WO2024001348A1 - 一种超声造影成像方法、装置、系统及设备和存储介质 - Google Patents

一种超声造影成像方法、装置、系统及设备和存储介质 Download PDF

Info

Publication number
WO2024001348A1
WO2024001348A1 PCT/CN2023/084252 CN2023084252W WO2024001348A1 WO 2024001348 A1 WO2024001348 A1 WO 2024001348A1 CN 2023084252 W CN2023084252 W CN 2023084252W WO 2024001348 A1 WO2024001348 A1 WO 2024001348A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
signals
signal
different
contrast
Prior art date
Application number
PCT/CN2023/084252
Other languages
English (en)
French (fr)
Inventor
朱建武
刘旺锋
冯乃章
Original Assignee
深圳开立生物医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳开立生物医疗科技股份有限公司 filed Critical 深圳开立生物医疗科技股份有限公司
Publication of WO2024001348A1 publication Critical patent/WO2024001348A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image

Definitions

  • the present application relates to the field of ultrasound imaging technology, and more specifically, to an ultrasound contrast imaging method, device, an ultrasound imaging system, an ultrasound equipment, and a computer-readable storage medium.
  • an imaging mode if the contrast image does not meet the expected requirements, such as insufficient resolution, insufficient sensitivity, or insufficient penetration, an imaging mode may be reselected for a second contrast imaging, especially if there are both microscopic lesions and microscopic lesions on the same section.
  • the purpose of this application is to provide an ultrasound contrast imaging method, device, an ultrasound equipment and a computer-readable storage medium, which can simultaneously satisfy the penetration and sensitivity through one-time contrast imaging and resolution requirements.
  • an ultrasound contrast imaging method including:
  • each ultrasonic signal group includes multiple ultrasonic signals, and each of the ultrasonic signals
  • the signal includes at least two ultrasonic sub-signals with different periodic emission frequencies. Different ultrasonic signals in the same ultrasonic signal group have the same emission frequency corresponding to the period. Different ultrasonic signals in different ultrasonic signal groups have different emission frequencies corresponding to the period;
  • the contrast images are fused to obtain a target contrast image.
  • determining multiple transmit frequencies within the effective bandwidth range of the ultrasonic probe, and generating a pulse sequence containing multiple ultrasonic signal groups based on the multiple transmit frequencies includes:
  • a pulse sequence including a first ultrasonic signal group and a second ultrasonic signal group; wherein the first ultrasonic signal group is generated based on the first transmission frequency and the second transmission frequency, and the first ultrasonic signal group is generated based on the third transmission frequency and The fourth transmit frequency generates the second set of ultrasonic signals.
  • determining multiple transmit frequencies within the effective bandwidth range of the ultrasonic probe, and generating a pulse sequence containing multiple ultrasonic signal groups based on the multiple transmit frequencies includes:
  • a pulse sequence including a first ultrasonic signal group and a second ultrasonic signal group; wherein the first ultrasonic signal group is generated based on the fifth transmission frequency and the second transmission frequency, and the first ultrasonic signal group is generated based on the third transmission frequency and The fourth transmit frequency generates the second set of ultrasonic signals.
  • the sequentially transmitting different ultrasonic signals in different ultrasonic signal groups in the pulse sequence includes:
  • Different ultrasonic signals in different ultrasonic signal groups in the pulse sequence are sequentially transmitted based on the transmission frequency, voltage amplitude and number of transmission aperture array elements of different ultrasonic sub-signals in the different ultrasonic signals.
  • each ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal.
  • determining different voltage amplitudes for ultrasonic sub-signals of corresponding periods in different ultrasonic signals in the same ultrasonic signal group includes:
  • the second voltage amplitude is twice the first voltage amplitude.
  • each ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal.
  • different voltage amplitudes are determined for ultrasonic sub-signals of corresponding periods in different ultrasonic signals in the same ultrasonic signal group, include:
  • a third voltage amplitude is determined for the ultrasonic sub-signal in the first ultrasonic signal and the third ultrasonic signal, and a fourth voltage amplitude is determined for the ultrasonic sub-signal in the second ultrasonic signal; wherein, the fourth voltage The amplitude is a preset multiple of the third voltage amplitude.
  • the fourth voltage amplitude is twice the third voltage amplitude.
  • Different ultrasonic signals in different ultrasonic signal groups in the pulse sequence are sequentially transmitted based on the transmission frequency, voltage amplitude and number of transmission aperture array elements of different ultrasonic sub-signals in the different ultrasonic signals.
  • each ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal.
  • determining the number of different transmit aperture array elements for ultrasonic sub-signals in different ultrasonic signals in the same ultrasonic signal group includes:
  • the number of first transmission aperture array elements is determined for the ultrasonic sub-signal in the first ultrasonic signal, and the number of second transmission aperture array elements is determined for the ultrasonic sub-signal in the second ultrasonic signal; wherein, the second transmission aperture
  • the number of array elements is a preset multiple of the number of array elements of the first transmission aperture.
  • the number of the second transmitting aperture array elements is twice the number of the first transmitting aperture array elements.
  • each ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal.
  • the number of different transmit aperture array elements is determined for the ultrasonic sub-signals in different ultrasonic signals in the same ultrasonic signal group.
  • the emission aperture of the ultrasonic sub-signal in the first ultrasonic signal is one of odd aperture or even aperture
  • determine that the third The emission aperture of the ultrasonic sub-signal in the ultrasonic signal is the other one of odd aperture or even aperture.
  • the echo signal is processed to obtain multiple contrast signals corresponding to different imaging frequencies, including:
  • the echo signals of the different ultrasonic signals in each of the ultrasonic signal groups are weighted to obtain the corresponding response of each ultrasonic signal group.
  • the contrast signal
  • the contrast signals corresponding to each of the ultrasonic signal groups are demodulated using demodulation circuits corresponding to different imaging frequencies to obtain contrast signals corresponding to different imaging frequencies.
  • the echo signals of different ultrasonic signals in each of the ultrasonic signal groups are weighted based on the voltage amplitude relationship and phase relationship between the different ultrasonic signals in each of the ultrasonic signal groups to obtain each of the ultrasonic signals.
  • the contrast signals corresponding to the ultrasound signal group include:
  • the operation relationship of the corresponding echo signals is determined based on the phase relationship between different ultrasonic signals in each of the ultrasonic signal groups; wherein, if the phase relationship is opposite, the operation relationship is addition; if the phase relationship is the same, the operation relationship is The relationship is subtraction;
  • Weighting processing is performed based on the weighting coefficients and operational relationships of the echo signals of different ultrasound signals in each of the ultrasound signal groups to obtain contrast signals corresponding to each of the ultrasound signal groups.
  • the step of sequentially transmitting different ultrasonic signals in different ultrasonic signal groups in the pulse sequence and receiving echo signals generated by contrast agent microbubbles on the transmitted ultrasonic signals includes:
  • Different ultrasound signals in different ultrasound signal groups in the pulse sequence are sequentially emitted, so that the contrast agent microbubbles generate fundamental wave signals corresponding to different first imaging frequencies, and generate a second fundamental wave signal based on the fundamental wave signals corresponding to the first imaging frequency.
  • Multiple harmonic signals corresponding to the imaging frequency generate differential harmonic signals corresponding to the third imaging frequency based on different fundamental wave signals corresponding to the first imaging frequency; wherein the second imaging frequency is the first imaging frequency An integer multiple of the frequency, the third imaging frequency is at least one of the difference or the sum between different first imaging frequencies;
  • the contrast images are fused to obtain a target contrast image, including:
  • the weighting coefficients of each contrast image corresponding to different imaging modes are determined, and the different contrast images are weighted and fused based on the weighting coefficients of each contrast image to obtain target contrast images corresponding to different imaging modes.
  • the imaging mode includes a penetration mode and/or a resolution mode
  • the weighting coefficient of the contrast image corresponding to the penetration mode is negatively correlated with the imaging frequency corresponding to the contrast image
  • the weighting coefficient of the contrast image corresponding to the resolution mode is negatively correlated.
  • the weighting coefficient is positively related to the imaging frequency corresponding to the contrast image.
  • determining the weighting coefficients of each contrast image corresponding to different imaging modes includes:
  • the adjustment window For any target imaging mode, display the adjustment window corresponding to the target contrast image; Wherein, the adjustment window includes the adjustment area of each contrast image;
  • an ultrasound contrast imaging device including:
  • a generation module configured to determine multiple transmit frequencies within the effective bandwidth range of the ultrasonic probe, and generate a pulse sequence containing multiple ultrasonic signal groups based on the multiple transmit frequencies; wherein each ultrasonic signal group includes multiple ultrasonic signals, Each of the ultrasonic signals includes at least two ultrasonic sub-signals with different periodic emission frequencies.
  • the transmission frequencies of corresponding periods between different ultrasonic signals in the same ultrasonic signal group are the same.
  • the transmission frequencies of corresponding periods between different ultrasonic signals in different ultrasonic signal groups are The frequency is different;
  • a transmitting module for sequentially transmitting different ultrasonic signals in different ultrasonic signal groups in the pulse sequence, and receiving echo signals generated by contrast agent microbubbles on the transmitted ultrasonic signals; wherein the echo signals include different imaging The fundamental signal and harmonic signal corresponding to the frequency;
  • a processing module configured to process the echo signal to obtain multiple contrast signals corresponding to different imaging frequencies, and generate corresponding contrast images based on the contrast signals;
  • a fusion module is used to fuse the contrast images to obtain a target contrast image.
  • this application provides an ultrasound imaging system, including: an ultrasound host, an ultrasound probe, and a host computer; the ultrasound host is communicatively connected to the ultrasound probe and the host computer respectively;
  • the ultrasound host is used to implement the steps of the above-mentioned ultrasound contrast imaging method.
  • an ultrasonic device including:
  • Memory used to store computer programs
  • a processor configured to implement the steps of the above ultrasound contrast imaging method when executing the computer program.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, the steps of the above-mentioned ultrasound contrast imaging method are implemented.
  • an ultrasound contrast imaging method includes: determining multiple transmission frequencies within the effective bandwidth range of the ultrasound probe, and generating a signal based on the multiple transmission frequencies. into a pulse sequence including multiple ultrasonic signal groups; wherein each ultrasonic signal group includes multiple ultrasonic signals, each of the ultrasonic signals includes at least two ultrasonic sub-signals with different periodic emission frequencies, and different ultrasonic signals in the same ultrasonic signal group
  • the transmitting frequencies corresponding to the periods between the signals are the same, and the transmitting frequencies corresponding to the periods between different ultrasonic signals in different ultrasonic signal groups are different; different ultrasonic signals in different ultrasonic signal groups in the pulse sequence are sequentially transmitted, and contrast agent microbubbles are received
  • the ultrasound probe can obtain multiple contrast signals corresponding to different imaging frequencies by transmitting a complete pulse sequence, including fundamental wave signals and harmonic signals of different imaging frequencies, and contrast signals corresponding to the same imaging frequency.
  • the fundamental wave signal and the harmonic signal enhance each other, and an enhanced contrast signal can be obtained.
  • the corresponding contrast image generated based on the enhanced contrast signal can meet the requirements of penetration, sensitivity and resolution.
  • This application also discloses an ultrasound contrast imaging device, an ultrasound imaging system, an ultrasound equipment, and a computer-readable storage medium, which can also achieve the above technical effects.
  • Figure 1 is an architectural diagram of an ultrasound imaging system according to an exemplary embodiment
  • Figure 2 is an architectural diagram of another ultrasound imaging system according to an exemplary embodiment
  • Figure 3 is a flow chart of an ultrasound contrast imaging method according to an exemplary embodiment
  • Figure 4a is a schematic diagram of a first ultrasonic signal according to an exemplary embodiment
  • Figure 4b is a schematic diagram of a second ultrasonic signal according to an exemplary embodiment
  • Figure 4c is a schematic diagram of a third ultrasonic signal according to an exemplary embodiment
  • Figure 4d is a schematic diagram of a fourth ultrasonic signal according to an exemplary embodiment
  • Figure 5a is a schematic diagram of another first ultrasonic signal according to an exemplary embodiment
  • Figure 5b is a schematic diagram of another second acoustic signal according to an exemplary embodiment
  • Figure 5c is a schematic diagram of another third ultrasound signal according to an exemplary embodiment
  • Figure 5d is a schematic diagram of another fourth ultrasound signal according to an exemplary embodiment
  • Figure 6a is a schematic diagram of yet another first ultrasonic signal according to an exemplary embodiment
  • Figure 6b is a schematic diagram of yet another second ultrasonic signal according to an exemplary embodiment
  • Figure 6c is a schematic diagram of yet another third ultrasonic signal according to an exemplary embodiment
  • Figure 6d is a schematic diagram of yet another fourth ultrasonic signal according to an exemplary embodiment
  • Figure 7a is a schematic diagram of yet another first ultrasonic signal according to an exemplary embodiment
  • Figure 7b is a schematic diagram of yet another second ultrasonic signal according to an exemplary embodiment
  • Figure 7c is a schematic diagram of yet another third ultrasound signal according to an exemplary embodiment
  • Figure 7d is a schematic diagram of yet another fourth ultrasonic signal according to an exemplary embodiment
  • Figure 7e is a schematic diagram of a fifth ultrasonic signal according to an exemplary embodiment
  • Figure 7f is a schematic diagram of a sixth ultrasonic signal according to an exemplary embodiment
  • Figure 8 is a schematic diagram showing a display of an ultrasound contrast image according to an exemplary embodiment
  • Figure 9 is a schematic diagram of an adjustment frame of a target contrast image according to an exemplary embodiment
  • Figure 10 is a structural diagram of an ultrasound contrast imaging device according to an exemplary embodiment
  • Figure 11 is a structural diagram of an ultrasound device according to an exemplary embodiment.
  • This application can be applied to the ultrasound imaging system shown in Figure 1, including an ultrasound host, an ultrasound probe, and a host computer.
  • the ultrasonic host determines multiple transmit frequencies within the effective bandwidth range of the ultrasonic probe, and generates a pulse sequence, that is, a transmit waveform, containing multiple ultrasonic signal groups by controlling the scanning timing.
  • Each ultrasonic signal group includes multiple ultrasonic signals.
  • the transmit beam is synthesized, and is transmitted from the transmit circuit to the ultrasound probe, and then transmitted to the tissue to be inspected through the ultrasound probe, and the contrast agent microbubbles in the tissue generate echo signals.
  • the ultrasonic host performs beam synthesis on the echo signal of each ultrasonic signal and stores it in the Linebuffer.
  • the echo signals of different ultrasonic signals are processed by weighted summation or difference based on weight. Contrast signals corresponding to different ultrasound signal groups are obtained.
  • Linebuffer can be the Block RAM (Random Access Memory) resource inside the FPGA (Field Programmable Gate Array), or it can be an external memory, such as DDR (Double Rate Synchronous Dynamic Random Memory) , Double Data Rate), or hard disk, etc., are not specifically limited here.
  • the ultrasound host demodulates the contrast signal corresponding to the ultrasound signal group through a demodulation circuit (N-channel demodulation circuit in Figure 1, N is a natural number greater than 0), and obtains contrast signals corresponding to different imaging frequencies.
  • N-channel demodulation circuit in Figure 1 N is a natural number greater than 0
  • the data is packaged and uploaded and sent to the host computer through the transmission interface so that the host computer can perform contrast multi-resolution imaging processing.
  • the host computer performs weighted fusion of different contrast images based on the weighting coefficients of each contrast image corresponding to different imaging modes to obtain target contrast images corresponding to different imaging modes, and then displays them on the display device.
  • the weighting, demodulation and signal processing of echo signals of different ultrasonic signals can also be carried out on the back end of the host computer.
  • the specific architecture diagram is shown in Figure 2. What is different from Figure 1 is that after the ultrasonic host performs beam synthesis on the echo signal of each ultrasonic signal, it packages and uploads the data and sends it to the host computer through the transmission interface. The host computer performs data analysis and then stores it in Linebuffer. In Linebuffer, the echo signals of different ultrasonic signals are processed based on weight. Weighted summation or difference processing is performed to obtain contrast signals corresponding to different ultrasound signal groups.
  • the contrast signal corresponding to the ultrasound signal group is demodulated through a demodulation circuit (the N-channel demodulation circuit in Figure 2, N is a natural number greater than 0) to obtain contrast signals corresponding to different imaging frequencies, and then through imaging
  • the algorithm processes to obtain contrast images corresponding to different imaging frequencies, and then the host computer implements contrast multi-resolution imaging processing.
  • the embodiment of the present application discloses an ultrasound contrast imaging method that simultaneously meets the requirements of penetration, sensitivity and resolution through one-time contrast imaging.
  • FIG. 3 a flow chart of an ultrasound contrast imaging method is shown according to an exemplary embodiment. As shown in Figure 3, it includes:
  • S101 Determine multiple transmit frequencies within the effective bandwidth range of the ultrasonic probe, and generate a pulse sequence containing multiple ultrasonic signal groups based on the multiple transmit frequencies; wherein each ultrasonic signal group includes multiple ultrasonic signals, and each The ultrasonic signals include at least two periods of ultrasonic sub-signals with different emission frequencies. Different ultrasonic signals in the same ultrasonic signal group have the same emission frequency for corresponding periods. Different ultrasonic signals in different ultrasonic signal groups have different emission frequencies for corresponding periods. ;
  • multiple transmitting frequencies are determined within the effective bandwidth range of the ultrasonic probe.
  • the effective bandwidth range refers to the frequency range that the ultrasonic probe can transmit. It should be noted that the multiple transmitting frequencies try to cover the effective bandwidth range of the ultrasonic probe. That is to say, the minimum emission frequency is close to the minimum effective bandwidth of the ultrasonic probe, that is, the minimum frequency that the ultrasonic probe can emit, and the maximum emission frequency is close to the maximum effective bandwidth of the ultrasonic probe, that is, the maximum frequency that the ultrasonic probe can emit.
