WO2024001240A1 - 多种技术栈的任务集成方法及装置 - Google Patents

多种技术栈的任务集成方法及装置 Download PDF

Info

Publication number
WO2024001240A1
WO2024001240A1 PCT/CN2023/077881 CN2023077881W WO2024001240A1 WO 2024001240 A1 WO2024001240 A1 WO 2024001240A1 CN 2023077881 W CN2023077881 W CN 2023077881W WO 2024001240 A1 WO2024001240 A1 WO 2024001240A1
Authority
WO
WIPO (PCT)
Prior art keywords
task
configuration
request
tasks
execution parameters
Prior art date
Application number
PCT/CN2023/077881
Other languages
English (en)
French (fr)
Inventor
卫义超
宋荣鑫
黄建庭
郑�硕
肖卫渭
倪思勇
李文应
Original Assignee
上海淇玥信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海淇玥信息技术有限公司 filed Critical 上海淇玥信息技术有限公司
Publication of WO2024001240A1 publication Critical patent/WO2024001240A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/70Software maintenance or management
    • G06F8/71Version control; Configuration management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/36Preventing errors by testing or debugging software
    • G06F11/3664Environments for testing or debugging software

Definitions

  • the present application relates to the field of computer information processing. Specifically, it relates to a task integration method, device, electronic equipment and computer-readable medium for multiple technology stacks.
  • Continuous integration service automates the compilation and testing process of software code. Most developers do this manually. Some don't even do it.
  • the CI server can automatically complete the compilation and testing process according to the set frequency.
  • the CI server is sustainable and automates the compilation process, which can help software development teams reduce project risks and improve work efficiency and software product quality.
  • Jenkins is an open source software project. It is a continuous integration tool developed based on Java. It is used to monitor continuously repeated work. The traditional way is to integrate the operating system to build tasks. In the existing technology, Jenkins has some problems, such as: it needs to be configured in advance. Environmental variables required for tasks, operators need to be familiar with Shell/Groovy scripts, understand Jenkins parameter configuration and usage, each task needs to be configured separately, etc. This is very unfriendly to developers, and the learning and use costs are also high. .
  • this application provides a task integration method, device, electronic device, and computer-readable medium for multiple technology stacks, which can automatically process data from different technology stacks in a unified manner, improve user operating experience, and reduce tasks. Access costs and management and maintenance costs.
  • a task integration method for multiple technology stacks includes: obtaining task requests from multiple technology stacks; obtaining tasks from a distributed file system according to the category of the task in the task request. Configuration; obtaining execution parameters according to the identification of the task in the task request; integrating the tasks according to the task configuration and the execution parameters to generate a task integration result.
  • obtaining task requests from multiple technology stacks includes: obtaining task requests from multiple technology stacks one by one through the message queue.
  • obtaining the task configuration from the distributed file system according to the category of the task in the task request includes: determining whether the task in the task request exists in the task list; When the task is in the list, the task configuration is obtained from the distributed file system according to the category of the task in the task request; when the task does not exist in the task list, the task is created.
  • obtaining execution parameters according to the identification of the task in the task request also includes: dynamically storing execution parameters corresponding to the task in the form of key-value pairs in the UI interface according to user operations.
  • integrating the task according to the task configuration and the execution parameters includes: obtaining a node label from the task request; determining a target proxy server according to the node label; integrating the task configuration and the The execution parameters are sent to the target proxy server to integrate the task.
  • generating task integration results includes: automatically compiling and testing the tasks, generating test results; and pushing the test results to the user end.
  • creating the task includes: obtaining the technology type of the technology stack corresponding to the task; and extracting a template according to the technology type to create the task.
  • extracting a template according to the technology type to create the task includes: extracting a template according to the technology type; generating a creation message according to the template; the background server obtains the creation message in the form of a consumption message; The create message creates the task.
  • creating the task according to the creation message includes: obtaining configuration data from a distributed file system according to the template in the creation message; creating a task corresponding to the task according to the directory level in the configuration data. Configuration; after creation, update the task list.
  • a task integration method device for multiple technology stacks.
  • the device includes: a request module for obtaining task requests from multiple technology stacks; a configuration module for performing tasks according to the task request.
  • the category of the task is obtained from the distributed file system; the parameter module is used to obtain execution parameters according to the identification of the task in the task request; the integration module is used to obtain the execution parameters of the task according to the task configuration and the execution parameters. Perform integration and generate task integration results.
  • an electronic device includes: one or more processors; a storage device for storing one or more programs; when one or more programs are processed by one or more processors, Execution causes one or more processors to implement the method as above.
  • a computer-readable medium on which a computer program is stored.
  • the program is executed by a processor, the above method is implemented.
  • device, electronic device and computer-readable medium of multiple technology stacks of the present application by obtaining task requests from multiple technology stacks; according to the category of the task in the task request, it is obtained from the distributed file system Task configuration; obtaining execution parameters according to the identification of the task in the task request; integrating the task according to the task configuration and the execution parameters to generate task integration results, which can automatically process data from different technology stacks Unified processing improves user operation experience and reduces task access costs and management maintenance costs.
  • Figure 1 is a system block diagram of a task integration method and device for multiple technology stacks according to an exemplary embodiment.
  • Figure 2 is a schematic diagram of a task integration method for multiple technology stacks according to an exemplary embodiment.
  • Figure 3 is a flow chart of a task integration method for multiple technology stacks according to an exemplary embodiment.
  • Figure 4 is a flowchart of a task integration method for multiple technology stacks according to another exemplary embodiment.
  • FIG. 5 is a flowchart of a task integration method for multiple technology stacks according to another exemplary embodiment.
  • FIG. 6 is a schematic diagram of a task integration method for multiple technology stacks according to another exemplary embodiment.
  • Figure 7 is a block diagram of a task integration method device for multiple technology stacks according to an exemplary embodiment.
  • FIG. 8 is a block diagram of an electronic device according to an exemplary embodiment.
  • Figure 9 is a block diagram of a computer-readable medium according to an exemplary embodiment.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the same reference numerals in the drawings represent the same or similar parts, and thus their repeated description will be omitted.
  • first, second, third, etc. may be used herein to describe various components, these components should not be limited by these terms. These terms are used to distinguish one component from another component. Accordingly, a first component discussed below may be referred to as a second component without departing from the teachings of the present concepts. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • Figure 1 is a system block diagram of a task integration method and device for multiple technology stacks according to an exemplary embodiment.
