WO2024000668A1 - 移动储能电池自动车充的方法和自动车充的移动储能电池 - Google Patents

移动储能电池自动车充的方法和自动车充的移动储能电池 Download PDF

Info

Publication number
WO2024000668A1
WO2024000668A1 PCT/CN2022/105725 CN2022105725W WO2024000668A1 WO 2024000668 A1 WO2024000668 A1 WO 2024000668A1 CN 2022105725 W CN2022105725 W CN 2022105725W WO 2024000668 A1 WO2024000668 A1 WO 2024000668A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
voltage
current
energy storage
storage battery
Prior art date
Application number
PCT/CN2022/105725
Other languages
English (en)
French (fr)
Inventor
刘智聪
汪振
王堂来
黄志聪
Original Assignee
深圳市涞顿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市涞顿科技有限公司 filed Critical 深圳市涞顿科技有限公司
Publication of WO2024000668A1 publication Critical patent/WO2024000668A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to the technical field of mobile energy storage batteries, and in particular to a method for automatic vehicle charging of a mobile energy storage battery and a mobile energy storage battery for automatic vehicle charging.
  • mobile energy storage batteries have a variety of charging methods, such as car charging, solar charging, mains charging, etc.
  • car chargers are often used in mobile scenarios such as outdoor activities, and can realize regular charging and maintenance of mobile energy storage batteries during transportation.
  • the mobile energy storage battery is connected to the car charging port inside the car through the car charging conversion plug, and the car power system supplies power to the mobile energy storage battery through the car charging port.
  • the power is not turned off after parking, such as temporary parking, waiting for a red light, traffic jams, etc.
  • the car battery will be charged through the car.
  • the port continues to output electric energy. If the power supply time is too long, the voltage of the car battery will be too low, which will affect the starting function of the car, and even cause the car battery to be over-discharged and seriously damaged.
  • the object of the present invention is to provide a method for automatic vehicle charging of mobile energy storage batteries that avoids over-discharge of automobile batteries.
  • a method for automatic vehicle charging of mobile energy storage batteries including steps:
  • the mobile energy storage battery is charged.
  • the method of automatic car charging of a mobile energy storage battery quickly determines the starting status of the car by detecting the current voltage of the car charging port during the car charging process, and only charges the mobile energy storage battery under the premise that the car is started. , not only can carry out automatic vehicle charging and maintenance of mobile energy storage batteries in a mobile state, but also avoid excessive consumption of electric energy of the car battery and achieve the purpose of protecting the car battery.
  • the mobile energy storage battery is connected to the car charging port through a car charging conversion plug, which also includes the following steps:
  • the internal resistance of the car charging conversion plug is detected, and the current voltage of the car charging port is corrected according to the internal resistance of the car charging conversion plug. , obtain the current corrected voltage of the car charging port;
  • the present invention On the basis of obtaining the current voltage of the car charging port, the present invention also takes into account the influence of the internal resistance of the car charging conversion plug and further calculates the current corrected voltage of the car charging port, thereby improving the accuracy of judging whether the car is started.
  • an external car charging voltage/current sampling circuit is electrically connected to the car charging port through the car charging conversion plug, and the power of the car charging port voltage/current sampling circuit is changed to charge the car.
  • the voltage/current sampling circuit detects the current voltage of the two car charging ports and the current current of the two car charging ports, according to the formula:
  • the mobile energy storage battery When the mobile energy storage battery is connected to the above-mentioned car charging port, it is determined whether the current power of the mobile energy storage battery is less than or equal to its target power, and when the current power of the mobile energy storage battery is less than or equal to its target power, the voltage of the car charging port is detected. current voltage. This step can prevent the mobile energy storage battery from overcharging and is beneficial to extending the service life of the mobile energy storage battery.
  • the invention also provides a mobile energy storage battery for automatic vehicle charging, which includes a control unit, a vehicle charging voltage/current sampling circuit, a charging switch circuit and a battery pack that are electrically connected to the vehicle charging port; wherein, the control unit The unit includes a vehicle starting status judgment module;
  • the car starting status judgment module obtains the current voltage of the car charging port detected by the car charging voltage/current sampling circuit, determines the starting voltage of the corresponding car battery based on the current voltage of the car charging port, and then determines the Whether the current voltage of the car charging port is greater than or equal to the starting voltage of the car battery; when the current voltage of the car charging port is greater than or equal to the starting voltage of the car battery, the charging switch circuit is controlled to be turned on to charge the battery group charging.
  • the mobile energy storage battery is connected to the car charging port through a car charging conversion plug, and the control unit also includes a car starting status correction module;
  • the car starting state correction module obtains the vehicle charging voltage/current sampling circuit detected at different powers. The current voltage of the two car charging ports and the current current of the two car charging ports; and then directly calculate the car charging conversion based on the current voltage of the two car charging ports and the current current of the two car charging ports.
  • the internal resistance of the plug and the current corrected voltage of the car charging port determine whether the current corrected voltage of the car charging port is greater than or equal to the starting voltage of the car battery; when the current corrected voltage of the car charging port is greater than or equal to the car
  • the charging switch circuit is controlled to be turned on to charge the battery pack; when the current correction voltage of the car charging port is less than the starting voltage of the car battery, the charging switch circuit is controlled to be turned off to charge the battery pack. The battery pack is not charged.
  • the vehicle charging voltage/current sampling circuit includes a first voltage sampling resistor, a second voltage sampling resistor, a current sampling resistor and an operational amplifier; wherein, the first voltage sampling resistor, the second voltage sampling resistor and The current sampling resistor is connected in series and is electrically connected to the car charging port through the car charging conversion plug, and an AD sampling port of the control unit is connected in series to the first voltage sampling resistor and the second voltage Between the sampling resistors, the voltage division value at both ends of the first voltage sampling resistor can be directly obtained; the operational amplifier is connected in parallel with the current sampling resistor, which directly obtains the voltage at both ends of the current sampling resistor, amplifies it, and then transmits it to An AD sampling port of the control unit, the control unit can calculate and obtain the current value flowing through the current sampling resistor based on the voltage value at both ends of the amplified current sampling resistor, thereby obtaining the current current of the car charging port value.
  • U is the current voltage of the car charging port
  • U 1 is the voltage dividing signal at both ends of the first voltage sampling resistor
  • R 1 is the resistance value of the first voltage sampling resistor
  • R 2 is the third voltage sampling resistor. The resistance value of a voltage sampling resistor.
  • the mobile energy storage battery also includes a mobile energy storage battery power detection circuit electrically connected to an AD sampling port of the battery pack and the control unit, and the control unit also includes a mobile energy storage battery power detection circuit. module;
  • the mobile energy storage battery power detection circuit detects the relevant circuit parameters of the battery pack, and transmits the relevant circuit parameters of the battery pack to an AD sampling port of the control unit; the mobile energy storage battery power determination module It is determined that the mobile energy storage battery is connected to the car charging port through the car charging conversion plug, and at the same time, based on the collected relevant circuit parameters of the battery pack, the current power of the battery pack is calculated, and the mobile energy storage battery is determined to be connected to the car charging port.
  • the vehicle starting state judgment module is triggered to work.
  • control unit is a microcontroller
  • charging switch circuit is a boost circuit
  • the present invention provides a method for automatic car charging of a mobile energy storage battery, and a mobile energy storage battery for automatic car charging, which can quickly determine the starting status of the car by detecting the current voltage of the car charging port. , and charges the mobile energy storage battery when the car is started, achieving the effect of automatic charging maintenance and protection of the car battery in a mobile scene; on this basis, the present invention also takes into account the influence of the internal resistance of the car charging conversion plug , further calculate the current corrected voltage of the car charging port, which improves the accuracy of judging the starting status of the car, and can well solve the problem of the car battery being over-discharged when the mobile energy storage power supply is charging, causing the car to fail to start normally.
  • Mobile energy storage brings convenience; in addition, stopping charging when the current power of the mobile energy storage battery reaches the target power can avoid serious losses caused by overcharging of the mobile energy storage battery and help reduce energy conservation.
  • Figure 1 is a step flow chart of a method for automatic vehicle charging of a mobile energy storage battery provided by an embodiment of the present invention
  • Figure 2 is a schematic circuit structure diagram of a mobile energy storage battery provided by an embodiment of the present invention.
