4中示出了变压电路5的输出端连接两个灯珠组合31的情形,但并不能理解为对变压电路5的输出端连接的灯珠组合31数量的限制,可以根据LED工作功率等参数的需求,调节灯珠组合31的数量,例如大于两个或者小于两个。本实施例中,灯珠组合31包括LED灯3珠。
优选地,请参考图4、图5(a)~(f),LED灯3还包括调光电路32,调光电路32连接变压电路5的输出端,用于调节灯珠组合31的亮度,实现调光的方法有很多种,有模拟调光、有定时器调光、可控硅调光等,本实施例中通过PWM脉冲调节LED的亮度以实现线性调光,每个调光电路32至少连接一个灯珠组合31,本实施例中调光电路32与灯珠组合31一一对应连接。进一步地,各个所述调光电路32由不同的PWM脉冲控制,可对若干个灯珠组合31实现不同的调光效果。
进一步地,请参考图4、图6,LED灯3还包括升压电路33,升压电路33设置于变压电路5与调光电路32、变压电路5与灯珠组合31之间,用于将电池电压或者适配器1经协议电路4与变压电路5后的输出电压升到高压。可选地,所述升压电路33升压后的电压约等于所述灯珠组合31的电压。通过设置调光电路32和升压电路33,本实施例提出的LED灯3能够调节灯的明暗和频闪,提高其发光的稳定性,增强用户体验。
进一步地,灯珠组合31需要通过适配器1传递的电能驱动,若限定于通过有线连接的方式为灯珠组合31进行供电,会具有比较大的限制。因此,本发明提出的LED灯3还设置有储能单元6,所述储能单元6分别连接变压电路5的输出端和升压电路33的输入端。本实施例中所述储能单元6包括电池,利用电池作为灯珠组合31的电能来源,可以得到具有稳定电压、稳定电流、能长时间稳定供电、且受外界影响很小的电流,同时电池具有结构简单,携带方便的优点,且电池性能稳定可靠。
值得注意的是,当适配器1的输入电压较高时,能够对适配器1的输入电压进行降压以适配灯珠组合31的工作电压,但若适配器1的功率过高,使用LED灯3仍具有安全隐患,并且也有可能影响适配电路及LED灯3的使用寿命,需要将适配器1提供的功率中多余的部分,为了充分利用适配器1的功率,可将多余的功率应用于为所述电池充电。
优选地,本实施例中,若适配器1的最大功率大于灯珠组合31的最高工作功率,分配适配器1功率高于灯珠组合31最高工作功率的部分用于为所述电池充电;
若适配器1的最大功率不大于灯珠组合31的最高工作功率,使适配器1的全部功率用于为灯珠组合31供能,或按预设比例分配一部分适配器1功率用于为灯珠组合31供能,其余部分适配器1功率用于为所述电池充电。
可选地,为所述电池充电的适配器1功率的预设比例可由使用者调节。进一步地,可使适配器1的全部功率用于为所述电池充电。
具体地,变压电路5的输出端通过MOS管连接所述电池,所述MOS管为N型金属氧化物半导体场效应晶体管(negative channel metal oxide semiconductor,NMOS),在使用NMOS管情况下,所述MOS管的第一极为漏极D,第二级为源极S。所述MOS管的栅极G接收到高电平信号时,所述MOS管处于导通状态;所述MOS管的栅极G接收到低电平信号时,所述MOS管处于截止状态。
本实施例中,通过所述MOS管导通或切断适配器1通过协议电路4和变压电路5对 所述电池的供能,具体为:
若适配器1的最大功率大于灯珠组合31的最高工作功率,发送高电平信号至所述MOS管的栅极G,导通协议电路4和变压电路5对所述电池的供能,分配适配器1功率高于灯珠组合31最高工作功率的部分用于为所述电池充电;
若适配器1的最大功率不大于灯珠组合31的最高工作功率,发送低电平信号至所述MOS管的栅极G,切断协议电路4和变压电路5对所述电池的供能,使适配器1的全部功率用于为灯珠组合31供能;或发送高电平信号至所述MOS管的栅极G,导通协议电路4和变压电路5对所述电池的供能,或按预设比例分配一部分适配器1功率用于为灯珠组合31供能,其余部分适配器1功率用于为所述电池充电。
