WO2024000723A1 - 一种rops骨架设计方法及工程机械驾驶室 - Google Patents

一种rops骨架设计方法及工程机械驾驶室 Download PDF

Info

Publication number
WO2024000723A1
WO2024000723A1 PCT/CN2022/108856 CN2022108856W WO2024000723A1 WO 2024000723 A1 WO2024000723 A1 WO 2024000723A1 CN 2022108856 W CN2022108856 W CN 2022108856W WO 2024000723 A1 WO2024000723 A1 WO 2024000723A1
Authority
WO
WIPO (PCT)
Prior art keywords
max
skeleton
column
rops
beams
Prior art date
Application number
PCT/CN2022/108856
Other languages
English (en)
French (fr)
Inventor
杨兰仲
房有年
路易霖
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Priority to DE112022000124.0T priority Critical patent/DE112022000124T5/de
Publication of WO2024000723A1 publication Critical patent/WO2024000723A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D33/00Superstructures for load-carrying vehicles
    • B62D33/06Drivers' cabs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention belongs to the technical field of engineering machinery cabs and relates to a ROPS skeleton design method and engineering machinery cabs.
  • the ROPS skeleton design of engineering machinery cabs widely adopts the method of three-dimensional digital simulation and real analysis and sample vehicle verification.
  • designers cannot reasonably plan the ROPS skeleton structure form and profile selection in the early stage of the project. They repeatedly modify the three-dimensional digital model and the simulation cycle is long. The problem.
  • the method of three-dimensional digital simulation analysis is widely used in the industry.
  • the simulation analysts complete the simulation analysis on computer-aided analysis software such as HYPERMESH and ANSYS according to the ROPS loading requirements, and then the designers Modify the three-dimensional digital model based on the simulation results (ROPS carrying capacity is insufficient or excessive).
  • This kind of communication process usually has 2 to 3 cycles, each cycle lasts for 1 to 2 weeks, and it is impossible to achieve efficient design work.
  • the existing technology has the following shortcomings: (1) The cab ROPS skeleton development cycle is long; (2) It needs to be implemented after the designer completes the three-dimensional digital model, and cannot support the cab skeleton structural form and profile selection in the early design stage; ( 3) Simulation analysis resources are occupied for a long time and the design cost is high.
  • the present invention provides a ROPS skeleton design method and an engineering machinery cab.
  • the first aspect is to provide a design method for ROPS skeleton, including:
  • the lateral load force F max and lateral load energy U max target of the ROPS skeleton are calculated according to the calculations specified in GB/T 17922, GB/T 19930 or GB/T 19930.2. value;
  • the simply supported beam structural mechanics model includes the ordinary cab frame structure, the middle beam reinforced frame structure, and the cable-stayed beam reinforced skeleton structure;
  • the quick calculation formula of the maximum load energy U max is:
  • F max 2 ⁇ K ⁇ ⁇ ⁇ ( ⁇ (W A_column + Wtop_A beam )/L A ,(W B_column + Wtop_B beam )/L B ,n ⁇ ( W D_column +W top_D beam )/L D ⁇
  • n is the structural strengthening coefficient, which is determined according to the selected cab frame structure type
  • F max and U max adopt the calculated target values of lateral load force F max and lateral load energy U max ;
  • K represents the strengthening coefficient of the complete plastic deformation zone, which is obtained through regression analysis based on the maximum lateral loading force F max in the experimental data;
  • the maximum deformation displacement S max adopts the median value of the normal statistical data in the experimental data
  • ⁇ tensile represents the tensile stress limit value of the material, which is a fixed value according to the selected material
  • L A , L B , L D , L d are known values according to the selected cab skeleton structure type, which respectively represent the height dimension of A column, B column height dimension, D column height dimension, cable-stayed beam reinforced skeleton structure D column is the highest The height dimension from the point to the highest point of the cable-stayed beam.
  • n is the structural strengthening coefficient, which is determined according to the selected cab frame structure type, including:
  • n 1;
  • n (W column + W top_beam + W middle_beam )/(W D_column + W top_D beam );
  • n LD /L d .
  • the maximum lateral loading force F max quick calculation formula and the method for creating the maximum lateral loading force F max quick calculation formula include:
  • S1 creates a mechanical model: Based on the lateral thrust load force F and lateral thrust load energy U required in the ROPS test as the design goals, create the relationship between the lateral thrust load force F and the lateral thrust load energy U and the profile bending geometric parameters, and obtain a simplified Support beam structural mechanics model, based on the analysis of the simply supported beam structural mechanics model, the bending moment balance formula is obtained: the sum of the resisting bending moments of each plastic hinge is equal to the bending moment generated by the loading force;
  • S2 selected design parameters Analyze the bending moment balance formula to obtain the profile bending geometric parameter section modulus W.
  • the section modulus W is the key factor that determines the maximum load-bearing capacity M max of the ROPS skeleton profile.
  • the section modulus W is related to the maximum load-bearing capacity M max.
  • F max 2 ⁇ K ⁇ ⁇ ⁇ (W A_column + Wtop_A beam )/L A ,(W B_column + Wtop_B beam )/L B ,n ⁇ (W D_ Column + W top_D beam )/L D ⁇
  • n is the structural strengthening coefficient
  • n 1;
  • n (W column + W top_beam + W middle_beam )/(W D_column + W top_D beam );
  • n LD /L d ;
  • S1 includes: the simply supported beam structural mechanics model includes three types: ordinary cab frame structure, middle beam reinforced frame structure, and cable-stayed beam reinforced frame structure;
  • the bending moment balance formula of the simply supported beam structural mechanical model of the ordinary cab skeleton structure is:
  • the bending moment balance formula of the mechanical model of the simply supported beam structure of the middle beam reinforced skeleton structure is:
  • the bending moment balance formula of the simply supported beam structural mechanical model of the cable-stayed beam reinforced skeleton structure is:
  • M columns , M top beams , and M middle beams are the bending moment resistance of the plastic hinges of the columns, the bending moment resistance of the plastic hinges of the top beam and the middle beam, F is the lateral loading force of the simply supported beam structure, and L is the height dimension of the column;
  • S2 includes: the formula for the maximum lateral loading force of the ROPS skeleton
  • F max 2 ⁇ K ⁇ pull ⁇ (W column + W top_beam )/L d .
  • the median normal statistic of the maximum deformation displacement S max in S3 is 0.28m.
  • the first type an axially symmetrical ordinary cab ROPS skeleton, including columns, beams, and longitudinal beams;
  • the upright columns include A-pillars, B-pillars, and D-pillars; the beams include top beams and bottom beams; the longitudinal beams include top longitudinal beams and bottom longitudinal beams;
  • the two A-pillars are connected through the first top beam and the first bottom beam to form a closed rectangular A ring;
  • the two B-pillars are connected through the second top beam and the second bottom beam to form a closed rectangular B ring;
  • the two D-pillars are connected through the third top beam and the third bottom beam to form a closed rectangular D ring;
  • the four corners corresponding to ring A and ring B are connected through the first top longitudinal beam and the first bottom longitudinal beam, and the four corners corresponding to ring B and ring D are connected through the second top longitudinal beam and the second bottom longitudinal beam to form a closed space frame. structure;
  • the ROPS skeleton is designed using the design method of the ROPS skeleton.
  • the second type an axially symmetrical middle beam-reinforced ROPS skeleton, including columns, beams, longitudinal beams, and middle beams;
  • the upright columns include A-pillars, B-pillars, and D-pillars; the beams include top beams and bottom beams; the longitudinal beams include top longitudinal beams and bottom longitudinal beams;