  • Figure 3 is an equivalent circuit diagram of a mobile energy storage battery during charging according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a circuit module of a mobile energy storage battery provided by an embodiment of the present invention.
  • the power supply system of a car includes a parallel generator and battery, which can provide electric energy for starting, driving and electrical equipment of the car.
  • a parallel generator and battery which can provide electric energy for starting, driving and electrical equipment of the car.
  • the car's engine drives the generator to generate electricity.
  • the generator supplies power to the electrical equipment and charges the battery; when the car's engine stops running, the generator does not generate electricity.
  • the battery supplies power to electrical equipment and provides electrical energy to the engine when the car is started.
  • the present invention proposes a method for automatic vehicle charging of mobile energy storage batteries. This method estimates the voltage of the automobile battery by detecting the current voltage of the car charging port. This can quickly determine whether the car is starting or stalling, and automatically charge the mobile energy storage battery when the car is started, effectively avoiding excessive consumption of car battery power and causing permanent damage to the battery.
  • the present invention also calculates the internal resistance of the car charging conversion plug. To correct the current voltage of the car charging port, achieve accurate judgment on the starting status of the car, and avoid the phenomenon of not charging the mobile energy storage battery in time due to misjudgment.
  • FIG. 1 is a step flow chart of the method for automatic vehicle charging of a mobile energy storage battery provided in this embodiment.
  • the method includes steps:
  • step S1 Determine whether the mobile energy storage battery is connected to the car charging port. If so, perform step S2.
  • step S2 Determine whether the current power of the mobile energy storage battery is less than or equal to the target power of the mobile energy storage battery; if so, it means that the mobile energy storage battery requires automatic vehicle charging, then proceed to step S3; if not, it means that the mobile energy storage battery has no charging requirements. Then execute step S8.
  • the target power of the mobile energy storage battery is 30% to 95%, and its value can be set according to the actual needs of the user. Preferably, the target power is 90%.
  • the current voltage of the car charger reflects the voltage of the car battery
  • the starting voltage of the car battery is the minimum voltage of the car battery when the car is started. For example, if it is detected that the current voltage of the car charging port is between 11 and 15V, it can be determined that the rated voltage of the car battery is 12V, then the starting voltage of the car battery should be 13.5V. If it is detected that the current voltage of the car charging port is between 22 ⁇ 30V, it can be judged that the rated voltage of the car battery is 24V, then the starting voltage of the car battery should be 27V. Therefore, by detecting the current voltage of the car charging port, the starting voltage of the car battery can be directly derived for comparison.
  • step S4 Compare the current voltage of the car charging port with the starting voltage of the car battery, and determine whether the current voltage of the car charging port is greater than or equal to the starting voltage of the car battery. If not, perform step S5. If yes, perform step S7. Since the starting voltage of the car battery reflects the minimum voltage of the car battery when the car is started, comparing the current voltage of the car charger with the starting voltage of the car battery can determine whether the car is currently started. That is, when the current voltage of the car charging port is less than or equal to the car battery voltage, it can be judged that the car is in a stalled state; conversely, it can be judged that the car is in a started state.
  • step S5 Detect the internal resistance of the car charger conversion plug, and correct the current voltage of the car charger port according to the internal resistance of the car charger conversion plug to obtain the current corrected voltage of the car charger port.
  • the external sampling circuit needs to be electrically connected to the car charging port through the car charging conversion plug, and the voltage detected by the sampling circuit is used as the current voltage of the car charging port.
  • the actual voltage of the car charger port is the sum of the voltage at both ends of the car charger conversion plug and the voltage detected by the sampling circuit.
  • the current voltage of the car charger port is less than the actual voltage of the car charger port, and the car charger conversion plug
  • the current corrected voltage of the car charger port obtained by calculating the internal resistance is equal to the actual voltage of the car charger port, so that the actual voltage of the car battery can be accurately calculated.
  • the detection process of the internal resistance of the car charger conversion plug is: changing the power of the external sampling circuit so that the sampling circuit detects the current voltage of the two car charger ports and the current current of the two car charger ports, according to the formula:
  • U car represents the current correction voltage of the car charger port
  • r represents the internal resistance of the car charger conversion plug
  • U′ and I′ represent sampling respectively.
  • U′′ and I′′ respectively represent the current voltage and current of the car charging port detected by the sampling circuit under the second power. of the current current; where the first power is not equal to the second power, and neither is equal to zero.
  • the above-mentioned car charging conversion plug is a connecting device between the mobile energy storage battery and the car charging port. It can be a car charging converter and a charging cable, and its internal resistance is the internal resistance of the car charging converter and the charging The sum of the internal resistance of the line. For the same car charger conversion plug, its internal resistance is fixed. Within the preset time period, the internal resistance of the car charger conversion plug needs to be measured N times according to formulas (1) and (2); if the internal resistance of the car charger conversion plug obtained by N measurements are all the same, the internal resistance obtained by N measurements will be used.
  • the average resistance value is the internal resistance of the car charger conversion plug; if the internal resistance of the car charger conversion plug measured N times is not the same, you need to re-detect the current voltage and current of the car charger port and recalculate the car charger conversion plug. internal resistance. Among them, N is a positive integer greater than 2.
  • the car charger conversion plug If the car charger conversion plug is not replaced, you only need to calibrate and save the internal resistance of the car charger conversion plug when charging with the car charger conversion plug for the first time. The subsequent car charging process can be directly based on the saved car charger.
  • the internal resistance of the conversion plug is used to calculate the current corrected voltage of the car charger port.
  • car charger conversion plugs often need to be replaced frequently. Therefore, the internal resistance of the car charger conversion plug can be recalibrated every time the car charger conversion plug is replaced, or the car charger conversion plug can be calibrated before each car charge. The internal resistance is calibrated.
  • U is the current voltage of the car charger port detected by the above-mentioned sampling circuit at any power
  • I is the current voltage of the car charger port detected by the above-mentioned sampling circuit at any power. current.
  • step S6 Compare the current corrected voltage of the car charging port with the starting voltage of the car battery, and determine whether the current corrected voltage of the car charging port is greater than or equal to the starting voltage of the car battery; if so, it means that the car is in the starting state, then perform step S7; if No, it means that the car is in a stalled state, and step S8 is executed. Since the current corrected voltage of the car charging port reflects the actual voltage of the car battery, comparing the current corrected voltage of the car charging port with the starting voltage of the car battery can accurately determine whether the car is currently started.
  • S7 Charge the mobile energy storage battery.
  • the car is in the starting state. Only at this time can the mobile energy storage battery be charged to ensure that it will not Excessively consumes the electric energy of the car battery, thereby avoiding problems such as over-discharge of the car battery and the failure of the car to start normally.
  • step S2 is to determine in real time whether the current power of the mobile energy storage battery is less than or equal to the target power of the mobile energy storage battery; if so, it means that the mobile energy storage battery is not fully charged and needs to continue charging and maintenance. .
  • S8 Do not charge the mobile energy storage battery.
  • the current power of the mobile energy storage battery exceeds the target power of the mobile energy storage battery, it means that the mobile energy storage battery has completed charging maintenance, and charging should be stopped immediately to prevent the mobile energy storage battery from overcharging and causing permanent damage; when the car charging port
  • the current correction voltage is less than the starting voltage of the car battery, it means that the car is in a stalled state, and the car cannot be charged at this time to prevent excessive consumption of the car battery.
  • the present invention also provides a mobile energy storage battery for automatic vehicle charging.
  • Figure 2 is a schematic circuit structure diagram of the mobile energy storage battery provided in this embodiment
  • Figure 3 is an equivalent circuit diagram during charging of the mobile energy storage battery provided in this embodiment.
  • the mobile energy storage battery 1 is electrically connected to the car charging port 3 through the car charging conversion plug 2; the car battery 4 and the car generator 5 are connected in parallel to form the power supply system of the car, and provide mobile energy storage through the car charging port 3 and the car charging conversion plug 2 Powered by battery 1.
  • the mobile energy storage battery 1 includes a battery pack 11 , a mobile energy storage battery power detection circuit 12 , a vehicle charging voltage/current sampling circuit 13 , a control unit 14 and a charging switch circuit 15 .
