WO2024001216A1 - 基于物联网的燃气热水器评价方法、设备及存储介质 - Google Patents

基于物联网的燃气热水器评价方法、设备及存储介质 Download PDF

Info

Publication number
WO2024001216A1
WO2024001216A1 PCT/CN2023/076419 CN2023076419W WO2024001216A1 WO 2024001216 A1 WO2024001216 A1 WO 2024001216A1 CN 2023076419 W CN2023076419 W CN 2023076419W WO 2024001216 A1 WO2024001216 A1 WO 2024001216A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
evaluation
water heater
operating data
gas water
Prior art date
Application number
PCT/CN2023/076419
Other languages
English (en)
French (fr)
Inventor
邓邱伟
金贺
张旭
翟建光
Original Assignee
青岛海尔科技有限公司
青岛海尔智能家电科技有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔科技有限公司, 青岛海尔智能家电科技有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔科技有限公司
Publication of WO2024001216A1 publication Critical patent/WO2024001216A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2035Arrangement or mounting of control or safety devices for water heaters using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/443Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using a central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • F24H15/457Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible using telephone networks or Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/486Control of fluid heaters characterised by the type of controllers using timers

Definitions

  • the present disclosure relates to the field of intelligent control technology, and more specifically, to a gas water heater evaluation method, equipment and storage medium based on the Internet of Things.
  • a gas water heater refers to a gas appliance that uses gas as fuel and transfers heat to cold water flowing through a heat exchanger through combustion heating to achieve the purpose of preparing hot water.
  • the evaluation function that comes with the device is generally used to obtain post-use data through the evaluation function, and then the post-use data are evaluated online, or the post-use data are evaluated offline.
  • the existing gas water heater evaluation method relies on the hardware conditions of the device itself, has low scalability, makes it difficult to upgrade the device function, and has a single evaluation function, which cannot provide users with real-time evaluation.
  • the purpose of this disclosure is to provide a gas water heater evaluation method, equipment and storage medium based on the Internet of Things, which can solve the problem that existing gas water heaters cannot provide users with real-time evaluation.
  • the present disclosure discloses a gas water heater evaluation method based on the Internet of Things, including:
  • each set of operating data includes at least one of outlet water temperature, gas consumption, water outlet rate, or operating time;
  • an attribute value set is obtained.
  • the attribute value set includes attribute values for each type of data, wherein multiple data of the same type correspond to one attribute value;
  • the evaluation data of the gas water heater is obtained;
  • the evaluation data is sent to the user terminal through the Internet of Things.
  • the present disclosure also provides a gas water heater evaluation device based on the Internet of Things, including:
  • An acquisition module is used to acquire multiple sets of operating data of the gas water heater through the Internet of Things.
  • Each set of the operating data includes at least one of outlet water temperature, gas consumption, water outlet rate or operating time;
  • a processing module configured to obtain a set of attribute values based on multiple data of the same type in the multiple sets of operating data.
  • the set of attribute values includes attribute values of each type of data, wherein multiple data of the same type correspond to one attribute value.
  • An evaluation module is used to obtain evaluation data of the gas water heater based on the attribute values of each type of data and the evaluation weights corresponding to each type of data;
  • a sending module configured to send the evaluation data to the user terminal through the Internet of Things.
  • the present disclosure also provides an electronic device, including: a processor, and a memory communicatively connected to the processor;
  • the memory stores computer execution instructions
  • the processor executes the computer execution instructions stored in the memory to implement the gas water heater evaluation method based on the Internet of Things.
  • the present disclosure also provides a computer-readable storage medium in which computer-executable instructions are stored. When executed by a processor, the computer-executable instructions are used to implement the evaluation of gas water heaters based on the Internet of Things. method.
  • Figure 1 is a schematic diagram of an application scenario for gas water heater evaluation based on the Internet of Things provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart 1 of the gas water heater evaluation method based on the Internet of Things provided by an embodiment of the present disclosure
  • Figure 3 is a schematic flow chart 2 of the gas water heater evaluation method based on the Internet of Things provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart three of the gas water heater evaluation method based on the Internet of Things provided by an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of a scenario for gas water heater evaluation based on the Internet of Things provided by this disclosure
  • Figure 6 is a schematic structural diagram of a gas water heater evaluation device based on the Internet of Things provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of the hardware structure of an electronic device according to an embodiment of the present disclosure.
  • FIG 1 is a schematic diagram of the application scenario of the gas water heater evaluation method based on the Internet of Things provided by this application.
  • the Internet of things IoT for short
  • the Internet of things is a network technology that is an extension and expansion based on Internet technology. Based on the Internet of Things, it extends the topology and controls the corresponding home appliances to form a network of things. Internet-based smart home system.
  • the server 103 obtains the operating data of the gas water heater 101 in real time through the Internet of Things, and calculates the evaluation data of the operating data.
  • the finally obtained evaluation data is sent in real time to the client 102 of the user who has pre-connected to the Internet of Things through message push, thereby realizing the data analysis of the gas water heater. Real-time analysis and evaluation.
  • Figure 2 is a schematic flow chart of the gas water heater evaluation method based on the Internet of Things provided by this application.
  • the execution subject of this embodiment may be, for example, the server shown in Figure 1 .
  • the method includes:
  • Each set of operating data includes at least one of outlet water temperature, gas consumption, water outlet rate or operating time;
  • the gas water heater or the sensor used to monitor the operating status of the gas water heater will monitor and generate the operating data of the gas water heater in real time. These operating data are obtained through the Internet of Things and used in the subsequent calculation process of the server. Through the data processing process of the server , can reduce the storage and computing resource burden of the gas water heater itself, and can also link a variety of smart home products to provide more credible monitoring results.
  • multiple sets of operating data can be obtained for the complete operating process of the gas water heater from turning on the flame to turning off the flame.
  • a single set of operating data can be acquired periodically to obtain multiple sets of operating data.
  • This embodiment does not place a special limit on the period, for example, it can be 10 seconds, or 1 minute, etc.
  • Each set of operating data may include, for example, at least one of outlet water temperature, gas consumption, water outlet rate, or operating duration, where the outlet water temperature and water outlet rate are real-time data collected, and the gas consumption and operating duration are the values from the start of operation.
  • the cumulative amount of collection time that is, the gas consumption and operating time at the collection time since the start of operation.
  • the attribute value set includes attribute values of each type of data, where multiple data of the same type correspond to one attribute value;
  • multiple sets of operating data are needed to determine the operation of the gas water heater.
  • an attribute value set is obtained based on multiple data of the same type in the multiple sets of operating data.
  • the attribute value set includes attribute values for each type of data.
  • an attribute value set is obtained.
  • the attribute value set includes an attribute value corresponding to multiple outlet water temperatures, such as the standard deviation of the outlet water temperature
  • the set of attribute values includes one attribute value corresponding to multiple water yield rates, such as the standard deviation of the water yield rate.
  • the set of attribute values includes one attribute value corresponding to multiple amounts of gas consumption, such as gas consumption rate.
  • the set of attribute values includes multiple operations. An attribute value corresponding to the duration, such as running rate.