  • the two A-pillars are connected through the first top beam and the first bottom beam to form a closed rectangular A ring;
  • the two B-pillars are connected through the second top beam and the second bottom beam to form a closed rectangular B ring;
  • the two D-pillars are connected by the third top beam and the third bottom beam to form a closed rectangular D ring; the two ends of the middle beam are respectively connected to the inside of the middle part of the two D-pillars, and the third top beam, middle beam and third bottom beam are connected to each other.
  • the beams are set parallel;
  • the four corners corresponding to ring A and ring B are connected through the first top longitudinal beam and the first bottom longitudinal beam, and the four corner positions corresponding to ring B and ring D are connected through the second top longitudinal beam and the second bottom longitudinal beam to form a closed space frame. structure;
  • the ROPS skeleton is designed using the design method of the ROPS skeleton.
  • the third type an axially symmetrical cable-stayed beam reinforced ROPS skeleton, including columns, beams, and longitudinal beams; and two cable-stayed beams;
  • the upright columns include A-pillars, B-pillars, and D-pillars; the beams include top beams and bottom beams; the longitudinal beams include top longitudinal beams and bottom longitudinal beams;
  • the two A-pillars are connected through the first top beam and the first bottom beam to form a closed rectangular A ring;
  • the two B-pillars are connected through the second top beam and the second bottom beam to form a closed rectangular B ring;
  • the two D-pillars are connected through the third top beam and the third bottom beam to form a closed rectangular D ring;
  • One end of the cable-stayed beam is connected to the inside of the middle part of the D-pillar, and the other end is connected to the third bottom beam;
  • the four corners corresponding to ring A and ring B are connected through the first top longitudinal beam and the first bottom longitudinal beam, and the four corners corresponding to ring B and ring D are connected through the second top longitudinal beam and the second bottom longitudinal beam to form a closed space frame. structure;
  • the ROPS skeleton is designed using the design method of the ROPS skeleton.
  • the present invention also provides a construction machinery cab, including the ROPS skeleton.
  • ROPS skeleton, its design method, and engineering machinery provided by the present invention have the following advantages:
  • this invention can realize the selection of profiles and the comparison of multiple plans by hand calculation, and control the design time of the ROPS skeleton within Within 4 hours, the design cycle is greatly shortened;
  • Figure 1 is a flow chart of the ROPS skeleton design method in the embodiment of the present invention.
  • Figure 2 shows the ROPS skeleton structure of the ordinary cab in the embodiment of the present invention
  • Figure 3 shows the middle beam reinforced ROPS skeleton structure in the embodiment of the present invention
  • Figure 4 shows the cable-stayed beam reinforced ROPS skeleton structure in the embodiment of the present invention
  • Figure 5 is a mechanical model of the ROPS skeleton of the ordinary cab in the embodiment of the present invention.
  • Figure 6 is a mechanical model of the middle beam-reinforced ROPS skeleton in the embodiment of the present invention.
  • Figure 7 is a mechanical model of the cable-stayed beam reinforced ROPS skeleton in the embodiment of the present invention.
  • ROPS - Rollover Protective Structure a series of structural parts that reduce the possibility of a driver wearing a seat belt being crushed when the machine rolls over.
  • Beam - A beam structural member arranged laterally;
  • Section modulus also known as section modulus, is the geometric parameter of the component section's ability to resist bending moment deformation
  • an axis-symmetric ordinary cab ROPS skeleton includes columns, beams, and longitudinal beams;
  • the upright columns include A-pillars 10, B-pillars 20, and D-pillars 30; the beams include top beams and bottom beams; the longitudinal beams include top longitudinal beams and bottom longitudinal beams;
  • the two A-pillars 10 are connected through the first top beam 11 and the first bottom beam 12 to form a closed rectangular A ring;
  • the two B-pillars 20 are connected through the second top beam 21 and the second bottom beam 22 to form a closed rectangular B ring;
  • the two D-pillars 30 are connected through the third top beam 31 and the third bottom beam 32 to form a closed rectangular D ring;
  • the four corners corresponding to the A ring and the B ring are connected through the first top longitudinal beam 41 and the first bottom longitudinal beam 42, and the four corner positions corresponding to the B ring and the D ring are connected through the second top longitudinal beam 51 and the second bottom longitudinal beam 52. Constitute a closed space frame structure.
  • an axially symmetrical middle beam-reinforced ROPS skeleton includes columns, beams, longitudinal beams, and a middle beam 60;
  • the upright columns include A-pillars 10, B-pillars 20, and D-pillars 30; the beams include top beams and bottom beams; the longitudinal beams include top longitudinal beams and bottom longitudinal beams;
  • the two A-pillars 10 are connected through the first top beam 11 and the first bottom beam 12 to form a closed rectangular A ring;
  • the two B-pillars 20 are connected through the second top beam 21 and the second bottom beam 22 to form a closed rectangular B ring;
  • the two D-pillars 30 are connected through the third top beam 31 and the third bottom beam 32 to form a closed rectangular D ring;
  • the two ends of the middle crossbeam 60 are respectively connected to the inner sides of the middle portions of the two D-pillars, and the third top crossbeam, middle crossbeam and third bottom crossbeam are arranged in parallel;
  • the four corners corresponding to the A ring and the B ring are connected through the first top longitudinal beam 41 and the first bottom longitudinal beam 42, and the four corner positions corresponding to the B ring and the D ring are connected through the second top longitudinal beam 51 and the second bottom longitudinal beam 52. Constitute a closed space frame structure.
  • an axially symmetrical cable-stayed beam strengthens the ROPS skeleton, including columns, beams, and longitudinal beams; it also includes two cable-stayed beams 70,
  • the upright columns include A-pillars 10, B-pillars 20, and D-pillars 30; the beams include top beams and bottom beams; the longitudinal beams include top longitudinal beams and bottom longitudinal beams;
  • the two A-pillars 10 are connected through the first top beam 11 and the first bottom beam 12 to form a closed rectangular A ring;
  • the two B-pillars 20 are connected through the second top beam 21 and the second bottom beam 22 to form a closed rectangular B ring;
  • the two D-pillars 30 are connected through the third top beam 31 and the third bottom beam 32 to form a closed rectangular D ring;
  • One end of the cable-stayed beam 70 is connected to the inside of the middle part of the D-pillar 30, and the other end is connected to the third bottom beam 32;
  • the four corners corresponding to the A ring and the B ring are connected through the first top longitudinal beam 41 and the first bottom longitudinal beam 42, and the four corner positions corresponding to the B ring and the D ring are connected through the second top longitudinal beam 51 and the second bottom longitudinal beam 52. Constitute a closed space frame structure.
  • the A ring, B ring, and D ring are all rectangular structures, and the entire ROPS skeleton is symmetrical about the central axis.
  • the longitudinal beams include top longitudinal beams and bottom longitudinal beams; in order to ensure the flatness of the bottom of the entire ROPS skeleton, the bottom longitudinal beams are basically set on the same plane as the bottom cross beams (for example, horizontally set), but the A-pillar, B-pillar, The lengths of the three D-pillars are not necessarily equal, so the roof longitudinal beam and the roof beam are not necessarily in the same plane.
  • the simply supported beam structural mechanics models shown in Figures 5, 6 and 7 are respectively the above-mentioned ordinary cab skeleton structure, the middle beam reinforced skeleton structure, and the cable-stayed beam reinforced skeleton structure simply supported beam structural mechanical model.