  • the system architecture 10 may include service stacks 101, 102, 103, a network 104 and a server 105.
  • Network 104 is the medium used to provide communication links between service stacks 101, 102, 103 and server 105.
  • Network 104 may include various connection types, such as wired, wireless communication links, or fiber optic cables, among others.
  • the service stacks 101, 102, 103 interact with the server 105 through the network 104 to receive or send task requests, etc.
  • Software processing applications such as Java, Go, Python, Node, C++, etc., can be installed on the service stacks 101, 102, and 103.
  • the server 105 may be a server that provides various services, such as a background management server that automatically integrates software tasks completed by the service stacks 101, 102, and 103.
  • the background management server can process the received task request and feed back the processing results (such as task integration results) to the administrator of the Internet service website and/or the service stack 101, 102, 103.
  • the server 105 can, for example, obtain task requests from the service stacks 101, 102, and 103; the server 105 can, for example, obtain the task configuration from the distributed file system according to the category of the task in the task request; the server 105 can, for example, obtain the task configuration according to the type of the task in the task request.
  • the identification of the task obtains execution parameters; the server 105 may, for example, integrate the tasks according to the task configuration and the execution parameters, and generate a task integration result.
  • Server 105 and service stacks 101, 102, and 103 can each be an entity server, or can also be composed of multiple servers. It should be noted that the task integration method of multiple technology stacks provided by the embodiment of the present application can be composed of servers. 105 execution, correspondingly, the task integration method devices of multiple technology stacks can be set on the server 105 in.
  • Figure 2 is a schematic diagram of a task integration method for multiple technology stacks according to an exemplary embodiment.
  • a set of visual interface UI is provided, and the user is guided through the visual interface to select tasks of different technology stack types for construction.
  • the results of the construction process are transmitted to the UI system in real time through API. Users can view it intuitively in real time.
  • the task integration method of multiple technology stacks in this application isolates the underlying implementation of Jenkins, improves user operating experience, and reduces usage costs.
  • the backend is abstracted into common standard files based on different technology stack construction types (Java, Node, Go, Python, Ruby, and custom, etc.). Standard files are used to create, update, execute, and archive tasks in the form of directories. Tasks are classified and stored according to type directories.
  • task scripts are stored in GFS (distributed file system), which is stored in an orderly manner and is easy to manage. This greatly reduces task access costs and maintenance costs of Jenkins management.
  • FIG 3 is a flow chart of a task integration method for multiple technology stacks according to an exemplary embodiment.
  • the task integration method 30 of multiple technology stacks includes at least steps S302 to S308.
  • task requests from multiple technology stacks are obtained.
  • task requests from multiple technology stacks can be obtained one by one through a message queue.
  • execution parameters are obtained according to the identification of the task in the task request.
  • the execution parameters corresponding to the task can be dynamically stored in the form of key-value pairs in the UI interface according to user operations.
  • the execution parameters input by the user can be obtained through the UI interface, the execution parameter names and specific values are stored in the ⁇ key, value> key-value pair mode, and the specific task names corresponding to the execution parameters can also be configured, so that Automatically called.
  • the tasks are integrated according to the task configuration and the execution parameters, and a task integration result is generated.
  • a node label may be obtained from the task request;
  • a target proxy server may be determined based on the node label; and the task configuration and execution parameters may be sent to the target proxy server to integrate the task.
  • the task can also be automatically compiled and tested to generate test results; and the test results can be pushed to the user end.
  • the task integration method of multiple technology stacks of the present application by obtaining task requests from multiple technology stacks; obtaining task configurations from the distributed file system according to the category of tasks in the task request; according to the tasks in the task request The identifier obtains the execution parameters; the task is integrated according to the task configuration and the execution parameters, and the task integration result is generated, which can automatically process data from different technology stacks in a unified manner, improve the user operation experience, and reduce The task access cost and management maintenance cost are eliminated.
  • FIG. 4 is a schematic diagram of a task integration method for multiple technology stacks according to another exemplary embodiment.
  • the schematic diagram 40 shown in Figure 4 is a detailed description of S204 "Create the task" in the process shown in Figure 2 . Before the task is run, it will detect whether the task exists. If it does not exist, the template file will be automatically loaded and created based on the technology stack type to which the current task belongs.
  • creating the task includes: obtaining the technology type of the technology stack corresponding to the task; and extracting a template according to the technology type to create the task.
  • extracting a template according to the technology type to create the task includes: extracting a template according to the technology type; generating a creation message according to the template; and a background server obtaining the creation message in the form of a consumption message; The task is created based on the creation message.
  • creating the task according to the creation message includes: obtaining configuration data from a distributed file system according to the template in the creation message; creating the task corresponding to the directory level in the configuration data. task configuration; after creation, update the task list.
  • FIG. 5 is a schematic diagram of a task integration method of multiple technology stacks according to another exemplary embodiment.
  • the schematic diagram 50 shown in FIG. 5 is a detailed description of the process shown in FIG. 2 .
  • configuration conventions are made based on the template definition content, such as starting the container to construct the execution environment, loading the build timeout, etc., to ensure the normal execution of the task build.
  • a message queue can be used to obtain the task request, and the task request can be controlled through the message queue to avoid single points of failure and ensure data security.
  • self-developed plug-ins can be used to dynamically pull relevant task configurations in GFS, decoupling script configuration and construction, and realizing batch build management of scripts.
  • the task naming rule can be: standard file prefix type prefix name + configuration name.
  • the template is based on the Jenkins DSL language specification. It performs business customization and development on existing technology stack types and generates task standard files that comply with the specification.
  • the execution results can be actively reported, and the results are sent to the administrator through various information channels.
  • FIG. 6 is a schematic diagram of a task integration method for multiple technology stacks according to another exemplary embodiment.
  • the process 50 shown in Figure 6 is a detailed description of "sending the task configuration and the execution parameters to the target proxy server to integrate the task.”
  • Jenkins In Jenkins technology, different tasks are implemented in different node machines by labeling node nodes and specifying agents through labels in the pipeline. This scenario meets most mission requirements. As the company's business develops, usage scenarios become more complex, and there are more and more tasks in building pipelines. The existing Jenkins disk configuration can no longer support the construction of a large number of tasks.
