WO2024000669A1 - 一种系列高等级耐候桥梁用e级钢一坯料多钢级生产方法 - Google Patents

一种系列高等级耐候桥梁用e级钢一坯料多钢级生产方法 Download PDF

Info

Publication number
WO2024000669A1
WO2024000669A1 PCT/CN2022/105737 CN2022105737W WO2024000669A1 WO 2024000669 A1 WO2024000669 A1 WO 2024000669A1 CN 2022105737 W CN2022105737 W CN 2022105737W WO 2024000669 A1 WO2024000669 A1 WO 2024000669A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
grade
weather
series
return temperature
Prior art date
Application number
PCT/CN2022/105737
Other languages
English (en)
French (fr)
Inventor
唐春霞
谯明亮
王军
崔强
陈林恒
刘涛
秦玉荣
孟令明
李新亮
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2024000669A1 publication Critical patent/WO2024000669A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a weather-resistant bridge steel plate, and in particular to a production method of E-grade steel and multiple steel grades for a series of high-grade weather-resistant bridges.
  • patent CN112522620B discloses a method for preparing different levels of weather-resistant bridge steel plates with different steel compositions. In the examples, only 340-420MPa level weather-resistant bridge steel is disclosed.
  • patent CN103352167B discloses a low-yield-ratio high-strength bridge steel and its manufacturing method.
  • the 550MPa grade weather-resistant bridge steel uses a precious alloy with a Mo content of up to 0.25% and a Nb content of up to 0.033%.
  • patent CN101403075B discloses a wide and thick steel plate for bridges with a yield strength of 460MPa and a preparation method.
  • the thickness specification is only 10-50mm and does not contain 550-550MPa grade weather-resistant bridge steel.
  • the present invention aims to provide a series of high-grade E-grade steel for weather-resistant bridges with a yield strength of 460 to 550 MPa and excellent plastic toughness; another purpose of the present invention is to provide a steel with a simple production process and low cost.
  • Low series of high-grade weather-resistant bridges use E-grade steel, one blank and multiple steel grades production method.
  • the production method of one blank and multiple steel grades of E-grade steel for a series of high-grade weather-resistant bridges according to the present invention, the components in weight percentage are: C: 0.05 ⁇ 0.07%, Si: 0.25 ⁇ 0.45%, Mn: 1.25 ⁇ 1.50%, P: 0.009-0.014%, S: ⁇ 0.003%, Nb: 0.02 ⁇ 0.03%, Ti: 0.008 ⁇ 0.018%, Cu: 0.25 ⁇ 0.35%, Ni: 0.25 ⁇ 0.35%, Cr: 0.45 ⁇ 0.55% , Mo: 0.05 ⁇ 0.15%, Alt: 0.020 ⁇ 0.045%, the balance is Fe and impurities.
  • the metallographic structure of the steel is bainite + ferrite, and the grain size is controlled to be above grade 9.
  • the production method of one blank and multiple steel grades of E-grade steel for a series of high-grade weather-resistant bridges includes the following steps:
  • Cast slab heating The cast slab is put into the furnace for heating;
  • the opening temperature of finishing rolling is 800 ⁇ 1000°C, and the finishing temperature of finishing rolling is 780 ⁇ 840°C; followed by laminar cooling, the red return temperature is 450 ⁇ 650°C; specifically,
  • the red return temperature is 610 ⁇ 650°C
  • the red return temperature is 600 ⁇ 640°C
  • the red return temperature is 570 ⁇ 630°C
  • the red return temperature is 510 ⁇ 570°C
  • the red return temperature is 600 ⁇ 640°C
  • the red return temperature is 580 ⁇ 620°C
  • the red return temperature is 560 ⁇ 620°C;
  • the red return temperature is 500 ⁇ 560°C
  • the red return temperature is 590 ⁇ 630°C;
  • the red return temperature is 560 ⁇ 600°C;
  • the red return temperature is 500 ⁇ 560°C
  • the red return temperature is 450 ⁇ 510°C
  • the austenitizing temperature during the heating process in step (1) is 1180°C to 1240°C.
  • step (2) the number of descaling passes in step (2) is 1 to 2 passes.
  • the cooling rate in step (3) is 2-10°C/s.
  • the heat treatment controls the tempering temperature to be 500-550°C and the tempering time to be 50-150 minutes.
  • Carbon is the main element that determines the mechanical properties of steel. It improves the strength of steel through solid solution strengthening. However, if it is too high, it is not conducive to toughness and welding performance. In the present invention, the carbon content is controlled at: 0.05 to 0.07%.