  • the control unit 14 adopts a microcontroller unit (MCU) and is equipped with multiple AD (analog-to-digital conversion) sampling ports, which can obtain the voltage signal and voltage signal collected by the vehicle charging voltage/current sampling circuit 13. The current signal and the current and other circuit parameter signals collected by the mobile energy storage battery power detection circuit 12.
  • the control unit 14 includes a mobile energy storage battery power determination module 141, a vehicle starting state determining module 142, and a vehicle starting state correction module 143.
  • the battery pack 11 is composed of at least one secondary battery, which can perform multiple charge and discharge cycles; wherein, the secondary battery can be a lithium-ion battery (Lithium Ion Batteries, LIB for short), a lead-acid battery and a vanadium liquid. flow battery.
  • the secondary battery can be a lithium-ion battery (Lithium Ion Batteries, LIB for short), a lead-acid battery and a vanadium liquid. flow battery.
  • the mobile energy storage battery power detection circuit 12 is electrically connected to an AD sampling port of the battery pack 11 and the control unit 14 respectively.
  • the mobile energy storage battery power detection circuit 12 detects relevant circuit parameters of the battery pack 11, such as charging current and charging time. , open circuit voltage, charging voltage, electromotive force, etc., and transmit the relevant circuit parameters of the battery pack 11 to an AD sampling port of the control unit 14 .
  • the mobile energy storage battery power determination module 141 determines that the mobile energy storage battery 1 has been connected to the car charging port 3 through the car charging conversion plug 2, and at the same time calculates the current power of the battery pack 11 based on the collected relevant circuit parameters of the battery pack 11.
  • the estimation methods can be ampere-hour measurement method, open circuit voltage method, electromotive force method, neural network method and Kalman filter method, etc. Then it is determined whether the current power of the battery pack 11 is less than or equal to its target power; when the current power of the battery pack 11 is greater than its target power, the charging switch circuit 15 is controlled through pulse width modulation (Pulse Width Modulation, PWM) to cut off to prevent the battery pack 11 from being charged. Charging; when the current power of the battery pack 11 is less than or equal to its target power, the vehicle starting state judgment module 142 is triggered to start working.
  • PWM Pulse Width Modulation
  • the vehicle charging voltage/current sampling circuit 13 includes a first voltage sampling resistor R1, a second voltage sampling resistor R2, a current sampling resistor RS, an operational amplifier (Operational Amplifier, OA) and a filter capacitor C1.
  • the first voltage sampling resistor R1, the second voltage sampling resistor R2 and the current sampling resistor RS are connected in series and are electrically connected to the car charging port 3 through the car charging conversion plug 2, and an AD sampling port of the control unit 14 is connected in series to the car charging port 3.
  • the operational amplifier OA is connected in parallel with the current sampling resistor RS.
  • the control unit 14 can adjust the amplified voltage across the current sampling resistor RS according to the amplified voltage across the current sampling resistor RS.
  • the voltage value is calculated to obtain the current value flowing through the current sampling resistor RS, thereby obtaining the current current value of the car charger port.
  • the filter capacitor C1 is connected in parallel to both ends of the first voltage sampling resistor R1 and the second voltage sampling resistor R2, and is connected in series with the current sampling resistor RS to filter out high-frequency signals (or interference signals) in the circuit, thereby improving Accuracy of collected signals.
  • the control unit 14 can calculate and obtain the voltage values across the first voltage sampling resistor R1 and the second voltage sampling resistor R2 based on the voltage division value across the first voltage sampling resistor R1.
  • the calculation formula is:
  • U is the current voltage of the car charger port 3
  • U 1 is the divided voltage signal at both ends of the first voltage sampling resistor R1
  • R 1 is the resistance value of the first voltage sampling resistor R1
  • R 2 is the first voltage sampling resistor R2. resistance value.
  • first the first voltage sampling resistor is The voltage at both ends of R1 and the second voltage sampling resistor R2 is used as the current voltage of the car charger port 3 .
  • the car starting status determination module 142 obtains the current voltage of the car charging port detected by the car charging voltage/current sampling circuit, determines the starting voltage of the corresponding car battery based on the current voltage of the car charging port 3, and then determines the current voltage of the car charging port 3. Whether the voltage is greater than or equal to the starting voltage of the car battery 4; when the current voltage of the car charging port 3 is greater than or equal to the starting voltage of the car battery 4, the charging switch circuit 15 is controlled by PWM to be turned on to charge the battery pack 11.
  • the car starting state correction module 143 obtains the two car chargers detected by the car charging voltage/current sampling circuit 13 under different powers. The current voltage of port 3 and the current current of the two car charger ports 3; then directly calculate the internal resistance of the car charger conversion plug 2 and the car charger conversion plug 2 based on the current voltage of the two car charger ports 3 and the current current of the two car charger ports 3.
  • the current corrected voltage of charging port 3 determine whether the current corrected voltage of car charging port 3 is greater than or equal to the starting voltage of car battery 4; when the current corrected voltage of car charging port 3 is greater than or equal to the starting voltage of car battery 4, PWM control is used
  • the charging switch circuit 15 is turned on to charge the battery pack 11; when the current correction voltage of the car charging port 3 is less than the starting voltage of the car battery 4, the charging switch circuit 15 is controlled to be turned off so that the battery pack 11 is not charged.
  • the charging switch circuit 15 adopts a boost circuit, which includes an inductor L1, a diode D1, a boost capacitor C2 and a switching tube Q1.
  • the charging switch circuit 15 may also integrate a boost circuit to form a control chip.
  • the inductor L1 and the diode D1 are connected in series between the output end of the car charger conversion plug 2 and the input end of the battery pack 11, and form a series relationship with the current sampling resistor RS, and with the first voltage sampling resistor R1 and the second voltage sampling resistor R1.
  • Resistor R2 forms a parallel relationship.
  • the boosting capacitor C2 is connected in parallel to both ends of the battery pack 11 , its input terminal is connected in series to the output terminal of the diode D1 , and its output terminal is connected in series to the input terminal of the current sampling resistor RS.
  • the switch Q1 includes a first pin, a second pin and a third pin; wherein, the first pin is connected between the output end of the inductor L1 and the input end of the diode D1, and the second pin is grounded and connected to the riser. Between the output end of the piezocapacitor C2 and the input end of the current sampling resistor RS, the third pin is directly connected to the control unit 14; the switch tube Q1 can be a MOS tube (Metal-Oxide-Semiconductor Field Effect Transistor, Metal-Oxide- Semiconductor Field-Effect Transistor (MOSFET) or switching transistor; in this embodiment, the switching tube Q1 is a MOS tube, the first pin is the drain (Drain, D), and the second pin is the source (Source, S) , the third pin is the gate (Gate,G).
  • MOS tube Metal-Oxide-Semiconductor Field Effect Transistor, Metal-Oxide- Semiconductor Field-Effect
  • the switch tube Q1 When the charging switch circuit is cut off, the switch tube Q1 is in a conductive state and is equivalent to a wire. At this time, the current current of the car charging port charges the inductor L1, but does not charge the battery pack 14. When the charging switch circuit is turned on, the switch Q1 is in the off state and is equivalent to an open circuit. The current current of the car charging port charges the battery pack 11, and the electric energy stored in the inductor L1 also charges the battery pack 11 through the diode D1. The charging voltage at both ends of the battery pack 11 is greater than the current voltage of the car charging port 3 .
  • Voltage signal U 1 0.661V.
  • the vehicle charging voltage/current sampling circuit 13 is calculated according to formula (4).
  • the car starting state determination module 142 determines that the current voltages of the two car charging ports 3 are both smaller than the starting voltage of the car battery 4; at this time, the car
  • the current corrected voltage of the car charging port 3 is calculated to be U car ⁇ 13.7V>13.5V, that is, the car starting state correction module 143 determines that the current corrected voltage of the car charging port 3 is greater than the starting voltage of the car battery 4 , the car engine is running normally, and the charging switch circuit 15 is controlled to be turned on to charge the battery pack 11.
  • the present invention provides a method for automatic car charging of a mobile energy storage battery, and a mobile energy storage battery for automatic car charging, which can quickly determine the starting status of the car by detecting the current voltage of the car charging port. , and charges the mobile energy storage battery when the car is started, achieving the effect of automatic car charging maintenance and protecting the car battery in a mobile scene; on this basis, the present invention also takes into account the internal resistance of the car charging conversion plug. Impact, the current corrected voltage of the car charging port is further calculated, which improves the accuracy of judging the starting status of the car, and can well solve the problem of the car battery being over-discharged when the mobile energy storage power supply is charging, causing the car to fail to start normally. It brings convenience to the use of electricity for mobile travel; in addition, stopping charging when the current power of the mobile energy storage battery reaches the target power can avoid serious losses caused by overcharging of the mobile energy storage battery and help reduce energy conservation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种移动储能电池自动车充的方法,其包括步骤:检测车充口的当前电压,以确定汽车蓄电池的启动电压,并将所述车充口的当前电压和所述汽车蓄电池的启动电压进行比较;当所述车充口的当前电压大于等于所述汽车蓄电池的启动电压时,对移动储能电池充电。本发明所述的移动储能电池自动车充的方法通过检测车充口的当前电压来推算汽车蓄电池的电压,从而快速判断发动机的工作状态,并在汽车启动时自动向移动储能电池充电,有效避免对蓄电池电量的过度消耗而造成蓄电池永久性损失的问题。