进一步地,请参考图7,本实施例中提出的LED灯还包括灯光供电电路,灯光供电电路包括降压调光模组和至少两路供电电路,降压调光模组连接LED灯上所有的灯珠组合31,供电电路包括充电接口、快充协议芯片和第二升压电路,充电接口用以通过外接充电器以连接外部电源,两路充电接口各分别连接一快充协议芯片,快充协议芯片用于识别充电器支持的快充协议类型,以调整传输线路由充电接口传输至第二升压电路的输入电压,进而实现用电器的快充功能。
需要说明的是,不同的充电接口对应不同的灯珠组合31。
可选地,充电接口可包括TYPE-C接口、USB接口或Lighting接口,灯珠组合31的灯珠可包括LED灯珠;本说明书中,充电接口以TYPE-C接口为例,如图8(a)所示,外接的充电器以USB充电器为例,LED灯以COBLED灯为例,COBLED灯包括若干个COB灯珠组合31,COB灯珠组合31包括多个集成的LED灯珠。
优选地,请参考图9,第二升压电路采用BOOST升压方案,第二升压电路包括BOOST升压电路,通过VBUS从TYPE-C接口取电,第二升压电路升压后将电压传输至后级的降压调光模组,使降压调光模组的输出端进行输出,以点亮与所连接的外部电源对应的COB灯珠组合31,同时将第二升压电路、降压调光模组进行模块化设计。
需要说明的是,VBUS线是HOST/HUB向USB设备供电的电源线,即平常USB设备的+5V。
本实施例中,快充协议芯片(如图8(b)所示)可识别PD快充协议、QC快充协议、CC快充协议等快充协议。示例性地,若设置快充协议芯片优先识别PD快充协议,则当充电器支持PD快充协议时,快充协议芯片根据PD协议匹配最高输出电压与功率;当充电器只支持QC快充协议时,快充协议芯片根据QC协议获取最大支持电压,再根据QC功率控制算法获取充电器的最大功率。
TYPE-C接口的输入端用于外接USB充电器以连接外部电源,输出端连接第二升压电路,第二升压电路再通过后级的降压调光模组连接COB灯珠组合31,经降压调光模组处理后,点亮COB灯珠组合31。
具体地,本实施例中快充协议芯片通过DM/DP/CC线与TYPE-C接口连接,需要说明的是,DM(data minus)是USB的数据线D-,DP(data plus)是USB的数据线D+,CC用于PD设备识别,承载USB-PD的通信,以向供电端请求电源供给。
优选地,灯珠组合31中的灯珠均匀分布在所述LED灯的发光面;降压调光模组包括多个子模组时,每个子模组对应的灯珠组合31的灯珠均匀分布在发光面,以使用户仅通过单路充电接口实现对LED灯的供电时,LED灯也能够获得均匀的发光效果。
本实施例中,快充协议芯片包括HUSB238快充协议芯片,TYPE-C接口支持最高20V的输入电压和最高100W的输入功率。
可选地,请参考图7-图11(a)~(d),本实施例中以双路TYPE-C并联供电电路为例,双路TYPE-C并联供电电路采用了双路TYPE-C并联供电的设计,每一路TYPE-C输入口提供等额的输入功率,并在每一路供电电路内部设计一路100W大功率升压电路,实现200W功率输出,同时采用高精度采样电阻,以确保各路第二升压电路输出的电压相同或尽可能接近。
具体地,双路TYPE-C并联供电电路还包括二极管并联汇流电路,第二升压电路通 过二极管并联汇流电路并联后连接降压调光模组;双路TYPE-C接口输入的功率经BOOST升压电路升压后,通过二极管并联汇流电路将双路TYPE-C接口的输入功率汇总并进行整体输出,以隔离两路的电压差,防止对彼此的反馈回路形成干扰。