  • a pulse sequence for the ultrasonic probe to transmit ultrasonic signals is generated based on the multiple transmission frequencies determined above.
  • the pulse sequence includes multiple ultrasonic signal groups, and each ultrasonic signal includes at least two ultrasonic sub-signals with different periodic transmission frequencies.
  • the voltage amplitudes of different ultrasonic sub-signals in the ultrasonic signal can be the same or different (unless otherwise specified, the embodiment of the present application takes the same voltage amplitude as an example for explanation).
  • the corresponding periodic transmission frequencies of different ultrasonic signals in the same ultrasonic signal group Similarly, the emission frequencies corresponding to the periods of different ultrasonic signals in different ultrasonic signal groups are different.
  • the two periods may include a first period and a second period.
  • the ultrasonic signal includes an ultrasonic sub-signal of the first period and an ultrasonic sub-signal of the second period.
  • the ultrasonic sub-signal of the first period and the second period are included in the ultrasonic signal.
  • Periodic ultrasonic sub-signals have different emission frequencies.
  • this step may include: determining a reference transmission frequency and a target coefficient, determining the product of the reference transmission frequency and the target coefficient as the first transmission frequency, multiplying twice the first transmission frequency Determine it as the second transmission frequency, determine three times the first transmission frequency as the third transmission frequency, and determine four times the first transmission frequency as the fourth transmission frequency; wherein, the first transmission frequency, The second transmitting frequency, the third transmitting frequency, and the fourth transmitting frequency are all within the effective bandwidth range of the ultrasonic probe; a pulse sequence including the first ultrasonic signal group and the second ultrasonic signal group is generated; wherein, based on The first transmission frequency and the second transmission frequency generate the first ultrasonic signal group, and the second ultrasonic signal group is generated based on the third transmission frequency and the fourth transmission frequency.
  • the input command of the target coefficient can be received, and the value corresponding to the target coefficient is determined based on the value carried by the input command.
  • the target coefficient can be a value between 0 and 1.
  • the reference transmission frequency may refer to the basic transmission frequency for transmitting the ultrasonic pulse sequence, which may be understood as a unit of the transmission frequency.
  • the reference transmission frequency may be a preset parameter of the ultrasonic imaging system.
  • the input instruction of the reference transmission frequency may be received, and the value corresponding to the reference transmission frequency may be determined based on the value carried by the input instruction.
  • the reference transmission frequency is f
  • the target coefficient can be 0.5
  • the first transmission frequency is 0.5f
  • the second transmitting frequency is f
  • the third transmitting frequency is 1.5f
  • the fourth transmitting frequency is 2f.
  • the voltage amplitude of the first ultrasonic signal in the first ultrasonic signal group is V1 and the phase is - (that is, negative phase)
  • the voltage amplitude of the second ultrasonic signal is V2 and the phase is + (i.e., positive phase)
  • the voltage amplitude of the third ultrasonic signal in the second ultrasonic signal group is V3 and the phase is -
  • the voltage amplitude of the fourth ultrasonic signal is V4
  • the phase is +
  • the first ultrasonic signal in the first ultrasonic signal group is shown in Figure 4a (the abscissa Frequency in the figure represents frequency, and the ordinate represents voltage)
  • the second ultrasonic signal in the first ultrasonic signal group is as follows As shown in Figure 4b, the third ultrasonic signal in the second ultrasonic signal group is shown in Figure 4c, and the fourth ultrasonic signal in the second ultrasonic signal group is shown in Figure 4d.
  • the effective bandwidth range is 1.35MHz-5.4MHz. Therefore, the base transmission frequency f can be selected to be 2.7Mhz and the target coefficient is 0.5. Then the four A transmission frequency: 1.35MHz, 2.7Mhz, 4.05MHz, 5.4MHz, which corresponds to 0.5f, f, 1.5f, 2f respectively, which can cover the effective bandwidth range of the ultrasonic probe.
  • this step may include: determining a reference transmission frequency and a target coefficient, determining the product of the reference transmission frequency and the target coefficient as the first transmission frequency, multiplying twice the first transmission frequency Determine it as the second transmitting frequency, determine three times the first transmitting frequency as the third transmitting frequency, determine four times the first transmitting frequency as the fourth transmitting frequency, and determine the vicinity of the second transmitting frequency as The transmitting frequency is determined to be the fifth transmitting frequency; wherein the second transmitting frequency, the third transmitting frequency, the fourth transmitting frequency, and the fifth transmitting frequency are all within the effective bandwidth range of the ultrasonic probe; the generation includes A pulse sequence of a first ultrasonic signal group and a second ultrasonic signal group; wherein the first ultrasonic signal group is generated based on the fifth transmission frequency and the second transmission frequency, and the first ultrasonic signal group is generated based on the third transmission frequency and the A fourth transmit frequency generates the second set of ultrasound signals.
  • the fifth transmitting frequency may be a transmitting frequency within a preset range of the second transmitting frequency, for example, a transmitting frequency within a range of 10% to the left and right of the second transmitting frequency.
  • the fifth transmitting frequency may also directly adopt the second transmitting frequency, that is, the first ultrasonic signal group is generated based on the two second transmitting frequencies.
  • the effective bandwidth range of the ultrasonic probe is narrow, when the reference transmission frequency and target coefficient are determined, a smaller number of transmission frequencies can be selected to cover the effective bandwidth range of the ultrasonic probe.
  • the effective bandwidth range is 1.95MHz-4.05MHz
  • the reference transmission frequency f is 2.0Mhz
  • the target coefficient is 0.5
  • 0.5f 1.0Mhz
  • f 2.0Mhz
  • 1.5f 3.0Mhz
  • Selecting three transmission frequencies of f, 1.5f, and 2f can cover the effective bandwidth range of the ultrasonic probe, then , the emission frequencies of the ultrasonic sub-signals containing two periods in the first ultrasonic signal and the second ultrasonic signal can be set to f and f' respectively.
  • the first ultrasonic signal, the second ultrasonic signal, the third ultrasonic signal, and the fourth ultrasonic signal As shown in Figures 5a-5d respectively. It should be noted that f' is within the effective bandwidth range of the ultrasonic probe, and f and f' may or may not be equal. There is no specific limitation here. If f' ⁇ f, f can be selected near f or 1.95MHz. '.
  • S102 Sequentially transmit different ultrasonic signals in different ultrasonic signal groups in the pulse sequence, and receive the echo signals generated by the contrast agent microbubbles on the transmitted ultrasonic signals; wherein the echo signals include corresponding to different imaging frequencies. Fundamental signal and harmonic signal;
  • the ultrasound probe emits the pulse sequence generated in the previous step, that is, it emits different ultrasonic signals in different ultrasonic signal groups in sequence, and receives the echo signal generated by the contrast agent microbubbles on the transmitted ultrasonic signal.
  • the imaging frequency in is the frequency of the echo signal.
  • this step may include: determining different voltage amplitudes for ultrasonic sub-signals of corresponding periods in different ultrasonic signals in the same ultrasonic signal group; determining different voltage amplitudes for ultrasonic sub-signals in different ultrasonic signals in the same ultrasonic signal group.
  • the same number of transmitting aperture array elements based on the transmitting frequency, voltage amplitude and number of transmitting aperture array elements of different ultrasonic sub-signals in different ultrasonic signals, different ultrasonic signals in different ultrasonic signal groups in the pulse sequence are sequentially transmitted.
  • the number of transmitting aperture array elements can be adjusted according to the setting of the voltage amplitude. For example, the voltage amplitudes of corresponding periods between different ultrasonic signals in the same ultrasonic signal group are different, and the number of transmitting aperture array elements is the same when transmitting different ultrasonic signals in the same ultrasonic signal group. ;
  • the voltage amplitudes of corresponding periods between different ultrasonic signals in the same ultrasonic signal group are the same, and the number of transmitting aperture array elements is different when transmitting different ultrasonic signals in the same ultrasonic signal group.
  • Each ultrasonic signal group may include two ultrasonic signals or may include three ultrasonic signals.
  • each ultrasonic signal group includes two ultrasonic signals, that is, each ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal, correspondingly, the ultrasonic sub-units of corresponding periods in different ultrasonic signals in the same ultrasonic signal group are The signals determine different voltage amplitudes, including: determining a first voltage amplitude for the ultrasonic sub-signal in the first ultrasonic signal, and determining a second voltage amplitude for the ultrasonic sub-signal in the second ultrasonic signal; wherein, the third The second voltage amplitude is a preset multiple of the first voltage amplitude.
  • the voltage amplitude of the ultrasonic sub-signal in the second ultrasonic signal is a preset multiple of the voltage amplitude of the ultrasonic sub-signal in the first ultrasonic signal.
  • the number of transmitting aperture array elements in the ultrasonic sub-signal is the same, so that the voltage amplitudes of the first ultrasonic signal and the second ultrasonic signal received by the contrast agent microbubble can be different.
  • the preset multiple can be a multiple greater than 1, that is, the second voltage amplitude is greater than the first voltage amplitude.
  • the preset multiple can be an integer multiple or a non-integer multiple.
  • the second voltage amplitude is twice the first voltage amplitude, that is, the voltage amplitude of the ultrasonic sub-signal in the second ultrasonic signal is twice the voltage amplitude of the ultrasonic sub-signal in the first ultrasonic signal.
  • the pulse sequence includes two ultrasonic signal groups, namely a first ultrasonic signal group and a second ultrasonic signal group.
  • the first ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal
  • the second ultrasonic signal group includes a third ultrasonic signal group.
  • the ultrasonic signal and the fourth ultrasonic signal, each ultrasonic signal includes two periods of ultrasonic sub-signals.
  • the voltage amplitude of the first ultrasonic signal is V1, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the second ultrasonic signal is V2, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the third ultrasonic signal is V3, the ultrasonic sub-signal of the first period is f3, the ultrasonic sub-signal of the second period is f4, the voltage amplitude of the fourth ultrasonic signal is V4, in which the ultrasonic sub-signal of the first period is f3, and the ultrasonic sub-signal of the second period is f4.
  • V1 ⁇ V2 and V3 ⁇ V4 the number of transmitting aperture array elements is the same when transmitting each ultrasonic signal.
  • this embodiment does not limit the phase relationship of different ultrasonic signals in the same ultrasonic signal group. They can be in the same direction or in opposite directions. That is, the first ultrasonic signal and the first ultrasonic signal in the first ultrasonic signal group can be in the same direction.
  • the phase of the second ultrasonic signal may be in the same direction or in the opposite direction, and the phases of the third ultrasonic signal and the fourth ultrasonic signal in the second ultrasonic signal group may be in the same direction or in the opposite direction.
  • the first ultrasonic signal is shown in Figure 6a
  • the second ultrasonic signal is shown in Figure 6b
  • the phases of the first ultrasonic signal and the second ultrasonic signal are reversed
  • the third ultrasonic signal is shown in Figure 6c
  • the fourth ultrasonic signal As shown in Figure 6d, the phases of the third ultrasonic signal and the fourth ultrasonic signal are also reversed.
  • each ultrasonic signal group includes three ultrasonic signals, that is, each ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal, correspondingly, the Determining different voltage amplitudes corresponding to periodic ultrasonic sub-signals includes: determining a third voltage amplitude for the ultrasonic sub-signals in the first ultrasonic signal and the third ultrasonic signal, and determining a third voltage amplitude for the ultrasonic sub-signals in the second ultrasonic signal.
  • the signal determines a fourth voltage amplitude; wherein the fourth voltage amplitude is a preset multiple of the third voltage amplitude.
  • the voltage amplitude of the ultrasonic sub-signal in the first ultrasonic signal and the third ultrasonic signal is the same, and the voltage amplitude of the ultrasonic sub-signal in the second ultrasonic signal is the same as that of the first ultrasonic signal and the third ultrasonic signal.
  • the preset multiple of the voltage amplitude of the ultrasonic sub-signal in the ultrasonic signal, and the first ultrasonic signal, the second ultrasonic signal, and the third ultrasonic signal are emitted.
  • the number of transmitting aperture array elements in the ultrasonic sub-signals among the three ultrasonic signals is the same, so that the voltage amplitudes of the first ultrasonic signal and the second ultrasonic signal received by the contrast agent microbubbles are different.
  • the preset multiple may be a multiple greater than 1, that is, the fourth voltage amplitude is greater than the third voltage amplitude, and the voltage amplitude of the ultrasonic sub-signal in the second ultrasonic signal is greater than the ultrasonic sub-signal in the first ultrasonic signal and the third ultrasonic signal. voltage amplitude.
  • the preset multiple can be an integer multiple or a non-integer multiple.
  • the fourth voltage amplitude is twice the third voltage amplitude, that is, the voltage amplitude of the ultrasonic sub-signal in the second ultrasonic signal is The voltage amplitude of the ultrasonic sub-signal in the first ultrasonic signal and the third-step ultrasonic signal is twice the voltage amplitude of the ultrasonic sub-signal in the second ultrasonic signal is the voltage amplitude of the ultrasonic sub-signal in the first ultrasonic signal and the third-step ultrasonic signal.
  • the pulse sequence includes two ultrasonic signal groups, namely a first ultrasonic signal group and a second ultrasonic signal group.
  • the first ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal.
  • the second ultrasonic signal group includes a fourth ultrasonic signal, a fifth ultrasonic signal and a sixth ultrasonic signal, each of which includes two periods of ultrasonic sub-signals.
  • the voltage amplitude of the first ultrasonic signal is V1, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the second ultrasonic signal is V2, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the third ultrasonic signal is V3, the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the fourth ultrasonic signal is V4, where the ultrasonic sub-signal of the first period is f3, the ultrasonic sub-signal of the second period is f4, the voltage amplitude of the fifth ultrasonic signal is V5, where the ultrasonic sub-signal of the first period is f3, the ultrasonic sub-signal of the second period is f4 The sub-signal is f4, and the voltage amplitude
  • the ultrasonic sub-signal of the first period is f3, and the ultrasonic sub-signal of the second period is f4.
  • V1 ⁇ V2 ⁇ V3 and V4 ⁇ V5 ⁇ V6 the number of transmitting aperture array elements is the same when transmitting each ultrasonic signal.
  • the phases of the first ultrasonic signal and the third ultrasonic signal are the same, the phases of the second ultrasonic signal and the first ultrasonic signal may be the same or different, and similarly, the phases of the fourth ultrasonic signal and the sixth ultrasonic signal Similarly, the phases of the fifth ultrasonic signal and the fourth ultrasonic signal may be the same or different, and are not specifically limited here.
  • the first ultrasound signal is shown in Figure 7a
  • the second ultrasonic signal is shown in Figure 7b
  • the third ultrasonic signal is shown in Figure 7c
  • the fourth ultrasonic signal is shown in Figure 7d
  • the fifth ultrasonic signal is shown in Figure 7e
  • the sixth ultrasonic signal is shown in Figure 7f.
  • this step may include: determining the same voltage amplitude for ultrasonic sub-signals of corresponding periods in different ultrasonic signals in the same ultrasonic signal group; determining the same voltage amplitude for ultrasonic sub-signals in different ultrasonic signals in the same ultrasonic signal group Determine the number of different transmitting aperture array elements; and sequentially transmit different ultrasonic signals in different ultrasonic signal groups in the pulse sequence based on the transmitting frequencies, voltage amplitudes and the number of transmitting aperture array elements of different ultrasonic sub-signals in the different ultrasonic signals.
  • the voltage amplitudes of corresponding periods between different ultrasonic signals in the same ultrasonic signal group are the same, and the number of transmitting aperture array elements is different when transmitting different ultrasonic signals in the same ultrasonic signal group.
  • the transmitting energy is adjusted by controlling the number of transmitting aperture array elements, which is equivalent to
  • the voltage amplitude of the emission is adjusted so that the voltage amplitudes of different ultrasound signals in the same ultrasound signal group received by the contrast agent microbubbles are different.
  • each ultrasonic signal group includes two ultrasonic signals, that is, each ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal, correspondingly, the ultrasonic sub-signals in different ultrasonic signals in the same ultrasonic signal group are determined.
  • Different numbers of transmitting aperture array elements include: determining the number of first transmitting aperture array elements for the ultrasonic sub-signal in the first ultrasonic signal, and determining the number of second transmitting aperture array elements for the ultrasonic sub-signal in the second ultrasonic signal. Quantity; wherein the number of second transmitting aperture array elements is a preset multiple of the number of first transmitting aperture array elements.
  • the number of transmitting aperture array elements of the ultrasonic sub-signal in the second ultrasonic signal is a preset multiple of the number of transmitting aperture array elements of the ultrasonic sub-signal in the first ultrasonic signal. If the voltage amplitudes of the sub-signals are the same, it can also be realized that the voltage amplitudes of the first ultrasound signal and the second ultrasound signal received by the contrast agent microbubbles are different.
  • the preset multiple can be a multiple greater than 1, that is, the number of the second transmitting aperture array elements is greater than the number of the first transmitting aperture array elements.
  • the preset multiple can be an integer multiple or a non-integer multiple.
  • the number of the second transmitting aperture array elements is twice the number of the first transmitting aperture array elements, that is, the ultrasonic in the second ultrasonic signal
  • the number of transmitting aperture array elements of the sub-signal is twice the number of transmitting aperture array elements of the ultrasonic sub-signal in the first ultrasonic signal.
  • the pulse sequence includes two ultrasonic signal groups, namely a first ultrasonic signal group and a second ultrasonic signal group.
  • the first ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal.
  • the second ultrasonic signal group includes a third ultrasonic signal and a fourth ultrasonic signal, and each ultrasonic signal includes two periods of ultrasonic sub-signals.
  • the voltage amplitude of the first ultrasonic signal is V1, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the second ultrasonic signal is V2, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the third ultrasonic signal is V3, the ultrasonic sub-signal of the first period is f3, the ultrasonic sub-signal of the second period is f4, the voltage amplitude of the fourth ultrasonic signal is V4, in which the ultrasonic sub-signal of the first period is f3, and the ultrasonic sub-signal of the second period is f4.