  • the master node when a server node fails, the master node will go offline and correspond to the slave node. At this time, routing based on the hash algorithm will automatically fail over to the normal server node.
  • the scheduling algorithm can be as follows:
  • S is a string char array
  • N is the length of the string char array
  • Count is the number of server nodes
  • the user creates a task through the master node.
  • the master node dynamically calculates the label name based on the hash algorithm based on the name parameter in the task, thereby routing it to a fixed slave node to ensure that the same name parameter is in the same slave node.
  • Build reduce the overall disk space occupied by the cache, reuse the disk cache, and improve the build speed.
  • the task is scheduled to run on the Node3 node.
  • FIG. 7 is a block diagram of a task integration method device for multiple technology stacks according to an exemplary embodiment.
  • the task integration method device 70 of multiple technology stacks includes: a request module 702, a configuration module 704, a parameter module 706, an integration module 708, and a creation module 710.
  • the request module 702 is used to obtain task requests from multiple technology stacks; the request module 702 is also used to obtain task requests from multiple technology stacks one by one through the message queue.
  • the configuration module 704 is used to obtain the task configuration from the distributed file system according to the category of the task in the task request; the configuration module 704 is also used to determine whether the task in the task request exists in the task list; when the task is stored When in the task list, obtain the task configuration from the distributed file system according to the category of the task in the task request;
  • the parameter module 706 is used to obtain execution parameters according to the identification of the task in the task request; the parameter module 706 is also used to dynamically store the execution parameters corresponding to the task in the form of key-value pairs in the UI interface according to user operations.
  • the integration module 708 is used to integrate the tasks according to the task configuration and the execution parameters, and generate a task integration result.
  • the integration module 708 is also used to obtain a node label from the task request; determine a target proxy server according to the node label; and send the task configuration and execution parameters to the target proxy server to integrate the task. .
  • the creation module 710 is used to create the task when the task does not exist in the task list.
  • the creation module 710 is also used to obtain the technology type of the technology stack corresponding to the task; extract a template according to the technology type to create the task.
  • the task integration method device of multiple technology stacks of the present application by obtaining task requests from multiple technology stacks; obtaining task configurations from the distributed file system according to the category of the task in the task request; according to the task request The identification of the task obtains the execution parameters; the task is integrated according to the task configuration and the execution parameters, and the task integration result is generated, which can automatically and uniformly process data from different technology stacks, improving the user operation experience. Reduces task access costs and management maintenance costs.
  • FIG. 8 is a block diagram of an electronic device according to an exemplary embodiment.
  • FIG. 8 An electronic device 800 according to this embodiment of the present application is described below with reference to FIG. 8 .
  • the electronic device 800 shown in FIG. 8 is only an example and should not impose any limitations on the functions and usage scope of the embodiments of the present application.
  • electronic device 800 is embodied in the form of a general computing device.
  • the components of the electronic device 800 may include, but are not limited to: at least one processing unit 810, at least one storage unit 820, a bus 830 connecting different system components (including the storage unit 820 and the processing unit 810), a display unit 840, and the like.
  • the storage unit stores program code, and the program code can be executed by the processing unit 810, so that the processing unit 810 performs the steps in this specification according to various exemplary embodiments of the present application.
  • the processing unit 810 can perform the steps shown in Figure 3, Figure 4, and Figure 5.
  • the storage unit 820 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 8201 and/or a cache storage unit 8202, and may further include a read-only storage unit (ROM) 8203.
  • RAM random access storage unit
  • ROM read-only storage unit
  • the storage unit 820 may also include a program/utility 8204 having a set of (at least one) program modules 8205 including, but not limited to: an operating system, one or more applications, other program modules, and programs. Data, each of these examples or some combination may include an implementation of a network environment.
  • Bus 830 may be a local area representing one or more of several types of bus structures, including a memory unit bus or memory unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or using any of a variety of bus structures. bus.
  • the electronic device 800 may also communicate with one or more external devices 800' (e.g., a keyboard, a pointing device, a Bluetooth device, etc.) so that the user can communicate with the device that the electronic device 800 interacts with, and/or the electronic device 800 can communicate with a Any device (such as a router, modem, etc.) with which multiple other computing devices communicate. This communication may occur through input/output (I/O) interface 850.
  • the electronic device 800 may also communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through a network adapter 860.
  • Network adapter 860 may communicate with other modules of electronic device 800 via bus 830.
  • electronic device 800 may be used in conjunction with electronic device 800, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • the technical solution according to the embodiment of the present application can be embodied in the form of a software product.
  • the software product can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk etc.) or on a network, including several instructions to cause a computing device (which can be a personal computer, a server, a network device, etc.) to execute the above method according to an embodiment of the present application.
  • the software product may take the form of any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium may include a data signal propagated in baseband or as part of a carrier wave carrying readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a readable storage medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code contained on a readable storage medium may be transmitted using any suitable medium, including but not limited to wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • Program code for performing the operations of the present application may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural formulas. Programming language—such as "C” or a similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as provided by an Internet service. (business comes via Internet connection).
  • LAN local area network
  • WAN wide area network
  • the above-mentioned computer-readable medium carries one or more programs.
  • the computer-readable medium realizes the following functions: obtain task requests from multiple technology stacks; according to the The category of the task in the task request is obtained from the distributed file system; the execution parameters are obtained according to the identification of the task in the task request; the tasks are integrated according to the task configuration and the execution parameters to generate a task integration result .
  • modules can be distributed in devices according to the description of the embodiments, or can be modified accordingly in one or more devices that are only different from this embodiment.
  • the modules of the above embodiments can be combined into one module, or further divided into multiple sub-modules.
  • the technical solution according to the embodiment of the present application can be embodied in the form of a software product.
  • the software product can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network. , including several instructions to A computing device (which may be a personal computer, a server, a mobile terminal, a network device, etc.) is caused to execute the method according to the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Stored Programmes (AREA)