  • the attribute value of each type of data has a certain weight in the evaluation. After collecting and sorting the actual gas water heater usage data, the evaluation weight corresponding to each type of data is obtained. According to the attribute value of each type of data and the The corresponding evaluation weights of the data are processed by weighted sum or weighted average to obtain the evaluation data of the gas water heater.
  • the evaluation data is sent to the user terminal in real time, and the user can obtain the evaluation results of this gas water heater use in real time from the user terminal.
  • the method provided in this embodiment obtains multiple sets of operating data of the gas water heater through the Internet of Things.
  • Each set of the operating data includes at least one of outlet water temperature, gas consumption, water outlet rate or operating time; according to the multiple sets of operation data
  • Multiple data of the same type in the data can obtain an attribute value set.
  • the attribute value set includes the attribute value of each type of data, where multiple data of the same type corresponds to one attribute value; according to the distribution attribute value of each type of data and the distribution of each type of data,
  • the corresponding evaluation weights of each type of data are obtained to obtain the evaluation data of the gas water heater; not only the real-time evaluation function of the gas water heater is realized, but also the gas water heater is evaluated.
  • the gas water heater itself has lower hardware configuration requirements, does not affect the upgrade of gas water heaters, and has a wide range of applications.
  • Figure 3 is a schematic flow chart 2 of the gas water heater evaluation method based on the Internet of Things provided by this application. As shown in Figure 3, the method includes:
  • Each set of operating data includes at least one of outlet water temperature, gas consumption, water outlet rate or operating time;
  • S301 is similar to the implementation of S201 mentioned above, and will not be described again in this embodiment.
  • ⁇ t 2 is the standard deviation of the outlet water temperature
  • t 1 , t 2 ...t n are multiple outlet water temperatures periodically obtained
  • n is the total number of outlet water temperatures obtained
  • M is the average of all outlet water temperatures.
  • the standard deviation of the outlet water temperature represents the stability of the outlet water temperature. The smaller the value of the standard deviation of the outlet water temperature, the more stable the outlet water temperature is and the smaller the fluctuation of the outlet water temperature.
  • the time for the server to obtain each set of operating data is not the same as the time for the gas water heater to generate each set of operating data.
  • the order in which the gas water heater sends each set of operating data is also different from the order in which the server receives each set of operating data. They may not be the same, and since the gas consumption is a cumulative value, finding the maximum gas consumption is the actual gas consumption during the operation of the gas water heater.
  • the gas consumption rate formula is:
  • f(x) is the gas consumption rate
  • x is the maximum gas consumption
  • is the set gas consumption
  • the set gas consumption can be the maximum gas consumption set based on experience or the user's historical usage. The greater the gas digestibility, the more gas is used.
  • the water output rate is the ratio of the current water flow rate and the set water flow rate;
  • ⁇ ⁇ 2 is the standard deviation of the water yield
  • ⁇ 1 , ⁇ 2 ... ⁇ m is each water yield periodically obtained
  • m is the total number of water yields obtained
  • M is the average of all water yields
  • water yield
  • the standard deviation of the water outlet rate represents the stability of the water outlet. The smaller the value of the standard deviation of the water outlet rate, the more stable the outlet water flow and the smaller the fluctuation of the outlet water flow.
  • S305 Determine the maximum running time based on the multiple running durations in the multiple sets of running data, and obtain the running rate based on the ratio of the maximum running duration and the set running duration;
  • finding the maximum running time is the actual running time during the operation of the gas water heater.
  • f( ⁇ ) is the operation rate
  • is the maximum operation time
  • is the set operation time
  • the set running time can be the maximum running time set based on experience or the user's historical usage. The greater the running rate, the greater the running usage.
  • S is the evaluation value
  • the evaluation data not only includes the final evaluation value, but also includes the attribute values of each type of data. From this, users can not only see the overall evaluation of the gas water heater, but also the evaluation of each type, so that they can use the gas water heater reasonably.
  • S309 is similar to the implementation of S204 above, and will not be described again in this embodiment.
  • the method provided in this embodiment obtains multiple sets of operating data of the gas water heater through the Internet of Things, and obtains the standard deviation of the outlet water temperature based on the same type of multiple outlet water temperatures, gas consumption, water outlet rate, and operating time data in the multiple sets of operating data.
  • gas consumption rate, standard deviation of water outlet rate and operation rate according to the standard deviation of outlet water temperature, gas consumption rate, standard deviation of water outlet rate and operation rate, a set of attribute values is obtained; according to the attribute value of each type of data and the corresponding value of each type of data Evaluate the weight and perform a weighted sum to obtain the evaluation value; among which, the evaluation value is negatively related to the evaluation of the gas water heater; evaluation data is obtained based on the evaluation value and the attribute value of each type of data; the user terminal can easily and quickly obtain the evaluation of the gas water heater Data and evaluation data results are accurate and reliable, and can be used as an effective reference for subsequent performance analysis and maintenance of gas water heaters.
  • Figure 4 is a schematic flow chart 3 of the gas water heater evaluation method based on the Internet of Things provided by this application. This embodiment details the process of obtaining multiple sets of operating data, as shown in Figure 4.
  • the method includes:
  • not all the acquired operating data must be involved in the calculation of the evaluation data. It is only meaningful to evaluate the operating data after the gas water heater flame is turned on. Therefore, after receiving a single set of operating data, first judge whether the gas water heater flame is turned on. If it is not turned on, continue to receive the single set of operating data and evaluate the received single set of operating data. The data is not processed in any way.
  • the single set of operating data may include data on whether to turn on the flame, or whether to turn on the flame may be determined based on each set of operating data itself, such as whether the gas consumption is increasing, whether the running time is increasing, etc.
  • the single set of operating data obtained is saved to the data queue used to calculate the evaluation data. Since the single set of operating data cannot obtain the final evaluation data, it is only used as a parameter for calculating the evaluation data. value. Therefore, by caching a single set of running data, and then exporting all the cached single set of running data for calculation when calculation is needed, storage and computing resources can be greatly saved.
  • the multiple sets of operating data are obtained from the cached data queue according to the received single set of operating data used to instruct the gas water heater to shut down.
  • the shutdown of the gas water heater is used as a trigger condition for the calculation of evaluation data.
  • the calculation operation of the evaluation data is triggered.
  • the evaluation data is obtained from the data queue. Multiple sets of cached running data are used for evaluation calculations.
  • time the preset time, and the preset time is greater than or equal to the network delay time
  • the operating data needs to go through a network transmission process from generation to caching to the data queue.
  • the transmitted operating data may have a certain network delay due to network speed and other factors, so the gas water heater sends each set of operating data.
  • the order of the data may not be the same as the order in which the server receives each set of run data. Therefore, in order to avoid missing data, that is, a single set of operating data for instructing the gas water heater to turn on the flame is received after a single set of operating data for the gas water heater to turn off the flame, the preset duration is set based on the network delay duration. Let the duration be greater than or equal to the network delay duration.
  • the preset time When the preset time is reached and no operating data is received indicating that the flame is turned on, it means that a single set of operating data has been received. There is no situation where a single set of operating data has not been received due to network delay. At this time, the cached data queue is Obtain multiple sets of operating data.