  • each ultrasonic signal group includes three ultrasonic signals, that is, each ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal, correspondingly, the Determining the number of different transmission aperture array elements of the ultrasonic sub-signal includes: determining that the transmission aperture of the ultrasonic sub-signal in the first ultrasonic signal is one of odd aperture or even aperture, determining the second ultrasonic signal.
  • the emission aperture of the ultrasonic sub-signal is a full aperture, and the emission aperture of the ultrasonic sub-signal in the third ultrasonic signal is determined to be the other of an odd aperture or an even aperture.
  • the transmission aperture of the ultrasonic sub-signal in the first ultrasonic signal is an odd aperture
  • the transmission aperture of the ultrasonic sub-signal in the third ultrasonic signal may be an even aperture
  • the array elements at odd-numbered positions and the array elements at even-numbered positions can be determined according to the arrangement positions of the array elements. Determining the transmit aperture as an odd aperture can be determined by determining the array elements at odd positions as the transmit aperture array elements, that is, determining the number of array elements at odd positions as the number of transmit aperture elements; determining the transmit aperture as an even aperture.
  • the array elements at even-numbered positions can be determined as the transmit aperture array elements, that is, the number of array elements at even-numbered positions can be determined as the number of transmit aperture array elements; the transmit aperture can be determined as the full aperture by all array elements. are determined as transmitting aperture array elements, that is, the number of all array elements is determined as the number of transmitting aperture array elements.
  • the pulse sequence includes two ultrasonic signal groups, namely a first ultrasonic signal group and a second ultrasonic signal group.
  • the first ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal.
  • the second ultrasonic signal group includes a fourth ultrasonic signal, a fifth ultrasonic signal and a sixth ultrasonic signal, each of which includes two periods of ultrasonic sub-signals.
  • the voltage amplitude of the first ultrasonic signal is V1, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the second ultrasonic signal is V2, where the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the third ultrasonic signal is V3, the ultrasonic sub-signal of the first period is f1, the ultrasonic sub-signal of the second period is f2, the voltage amplitude of the fourth ultrasonic signal is V4, where the ultrasonic sub-signal of the first period is f3, the ultrasonic sub-signal of the second period is f4, the voltage amplitude of the fifth ultrasonic signal is V5, where the ultrasonic sub-signal of the first period is f3, the ultrasonic sub-signal of the second period is f4 The sub-signal is f4, and the voltage amplitude
  • the ultrasonic sub-signal of the first period is f3, and the ultrasonic sub-signal of the second period is f4.
  • the number of transmitting aperture array elements when transmitting the second ultrasonic signal is equal to the number of transmitting aperture array elements when transmitting the first ultrasonic signal and the third ultrasonic signal.
  • the number of transmitting aperture array elements when transmitting the fifth ultrasonic signal is twice that of when transmitting the fourth ultrasonic signal and the sixth ultrasonic signal. That is, the number of transmitting aperture array elements for the second ultrasonic signal is twice that of the first ultrasonic signal.
  • the number of transmitting aperture array elements of the third ultrasonic signal, and the number of transmitting aperture array elements of the fifth ultrasonic signal is the sum of the numbers of transmitting aperture array elements of the fourth ultrasonic signal and the sixth ultrasonic signal.
  • one of the odd aperture or the even aperture can be used to transmit the first ultrasonic signal and the fourth ultrasonic signal
  • the full aperture can be used to transmit the second ultrasonic signal and the fifth ultrasonic signal
  • the other of the odd aperture or the even aperture can be used.
  • the step of sequentially transmitting different ultrasonic signals in different ultrasonic signal groups in the pulse sequence and receiving the echo signals generated by the contrast agent microbubbles on the transmitted ultrasonic signals includes: sequentially transmitting different ultrasonic signals in the pulse sequence.
  • the three imaging frequencies are at least one of the differences or sums between different first imaging frequencies; receiving the first imaging frequency
  • a difference value between different first imaging frequencies may be determined, a sum value between
  • the ultrasound probe emits a pulse sequence
  • the contrast agent microbubbles generate an echo signal.
  • the echo signal may include a fundamental wave signal and a harmonic signal.
  • the imaging frequency of the fundamental wave signal (that is, the first imaging frequency) is the transmission frequency.
  • the harmonic signals include differential harmonic signals and multiple harmonic signals.
  • the differential harmonic signals are differential signals of different fundamental wave signals.
  • the imaging frequencies of the differential harmonic signals (that is, the third imaging frequency) are different The difference in transmitting frequencies, and/or the sum of different transmitting frequencies, multiple harmonic signals can be understood as multiple superpositions of the same fundamental signal, such as second harmonic signals, third harmonic signals, etc.
  • Multiple harmonic signals The imaging frequency of the wave signal (ie, the second imaging frequency) is an integer multiple of the transmission frequency. Since harmonic signals of third or higher order often exceed the effective bandwidth range of the ultrasonic probe, they are generally not considered.
  • the nonlinear fundamental wave signal of 0.5f and the nonlinear fundamental wave signal of f can be directly obtained.
  • the nonlinear fundamental wave signal of 0.5f and f The nonlinear fundamental wave signal can be integrated and differed to obtain a 0.5f differential harmonic signal and a 1.5f differential harmonic signal.
  • the difference harmonic signal of 0.5f can be obtained by calculating the difference between the nonlinear fundamental wave signal of 0.5f and the nonlinear fundamental wave signal of f. Calculate the nonlinear fundamental wave signal of 0.5f and the nonlinear fundamental wave signal of f. The sum of the wave signals can obtain a 1.5f differential harmonic signal.
  • the contrast signal corresponding to the first ultrasound signal group includes a nonlinear fundamental wave signal of 0.5f, a nonlinear fundamental wave signal of f, a differential harmonic signal of 0.5f, a differential harmonic signal of 1.5f, a harmonic signal of f wave signal and the harmonic signal of 2f.
  • the contrast signals corresponding to the second ultrasound signal group include the nonlinear fundamental wave signal of 1.5f, the nonlinear fundamental wave signal of 2f, the difference harmonic signal of 0.5f, and the 3.5f differential harmonic signal, 3f harmonic signal and 4f harmonic signal.
  • S103 Process the echo signal to obtain multiple contrast signals corresponding to different imaging frequencies, and generate corresponding contrast images based on the contrast signals;
  • the echo signals of different ultrasound signals are processed to obtain multiple contrast signals corresponding to different imaging frequencies.
  • the imaging frequency can be the transmitting frequency or an integer multiple of the transmitting frequency.
  • the contrast signal includes multiple The fundamental wave signal and harmonic signal of the imaging frequency, the fundamental wave signal and the harmonic signal corresponding to multiple imaging frequencies enhance each other, and an enhanced contrast signal can be obtained.
  • the enhanced contrast signal is subjected to signal processing to generate a corresponding contrast image. and store it.
  • processing the echo signal to obtain multiple contrast signals corresponding to different transmission frequencies includes: based on the voltage amplitude relationship and phase relationship between different ultrasound signals in each of the ultrasound signal groups.
  • the echo signals of different ultrasonic signals in each of the ultrasonic signal groups are weighted to obtain the contrast signals corresponding to each of the ultrasonic signal groups; demodulation circuits corresponding to different imaging frequencies are used to analyze each of the ultrasonic signal groups.
  • the corresponding contrast signals are demodulated to obtain contrast signals corresponding to different imaging frequencies.
  • weights can be set for different ultrasonic sub-signals in the ultrasonic signal according to the proportional relationship between the voltage amplitudes, and the weights are determined according to the previous embodiment.
  • the weights of the ultrasound signals are superimposed and weighted to obtain the contrast signal corresponding to the corresponding ultrasound signal group.
  • the operation relationship of the corresponding echo signals is determined based on the phase relationship between different ultrasonic signals in each of the ultrasonic signal groups; wherein, if the phase relationship is opposite, the operation relationship is addition, and if the phase relationship is the same , then the operation relationship is subtraction. That is, if the phase relationship between different ultrasonic signals in the ultrasonic signal group is opposite, then during weighting processing, the echo signals corresponding to different ultrasonic signals in the ultrasonic signal group will be weighted and added; if the echo signals in the ultrasonic signal group are different If the phase relationship between the ultrasonic signals is the same, then during the weighting process, the echo signals corresponding to different ultrasonic signals in the ultrasonic signal group are weighted and subtracted.
  • the addition operation is performed, and for the same phase relationship, the subtraction operation is performed.
  • This processing method can offset the fundamental wave signal of the tissue, leaving a nonlinear fundamental wave signal, and the harmonics have squares so Regardless of addition or subtraction, it is enhancement, that is, through this processing method, irrelevant signals in the echo signal can be removed to ensure the reliability of the contrast image.
  • the echo signals of different ultrasonic signals in each ultrasonic signal group are weighted according to the weights and calculation relationships determined above to obtain the contrast signals corresponding to each ultrasonic signal group.
  • the phase between the first ultrasonic signal and the second ultrasonic signal in the first ultrasonic signal group is opposite, then when calculating the contrast signal corresponding to the first ultrasonic signal group, the The weighted addition process of the first ultrasound signal and the second ultrasound signal; the phase between the first ultrasound signal and the second ultrasound signal in the second ultrasound signal group is opposite, then when calculating the contrast signal corresponding to the second ultrasound signal group, the The first ultrasonic signal and the second ultrasonic signal are weighted and added together.
  • Data_1stTX is the echo signal of the first ultrasonic signal
  • Data_2ndTX is the echo signal of the second ultrasonic signal
  • Data_3rdTX is the echo signal of the third ultrasonic signal
  • Data_4thTX is the echo signal of the fourth ultrasonic signal.
  • the first ultrasonic signal and the second ultrasonic signal in the first ultrasonic signal group are weighted to phase.
  • the ultrasonic signal group contains three ultrasonic signals
  • the first ultrasonic signal and the third ultrasonic signal have the same phase
  • the second ultrasonic signal can have the same phase or a different phase
  • the first ultrasonic signal can be After summing with the third ultrasonic signal (which can be a weighted sum), it performs weighted processing with the second ultrasonic signal. Specifically, when the phase with the second ultrasonic signal is the same, weighted subtraction is performed with the second ultrasonic signal. Processing, when the phase is opposite to that of the second ultrasonic signal, weighted addition processing is performed with the second ultrasonic signal.
  • the phase between the first ultrasonic signal and the third ultrasonic signal in the first ultrasonic signal group is the same, but the phase between the second ultrasonic signal and the second ultrasonic signal is opposite, then when calculating the first ultrasonic signal
  • the first ultrasonic signal and the second ultrasonic signal are summed and then added together with the weighted addition of the third ultrasonic signal
  • the phase between the fourth ultrasonic signal and the sixth ultrasonic signal in the second ultrasonic signal group are the same, but have opposite phases to the fifth ultrasound signal, then when calculating the contrast signal corresponding to the second ultrasound signal group, the fourth ultrasound signal and the fifth ultrasound signal are summed and then added together with the weighted addition of the sixth ultrasound signal.
  • Data_1stTX is the echo signal of the first ultrasonic signal
  • Data_2ndTX is the echo signal of the second ultrasonic signal
  • Data_3rdTX is the echo signal of the third ultrasonic signal
  • Data_4thTX is the echo signal of the fourth ultrasonic signal
  • Data_5thTX is the echo signal of the fifth ultrasonic signal
  • Data_6thTX is the echo signal of the sixth ultrasonic signal.
  • the first ultrasonic signal and the third ultrasonic signal in the first ultrasonic signal group are the same, then when calculating the contrast signal corresponding to the first ultrasonic signal group, the first ultrasonic signal and the third ultrasonic signal are The two ultrasonic signals are summed and then processed by weighted subtraction with the third ultrasonic signal; if the phase between the fourth ultrasonic signal and the sixth ultrasonic signal in the second ultrasonic signal group is the same, but the phase between the fifth ultrasonic signal and the fifth ultrasonic signal is opposite, Then, when calculating the contrast signal corresponding to the second ultrasonic signal group, the fourth ultrasonic signal and the fifth ultrasonic signal are summed and then weighted and added to the sixth ultrasonic signal.
  • demodulation circuits corresponding to different imaging frequencies are used to demodulate the contrast signals corresponding to each ultrasound signal group to obtain contrast signals corresponding to different imaging frequencies.
  • demodulation circuits corresponding to 0.5f, f, 1.5f, and 2f are used to demodulate the contrast signals corresponding to the first ultrasound signal group, respectively, to obtain the first contrast signals of 0.5f (including The nonlinear fundamental wave signal of 0.5f and the difference harmonic signal of 0.5f), the second contrast signal of f (including the nonlinear fundamental wave signal of f and the harmonic signal of f), the third contrast signal of 1.5f ( Including the differential harmonic signal of 1.5f and the third harmonic of 1.5f), the fourth contrast signal of 2f (including the harmonic signal of 2f).
  • demodulation circuits corresponding to 0.5f, 1.5f, and 2f are used to demodulate the contrast signals corresponding to the second ultrasound signal group, respectively, and obtain 0.5
  • the fifth contrast signal of f including the differential harmonic signal of 0.5f
  • the sixth contrast signal of 1.5f including the nonlinear fundamental signal of 1.5f
  • the seventh contrast signal of 2f including the nonlinear fundamental signal of 2f wave signal.
  • a 4-channel demodulation circuit is used to demodulate the contrast signal and perform subsequent signal processing to generate seven contrast images corresponding to the seven contrast signals, as shown in Table 1:
  • the contrast signal corresponding to the first ultrasound signal group includes the nonlinear fundamental signal of f and the harmonic signal of 2f, and the contrast signal corresponding to the second ultrasound signal group Including 1.5f nonlinear fundamental wave signal, 2f nonlinear fundamental wave signal, 0.5f differential harmonic signal, 3.5f differential harmonic signal, 3f harmonic signal and 4f harmonic signal.
  • the demodulation circuits corresponding to f and 2f are used to demodulate the contrast signals corresponding to the first ultrasound signal group, respectively, to obtain the first contrast signals of f (including The nonlinear fundamental wave signal of f) and the second contrast signal of 2f (including the harmonic signal of 2f), use the demodulation circuits corresponding to 0.5f, 1.5f, and 2f to respectively decode the contrast signals corresponding to the second ultrasound signal group.
  • the third contrast signal of 0.5f including the differential harmonic signal of 0.5f
  • the fourth contrast signal of 1.5f including the nonlinear fundamental signal of 1.5f
  • the fifth contrast signal of 2f including 2f nonlinear fundamental signal
  • the contrast signal corresponding to the first ultrasound signal group includes the nonlinear fundamental wave signal of f, the nonlinear fundamental wave of f', the difference harmonic signal of f'-f, and the f'+f
  • the difference harmonic signal, the harmonic signal of 2f, the harmonic signal of 2f', the contrast signal corresponding to the second ultrasound signal group includes the nonlinear fundamental wave signal of 1.5f, the nonlinear fundamental wave signal of 2f, and the difference of 0.5f quantity harmonic signal, 3.5f differential harmonic signal, 3f harmonic signal and 4f harmonic signal.
  • the demodulation circuits corresponding to f, 2f, f', and 2f' are used to The contrast signals corresponding to the signal group are demodulated to obtain the first contrast signal of f (including the nonlinear fundamental signal of f), the second contrast signal of 2f (including the harmonic signal of 2f), and the third contrast signal of f'. signal (including the nonlinear fundamental signal of f') and the fourth contrast signal of 2f' (including the harmonic signal of 2f'), use the demodulation circuits corresponding to 0.5f, 1.5f, and 2f to respectively analyze the second ultrasonic signal group.
  • the corresponding contrast signals are demodulated, and the fifth contrast signal of 0.5f (including the differential harmonic signal of 0.5f), the sixth contrast signal of 1.5f (including the nonlinear fundamental wave signal of 1.5f), and the 2f
  • the seventh contrast signal (including the nonlinear fundamental signal of 2f). It can be seen that a 6-channel demodulation circuit is used to demodulate the contrast signal and perform subsequent signal processing to generate seven contrast images corresponding to the seven contrast signals, as shown in Table 3:
  • this step may include: determining the weighting coefficients of each contrast image corresponding to the different imaging modes, and performing a weighted fusion of the different contrast images based on the weighting coefficients of each contrast image, to obtain the target contrast images corresponding to the different imaging modes. image.
  • each contrast image is weighted and fused based on the weighting coefficient of each contrast image to obtain the output target contrast image.
  • the fusion formula is:
  • Sub_imagei is the i-th contrast image
  • coefi is the weighting coefficient of the i-th contrast image
  • ContrastImage is the target contrast image.
  • the weighting coefficients of each contrast image corresponding to different imaging modes are different, and the weighting coefficient ⁇ [0,1].
  • target contrast images corresponding to different imaging modes can be obtained.
  • the imaging modes can include general mode, penetration mode, resolution mode, etc., while meeting the needs of penetration. Transparency, sensitivity and resolution requirements.
  • contrast images with medium frequency components can be used for fusion.
  • the second contrast image and the sixth contrast image can be used for fusion, that is, the contrast images of f and 1.5f can be used for fusion.
  • the second contrast image, the fourth contrast image and the The seventh contrast image is fused, that is, the contrast images of f and 2f are used for fusion.
  • the second contrast image, the fourth contrast image, the sixth contrast image, and the seventh contrast image can also be used for fusion, that is, f, 1.5 are used.
  • the contrast images of f and 2f are fused.
  • there are other fusion methods which are not specifically limited in this embodiment.
  • the contrast image has higher penetration and sensitivity requirements, so the contrast image with lower frequency component can be used for fusion, that is, the weighting coefficient of the contrast image corresponding to the penetration mode and the imaging corresponding to the contrast image Frequency is negatively correlated.
  • Table 1 you can use the first contrast image alone as the target contrast image, that is, use the contrast image of 0.5f alone, or you can use the second contrast image alone as the target contrast image, that is, use the contrast image of f alone.
  • the first contrast image and the second contrast image can also be used for fusion, that is, contrast images of 0.5f and f can be used for fusion.
  • there are other fusion methods which are not specifically limited in this embodiment.
  • the contrast image has higher resolution requirements, so the contrast image with higher frequency component can be used for fusion. That is, the weighting coefficient of the contrast image corresponding to the resolution mode is positively correlated with the imaging frequency corresponding to the contrast image. .