  • Si Silicon can increase the strength and hardness of steel, but its plasticity and toughness are reduced.
  • the silicon content is controlled at: 0.25-0.45%.
  • Mn Mainly plays the role of solid solution strengthening and grain refinement. Adding an appropriate amount of Mn to steel can not only increase the strength, but also reduce the brittle transition temperature. However, it has a greater impact on corrosion resistance. Many researchers believe that Mn can improve the corrosion resistance of steel. Corrosion resistance in marine atmosphere, but has no effect on corrosion resistance in industrial atmosphere. In the present invention, the manganese content is controlled at: 1.25-1.50%.
  • Cu When 0.2% to 0.5% Cu is added to steel, Cu is one of the most effective alloying elements to improve atmospheric corrosion resistance whether in rural atmosphere, industrial atmosphere or marine atmosphere.
  • P It is an alloy element that effectively improves atmospheric corrosion resistance. In low-alloy weathering steel, P is often combined with other elements, especially when combined with Cu, a better composite effect can be achieved.
  • the content of P in steel is generally controlled between 0.08% and 0.15%. However, when the steel plate is thicker, in order to ensure the welding performance, it is not suitable to increase the P content to improve the weather resistance of the steel. P should be controlled below 0.04%.
  • the resulting loss of weather resistance can be caused by adding Cr, Ni, RE and other elements to make up for it.
  • the phosphorus content of the present invention is controlled at: 0.009-0.014%.
  • Cr It is one of the elements that improves resistance to atmospheric corrosion. It can form a dense oxide film on the surface of steel to improve the passivation ability of steel. The effect is more obvious when added together with Cu.
  • the chromium content in the present invention is controlled at: 0.45-0.55%.
  • Ni It is a relatively stable element. Adding Ni can change the self-corrosion potential of steel in the positive direction, increasing the stability of steel.
  • the nickel content in the present invention is controlled at: 0.25-0.35%.
  • Molybdenum significantly delays the proeutectoid ferrite phase transformation, but has little effect on the bainite phase transformation, which is beneficial to obtaining the bainite structure, improving the strength of the steel plate, and is beneficial to the plastic toughness to a certain extent. Taking into account cost and other factors, the molybdenum content in the present invention is controlled at: 0.05-0.15%.
  • Nb Niobium and titanium are added to steel as micro-alloying elements. Although their mechanisms of action in steel are different, they both affect the structure and properties of steel through grain refinement and precipitation strengthening. Nb can produce significant grain refinement and moderate precipitation strengthening. Ti is an active element that can produce strong precipitation strengthening and moderate grain refinement. It can form TiN and TiC with N and C. However, the affinity between Ti and N is greater than the affinity between Ti and C, so a trace amount is added. Of Ti, only TiN can be generated. Ti can refine grains and improve the toughness of steel. Generally, the Ti content should be controlled below 0.05%.
  • the niobium content in the present invention is controlled at: 0.02-0.03%.
  • the titanium content in the present invention is controlled at: 0.008-0.018%.
  • S is an impurity element. Excessive sulfur content is not conducive to improving plasticity and toughness. The sulfur content in the present invention is controlled at ⁇ 0.003%.
  • Al is a deoxidizing element and is beneficial to strength improvement to a certain extent.
  • the aluminum content is controlled at 0.020% to 0.045%.
  • the preparation method of the present invention uses cast blanks and produces a series of high-grade E-grade weather-resistant bridges through controlled rolling and controlled cooling and tempering processes. Steel, and the production process is simple and the cost is low.