本实施例中,双路TYPE-C并联供电电路的降压调光模组采用了电流型LED恒流驱动器并联方案,具体地,降压调光模组包括多个子模组,二极管并联汇流电路连接所有的子模组,请再次参考图7,子模组可以采用电流型LED恒流驱动器并联的方案,具体的电流型LED恒流驱动器例如可以有4个,分别对应图11(a)~(d);以图7为例来进行说明,本实施例中降压调光模组包括两个子模组,每个子模组包括一路200W共阳极降压调光驱动电路,一路200W共阳极降压调光驱动电路可以由两个电流型LED恒流驱动器并联组成;灯珠组合31包括一组冷光COB灯珠组合31和一组暖光COB灯珠组合31,一路子模组连接冷光COB灯珠组合31,另一路子模组连接暖光COB灯珠组合31,使降压调光模组可实现对冷光COB灯珠组合31和暖光COB灯珠组合31的驱动。
进一步地,所述二极管并联汇流电路同时与所述冷光COB灯珠组合31、所述暖光COB灯珠组合31直接电连接。优选地,大功率COBLED灯采用通用冷暖200W大功率COB灯珠组合31的设计,可实现最大200W冷暖光输出控制,较之4路100W灯珠组合31的方案会有更加均匀的补光效果。
本实施例中,当任意一路TYPE-C接口供电时,内部驱动电路工作,可实现冷光加暖光最大100W的功率输出;当两路TYPE-C接口供同时供电时,内部驱动电路工作,主控芯片从USB快充协议芯片处获取每路TYPE-C接口最大输出功率。并动态限制COB灯珠组合31的输出功率,以确保系统稳定工作。
可选地,请参考图9、图10、图12、图13(a)~(d),本实施例中以双路TYPE-C独立供电电路为例,双路TYPE-C独立供电电路采用了双路TYPE-C独立供电的设计,每一路TYPE-C输入口提供等额的输入功率,实现200W功率输出,同时采用高精度采样电阻,以确保两路第二升压电路输出的电压尽可能接近。
具体地,第二升压电路包括每路供电电路内部设计的一路100W大功率升压电路,降压调光模组包括至少两组降压调光驱动电路,本实施例中降压调光模组包括两组降压调光驱动电路,包含四路100W降压调光驱动电路,COB灯珠组合31采用多路100W供电设计。
本实施例中,大功率COBLED灯包括至少两组100W冷光COB灯珠组合31和至少两组100W暖光COB灯珠组合31,任一第二升压电路连接的两组降压调光驱动电路中,一组降压调光驱动电路中的一路降压调光驱动电路连接一组100W冷光COB灯珠组合31,另一路降压调光驱动电路连接一组100W暖光COB灯珠组合31;每路100W大功率升压电路分别输出电压至两路100W降压调光驱动电路,使各路100W降压调光驱动电路实现100W功率输出至其连接的COB灯珠100W。
本实施例中,当任意一路TYPE-C接口供电时,一路升压调光电路相应开始工作,可满足其对应的一组100W冷光COB灯珠100W及一组100W暖光COB灯珠100W的工作需求;当两路TYPE-C接口供同时供电时,两路升压调光电路同时工作,满足两组100W冷光COB灯珠100W及两组100W暖光COB灯珠100W的工作需求。
需要说明的是,灯光供电电路具有良好的扩展性,当大功率COBLED灯需要实现300W及更高功率输出时,可以通过在设备中内置多组以上升压加降压调光模块电路来实现。
综上所述,本发明提供了一种适配电路及具有其的LED灯,本发明提出的适配电路适用性较为广泛,使用户使用电子器件时不必使用特定规格的适配器,节约了电子器件的使用成本。本发明提出的使用该适配电路的LED灯具有明暗和频闪调节功能,其包含的灯光供电电路可提供大功率的供电,同时降低了所需的成本,提升了用户的使用体验。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种适配电路,使不同类型的适配器能够直接应用于电子器件,其特征在于,包括协议电路和变压电路,所述适配器的输出端连接所述协议电路的输入端,所述协议电路的输出端与所述变压电路的输入端连接,所述变压电路的输出端连接所述电子器件;以通过所述协议电路检测到的所述适配器的电压档位,驱动所述变压电路调节所述适配器输入的电压,以使所述变压电路输出的电压在所述电子器件的工作电压范围内。