  • a single set of operating data for instructing the gas water heater to turn on the flame is received before the timing reaches the preset time, it means that due to network delay, a delayed single set of operating data has been received, so the time is re-timed until after the After the preset time, no single set of operating data indicating the gas water heater to turn on the flame has been received, indicating that all single sets of operating data have been received due to network delay. At this time, multiple sets of operating data are obtained from the cached data queue. .
  • the running data in the data queue can be deleted to make way for the storage of running data in subsequent time periods to avoid data redundancy. Remain.
  • the method provided in this embodiment determines whether the gas water heater turns on the flame based on the single set of operating data after receiving the single set of operating data; if so, saves the single set of operating data to the data queue in the cache; after obtaining the first able After the operating data that is enough to instruct the gas water heater to turn off the flame, the preset time period is performed. After the preset time period, if a single set of operating data that is used to instruct the gas water heater to turn on the flame is not received, it is obtained from the cached data queue. Multiple sets of operating data.
  • timing does not reach the preset time, a single set of operating data used to instruct the gas water heater to turn on the flame is received, and the single set of operating data is saved to the data queue in the cache; repeat the steps of starting the timing until After a preset period of time, if a single set of operating data is not received to instruct the gas water heater to turn on the flame, multiple sets of operating data are obtained from the cached data queue to avoid missing data or incomplete data due to network delays, resulting in incomplete evaluation. Exact question.
  • FIG 5 is a schematic diagram of the gas water heater evaluation scenario based on the Internet of Things provided by this application.
  • the user uses a smart gas water heater.
  • the smart gas water heater uploads a single set of operating data to the Internet of Things (IoT).
  • the Internet of Things converts it into standard data and sends the data to the server.
  • the server stores the single set of operating data in the message queue.
  • the real-time computing engine in the server obtains multiple sets of operating data from the message queue, performs evaluation calculations, obtains evaluation data, and sends the evaluation data to the APP of the user terminal through the message push service.
  • Embodiments of the present disclosure can divide the electronic device or the main control device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above integrated units can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present disclosure is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • Figure 6 is a schematic structural diagram of the gas water heater evaluation equipment based on the Internet of Things provided by this application. As shown in Figure 6, the device 60 includes:
  • the acquisition module 601 is used to acquire multiple sets of operating data of the gas water heater through the Internet of Things.
  • Each set of the operating data includes at least one of outlet water temperature, gas consumption, water outlet rate, or operating time;
  • the acquisition module 601 is specifically configured to: after receiving a single set of operating data, determine whether the gas water heater turns on the flame according to the single set of operating data;
  • the multiple sets of operating data are obtained from the data queue in the cache.
  • obtaining the multiple sets of operating data from the data queue in the cache based on the received single set of operating data used to indicate the shutdown of the gas water heater including:
  • time the preset time, and the preset time is greater than or equal to the network delay time
  • the multiple sets of operating data are obtained from the cached data queue.
  • the method further includes:
  • the processing module 602 is configured to obtain a set of attribute values based on multiple data of the same type in the multiple sets of operating data.
  • the set of attribute values includes attribute values of each type of data, where multiple data of the same type corresponds to one attribute. value;
  • the processing module 602 is specifically configured to: based on multiple sets of the same type of operating data, Data, get a set of attribute values, including:
  • the standard deviation of the outlet water temperature is obtained
  • the standard deviation of the water output rate is obtained, and the water output rate is the ratio of the current water flow rate and the set water flow rate;
  • the attribute value set is obtained according to the standard deviation of the outlet water temperature, the gas consumption rate, the standard deviation of the water outlet rate and the operation rate.
  • the evaluation module 603 is used to obtain the evaluation data of the gas water heater based on the attribute values of each type of data and the corresponding evaluation weights of each type of data;
  • the evaluation module 603 is specifically configured to perform weighted summation based on the attribute values of each type of data and the evaluation weights corresponding to each type of data to obtain an evaluation value; wherein the evaluation value is the same as the evaluation weight of the gas water heater.
  • the evaluation is negatively correlated; the evaluation data is obtained according to the evaluation value and the attribute value of each type of data.
  • the method further includes:
  • the sending module 604 is used to send the evaluation data to the user terminal through the Internet of Things.
  • the gas water heater evaluation device based on the Internet of Things provided in this embodiment can execute the gas water heater evaluation method based on the Internet of Things in the above embodiment. Its implementation principles and technical effects are similar and will not be described again in this embodiment.
  • each module can be implemented as a processor, and the processor can execute computer execution instructions stored in the memory, so that the processor executes the above gas water heater evaluation based on the Internet of Things method.
  • Figure 7 is a schematic structural diagram of an electronic device provided by this application.
  • the electronic device 70 includes: at least one processor 701 and a memory 702 .
  • the electronic device 70 also includes communication components 703 .
  • the processor 701, the memory 702 and the communication component 703 are connected through the bus 704.
  • At least one processor 701 executes computer execution instructions stored in the memory 702, so that at least one processor 701 executes the above gas water heater evaluation method based on the Internet of Things executed on the electronic device side.
  • the processor may be a central processing unit (English: Central Processing Unit, referred to as: CPU), or other general-purpose processor, digital signal processor (English: Digital Signal Processor, referred to as: DSP ), Application Specific Integrated Circuit (English: Application Specific Integrated Circuit, abbreviation: ASIC), etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc. The steps of the method disclosed in conjunction with the present disclosure can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory and may also include non-volatile storage NVM, such as at least one disk memory.
  • the bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc.
  • the bus in the drawings of this application is not limited to only one bus or one type of bus.
  • the electronic device or the main control device includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or by computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to go beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • This application also provides a computer-readable storage medium in which computer-executable instructions are stored.
  • the processor executes the computer-executed instructions, the above gas water heater evaluation method based on the Internet of Things is implemented.
  • the above-mentioned computer-readable storage medium can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable memory.
  • SRAM static random access memory
  • EEPROM Programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • Readable storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • An exemplary readable storage medium is coupled to the processor such that the processor can read information from the readable storage medium and write information to the readable storage medium.
  • the readable storage medium may also be an integral part of the processor.
  • the processor and readable storage medium may be located in Application Specific Integrated Circuits (ASICs for short).
  • ASICs Application Specific Integrated Circuits
  • the processor and the readable storage medium may also exist as discrete components in the electronic device or the host control device.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the steps including the above-mentioned method embodiments are executed; and the aforementioned storage media include: ROM, RAM, magnetic disks, optical disks and other media that can store program codes.