Description

移动储能电池自动车充的方法和自动车充的移动储能电池 技术领域
本发明涉及移动储能电池的技术领域,特别是涉及移动储能电池自动车充的方法和自动车充的移动储能电池。
背景技术
在现代社会中,人们生活电气化率的不断提高,手机、无人机、小型家用电器等用电设备数量不断增加,移动用电场景逐渐多样化。另一方面,随着人们参与户外活动的渗透率的提高,以及安全备灾意识的增强,移动储能电池的市场需求越来越大。为了更好地发挥应急补电的功能,移动储能电池必须进行定期充电维护,保持常带电的状态。
目前,移动储能电池具有多种充电方式,例如车充,太阳能充电,市电充电等。其中,车充常用于户外活动等移动场景中,能够在携带过程中实现移动储能电池的定期充电维护。在车充过程中,移动储能电池通过车充转换插头与汽车内部的车充口连接,汽车电源系统通过车充口为移动储能电池供电。但是,日常生活中经常会出现停车后没有关闭电源的情况,例如临时停车、等红灯、堵车等,这样当未满电的移动储能电池与车充口连接时,汽车蓄电池会通过车充口继续输出电能,供电时间过长时就会造成汽车蓄电池电压过低,从而影响汽车的启动功能,甚至会导致汽车蓄电池过放而严重损坏。
发明内容
基于此,本发明的目的在于,提供一种避免汽车蓄电池过放的移动储能电池自动车充的方法。
本发明是通过如下技术方案实现的:
一种移动储能电池自动车充的方法,包括步骤:
检测车充口的当前电压,以确定汽车蓄电池的启动电压,并将所述车充口的当前电压和所述汽车蓄电池的启动电压进行比较;
当所述车充口的当前电压大于等于所述汽车蓄电池的启动电压时,对移动储能电池充电。
本发明所述的移动储能电池自动车充的方法,通过在车充过程中检测车充口的当前电压来快速判断汽车的启动状态,并在汽车启动的前提下才对移动储能电池充电,不仅能够在移动状态下对移动储能电池进行自动车充维护,还能避免过度消耗汽车蓄电池的电能,实现保护汽车蓄电池的目的。
进一步地,移动储能电池通过一车充转换插头接入车充口,还包括步骤:
当所述车充口的当前电压小于所述汽车蓄电池的启动电压时,检测车充转换插头的内阻,并根据所述车充转换插头的内阻对所述车充口的当前电压进行修正,获得车充口的当前修正电压;
判断所述车充口的当前修正电压是否大于等于所述汽车蓄电池的启动电压;当所述车充口的当前修正电压大于等于所述汽车蓄电池的启动电压时,对移动储能电池充电,反之,不对移动储能电池充电。
在获得车充口的当前电压的基础上,本发明还考虑到车充转换插头的内阻的影响,进一步计算得到车充口的当前修正电压,提高了对汽车是否启动的判断准确性。
进一步地,将一外置的车充电压/电流采样电路通过所述车充转换插头与所述车充口电连接,改变所述车充口电压/电流采样电路的功率,使所述车充电压/电流采样电路检测到两个车充口的当前电压和两个车充口的当前电流,根据公式:
U car=U′+I′×r   (1)
U car=U″+I″×r   (2)
计算得到所述车充转换插头的内阻和所述车充口的当前修正电压;式中,U car表示所述车充口的当前修正电压,r表示所述车充转换插头的内阻,U′、I′分别表示所述车充电压/电流采样电路在第一功率下检测到的所述车充口的当前电压和所述车充口的当前电流,U″、I″分别表示所述车充电压/电流采样电路在第二功率下检测到的所述车充口的当前电压和所述车充口的当前电流;其中,所述第一功率不等于所述第二功率,且二者均不等于零。
进一步地,在检测所述车充口的当前电压之前,还包括步骤:
当移动储能电池与上述车充口连接时,判断移动储能电池的当前电量是否小于等于其目标电量,并在移动储能电池的当前电量小于等于其目标电量时检测所述车充口的当前电压。该步骤能够防止移动储能电池过充,有利于延长移动储能电池的使用寿命。
本发明还提供了一种自动车充的移动储能电池,包括控制单元,及与汽车的车充口电连接的车充电压/电流采样电路、充电开关电路和电池组;其中,所述控制单元包括汽车启动状态判断模块;
所述汽车启动状态判断模块获取所述车充电压/电流采样电路检测得到的车充口的当前电压,并根据所述车充口的当前电压确定对应的汽车蓄电池的启动电压,然后判断所述车充口的当前电压是否大于等于所述汽车蓄电池的启动电压;当所述车充口的当前电压大于等于所述汽车蓄电池的启动电压时,控制所述充电开关电路导通以对所述电池组充电。
进一步地,所述移动储能电池通过一车充转换插头接入车充口,所述控制单元还包括汽车启动状态修正模块;
在所述汽车启动状态判断模块判断所述车充口的当前电压小于所述汽车蓄电池的启动电压时,所述汽车启动状态修正模块获取所述车充电压/电流采样电路在不同功率下检测到的两个车充口的当前电压和两个车充口的当前电流;然后根据两个所述车充口的当前电压和两个所述车充口的当前电流直接计算得到所述车充转换插头的内阻和车充口的当前修正电压,并判断所述车充口的当前修正电压是否大于等于所述汽车蓄电池的启动电压;当所述车充口的当前修正电压大于等于所述汽车蓄电池的启动电压时,控制所述充电开关电路导通以对所述电池组充电;当所述车充口的当前修正电压小于所述汽车蓄电池的启动电压时,控制所述充电开关电路切断以不对所述电池组充电。
进一步地,所述车充电压/电流采样电路包括第一电压采样电阻、第二电压采样电阻、电流采样电阻和运算放大器;其中,所述第一电压采样电阻、所述第二电压采样电阻及所述电流采样电阻串联,并通过所述车充转换插头与所述车充口电连接,且所述控制单元的一AD采样口串接于所述第一电压采样电阻和所述第二电压采样电阻之间,可直接获得所述第一电压采样电阻两端的分压值;所述运算放大器与所述电流采样电阻并联,其直接获取所述电流采样电阻两端的电压并放大后,传送至所述控制单元的一AD采样口,所述控制单元可根据该放大后的电流采样电阻两端的电压值计算获得流经所述电流采样电阻的电流值,从而获得所述车充口的当前电流值。
进一步地,所述车充口的当前电压的计算公式为:
Figure PCTCN2022105725-appb-000001
式中,U为所述车充口的当前电压,U 1为所述第一电压采样电阻两端的分压信号,R 1为所述第一电压采样电阻的电阻值,R 2为所述第一电压采样电阻的电阻值。
进一步地,所述移动储能电池还包括分别与所述电池组和所述控制单元的一AD采样口电连接的移动储能电池电量检测电路,所述控制单元还包括移动储能电池电量判断模块;
所述移动储能电池电量检测电路检测所述电池组的相关电路参数,并将所述电池组的相关电路参数传送至所述控制单元的一AD采样口;所述移动储能电池电量判断模块判断所述移动储能电池通过所述车充转换插头与所述车充口连接,同时根据采集到的所述电池组的相关电路参数,计算所述电池组的当前电量,并判断所述移动储能电池的当前电量是否小于等于其目标电量;当所述移动储能电池的当前电量大于其目标电量时,控制所述充电开关电路切断以不对电池组充电;当所述移动储能电池的当前电量小于等于其目标电量时,触发所述汽车启动状态判断模块进行工作。
进一步地,所述控制单元为微控制器,所述充电开关电路为boost升压电路。
与现有技术相比,本发明提供的一种移动储能电池自动车充的方法,以及一种自动车充的移动储能电池,通过检测车充口的当前电压来快速判断汽车的启动状态,并在汽车启动时进行为移动储能电池充电,达到了在移动场景中进行自动充电维护和保护汽车蓄电池的效果;在此基础上,本发明还考虑到车充转换插头的内阻的影响,进一步计算得到车充口的当前修正电压,提高了对汽车启动状态判断的准确性,能够很好地解决移动储能电源车充时引起汽车蓄电池过放而导致汽车无法正常启动的问题,给移动出行用电带来方便;此外,在移动储能电池的当前电量达到目标电量时停止充电,能够避免移动储能电池过充而造成严重损耗,并有利于降低节省电能。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为本发明一实施例提供的移动储能电池自动车充的方法的步骤流程图;