  • the fourth contrast image, the sixth contrast image, and the seventh contrast image can be used for fusion, that is, the contrast images of 1.5f and 2f can be used for fusion, or the fourth contrast image and the seventh contrast image can be used.
  • For fusion that is, using 2f contrast images for fusion.
  • there are other fusion methods which are not specifically limited in this embodiment.
  • FIG. 8 A schematic display of an ultrasound contrast image is shown in Figure 8, which can simultaneously display the ultrasound grayscale image, general mode, and transverse ultrasound image of the tissue. Targeted ultrasound images in transmission mode and resolution mode.
  • the user can adjust the arrangement order of the images by dragging the target ultrasound image.
  • you can choose a one-click restore operation or go back at least one step through the function keys provided on the interface.
  • the contrast images corresponding to each contrast signal are generated and stored, this embodiment can also support the user to manually adjust the weighting coefficient of each contrast image.
  • the determination of different imaging modes The corresponding weighting coefficients of each contrast image include: for any target imaging mode, displaying an adjustment window corresponding to the target contrast image; wherein the adjustment window includes an adjustment area of each contrast image; receiving an adjustment effect on each Adjust the region's adjustment instruction, and adjust the weighting coefficient of the corresponding contrast image based on the adjustment instruction to obtain the weighting coefficient of each contrast image in the target imaging mode.
  • the user can click on a displayed target contrast image to display an adjustment window for the target contrast image (as shown in Figure 9).
  • the user can drag each contrast image up and down in the adjustment area of each contrast image.
  • the black points corresponding to the image adjust the corresponding weighting coefficients to meet the needs of different scenes.
  • an adjustment rod (vertical line) and the black dot on it constitute an adjustment control for the contrast image.
  • This embodiment realizes personalized setting of the weighting coefficient by adjusting the adjustment control, and can realize personalized adjustment of image fusion to meet the needs of different scenarios.
  • the ultrasound device may include a display screen and a touch screen.
  • the display screen is used to output and display ultrasound images, etc.
  • the touch screen is used to receive input signals, such as key information input by the user on the virtual keyboard.
  • the ultrasound host can be connected to the display screen and/or touch screen, receive adjustment instructions input from the display screen and/or touch screen, obtain the weighting coefficients of each contrast image in the target imaging mode, and then realize the adjustment of different contrast images by itself or the host computer. Weighted fusion of images.
  • the adjustment window can be displayed on the display and touch screen, and the black dot corresponding to each contrast image can be slid by touch to adjust the weight of the corresponding contrast image.
  • the adjustment window can be displayed on the display screen through a pop-up window.
  • the knob or lever configured on the ultrasound equipment can be used to slide the black point corresponding to the contrast image in the adjustment window, and then adjust Corresponding to the weight of the contrast image.
  • different areas on the display screen of the ultrasound equipment can be used as display windows for contrast images in different imaging modes.
  • a certain display window is selected, it is determined that the corresponding target imaging mode is selected, and the target imaging mode is displayed.
  • the adjustment window of the corresponding target contrast image for ultrasound equipment with a touch screen, the adjustment window can be displayed directly on the touch screen.
  • the adjustment window can pop up in the main interface for displaying the contrast image. The weighted coefficients of each contrast image are determined based on the adjustment instructions acting on the adjustment window, and then the weighted fusion process is performed to obtain the target resulting image.
  • the ultrasound probe can obtain multiple contrast signals corresponding to different imaging frequencies by transmitting a complete pulse sequence, including fundamental wave signals and harmonic signals of different imaging frequencies.
  • the same imaging frequency The corresponding fundamental signal and harmonic signal
  • the signals enhance each other to obtain enhanced contrast signals.
  • the corresponding contrast images generated based on the enhanced contrast signals can meet the requirements of penetration, sensitivity and resolution.
  • An ultrasound contrast imaging device provided by an embodiment of the present application is introduced below.
  • the ultrasound contrast imaging device described below and the ultrasound contrast imaging method described above may be referred to each other.
  • FIG. 10 a structural diagram of an ultrasound contrast imaging device is shown according to an exemplary embodiment. As shown in Figure 10, it includes:
  • Generating module 100 configured to determine multiple transmit frequencies within the effective bandwidth range of the ultrasonic probe, and generate a pulse sequence containing multiple ultrasonic signal groups based on the multiple transmit frequencies; wherein each ultrasonic signal group includes multiple ultrasonic signals , each of the ultrasonic signals includes at least two ultrasonic sub-signals with different periodic emission frequencies.
  • the transmission frequencies of corresponding periods between different ultrasonic signals in the same ultrasonic signal group are the same, and the corresponding periods of different ultrasonic signals in different ultrasonic signal groups are The emission frequencies are different;
  • the transmitting module 200 is configured to transmit different ultrasonic signals in different ultrasonic signal groups in the pulse sequence in sequence, and receive echo signals generated by contrast agent microbubbles on the transmitted ultrasonic signals; wherein the echo signals include different Fundamental signal and harmonic signal corresponding to the imaging frequency;
  • the processing module 300 is used to process the echo signal to obtain multiple contrast signals corresponding to different imaging frequencies, and generate corresponding contrast images based on the contrast signals;
  • the fusion module 400 is used to fuse the contrast images to obtain a target contrast image.
  • the ultrasound probe can obtain multiple contrast signals corresponding to different imaging frequencies by transmitting a complete pulse sequence, including fundamental wave signals and harmonic signals of different imaging frequencies.
  • the same imaging frequency The corresponding fundamental wave signal and harmonic signal enhance each other, and an enhanced contrast signal can be obtained.
  • the corresponding contrast image generated based on the enhanced contrast signal can meet the requirements of penetration, sensitivity and resolution.
  • the generation module 100 is specifically configured to: determine a reference transmission frequency and a target coefficient, and determine the product of the reference transmission frequency and the target coefficient as the first transmission frequency, determine twice the first transmitting frequency as the Second transmission frequency, three times the first transmission frequency is determined as the third transmission frequency, and four times the first transmission frequency is determined as the fourth transmission frequency; wherein, the first transmission frequency, the third transmission frequency The second transmitting frequency, the third transmitting frequency, and the fourth transmitting frequency are all within the effective bandwidth range of the ultrasonic probe; generating a pulse sequence including the first ultrasonic signal group and the second ultrasonic signal group; wherein, based on the The first transmission frequency and the second transmission frequency generate the first ultrasonic signal group, and the second ultrasonic signal group is generated based on the third transmission frequency and the fourth transmission frequency.
  • the generation module 100 is specifically configured to: determine a reference transmission frequency and a target coefficient, and determine the product of the reference transmission frequency and the target coefficient as the first transmission Frequency, twice the first transmission frequency is determined as the second transmission frequency, three times the first transmission frequency is determined as the third transmission frequency, four times the first transmission frequency is determined as the fourth
  • the transmitting frequency determines the adjacent transmitting frequency of the second transmitting frequency as the fifth transmitting frequency; wherein the second transmitting frequency, the third transmitting frequency, the fourth transmitting frequency, and the fifth transmitting frequency are all within Within the effective bandwidth range of the ultrasonic probe; generating a pulse sequence including a first ultrasonic signal group and a second ultrasonic signal group; wherein the first ultrasonic signal is generated based on the fifth transmission frequency and the second transmission frequency group, generating the second ultrasonic signal group based on the third transmission frequency and the fourth transmission frequency.
  • the transmitting module 200 includes:
  • a second determination unit configured to determine different voltage amplitudes for ultrasonic sub-signals of corresponding periods in different ultrasonic signals in the same ultrasonic signal group
  • the third determination unit is used to determine the same number of transmission aperture array elements for ultrasonic sub-signals in different ultrasonic signals in the same ultrasonic signal group;
  • the first transmitting unit is configured to sequentially transmit different ultrasonic signals in different ultrasonic signal groups in the pulse sequence based on the transmitting frequencies, voltage amplitudes and transmitting apertures of different ultrasonic sub-signals in the different ultrasonic signals.
  • each ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal.
  • the second determination unit is specifically configured to: The ultrasonic sub-signal in the signal determines the first voltage amplitude, which is the second ultrasonic The ultrasonic sub-signal in the signal determines a second voltage amplitude; wherein the second voltage amplitude is a preset multiple of the first voltage amplitude.
  • the second voltage amplitude is twice the first voltage amplitude.
  • each ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal.
  • the second determination unit is specifically used to: The ultrasonic sub-signal in the first ultrasonic signal and the third ultrasonic signal determines a third voltage amplitude, and the ultrasonic sub-signal in the second ultrasonic signal determines a fourth voltage amplitude; wherein, the fourth voltage amplitude is a preset multiple of the third voltage amplitude.
  • the fourth voltage amplitude is twice the third voltage amplitude.
  • the transmitting module 200 includes:
  • the fourth determination unit is used to determine the same voltage amplitude for the ultrasonic sub-signals of corresponding periods in different ultrasonic signals in the same ultrasonic signal group;
  • the fifth determination unit is used to determine the number of different transmit aperture array elements for the ultrasonic sub-signals in different ultrasonic signals in the same ultrasonic signal group;
  • the second transmitting unit is configured to sequentially transmit different ultrasonic signals in different ultrasonic signal groups in the pulse sequence based on the transmitting frequencies, voltage amplitudes and transmitting apertures of different ultrasonic sub-signals in the different ultrasonic signals.
  • each ultrasonic signal group includes a first ultrasonic signal and a second ultrasonic signal.
  • the fifth determining unit is specifically configured to: The number of first transmission aperture array elements is determined for the ultrasonic sub-signal in the signal, and the number of second transmission aperture array elements is determined for the ultrasonic sub-signal in the second ultrasonic signal; wherein, the number of the second transmission aperture array element is the The preset multiple of the number of first transmit aperture array elements.
  • the number of the second transmitting aperture array elements is twice the number of the first transmitting aperture array elements.
  • each ultrasonic signal group includes a first ultrasonic signal, a second ultrasonic signal and a third ultrasonic signal.
  • the fifth determination The unit is specifically configured to: determine that the emission aperture of the ultrasonic sub-signal in the first ultrasonic signal is one of an odd aperture or an even aperture, and determine that the emission aperture of the ultrasonic sub-signal in the second ultrasonic signal is a full aperture, The emission aperture of the ultrasonic sub-signal in the third ultrasonic signal is determined to be the other one of an odd aperture or an even aperture.
  • the processing module 300 includes:
  • a processing unit configured to weight the echo signals of different ultrasonic signals in each of the ultrasonic signal groups based on the voltage amplitude relationship and phase relationship between the different ultrasonic signals in each of the ultrasonic signal groups to obtain each The contrast signal corresponding to the above-mentioned ultrasound signal group;
  • a demodulation unit configured to demodulate the contrast signal corresponding to each of the ultrasonic signal groups using demodulation circuits corresponding to different imaging frequencies to obtain contrast signals corresponding to different imaging frequencies;
  • a generating unit configured to generate a corresponding contrast image based on the contrast signal.
  • the processing unit is specifically configured to: determine the weighting coefficient of the corresponding echo signal based on the voltage amplitude relationship between different ultrasonic signals in each of the ultrasonic signal groups. ; Determine the operational relationship of the corresponding echo signals based on the phase relationship between different ultrasonic signals in each of the ultrasonic signal groups; wherein, if the phase relationship is opposite, the operational relationship is addition, and if the phase relationship is the same, then The operation relationship is subtraction; weighting processing is performed based on the weighting coefficients and the operation relationship of the echo signals of different ultrasonic signals in each of the ultrasonic signal groups to obtain contrast signals corresponding to each of the ultrasonic signal groups.
  • the transmitting module 200 is specifically configured to: sequentially transmit different ultrasonic signals in different ultrasonic signal groups in the pulse sequence, so that the contrast agent microbubbles generate different first A fundamental wave signal corresponding to the imaging frequency, and generating a multiple harmonic signal corresponding to a second imaging frequency based on the fundamental wave signal corresponding to the first imaging frequency, and generating a third harmonic signal based on the fundamental wave signal corresponding to the different first imaging frequency.
  • a differential harmonic signal corresponding to the imaging frequency wherein the second imaging frequency is an integer multiple of the first imaging frequency, and the third imaging frequency is the difference or sum between different first imaging frequencies. At least one of the values; receiving the fundamental wave signal corresponding to the first imaging frequency, the multiple harmonic signal corresponding to the second imaging frequency, and the differential harmonic signal corresponding to the third imaging frequency.
  • the fusion module 400 include:
  • the first determination unit is used to determine the weighting coefficient of each contrast image corresponding to different imaging modes
  • the fusion unit is used to perform weighted fusion of different contrast images based on the weighting coefficients of each contrast image to obtain target contrast images corresponding to different imaging modes.
  • the imaging mode includes a penetration mode and/or a resolution mode
  • the weighting coefficient of the contrast image corresponding to the penetration mode is proportional to the imaging frequency corresponding to the contrast image.
  • the weighting coefficient of the contrast image corresponding to the resolution mode is positively correlated with the imaging frequency corresponding to the contrast image.
  • the first determination unit is specifically configured to display an adjustment window corresponding to the target contrast image for any target imaging mode; wherein the adjustment window includes Adjustment areas of each contrast image; receive adjustment instructions acting on each adjustment area, and adjust weighting coefficients of corresponding contrast images based on the adjustment instructions to obtain weighting coefficients of each contrast image in the target imaging mode.
  • the embodiment of the present application also provides an ultrasonic imaging system, including: an ultrasonic host, an ultrasonic probe and a host computer; the ultrasonic host and the The ultrasonic probe is communicated with the host computer;
  • the ultrasound host is used to implement the steps of the above-mentioned ultrasound contrast imaging method.
  • FIG. 11 is a structural diagram of an ultrasound device according to an exemplary embodiment, as shown in As shown in Figure 11, ultrasound equipment includes:
  • Communication interface 1 can interact with other devices such as network devices;
  • the processor 2 is connected to the communication interface 1 to implement information interaction with other devices, and is used to execute the ultrasound contrast imaging method provided by one or more of the above technical solutions when running a computer program.
  • the computer program is stored in the memory 3 .
  • bus system 4 is used to realize connection communication between these components.
  • bus system 4 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled bus system 4 in FIG. 11 .
  • the memory 3 in the embodiment of the present application is used to store various types of data to support the operation of the ultrasound equipment. Examples of such data include: any computer program used to operate on ultrasound equipment.
  • the memory 3 may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM, Read Only Memory), a programmable read-only memory (PROM, Programmable Read-Only Memory), an erasable programmable read-only memory (EPROM, Erasable Programmable Read-Only Memory).
  • the magnetic surface memory can be a magnetic disk memory or a magnetic tape memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • SRAM Static Random Access Memory
  • SSRAM Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM SyncLink Dynamic Random Access Memory
  • DRRAM Direct Rambus Random Access Memory
  • the methods disclosed in the above embodiments of the present application can be applied to the processor 2 or implemented by the processor 2 .
  • the processor 2 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method can be completed through the integrated logic circuit of hardware in the processor 2 or instructions in the form of software.
  • the above-mentioned processor 2 may be a general-purpose processor, a DSP, or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the processor 2 can implement or execute each method, step, and logical block diagram disclosed in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of this application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, which is located in the memory 3.
  • the processor 2 reads the program in the memory 3 and completes the steps of the foregoing method in combination with its hardware.
  • the embodiment of the present application also provides a storage medium, that is, a computer storage medium, specifically a computer-readable storage medium, such as a memory 3 that stores a computer program, and the above computer program can be executed by the processor 2, To complete the steps described in the previous method.
  • the computer-readable storage medium can be FRAM, ROM, PROM, EPROM, EEPROM, Flash Memory, magnetic surface memory, optical disk, or CD-ROM and other memories.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program When the program is executed, It includes the steps of the above method embodiment; and the aforementioned storage medium includes: various media that can store program codes, such as mobile storage devices, ROM, RAM, magnetic disks or optical disks.
  • the integrated units mentioned above in this application are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the computer software products are stored in a storage medium and include a number of instructions to An ultrasound device (which can be a personal computer, a server, a network device, etc.) is caused to execute all or part of the methods described in various embodiments of this application.
  • the aforementioned storage media include: mobile storage devices, ROM, RAM, magnetic disks or optical disks and other media that can store program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声造影成像方法、装置、系统及设备和存储介质,该方法包括:在超声探头的有效带宽范围内确定多个发射频率,基于多个发射频率生成包含多个超声信号组的脉冲序列;超声信号组包括多个超声信号,超声信号至少包括两个周期发射频率不同的超声子信号;依次发射脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;回波信号包括不同成像频率对应的基波信号和谐波信号;对回波信号进行处理得到多个不同成像频率对应的造影信号,并基于造影信号生成对应的造影图像;对造影图像进行融合得到目标造影图像。本申请通过一次造影成像同时满足穿透力、灵敏度和分辨率的要求。