Abstract

一种基于物联网的燃气热水器评价方法,包括:通过物联网获取燃气热水器的多组运行数据;根据多组运行数据中同类型的多个数据,得到属性值集合,属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;根据每类数据的属性值和每类数据各自对应的评价权重,得到燃气热水器的评价数据;将评价数据发送至用户终端。一种实现上述方法的设备和存储介质。

Description

基于物联网的燃气热水器评价方法、设备及存储介质
本公开要求于2022年6月28日提交中国专利局、申请号为202210742624.5、申请名称为“基于物联网的燃气热水器评价方法、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及智能控制技术领域,更为具体地,涉及一种基于物联网的燃气热水器评价方法、设备及存储介质。
背景技术
燃气热水器是指以燃气作为燃料,通过燃烧加热方式,将热量传递到流经热交换器的冷水中,以达到制备热水目的的一种燃气用具。通过评价燃气热水器,可以更好的了解燃气热水器的性能及能效,便于后期维护和改进。
在评价燃气热水器时一般是利用设备自带的评价功能,通过评价功能获取使用后的数据,然后对使用后的数据进行在线评价,或者对批量使用后的数据进行离线评价。
现有燃气热水器的评价方法依赖于设备本身的硬件条件,扩展性低,使得设备功能升级困难,且评价功能单一,不能给用户提供实时评价。
发明内容
本公开的目的在于提供一种基于物联网的燃气热水器评价方法、设备及存储介质,能够解决现有燃气热水器不能给用户提供实时评价的问题。
第一方面,本公开公开了一种基于物联网的燃气热水器评价方法,包括:
通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;
根据所述多组运行数据中同类型的多个数据,得到属性值集合,所述属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;
根据每类数据的属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据;
通过所述物联网将所述评价数据发送至用户终端。
第二方面,本公开还提供一种基于物联网的燃气热水器评价设备,包括:
获取模块,用于通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;
处理模块,用于根据所述多组运行数据中同类型的多个数据,得到属性值集合,所述属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;
评价模块,用于根据每类数据的属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据;
发送模块,用于通过所述物联网将所述评价数据发送至用户终端。
第三方面,本公开还提供一种电子设备,包括:处理器,以及与所述处理器通信连接的存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,以实现基于物联网的燃气热水器评价方法。
第四方面,本公开还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现基于物联网的燃气热水器评价方法。
附图说明
图1为本公开实施例提供的基于物联网的燃气热水器评价的应用场景示意图;
图2为本公开实施例提供的基于物联网的燃气热水器评价方法的流程示意图一;
图3为本公开实施例提供的基于物联网的燃气热水器评价方法的流程示意图二;
图4为本公开实施例提供的基于物联网的燃气热水器评价方法的流程示意图三;
图5为本公开提供的基于物联网的燃气热水器评价的场景示意图;
图6为本公开实施例提供的基于物联网的燃气热水器评价设备的结构示意图;
图7为本公开实施例提供的电子设备的硬件结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开的,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的是本公开一部分,而不是全部的。基于本公开中的,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他,都属于本公开保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1为本申请提供的基于物联网的燃气热水器评价方法应用场景示意图。如图1所示,物联网(Internet of things,简称IoT)是在互联网技术基础上的延伸和扩展的一种网络技术,以物联网为基础,延伸拓扑结构,控制相应的家电,组成以物联网为基础的智能家居系统。燃气热水器在运行过程中会产生众多燃热原始数据,例如:设定水流量、当前水流量、出水温度、开关状态、燃气消耗重量、火焰有无等运行数据。服务器103通过物联网实时获取燃气热水器101的运行数据,并计算运行数据的评价数据,最后得到的评价数据通过消息推送方式实时发送给预先接入物联网用户的客户端102,实现燃气热水器数据的实时分析评价。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术 问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请提供的基于物联网的燃气热水器评价方法流程示意图一。本实施例的执行主体例如可以为图1所示的服务器。如图2所示,所述方法包括:
S201、通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;
具体来说,燃气热水器或者用于监测燃气热水器运行状态的传感器会实时监测并产生燃气热水器的运行数据,这些运行数据都通过物联网被获取并用于后续服务器的计算过程,通过服务器的数据处理过程,可以降低燃气热水器自身的存储和计算资源负担,还可以联动多种智能家居产品给出更可信的监测结果。
在本实施例中,可以针对燃气热水器从开启火焰到关闭火焰的完整的运行过程,获取多组运行数据。例如,可以周期性的获取单组运行数据,从而得到多组运行数据,本实施例对该周期不做特别限制,例如可以为10秒,或者1分钟等。
每组运行数据例如可以包括出水温度、燃气消耗量、出水率或运行时长中的至少一类,其中,出水温度和出水率为采集得到的实时数据,燃气消耗量和运行时长为从运行开始当采集时间的累积量,即从运行开始当采集时间的燃气消耗量和运行时长。
S202、根据所述多组运行数据中同类型的多个数据,得到属性值集合,所述属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;
具体来说,为了精准的评价燃气热水器的运行,所以需要多组运行数据来确定燃气热水器的运行。在获取到多组运行数据后,根据多组运行数据中同类型的多个数据,得到属性值集合,该属性值集合包括每类数据的属性值。
其中,针对多组运行数据中同类型的出水温度、燃气消耗量、出水率和运行时长,得到属性值集合,该属性值集合包括多个出水温度对应的一个属性值,例如出水温度标准方差,该属性值集合包括多个出水率对应的一个属性值,例如出水率标准方差,该属性值集合包括多个燃气消耗量对应的一个属性值,例如燃气消耗率,该属性值集合包括多个运行时长对应的一个属性值,例如运行率。
S203、根据每类数据的属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据;
具体来说,每类数据的属性值在评价时都占有一定的权重,根据实际燃气热水器的使用数据进行收集整理后,得到每类数据对应的评价权重,根据每类数据的属性值和每类数据各自对应的评价权重,进行加权求和或加权平均处理,得到燃气热水器的评价数据。
S204、将所述评价数据发送至用户终端;
具体来说,为了实现实时评价功能,在得到评价数据后,将评价数据实时发送给用户终端,用户就能从用户终端实时获取到本次燃气热水器使用的评价结果。
本实施例提供的方法,通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;根据所述多组运行数据中同类型的多个数据,得到属性值集合,所述属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;根据每类数据的分布属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据;不仅实现燃气热水器的实时评价功能,还对燃 气热水器自身的硬件配置要求较低,也不影响燃气热水器的升级换代,适用范围较广。
下面结合一个具体的实施例,对本申请的基于物联网的燃气热水器评价方法进行详细说明。
图3为本申请提供的基于物联网的燃气热水器评价方法流程示意图二。如图3所示,所述方法包括:
S301、通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;
S301的实现方式与上述S201的实现方式类似,本实施例此处不再赘述。
S302、根据多组运行数据中的多个出水温度,得到出水温度标准方差;
具体来说,出水温度标准方差公式为:
式中,δt 2为出水温度标准方差,t1、t2…tn为周期性获取的多个出水温度,n为获取出水温度的总数量,M为所有出水温度的平均数。
出水温度标准方差代表了出水温度的稳定性,该出水温度标准方差的值越小,说明出水温度较稳定,出水温度波动较小。
S303、根据多组运行数据中的多个燃气消耗量,确定最大燃气消耗量,并根据所述最大燃气消耗量和设定燃气消耗量的比值,得到燃气消耗率;
具体来说,由于网络传输延迟,服务器获取每组运行数据的时间与燃气热水器产生每组运行数据的时间并不相同,燃气热水器发送每组运行数据的顺序与服务器接收每组运行数据的顺序也可能并不相同,且由于燃气消耗量为累计值,因此,找到最大的燃气消耗量,即为实际的一次燃气热水器运行过程中的燃气消耗量。
其中,燃气消耗率公式为:
式中,f(x)为燃气消耗率,x为最大燃气消耗量,α为设定燃气消耗量。
该设定燃气消耗量可以是根据经验或用户历史使用情况设定的最大燃气消耗量,该燃气消化率越大,说明燃气使用越多。
S304、根据多组运行数据中的多个出水率,得到出水率标准方差,所述出水率为当前水流量和设定水流量的比值;
具体来说,出水率标准方差公式为:

式中,δω 2为出水率标准方差,ω1、ω2…ωm为周期性获取的每个出水率,m为获取出水率的总数量,M为所有出水率的平均数,ω为出水率,为当前水流量,为设定水流量。
出水率标准方差代表了出水的稳定性,该出水率标准方差的值越小,说明出水流量较稳定,出水流量波动较小。
S305、根据多组运行数据中的多个运行时长,确定最大运行时长,并根据所述最大运行时长和设定运行时长的比值,得到运行率;
具体来说,基于网络传输延迟,同理,由于运行时长为累计值,因此,找到最大的运行时长,即为实际的一次燃气热水器运行过程中的运行时长。
其中,运行率的计算公式为:
式中,f(τ)为运行率,τ为最大运行时长,β为设定运行时长。
该设定运行时长可以是根据经验或用户历史使用情况设定的最大运行时长,该运行率越大,说明运行使用越多。
S306、根据所述出水温度标准方差、所述燃气消耗率、所述出水率标准方差以及所述运行率,得到所述属性值集合;
S307、根据每类数据的属性值和每类数据各自对应的评价权重,进行加权求和,得到评价值;其中,所述评价值与所述燃气热水器的评价负相关;具体来说,评价值的计算公式为:
式中,S为评价值,a、b、c、d为评价权重,a+b+c+d=1,例如,a=0.2,b=0.3,c=0.2,d=0.3。
当计算得到的评价值越小,表明燃气热水器的评价越好,反之,当计算得到的评价值越大,表明燃气热水器的评价越差。
S308、根据所述评价值和每类数据的属性值,得到所述评价数据;
评价数据不仅包括最终的评价值,还包括每类数据的属性值,由此用户不仅可以看到燃气热水器整体的评价情况,还可以看到每类的评价情况,从而能够合理使用燃气热水器。
S309、将所述评价数据发送至用户终端;
S309的实现方式与上述S204的实现方式类似,本实施例此处不再赘述。
本实施例提供的方法,通过物联网获取燃气热水器的多组运行数据,根据多组运行数据中同类型的多个出水温度、燃气消耗量、出水率和运行时长的数据,得到出水温度标准方差、燃气消耗率、出水率标准方差和运行率,根据出水温度标准方差、燃气消耗率、出水率标准方差以及运行率,得到属性值集合;根据每类数据的属性值和每类数据各自对应的评价权重,进行加权求和,得到评价值;其中,评价值与燃气热水器的评价负相关;根据评价值和每类数据的属性值,得到评价数据;用户终端能够方便快速的获取燃气热水器的评价数据,评价数据结果准确可靠,并且能作为后续燃气热水器性能分析及维护的有效参考依据。
图4为本申请提供的基于物联网的燃气热水器评价方法流程示意图三。本实施例详细给出获取多组运行数据的过程,如图4所示,所述方法包括:
S401、在接收到单组运行数据后,根据单组运行数据判断所述燃气热水器是否开启火焰,若是,则执行S402,若否,继续接收单组运行数据;
具体来说,并非所有获取的运行数据都要参与评价数据的计算中,仅针对燃气热水器火焰开启后的运行数据进行评价才有意义。因此,在收到单组运行数据后,首先对燃气热水器火焰是否开启进行判断,若未开启,则持续接收单组运行数据,并对接收的单组运行 数据不做任何处理。
可选地,该单组运行数据中可以包括是否开启火焰的数据,或者,根据每组运行数据自身来判断是否开启火焰,例如燃气消耗量是否递增,运行时长是否递增等等。
S402、将所述单组运行数据保存至缓存中的数据队列中;
具体来说,当燃气热水器的火焰开启后,将获取的单组运行数据保存至用于计算评价数据的数据队列中,由于单组运行数据无法获取最终的评价数据,只是作为计算评价数据的参数值。因此,通过将单组运行数据进行缓存,等到需要计算时再将所有缓存的单组运行数据导出用于计算,就能极大节省存储资源和计算资源。
在将单组运行数据保存至缓存的数据队列中后,根据接收到的用于指示燃气热水器关闭的单组运行数据,从所述缓存中的数据队列中获取所述多组运行数据。
具体来说,将燃气热水器的关闭作为评价数据计算的触发条件,当接收到的单组运行数据中包含燃气热水器关闭状态的数据时,触发评价数据的计算操作,此时从数据队列中获取已经缓存的多组运行数据,用于评价计算。
S403、在获取到首个能够指示所述燃气热水器关闭火焰的单组运行数据后,进行预设时长的计时,所述预设时长大于或等于网络延迟时长;
S404、在经历预设时长后,若未收到用于指示所述燃气热水器开启火焰的单组运行数据,则从所述缓存的数据队列中获取所述多组运行数据;
具体来说,运行数据从产生到缓存至数据队列中需要经过网络传输过程,在这期间可能会由于网速及其他因素导致传输的运行数据带有一定的网络延迟,从而燃气热水器发送每组运行数据的顺序与服务器接收每组运行数据的顺序可能并不相同。因此,为了避免遗漏数据,即个别用于指示燃气热水器开启火焰的单组运行数据是在燃气热水器关闭火焰的单组运行数据后收到的情况,基于网络延迟时长来设置预设时长,该预设时长大于或等于网络延迟时长。
当达到预设时长且没有接收到指示火焰开启的运行数据时,说明单组运行数据都已经接收到,不存在因为网络延迟而未接收到单组运行数据的情况,此时从缓存的数据队列中获取多组运行数据。
S405、若在计时未到达所述预设时长,接收到用于指示所述燃气热水器开启火焰的单组运行数据,将所述单组运行数据保存至缓存中的数据队列;
S406、重复执行开始计时的步骤,直至在经历预设时长后,未收到用于指示所述燃气热水器开启火焰的单组运行数据,从所述缓存的数据队列中获取所述多组运行数据;
具体来说,若在计时未到达预设时长,接收到用于指示燃气热水器开启火焰的单组运行数据,则说明由于网络延迟,接收到了延迟的单组运行数据,因此重新计时,直至在经历预设时长后,未收到用于指示所述燃气热水器开启火焰的单组运行数据,说明因为网络延迟的单组运行数据都已接收到,此时从缓存的数据队列中获取多组运行数据。
可选地,为了避免因存储量较大导致运行速度缓慢,在得到评价数据并发送给用户终端后,可以删除数据队列中的运行数据,给后面时间段的运行数据存储让位,避免数据冗余。
本实施例提供的方法,通过在接收到单组运行数据后,根据单组运行数据判断燃气热水器是否开启火焰;若是,则将单组运行数据保存至缓存中的数据队列;在获取到首个能 够指示燃气热水器关闭火焰的运行数据后,进行预设时长的计时,在经历预设时长后,若未收到用于指示燃气热水器开启火焰的单组运行数据,则从缓存的数据队列中获取多组运行数据,若在计时未到达预设时长,接收到用于指示燃气热水器开启火焰的单组运行数据,将单组运行数据保存至缓存中的数据队列;重复执行开始计时的步骤,直至在经历预设时长后,未收到用于指示燃气热水器开启火焰的单组运行数据,从缓存的数据队列中获取多组运行数据,避免因为网络延迟漏收数据或数据不完整,导致评价不准确的问题。