Abstract

本申请涉及一种多种技术栈的任务集成方法及装置。该方法包括:获取来自多种技术栈的任务请求;根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;根据所述任务请求中任务的标识获取执行参数;根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。本申请涉及的多种技术栈的任务集成方法及装置,能够自动化的对来自不同技术栈的数据统一进行处理,提升用户操作体验,减少了任务接入成本以及管理的维护成本。

Description

多种技术栈的任务集成方法及装置 技术领域
本申请涉及计算机信息处理领域,具体而言,涉及一种多种技术栈的任务集成方法、装置、电子设备及计算机可读介质。
背景技术
持续集成服务(CI服务)是自动完成软件代码的编译和测试过程。大多数开发人员是通过手工来完成这个工作。有的甚至不做。CI服务器可以根据设定的频率自动地去完成编译和测试过程。CI服务器可持续,自动编译过程,这能够帮助软件开发团队减少项目风险,提高工作效率和软件产品质量。
但是,在微服务架构广泛使用的情况下,随着业务场景复杂发展,各种任务经由拆分,通常由多个团队进行建设。各团队之间根据自身领域特性采用不同技术栈完成业务协作,以保证业务稳定高效完成。这种协作方式导致Java、Go、Python、Node、C++等多种技术栈共存现象。如何在多技术栈场景下简单高效实现持续集成服务是当前要解决一个问题。
Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作传统方式集成操作系统进行任务构建,现有技术中,Jenkins存在一些问题,例如:事先需要配置该任务所需的环境变量、操作人员需要熟悉Shell/Groovy脚本、了解Jenkins参数配置及使用、每个任务需要单独配置等等,这对开发人员使用是非常不友好的,学习、使用成本也很高。
因此,需要一种新的多种技术栈的任务集成方法、装置、电子设备及计算机可读介质。
在所述背景技术部分公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
有鉴于此,本申请提供一种多种技术栈的任务集成方法、装置、电子设备及计算机可读介质,能够自动化的对来自不同技术栈的数据统一进行处理,提升用户操作体验,减少了任务接入成本以及管理的维护成本。
本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请 的实践而习得。
根据本申请的一方面,提出一种多种技术栈的任务集成方法,该方法包括:获取来自多种技术栈的任务请求;根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;根据所述任务请求中任务的标识获取执行参数;根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。
可选地,获取来自多种技术栈的任务请求,包括:通过消息队列逐一获取来自多种技术栈的任务请求。
可选地,根据所述任务请求中任务的类别由分布式文件系统中获取任务配置,包括:判断所述任务请求中的任务是否存在于任务清单中;在所述任务存于在所述任务清单中时,根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;在所述任务不存在所述任务清单中时,创建所述任务。
可选地,根据所述任务请求中任务的标识获取执行参数,还包括:根据用户操作在UI界面中以键值对的形式动态存储任务对应的执行参数。
可选地,根据所述任务配置和所述执行参数对所述任务进行集成,包括:由所述任务请求中获取节点标签;根据所述节点标签确定目标代理服务器;将所述任务配置和所述执行参数发送至所述目标代理服务器以对所述任务进行集成。
可选地,生成任务集成结果,包括:自动对所述任务进行编译和测试,生成测试结果;将所述测试结果推送到用户端。
可选地,创建所述任务,包括:获取所述任务对应的技术栈的技术类型;根据所述技术类型提取模板以创建所述任务。
可选地,根据所述技术类型提取模板以创建所述任务,包括:根据所述技术类型提取模板;根据所述模板生成创建消息;后台服务器以消费消息的形式获取所述创建消息;根据所述创建消息创建所述任务。
可选地,根据所述创建消息创建所述任务,包括:根据所述创建消息中的模板由分布式文件系统中获取配置数据;按照所述配置数据中的目录等级创建所述任务对应的任务配置;在创建完毕后,更新所述任务清单。
根据本申请的一方面,提出一种多种技术栈的任务集成方法装置,该装置包括:请求模块,用于获取来自多种技术栈的任务请求;配置模块,用于根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;参数模块,用于根据所述任务请求中任务的标识获取执行参数;集成模块,用于根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。
根据本申请的一方面,提出一种电子设备,该电子设备包括:一个或多个处理器;存储装置,用于存储一个或多个程序;当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如上文的方法。
根据本申请的一方面,提出一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如上文中的方法。
根据本申请的多种技术栈的任务集成方法、装置、电子设备及计算机可读介质,通过获取来自多种技术栈的任务请求;根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;根据所述任务请求中任务的标识获取执行参数;根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果的方式,能够自动化的对来自不同技术栈的数据统一进行处理,提升用户操作体验,减少了任务接入成本以及管理的维护成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
通过参照附图详细描述其示例实施例,本申请的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的一种多种技术栈的任务集成方法及装置的系统框图。
图2是根据一示例性实施例示出的一种多种技术栈的任务集成方法示意图。
图3是根据一示例性实施例示出的一种多种技术栈的任务集成方法的流程图。
图4是根据另一示例性实施例示出的一种多种技术栈的任务集成方法的流程图。
图5是根据另一示例性实施例示出的一种多种技术栈的任务集成方法的流程图。
图6是根据另一示例性实施例示出的一种多种技术栈的任务集成方法的示意图。
图7是根据一示例性实施例示出的一种多种技术栈的任务集成方法装置的框图。
图8是根据一示例性实施例示出的一种电子设备的框图。
图9是根据一示例性实施例示出的一种计算机可读介质的框图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有特定细节中的一 个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本申请的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应理解,虽然本文中可能使用术语第一、第二、第三等来描述各种组件,但这些组件不应受这些术语限制。这些术语乃用以区分一组件与另一组件。因此,下文论述的第一组件可称为第二组件而不偏离本申请概念的教示。如本文中所使用,术语“及/或”包括相关联的列出项目中的任一个及一或多者的所有组合。
本领域技术人员可以理解,附图只是示例实施例的示意图,附图中的模块或流程并不一定是实施本申请所必须的,因此不能用于限制本申请的保护范围。
图1是根据一示例性实施例示出的一种多种技术栈的任务集成方法及装置的系统框图。