  2. 根据权利要求1所述的适配电路,其特征在于,还包括储能单元,所述储能单元连接所述变压电路的输出端,以通过所述协议电路检测所述适配器的电流档位,并基于所述电流档位在所述电子器件与所述储能单元之间实现功率分配。
  3. 根据权利要求2所述的适配电路,其特征在于,还包括通断电路,所述通断电路设置于所述变压电路与所述储能单元间,用于导通或切断所述适配器对所述储能单元的供能。
  4. 一种LED灯,其特征在于,包括灯珠组合和如权利要求1-3任一项所述的适配电路,所述变压电路的输出端连接所述灯珠组合。
  5. 根据权利要求4所述的LED灯,其特征在于,还包括调光电路和第一升压电路,所述变压电路的输出端通过所述调光电路与所述灯珠组合连接,不同的所述调光电路由不同的PWM脉冲控制,每个所述调光电路至少连接一个所述灯珠组合;
    所述第一升压电路设置于所述变压电路与所述调光电路、所述变压电路与所述灯珠组合之间,用于对所述变压电路输出的电压进行升压。
  6. 根据权利要求4所述的LED灯,其特征在于,还包括灯光供电电路,所述灯光供电电路包括降压调光模组和至少两路供电电路;
    所述供电电路包括充电接口和第二升压电路,所述充电接口用于连接外部电源,所述充电接口连接所述第二升压电路;
    所述升压电路连接所述降压调光模组,所述降压调光模组连接所述LED灯上所有的灯珠组合,以点亮与所连接的外部电源对应的所述灯珠组合;不同的所述充电接口对应不同的所述灯珠组合。
  7. 根据权利要求6所述的LED灯,其特征在于,所述供电电路还包括快充协议芯片,所述充电接口各分别连接一所述快充协议芯片,所述快充协议芯片用于当所述充电接口通过外接充电器连接外部电源时,识别所述充电器支持的快充协议类型,以调整传输线 路由所述充电接口传输至所述升压电路的电压。
  8. 根据权利要求6或7所述的LED灯,其特征在于,还包括二极管并联汇流电路,各路所述供电电路提供给所述第二升压电路的输出电压相同,所述第二升压电路通过所述二极管并联汇流电路并联后连接所述降压调光模组;
    所述降压调光模组包括多个子模组,所述二极管并联汇流电路连接所有的所述子模组;不同的所述子模组连接不同的所述灯珠组合。
  9. 根据权利要求6或7所述的LED灯,其特征在于,所述降压调光模组包括至少两组降压调光驱动电路,所述第二升压电路分别连接一组所述降压调光驱动电路;不同的所述升压电路连接不同组的所述降压调光驱动电路;
    所述灯珠组合包括至少两组冷光灯珠组合和至少两组暖光灯珠组合,一组所述降压调光驱动电路中的一路所述降压调光驱动电路连接一组所述冷光灯珠组合,另一路所述降压调光驱动电路连接一组所述暖光灯珠组合。
  10. 根据权利要求4所述的LED灯,其特征在于,所述LED灯包括若干个灯珠组合,所有的所述灯珠组合的灯珠均匀分布在所述LED灯的发光面;
    各所述充电接口对应的所述灯珠组合的灯珠均匀分布在所述发光面。
PCT/CN2023/097535 2022-06-29 2023-05-31 一种适配电路及具有其的led灯 WO2024001657A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221653543.X 2022-06-29
CN202221653543.XU CN217604042U (zh) 2022-06-29 2022-06-29 一种适配电路及具有其的led灯
CN202222447569.5 2022-09-15
CN202222447569.5U CN218634349U (zh) 2022-09-15 2022-09-15 一种补光灯供电电路及具有其的大功率补光灯