Description

一种超声造影成像方法、装置、系统及设备和存储介质
本申请要求于2022年6月27日提交中国专利局、申请号为202210736704.X、发明名称为“一种超声造影成像方法、装置及超声设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及超声成像技术领域,更具体地说,涉及一种超声造影成像方法、装置及一种超声成像系统、一种超声设备和一种计算机可读存储介质。
背景技术
当前各厂家的超声造影成像系统,造影图像提供穿透/灵敏度模式Pen,通用模式Gen和分辨率模式Res,用户只能在厂家提供的成像模式中进行选择。但是,由于不同人的身体条件差异,对于超声的衰减等均不相同,故针对不同的病灶特点如病灶的深度、大小或同一个切面同时存在多个不同形态的病灶,医生会先根据经验选择一个成像模式,若造影图像不符合预期要求,例如分辨率不足或灵敏度不足或穿透不足,则可能会重新选择一个成像模式进行第二次造影,特别是同一个切面既有微小病灶,又有深度较深的病灶时,大部分情况下都需要开展多次造影才能对多个病灶进行良好的造影灌注情况观察。由此可见,对于一些特殊的场景,无法通过一次造影成像同时满足穿透、灵敏度和分辨率的要求,此时会导致临床的时间成本,造影剂成本的提升。
因此,如何通过一次造影成像同时满足穿透力、灵敏度和分辨率的要求是本领域技术人员需要解决的技术问题。
发明内容
本申请的目的在于提供一种超声造影成像方法、装置及一种超声设备和一种计算机可读存储介质,通过一次造影成像同时满足穿透力、灵敏度 和分辨率的要求。
为实现上述目的,本申请提供了一种超声造影成像方法,包括:
在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列;其中,每个超声信号组包括多个超声信号,每个所述超声信号至少包括两个周期发射频率不同的超声子信号,相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同;
依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;其中,所述回波信号包括不同成像频率对应的基波信号和谐波信号;
对所述回波信号进行处理得到多个不同成像频率对应的造影信号,并基于所述造影信号生成对应的造影图像;
对所述造影图像进行融合得到目标造影图像。
其中,所述在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列,包括:
确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射频率的四倍确定为第四发射频率;其中,所述第一发射频率、所述第二发射频率、所述第三发射频率、所述第四发射频率均在所述超声探头的有效带宽范围内;
生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第一发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。
其中,所述在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列,包括:
确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射 频率的四倍确定为第四发射频率,将所述第二发射频率的临近发射频率确定为第五发射频率;其中,所述第二发射频率、所述第三发射频率、所述第四发射频率、第五发射频率均在所述超声探头的有效带宽范围内;
生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第五发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。
其中,所述依次发射所述脉冲序列中不同超声信号组中的不同超声信号,包括:
为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度;
为相同超声信号组中不同超声信号中的超声子信号确定相同的发射孔径阵元数量;
基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径阵元数量依次发射所述脉冲序列中不同超声信号组中的不同超声信号。
其中,每个超声信号组包括第一超声信号和第二超声信号,相应的,所述为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度,包括:
为所述第一超声信号中的超声子信号确定第一电压幅度,为所述第二超声信号中的超声子信号确定第二电压幅度;其中,所述第二电压幅度为所述第一电压幅度的预设倍数。
其中,所述第二电压幅度为所述第一电压幅度的两倍。
其中,每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度,包括:
为所述第一超声信号和所述第三超声信号中的超声子信号确定第三电压幅度,为所述第二超声信号中的超声子信号确定第四电压幅度;其中,所述第四电压幅度为所述第三电压幅度的预设倍数。
其中,所述第四电压幅度为所述第三电压幅度的两倍。
其中,所述依次发射所述脉冲序列中不同超声信号组中的不同超声信 号,包括:
为相同超声信号组中不同超声信号中对应周期的超声子信号确定相同的电压幅度;
为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量;
基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径阵元数量依次发射所述脉冲序列中不同超声信号组中的不同超声信号。
其中,每个超声信号组包括第一超声信号和第二超声信号,相应的,所述为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量,包括:
为所述第一超声信号中的超声子信号确定第一发射孔径阵元数量,为所述第二超声信号中的超声子信号确定第二发射孔径阵元数量;其中,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的预设倍数。
其中,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的两倍。
其中,每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量,包括:
确定所述第一超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的一者,确定所述第二超声信号中的超声子信号的发射孔径为全孔径,确定所述第三超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的另一者。
其中,对所述回波信号进行处理得到多个不同成像频率对应的造影信号,包括:
基于每个所述超声信号组中不同超声信号之间的电压幅度关系和相位关系对每个所述超声信号组中不同超声信号的回波信号进行加权处理,得到每个所述超声信号组对应的造影信号;
利用不同成像频率对应的解调电路对每个所述超声信号组对应的造影信号进行解调,得到不同成像频率对应的造影信号。
其中,所述基于每个所述超声信号组中不同超声信号之间的电压幅度关系和相位关系对每个所述超声信号组中不同超声信号的回波信号进行加权处理,得到每个所述超声信号组对应的造影信号,包括:
基于每个所述超声信号组中不同超声信号之间的电压幅度关系确定对应的回波信号的加权系数;
基于每个所述超声信号组中不同超声信号之间的相位关系确定对应的回波信号的运算关系;其中,若相位关系为相反,则运算关系为相加,若相位关系为相同,则运算关系为相减;
基于每个所述超声信号组中不同超声信号的回波信号的加权系数和运算关系进行加权处理,得到每个所述超声信号组对应的造影信号。
其中,所述依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号,包括:
依次发射所述脉冲序列中不同超声信号组中的不同超声信号,以便造影剂微泡产生不同第一成像频率对应的基波信号,并基于所述第一成像频率对应的基波信号生成第二成像频率对应的多次谐波信号,基于不同所述第一成像频率对应的基波信号生成第三成像频率对应的差量谐波信号;其中,所述第二成像频率为所述第一成像频率的整数倍,所述第三成像频率为不同所述第一成像频率之间的差值或和值中的至少一项;
接收所述第一成像频率对应的基波信号、所述第二成像频率对应的多次谐波信号、所述第三成像频率对应的差量谐波信号。
其中,对所述造影图像进行融合得到目标造影图像,包括:
确定不同成像模式对应的各造影图像的加权系数,并基于各造影图像的加权系数对不同造影图像进行加权融合,得到不同成像模式对应的目标造影图像。
其中,所述成像模式包括穿透模式和/或分辨率模式,所述穿透模式对应的造影图像的加权系数与造影图像对应的成像频率呈负相关,所述分辨率模式对应的造影图像的加权系数与造影图像对应的成像频率呈正相关。
其中,所述确定不同成像模式对应的各造影图像的加权系数,包括:
对于任意一种目标成像模式,显示所述目标造影图像对应的调整窗口; 其中,所述调整窗口包括各造影图像的调整区域;
接收作用于各调整区域的调整指令,并基于所述调整指令调整对应造影图像的加权系数,以得到所述目标成像模式下各造影图像的加权系数。
为实现上述目的,本申请提供了一种超声造影成像装置,包括:
生成模块,用于在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列;其中,每个超声信号组包括多个超声信号,每个所述超声信号至少包括两个周期发射频率不同的超声子信号,相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同;
发射模块,用于依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;其中,所述回波信号包括不同成像频率对应的基波信号和谐波信号;
处理模块,用于对所述回波信号进行处理得到多个不同成像频率对应的造影信号,并基于所述造影信号生成对应的造影图像;
融合模块,用于对所述造影图像进行融合得到目标造影图像。
为实现上述目的,本申请提供了一种超声成像系统,包括:超声主机、超声探头和上位机;所述超声主机分别与所述超声探头和所述上位机通信连接;
所述超声主机,用于实现如上述超声造影成像方法的步骤。
为实现上述目的,本申请提供了一种超声设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上述超声造影成像方法的步骤。
为实现上述目的,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述超声造影成像方法的步骤。
通过以上方案可知,本申请提供的一种超声造影成像方法,包括:在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生 成包含多个超声信号组的脉冲序列;其中,每个超声信号组包括多个超声信号,每个所述超声信号至少包括两个周期发射频率不同的超声子信号,相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同;依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;其中,所述回波信号包括不同成像频率对应的基波信号和谐波信号;对所述回波信号进行处理得到多个不同成像频率对应的造影信号,并基于所述造影信号生成对应的造影图像;对所述造影图像进行融合得到目标造影图像。
本申请提供的超声造影成像方法,超声探头通过发射一次完整的脉冲序列,可以得到多个不同成像频率对应的造影信号,其中包括不同成像频率的基波信号和谐波信号,相同成像频率对应的基波信号和谐波信号之间互相增强,可以得到增强的造影信号,基于增强的造影信号生成对应的造影图像能够满足穿透力、灵敏度和分辨率的要求。本申请还公开了一种超声造影成像装置、一种超声成像系统及一种超声设备和一种计算机可读存储介质,同样能实现上述技术效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为根据一示例性实施例示出的一种超声成像系统的架构图;
图2为根据一示例性实施例示出的另一种超声成像系统的架构图;
图3为根据一示例性实施例示出的一种超声造影成像方法的流程图;
图4a为根据一示例性实施例示出的一种第一超声信号的示意图;
图4b为根据一示例性实施例示出的一种第二超声信号的示意图;
图4c为根据一示例性实施例示出的一种第三超声信号的示意图;
图4d为根据一示例性实施例示出的一种第四超声信号的示意图;
图5a为根据一示例性实施例示出的另一种第一超声信号的示意图;
图5b为根据一示例性实施例示出的另一种第二声信号的示意图;
图5c为根据一示例性实施例示出的另一种第三超声信号的示意图;
图5d为根据一示例性实施例示出的另一种第四超声信号的示意图;
图6a为根据一示例性实施例示出的又一种第一超声信号的示意图;
图6b为根据一示例性实施例示出的又一种第二超声信号的示意图;
图6c为根据一示例性实施例示出的又一种第三超声信号的示意图;
图6d为根据一示例性实施例示出的又一种第四超声信号的示意图;
图7a为根据一示例性实施例示出的又一种第一超声信号的示意图;
图7b为根据一示例性实施例示出的又一种第二超声信号的示意图;
图7c为根据一示例性实施例示出的又一种第三超声信号的示意图;
图7d为根据一示例性实施例示出的又一种第四超声信号的示意图;
图7e为根据一示例性实施例示出的一种第五超声信号的示意图;
图7f为根据一示例性实施例示出的一种第六超声信号的示意图;
图8为根据一示例性实施例示出的一种超声造影图像的显示示意图;
图9为根据一示例性实施例示出的一种目标造影图像的调节框的示意图;
图10为根据一示例性实施例示出的一种超声造影成像装置的结构图;
图11为根据一示例性实施例示出的一种超声设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。另外,在本申请实施例中,“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请可以应用于如图1所示的超声成像系统,包括超声主机、超声探头和上位机。超声主机在超声探头的有效带宽范围内确定多个发射频率,通过控制扫查时序进而生成包含多个超声信号组的脉冲序列也即发射波形,每个超声信号组包括多个超声信号。然后进行发射波束合成,由发射电路发射至超声探头,通过超声探头发射至待检查组织,组织内的造影剂微泡产生回波信号。超声主机对每个超声信号的回波信号进行波束合成,存储至Linebuffer(线缓存),在Linebuffer中,对不同超声信号的回波信号,基于权重(Weight)进行加权求和或求差处理,得到不同超声信号组对应的造影信号。Linebuffer可以是FPGA(现场可编程逻辑门阵列,Field Programmable Gate Array)内部的Block RAM(随机存取存储器,Random Access Memory)资源,也可以是外部的存储器,例如DDR(双倍速率同步动态随机存储器,Double Data Rate),或硬盘等,在此不进行具体限定。进一步的,超声主机通过解调电路(如图1中的N路解调电路,N为大于0的自然数)对超声信号组对应的造影信号进行解调,得到不同成像频率对应的造影信号,经过信号前处理后进行数据打包上传并通过传输接口发送至上位机,以便上位机进行造影多分辨成像处理。具体的,上位机基于不同成像模式对应的各造影图像的加权系数对不同造影图像进行加权融合,得到不同成像模式对应的目标造影图像,然后在显示设备上显示。
可见,在图1中,对不同超声信号的回波信号进行加权、解调和信号处理过程在超声设备前端进行。
当然,对不同超声信号的回波信号进行加权、解调和信号处理过程也可以在上位机后端进行,具体架构图如图2所示。与图1不同的是,超声主机在对每个超声信号的回波信号进行波束合成后,进行数据打包上传并通过传输接口发送至上位机。上位机进行数据解析之后存储至Linebuffer,在Linebuffer中,对不同超声信号的回波信号,基于权重(Weight)进行 加权求和或求差处理,得到不同超声信号组对应的造影信号。进一步的,通过解调电路(如图2中的N路解调电路,N为大于0的自然数)对超声信号组对应的造影信号进行解调,得到不同成像频率对应的造影信号,之后通过成像算法处理得到不同成像频率对应的造影图像,然后,上位机实现造影多分辨成像处理。
本申请实施例公开了一种超声造影成像方法,通过一次造影成像同时满足穿透力、灵敏度和分辨率的要求。
参见图3,根据一示例性实施例示出的一种超声造影成像方法的流程图,如图3所示,包括:
S101:在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列;其中,每个超声信号组包括多个超声信号,每个所述超声信号至少包括两个周期的发射频率不同的超声子信号,相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同;
在具体实施中,在超声探头的有效带宽范围内确定多个发射频率,有效带宽范围是指超声探头能够发射的频率范围,需要说明的是,多个发射频率尽量覆盖超声探头的有效带宽范围,也即最小的发射频率接近超声探头的最小有效带宽,也即超声探头能够发射的最小频率,最大的发射频率接近超声探头的最大有效带宽,也即超声探头能够发射的最大频率。
进一步的,基于上述确定的多个发射频率生成超声探头发射超声信号的脉冲序列,该脉冲序列包括多个超声信号组,每个超声信号至少包括两个周期发射频率不同的超声子信号,每个超声信号中不同超声子信号的电压幅度可以相同也可以不同(没有特别说明时,本申请实施例以电压幅度相同为例进行说明),相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同。可选的,两个周期可以包括第一周期和第二周期,进一步的,超声信号中包括第一周期的超声子信号和第二周期的超声子信号,第一周期的超声子信号和第二周期的超声子信号的发射频率不同。
作为一种优选实施方式,本步骤可以包括:确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射频率的四倍确定为第四发射频率;其中,所述第一发射频率、所述第二发射频率、所述第三发射频率、所述第四发射频率均在超声探头的有效带宽范围内;生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第一发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。可选的,可以接收目标系数的输入指令,基于该输入指令携带的数值确定目标系数对应的数值,目标系数可以为0~1之间的数值。可选的,基准发射频率可以指进行超声脉冲序列发射的基础发射频率,可以理解为发射频率的一个单位。基准发射频率可以为超声成像系统预先设置的参数,具体的,可以接收基准发射频率的输入指令,基于该输入指令携带的数值确定基准发射频率对应的数值。
可以理解的是,对于一般的超声探头来说,四个发射频率可以覆盖超声探头的有效带宽范围,优选的,若基准发射频率为f,目标系数可以为0.5,则第一发射频率为0.5f,第二发射频率为f,第三发射频率为1.5f,第四发射频率为2f,若第一超声信号组中的第一超声信号的电压幅度为V1、相位为﹣(即,负相位),第二超声信号的电压幅度为V2、相位为﹢(即,正相位),第二超声信号组中的第三超声信号的电压幅度为V3、相位为﹣,第四超声信号的电压幅度为V4、相位为﹢,则第一超声信号组中的第一超声信号如图4a所示(图中横坐标Frequency表示频率,纵坐标表示电压),第一超声信号组中的第二超声信号如图4b所示,第二超声信号组中的第三超声信号如图4c所示,第二超声信号组中的第四超声信号如图4d所示。举例说明,对于一个中心频率为3.375MHz、有效带宽是120%的超声探头来说,有效带宽范围为1.35MHz-5.4MHz,因此可以选取基准发射频率f为2.7Mhz,目标系数为0.5,则四个发射频率:1.35MHz、2.7Mhz、4.05MHz、5.4MHz,也即分别对应0.5f、f、1.5f、2f,可以覆盖超声探头的有效带宽范围。
作为一种优选实施方式,本步骤可以包括:确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射频率的四倍确定为第四发射频率,将所述第二发射频率的临近发射频率确定为第五发射频率;其中,所述第二发射频率、所述第三发射频率、所述第四发射频率、第五发射频率均在所述超声探头的有效带宽范围内;生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第五发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。其中,第五发射频率可以是第二发射频率预设范围内的发射频率,例如:第二发射频率左右10%范围内的发射频率。可选的,第五发射频率也可以直接采用第二发射频率,即,基于两个第二发射频率生成第一超声信号组。
可选的,若超声探头的有效带宽范围较窄,在基准发射频率和目标系数确定的情况下,选择数量较少的发射频率即可覆盖超声探头的有效带宽范围。
例如,对于一个中心频率为3.0MHz、有效带宽是70%的超声探头来说,有效带宽范围为1.95MHz-4.05MHz,基准发射频率f为2.0Mhz,目标系数为0.5,0.5f=1.0Mhz,f=2.0Mhz,1.5f=3.0Mhz,2f=4.0Mhz,可见0.5f超过了超声探头的有效带宽范围,选择f、1.5f、2f三个发射频率即可覆盖超声探头的有效带宽范围,那么,可以设置第一超声信号和第二超声信号中包含两个周期的超声子信号的发射频率分别为f和f’,第一超声信号、第二超声信号、第三超声信号、第四超声信号分别如图5a-5d所示。需要说明的是,f’在超声探头的有效带宽范围内,f和f’可以相等也可以不相等,在此不进行具体限定,若f’≠f,则可以在f或1.95MHz附近选择f’。
S102:依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;其中,所述回波信号包括不同成像频率对应的基波信号和谐波信号;
在本步骤中,超声探头发射上一步骤生成的脉冲序列,也即依次发射不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号,本步骤中的成像频率即为回波信号的频率。
可以理解的是,造影剂微泡接收到的相同超声信号组中不同超声信号的电压幅度可以不同,即发射的相同超声信号组中不同超声信号的电压幅度可以不同。作为一种可行的实施方式,本步骤可以包括:为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度;为相同超声信号组中不同超声信号中的超声子信号确定相同的发射孔径阵元数量;基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径阵元数量依次发射所述脉冲序列中不同超声信号组中的不同超声信号。发射孔径阵元数量可以跟随电压幅度的设置情况而调整,例如,相同超声信号组中不同超声信号之间对应周期的电压幅度不同,发射相同超声信号组中不同超声信号时发射孔径阵元数量相同;相同超声信号组中不同超声信号之间对应周期的电压幅度相同,发射相同超声信号组中不同超声信号时发射孔径阵元数量不同。
需要说明的是,本实施例不对每个超声信号组中包含超声信号的数量进行限定,每个超声信号组可以包含两个超声信号,也可以包含三个超声信号。