如图1所示,系统架构10可以包括服务栈101、102、103,网络104和服务器105。网络104用以在服务栈101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
服务栈101、102、103通过网络104与服务器105交互,以接收或发送任务请求等。服务栈101、102、103上可以安装有软件处理类应用,例如Java、Go、Python、Node、C++等等。
服务器105可以是提供各种服务的服务器,例如对服务栈101、102、103所完成的软件任务自动集成的后台管理服务器。后台管理服务器可以对接收到的任务请求进行处理,并将处理结果(例如任务集成结果)反馈给互联网服务网站的管理员和/或服务栈101、102、103。
服务器105可例如获取来自服务栈101、102、103的任务请求;服务器105可例如根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;服务器105可例如根据所述任务请求中任务的标识获取执行参数;服务器105可例如根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。
服务器105和服务栈101、102、103均可以是一个实体的服务器,还可例如为多个服务器组成,需要说明的是,本申请实施例所提供的多种技术栈的任务集成方法可以由服务器105执行,相应地,多种技术栈的任务集成方法装置可以设置于服务器 105中。
图2是根据一示例性实施例示出的一种多种技术栈的任务集成方法示意图。在本申请的多种技术栈的任务集成方法的系统框架中,提供一套可视化界面UI,通过可视化界面引导用户选择不同技术栈类型任务进行构建,构建过程结果通过API方式实时传递到UI系统,用户可以实时的直观的查看。
在具体的实现过程中,在本申请的多种技术栈的任务集成方法将Jenkins底层实现进行隔离,提升用户操作体验,降低使用成本。后台根据不同技术栈构建类型(Java、Node、Go、Python、Ruby和自定义等)抽象为通用标准文件,使用标准文件,以目录的形式进行任务创建、更新、执行和归档。任务按照类型目录进行归类存放,为保证任务文件单点问题,将任务脚本存放在GFS(分布式文件系统),存储有序,便于管理。这在很大程度上减少了任务接入成本以及Jenkins管理的维护成本。
下面结合具体的实施例,对本申请的内容进行详细说明。
图3是根据一示例性实施例示出的一种多种技术栈的任务集成方法的流程图。多种技术栈的任务集成方法30至少包括步骤S302至S308。
如图3所示,在S302中,获取来自多种技术栈的任务请求。可例如,通过消息队列逐一获取来自多种技术栈的任务请求。
在S304中,根据所述任务请求中任务的类别由分布式文件系统中获取任务配置。
在一个实施例中,判断所述任务请求中的任务是否存在于任务清单中;在所述任务存于在所述任务清单中时,根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;在所述任务不存在所述任务清单中时,创建所述任务。
“创建所述任务”的具体内容将在图4对应的实施例中进行详细说明。
在S306中,根据所述任务请求中任务的标识获取执行参数。可根据用户操作在UI界面中以键值对的形式动态存储任务对应的执行参数。
在一个具体的实施例中,可通过UI界面获取用户输入的执行参数,将执行参数名称和具体数值以<key,value>键值对模式存储,还可配置执行参数对应的具体任务名称,以便自动调用。
在S308中,根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。可例如,由所述任务请求中获取节点标签;根据所述节点标签确定目标代理服务器;将所述任务配置和所述执行参数发送至所述目标代理服务器以对所述任务进行集成。
在一个实施例中,还可例如,自动对所述任务进行编译和测试,生成测试结果;将所述测试结果推送到用户端。
“将所述任务配置和所述执行参数发送至所述目标代理服务器以对所述任务进行集成”的详细内容将在图6对应的实施例中进行详细描述。
根据本申请的多种技术栈的任务集成方法,通过获取来自多种技术栈的任务请求;根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;根据所述任务请求中任务的标识获取执行参数;根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果的方式,能够自动化的对来自不同技术栈的数据统一进行处理,提升用户操作体验,减少了任务接入成本以及管理的维护成本。
应清楚地理解,本申请描述了如何形成和使用特定示例,但本申请的原理不限于这些示例的任何细节。相反,基于本申请公开的内容的教导,这些原理能够应用于许多其它实施例。
图4是根据另一示例性实施例示出的一种多种技术栈的任务集成方法的示意图。图4所示的示意图40是对图2所示的流程中S204“创建所述任务”的详细描述。任务在运行前会检测任务是否存在,如果不存在,会自动根据当前任务所属的技术栈类型加载模板文件进行创建。
在一个实施例中,创建所述任务,包括:获取所述任务对应的技术栈的技术类型;根据所述技术类型提取模板以创建所述任务。
在一个实施例中,根据所述技术类型提取模板以创建所述任务,包括:根据所述技术类型提取模板;根据所述模板生成创建消息;后台服务器以消费消息的形式获取所述创建消息;根据所述创建消息创建所述任务。
在一个实施例中,根据所述创建消息创建所述任务,包括:根据所述创建消息中的模板由分布式文件系统中获取配置数据;按照所述配置数据中的目录等级创建所述任务对应的任务配置;在创建完毕后,更新所述任务清单。
图5是根据另一示例性实施例示出的一种多种技术栈的任务集成方法的示意图。图5所示的示意图50是对图2所示的流程的详细描述。任务执行期间根据模板定义内容,进行配置约定,例如:启动容器构造执行环境,加载构建时长超时等,来保证任务构建的正常执行。
在一个实施例中,可采用消息队列(MQ)获取任务请求,通过消息队列对任务请求进行控制,可以避免单点故障,确保数据安全。
在一个实施例中,可通过自研插件动态在GFS里面拉取相关任务配置,将脚本配置与构建进行解耦,实现脚本的批量化构建管理。
值得一提的是,为了方便技术人员获取任务结构,任务命名规则可为:标准文件前置类型前缀名+配置名。
模板是基于Jenkins DSL语言规范,对现有技术栈类型做业务定制开发,生成符合规范的任务标准文件。
在任务执行结束后,可主动上报执行结果,结果通过各种信息渠道发送至管理员。
图6是根据另一示例性实施例示出的一种多种技术栈的任务集成方法的示意图。 图6所示的流程50是对“将所述任务配置和所述执行参数发送至所述目标代理服务器以对所述任务进行集成”的详细描述。
Jenkins技术中,通过对node节点打标签并在pipeline中通过标签指定agent来实现不同的任务在不同的node机器中执行任务。此场景已满足大多数任务需求。随着公司业务发展,使用场景愈发复杂,在构建流水线的任务越来越多,现有Jenkins磁盘配置已无法支撑起大量任务的构建。
在本申请中,基于应用名hash值将任务发送到不同标签对应的后台服务器中,使每个应用每次都会到固定服务器节点中构建,并且该服务器节点中会缓存该应用的必要数据,如:java应用的依赖包、vue的依赖包,有效提高应用构建速度、并且从原来各服务器节点都会缓存数据降低到单个服务器节点缓存、有效节省磁盘空间。
而且,当服务器节点发生故障时,主节点会下线对应从节点,这时基于hash算法路由自动进行故障转移到正常服务器节点中。
调度算法可下:
(s[0]*31(n-1)+s[1]*31(n-2)+...+s[n-1])%count
S为字符串char数组;
N为字符串char数组长度;
Count为服务器节点数量;