Publications (1)

Publication Number Publication Date
WO2024001657A1 true WO2024001657A1 (zh) 2024-01-04

Family

ID=89382788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097535 WO2024001657A1 (zh) 2022-06-29 2023-05-31 一种适配电路及具有其的led灯

Country Status (1)

Country Link
WO (1) WO2024001657A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110918A (ja) * 2011-11-24 2013-06-06 Panasonic Corp Led駆動装置及びそれを用いた照明装置
CN106341928A (zh) * 2016-11-02 2017-01-18 广东工业大学 一种高兼容性混合电源结构led集中式直流供电系统
CN106972736A (zh) * 2017-05-26 2017-07-21 深圳市乐得瑞科技有限公司 电源适配设备、控制方法及装置
CN107277985A (zh) * 2017-08-15 2017-10-20 合肥惠科金扬科技有限公司 Led调光电路和led显示设备
CN112153774A (zh) * 2020-11-10 2020-12-29 厦门市朗星科技股份有限公司 控制电路及led灯电路
CN112714382A (zh) * 2020-12-28 2021-04-27 Tcl通力电子(惠州)有限公司 功率自适应电路、控制方法及电子设备
CN217604042U (zh) * 2022-06-29 2022-10-18 桂林智神信息技术股份有限公司 一种适配电路及具有其的led灯
CN218634349U (zh) * 2022-09-15 2023-03-14 桂林智神信息技术股份有限公司 一种补光灯供电电路及具有其的大功率补光灯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110918A (ja) * 2011-11-24 2013-06-06 Panasonic Corp Led駆動装置及びそれを用いた照明装置
CN106341928A (zh) * 2016-11-02 2017-01-18 广东工业大学 一种高兼容性混合电源结构led集中式直流供电系统
CN106972736A (zh) * 2017-05-26 2017-07-21 深圳市乐得瑞科技有限公司 电源适配设备、控制方法及装置
CN107277985A (zh) * 2017-08-15 2017-10-20 合肥惠科金扬科技有限公司 Led调光电路和led显示设备
CN112153774A (zh) * 2020-11-10 2020-12-29 厦门市朗星科技股份有限公司 控制电路及led灯电路
CN112714382A (zh) * 2020-12-28 2021-04-27 Tcl通力电子(惠州)有限公司 功率自适应电路、控制方法及电子设备
CN217604042U (zh) * 2022-06-29 2022-10-18 桂林智神信息技术股份有限公司 一种适配电路及具有其的led灯
CN218634349U (zh) * 2022-09-15 2023-03-14 桂林智神信息技术股份有限公司 一种补光灯供电电路及具有其的大功率补光灯

Similar Documents

Publication Publication Date Title
CN201403234Y (zh) 用于发光二极管背光系统的接口整合电路及其背光系统
CN103155710B (zh) 电源装置和照明装置
US20210131622A1 (en) Led apparatus with integrated power supply and a method of employing same
CN103096565A (zh) Led照明装置及其灯光控制方法
CN111586919A (zh) 多信号输入的调光信号转换器
CN217604042U (zh) 一种适配电路及具有其的led灯
CN206442561U (zh) 一种应急灯控制电路
WO2024001657A1 (zh) 一种适配电路及具有其的led灯
CN218634349U (zh) 一种补光灯供电电路及具有其的大功率补光灯
CN103987162B (zh) 一种负载自适应led电源
JP7136833B2 (ja) 負電圧デュアル電圧電源によって駆動されるledディスプレイ
CN209072770U (zh) 一种适用于小电流实现调光调色的电路
CN107543094A (zh) 一种带应急照明功能的led灯具
CN102200229B (zh) 发光二极管灯管
CN205336595U (zh) 一种led高频驱动电路
CN212324422U (zh) 一种rgbw的led驱动电路
CN216752156U (zh) 一种隧道回路调光系统
CN210899742U (zh) 一种单串降压型太阳能控制器
CN212367578U (zh) 多信号输入的调光信号转换器
CN102252294A (zh) 一种led照明装置
CN204145855U (zh) 集成控制电路控制的直驱led照明系统
CN203951646U (zh) 一种根据电压判断不同led照明模块的装置
CN210120682U (zh) 高效无线控制rgbw光源的led非隔离恒流驱动电路
CN210781439U (zh) 一种用于led变光模块的供电组件
CN212064422U (zh) Led恒流驱动电路及led照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829842

Country of ref document: EP

Kind code of ref document: A1