  • This invention adopts a set of component designs, combined with refined control of process parameters (rolling temperature and cooling temperature) to obtain different proportions of bainite and ferrite structural compositions, and obtains a series of high-grade weather-resistant bridge steels.
  • the production of multiple steel grades from one blank can be realized, which can save time and simplify the production process, and is conducive to more economical organization of production;
  • the weather-resistant bridge steel plate obtained by the present invention has a low yield-strength ratio and excellent plastic toughness.
  • the obtained weather-resistant bridge steel plate has a yield strength of 460 to 550MPa, an elongation of ⁇ 18%, a yield-to-strength ratio of ⁇ 0.85, and a -40°C impact energy of ⁇ 120J.
  • Figure 1 is a typical structural morphology of the steel plate obtained after tempering in Example 1 under a metallographic microscope;
  • Figure 2 is a typical structural morphology of the steel plate obtained after tempering in Example 3 under a metallographic microscope;
  • Figure 3 is a typical structural morphology of the steel plate obtained after tempering in Example 5 under a metallographic microscope.
  • composition of the series of high-grade E-grade steel for weather-resistant bridges is shown in Table 1 in terms of weight percentage.
  • Cast slab heating The cast slab is put into the furnace for heating, and the austenitizing temperature is 1219°C.
  • the relevant heating process parameters are shown in Table 2.
  • One-stage rolling The rough rolling temperature is ⁇ 1030°C, and high-pressure water is used to remove scales in 1 to 2 passes to ensure that the oxide scale is removed.
  • the heat treatment and tempering temperature is 500°C, and the tempering time is 50 minutes.
  • the relevant heat treatment process parameters are detailed in Table 2.
  • Example 1 After controlled rolling and controlled cooling, a series of high-grade weather-resistant grade E steels for bridges were obtained with uniform metallographic structures, which is conducive to matching strength and toughness.
  • the mechanical properties of the finished product are detailed in Table 3.
  • the typical structural morphology of the steel plate obtained after tempering in Example 1 under a metallographic microscope is shown in Figure 1.
  • composition of the series of high-grade E-grade steel for weather-resistant bridges is shown in Table 1 in terms of weight percentage.
  • composition of the series of high-grade E-grade steel for weather-resistant bridges is shown in Table 1 in terms of weight percentage.
  • Example 2 The specific steps for the production method of one blank and multiple steel grades of E-grade steel for the series of high-grade weather-resistant bridges are the same as in Example 1.
  • the relevant process parameters are shown in Table 2.
  • the mechanical properties of the finished product are shown in Table 3.
  • the typical structural morphology of the steel plate obtained after tempering in Example 3 under a metallographic microscope is shown in Figure 2.
  • composition of the series of high-grade E-grade steel for weather-resistant bridges is shown in Table 1 in terms of weight percentage.
  • composition of the series of high-grade E-grade steel for weather-resistant bridges is shown in Table 1 in terms of weight percentage.
  • Example 3 The specific steps for the production method of one blank and multiple steel grades of E-grade steel for the series of high-grade weather-resistant bridges are the same as in Example 1.
  • the relevant process parameters are shown in Table 2.
  • the mechanical properties of the finished product are shown in Table 3.
  • the typical structural morphology of the steel plate obtained after tempering in Example 5 under a metallographic microscope is shown in Figure 3.
  • composition of the series of high-grade E-grade steel for weather-resistant bridges is shown in Table 1 in terms of weight percentage.
  • Example 1 Q460qENH 487 639 19.5 76 186 148 203
  • Example 2 Q460qENH 487 653 20 75 176 202 179
  • Example 3 Q500qENH 546 681 18 80 155 131
  • Example 4 Q500qENH 536 674 20.5 80 206 194 131