若每个超声信号组包括两个超声信号,也即每个超声信号组包括第一超声信号和第二超声信号,相应的,所述为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度,包括:为所述第一超声信号中的超声子信号确定第一电压幅度,为所述第二超声信号中的超声子信号确定第二电压幅度;其中,所述第二电压幅度为所述第一电压幅度的预设倍数。在具体实施中,第二超声信号中超声子信号的电压幅度为第一超声信号中超声子信号的电压幅度的预设倍数,发射第二超声信号中超声子信号时和发射第一超声信号中超声子信号时的发射孔径阵元数量相同,可以实现造影剂微泡接收到的第一超声信号和第二超声信号的电压幅度不同。可选的,预设倍数可以为大于1的倍数,即第二电压幅度大于第一电压幅度,另外,预设倍数可以为整数倍也可以为非整数倍。
需要说明的是,为了方便后续对回波信号的处理,优选的,所述第二电压幅度为所述第一电压幅度的两倍,也即,第二超声信号中超声子信号的电压幅度为第一超声信号中超声子信号的电压幅度的两倍。
举例说明,脉冲序列包括两个超声信号组,分别为第一超声信号组和第二超声信号组,第一超声信号组包括第一超声信号和第二超声信号,第二超声信号组包括第三超声信号和第四超声信号,每个超声信号包括两个周期的超声子信号。第一超声信号的电压幅度为V1,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第二超声信号的电压幅度为V2,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第三超声信号的电压幅度为V3,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4,第四超声信号的电压幅度为V4,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4。当V1≠V2、V3≠V4时,发射各超声信号时发射孔径阵元数量相同,优选的,V2=2×V1,V4=2×V3。
需要说明的是,本实施例对相同超声信号组中不同超声信号的相位关系不进行限定,可以是同向的,也可以是反向的,也即第一超声信号组中第一超声信号和第二超声信号的相位可以是同向也可以是反向,第二超声信号组中第三超声信号和第四超声信号的相位可以是同向也可以是反向。例如,第一超声信号如图6a所示,第二超声信号如图6b所示,第一超声信号和第二超声信号的相位反向,第三超声信号如图6c所示,第四超声信号如图6d所示,第三超声信号和第四超声信号的相位也反向。
若每个超声信号组包括三个超声信号,也即每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度,包括:为所述第一超声信号和所述第三超声信号中的超声子信号确定第三电压幅度,为所述第二超声信号中的超声子信号确定第四电压幅度;其中,所述第四电压幅度为所述第三电压幅度的预设倍数。在具体实施中,第一超声信号和所述第三超声信号中超声子信号的电压幅度相同,所述第二超声信号中超声子信号的电压幅度为所述第一超声信号和所述第三超声信号中超声子信号的电压幅度的预设倍数,发射第一超声信号、第二超声信号、第 三超声信号中超声子信号时发射孔径阵元数量均相同,可以实现造影剂微泡接收到的第一超声信号和第二超声信号的电压幅度不同。可选的,预设倍数可以为大于1的倍数,即第四电压幅度大于第三电压幅度,第二超声信号中超声子信号的电压幅度大于第一超声信号和第三超声信号中超声子信号的电压幅度,另外,预设倍数可以为整数倍也可以为非整数倍。
需要说明的是,为了方便后续对回波信号的处理,优选的,所述第四电压幅度为所述第三电压幅度的两倍,也即,第二超声信号中超声子信号的电压幅度为第一超声信号和第三步超声信号中超声子信号的电压幅度的两倍,第二超声信号中超声子信号的电压幅度为第一超声信号和第三步超声信号中超声子信号的电压幅度之和。
举例说明,脉冲序列包括两个超声信号组,分别为第一超声信号组和第二超声信号组,第一超声信号组包括第一超声信号、第二超声信号和第三超声信号,第二超声信号组包括第四超声信号、第五超声信号和第六超声信号,每个超声信号包括两个周期的超声子信号。第一超声信号的电压幅度为V1,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第二超声信号的电压幅度为V2,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第三超声信号的电压幅度为V3,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第四超声信号的电压幅度为V4,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4,第五超声信号的电压幅度为V5,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4,第六超声信号的电压幅度为V6,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4。当V1≠V2≠V3、V4≠V5≠V6时,发射各超声信号时发射孔径阵元数量相同,优选的,V2=2×V1=2×V3,V5=2×V4=2×V6。
需要说明的是,第一超声信号和第三超声信号的相位相同,第二超声信号与第一超声信号的相位可以相同,也可以不同,同理,第四超声信号和第六超声信号的相位相同,第五超声信号与第四超声信号的相位可以相同,也可以不同,在此不进行具体限定。例如,第一超声信号如图7a所示, 第二超声信号如图7b所示,第三超声信号如图7c所示,第四超声信号如图7d所示,第五超声信号如图7e所示,第六超声信号如图7f所示。
作为另一种可行的实施方式,本步骤可以包括:为相同超声信号组中不同超声信号中对应周期的超声子信号确定相同的电压幅度;为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量;基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径阵元数量依次发射所述脉冲序列中不同超声信号组中的不同超声信号。也即,相同超声信号组中不同超声信号之间对应周期的电压幅度相同,发射相同超声信号组中不同超声信号时发射孔径阵元数量不同,通过控制发射孔径阵元数量调整发射能量,相当于调整发射的电压幅度,使得造影剂微泡接收到的相同超声信号组中不同超声信号的电压幅度不同。
若每个超声信号组包括两个超声信号,也即每个超声信号组包括第一超声信号和第二超声信号,相应的,所述为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量,包括:为所述第一超声信号中的超声子信号确定第一发射孔径阵元数量,为所述第二超声信号中的超声子信号确定第二发射孔径阵元数量;其中,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的预设倍数。在具体实施中,第二超声信号中超声子信号的发射孔径阵元数量为第一超声信号中超声子信号的发射孔径阵元数量的预设倍数,第一超声信号和第二超声信号中超声子信号的电压幅度相同,同样可以实现造影剂微泡接收到的第一超声信号和第二超声信号的电压幅度不同。可选的,预设倍数可以为大于1的倍数,即第二发射孔径阵元数量大于第一发射孔径阵元数量,另外,预设倍数可以为整数倍也可以为非整数倍。
需要说明的是,为了方便后续对回波信号的处理,优选的,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的两倍,也即,第二超声信号中超声子信号的发射孔径阵元数量为第一超声信号中超声子信号的发射孔径阵元数量的两倍。
举例说明,脉冲序列包括两个超声信号组,分别为第一超声信号组和第二超声信号组,第一超声信号组包括第一超声信号和第二超声信号,第 二超声信号组包括第三超声信号和第四超声信号,每个超声信号包括两个周期的超声子信号。第一超声信号的电压幅度为V1,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第二超声信号的电压幅度为V2,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第三超声信号的电压幅度为V3,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4,第四超声信号的电压幅度为V4,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4。当V1=V2、V3=V4时,可以采用奇孔径或偶孔径发射第一超声信号和第三超声信号,采用全孔径发射第二超声信号和第四超声信号。
若每个超声信号组包括三个超声信号,也即每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量,包括:确定所述第一超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的一者,确定所述第二超声信号中的超声子信号的发射孔径为全孔径,确定所述第三超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的另一者。在具体实施中,当相同超声信号组中不同超声信号之间对应周期的电压幅度相同时,可以采用奇孔径或偶孔径中的一者发射所述第一超声信号,采用全孔径发射所述第二超声信号,采用奇孔径或偶孔径中的另一者发射所述第三超声信号,同样可以实现造影剂微泡接收到的第一超声信号和第二超声信号的电压幅度不同。可选的,当第一超声信号中的超声子信号的发射孔径为奇孔径时,第三超声信号中的超声子信号的发射孔径可以为偶孔径。
进一步的,可以按照阵元的排列位置分别确定其中奇数位置上的阵元以及偶数位置上的阵元。将发射孔径确定为奇孔径可以为将奇数位置上的阵元确定为发射孔径阵元,也即,将奇数位置上的阵元的数量确定为发射孔径阵元数量;将发射孔径确定为偶孔径可以为将偶数位置上的阵元确定为发射孔径阵元,也即,将偶数位置上的阵元的数量确定为发射孔径阵元数量;将发射孔径确定为全孔径可以为将所有的阵元均确定为发射孔径阵元,也即,将所有阵元的数量确定为发射孔径阵元数量。
举例说明,脉冲序列包括两个超声信号组,分别为第一超声信号组和第二超声信号组,第一超声信号组包括第一超声信号、第二超声信号和第三超声信号,第二超声信号组包括第四超声信号、第五超声信号和第六超声信号,每个超声信号包括两个周期的超声子信号。第一超声信号的电压幅度为V1,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第二超声信号的电压幅度为V2,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第三超声信号的电压幅度为V3,其中第一周期的超声子信号为f1,第二周期的超声子信号为f2,第四超声信号的电压幅度为V4,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4,第五超声信号的电压幅度为V5,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4,第六超声信号的电压幅度为V6,其中第一周期的超声子信号为f3,第二周期的超声子信号为f4。当V1=V2=V3、V4=V5=V6时,发射各超声信号时发射孔径阵元数量不同,优选的,发射第二超声信号是发射孔径阵元数量为发射第一超声信号和第三超声信号时的两倍,发射第五超声信号是发射孔径阵元数量为发射第四超声信号和第六超声信号时的两倍,即,第二超声信号的发射孔径阵元数量为第一超声信号和第三超声信号的发射孔径阵元数量之和,第五超声信号的发射孔径阵元数量为第四超声信号和第六超声信号的发射孔径阵元数量之和。在具体实施中,可以采用奇孔径或偶孔径中的一者发射第一超声信号和第四超声信号,采用全孔径发射第二超声信号和第五超声信号,采用奇孔径或偶孔径中的另一者发射第三超声信号和第六超声信号。
具体的,所述依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号,包括:依次发射所述脉冲序列中不同超声信号组中的不同超声信号,以便造影剂微泡产生不同第一成像频率对应的基波信号,并基于所述第一成像频率对应的基波信号生成第二成像频率对应的多次谐波信号,基于不同所述第一成像频率对应的基波信号生成第三成像频率对应的差量谐波信号;其中,所述第二成像频率为所述第一成像频率的整数倍,所述第三成像频率为不同所述第一成像频率之间的差值或和值中的至少一项;接收所述第一成像频 率对应的基波信号、所述第二成像频率对应的多次谐波信号、所述第三成像频率对应的差量谐波信号。可选的,可以确定不同第一成像频率之间的差值,确定不同第一成像频率之间的和值,将差值和/或和值确定为第三成像频率。
在具体实施中,超声探头发射脉冲序列,造影剂微泡产生回波信号,回波信号可以包括基波信号和谐波信号,基波信号的成像频率(也即第一成像频率)为发射频率,谐波信号包括差量谐波信号和多次谐波信号,差量谐波信号为不同基波信号的差量信号,差量谐波信号的成像频率(也即第三成像频率)为不同发射频率的差值,和/或,不同发射频率的和值,多次谐波信号可以理解为相同基波信号的多次叠加,例如二次谐波信号、三次谐波信号等,多次谐波信号的成像频率(也即第二成像频率)为发射频率的整数倍。由于三次或以上更高次的谐波信号往往超过超声探头的有效带宽范围,所以一般不考虑。
以图4a-图4d进行举例说明,对于第一超声信号组来说,可以直接得到0.5f的非线性基波信号和f的非线性基波信号,对0.5f的非线性基波信号和f的非线性基波信号进行积化和差可以得到0.5f的差量谐波信号和1.5f的差量谐波信号。可选的,计算0.5f的非线性基波信号和f的非线性基波信号的差值可以得到0.5f的差量谐波信号,计算0.5f的非线性基波信号和f的非线性基波信号的和值可以得到1.5f的差量谐波信号。
基于第一超声信号和第二超声信号分别对应的0.5f的非线性基波信号可以得到0.5f的二次谐波信号,也即f的谐波信号,基于第一超声信号和第二超声信号分别对应的f的非线性基波信号可以得到f的二次谐波信号,也即2f的谐波信号。因此,第一超声信号组对应的造影信号包括0.5f的非线性基波信号、f的非线性基波信号、0.5f的差量谐波信号、1.5f的差量谐波信号、f的谐波信号和2f的谐波信号,同理,第二超声信号组对应的造影信号包括1.5f的非线性基波信号、2f的非线性基波信号、0.5f的差量谐波信号、3.5f的差量谐波信号、3f的谐波信号和4f的谐波信号。
S103:对所述回波信号进行处理得到多个不同成像频率对应的造影信号,并基于所述造影信号生成对应的造影图像;
在本步骤中,对不同超声信号的回波信号进行处理,得到多个不同成像频率对应的造影信号,该成像频率可以为发射频率,也可以为发射频率的整数倍,造影信号中包括多个成像频率的基波信号和谐波信号,多个成像频率对应的基波信号和谐波信号之间互相增强,可以得到增强的造影信号,对增强的造影信号进行信号处理生成对应的造影图像,并进行存储。
作为一种可行的实施方式,对所述回波信号进行处理得到多个不同发射频率对应的造影信号,包括:基于每个所述超声信号组中不同超声信号之间的电压幅度关系和相位关系对每个所述超声信号组中不同超声信号的回波信号进行加权处理,得到每个所述超声信号组对应的造影信号;利用不同成像频率对应的解调电路对每个所述超声信号组对应的造影信号进行解调,得到不同成像频率对应的造影信号。
在具体实施中,基于每个所述超声信号组中不同超声信号之间的电压幅度关系确定对应的回波信号的加权系数。对于图6a-图6d的例子来说,若V2=Weight_Path1×V1,则第一超声信号对应的权重为Weight_Path1,第二超声信号对应的权重为1,若V4=Weight_Path2×V3,则第三超声信号对应的权重为Weight_Path2,第四超声信号对应的权重为1。对于图7a-图7f的例子来说,若V1=V3=V2/Weight_Path1,则第一超声信号和第三超声信号对应的权重为1,第二超声信号对应的权重为2/Weight_Path1,若V4=V6=V5/Weight_Path2,则第四超声信号和第六超声信号对应的权重为1,第五超声信号对应的权重为2/Weight_Path2。
在具体实施中,若存在超声信号中不同超声子信号的电压幅度不同的情况,则可以按照电压幅度的比例关系分别为该超声信号中不同的超声子信号设置权重,并与前述实施例中确定的超声信号的权重进行叠加并进行加权处理,得到相应超声信号组对应的造影信号。
进一步的,基于每个所述超声信号组中不同超声信号之间的相位关系确定对应的回波信号的运算关系;其中,若相位关系为相反,则运算关系为相加,若相位关系为相同,则运算关系为相减。即,若超声信号组中不同超声信号之间的相位关系为相反,则在进行加权处理时,将超声信号组中不同超声信号对应的回波信号进行加权相加处理;若超声信号组中不同 超声信号之间的相位关系为相同,则在进行加权处理时,将超声信号组中不同超声信号对应的回波信号进行加权相减处理。对于相反的相位关系,进行相加运算,对于相同的相位关系,进行相减运算,这种处理方式,能够抵消组织的基波信号,剩下非线性基波信号,而谐波因为有平方所以不论加减都是增强,即,通过这种处理方式可以去除回波信号中的无关信号,保证造影图像的可靠性。
根据上述确定的权重和运算关系对每个超声信号组中不同超声信号的回波信号进行加权处理,得到每个超声信号组对应的造影信号。对于图6a-图6d的例子来说,即,第一超声信号组中第一超声信号和第二超声信号之间的相位相反,则在计算第一超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相加处理;第二超声信号组中第一超声信号和第二超声信号之间的相位相反,则在计算第二超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相加处理。第一超声信号组对应的造影信号Dataout1和第二超声信号组对应的造影信号Dataout2分别为:
Dataout1=Weight_Path1×Data_1stTX+Data_2ndTX;
Dataout2=Weight_Path2×Data_3rdTX+Data_4thTX;
其中,Data_1stTX为第一超声信号的回波信号,Data_2ndTX为第二超声信号的回波信号,Data_3rdTX为第三超声信号的回波信号,Data_4thTX为第四超声信号的回波信号。
另外,若第一超声信号组中第一超声信号和第二超声信号之间的相位相同,则在计算第一超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相减处理;若第二超声信号组中第一超声信号和第二超声信号之间的相位相同,则在计算第二超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相减处理。则:
Dataout1=Weight_Path1×Data_1stTX﹣Data_2ndTX;
Dataout2=Weight_Path2×Data_3rdTX﹣Data_4thTX。
若第一超声信号组中第一超声信号和第二超声信号之间的相位相反,则在计算第一超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相加处理;若第二超声信号组中第一超声信号和第二超声信号之 间的相位相同,则在计算第二超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相减处理。则:
Dataout1=Weight_Path1×Data_1stTX+Data_2ndTX;
Dataout2=Weight_Path2×Data_3rdTX﹣Data_4thTX。
若第一超声信号组中第一超声信号和第二超声信号之间的相位相同,则在计算第一超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相减处理;若第二超声信号组中第一超声信号和第二超声信号之间的相位相反,则在计算第一超声信号组对应的造影信号时,将第一超声信号和第二超声信号加权相加处理。则:
Dataout1=Weight_Path1×Data_1stTX﹣Data_2ndTX;
Dataout2=Weight_Path2×Data_3rdTX+Data_4thTX。
对于超声信号组中包含三个超声信号的情况,若第一个超声信号和第三个超声信号相位相同,与第二个超声信号可以相位相同也可以相位不同,则可以对第一个超声信号和第三个超声信号求和(可以是加权求和)后与第二个超声信号进行加权处理,具体的,当与第二个超声信号相位相同时,与第二个超声信号进行加权相减处理,当与第二个超声信号相位相反时,与第二个超声信号进行加权相加处理。
对于图7a-图7f的例子来说,第一超声信号组中第一超声信号和第三超声信号之间的相位相同,但与第二超声信号之间的相位相反,则在计算第一超声信号组对应的造影信号时,将第一超声信号和第二超声信号求和后与第三超声信号加权相加处理;第二超声信号组中第四超声信号和第六超声信号之间的相位相同,但与第五超声信号之间的相位相反,则在计算第二超声信号组对应的造影信号时,将第四超声信号和第五超声信号求和后与第六超声信号加权相加处理。第一超声信号组对应的造影信号Dataout1和第二超声信号组对应的造影信号Dataout2分别为:
Dataout1=Data_1stTX+2/Weight_Path1×Data_2ndTX+Data_3rdTX;
Dataout2=Data_4thTX+2/Weight_Path2×Data_5thTX+Data_6thTX;
其中,Data_1stTX为第一超声信号的回波信号,Data_2ndTX为第二超声信号的回波信号,Data_3rdTX为第三超声信号的回波信号, Data_4thTX为第四超声信号的回波信号,Data_5thTX为第五超声信号的回波信号,Data_6thTX为第六超声信号的回波信号。
另外,若第一超声信号组中第一超声信号、第二超声信号和第三超声信号之间的相位相同,则在计算第一超声信号组对应的造影信号时,将第一超声信号与第二超声信号求和后与第三超声信号加权相减处理;若第二超声信号组中第四超声信号和第六超声信号之间的相位相同,但与第五超声信号之间的相位相反,则在计算第二超声信号组对应的造影信号时,将第四超声信号与第五超声信号求和后与第六超声信号加权相加处理。第一超声信号组对应的造影信号Dataout1和第二超声信号组对应的造影信号Dataout2分别为:
Dataout1=Data_1stTX-2/Weight_Path1×Data_2ndTX+Data_3rdTX;
Dataout2=Data_4thTX+2/Weight_Path2×Data_5thTX+Data_6thTX。
进一步的,需要利用不同成像频率对应的解调电路分别对每个超声信号组对应的造影信号进行解调得到不同成像频率对应的造影信号。以图4a-4d进行举例说明,利用0.5f、f、1.5f、2f对应的解调电路分别对第一超声信号组对应的造影信号进行解调,分别得到0.5f的第一造影信号(包括0.5f的非线性基波信号和0.5f的差量谐波信号)、f的第二造影信号(包括f的非线性基波信号和f的谐波信号)、1.5f的第三造影信号(包括1.5f的差量谐波信号和1.5f的三次谐波)、2f的第四造影信号(包括2f的谐波信号)。进一步的,由于3f、3.5f、4f超过超声探头的有效带宽范围,因此利用0.5f、1.5f、2f对应的解调电路分别对第二超声信号组对应的造影信号进行解调,分别得到0.5f的第五造影信号(包括0.5f的差量谐波信号)、1.5f的第六造影信号(包括1.5f的非线性基波信号)、2f的第七造影信号(包括2f的非线性基波信号)。可见,采用4路解调电路对造影信号进行解调,并进行后续的信号处理,分别生成七个造影信号对应的七幅造影图像,如表1所示:
表1