图5为本申请提供的基于物联网的燃气热水器评价的场景示意图。如图5所示,用户使用智能燃气热水器,智能燃气热水器就单组运行数据上传给物联网IOT,物联网转化为标准数据,并将数据发送给服务器,服务器将单组运行数据存储至消息队列,服务器中的实时计算引擎从该消息队列中获取多组运行数据,并进行评价计算,得到评价数据,并将评价数据通过消息推送服务发送至用户终端的APP。
本公开实施例可以根据上述方法示例对电子设备或主控设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本公开实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图6为本申请提供的基于物联网的燃气热水器评价设备的结构示意图。如图6所示,该设备60包括:
获取模块601,用于通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;
具体来说,所述获取模块601具体用于:在接收到单组运行数据后,根据单组运行数据判断所述燃气热水器是否开启火焰;
若是,则将所述单组运行数据保存至缓存中的数据队列;
根据接收到的用于指示燃气热水器关闭的单组运行数据,从所述缓存中的数据队列中获取所述多组运行数据。
进一步的,所述根据接收到的用于指示燃气热水器关闭的单组运行数据,从所述缓存中的数据队列中获取所述多组运行数据,包括:
在获取到首个能够指示所述燃气热水器关闭火焰的运行数据后,进行预设时长的计时,所述预设时长大于或等于网络延迟时长;
在经历预设时长后,若未收到用于指示所述燃气热水器开启火焰的单组运行数据,则从所述缓存的数据队列中获取所述多组运行数据。
进一步的,若在计时未到达所述预设时长,接收到用于指示所述燃气热水器开启火焰的单组运行数据,则所述方法还包括:
将所述单组运行数据保存至缓存中的数据队列;
重复执行开始计时的步骤,直至在经历预设时长后,未收到用于指示所述燃气热水器开启火焰的单组运行数据,从所述缓存的数据队列中获取所述多组运行数据。
处理模块602,用于根据所述多组运行数据中同类型的多个数据,得到属性值集合,所述属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;
具体来说,所述处理模块602具体用于:所述根据所述多组运行数据中同类型的多个 数据,得到属性值集合,包括:
根据多组运行数据中的多个出水温度,得到出水温度标准方差;
根据多组运行数据中的多个燃气消耗量,确定最大燃气消耗量,并根据所述最大燃气消耗量和设定燃气消耗量的比值,得到燃气消耗率;
根据多组运行数据中的多个出水率,得到出水率标准方差,所述出水率为当前水流量和设定水流量的比值;
根据多组运行数据中的多个运行时长,确定最大运行时长,并根据所述最大运行时长和设定运行时长的比值,得到运行率;
根据所述出水温度标准方差、所述燃气消耗率、所述出水率标准方差以及所述运行率,得到所述属性值集合。
评价模块603,用于根据每类数据的属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据;
具体来说,所述评价模块603具体用于:根据每类数据的属性值和每类数据各自对应的评价权重,进行加权求和,得到评价值;其中,所述评价值与所述燃气热水器的评价负相关;根据所述评价值和每类数据的属性值,得到所述评价数据。
进一步的,所述根据每类数据的属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据之后,所述方法还包括:
将所述多组运行数据从所述数据队列中删除。
发送模块604,用于通过所述物联网将所述评价数据发送至用户终端。
本实施例提供的基于物联网的燃气热水器评价设备,可执行上述实施例的基于物联网的燃气热水器评价方法,其实现原理和技术效果类似,本实施例此处不再赘述。
在前述的基于物联网的燃气热水器评价设备的具体实现中,各模块可以被实现为处理器,处理器可以执行存储器中存储的计算机执行指令,使得处理器执行上述的基于物联网的燃气热水器评价方法。
图7为本申请提供的电子设备的结构示意图。如图7所示,该电子设备70包括:至少一个处理器701和存储器702。该电子设备70还包括通信部件703。其中,处理器701、存储器702以及通信部件703通过总线704连接。
在具体实现过程中,至少一个处理器701执行所述存储器702存储的计算机执行指令,使得至少一个处理器701执行如上电子设备侧所执行的基于物联网的燃气热水器评价方法。
处理器701的具体实现过程可参见上述方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
在上述实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本申请附图中的总线并不限定仅有一根总线或一种类型的总线。
上述针对电子设备以及主控设备所实现的功能,对本公开实施例提供的方案进行了介绍。可以理解的是,电子设备或主控设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如上基于物联网的燃气热水器评价方法。
上述的计算机可读存储介质,上述可读存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。可读存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的可读存储介质耦合至处理器,从而使处理器能够从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。当然,处理器和可读存储介质也可以作为分立组件存在于电子设备或主控设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (16)