  • the sum of the profile section modulus of all columns and top beams in the above three ROPS skeletons meets the requirements of the design method described in Embodiment 2.
  • a design method for ROPS skeleton includes:
  • S1 creates a mechanical model: Based on the lateral thrust load force F and lateral thrust load energy U required in the ROPS test as the design goal, create the relationship between the lateral thrust load force F and the lateral thrust load energy U and the profile bending geometric parameters, and obtain a simplified Support beam structural mechanics model, based on the analysis of the simply supported beam structural mechanics model, the bending moment balance formula is obtained: the sum of the resisting bending moments of each plastic hinge is equal to the bending moment generated by the loading force;
  • the mechanical model of the simply supported beam structure includes three types: ordinary cab skeleton structure, mid-beam reinforced skeleton structure, and cable-stayed beam reinforced skeleton structure;
  • M columns , M top beams , and M middle beams are the bending moment resistance of the plastic hinges of the columns, the bending moment resistance of the plastic hinges of the top beam and the middle beam, F is the lateral loading force of the simply supported beam structure, and L is the height dimension of the column; L d is the height dimension from the highest point of column D of the cable-stayed beam reinforced skeleton structure to the highest point of the cable-stayed beam;
  • S2 selected design parameters Analyze the bending moment balance formula to obtain the profile bending geometric parameter section modulus W.
  • the section modulus W is the key factor that determines the maximum load-bearing capacity M max of the ROPS skeleton profile.
  • the section modulus W is related to the maximum load-bearing capacity M max.
  • S3ROPS test database obtain the experimental data of the skeleton profile entering the complete plastic deformation zone in the ROPS side push test, and extract the maximum lateral load force F max , maximum lateral load energy U max and maximum deformation displacement S max in the experimental data, of which the maximum The median value of the normal statistical data of deformation displacement S max is 0.28m, and a database is created;
  • S4 creates a relational expression, and performs regression analysis based on the maximum lateral loading force F max extracted from experimental data to obtain the K value in the relational expression created by S2, and obtains a quick calculation formula for the maximum lateral loading force F max of the ROPS skeleton, which is expressed as:
  • F max 2 ⁇ K ⁇ ⁇ ⁇ (W A_column + Wtop_A beam )/L A ,(W B_column + Wtop_B beam )/L B ,n ⁇ (W D_ Column + W top_D beam )/L D ⁇
  • n is the structural strengthening coefficient
  • n 1;
  • n (W column + W top_cross beam + W middle_cross beam )/(W D_column + W top_D cross beam );
  • n LD /L d ;
  • n is the structural strengthening coefficient, which is determined according to the selected cab frame structure type
  • F max and U max adopt the calculated target values of lateral load force F max and lateral load energy U max ;
  • K represents the strengthening coefficient of the complete plastic deformation zone, which is obtained through regression analysis based on the maximum lateral loading force F max in the experimental data;
  • the maximum deformation displacement S max adopts the median value of the normal statistical data in the experimental data
  • ⁇ tensile represents the tensile stress limit value of the material, which is a fixed value according to the selected material
  • L A , L B , L D , L d are known values according to the selected cab skeleton structure type, which respectively represent the height dimension of A column, B column height dimension, D column height dimension, cable-stayed beam reinforced skeleton structure D column is the highest The height dimension from the point to the highest point of the cable-stayed beam.
  • S5 plans the range of ROPS skeleton application models, rationally divides the series of cab ROPS skeleton load-bearing capacity ladders based on the principles of lightweight and generalization, and plans the range of ROPS skeleton applicable models;
  • S6 calculates the load-bearing requirements and determines the lateral load force F max and lateral load of the ROPS skeleton according to the formulas specified in GB/T 17922, GB/T 19930 or GB/T 19930.2 based on the maximum overall machine mass of the applicable model of the ROPS skeleton.
  • S7 selects the skeleton structure and selects the appropriate cab skeleton structure type from the simply supported beam structural mechanics model according to the characteristics of the applicable cab model;
  • S8 calculates the profile section parameters, the relationship created according to S4, the lateral load force F max and lateral load energy U max target value calculated by S6, and the skeleton structure selected by S7 to calculate the sum of the profile section modulus that satisfies the relationship. ⁇ (W column , W top_beam , W middle_beam );
  • the lateral load force F max and lateral load energy U max target values of the ROPS skeleton calculated based on the skeleton structure type of the simply supported beam structural mechanics model are calculated according to the maximum lateral load force F max quick calculation formula and the maximum load energy U max quick calculation Formula, calculate the sum of the section modulus of the two sets of profiles respectively, and select the larger value of the sum of the section modulus of the two sets of profiles as the final sum of the section modulus that satisfies the relationship ⁇ (W column , W top_ beam ) or ⁇ (W column , W top_beam , W middle_beam );
  • F max 2 ⁇ K ⁇ ⁇ ⁇ ( ⁇ (W A_column + Wtop_A beam )/L A ,(W B_column + Wtop_B beam )/L B ,n ⁇ ( W D_column +W top_D beam )/L D ⁇
  • n is the structural strengthening coefficient, according to the selected cab frame structure type:
  • n 1;
  • n (W column + W top_beam + W middle_beam )/(W D_column + W top_D beam );
  • n LD /L d ;
  • F max and U max adopt the calculated target values of lateral load force F max and lateral load energy U max ;
  • K represents the strengthening coefficient of the complete plastic deformation zone, which is obtained through regression analysis based on the maximum lateral loading force F max in the experimental data and is a fixed value;
  • ⁇ tensile represents the tensile stress limit value of the material, which is a fixed value according to the selected material
  • L A , L B , L D , L d are known values according to the selected cab frame structure type.
  • ROPS test data from simulation analysis and experimental verification are fed back to the S3 database, and a large amount of experimental data is used to correct the S4 relationship to achieve lightweight and accurate design of the ROPS skeleton.
  • the sum of the section modulus ⁇ (W column , W top_beam , W middle_beam ) of the ROPS skeleton can be calculated based on the lateral load force F max and the lateral load energy U max . It can also be calculated based on the sum of the section modulus of the ROPS skeleton. and ⁇ (W column , W top_beam , W middle_beam ) to calculate the maximum lateral load force F max and lateral load energy U max of the ROPS skeleton to achieve comparative analysis and verification of multiple solutions.
  • the database requires the ROPS skeleton profile to enter the complete plastic deformation zone and make full use of the limit value of the profile's load-bearing capacity.
  • the database creates S4 relational expressions and guides profile selection to achieve lightweight design of the ROPS skeleton and improve design quality.
  • An engineering machinery cab includes the ROPS skeleton described in Embodiment 1, which is designed through the optimization design method of beams in the ROPS skeleton described in Embodiment 2.
  • the construction machinery may be a hydraulic excavator, loader, road roller, grader, etc., and has the advantages of the ROPS skeleton provided by the embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本发明公开了一种ROPS骨架设计方法及工程机械驾驶室,ROPS骨架设计方法包括:依据土方机械标准计算得到ROPS骨架的侧向加载力F max及侧向载荷能量U max目标值;从简支梁结构力学模型中选择合适的驾驶室骨架结构类型;根据创建的最大侧向加载力F max速算公式、最大载荷能量U max速算公式,计算得到所有立柱和顶横梁的型材截面模数之和,据此选择合适的型材,采用选择的驾驶室骨架结构类型搭建封闭空间框架结构。