图2为本发明一实施例提供的移动储能电池的电路结构示意图;
图3为本发明一实施例提供的移动储能电池充电时的等效电路图;
图4为本发明一实施例提供的移动储能电池的电路模块示意图。
附图标记:移动储能电池1,电池组11,移动储能电池电量检测电路12,车充电压/电流采样电路13,控制单元14,移动储能电池电量判断模块141,汽车启动状态判断模块142,汽车启动状态修正模块143,充电开关电路15,车充转换插头2,车充口3,汽车蓄电池4,汽车发电机5。
具体实施方式
汽车的电源系统包括并联的发电机和蓄电池,可以为汽车的启动、行驶和用电设备提供电能。其中,在汽车的发动机正常运转时,汽车的发动机带动发电机发电,此时发电机为用电设备供电,并为蓄电池充电;在汽车的发动机停止运转时,发电机不发电,此时需通过蓄电池为用电设备供电,以及在汽车启动瞬间向发动机等提供电能。
在汽车发动机启动和熄火状态下,汽车蓄电池的电压存在着明显的区别:汽车熄火时,发电机不工作,蓄电池为汽车的用电设备供电,其电压随着用电设备的用电量的增加而逐渐降低,最终耗尽甚至出现过放;汽车启动后,发电机持续为用电设备和蓄电池供电,蓄电池的电压随着发动机的转速增大而逐渐增加。对于额定电压为12V的蓄电池,汽车启动后汽车蓄电池的电压维持在13.5~14.5V之间;而对于额定电压为24V的蓄电池,汽车启动后汽车蓄电池的电压应为27~29V。
现有技术中,通过车充为移动储能电池充电容易导致汽车蓄电池过放,其原因在于汽车 熄火时移动储能电池还会消耗汽车蓄电池的电能。因此,本发明基于汽车蓄电池在汽车不同启动状态下具有不同电压的特点,提出了一种移动储能电池自动车充的方法,该法通过检测车充口的当前电压来推算汽车蓄电池的电压,从而快速判断汽车的启动或熄火的状态,并在汽车启动时自动向移动储能电池充电,有效避免对汽车蓄电池电量的过度消耗而造成蓄电池永久性损害的问题。进一步地,由于移动储能电池均是通过一车充转换插头接入车充口,鉴于车充转换插头的内阻对车充口电压的影响,本发明还通过计算车充转换插头的内阻来修正车充口的当前电压,实现对汽车启动状态的精准判断,避免因误判断而没有及时对移动储能电池充电的现象。
为使本发明的目的、技术方案和优点更加清楚,下面通过具体的实施例作进行说明。
请参阅图1,其为本实施例提供的移动储能电池自动车充的方法的步骤流程图。该方法包括步骤:
S1:判断移动储能电池是否与车充口连接,若是,执行步骤S2。
S2:判断移动储能电池的当前电量是否小于等于移动储能电池的目标电量;若是,说明移动储能电池需要自动车充,则执行步骤S3;若否,说明移动储能电池没有充电需求,则执行步骤S8。其中,移动储能电池的目标电量为30~95%,其数值可根据用户的实际需求进行设定,优选的,目标电量为90%。
S3:检测车充口的当前电压,从而确定汽车蓄电池的启动电压。其中,车充口的当前电压反映了汽车蓄电池的电压,而汽车蓄电池的启动电压则是汽车启动时汽车蓄电池的最小电压。例如,若检测到车充口的当前电压在11~15V之间,可判断汽车蓄电池的额定电压为12V,则汽车蓄电池的启动电压应为13.5V,若检测到车充口的当前电压在22~30V之间,可判断汽车蓄电池的额定电压为24V,则汽车蓄电池的启动电压应为27V。因此,通过检测车充口的当前电压可直接推导得到汽车蓄电池的启动电压进行比较。
S4:将车充口的当前电压和汽车蓄电池的启动电压进行比较,判断车充口的当前电压是否大于等于汽车蓄电池的启动电压,若否,执行步骤S5,若是,执行步骤S7。由于汽车蓄电池的启动电压反映了汽车启动时汽车蓄电池的最小电压,因此将车充口的当前电压和汽车蓄电池的启动电压进行比较,就能得知汽车当前是否启动。即,当车充口的当前电压小于等于汽车蓄电池电压时,可判断汽车处于熄火状态;反之,可判断汽车处于启动状态。
S5:检测车充转换插头的内阻,并根据车充转换插头的内阻对车充口的当前电压进行修正,获得车充口的当前修正电压。在步骤S3中,需要将外置的采样电路通过车充转换插头与车充口电连接,并将采样电路检测到的电压作为车充口的当前电压。然而,车充口的实际电压为车充转换插头两端的电压和采样电路检测到的电压之和,也就是说,车充口的当前电压 小于车充口的实际电压,而通过车充转换插头的内阻计算获得的车充口的当前修正电压才等于车充口的实际电压,从而精准地推算得到汽车蓄电池的实际电压。
其中,车充转换插头的内阻的检测过程为:改变外置的采样电路的功率,使采样电路检测到两个车充口的当前电压和两个车充口的当前电流,根据公式:
U car=U′+I′×r   (1)
U car=U″+I″×r   (2)
计算得到车充转换插头的内阻和车充口的当前修正电压,式中,U car表示车充口的当前修正电压,r表示车充转换插头的内阻,U′、I′分别表示采样电路在第一功率下检测到的车充口的当前电压和车充口的当前电流,U″、I″分别表示采样电路在第二功率下检测到的车充口的当前电压和车充口的当前电流;其中,第一功率不等于第二功率,且二者均不等于零。
需要说明的是,上述的车充转换插头为移动储能电池与车充口之间的连接设备,可以为一个车充转换器和一条充电线,其内阻为车充转换器内阻和充电线内阻之和。对于同一车充转换插头,其内阻是固定的。在预设时长内,需根据公式(1)和(2)测量N次车充转换插头的内阻;若N次测量得到的车充转换插头的内阻均相同,以N次测量得到的内阻值的均值为车充转换插头的内阻;若N次测量得到的车充转换插头的内阻不相同,则需要重新检测车充口的当前电压和当前电流,并重新计算车充转换插头的内阻。其中,N为大于2的正整数。
若没有更换车充转换插头,那么只需要在第一次采用该车充转换插头充电时,对车充转换插头的内阻进行标定并保存,之后的车充过程可直接根据已保存的车充转换插头的内阻计算车充口的当前修正电压。但在现实场景中,车充转换插头往往需要经常更换,因此可以在每次更换车充转换插头时重新标定车充转换插头的内阻,也可以在每次车充前均对车充转换插头的内阻进行标定。
在已知车充转换插头的内阻时,可根据公式:
U car=U+I×r   (3)
直接计算得到车充口的当前修正电压,式中,U为上述采样电路在任意功率下检测到的车充口的当前电压,I为上述采样电路在任意功率下检测到的车充口的当前电流。
S6:将车充口的当前修正电压和汽车蓄电池的启动电压进行比较,判断车充口的当前修正电压是否大于等于汽车蓄电池的启动电压;若是,说明汽车处于启动状态,则执行步骤S7;若否,说明汽车处于熄火状态,执行步骤S8。由于车充口的当前修正电压反映了汽车蓄电池的实际电压,则将车充口的当前修正电压和汽车蓄电池的启动电压进行比较,能够实现对汽车当前是否启动的精准判断。
S7:对移动储能电池充电。当车充口的当前电压大于等于汽车蓄电池的启动电压,或者, 车充口的当前修正电压大于等于汽车蓄电池的启动电压时,汽车处于启动状态,此时对移动储能电池充电才能保证不会过度消耗汽车蓄电池的电能,从而避免汽车蓄电池过放和汽车无法正常启动等问题。同时,充电过程还需要不断地执行步骤S2,即实时判断移动储能电池的当前电量是否小于等于移动储能电池的目标电量;若是,说明移动储能电池还未满电,需要继续进行充电维护。
S8:不对移动储能电池充电。当移动储能电池的当前电量超过移动储能电池的目标电量时,说明移动储能电池已完成充电维护,应立即停止充电,防止移动储能电池过充而产生永久性损害;当车充口的当前修正电压小于汽车蓄电池的启动电压时,说明汽车处于熄火状态,此时也不能进行车充,以防止汽车蓄电池的过度消耗。
基于上述的移动储能电池自动车充的方法,本发明还提供了一种自动车充的移动储能电池。请同时参阅图2~3,其中,图2为本实施例提供的移动储能电池的电路结构示意图,图3为本实施例提供的移动储能电池充电时的等效电路图。移动储能电池1通过车充转换插头2与车充口3电连接;汽车蓄电池4和汽车发电机5并联形成汽车的电源系统,并通过车充口3和车充转换插头2为移动储能电池1供电。