如图6所示,用户通过主节点创建任务,主节点根据任务中的name参数基于hash算法动态计算出label名,从而路由到固定的从节点中,保证相同的name参数在同一台从节点中进行构建,降低缓存整体磁盘空间占用,重复利用磁盘缓存,提升构建速率。
案例:在Jenkins集群(1个主节点+4个从节点)下,一个名称为demo的任务正在被执行,经过主节点进行调度到具体的从节点节点,调度算法如下:
(100*313+101*312+109*311+111*310)%4=3;
即为,该任务被调度到Node3节点运行。
根据本申请的多种技术栈的任务集成方法,具有如下优点:
1)动态在GFS里面拉取相关任务配置,将脚本配置与构建进行解耦,实现脚本的批量化构建管理。
2)采用标准化文件管理一类任务应用,方便管理。针对特殊类任务的要求,提供扩展性接口,支撑性强。将“灰度发布”概念融入设计当中,支持对单个任务进行灰度更改。
3)通过优化Jenkins路由调度策略,启用新的Hash调度算法,降低缓存整体磁盘空间占用,重复利用磁盘缓存,提升构建速率。
过本方案的施行,目前已接入构建工程大于600个,经过实测,工程的构建效率 提升约30%。
本领域技术人员可以理解实现上述实施例的全部或部分步骤被实现为由CPU执行的计算机程序。在该计算机程序被CPU执行时,执行本申请提供的上述方法所限定的上述功能。所述的程序可以存储于一种计算机可读存储介质中,该存储介质可以是只读存储器,磁盘或光盘等。
此外,需要注意的是,上述附图仅是根据本申请示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图7是根据一示例性实施例示出的一种多种技术栈的任务集成方法装置的框图。如图7所示,多种技术栈的任务集成方法装置70包括:请求模块702,配置模块704,参数模块706,集成模块708,创建模块710。
请求模块702用于获取来自多种技术栈的任务请求;请求模块702还用于通过消息队列逐一获取来自多种技术栈的任务请求。
配置模块704用于根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;配置模块704还用于判断所述任务请求中的任务是否存在于任务清单中;在所述任务存于在所述任务清单中时,根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;
参数模块706用于根据所述任务请求中任务的标识获取执行参数;参数模块706还用于根据用户操作在UI界面中以键值对的形式动态存储任务对应的执行参数。
集成模块708用于根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。集成模块708还用于由所述任务请求中获取节点标签;根据所述节点标签确定目标代理服务器;将所述任务配置和所述执行参数发送至所述目标代理服务器以对所述任务进行集成。
创建模块710用于在所述任务不存在所述任务清单中时,创建所述任务。创建模块710还用于获取所述任务对应的技术栈的技术类型;根据所述技术类型提取模板以创建所述任务。
根据本申请的多种技术栈的任务集成方法装置,通过获取来自多种技术栈的任务请求;根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;根据所述任务请求中任务的标识获取执行参数;根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果的方式,能够自动化的对来自不同技术栈的数据统一进行处理,提升用户操作体验,减少了任务接入成本以及管理的维护成本。
图8是根据一示例性实施例示出的一种电子设备的框图。
下面参照图8来描述根据本申请的这种实施方式的电子设备800。图8显示的电子设备800仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图8所示,电子设备800以通用计算设备的形式表现。电子设备800的组件可以包括但不限于:至少一个处理单元810、至少一个存储单元820、连接不同系统组件(包括存储单元820和处理单元810)的总线830、显示单元840等。
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元810执行,使得所述处理单元810执行本说明书中的根据本申请各种示例性实施方式的步骤。例如,所述处理单元810可以执行如图3,图4,图5中所示的步骤。
所述存储单元820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)8201和/或高速缓存存储单元8202,还可以进一步包括只读存储单元(ROM)8203。
所述存储单元820还可以包括具有一组(至少一个)程序模块8205的程序/实用工具8204,这样的程序模块8205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备800也可以与一个或多个外部设备800’(例如键盘、指向设备、蓝牙设备等)通信,使得用户能与该电子设备800交互的设备通信,和/或该电子设备800能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口850进行。并且,电子设备800还可以通过网络适配器860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器860可以通过总线830与电子设备800的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备800使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,如图9所示,根据本申请实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、或者网络设备等)执行根据本申请实施方式的上述方法。
所述软件产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
所述计算机可读存储介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读存储介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。可读存储介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本申请操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该计算机可读介质实现如下功能:获取来自多种技术栈的任务请求;根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;根据所述任务请求中任务的标识获取执行参数;根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。
本领域技术人员可以理解上述各模块可以按照实施例的描述分布于装置中,也可以进行相应变化唯一不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
通过以上的实施例的描述,本领域的技术人员易于理解,这里描述的示例实施例可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本申请实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以 使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本申请实施例的方法。
以上具体地示出和描述了本申请的示例性实施例。应可理解的是,本申请不限于这里描述的详细结构、设置方式或实现方法;相反,本申请意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (12)