Abstract

一种系列高等级耐候桥梁用E级钢及其一坯料多钢级生产方法,所述钢材的成分按重量百分比为:C:0.05~0.07%、Si:0.25~0.45%、Mn:1.25~1.50%、P:0.009-0.014%、S:≤0.003%、Nb:0.02~0.03%、Ti:0.008~0.018%、Cu:0.25~0.35%、Ni:0.25~0.35%、Cr:0.45~0.55%、Mo:0.05~0.15%、Alt:0.020~0.045%,余量为Fe和杂质;其生产方法包括铸坯加热、一阶段轧制、二阶段轧制和热处理等步骤,采用一组成分设计实现了一坯料多钢级的组坯生产,有利于节约时间和简化生产流程。

Description

一种系列高等级耐候桥梁用E级钢一坯料多钢级生产方法 技术领域
本发明涉及一种耐候桥梁钢板,尤其涉及一种系列高等级耐候桥梁用E级钢一坯料多钢级生产方法。
背景技术
耐候桥梁用钢作为高性能桥梁钢的一个发展方向,在国外得到了较为广泛的发展。耐候桥梁钢在我国的应用尚未得到广泛的推广,进行460~550MPa级耐候桥梁钢的综合研发利于桥梁钢使用性能提升、绿色低碳、降低综合使用成本。
如专利CN112522620B中公开一种在不同钢铁成分下制备不同级别耐候桥梁钢板的方法,其中实施例中仅公开了340~420MPa级耐候桥梁钢。
如专利CN103352167B中公开一种低屈强比高强度用桥梁用钢及其制造方法,其中实施例中550MPa级耐候桥梁钢采用贵合金Mo含量高达0.25%、Nb含量高达0.033%。
如专利CN101403075B中公开一种屈服强度为460MPa的桥梁用宽厚钢板及制备方法,其中厚度规格仅为10-50mm且不含有550-550MPa级耐候桥梁钢。
发明内容
发明目的:本发明旨在提供一种屈服强度在460~550MPa级且具有优异塑韧性的系列高等级耐候桥梁用E级钢;本发明的另一目的旨在提供一种生产工艺简单,成本较低的系列高等级耐候桥梁用E级钢一坯料多钢级生产方法。
技术方案:本发明所述的系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,其成分按重量百分比为:C:0.05~0.07%、Si:0.25~0.45%、Mn:1.25~1.50%、P:0.009-0.014%、S:≤0.003%、Nb:0.02~0.03%、Ti:0.008~0.018%、Cu:0.25~0.35%、Ni:0.25~0.35%、Cr:0.45~0.55%、Mo:0.05~0.15%、Alt:0.020~0.045%,余量为Fe和杂质。
进一步地,所述钢材的金相组织为贝氏体+铁素体,晶粒度控制在9级以上。
所述系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,包括如下步骤:
(1)铸坯加热:铸坯入炉进行加热;
(2)一阶段轧制:粗轧温度为≥1030℃,采用高压水除鳞;
(3)二阶段轧制:精轧开轧温度为800~1000℃,精轧终轧温度为780~840℃;随后层流冷却,返红温度为450~650℃;具体地,
对于≥8~12mm的Q460qENH钢,返红温度为610~650℃;
对于≥12~28mm的Q460qENH钢,返红温度为600~640℃;
对于≥28~50mm的Q460qENH钢,返红温度为570~630℃;
对于≥50~65mm的Q460qENH钢,返红温度为510~570℃;
对于≥8~12mm的Q500qENH钢,返红温度为600~640℃;
对于≥12~28mm的Q500qENH钢,返红温度为580~620℃;
对于≥28~50mm的Q500qENH钢,返红温度为560~620℃;
对于≥50~65mm的Q500qENH钢,返红温度为500~560℃;
对于≥8~12mm的Q550qENH钢,返红温度为590~630℃;
对于≥12~28mm的Q550qENH钢,返红温度为560~600℃;