Description

一种ROPS骨架设计方法及工程机械驾驶室 技术领域
本发明属于工程机械驾驶室技术领域,涉及一种ROPS骨架设计方法及工程机械驾驶室。
背景技术
工程车辆工作环境恶劣,行驶路面复杂多变,滚翻事故经常发生。工程车辆的质量较大,翻车事故的致命伤害率极高,造成致命伤害的根本原因是在事故发生后驾驶室的极度变形。翻车事故是不可避免的,为了降低事故及发生后造成的生命财产损失,最为有效简便的方法是采取被动保护,即在车辆上加装可提供一定安全保护的滚翻保护结构(ROPS)。
目前,工程机械驾驶室ROPS骨架设计广泛采用三维数模仿真分析加样车验证的方式,存在设计人员无法在项目初期合理规划ROPS骨架结构形式和型材选型,反复修改三维数模、仿真周期长的问题。
目前行业内广泛三维数模仿真分析的方法,设计人员在完成驾驶室骨架三维数模的设计后,仿真分析人员根据ROPS加载要求在HYPERMESH、ANSYS等电脑辅助分析软件上完成仿真分析,而后设计人员根据仿真结果(ROPS承载能力不足或过余)修改三维数模。这样的沟通过程通常会有2~3个循环,每个循环在1~2周,无法实现高效率的设计工作。
现有技术存在以下缺陷:(1)驾驶室ROPS骨架开发周期长;(2)需要在设计人员完成三维数模后才能实施,无法支持设计初期的驾驶室骨架结构形式及型材选型工作;(3)长时间占用仿真分析资源,设计成本高。
发明内容
目的:为了克服现有技术中存在的不足,本发明提供一种ROPS骨架设计方法及工程机械驾驶室。
技术方案:为解决上述技术问题,本发明采用的技术方案为:
第一方面,提供一种ROPS骨架的设计方法,包括:
依据ROPS骨架的适用机型最大整机质量,根据GB/T 17922、GB/T 19930或GB/T19930.2中规定的计算得到ROPS骨架的侧向加载力F max及侧向载荷能量U max目标值;
根据驾驶室适用机型特点,从简支梁结构力学模型中选择合适的驾驶室骨架结构类型;其中所述简支梁结构力学模型包括普通驾驶室骨架结构、中横梁加强骨架结构、斜拉梁加强骨架结构;
基于简支梁结构力学模型骨架结构类型和计算得到的ROPS骨架的侧向加载力F max及侧向载荷能量U max目标值,根据最大侧向加载力F max速算公式、最大载荷能量U max速算公式,分别计算得到两组型材截面模数之和值,选取两组型材截面模数之和值中较大值作为最终的满足关系式的所有立柱和顶横梁的型材截面模数之和;
根据型材截面模数之和选取合适的型材,采用选择的驾驶室骨架结构类型搭建封闭空间框架结构。
在一些实施例中,所述最大载荷能量U max速算公式为:
U max=1.5·S max·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}=0.42·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}
所述最大侧向加载力F max速算公式为:
F max=2·K·σ ·∑{(∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}
其中n为结构加强系数,根据选择的驾驶室骨架结构类型确定;
F max、U max采用计算得到的侧向加载力F max及侧向载荷能量U max目标值;
K表示完全塑性变形区加强系数,通过根据实验数据中最大侧向加载力F max回归分析获得;
最大变形位移S max采用实验数据中正态统计数据中值;
σ 表示材料的拉伸应力极限值,根据选择的材料为固定值;
L A、L B、L D、L d根据选择的驾驶室骨架结构类型为已知值,分别表示A柱高度尺寸、B柱高度尺寸、D柱高度尺寸、斜拉梁加强骨架结构D柱最高点至斜拉梁最高点的高度尺寸。
在一些实施例中,其中n为结构加强系数,根据选择的驾驶室骨架结构类型确定,包括:
普通驾驶室骨架结构:n为1;
中横梁加强骨架结构:n=(W 立柱+W 顶_横梁+W 中_横梁)/(W D_立柱+W 顶_D横梁);
斜拉梁加强骨架结构:n=L D/L d
在一些实施例中,所述最大侧向加载力F max速算公式和最大侧向加载力F max速算公式的创建方法包括:
S1创建力学模型:依据ROPS试验中要求的侧推加载力F及侧推载荷能量U作为设计目标,创建侧推加载力F及侧推载荷能量U与型材抗弯几何参数的关系式,得到简支梁结构力学模型,根据所述简支梁结构力学模型分析得到弯矩平 衡公式:各塑性铰的抵抗弯矩之和等于加载力产生的弯矩;
S2选定设计参数:解析弯矩平衡公式获得型材抗弯几何参数截面模数W,截面模数W是决定ROPS骨架型材最大承载能力M max的关键因子,截面模数W与最大承载能力M max的关系式为:M max=K·σ ·W;
将M max=K·σ ·W代入S1得到的弯矩平衡公式可得到ROPS骨架最大侧向加载力公式;
S3、获取ROPS侧推试验中骨架型材进入完全塑性变形区的实验数据,提取实验数据中的最大侧向加载力F max、最大侧向载荷能量U max和最大变形位移S max;根据采用实验数据中最大变形位移S max正态统计数据中值;
S4、根据实验数据提取得到的所述最大侧向加载力F max回归分析获得S2创建的关系式中的K值,得ROPS骨架最大侧向加载力F max速算公式,表示为:
F max=2·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横 )/L D}
其中n为结构加强系数;
普通驾驶室骨架结构:n为1;
中横梁加强骨架结构:n=(W 立柱+W 顶_横梁+W 中_横梁)/(W D_立柱+W 顶_D横梁);
斜拉梁加强骨架结构:n=L D/L d
通过统计分析S3创建的数据库中侧向加载力F和侧向变形位移S的关系曲线得到塑性变形区内吸收的载荷能量占总载荷能量的2/3,塑性变形区内位移占总变形位移的1/2,最大变形位移S max正态统计数据中值为0.28m,由此得到最大载荷能量U max速算公式,表示为:
U max=0.75·F max·S max=1.5·S max·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横 )/L B,n·(W D_立柱+W 顶_D横梁)/L D}
=0.42·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横 )/L D}。
在一些实施例中,S1包括:所述简支梁结构力学模型包括普通驾驶室骨架结构、中横梁加强骨架结构、斜拉梁加强骨架结构三种;
普通驾驶室骨架结构简支梁结构力学模型的弯矩平衡公式为:
2·(M 立柱+M 顶_横梁)=F·L,
中横梁加强骨架结构简支梁结构力学模型的弯矩平衡公式为:
2·(M 立柱+M 顶_横梁+M 中_横梁)=F·L
斜拉梁加强骨架结构简支梁结构力学模型的弯矩平衡公式为:
2·(M 立柱+M 顶_横梁)=F·Ld
其中M 立柱、M 顶_横梁、M 中_横梁分别为立柱塑性铰抵抗弯矩、顶横梁、中横梁塑性铰抵抗弯矩,F为简支梁结构侧向加载力、L为立柱高度尺寸;
S2包括:ROPS骨架最大侧向加载力公式;
a)普通驾驶室骨架结构最大侧向加载力公式:
F max=2·K·σ ·(W 立柱+W 顶_横梁)/L
b)中横梁加强骨架结构最大侧向加载力公式:
F max=2·K·σ ·(W 立柱+W 顶_横梁+W 中_横梁)/L
c)斜拉梁加强骨架结构最大侧向加载力公式:
F max=2·K·σ ·(W 立柱+W 顶_横梁)/L d
在一些实施例中,S3中最大变形位移S max正态统计数据中值为0.28m。
第二方面,提供三种简支梁结构力学模型ROPS骨架类型:
第一种:一种中轴对称的普通驾驶室ROPS骨架,包括立柱、横梁、纵梁;
其中所述立柱包括A柱、B柱、D柱;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
两个A柱通过第一顶横梁和第一底横梁连接构成封闭矩形A环;
两个B柱通过第二顶横梁和第二底横梁连接构成封闭矩形B环;
两个D柱通过第三顶横梁和第三底横梁连接构成封闭矩形D环;
A环与B环对应的四角位置通过第一顶纵梁和第一底纵梁连接,B环与D环对应的四角位置通过第二顶纵梁和第二底纵梁连接,构成封闭空间框架结构;
所述ROPS骨架采用所述的ROPS骨架的设计方法设计而成。
第二种:一种中轴对称的中横梁加强ROPS骨架,包括立柱、横梁、纵梁、中横梁;