  1. 一种基于物联网的燃气热水器评价方法,包括:
    通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;
    根据所述多组运行数据中同类型的多个数据,得到属性值集合,所述属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;
    根据每类数据的属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据;
    通过所述物联网将所述评价数据发送至用户终端。
  2. 根据权利要求1所述的方法,其中,所述根据所述多组运行数据中同类型的多个数据,得到属性值集合,包括:
    根据多组运行数据中的多个出水温度,得到出水温度标准方差;
    根据多组运行数据中的多个燃气消耗量,确定最大燃气消耗量,并根据所述最大燃气消耗量和设定燃气消耗量的比值,得到燃气消耗率;
    根据多组运行数据中的多个出水率,得到出水率标准方差,所述出水率为当前水流量和设定水流量的比值;
    根据多组运行数据中的多个运行时长,确定最大运行时长,并根据所述最大运行时长和设定运行时长的比值,得到运行率;
    根据所述出水温度标准方差、所述燃气消耗率、所述出水率标准方差以及所述运行率,得到所述属性值集合。
  3. 根据权利要求2所述的方法,其中,所述根据每类数据的属性值和每类数据各自对应的评价权重,得到评价数据,包括:
    根据每类数据的属性值和每类数据各自对应的评价权重,进行加权求和,得到评价值;其中,所述评价值与所述燃气热水器的评价负相关;
    根据所述评价值和每类数据的属性值,得到所述评价数据。
  4. 根据权利要求1所述的方法,其中,所述通过物联网获取燃气热水器的多组运行数据,包括:
    在接收到单组运行数据后,根据单组运行数据判断所述燃气热水器是否开启火焰;
    若是,则将所述单组运行数据保存至缓存中的数据队列;
    根据接收到的用于指示燃气热水器关闭的单组运行数据,从所述缓存中的数据队列中获取所述多组运行数据。
  5. 根据权利要求4所述的方法,其中,所述根据接收到的用于指示燃气热水器关闭的单组运行数据,从所述缓存中的数据队列中获取所述多组运行数据,包括:
    在获取到首个能够指示所述燃气热水器关闭火焰的单组运行数据后,进行预设时长的计时,所述预设时长大于或等于网络延迟时长;
    在经历预设时长后,若未收到用于指示所述燃气热水器开启火焰的单组运行数据,则从所述缓存的数据队列中获取所述多组运行数据。
  6. 根据权利要求5所述的方法,其中,若在计时未到达所述预设时长,接收到用于指示所述燃气热水器开启火焰的单组运行数据,则所述方法还包括:
    将所述单组运行数据保存至缓存中的数据队列;
    重复执行开始计时的步骤,直至在经历预设时长后,未收到用于指示所述燃气热水器开启火焰的单组运行数据,从所述缓存的数据队列中获取所述多组运行数据。
  7. 根据权利要求4所述的方法,其中,所述根据每类数据的属性值和每类数据各 自对应的评价权重,得到所述燃气热水器的评价数据之后,所述方法还包括:
    将所述多组运行数据从所述数据队列中删除。
  8. 一种基于物联网的燃气热水器评价设备,包括:
    获取模块,设置为通过物联网获取燃气热水器的多组运行数据,每组所述运行数据包括出水温度、燃气消耗量、出水率或运行时长中的至少一类;
    处理模块,设置为根据所述多组运行数据中同类型的多个数据,得到属性值集合,所述属性值集合包括每类数据的属性值,其中,同类型的多个数据对应一个属性值;
    评价模块,设置为根据每类数据的属性值和每类数据各自对应的评价权重,得到所述燃气热水器的评价数据;
    发送模块,设置为通过所述物联网将所述评价数据发送至用户终端。
  9. 根据权利要求8所述的基于物联网的燃气热水器评价设备,其中,所述处理模块具体设置为:根据多组运行数据中的多个出水温度,得到出水温度标准方差;
    根据多组运行数据中的多个燃气消耗量,确定最大燃气消耗量,并根据所述最大燃气消耗量和设定燃气消耗量的比值,得到燃气消耗率;
    根据多组运行数据中的多个出水率,得到出水率标准方差,所述出水率为当前水流量和设定水流量的比值;
    根据多组运行数据中的多个运行时长,确定最大运行时长,并根据所述最大运行时长和设定运行时长的比值,得到运行率;
    根据所述出水温度标准方差、所述燃气消耗率、所述出水率标准方差以及所述运行率,得到所述属性值集合。
  10. 根据权利要求9所述的基于物联网的燃气热水器评价设备,其中,所述评价模块具体设置为:
    根据每类数据的属性值和每类数据各自对应的评价权重,进行加权求和,得到评价值;其中,所述评价值与所述燃气热水器的评价负相关;
    根据所述评价值和每类数据的属性值,得到所述评价数据。
  11. 根据权利要求8所述的基于物联网的燃气热水器评价设备,其中,所述通过物联网获取燃气热水器的多组运行数据,所述获取模块具体设置为:
    在接收到单组运行数据后,根据单组运行数据判断所述燃气热水器是否开启火焰;
    若是,则将所述单组运行数据保存至缓存中的数据队列;
    根据接收到的设置为指示燃气热水器关闭的单组运行数据,从所述缓存中的数据队列中获取所述多组运行数据。
  12. 根据权利要求11所述的基于物联网的燃气热水器评价设备,其中,所述获取模块具体设置为:
    在获取到首个能够指示所述燃气热水器关闭火焰的单组运行数据后,进行预设时长的计时,所述预设时长大于或等于网络延迟时长;
    在经历预设时长后,若未收到设置为指示所述燃气热水器开启火焰的单组运行数据,则从所述缓存的数据队列中获取所述多组运行数据。
  13. 根据权利要求12所述的基于物联网的燃气热水器评价设备,其中,所述获取模块还设置为:
    将所述单组运行数据保存至缓存中的数据队列;
    重复执行开始计时的步骤,直至在经历预设时长后,未收到设置为指示所述燃气热水器开启火焰的单组运行数据,从所述缓存的数据队列中获取所述多组运行数据。
  14. 根据权利要求11所述的基于物联网的燃气热水器评价设备,其中,所述评价模块还设置为:
    将所述多组运行数据从所述数据队列中删除。
  15. 一种电子设备,其中,包括:处理器,以及与所述处理器通信连接的存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1至7中任一项所述的方法。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时设置为实现如权利要求1至7任一项所述的方法。
PCT/CN2023/076419 2022-06-28 2023-02-16 基于物联网的燃气热水器评价方法、设备及存储介质 WO2024001216A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210742624.5A CN115289683A (zh) 2022-06-28 2022-06-28 基于物联网的燃气热水器评价方法、设备及存储介质
CN202210742624.5 2022-06-28