对于≥28~50mm的Q550qENH钢,返红温度为500~560℃;
对于≥50~65mm的Q550qENH钢,返红温度为450~510℃;
(4)热处理。
进一步地,所述步骤(1)中加热过程奥氏体化温度为1180℃~1240℃。
进一步地,所述步骤(2)中除鳞道次为1~2道次。
进一步地,所述步骤(3)中冷却速度为2~10℃/s。
进一步地,所述步骤(4)中热处理控制回火温度为500~550℃,回火时间为50~150min。
为了使钢获得优异的综合性能,对所述的化学成分进行了限制,其原因在于:
C:碳是决定钢材机械性能的主要元素,通过固溶强化提高钢的强度,但是过高不利于韧性和焊接性能,本发明碳含量控制在:0.05~0.07%。
Si:硅可以钢的强度和硬度,但是塑性和韧性下降了。本发明硅含量控制在:0.25~0.45%。
Mn:主要起固溶强化和细化晶粒作用,钢中加入适量的Mn,在提高强度的同时,还可降低脆性转变温度,但对耐蚀性的影响较多学者认为Mn能提高钢对海洋大气的耐蚀性,但对在工业大气中的耐蚀性能没有什么影响。本发明锰含量控制在:1.25~1.50%。
Cu:在钢中加入0.2%~0.5%的Cu时,无论在乡村大气、工业大气或海洋大气中,Cu都是提高耐大气腐蚀性能最有效的合金元素之一。
P:是有效的提高耐大气腐蚀性能的合金元素,在低合金耐候钢中常常是P和其它元素配合,特别是和Cu配合可收到较好的复合效果。P在钢中的含量一般控制在0.08%~0.15%。但当钢板较厚时,为了保证焊接性能,不宜采用增加P含量的方法来提高钢的耐候性能,应将P控制在0.04%以下,由此而造成的耐候性能的损失可由添加Cr、Ni、RE等元素来弥补。本发明磷含量控制在:0.009-0.014%。
Cr:是提高耐大气腐蚀的元素之一,能在钢表面形成致密的氧化膜,提高钢的钝化 能力,和Cu同时加入时效果更加明显。本发明铬含量控制在:0.45~0.55%。
Ni:是一种比较稳定的元素,加入Ni能使钢的自腐蚀电位向正方向变化,增加了钢的稳定性。本发明镍含量控制在:0.25~0.35%。
Mo:钼显著推迟先共析铁素体相变,但对贝氏体相变影响不大,从而有利于获得贝氏体组织,利于提高钢板强度,且一定程度上有利于塑韧性。综合考虑成本等因素,本发明钼含量控制在:0.05~0.15%。
Nb、Ti:铌和钛作为微合金元素加入钢中,虽然在钢中的作用机理有所不同,但都是通过晶粒细化和沉淀强化影响钢的组织与性能。Nb能产生显著的晶粒细化及中等程度的沉淀强化作用。Ti是活泼的元素,能产生强烈的沉淀强化和中等程度的晶粒细化作用,能与N、C生成TiN、TiC,但Ti与N的亲合力大于Ti与C的亲合力,所以加入微量的Ti,只能生成TiN。Ti可细化晶粒,提高钢的韧性。一般地,Ti含量应控制在0.05%以下,若Ti含量过高,则细化晶粒作用饱和,钢的脆性转变温度提高,对钢不利。本发明铌含量控制在:0.02~0.03%。本发明钛含量控制在:0.008~0.018%。
S:S是杂质元素,硫元素含量过高不利于塑韧性提高。本发明硫含量控制在≤0.003%。
Al:Al是脱氧元素,且一定程度上利于强度提升。本发明铝含量控制在0.020~0.045%。
有益效果:与现有技术相比,本发明具有如下显著优点:(1)本发明所述制备方法采用铸坯坯料,通过控轧控冷加回火工艺生产出系列高等级耐候桥梁用E级钢,而且生产工艺简单,成本较低。本发明采用一组成分设计,结合精细化控制工艺参数(轧制温度与冷却温度)获得不同比例的贝氏体和铁素体组织组成,获得一系列高等级耐候桥梁钢的一种系列高等级耐候桥梁用E级钢的一坯料多钢级生产方法。实现了一坯料多钢级的组坯生产,可以节约时间和简化生产流程,利于更加经济化组织生产;(2)本发明获得的耐候桥梁钢板具有低屈强比及优异塑韧性。获得的耐候桥梁钢板屈服强度在460~550MPa级、延伸率≥18%、屈强比≤0.85,-40℃冲击功≥120J。
附图说明