其中所述立柱包括A柱、B柱、D柱;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
两个A柱通过第一顶横梁和第一底横梁连接构成封闭矩形A环;
两个B柱通过第二顶横梁和第二底横梁连接构成封闭矩形B环;
两个D柱通过第三顶横梁和第三底横梁连接构成封闭矩形D环;所述中横梁的两端分别连接两个D柱中部内侧,所述第三顶横梁、中横梁和第三底横梁平行设置;
A环与B环对应的四角位置通过第一顶纵梁和第一底纵梁连接,B环与D环对应的四角位置通过第二顶纵梁和第二底纵梁连接,构成封闭空间框架结构;
所述ROPS骨架采用所述的ROPS骨架的设计方法设计而成。
第三种:一种中轴对称的斜拉梁加强ROPS骨架,包括立柱、横梁、纵梁; 还包括两个斜拉梁;
其中所述立柱包括A柱、B柱、D柱;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
两个A柱通过第一顶横梁和第一底横梁连接构成封闭矩形A环;
两个B柱通过第二顶横梁和第二底横梁连接构成封闭矩形B环;
两个D柱通过第三顶横梁和第三底横梁连接构成封闭矩形D环;
所述斜拉梁的一端连接D柱中部内侧,另一端连接在第三底横梁上;
A环与B环对应的四角位置通过第一顶纵梁和第一底纵梁连接,B环与D环对应的四角位置通过第二顶纵梁和第二底纵梁连接,构成封闭空间框架结构;
所述ROPS骨架采用所述的ROPS骨架的设计方法设计而成。
第三方面,本发明还提供一种工程机械驾驶室,包括所述的ROPS骨架。
有益效果:本发明提供的ROPS骨架及其设计方法、工程机械,具有以下优点:
(1)本发明依据创建的最大侧向加载力F max速算公式、最大载荷能量U max速算公式,可以实现通过手算的方式进行型材的选择及多方案的对比,将ROPS骨架设计时间控制在4小时以内,大幅度缩短设计周期;
(2)充分利用型材承载能力的极限值,并由此数据库实验数据创建关系式及指导型材选型,实现ROPS骨架的轻量化设计,提升设计质量。
附图说明
图1为本发明实施例中ROPS骨架设计方法流程图;
图2为本发明实施例中普通驾驶室ROPS骨架结构;
图3为本发明实施例中中横梁加强ROPS骨架结构;
图4为本发明实施例中斜拉梁加强ROPS骨架结构;
图5为本发明实施例中普通驾驶室ROPS骨架力学模型;
图6为本发明实施例中中横梁加强ROPS骨架力学模型;
图7为本发明实施例中斜拉梁加强ROPS骨架力学模型。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本公开的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没 有特殊含义,因此不能理解为对本公开保护范围的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为便于描述本发明和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本发明保护内容的限制。
ROPS——滚翻保护结构,当机器滚翻时,减少系安全带坐着的司机被挤伤可能性的一系列结构件。
ROPS骨架——为满足ROPS设计要求而构成的空间框架结构;
立柱——起竖直支撑作用的部件或构件;
横梁——横向设置的梁结构件;
截面模数——又称截面模量,是构件截面抵抗弯矩变形能力的几何参数;
塑性铰——ROPS骨架在受弯矩情况下,构件局部出现的某一点,其相对面屈服但未破坏,且构件可以绕其有限角度转动,此点可以称为塑性铰;
塑性变形区——侧向加载时,ROPS骨架出现多个塑性铰使得ROPS骨架不能继续维持静定结构,这种状态称为塑性变形区。
实施例1
如图2所示,一种中轴对称的普通驾驶室ROPS骨架,包括立柱、横梁、纵梁;
其中所述立柱包括A柱10、B柱20、D柱30;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
两个A柱10通过第一顶横梁11和第一底横梁12连接构成封闭矩形A环;
两个B柱20通过第二顶横梁21和第二底横梁22连接构成封闭矩形B环;
两个D柱30通过第三顶横梁31和第三底横梁32连接构成封闭矩形D环;
A环与B环对应的四角位置通过第一顶纵梁41和第一底纵梁42连接,B环与D环对应的四角位置通过第二顶纵梁51和第二底纵梁52连接,构成封闭空间框架结构。
如图3所示,一种中轴对称的中横梁加强ROPS骨架,包括立柱、横梁、纵梁、中横梁60;
其中所述立柱包括A柱10、B柱20、D柱30;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
两个A柱10通过第一顶横梁11和第一底横梁12连接构成封闭矩形A环;
两个B柱20通过第二顶横梁21和第二底横梁22连接构成封闭矩形B环;
两个D柱30通过第三顶横梁31和第三底横梁32连接构成封闭矩形D环;
所述中横梁60的两端分别连接两个D柱中部内侧,所述第三顶横梁、中横梁和第三底横梁平行设置;
A环与B环对应的四角位置通过第一顶纵梁41和第一底纵梁42连接,B环与D环对应的四角位置通过第二顶纵梁51和第二底纵梁52连接,构成封闭空间框架结构。
如图4所示,一种中轴对称的斜拉梁加强ROPS骨架,包括立柱、横梁、纵梁;还包括两个斜拉梁70,
其中所述立柱包括A柱10、B柱20、D柱30;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
两个A柱10通过第一顶横梁11和第一底横梁12连接构成封闭矩形A环;
两个B柱20通过第二顶横梁21和第二底横梁22连接构成封闭矩形B环;
两个D柱30通过第三顶横梁31和第三底横梁32连接构成封闭矩形D环;
所述斜拉梁70的一端连接D柱30中部内侧,另一端连接在第三底横梁32上;
A环与B环对应的四角位置通过第一顶纵梁41和第一底纵梁42连接,B环与D环对应的四角位置通过第二顶纵梁51和第二底纵梁52连接,构成封闭空间框架结构。
上述三种ROPS骨架中,所述A环、B环、D环均为矩形结构,整个ROPS骨架呈中轴对称。
其中,纵梁包括顶纵梁和底纵梁;为了保证整个ROPS骨架底部的平整性,底纵梁基本上都是与底横梁位于同一平面设置(例如水平设置),但是A柱、B柱、D柱三者的长度不一定相等,所以顶纵梁与顶横梁不一定位于同一平面。
图5、图6和图7所示的简支梁结构力学模型分别为上述普通驾驶室骨架结构、中横梁加强骨架结构、斜拉梁加强骨架结构简支梁结构力学模型。
在一些实施例中,上述三种ROPS骨架中所有立柱和顶横梁的型材截面模数之和满足实施例2所述的设计方法要求。
实施例2
如图1所示,一种ROPS骨架的设计方法,包括:
S1创建力学模型:依据ROPS试验中要求的侧推加载力F及侧推载荷能量U作为设计目标,创建侧推加载力F及侧推载荷能量U与型材抗弯几何参数的关系式,得到简支梁结构力学模型,根据所述简支梁结构力学模型分析得到弯矩平衡公式:各塑性铰的抵抗弯矩之和等于加载力产生的弯矩;
所述简支梁结构力学模型包括普通驾驶室骨架结构、中横梁加强骨架结构、斜拉梁加强骨架结构三种;
图5所示普通驾驶室骨架结构简支梁结构力学模型的弯矩平衡公式为:
2·(M 立柱+M 顶_横梁)=F·L
图6所示中横梁加强骨架结构简支梁结构力学模型的弯矩平衡公式为:
2·(M 立柱+M 顶_横梁+M 中_横梁)=F·L
图7所示斜拉梁加强骨架结构简支梁结构力学模型的弯矩平衡公式为:
2·(M 立柱+M 顶_横梁)=F·Ld
其中M 立柱、M 顶_横梁、M 中_横梁分别为立柱塑性铰抵抗弯矩、顶横梁、中横梁塑性铰抵抗弯矩,F为简支梁结构侧向加载力、L为立柱高度尺寸;L d为斜拉梁加强骨架结构D柱最高点至斜拉梁最高点的高度尺寸;
S2选定设计参数:解析弯矩平衡公式获得型材抗弯几何参数截面模数W,截面模数W是决定ROPS骨架型材最大承载能力M max的关键因子,截面模数W与最大承载能力M max的关系式为:M max=K·σ ·W;
将M max=K·σ ·W代入S1得到的弯矩平衡公式得到ROPS骨架最大侧向加载力公式;
图5所示普通驾驶室骨架结构最大侧向加载力公式:
F max=2·K·σ ·(W 立柱+W 顶_横梁)/L
图6所示中横梁加强骨架结构最大侧向加载力公式:
F max=2·K·σ ·(W 立柱+W 顶_横梁+W 中_横梁)/L
图7所示斜拉梁加强骨架结构最大侧向加载力公式:
F max=2·K·σ ·(W 立柱+W 顶_横梁)/L d