  1. 一种多种技术栈的任务集成方法,其特征在于,包括:
    获取来自多种技术栈的任务请求;
    根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;
    根据所述任务请求中任务的标识获取执行参数;
    根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。
  2. 如权利要求1所述的方法,其特征在于,获取来自多种技术栈的任务请求,包括:
    通过消息队列逐一获取来自多种技术栈的任务请求。
  3. 如权利要求1所述的方法,其特征在于,根据所述任务请求中任务的类别由分布式文件系统中获取任务配置,包括:
    判断所述任务请求中的任务是否存在于任务清单中;
    在所述任务存于在所述任务清单中时,根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;
    在所述任务不存在所述任务清单中时,创建所述任务。
  4. 如权利要求1所述的方法,其特征在于,根据所述任务请求中任务的标识获取执行参数,还包括:
    根据用户操作在UI界面中以键值对的形式动态存储任务对应的执行参数。
  5. 如权利要求1所述的方法,其特征在于,根据所述任务配置和所述执行参数对所述任务进行集成,包括:
    由所述任务请求中获取节点标签;
    根据所述节点标签确定目标代理服务器;
    将所述任务配置和所述执行参数发送至所述目标代理服务器以对所述任务进行集成。
  6. 如权利要求1所述的方法,其特征在于,生成任务集成结果,包括:
    自动对所述任务进行编译和测试,生成测试结果;
    将所述测试结果推送到用户端。
  7. 如权利要求3所述的方法,其特征在于,创建所述任务,包括:
    获取所述任务对应的技术栈的技术类型;
    根据所述技术类型提取模板以创建所述任务。
  8. 如权利要求7所述的方法,其特征在于,根据所述技术类型提取模板以创建所述任务,包括:
    根据所述技术类型提取模板;
    根据所述模板生成创建消息;
    后台服务器以消费消息的形式获取所述创建消息;
    根据所述创建消息创建所述任务。
  9. 如权利要求8所述的方法,其特征在于,根据所述创建消息创建所述任务,包括:
    根据所述创建消息中的模板由分布式文件系统中获取配置数据;
    按照所述配置数据中的目录等级创建所述任务对应的任务配置;
    在创建完毕后,更新所述任务清单。
  10. 一种多种技术栈的任务集成方法装置,其特征在于,包括:
    请求模块,用于获取来自多种技术栈的任务请求;
    配置模块,用于根据所述任务请求中任务的类别由分布式文件系统中获取任务配置;
    参数模块,用于根据所述任务请求中任务的标识获取执行参数;
    集成模块,用于根据所述任务配置和所述执行参数对所述任务进行集成,生成任务集成结果。
  11. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-9中任一所述的方法。
  12. 一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-9中任一所述的方法。
PCT/CN2023/077881 2022-06-29 2023-02-23 多种技术栈的任务集成方法及装置 WO2024001240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210756797.2A CN115291928A (zh) 2022-06-29 2022-06-29 多种技术栈的任务自动集成方法、装置及电子设备
CN202210756797.2 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001240A1 true WO2024001240A1 (zh) 2024-01-04