请同时参阅图4,其为图2所示的移动储能电池的电路模块示意图。所述移动储能电池1包括电池组11、移动储能电池电量检测电路12、车充电压/电流采样电路13、控制单元14和充电开关电路15。其中,控制单元14采用微控制器(Microcontroller Unit,MCU),设有多个AD(模数转换,Analogue-to-Digital)采样口,能够获取车充电压/电流采样电路13采集的电压信号和电流信号以及移动储能电池电量检测电路12采集的电流等电路参数信号。进一步,该控制单元14包括移动储能电池电量判断模块141、汽车启动状态判断模块142和汽车启动状态修正模块143。
具体的,电池组11由至少一个二次电池组成,能够进行多次充放电循环;其中,二次电池可以为锂离子电池(简称锂电池,Lithium Ion Batteries,LIB)、铅酸蓄电池和钒液流电池。
移动储能电池电量检测电路12分别与电池组11和控制单元14的一AD采样口电连接,所述移动储能电池电量检测电路12检测电池组11的相关电路参数,如充电电流、充电时长、开路电压、充电电压和电动势等,并将上述电池组11的相关电路参数传送至控制单元14的一AD采样口。移动储能电池电量判断模块141判断移动储能电池1已通过车充转换插头2与车充口3连接,同时根据采集到的上述电池组11的相关电路参数,计算电池组11的当前电量,其估算方法可以为安时计量法、开路电压法、电动势法、神经网络法和卡尔曼滤波方法等。然后判断电池组11的当前电量是否小于等于其目标电量;当电池组11的当前电量大于其目标电量时,通过脉冲宽度调制(Pulse Width Modulation,PWM)控制充电开关电路15 切断以不对电池组11充电;当电池组11的当前电量小于等于其目标电量时,触发汽车启动状态判断模块142开始工作。
车充电压/电流采样电路13包括第一电压采样电阻R1、第二电压采样电阻R2、电流采样电阻RS、运算放大器(Operational Amplifier,OA)和滤波电容C1。其中,第一电压采样电阻R1、第二电压采样电阻R2及电流采样电阻RS串联,并通过车充转换插头2与车充口3电连接,且控制单元14的一AD采样口串接于第一电压采样电阻R1和第二电压采样电阻R2之间,可直接获得第一电压采样电阻R1两端的分压值。运算放大器OA与电流采样电阻RS并联,其直接获取电流采样电阻RS两端的电压并放大后,传送至控制单元14的一AD采样口,控制单元14可根据该放大后的电流采样电阻RS两端的电压值计算获得流经电流采样电阻RS的电流值,从而获得车充口的当前电流值。此外,滤波电容C1并联于第一电压采样电阻R1和第二电压采样电阻R2的两端,并与电流采样电阻RS串联,用于滤除电路中的高频信号(或干扰信号),从而提高采集信号的准确性。
控制单元14可根据第一电压采样电阻R1两端的分压值计算获得第一电压采样电阻R1和第二电压采样电阻R2两端的电压值,其计算公式为:
Figure PCTCN2022105725-appb-000002
式中,U为车充口3的当前电压,U 1为第一电压采样电阻R1两端的分压信号,R 1为第一电压采样电阻R1的电阻值,R 2为第一电压采样电阻R2的电阻值。
由于通过改车充电压/电流采样电路13仅能直接获得第一电压采样电阻R1和第二电压采样电阻R2两端的电压值,在初步判断汽车是否在启动状态时,首先将第一电压采样电阻R1和第二电压采样电阻R2两端的电压作为车充口3的当前电压。
汽车启动状态判断模块142获取车充电压/电流采样电路检测得到的车充口的当前电压,并根据车充口3的当前电压确定对应的汽车蓄电池的启动电压,然后判断车充口3的当前电压是否大于等于汽车蓄电池4的启动电压;当车充口3的当前电压大于等于汽车蓄电池4的启动电压时,通过PWM控制充电开关电路15导通以对电池组11充电。
在汽车启动状态判断模块142判断车充口3的当前电压小于汽车蓄电池4的启动电压时,汽车启动状态修正模块143获取车充电压/电流采样电路13在不同功率下检测到的两个车充口3的当前电压和两个车充口3的当前电流;然后根据两个车充口3的当前电压和两个车充口3的当前电流直接计算得到车充转换插头2的内阻和车充口3的当前修正电压,并判断车充口3的当前修正电压是否大于等于汽车蓄电池4的启动电压;当车充口3的当前修正电压大于等于汽车蓄电池4的启动电压时,通过PWM控制充电开关电路15导通以对电池组11 充电;当车充口3的当前修正电压小于汽车蓄电池4的启动电压时,控制充电开关电路15切断以不对电池组11充电。
进一步地,充电开关电路15采用boost升压电路,其包括电感L1、二极管D1、升压电容C2和开关管Q1。在其他实施例中,充电开关电路15也可以将boost升压电路集成形成一控制芯片。
其中,电感L1和二极管D1串接于车充转换插头2的输出端和电池组11的输入端之间,并与电流采样电阻RS形成串联关系、与第一电压采样电阻R1和第二电压采样电阻R2形成并联关系。升压电容C2并联于电池组11的两端,其输入端串接于二极管D1的输出端,其输出端串接于电流采样电阻RS的输入端。开关管Q1包括第一管脚、第二管脚和第三管脚;其中,第一管脚连接于电感L1的输出端和二极管D1的输入端之间,第二管脚接地并连接于升压电容C2的输出端和电流采样电阻RS的输入端之间,第三管脚与控制单元14直接连接;开关管Q1可以为MOS管(金属-氧化物-半导体场效应晶体管,Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或开关三极管;在本实施例中,开关管Q1为MOS管,第一管脚为漏极(Drain,D),第二管脚为源极(Source,S),第三管脚为栅极(Gate,G)。
当充电开关电路切断时,开关管Q1为导通状态并等效为一根导线,此时车充口的当前电流为电感L1充电,但不对电池组14充电。当充电开关电路导通时,开关管Q1为关断状态并等效为开路,车充口的当前电流为电池组11充电,而电感L1中储存的电能也通过二极管D1为电池组11充电,使得电池组11两端的充电电压大于车充口3的当前电压。
以下提供一个应用实施例:
第一电压采样电阻R1的电阻值为R 1=5.1kΩ,第二电压采样电阻R2的电阻值为R 2=100kΩ。如表1所示,第1次采样,控制单元14获取得到电流信号I=0,可以判断移动储能电池1没有与车充口3连接,无法进行车充。第2次采样,控制单元14获取得到电流信号I=1A,可以判断移动储能电池1与车充口3连接,可以进行车充;此时,车充电压/电流采样电路13采集到的分压信号U 1=0.661V,根据公式(4)计算得到车充口3的当前电压U=13.620V,可以判断汽车蓄电池的额定电压为12V,对应的汽车蓄电池的启动电压为13.5V,则汽车启动状态判断模块142能够判断U=13.620V>13.5V,即车充口3的当前电压大于汽车蓄电池4的启动电压,汽车发动机正常运转,则控制充电开关电路15导通以对电池组11充电。而在第4次采样和第5次采样时,车充电压/电流采样电路13采集的分压信号分别为U 1′=0.652V、U 1″=0.650V,根据公式(4)计算得到车充口3的当前电压分别为U′=13.437V、U″=13.398V,汽车启动状态判断模块142判断得到二者车充口3的当前电压均小于汽车蓄 电池4的启动电压;此时,汽车启动状态修正模块143进一步获取第4次采样和第5次采样的电流信号I′=3A、I″=4A,并根据公式(1)和(2)可计算得到车充转换插头2的内阻为r=0.08Ω,然后计算得到车充口3的当前修正电压为U car≈13.7V>13.5V,即汽车启动状态修正模块143判断车充口3的当前修正电压大于汽车蓄电池4的启动电压,汽车发动机正常运转,则控制充电开关电路15导通以对电池组11充电。
表1.移动储能电池1自动车充时的实测数据
Figure PCTCN2022105725-appb-000003