以图5a-图5d进行举例说明,若f=f’,则第一超声信号组对应的造影信号包括f的非线性基波信号和2f的谐波信号,第二超声信号组对应的造影信号包括1.5f的非线性基波信号、2f的非线性基波信号、0.5f的差量谐波信号、3.5f的差量谐波信号、3f的谐波信号和4f的谐波信号。由于3f、3.5f、4f超过超声探头的有效带宽范围,因此利用f、2f对应的解调电路分别对第一超声信号组对应的造影信号进行解调,分别得到f的第一造影信号(包括f的非线性基波信号)、2f的第二造影信号(包括2f的谐波信号),利用0.5f、1.5f、2f对应的解调电路分别对第二超声信号组对应的造影信号进行解调,分别得到0.5f的第三造影信号(包括0.5f的差量谐波信号)、1.5f的第四造影信号(包括1.5f的非线性基波信号)、2f的第五造影信号(包括2f的非线性基波信号)。可见,采用4路解调电路对造影信号进行解调,并进行后续的信号处理,分别生成五个造影信号对应的五幅造影图像,如表2所示:
表2

若f’略大于f,则第一超声信号组对应的造影信号包括f的非线性基波信号、f’的非线性基波、f’-f的差量谐波信号、f’+f的差量谐波信号、2f的谐波信号、2f’的谐波信号,第二超声信号组对应的造影信号包括1.5f的非线性基波信号、2f的非线性基波信号、0.5f的差量谐波信号、3.5f的差量谐波信号、3f的谐波信号和4f的谐波信号。由于f’-f、3f、3.5f、4f超过超声探头的有效带宽范围,且f’+f接近于2f,因此利用f、2f、f’、2f’对应的解调电路分别对第一超声信号组对应的造影信号进行解调,分别得到f的第一造影信号(包括f的非线性基波信号)、2f的第二造影信号(包括2f的谐波信号)、f’的第三造影信号(包括f’的非线性基波信号)、2f’的第四造影信号(包括2f’的谐波信号),利用0.5f、1.5f、2f对应的解调电路分别对第二超声信号组对应的造影信号进行解调,分别得到0.5f的第五造影信号(包括0.5f的差量谐波信号)、1.5f的第六造影信号(包括1.5f的非线性基波信号)、2f的第七造影信号(包括2f的非线性基波信号)。可见,采用6路解调电路对造影信号进行解调,并进行后续的信号处理,分别生成七个造影信号对应的七幅造影图像,如表3所示:
表3