图1为实施例1回火后得到钢板在金相显微镜下典型的组织形貌图;
图2为实施例3回火后得到钢板在金相显微镜下典型的组织形貌图;
图3为实施例5回火后得到钢板在金相显微镜下典型的组织形貌图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
所述系列高等级耐候桥梁用E级钢,其成分按重量百分比如表1所示。
所述系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,具体要求如下:
(1)铸坯加热:铸坯入炉进行加热,奥氏体化温度为1219℃。相关加热工艺参数如表2所示。(2)一阶段轧制:粗轧温度为≥1030℃,采用高压水除鳞,除鳞1~2道,确保氧化铁皮除净。
(3)二阶段轧制:精轧开轧温度为969℃,精轧终轧温度为833℃;随后层流冷却,返红温度为641℃。相关轧制工艺参数详见表2。
(4)热处理:热处理回火温度为500℃,回火时间为50min。相关热处理工艺参数详见表2。
实施例控轧控冷后得到系列高等级耐候桥梁用E级钢的金相组织均匀,利于满足强韧性匹配。成品的力学性能详见表3。实施例1回火后得到钢板在金相显微镜下典型的组织形貌图如图1所示。
实施例2
所述系列高等级耐候桥梁用E级钢,其成分按重量百分比如表1所示。
所述系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,具体步骤同实施例1,相关工艺参数如表2所示,成品的力学性能详见表3。
实施例3
所述系列高等级耐候桥梁用E级钢,其成分按重量百分比如表1所示。
所述系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,具体步骤同实施例1,相关工艺参数如表2所示,成品的力学性能详见表3。实施例3回火后得到钢板在金相显微镜下典型的组织形貌图如图2所示。
实施例4
所述系列高等级耐候桥梁用E级钢,其成分按重量百分比如表1所示。
所述系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,具体步骤同实施例1,相关工艺参数如表2所示,成品的力学性能详见表3。
实施例5
所述系列高等级耐候桥梁用E级钢,其成分按重量百分比如表1所示。
所述系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,具体步骤同实施例1,相关工艺参数如表2所示,成品的力学性能详见表3。实施例5回火后得到钢板在金相显微镜下典型的组织形貌图如图3所示。
实施例6
所述系列高等级耐候桥梁用E级钢,其成分按重量百分比如表1所示。
所述系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,具体步骤同实施例1,相关工艺参数如表2所示,成品的力学性能详见表3。
表1本发明实施例的化学成分(wt%)
Figure PCTCN2022105737-appb-000001
表2轧制工艺参数
Figure PCTCN2022105737-appb-000002
表3力学性能
实施例 试样编号 ReL/MPa Rm/MPa A/% 屈强比/% 冲击试验(-40℃)/J
实施例1 Q460qENH 487 639 19.5 76 186 148 203
实施例2 Q460qENH 487 653 20 75 176 202 179
实施例3 Q500qENH 546 681 18 80 155 131 143
实施例4 Q500qENH 536 674 20.5 80 206 194 131
实施例 试样编号 ReL/MPa Rm/MPa A/% 屈强比/% 冲击试验(-40℃)/J
实施例5 Q550qENH 573 672 20 85 201 199 218
实施例6 Q550qENH 556 686 19 81 300 279 215