S3ROPS试验数据库、获取ROPS侧推试验中骨架型材进入完全塑性变形区的实验数据,提取实验数据中的最大侧向加载力F max、最大侧向载荷能量U max和最大变形位移S max,其中最大变形位移S max正态统计数据中值为0.28m,创建数据库;
S4创建关系式、根据实验数据提取得到的所述最大侧向加载力F max回归分析获得S2创建的关系式中的K值,得ROPS骨架最大侧向加载力F max速算公式,表示为:
F max=2·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横 )/L D}
其中n为结构加强系数;
图5所示普通驾驶室骨架结构:n为1;
图6所示中横梁加强骨架结构:n=(W 立柱+W 顶_横梁+W 中_横梁)/(W D_立柱+W 顶_D横梁);
图7所示斜拉梁加强骨架结构:n=L D/L d
通过统计分析S3创建的数据库中侧向加载力F和侧向变形位移S的关系曲线得到塑性变形区内吸收的载荷能量占总载荷能量的2/3,塑性变形区内位移占总变形位移的1/2,即:2/3·U max=1/2·F max·S max,最大变形位移S max正态统计数据中值为0.28m,由此得到最大载荷能量U max速算公式,表示为:
U max=0.75·F max·S max=1.5·S max·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横 )/L B,n·(W D_立柱+W 顶_D横梁)/L D}
=0.42·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}
其中n为结构加强系数,根据选择的驾驶室骨架结构类型确定;
F max、U max采用计算得到的侧向加载力F max及侧向载荷能量U max目标值;
K表示完全塑性变形区加强系数,通过根据实验数据中最大侧向加载力F max回归分析获得;
最大变形位移S max采用实验数据中正态统计数据中值;
σ 表示材料的拉伸应力极限值,根据选择的材料为固定值;
L A、L B、L D、L d根据选择的驾驶室骨架结构类型为已知值,分别表示A柱高度尺寸、B柱高度尺寸、D柱高度尺寸、斜拉梁加强骨架结构D柱最高点至斜拉梁最高点的高度尺寸。
S5规划ROPS骨架应用机型范围、依据轻量化及通用化原则合理划分系列驾驶室ROPS骨架承载能力阶梯,规划ROPS骨架适用机型范围;
S6计算承载要求、依据ROPS骨架的适用机型最大整机质量,根据GB/T 17922、GB/T 19930或GB/T19930.2规定的公式确定ROPS骨架的侧向加载力F max及侧向载荷能量U max目标值;
GB/T 17922表1
Figure PCTCN2022108856-appb-000001
GB/T 17922表1(续)
Figure PCTCN2022108856-appb-000002
GB/T 19930表1
Figure PCTCN2022108856-appb-000003
GB/T 19930.2表2
侧向载荷能量U */J 13 000·(M/10 000) 1.25
侧向载荷力F */N 35 000·(M/10 000) 1.2
纵向载荷能量U t/J 4 300·(M/10 000) 1.25
垂直加载力F v/N 12.75M
S7选择骨架结构、根据驾驶室适用机型特点,从简支梁结构力学模型中选择合适的驾驶室骨架结构类型;
S8计算型材截面参数、根据S4创建的关系式、S6计算的侧向加载力F max及侧向载荷能量U max目标值和S7所选的骨架结构计算得到满足关系式的型材截面模数之和∑(W 立柱,W 顶_横梁,W 中_横梁);
基于简支梁结构力学模型骨架结构类型和算得到的ROPS骨架的侧向加载力F max及侧向载荷能量U max目标值,根据最大侧向加载力F max速算公式、最大载荷能量U max速算公式,分别计算得到两组型材截面模数之和值,选取两组型材截面模数之和值中较大值作为最终的满足关系式的型材截面模数之和∑(W 立柱,W 顶_横梁)或∑(W 立柱,W 顶_横梁,W 中_横梁);
U max=0.42·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}
F max=2·K·σ ·∑{(∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}
其中n为结构加强系数,根据选择的驾驶室骨架结构类型:
普通驾驶室骨架结构:n为1;
中横梁加强骨架结构:n=(W 立柱+W 顶_横梁+W 中_横梁)/(W D_立柱+W 顶_D横梁);
斜拉梁加强骨架结构:n=L D/L d
F max、U max采用计算得到的侧向加载力F max及侧向载荷能量U max目标值;
K表示完全塑性变形区加强系数,通过根据实验数据中最大侧向加载力F max回归分析获得,为定值;
σ 表示材料的拉伸应力极限值,根据选择的材料为固定值;
L A、L B、L D、L d根据选择的驾驶室骨架结构类型为已知值。
S9、根据S8计算获得的型材截面模数之和∑(W 立柱,W 顶_横梁)或∑(W 立柱,W 顶_横 ,W 中_横梁)选取合适的型材,采用S7所选的骨架结构形式搭建封闭空间框架结构。
仿真分析及试验验证的ROPS试验数据反馈回S3数据库,利用大量的实验数据修正S4的关系式,实现ROPS骨架的轻量化及精准设计。
可以根据侧向加载力F max及侧向载荷能量U max计算ROPS骨架的截面模数之和∑(W 立柱,W 顶_横梁,W 中_横梁),也可以根据ROPS骨架的截面模数之和∑(W 立柱,W 顶_横 ,W 中_横梁)计算ROPS骨架的最大侧向加载力F max及侧向载荷能量U max,实现多方案的对比分析及验证。
依据S4创建的关系式,可以实现通过手算的方式进行型材的选择及多方案的对比,将ROPS骨架设计时间控制在4小时以内,大幅度缩短设计周期。
数据库要求ROPS骨架型材进入完全塑性变形区,充分利用型材承载能力的极限值,并由此数据库创建S4的关系式及指导型材选型,实现ROPS骨架的轻量化设计,提升设计质量。
实施例3
一种工程机械驾驶室,包括实施例1所述的ROPS骨架,通过实施例2所述的ROPS骨架中横梁优化设计方法进行设计而成。
该工程机械可以是液压挖掘机、装载机、压路机和平地机等,具有本公开实施例提供的ROPS骨架所具有的优点。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种ROPS骨架的设计方法,其特征在于,包括:
    依据ROPS骨架的适用机型最大整机质量,根据GB/T 17922、GB/T 19930或GB/T19930.2中规定的计算得到ROPS骨架的侧向加载力F max及侧向载荷能量U max目标值;
    根据驾驶室适用机型特点,从简支梁结构力学模型中选择合适的驾驶室骨架结构类型;其中所述简支梁结构力学模型包括普通驾驶室骨架结构、中横梁加强骨架结构、斜拉梁加强骨架结构;
    基于简支梁结构力学模型骨架结构类型和计算得到的ROPS骨架的侧向加载力F max及侧向载荷能量U max目标值,根据最大侧向加载力F max速算公式、最大载荷能量U max速算公式,分别计算得到两组型材截面模数之和值,选取两组型材截面模数之和值中较大值作为最终的满足关系式的所有立柱和顶横梁的型材截面模数之和;
    根据型材截面模数之和选取合适的型材,采用选择的驾驶室骨架结构类型搭建封闭空间框架结构。
  2. 根据权利要求1所述的ROPS骨架的设计方法,其特征在于,
    所述最大侧向加载力F max速算公式为:
    F max=2·K·σ ·∑{(∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}
    所述最大载荷能量U max速算公式为:
    U max=1.5·S max·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}=0.42·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横梁)/L D}
    其中n为结构加强系数,根据选择的驾驶室骨架结构类型确定;
    F max、U max采用计算得到的侧向加载力F max及侧向载荷能量U max目标值;