S104:对所述造影图像进行融合得到目标造影图像。
在本步骤中,对不同的造影图像进行融合得到目标造影图像。作为一种可行的实施方式,本步骤可以包括:确定不同成像模式对应的各造影图像的加权系数,并基于各造影图像的加权系数对不同造影图像进行加权融合,得到不同成像模式对应的目标造影图像。在具体实施中,基于各造影图像的加权系数对各造影图像进行加权融合,得到输出的目标造影图像,融合公式为:
其中,Sub_imagei为第i幅造影图像,coefi为第i幅造影图像的加权系数,ContrastImage为目标造影图像。
需要说明的是,不同成像模式对应的各造影图像的加权系数不同,加权系数∈[0,1]。基于不同成像模式对应的各造影图像的加权系数对不同造影图像进行加权融合,可以得到不同成像模式对应的目标造影图像,成像模式可以包括通用模式、穿透模式和分辨率模式等,同时满足穿透力、灵敏度和分辨率的要求。
对于通用模式来说,可以采用频率成分中等的造影图像进行融合,以表1为例,可以采用第二造影图像和第六造影图像进行融合,也即采用f和1.5f的造影图像进行融合,也可以采用第二造影图像、第四造影图像和 第七造影图像进行融合,也即采用f和2f的造影图像进行融合,还可以采用第二造影图像、第四造影图像、第六造影图像和第七造影图像进行融合,也即采用f、1.5f和2f的造影图像进行融合。当然还存在其他融合方式,本实施例不进行具体限定。
对于穿透模式来说,造影图像的穿透力和灵敏度要求较高,因此可以采用频率成分较低的造影图像进行融合,也即穿透模式对应的造影图像的加权系数与造影图像对应的成像频率呈负相关。以表1为例,可以单独采用第一造影图像作为目标造影图像,也即单独采用0.5f的造影图像,也可以单独采用第二造影图像作为目标造影图像,也即单独采用f的造影图像,还可以采用第一造影图像和第二造影图像进行融合,也即采用0.5f和f的造影图像进行融合。当然还存在其他融合方式,本实施例不进行具体限定。
对于分辨率模式来说,造影图像的分辨率要求较高,因此可以采用频率成分较高的造影图像进行融合,也即分辨率模式对应的造影图像的加权系数与造影图像对应的成像频率呈正相关。以表1为例,可以采用第四造影图像、第六造影图像和第七造影图像进行融合,也即采用1.5f和2f的造影图像进行融合,也可以采用第四造影图像和第七造影图像进行融合,也即采用2f的造影图像进行融合。当然还存在其他融合方式,本实施例不进行具体限定。
可以理解的是,用户可以选择一个或多个成像模式对应的目标造影信号进行显示,一种超声造影图像的显示示意如图8所示,可以同时显示组织的超声灰度图像、通用模式、穿透模式和分辨率模式下的目标超声图像。
可选的,用户可通过拖动目标超声图像调整图像的排布顺序。当不满意调整时,可以通过界面上提供的功能键选择一键还原操作或者回退至少一步操作。
进一步的,由于生成各造影信号对应的造影图像后对其进行了存储,因此本实施例还可以支持用户手动调整各造影图像的加权系数,作为一种可行的实施方式,所述确定不同成像模式对应的各造影图像的加权系数,包括:对于任意一种目标成像模式,显示所述目标造影图像对应的调整窗口;其中,所述调整窗口包括各造影图像的调整区域;接收作用于各调整 区域的调整指令,并基于所述调整指令调整对应造影图像的加权系数,以得到所述目标成像模式下各造影图像的加权系数。在具体实施中,用户可以点击某一幅显示的目标造影图像,进而显示该目标造影图像的调整窗口(如图9所示),用户可以在各造影图像的调整区域中通过上下拖动各造影图像对应的黑点调整对应的加权系数,进而满足不同场景的需求。其中,一个调节杆(竖直线)与其上的黑点构成一个造影图像的调节控件。本实施例通过对调节控件的调整实现对加权系数的个性化设置,能实现对图像融合的个性化调整,满足不同场景的需求。
可选的,超声设备可以包括显示屏和触摸屏,显示屏用于输出显示超声图像等,触摸屏用于接收输入信号,如:用户在虚拟键盘上输入的按键信息。进一步的,超声主机可以与显示屏和/或触摸屏通信连接,接收显示屏和/或触摸屏输入的调整指令,得到目标成像模式下各造影图像的加权系数,进而通过自身或者上位机实现对不同造影图像的加权融合。
可以在显示屏和触摸屏中显示调整窗口,可以通过触控的方式滑动各造影图像对应的黑点,以调整对应造影图像的权重。对于没有触摸屏的超声设备,可以通过弹窗的方式在显示屏中显示调整窗口,此时可以通过超声设备上配置的旋钮或拨杆来对调整窗口中对应造影图像的黑点进行滑动,进而调整对应造影图像的权重。
可选的,可以将超声设备的显示屏中的不同区域分别作为不同成像模式下的造影图像的显示窗口,当某一显示窗口被选中时,判定对应的目标成像模式被选中,显示目标成像模式对应的目标造影图像的调整窗口,对于有触摸屏的超声设备,可以直接在触摸屏上显示调整窗口,对于没有触摸屏的超声设备,可以在造影图像的显示主界面中弹出调整窗口。基于作用于调整窗口的调整指令确定各造影图像的加权系数,进而加权融合处理,以得到目标造成图像。
本申请实施例提供的超声造影成像方法,超声探头通过发射一次完整的脉冲序列,可以得到多个不同成像频率对应的造影信号,其中包括不同成像频率的基波信号和谐波信号,相同成像频率对应的基波信号和谐波信 号之间互相增强,可以得到增强的造影信号,基于增强的造影信号生成对应的造影图像能够满足穿透力、灵敏度和分辨率的要求。
下面对本申请实施例提供的一种超声造影成像装置进行介绍,下文描述的一种超声造影成像装置与上文描述的一种超声造影成像方法可以相互参照。
参见图10,根据一示例性实施例示出的一种超声造影成像装置的结构图,如图10所示,包括:
生成模块100,用于在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列;其中,每个超声信号组包括多个超声信号,每个所述超声信号至少包括两个周期发射频率不同的超声子信号,相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同;
发射模块200,用于依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;其中,所述回波信号包括不同成像频率对应的基波信号和谐波信号;
处理模块300,用于对所述回波信号进行处理得到多个不同成像频率对应的造影信号,并基于所述造影信号生成对应的造影图像;
融合模块400,用于对所述造影图像进行融合得到目标造影图像。
本申请实施例提供的超声造影成像装置,超声探头通过发射一次完整的脉冲序列,可以得到多个不同成像频率对应的造影信号,其中包括不同成像频率的基波信号和谐波信号,相同成像频率对应的基波信号和谐波信号之间互相增强,可以得到增强的造影信号,基于增强的造影信号生成对应的造影图像能够满足穿透力、灵敏度和分辨率的要求。
在上述实施例的基础上,作为一种优选实施方式,所述生成模块100具体用于:确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第 二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射频率的四倍确定为第四发射频率;其中,所述第一发射频率、所述第二发射频率、所述第三发射频率、所述第四发射频率均在所述超声探头的有效带宽范围内;生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第一发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。
在上述实施例的基础上,作为一种优选实施方式,所述生成模块100具体用于:确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射频率的四倍确定为第四发射频率,将所述第二发射频率的临近发射频率确定为第五发射频率;其中,所述第二发射频率、所述第三发射频率、所述第四发射频率、第五发射频率均在所述超声探头的有效带宽范围内;生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第五发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。
在上述实施例的基础上,作为一种优选实施方式,所述发射模块200包括:
第二确定单元,用于为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度;
第三确定单元,用于为相同超声信号组中不同超声信号中的超声子信号确定相同的发射孔径阵元数量;
第一发射单元,用于基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径依次发射所述脉冲序列中不同超声信号组中的不同超声信号。
在上述实施例的基础上,作为一种优选实施方式,每个超声信号组包括第一超声信号和第二超声信号,相应的,所述第二确定单元具体用于:为所述第一超声信号中的超声子信号确定第一电压幅度,为所述第二超声 信号中的超声子信号确定第二电压幅度;其中,所述第二电压幅度为所述第一电压幅度的预设倍数。
在上述实施例的基础上,作为一种优选实施方式,所述第二电压幅度为所述第一电压幅度的两倍。
在上述实施例的基础上,作为一种优选实施方式,每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述第二确定单元具体用于:为所述第一超声信号和所述第三超声信号中的超声子信号确定第三电压幅度,为所述第二超声信号中的超声子信号确定第四电压幅度;其中,所述第四电压幅度为所述第三电压幅度的预设倍数。
在上述实施例的基础上,作为一种优选实施方式,所述第四电压幅度为所述第三电压幅度的两倍。
在上述实施例的基础上,作为一种优选实施方式,所述发射模块200包括:
第四确定单元,用于为相同超声信号组中不同超声信号中对应周期的超声子信号确定相同的电压幅度;
第五确定单元,用于为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量;
第二发射单元,用于基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径依次发射所述脉冲序列中不同超声信号组中的不同超声信号。
在上述实施例的基础上,作为一种优选实施方式,每个超声信号组包括第一超声信号和第二超声信号,相应的,所述第五确定单元具体用于:为所述第一超声信号中的超声子信号确定第一发射孔径阵元数量,为所述第二超声信号中的超声子信号确定第二发射孔径阵元数量;其中,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的预设倍数。
在上述实施例的基础上,作为一种优选实施方式,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的两倍。
在上述实施例的基础上,作为一种优选实施方式,每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述第五确定 单元具体用于:确定所述第一超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的一者,确定所述第二超声信号中的超声子信号的发射孔径为全孔径,确定所述第三超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的另一者。
在上述实施例的基础上,作为一种优选实施方式,所述处理模块300包括:
处理单元,用于基于每个所述超声信号组中不同超声信号之间的电压幅度关系和相位关系对每个所述超声信号组中不同超声信号的回波信号进行加权处理,得到每个所述超声信号组对应的造影信号;
解调单元,用于利用不同成像频率对应的解调电路对每个所述超声信号组对应的造影信号进行解调,得到不同成像频率对应的造影信号;
生成单元,用于基于所述造影信号生成对应的造影图像。
在上述实施例的基础上,作为一种优选实施方式,所述处理单元具体用于:基于每个所述超声信号组中不同超声信号之间的电压幅度关系确定对应的回波信号的加权系数;基于每个所述超声信号组中不同超声信号之间的相位关系确定对应的回波信号的运算关系;其中,若相位关系为相反,则运算关系为相加,若相位关系为相同,则运算关系为相减;基于每个所述超声信号组中不同超声信号的回波信号的加权系数和运算关系进行加权处理,得到每个所述超声信号组对应的造影信号。
在上述实施例的基础上,作为一种优选实施方式,所述发射模块200具体用于:依次发射所述脉冲序列中不同超声信号组中的不同超声信号,以便造影剂微泡产生不同第一成像频率对应的基波信号,并基于所述第一成像频率对应的基波信号生成第二成像频率对应的多次谐波信号,基于不同所述第一成像频率对应的基波信号生成第三成像频率对应的差量谐波信号;其中,所述第二成像频率为所述第一成像频率的整数倍,所述第三成像频率为不同所述第一成像频率之间的差值或和值中的至少一项;接收所述第一成像频率对应的基波信号、所述第二成像频率对应的多次谐波信号、所述第三成像频率对应的差量谐波信号。
在上述实施例的基础上,作为一种优选实施方式,所述融合模块400 包括:
第一确定单元,用于确定不同成像模式对应的各造影图像的加权系数;
融合单元,用于基于各造影图像的加权系数对不同造影图像进行加权融合,得到不同成像模式对应的目标造影图像。
在上述实施例的基础上,作为一种优选实施方式,所述成像模式包括穿透模式和/或分辨率模式,所述穿透模式对应的造影图像的加权系数与造影图像对应的成像频率呈负相关,所述分辨率模式对应的造影图像的加权系数与造影图像对应的成像频率呈正相关。
在上述实施例的基础上,作为一种优选实施方式,所述第一确定单元具体用于对于任意一种目标成像模式,显示所述目标造影图像对应的调整窗口;其中,所述调整窗口包括各造影图像的调整区域;接收作用于各调整区域的调整指令,并基于所述调整指令调整对应造影图像的加权系数,以得到所述目标成像模式下各造影图像的加权系数。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
基于上述程序模块的硬件实现,且为了实现本申请实施例的方法,本申请实施例还提供了一种超声成像系统,包括:超声主机、超声探头和上位机;所述超声主机分别与所述超声探头和所述上位机通信连接;
所述超声主机,用于实现如上述超声造影成像方法的步骤。
基于上述程序模块的硬件实现,且为了实现本申请实施例的方法,本申请实施例还提供了一种超声设备,图11为根据一示例性实施例示出的一种超声设备的结构图,如图11所示,超声设备包括:
通信接口1,能够与其它设备比如网络设备等进行信息交互;
处理器2,与通信接口1连接,以实现与其它设备进行信息交互,用于运行计算机程序时,执行上述一个或多个技术方案提供的超声造影成像方法。而所述计算机程序存储在存储器3上。
当然,实际应用时,超声设备中的各个组件通过总线系统4耦合在一起。可理解,总线系统4用于实现这些组件之间的连接通信。总线系统4除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图11中将各种总线都标为总线系统4。
本申请实施例中的存储器3用于存储各种类型的数据以支持超声设备的操作。这些数据的示例包括:用于在超声设备上操作的任何计算机程序。
可以理解,存储器3可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(ROM,Read Only Memory)、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器3旨在包括但不限于这些和任意其它适合类型的存储器。
上述本申请实施例揭示的方法可以应用于处理器2中,或者由处理器2实现。处理器2可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2可以是通用处理器、DSP,或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器2可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器3,处理器2读取存储器3中的程序,结合其硬件完成前述方法的步骤。
处理器2执行所述程序时实现本申请实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
在示例性实施例中,本申请实施例还提供了一种存储介质,即计算机存储介质,具体为计算机可读存储介质,例如包括存储计算机程序的存储器3,上述计算机程序可由处理器2执行,以完成前述方法所述步骤。计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、Flash Memory、磁表面存储器、光盘、或CD-ROM等存储器。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本申请上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台超声设备(可以是个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分。 而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种超声造影成像方法,其特征在于,包括:
    在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列;其中,每个超声信号组包括多个超声信号,每个所述超声信号至少包括两个周期发射频率不同的超声子信号,相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同;
    依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;其中,所述回波信号包括不同成像频率对应的基波信号和谐波信号;
    对所述回波信号进行处理得到多个不同成像频率对应的造影信号,并基于所述造影信号生成对应的造影图像;
    对所述造影图像进行融合得到目标造影图像。
  2. 根据权利要求1所述超声造影成像方法,其特征在于,所述在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列,包括:
    确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射频率的四倍确定为第四发射频率;其中,所述第一发射频率、所述第二发射频率、所述第三发射频率、所述第四发射频率均在所述超声探头的有效带宽范围内;
    生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第一发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。
  3. 根据权利要求1所述超声造影成像方法,其特征在于,所述在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列,包括:
    确定基准发射频率和目标系数,将所述基准发射频率与所述目标系数 的乘积确定为第一发射频率,将所述第一发射频率的二倍确定为第二发射频率,将所述第一发射频率的三倍确定为第三发射频率,将所述第一发射频率的四倍确定为第四发射频率,将所述第二发射频率的临近发射频率确定为第五发射频率;其中,所述第二发射频率、所述第三发射频率、所述第四发射频率、第五发射频率均在所述超声探头的有效带宽范围内;
    生成包含第一超声信号组和第二超声信号组的脉冲序列;其中,基于所述第五发射频率和所述第二发射频率生成所述第一超声信号组,基于所述第三发射频率和所述第四发射频率生成所述第二超声信号组。
  4. 根据权利要求1所述超声造影成像方法,其特征在于,所述依次发射所述脉冲序列中不同超声信号组中的不同超声信号,包括:
    为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度;
    为相同超声信号组中不同超声信号中的超声子信号确定相同的发射孔径阵元数量;
    基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径阵元数量依次发射所述脉冲序列中不同超声信号组中的不同超声信号。
  5. 根据权利要求4所述超声造影成像方法,其特征在于,每个超声信号组包括第一超声信号和第二超声信号,相应的,所述为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度,包括:
    为所述第一超声信号中的超声子信号确定第一电压幅度,为所述第二超声信号中的超声子信号确定第二电压幅度;其中,所述第二电压幅度为所述第一电压幅度的预设倍数。
  6. 根据权利要求4所述超声造影成像方法,其特征在于,每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述为相同超声信号组中不同超声信号中对应周期的超声子信号确定不同的电压幅度,包括:
    为所述第一超声信号和所述第三超声信号中的超声子信号确定第三电压幅度,为所述第二超声信号中的超声子信号确定第四电压幅度;其中,所述第四电压幅度为所述第三电压幅度的预设倍数。
  7. 根据权利要求1所述超声造影成像方法,其特征在于,所述依次发射所述脉冲序列中不同超声信号组中的不同超声信号,包括:
    为相同超声信号组中不同超声信号中对应周期的超声子信号确定相同的电压幅度;
    为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量;
    基于不同超声信号中不同超声子信号的发射频率、电压幅度和发射孔径阵元数量依次发射所述脉冲序列中不同超声信号组中的不同超声信号。
  8. 根据权利要求7所述超声造影成像方法,其特征在于,每个超声信号组包括第一超声信号和第二超声信号,相应的,所述为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量,包括:
    为所述第一超声信号中的超声子信号确定第一发射孔径阵元数量,为所述第二超声信号中的超声子信号确定第二发射孔径阵元数量;其中,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的预设倍数。
  9. 根据权利要求8所述超声造影成像方法,其特征在于,所述第二发射孔径阵元数量为所述第一发射孔径阵元数量的两倍。
  10. 根据权利要求7所述超声造影成像方法,其特征在于,每个超声信号组包括第一超声信号、第二超声信号和第三超声信号,相应的,所述为相同超声信号组中不同超声信号中的超声子信号确定不同的发射孔径阵元数量,包括:
    确定所述第一超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的一者,确定所述第二超声信号中的超声子信号的发射孔径为全孔径,确定所述第三超声信号中的超声子信号的发射孔径为奇孔径或偶孔径中的另一者。
  11. 根据权利要求1至10任一项所述超声造影成像方法,其特征在于,对所述回波信号进行处理得到多个不同成像频率对应的造影信号,包括:
    基于每个所述超声信号组中不同超声信号之间的电压幅度关系和相位关系对每个所述超声信号组中不同超声信号的回波信号进行加权处理,得到每个所述超声信号组对应的造影信号;
    利用不同成像频率对应的解调电路对每个所述超声信号组对应的造影信号进行解调,得到不同成像频率对应的造影信号。
  12. 根据权利要求11所述超声造影成像方法,其特征在于,所述基于每个所述超声信号组中不同超声信号之间的电压幅度关系和相位关系对每个所述超声信号组中不同超声信号的回波信号进行加权处理,得到每个所述超声信号组对应的造影信号,包括:
    基于每个所述超声信号组中不同超声信号之间的电压幅度关系确定对应的回波信号的加权系数;
    基于每个所述超声信号组中不同超声信号之间的相位关系确定对应的回波信号的运算关系;其中,若相位关系为相反,则运算关系为相加,若相位关系为相同,则运算关系为相减;
    基于每个所述超声信号组中不同超声信号的回波信号的加权系数和运算关系进行加权处理,得到每个所述超声信号组对应的造影信号。
  13. 根据权利要求1至10任一项所述超声造影成像方法,其特征在于,所述依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号,包括:
    依次发射所述脉冲序列中不同超声信号组中的不同超声信号,以便造影剂微泡产生不同第一成像频率对应的基波信号,并基于所述第一成像频率对应的基波信号生成第二成像频率对应的多次谐波信号,基于不同所述第一成像频率对应的基波信号生成第三成像频率对应的差量谐波信号;其中,所述第二成像频率为所述第一成像频率的整数倍,所述第三成像频率为不同所述第一成像频率之间的差值或和值中的至少一项;
    接收所述第一成像频率对应的基波信号、所述第二成像频率对应的多次谐波信号、所述第三成像频率对应的差量谐波信号。
  14. 根据权利要求1至10任一项所述超声造影成像方法,其特征在于,对所述造影图像进行融合得到目标造影图像,包括:
    确定不同成像模式对应的各造影图像的加权系数,并基于各造影图像的加权系数对不同造影图像进行加权融合,得到不同成像模式对应的目标造影图像。
  15. 根据权利要求14所述超声造影成像方法,其特征在于,所述成像模式包括穿透模式和/或分辨率模式,所述穿透模式对应的造影图像的加权系数与造影图像对应的成像频率呈负相关,所述分辨率模式对应的造影图像的加权系数与造影图像对应的成像频率呈正相关。
  16. 根据权利要求14所述超声造影成像方法,其特征在于,所述确定不同成像模式对应的各造影图像的加权系数,包括:
    对于任意一种目标成像模式,显示所述目标造影图像对应的调整窗口;其中,所述调整窗口包括各造影图像的调整区域;
    接收作用于各调整区域的调整指令,并基于所述调整指令调整对应造影图像的加权系数,以得到所述目标成像模式下各造影图像的加权系数。
  17. 一种超声造影成像装置,其特征在于,包括:
    生成模块,用于在超声探头的有效带宽范围内确定多个发射频率,基于多个所述发射频率生成包含多个超声信号组的脉冲序列;其中,每个超声信号组包括多个超声信号,每个所述超声信号至少包括两个周期发射频率不同的超声子信号,相同超声信号组中不同超声信号之间对应周期的发射频率相同,不同超声信号组中不同超声信号之间对应周期的发射频率不同;
    发射模块,用于依次发射所述脉冲序列中不同超声信号组中的不同超声信号,并接收造影剂微泡对所发射的超声信号产生的回波信号;其中,所述回波信号包括不同成像频率对应的基波信号和谐波信号;
    处理模块,用于对所述回波信号进行处理得到多个不同成像频率对应的造影信号,并基于所述造影信号生成对应的造影图像;
    融合模块,用于对所述造影图像进行融合得到目标造影图像。
  18. 一种超声成像系统,其特征在于,包括:超声主机、超声探头和上位机;所述超声主机分别与所述超声探头和所述上位机通信连接;
    所述超声主机,用于实现如权利要求1至16任一项所述超声造影成像方法的步骤。
  19. 一种超声设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至16任一项所述超声造影成像方法的步骤。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16任一项所述超声造影成像方法的步骤。
PCT/CN2023/084252 2022-06-27 2023-03-28 一种超声造影成像方法、装置、系统及设备和存储介质 WO2024001348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210736704.XA CN117322905A (zh) 2022-06-27 2022-06-27 一种超声造影成像方法、装置及超声设备和存储介质
CN202210736704.X 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001348A1 true WO2024001348A1 (zh) 2024-01-04

Family

ID=89276029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084252 WO2024001348A1 (zh) 2022-06-27 2023-03-28 一种超声造影成像方法、装置、系统及设备和存储介质

Country Status (2)

Country Link
CN (1) CN117322905A (zh)
WO (1) WO2024001348A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078497A1 (en) * 2001-10-20 2003-04-24 Ting-Lan Ji Simultaneous multi-mode and multi-band ultrasonic imaging
CN1976636A (zh) * 2004-06-30 2007-06-06 皇家飞利浦电子股份有限公司 以适度mi级别进行的超声诊断反差成像
CN101642379A (zh) * 2008-08-08 2010-02-10 阿洛卡株式会社 超声波诊断装置
CN103126725A (zh) * 2011-12-01 2013-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声成像的方法和装置
CN106971055A (zh) * 2016-01-12 2017-07-21 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法和系统
CN107205722A (zh) * 2015-01-29 2017-09-26 皇家飞利浦有限公司 宽带混合的基波和谐波频率超声诊断成像
CN108523922A (zh) * 2018-04-09 2018-09-14 中国科学院苏州生物医学工程技术研究所 多频成像方法、装置及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030078497A1 (en) * 2001-10-20 2003-04-24 Ting-Lan Ji Simultaneous multi-mode and multi-band ultrasonic imaging
CN1976636A (zh) * 2004-06-30 2007-06-06 皇家飞利浦电子股份有限公司 以适度mi级别进行的超声诊断反差成像
CN101642379A (zh) * 2008-08-08 2010-02-10 阿洛卡株式会社 超声波诊断装置
CN103126725A (zh) * 2011-12-01 2013-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声成像的方法和装置
CN107205722A (zh) * 2015-01-29 2017-09-26 皇家飞利浦有限公司 宽带混合的基波和谐波频率超声诊断成像
CN106971055A (zh) * 2016-01-12 2017-07-21 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法和系统
CN108523922A (zh) * 2018-04-09 2018-09-14 中国科学院苏州生物医学工程技术研究所 多频成像方法、装置及设备

Also Published As

Publication number Publication date
CN117322905A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
US11786216B2 (en) Ultrasound contrast enhanced imaging method and ultrasound imaging system
JP4942316B2 (ja) 空間合成画像生成のための距離依存重み付け
EP2710559B1 (en) Rendering mode selection in graphics processing units
CN108694700A (zh) 用于深度学习图像超分辨率的系统和方法
US20140348442A1 (en) Imaging or communications system utilizing multisample apodization and method
US10003783B2 (en) Apparatus for generating a three-dimensional color image and a method for producing a three-dimensional color image
CN113077394B (zh) 图像处理方法、电子设备和存储介质
JP2010067272A (ja) 高品質画像及び映像アップスケーリングのためのシステム及び方法
US11719613B2 (en) Method and device for quantifying viscoelasticity of a medium
JP2010029281A (ja) 超音波診断装置
Van Neer et al. Comparison of fundamental, second harmonic, and superharmonic imaging: A simulation study
CN106725599A (zh) 一种基于平面波的成像方法及装置
WO2020143728A1 (zh) 画面渲染方法、装置、终端及对应的存储介质
WO2021180161A1 (zh) 超声成像方法及装置、存储介质
Park et al. A low-cost and high-throughput FPGA implementation of the retinex algorithm for real-time video enhancement
WO2024001348A1 (zh) 一种超声造影成像方法、装置、系统及设备和存储介质
CN110327077A (zh) 一种血流显示方法、装置及超声设备和存储介质
KR20190029173A (ko) 스마트 기기를 이용한 딥 러닝 기반 의료용 초음파 영상 분류 방법 및 장치
CN104574473B (zh) 一种基于静态图片生成动态效果的方法和装置
CN112890866A (zh) 超声成像方法、系统及计算机可读存储介质
CN111528901B (zh) 四维的超声成像方法、超声成像方法及相关系统
US20230370735A1 (en) Flare Mitigation via Deconvolution using High Dynamic Range Imaging
US20230305126A1 (en) Ultrasound beamforming method and device
CN111026342A (zh) 一种打印预览图片生成方法、装置、设备和存储介质
CN104751413B (zh) 一种基于时变曲线模型的sas图像自动均衡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829539

Country of ref document: EP

Kind code of ref document: A1