Claims (7)

  1. 一种系列高等级耐候桥梁用E级钢,其特征在于,其成分按重量百分比为:C:0.05~0.07%、Si:0.25~0.45%、Mn:1.25~1.50%、P:0.009-0.014%、S:≤0.003%、Nb:0.02~0.03%、Ti:0.008~0.018%、Cu:0.25~0.35%、Ni:0.25~0.35%、Cr:0.45~0.55%、Mo:0.05~0.15%、Alt:0.020~0.045%,余量为Fe和杂质。
  2. 根据权利要求1所述的系列高等级耐候桥梁用E级钢,其特征在于,所述钢材的金相组织为贝氏体+铁素体,晶粒度控制在9级以上。
  3. 一种权利要求1所述的系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,其特征在于,包括如下步骤:
    (1)铸坯加热:铸坯入炉进行加热;
    (2)一阶段轧制:粗轧温度为≥1030℃,采用高压水除鳞;
    (3)二阶段轧制:精轧开轧温度为800~1000℃,精轧终轧温度为780~840℃;随后层流冷却,返红温度为450~650℃;具体地,
    对于≥8~12mm的Q460qENH钢,返红温度为610~650℃;
    对于≥12~28mm的Q460qENH钢,返红温度为600~640℃;
    对于≥28~50mm的Q460qENH钢,返红温度为570~630℃;
    对于≥50~65mm的Q460qENH钢,返红温度为510~570℃;
    对于≥8~12mm的Q500qENH钢,返红温度为600~640℃;
    对于≥12~28mm的Q500qENH钢,返红温度为580~620℃;
    对于≥28~50mm的Q500qENH钢,返红温度为560~620℃;
    对于≥50~65mm的Q500qENH钢,返红温度为500~560℃;
    对于≥8~12mm的Q550qENH钢,返红温度为590~630℃;
    对于≥12~28mm的Q550qENH钢,返红温度为560~600℃;
    对于≥28~50mm的Q550qENH钢,返红温度为500~560℃;
    对于≥50~65mm的Q550qENH钢,返红温度为450~510℃;
    (4)热处理。
  4. 根据权利要求3所述的系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,其特征在于,所述步骤(1)中加热过程奥氏体化温度为1180℃~1240℃。
  5. 根据权利要求3所述的系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,其特征在于,所述步骤(2)中除鳞道次为1~2道次。
  6. 根据权利要求3所述的系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,其特征在于,所述步骤(3)中冷却速度为2~10℃/s。
  7. 根据权利要求3所述的系列高等级耐候桥梁用E级钢一坯料多钢级生产方法,其特征在于,所述步骤(4)中热处理控制回火温度为500~550℃,回火时间为50~150min。
PCT/CN2022/105737 2022-06-30 2022-07-14 一种系列高等级耐候桥梁用e级钢一坯料多钢级生产方法 WO2024000669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210778234.3A CN115094324A (zh) 2022-06-30 2022-06-30 一种系列高等级耐候桥梁用e级钢一坯料多钢级生产方法
CN202210778234.3 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024000669A1 true WO2024000669A1 (zh) 2024-01-04

Family

ID=83294522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105737 WO2024000669A1 (zh) 2022-06-30 2022-07-14 一种系列高等级耐候桥梁用e级钢一坯料多钢级生产方法

Country Status (2)