此外,由于移动储能电池1通过同一车充转换插头2进行车充,那么汽车启动状态修正模块143可以在开始车充时就对车充转换插头2的内阻进行标定,获得r=0.08Ω,然后在车充口3的当前电压小于汽车蓄电池4的启动电压时,直接根据公式(3)计算车充口3的当前修正电压。例如,在第9次采样,汽车启动状态判断模块142计算得到车充口3的当前电压U=12.985V,明显小于汽车蓄电池4的启动电压,而汽车启动状态修正模块143可计算得到车充口3的当前修正电压U car=(12.985+8.8×0.08)V=13.689V>13.5V,控制充电开关电路15导通以对电池组11充电。
与现有技术相比,本发明提供的一种移动储能电池自动车充的方法,以及一种自动车充的移动储能电池,通过检测车充口的当前电压来快速判断汽车的启动状态,并在汽车启动时进行为移动储能电池充电,达到了在移动场景中进行自动车充维护和保护汽车蓄电池的效果;在此基础上,本发明还考虑到车充转换插头的内阻的影响,进一步计算得到车充口的当前修正电压,提高了对汽车启动状态判断的准确性,能够很好地解决移动储能电源车充时引起汽车蓄电池过放而导致汽车无法正常启动的问题,给移动出行用电带来方便;此外,在移动储能电池的当前电量达到目标电量时停止充电,能够避免移动储能电池过充而造成严重损耗,并有利于降低节省电能。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 一种移动储能电池自动车充的方法,其特征在于,包括步骤:
    检测车充口的当前电压,以确定汽车蓄电池的启动电压,并将所述车充口的当前电压和所述汽车蓄电池的启动电压进行比较;
    当所述车充口的当前电压大于等于所述汽车蓄电池的启动电压时,对移动储能电池充电。
  2. 根据权利要求1所述的移动储能电池自动车充的方法,其特征在于,移动储能电池通过一车充转换插头接入车充口,还包括步骤:
    当所述车充口的当前电压小于所述汽车蓄电池的启动电压时,检测车充转换插头的内阻,并根据所述车充转换插头的内阻对所述车充口的当前电压进行修正,获得车充口的当前修正电压;
    判断所述车充口的当前修正电压是否大于等于所述汽车蓄电池的启动电压;当所述车充口的当前修正电压大于等于所述汽车蓄电池的启动电压时,对移动储能电池充电,反之,不对移动储能电池充电。
  3. 根据权利要求2所述的移动储能电池自动车充的方法,其特征在于:
    将一外置的车充电压/电流采样电路通过所述车充转换插头与所述车充口电连接,改变所述车充口电压/电流采样电路的功率,使所述车充电压/电流采样电路检测到两个车充口的当前电压和两个车充口的当前电流,根据公式:
    U car=U′+I′×r  (1)
    U car=U″+I″×r  (2)
    计算得到所述车充转换插头的内阻和所述车充口的当前修正电压;式中,U car表示所述车充口的当前修正电压,r表示所述车充转换插头的内阻,U′、I′分别表示所述车充电压/电流采样电路在第一功率下检测到的所述车充口的当前电压和所述车充口的当前电流,U″、I″分别表示所述车充电压/电流采样电路在第二功率下检测到的所述车充口的当前电压和所述车充口的当前电流;其中,所述第一功率不等于所述第二功率,且二者均不等于零。
  4. 根据权利要求1~3任一条所述的移动储能电池自动车充的方法,其特征在于,在检测所述车充口的当前电压之前,还包括步骤:
    当移动储能电池与上述车充口连接时,判断移动储能电池的当前电量是否小于等于其目标电量,并在移动储能电池的当前电量小于等于其目标电量时检测所述车充口的当前电压。
  5. 一种自动车充的移动储能电池,其特征在于:
    包括控制单元,及与汽车的车充口电连接的车充电压/电流采样电路、充电开关电路和电 池组;其中,所述控制单元包括汽车启动状态判断模块;
    所述汽车启动状态判断模块获取所述车充电压/电流采样电路检测得到的车充口的当前电压,并根据所述车充口的当前电压确定对应的汽车蓄电池的启动电压,然后判断所述车充口的当前电压是否大于等于所述汽车蓄电池的启动电压;当所述车充口的当前电压大于等于所述汽车蓄电池的启动电压时,控制所述充电开关电路导通以对所述电池组充电。
  6. 根据权利要求5所述的自动车充的移动储能电池,其特征在于:所述移动储能电池通过一车充转换插头接入车充口,所述控制单元还包括汽车启动状态修正模块;
    在所述汽车启动状态判断模块判断所述车充口的当前电压小于所述汽车蓄电池的启动电压时,所述汽车启动状态修正模块获取所述车充电压/电流采样电路在不同功率下检测到的两个车充口的当前电压和两个车充口的当前电流;然后根据两个所述车充口的当前电压和两个所述车充口的当前电流直接计算得到所述车充转换插头的内阻和车充口的当前修正电压,并判断所述车充口的当前修正电压是否大于等于所述汽车蓄电池的启动电压;当所述车充口的当前修正电压大于等于所述汽车蓄电池的启动电压时,控制所述充电开关电路导通以对所述电池组充电;当所述车充口的当前修正电压小于所述汽车蓄电池的启动电压时,控制所述充电开关电路切断以不对所述电池组充电。
  7. 根据权利要求6所述的自动车充的移动储能电池,其特征在于:
    所述车充电压/电流采样电路包括第一电压采样电阻、第二电压采样电阻、电流采样电阻和运算放大器;其中,所述第一电压采样电阻、所述第二电压采样电阻及所述电流采样电阻串联,并通过所述车充转换插头与所述车充口电连接,且所述控制单元的一AD采样口串接于所述第一电压采样电阻和所述第二电压采样电阻之间,可直接获得所述第一电压采样电阻两端的分压值;所述运算放大器与所述电流采样电阻并联,其直接获取所述电流采样电阻两端的电压并放大后,传送至所述控制单元的一AD采样口,所述控制单元可根据该放大后的电流采样电阻两端的电压值计算获得流经所述电流采样电阻的电流值,从而获得所述车充口的当前电流值。
  8. 根据权利要求7所述的自动车充的移动储能电池,其特征在于:
    所述车充口的当前电压的计算公式为:
    Figure PCTCN2022105725-appb-100001
    式中,U为所述车充口的当前电压,U 1为所述第一电压采样电阻两端的分压信号,R 1为所述第一电压采样电阻的电阻值,R 2为所述第一电压采样电阻的电阻值。
  9. 根据权利要求5~8任一条所述的自动车充的移动储能电池,其特征在于:
    所述移动储能电池还包括分别与所述电池组和所述控制单元的一AD采样口电连接的移动储能电池电量检测电路,所述控制单元还包括移动储能电池电量判断模块;
    所述移动储能电池电量检测电路检测所述电池组的相关电路参数,并将所述电池组的相关电路参数传送至所述控制单元的一AD采样口;所述移动储能电池电量判断模块判断所述移动储能电池通过所述车充转换插头与所述车充口连接,同时根据采集到的所述电池组的相关电路参数,计算所述电池组的当前电量,并判断所述移动储能电池的当前电量是否小于等于其目标电量;当所述移动储能电池的当前电量大于其目标电量时,控制所述充电开关电路切断以不对电池组充电;当所述移动储能电池的当前电量小于等于其目标电量时,触发所述汽车启动状态判断模块进行工作。
  10. 根据权利要求9所述的自动车充的移动储能电池,其特征在于:
    所述控制单元为微控制器,所述充电开关电路为boost升压电路。
PCT/CN2022/105725 2022-06-28 2022-07-14 移动储能电池自动车充的方法和自动车充的移动储能电池 WO2024000668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210743336.1 2022-06-28
CN202210743336.1A CN115065115B (zh) 2022-06-28 2022-06-28 移动储能电池自动车充的方法