    K表示完全塑性变形区加强系数,通过根据实验数据中最大侧向加载力F max回归分析获得;
    最大变形位移S max采用实验数据中正态统计数据中值;
    σ 表示材料的拉伸应力极限值,根据选择的材料为固定值;
    L A、L B、L D、L d根据选择的驾驶室骨架结构类型为已知值,分别表示A柱高度尺寸、B柱高度尺寸、D柱高度尺寸、斜拉梁加强骨架结构D柱最高点至斜拉梁最高点的高度尺寸。
  3. 根据权利要求2所述的ROPS骨架的设计方法,其特征在于,其中n为结构加强系数,根据选择的驾驶室骨架结构类型确定,包括:
    普通驾驶室骨架结构:n为1;
    中横梁加强骨架结构:n=(W 立柱+W 顶_横梁+W 中_横梁)/(W D_立柱+W 顶_D横梁);
    斜拉梁加强骨架结构:n=L D/L d
  4. 根据权利要求1或2所述的ROPS骨架的设计方法,其特征在于,所述最大侧向加载力F max速算公式和最大侧向加载力F max速算公式的创建方法包括:
    S1创建力学模型:依据ROPS试验中要求的侧推加载力F及侧推载荷能量U作为设计目标,创建侧推加载力F及侧推载荷能量U与型材抗弯几何参数的关系式,得到简支梁结构力学模型,根据所述简支梁结构力学模型分析得到弯矩平衡公式:各塑性铰的抵抗弯矩之和等于加载力产生的弯矩;
    S2选定设计参数:解析弯矩平衡公式获得型材抗弯几何参数截面模数W,截面模数W是决定ROPS骨架型材最大承载能力M max的关键因子,截面模数W与 最大承载能力M max的关系式为:M max=K·σ ·W;
    将M max=K·σ ·W代入S1得到的弯矩平衡公式可得到ROPS骨架最大侧向加载力公式;
    S3、获取ROPS侧推试验中骨架型材进入完全塑性变形区的实验数据,提取实验数据中的最大侧向加载力F max、最大侧向载荷能量U max和最大变形位移S max;根据采用实验数据中最大变形位移S max正态统计数据中值;
    S4、根据实验数据提取得到的所述最大侧向加载力F max回归分析获得S2创建的关系式中的K值,得ROPS骨架最大侧向加载力F max速算公式,表示为:
    F max=2·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横 )/L D}
    其中n为结构加强系数;
    普通驾驶室骨架结构:n为1;
    中横梁加强骨架结构:n=(W 立柱+W 顶_横梁+W 中_横梁)/(W D_立柱+W 顶_D横梁);
    斜拉梁加强骨架结构:n=L D/L d
    通过统计分析S3创建的数据库中侧向加载力F和侧向变形位移S的关系曲线得到塑性变形区内吸收的载荷能量占总载荷能量的2/3,塑性变形区内位移占总变形位移的1/2,最大变形位移S max正态统计数据中值为0.28m,由此得到最大载荷能量U max速算公式,表示为:
    U max=0.75·F max·S max=1.5·S max·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横 )/L B,n·(W D_立柱+W 顶_D横梁)/L D}
    =0.42·K·σ ·∑{(W A_立柱+W 顶_A横梁)/L A,(W B_立柱+W 顶_B横梁)/L B,n·(W D_立柱+W 顶_D横 )/L D}。
  5. 根据权利要求4所述的ROPS骨架的设计方法,其特征在于,
    S1包括:所述简支梁结构力学模型包括普通驾驶室骨架结构、中横梁加强骨架结构、斜拉梁加强骨架结构三种;
    普通驾驶室骨架结构简支梁结构力学模型的弯矩平衡公式为:
    2·(M 立柱+M 顶_横梁)=F·L,
    中横梁加强骨架结构简支梁结构力学模型的弯矩平衡公式为:
    2·(M 立柱+M 顶_横梁+M 中_横梁)=F·L
    斜拉梁加强骨架结构简支梁结构力学模型的弯矩平衡公式为:
    2·(M 立柱+M 顶_横梁)=F·Ld
    其中M 立柱、M 顶_横梁、M 中_横梁分别为立柱塑性铰抵抗弯矩、顶横梁、中横梁塑性铰抵抗弯矩,F为简支梁结构侧向加载力、L为立柱高度尺寸;
    S2包括:ROPS骨架最大侧向加载力公式;
    a)普通驾驶室骨架结构最大侧向加载力公式:
    F max=2·K·σ ·(W 立柱+W 顶_横梁)/L
    b)中横梁加强骨架结构最大侧向加载力公式:
    F max=2·K·σ ·(W 立柱+W 顶_横梁+W 中_横梁)/L
    c)斜拉梁加强骨架结构最大侧向加载力公式:
    F max=2·K·σ ·(W 立柱+W 顶_横梁)/L d
  6. 根据权利要求4所述的ROPS骨架的设计方法,其特征在于,S3中最大变形位移S max正态统计数据中值为0.28m。
  7. 一种中轴对称的普通驾驶室ROPS骨架,其特征在于,包括立柱、横梁、纵梁;
    其中所述立柱包括A柱、B柱、D柱;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
    两个A柱通过第一顶横梁和第一底横梁连接构成封闭矩形A环;
    两个B柱通过第二顶横梁和第二底横梁连接构成封闭矩形B环;
    两个D柱通过第三顶横梁和第三底横梁连接构成封闭矩形D环;
    A环与B环对应的四角位置通过第一顶纵梁和第一底纵梁连接,B环与D环对应的四角位置通过第二顶纵梁和第二底纵梁连接,构成封闭空间框架结构;
    所述ROPS骨架采用权利要求1至6任一项所述的ROPS骨架的设计方法设计而成。
  8. 一种中轴对称的中横梁加强ROPS骨架,其特征在于,包括立柱、横梁、纵梁、中横梁;
    其中所述立柱包括A柱、B柱、D柱;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
    两个A柱通过第一顶横梁和第一底横梁连接构成封闭矩形A环;
    两个B柱通过第二顶横梁和第二底横梁连接构成封闭矩形B环;
    两个D柱通过第三顶横梁和第三底横梁连接构成封闭矩形D环;所述中横梁的两端分别连接两个D柱中部内侧,所述第三顶横梁、中横梁和第三底横梁平行设置;
    A环与B环对应的四角位置通过第一顶纵梁和第一底纵梁连接,B环与D环对应的四角位置通过第二顶纵梁和第二底纵梁连接,构成封闭空间框架结构;
    所述ROPS骨架采用权利要求1至6任一项所述的ROPS骨架的设计方法设计而成。
  9. 一种中轴对称的斜拉梁加强ROPS骨架,其特征在于,包括立柱、横梁、纵梁;还包括两个斜拉梁;
    其中所述立柱包括A柱、B柱、D柱;横梁包括顶横梁和底横梁;纵梁包括顶纵梁和底纵梁;
    两个A柱通过第一顶横梁和第一底横梁连接构成封闭矩形A环;
    两个B柱通过第二顶横梁和第二底横梁连接构成封闭矩形B环;
    两个D柱通过第三顶横梁和第三底横梁连接构成封闭矩形D环;
    所述斜拉梁的一端连接D柱中部内侧,另一端连接在第三底横梁上;
    A环与B环对应的四角位置通过第一顶纵梁和第一底纵梁连接,B环与D环对应的四角位置通过第二顶纵梁和第二底纵梁连接,构成封闭空间框架结构;
    所述ROPS骨架采用权利要求1至6任一项所述的ROPS骨架的设计方法设计而成。
  10. 一种工程机械驾驶室,其特征在于,包括权利要求7-9任一项所述的ROPS骨架。
PCT/CN2022/108856 2022-06-29 2022-07-29 一种rops骨架设计方法及工程机械驾驶室 WO2024000723A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022000124.0T DE112022000124T5 (de) 2022-06-29 2022-07-29 Kontruktionsverfahren für ROPS-Rahmen und Fahrerkabine von Baumaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210749402.6 2022-06-29
CN202210749402.6A CN115081140A (zh) 2022-06-29 2022-06-29 一种rops骨架设计方法及工程机械驾驶室