Family

ID=83821505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077881 WO2024001240A1 (zh) 2022-06-29 2023-02-23 多种技术栈的任务集成方法及装置

Country Status (2)

Country Link
CN (1) CN115291928A (zh)
WO (1) WO2024001240A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291928A (zh) * 2022-06-29 2022-11-04 上海淇玥信息技术有限公司 多种技术栈的任务自动集成方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160275123A1 (en) * 2015-03-18 2016-09-22 Hitachi, Ltd. Pipeline execution of multiple map-reduce jobs
CN110069329A (zh) * 2019-04-15 2019-07-30 北京达佳互联信息技术有限公司 一种任务处理方法、装置、服务器及存储介质
CN110781007A (zh) * 2019-10-31 2020-02-11 广州市网星信息技术有限公司 任务处理方法、装置、服务器、客户端、系统和存储介质
CN113760302A (zh) * 2021-09-09 2021-12-07 四川虹美智能科技有限公司 基于Jenkins的UI包部署方法及系统
CN115291928A (zh) * 2022-06-29 2022-11-04 上海淇玥信息技术有限公司 多种技术栈的任务自动集成方法、装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160275123A1 (en) * 2015-03-18 2016-09-22 Hitachi, Ltd. Pipeline execution of multiple map-reduce jobs
CN110069329A (zh) * 2019-04-15 2019-07-30 北京达佳互联信息技术有限公司 一种任务处理方法、装置、服务器及存储介质
CN110781007A (zh) * 2019-10-31 2020-02-11 广州市网星信息技术有限公司 任务处理方法、装置、服务器、客户端、系统和存储介质
CN113760302A (zh) * 2021-09-09 2021-12-07 四川虹美智能科技有限公司 基于Jenkins的UI包部署方法及系统
CN115291928A (zh) * 2022-06-29 2022-11-04 上海淇玥信息技术有限公司 多种技术栈的任务自动集成方法、装置及电子设备

Also Published As

Publication number Publication date
CN115291928A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US9363195B2 (en) Configuring cloud resources
CN111339186B (zh) 工作流引擎数据同步方法、装置、介质及电子设备
US20100049959A1 (en) Method and system for configuration of componentized software applications
US11934287B2 (en) Method, electronic device and computer program product for processing data
CN110858172A (zh) 一种自动化测试代码生成方法和装置
US20200326990A1 (en) Dynamic Infrastructure Management and Processing
WO2024001240A1 (zh) 多种技术栈的任务集成方法及装置
US20230259358A1 (en) Documentation enforcement during compilation
CN113377342B (zh) 一种项目构建方法、装置、电子设备及存储介质
US11184251B2 (en) Data center cartography bootstrapping from process table data
CN114237853A (zh) 应用于异构系统的任务执行方法、装置、设备、介质和程序产品
CN113672671B (zh) 一种实现数据加工的方法和装置
CN112035270A (zh) 接口适配方法、系统、装置、计算机可读介质及电子设备
CN109582528A (zh) 状态监测方法、装置、电子设备及计算机可读存储介质
WO2021012554A1 (zh) 区块链中数据字段的更新方法、装置、介质、电子设备
US10705824B2 (en) Intention-based command optimization
CN113708955B (zh) 设备配置方法、装置及系统
CN116051031A (zh) 项目调度系统、介质及电子设备
CN112559001B (zh) 更新应用的方法和装置
CN113590483B (zh) 一种用例运行方法和装置
CN114006812B (zh) 网络设备的配置方法及装置
CN113342357B (zh) 一种软件系统的部署方法和装置
US11157874B2 (en) Hierarchy definition and analysis for requirement documentation
WO2024000917A1 (zh) 一种无侵入可插拔的前端构建转移提速方法及装置
CN113641679B (zh) 一种数据转移方法、数据转移系统、计算机设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829433

Country of ref document: EP

Kind code of ref document: A1