Publications (1)

Publication Number Publication Date
WO2024001216A1 true WO2024001216A1 (zh) 2024-01-04

Family

ID=83820452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076419 WO2024001216A1 (zh) 2022-06-28 2023-02-16 基于物联网的燃气热水器评价方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115289683A (zh)
WO (1) WO2024001216A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115289683A (zh) * 2022-06-28 2022-11-04 青岛海尔科技有限公司 基于物联网的燃气热水器评价方法、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235947A (ja) * 2008-03-26 2009-10-15 Osaka Gas Co Ltd コージェネレーションシステムの利用状態の評価方法及びシステム
CN109726909A (zh) * 2018-12-26 2019-05-07 新奥数能科技有限公司 一种能效评价方法、装置、可读介质及电子设备
CN110411034A (zh) * 2018-09-27 2019-11-05 深圳市磐石科技工程技术有限公司 基于物联网的智能热水出水方法及其系统
CN111861101A (zh) * 2020-06-04 2020-10-30 中国市政工程华北设计研究总院有限公司 一种基于主成分分析的燃气采暖热水炉运行性能评价方法
CN114172943A (zh) * 2022-02-11 2022-03-11 杭州斯诺康技术有限公司 一种物联网智能无线路由器
CN115289683A (zh) * 2022-06-28 2022-11-04 青岛海尔科技有限公司 基于物联网的燃气热水器评价方法、设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201429177Y (zh) * 2009-05-14 2010-03-24 杭州光泽科技有限公司 空调节能远程智能实时监测控制与优化评价系统
CN203036861U (zh) * 2012-10-12 2013-07-03 青岛经济技术开发区海尔热水器有限公司 一种网络热水器及网络热水器系统
CN106969478A (zh) * 2016-01-13 2017-07-21 北京泰利新能源科技发展有限公司 一种新型地源热泵能耗监视系统
RU2767665C1 (ru) * 2021-03-29 2022-03-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Экспериментальная установка для оценки тепловой эффективности газоиспользующего оборудования
CN113324335A (zh) * 2021-06-09 2021-08-31 上海林内有限公司 燃气热水器用气智能监测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235947A (ja) * 2008-03-26 2009-10-15 Osaka Gas Co Ltd コージェネレーションシステムの利用状態の評価方法及びシステム
CN110411034A (zh) * 2018-09-27 2019-11-05 深圳市磐石科技工程技术有限公司 基于物联网的智能热水出水方法及其系统
CN109726909A (zh) * 2018-12-26 2019-05-07 新奥数能科技有限公司 一种能效评价方法、装置、可读介质及电子设备
CN111861101A (zh) * 2020-06-04 2020-10-30 中国市政工程华北设计研究总院有限公司 一种基于主成分分析的燃气采暖热水炉运行性能评价方法
CN114172943A (zh) * 2022-02-11 2022-03-11 杭州斯诺康技术有限公司 一种物联网智能无线路由器
CN115289683A (zh) * 2022-06-28 2022-11-04 青岛海尔科技有限公司 基于物联网的燃气热水器评价方法、设备及存储介质

Also Published As

Publication number Publication date
CN115289683A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024001216A1 (zh) 基于物联网的燃气热水器评价方法、设备及存储介质
Liu et al. AppATP: An energy conserving adaptive mobile-cloud transmission protocol
WO2020228289A1 (zh) 日志获取方法、装置、终端及存储介质
WO2021004043A1 (zh) 热水器及其控制方法和计算机可读存储介质
WO2012078316A1 (en) Endpoint web monitoring system and method for measuring popularity of a service or application on a web server
CN109769029B (zh) 基于用电信息采集系统的通信连接方法及终端设备
US11611546B2 (en) Method for controlling connection with client or server
CN111912120A (zh) 燃气热水器中零冷水的控制方法、系统、设备和介质
WO2017193816A1 (zh) 一种数据传输方法、装置及系统
WO2024060657A1 (zh) 用于全屋空气环境监控的方法、装置、设备及存储介质
CN104135525B (zh) 云平台elb组件的资源扩展方法和装置
JP6192810B2 (ja) クライアント装置、データ通信システム、データ通信方法及びプログラム
CN104917768A (zh) 基于多协议并行采集技术的能耗数据采集器及其采集方法
WO2022267771A1 (zh) 用于空调器预热的方法、装置、空调器及空调系统
CN109195192B (zh) 无线传感网的能量均衡调度方法、装置、系统及存储介质
CN111104145A (zh) 一种Expander的带外更新方法和系统
CN109951426A (zh) 异常域名确定方法、异常流量处理方法、装置及系统
CN111193760B (zh) 一种信息发送方法、装置及存储介质
CN115289732B (zh) 一种热泵系统控制方法、装置、电子设备及存储介质
CN117312100B (zh) 一种功耗调整方法、系统、装置、设备及计算机存储介质
JP2014081090A (ja) センサ情報傾向蓄積・スケーリング効率化向上システム
CN115208890B (zh) 一种信息获取方法、装置、电子设备及存储介质
US20220407737A1 (en) System and method using one or more smart devices to determine individual consumption through network monitoring
CN116465099A (zh) 热水器的控制方法、系统、设备和存储介质
CN116481187A (zh) 一种预热用水的方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829409

Country of ref document: EP

Kind code of ref document: A1