Publications (1)

Publication Number Publication Date
WO2024000723A1 true WO2024000723A1 (zh) 2024-01-04

Family

ID=83255767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108856 WO2024000723A1 (zh) 2022-06-29 2022-07-29 一种rops骨架设计方法及工程机械驾驶室

Country Status (3)

Country Link
CN (1) CN115081140A (zh)
DE (1) DE112022000124T5 (zh)
WO (1) WO2024000723A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115168989A (zh) * 2022-06-29 2022-10-11 江苏徐工工程机械研究院有限公司 一种rops骨架顶横梁优化设计方法及工程机械驾驶室
CN115186380A (zh) * 2022-06-29 2022-10-14 江苏徐工工程机械研究院有限公司 一种rops骨架中横梁优化设计方法及工程机械驾驶室
CN117807717B (zh) * 2024-02-29 2024-05-14 三一重型装备有限公司 驾驶室模型的生成方法以及系统、电子设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831511A1 (fr) * 2001-10-25 2003-05-02 Renault Vehicules Ind Cabine de vehicule realisee par assemblage de troncon de profile
JP2011105032A (ja) * 2009-11-12 2011-06-02 Caterpillar Sarl 作業機械のキャブ構造
CN103465971A (zh) * 2013-08-30 2013-12-25 三一汽车制造有限公司 驾驶室设计方法、驾驶室及工程机械
CN107176214A (zh) * 2017-06-27 2017-09-19 徐州徐工矿山机械有限公司 铰接式自卸车驾驶室用安全骨架结构
CN109344538A (zh) * 2018-10-30 2019-02-15 北京机械设备研究所 一种基于模型确认技术的车身梁截面设计方法
CN113415347A (zh) * 2021-07-09 2021-09-21 徐州徐工矿业机械有限公司 具有吸能结构的无a柱防滚翻防落物驾驶室及矿用自卸车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831511A1 (fr) * 2001-10-25 2003-05-02 Renault Vehicules Ind Cabine de vehicule realisee par assemblage de troncon de profile
JP2011105032A (ja) * 2009-11-12 2011-06-02 Caterpillar Sarl 作業機械のキャブ構造
CN103465971A (zh) * 2013-08-30 2013-12-25 三一汽车制造有限公司 驾驶室设计方法、驾驶室及工程机械
CN107176214A (zh) * 2017-06-27 2017-09-19 徐州徐工矿山机械有限公司 铰接式自卸车驾驶室用安全骨架结构
CN109344538A (zh) * 2018-10-30 2019-02-15 北京机械设备研究所 一种基于模型确认技术的车身梁截面设计方法
CN113415347A (zh) * 2021-07-09 2021-09-21 徐州徐工矿业机械有限公司 具有吸能结构的无a柱防滚翻防落物驾驶室及矿用自卸车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIFU YANG, ZHANG JIALI; FU WEIFANG; YANG CHENGKANG: "The Safety Protection Device for Wheel Loader", JOURNAL OF JILIN POLYTECHNICAL UNIVERSITY, vol. 25, no. 1, 30 January 1995 (1995-01-30), pages 89 - 95, XP093119270 *

Also Published As

Publication number Publication date
DE112022000124T5 (de) 2024-08-22
CN115081140A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2024000723A1 (zh) 一种rops骨架设计方法及工程机械驾驶室
US20110015902A1 (en) Twelve-Cornered Strengthening Member
Sun et al. Crashworthiness optimization of automotive parts with tailor rolled blank
CN105027124B (zh) 形状最优化解析方法及装置
CN104956369A (zh) 形状最优化解析方法及装置
CN104036068A (zh) 汽车碰撞安全性仿真分析优化设计一体化集成系统
CN105539332A (zh) 汽车用耐碰撞部件
CN107169164A (zh) 考虑碰撞工况的适用于汽车早期设计的简化模型建模方法
WO2024000722A1 (zh) 一种rops骨架中横梁优化设计方法及工程机械驾驶室
Du et al. Theoretical prediction and analysis of hybrid material hat-shaped tubes with strengthened corner structures under quasi-static axial loading
CN102720238A (zh) 工程机械、工程机械用驾驶室及驾驶室框架结构
CN108073768B (zh) 一种翻车保护结构的有限元分析简化方法
WO2024000721A1 (zh) 一种rops骨架顶横梁优化设计方法及工程机械驾驶室
Shin et al. Structural analysis and optimization of a low-speed vehicle body
CN116070337A (zh) 一种汽车上车体模块化设计实现方法
Contractor et al. Design and analysis of ladder frame chassis considering support at contact region of leaf spring and chassis frame
WO2022183540A1 (zh) 求解薄壁类框架结构材料优化的子区域hca方法
CN113147911B (zh) 一种驾驶室地板总成及卡车
CN115081106A (zh) 一种汽车偏置碰撞和侧面碰撞传力路径拓扑优化方法
Hou et al. Multilevel optimisation method for vehicle body in conceptual design
CN103123277A (zh) 一种电子汽车衡秤台结构
CN112699486B (zh) 一种加强型矩形机身大开口结构扭转载荷分配计算方法
Ioniţă et al. Analytical crash analysis of heavy truck cabin structure according to regulation ECE-R29
CN113761643A (zh) 小偏置碰撞结构优化方法
CN116522508A (zh) 轻卡驾驶室双a柱测试优化方法、系统及轻卡驾驶室

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112022000124

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948818

Country of ref document: EP

Kind code of ref document: A1