Publications (1)

Publication Number Publication Date
WO2024000668A1 true WO2024000668A1 (zh) 2024-01-04

Family

ID=83204809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105725 WO2024000668A1 (zh) 2022-06-28 2022-07-14 移动储能电池自动车充的方法和自动车充的移动储能电池

Country Status (2)

Country Link
CN (2) CN115882552A (zh)
WO (1) WO2024000668A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790374A (zh) * 2016-04-26 2016-07-20 广东志成冠军集团有限公司 一种车载储电箱
CN107658930A (zh) * 2017-10-12 2018-02-02 东莞博力威新能源有限公司 一种储能电池
CN208862604U (zh) * 2018-10-16 2019-05-14 深圳市电将军科技有限公司 多功能便携式应急储能电源
KR102147111B1 (ko) * 2019-10-30 2020-08-25 광석자동차 주식회사 차량 또는 산업용 엔진의 배터리 충전을 위한 자동 시동 장치
CN113285506A (zh) * 2021-05-21 2021-08-20 东风柳州汽车有限公司 一种车辆双电池充电控制方法、电路系统及车辆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106004446B (zh) * 2016-05-31 2018-07-10 北京现代汽车有限公司 电动汽车低压蓄电池的充电控制方法、系统及整车控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790374A (zh) * 2016-04-26 2016-07-20 广东志成冠军集团有限公司 一种车载储电箱
CN107658930A (zh) * 2017-10-12 2018-02-02 东莞博力威新能源有限公司 一种储能电池
CN208862604U (zh) * 2018-10-16 2019-05-14 深圳市电将军科技有限公司 多功能便携式应急储能电源
KR102147111B1 (ko) * 2019-10-30 2020-08-25 광석자동차 주식회사 차량 또는 산업용 엔진의 배터리 충전을 위한 자동 시동 장치
CN113285506A (zh) * 2021-05-21 2021-08-20 东风柳州汽车有限公司 一种车辆双电池充电控制方法、电路系统及车辆

Also Published As

Publication number Publication date
CN115065115B (zh) 2023-01-13
CN115065115A (zh) 2022-09-16
CN115882552A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
RU2691963C2 (ru) Способ контроля состояния зарядки батареи
CN101546919B (zh) 一种电池充电方法及装置
US9444285B2 (en) Charge controller for vehicle
US5739667A (en) Control system for charging batteries and electronic apparatus using same
CN204479723U (zh) 锂电池充放电特性标定仪
CN105759221A (zh) 一种带有内阻监测功能的动力电池组管理系统
CN109228959B (zh) 具有防火防爆功能的电动自行车智能充电系统及充电方法
WO2015025212A1 (en) Electric storage system and full charge capacity estimation method for electric storage device
CN102570558B (zh) 一种镍氢镍镉电池的智能充电器及其控制方法
CN101777782A (zh) 电池组以及控制电池组的方法
CN205407331U (zh) 一种适用于新能源车的电池组智能管理系统
CN102638085A (zh) 电动汽车蓄电池智能充电及电池管理装置
CN102645638B (zh) 一种锂电池组soc估算方法
CN106712174B (zh) 锂离子蓄电池组供电及通信自动切换方法
US11682919B2 (en) Intelligent control system, emergency starting power supply, and intelligent battery clip
WO2022267825A1 (zh) 充电控制方法、充电控制装置与充电装置
CN101826744B (zh) 铁电池充电电路
CN113659685A (zh) 一种模拟电动汽车电池充放电管理的小型电池管理系统
WO2024000668A1 (zh) 移动储能电池自动车充的方法和自动车充的移动储能电池
CN102130368B (zh) 阀控式铅酸蓄电池的预热充电方法
CN201994718U (zh) 一种智能供电、充电电路
CN109342961A (zh) 工业电池监控系统
CN110673051B (zh) 一种蓄电池开路监测方法
CN102856603B (zh) 可避免低温充电失水的阀控式铅酸蓄电池的预热充电方法
CN102064589B (zh) 阀控式铅酸蓄电池的充电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948763

Country of ref document: EP

Kind code of ref document: A1