Country Link
CN (1) CN115094324A (zh)
WO (1) WO2024000669A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200334A (ja) * 2000-01-17 2001-07-24 Nkk Corp 溶接性および靭性に優れた60キロ級高張力鋼
CN104264062A (zh) * 2014-09-15 2015-01-07 南京钢铁股份有限公司 一种热轧态薄规格高强度桥梁板的制造方法
CN105063509A (zh) * 2015-07-27 2015-11-18 武汉钢铁(集团)公司 屈服强度500MPa级桥梁用结构钢及其生产方法
CN105779883A (zh) * 2016-05-06 2016-07-20 舞阳钢铁有限责任公司 485MPa级TMCP+回火耐候桥梁钢板及生产方法
CN113201687A (zh) * 2021-03-30 2021-08-03 唐山钢铁集团有限责任公司 一种420MPa级耐候桥梁钢及其生产方法
CN113846271A (zh) * 2021-09-17 2021-12-28 南京钢铁股份有限公司 一种微钼型耐候桥梁钢板及其制备方法
CN114182165A (zh) * 2021-10-29 2022-03-15 南京钢铁股份有限公司 一种低屈强比高韧性Q500qE桥梁钢及其生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522620B (zh) * 2019-11-28 2022-04-19 新余钢铁股份有限公司 一种在同种钢铁成分下制备不同级别耐候桥梁钢板的方法
CN111455287B (zh) * 2020-03-30 2021-09-17 南京钢铁股份有限公司 一种500MPa级低屈强比耐候桥梁钢及其制造方法
CN112676343A (zh) * 2020-11-27 2021-04-20 南京钢铁股份有限公司 采用连续轧制及卷轧保温生产薄规格抗震耐火钢的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200334A (ja) * 2000-01-17 2001-07-24 Nkk Corp 溶接性および靭性に優れた60キロ級高張力鋼
CN104264062A (zh) * 2014-09-15 2015-01-07 南京钢铁股份有限公司 一种热轧态薄规格高强度桥梁板的制造方法
CN105063509A (zh) * 2015-07-27 2015-11-18 武汉钢铁(集团)公司 屈服强度500MPa级桥梁用结构钢及其生产方法
CN105779883A (zh) * 2016-05-06 2016-07-20 舞阳钢铁有限责任公司 485MPa级TMCP+回火耐候桥梁钢板及生产方法
CN113201687A (zh) * 2021-03-30 2021-08-03 唐山钢铁集团有限责任公司 一种420MPa级耐候桥梁钢及其生产方法
CN113846271A (zh) * 2021-09-17 2021-12-28 南京钢铁股份有限公司 一种微钼型耐候桥梁钢板及其制备方法
CN114182165A (zh) * 2021-10-29 2022-03-15 南京钢铁股份有限公司 一种低屈强比高韧性Q500qE桥梁钢及其生产方法

Also Published As

Publication number Publication date
CN115094324A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN111455287A (zh) 一种500MPa级低屈强比耐候桥梁钢及其制造方法
AU2015353251A1 (en) Low-alloy high-strength high-tenacity steel panel and method for manufacturing same
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN109797341A (zh) 一种屈服强度不小于345MPa耐候桥梁钢及其制备方法
CN111235464B (zh) 一种钛微合金化经济型高强耐候钢及其生产方法
CN108411196B (zh) 抗拉强度为680MPa级大型移动式压力容器用钢及生产方法
CN107937807B (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN110629114A (zh) 一种低成本高强高韧桥梁钢及其制备方法
WO2022022066A1 (zh) 一种极地海洋工程用钢板及其制备方法
WO2022022040A1 (zh) 一种355MPa级别海洋工程用耐低温热轧H型钢及其制备方法
CN113957346B (zh) 一种屈服强度不小于500MPa高性能桥梁钢及其制备方法和应用
CN109609845A (zh) 一种500MPa级耐候钢及其生产方法
CN109338219B (zh) 一种风电法兰用特厚钢板及其生产方法
CN110983187A (zh) 一种新型高强耐候管线钢x80钢板及其生产方法
CN106319355A (zh) 一种含稀土高锰冷轧钢板及其制造方法
CN108342649B (zh) 一种耐酸腐蚀的调质高强度压力容器用钢及生产方法
CN113201687A (zh) 一种420MPa级耐候桥梁钢及其生产方法
CN107974643B (zh) -70℃正火高强度低屈强比压力容器钢及其制造方法
CN114411059A (zh) 一种桥梁钢及其制造方法
CN115386805A (zh) 一种低屈强比高韧性桥梁耐候钢及其制造方法
CN108588569B (zh) 一种屈服强度≥450MPa的海洋工程用钢及其制备方法
CN113846269A (zh) 一种具有高强塑性冷轧高耐候钢板及其制备方法
CN109930061A (zh) 一种正火型高强度钢板及其制造方法
CN110066966B (zh) 一种低内应力含钛高强钢及生产方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948764

Country of ref document: EP

Kind code of ref document: A1