WO2024000543A1 - 下行控制信息识别、配置方法和装置 - Google Patents

下行控制信息识别、配置方法和装置 Download PDF

Info

Publication number
WO2024000543A1
WO2024000543A1 PCT/CN2022/103182 CN2022103182W WO2024000543A1 WO 2024000543 A1 WO2024000543 A1 WO 2024000543A1 CN 2022103182 W CN2022103182 W CN 2022103182W WO 2024000543 A1 WO2024000543 A1 WO 2024000543A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
downlink control
information
relevant information
control information
Prior art date
Application number
PCT/CN2022/103182
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/103182 priority Critical patent/WO2024000543A1/zh
Priority to CN202280002278.5A priority patent/CN115298984A/zh
Publication of WO2024000543A1 publication Critical patent/WO2024000543A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers

Definitions

  • the present disclosure relates to the field of communication technology, specifically, to a downlink control information identification method, a downlink control information configuration method, a downlink control information identification device, a downlink control information configuration device, a communication device and a computer-readable storage medium.
  • a downlink control information (Downlink Control Information, DCI) is only used to schedule data of a cell, such as scheduling a cell's physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), physical downlink shared channel (Physical Downlink) Shared Channel, PDSCH).
  • DCI Downlink Control Information
  • DCI used to schedule multiple cells (data).
  • MC-DCI DCI used to schedule multiple cells (data).
  • DCI can include MC-DCI or legacy DCI, and MC-DCI is different from legacy DCI. Therefore, how to distinguish MC-DCI from legacy DCI is an urgent technology to be solved. question.
  • embodiments of the present disclosure propose a downlink control information identification method, a downlink control information configuration method, a downlink control information identification device, a downlink control information configuration device, a communication device and a computer-readable storage medium to solve the problems in related technologies. technical problem.
  • a downlink control information identification method is proposed, which is executed by a terminal.
  • the method includes: determining relevant information of downlink control information DCI; identifying the type of the DCI according to the relevant information of the DCI. , wherein the type is MC-DCI or traditional legacy DCI used to schedule data of multiple cells.
  • a downlink control information configuration method is proposed, which is executed by a network device.
  • the method includes: determining the type of DCI sent to the terminal; and configuring related information of the DCI according to the type.
  • a device for identifying downlink control information includes: a processing module configured to determine relevant information of downlink control information DCI; and identify the DCI according to the relevant information of the DCI.
  • DCI downlink control information
  • Type wherein the type is MC-DCI or traditional legacy DCI used for scheduling data of multiple cells.
  • a downlink control information configuration device includes: a processing module configured to determine the type of DCI sent to the terminal; and configure relevant information of the DCI according to the type. .
  • a communication device including: a processor; and a memory for storing a computer program; wherein when the computer program is executed by the processor, the above downlink control information identification method is implemented.
  • a communication device including: a processor; a memory for storing a computer program; wherein when the computer program is executed by the processor, the above downlink control information configuration method is implemented.
  • a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in the above downlink control information identification method are implemented.
  • a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in the above downlink control information configuration method are implemented.
  • the terminal after receiving the DCI from the network device, the terminal can determine the relevant information of the DCI, and then determine the corresponding information of the received DCI based on the association between the pre-stored relevant information and the type of DCI.
  • the type of DCI that is, determine whether the DCI is MC-DCI used to schedule multiple cells or legacy DCI, so that appropriate parsing methods can be used to correctly parse the DCI.
  • Figure 1 is a schematic flow chart of a downlink control information identification method according to an embodiment of the present disclosure.
  • Figure 2 is a schematic diagram showing the application of a downlink control information identification method according to an embodiment of the present disclosure.
  • Figure 3 is a schematic diagram showing the application of a downlink control information identification method according to an embodiment of the present disclosure.
  • Figure 4 is a schematic flow chart of a downlink control information configuration method according to an embodiment of the present disclosure.
  • Figure 5 is a schematic block diagram of a downlink control information identification device according to an embodiment of the present disclosure.
  • Figure 6 is a schematic block diagram of a downlink control information configuration device according to an embodiment of the present disclosure.
  • Figure 7 is a schematic block diagram of a device for configuring downlink control information according to an embodiment of the present disclosure.
  • Figure 8 is a schematic block diagram of a device for identifying downlink control information according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • MC-DCI is a newly introduced DCI.
  • the format of MC-DCI can be different from the format of legacy DCI.
  • Legacy DCI includes but is not limited to DCI used for scheduling single cells, such as DCI format 0_0, DCI format 1_0, DCI format 0_1, DCI format 1_1, DCI format 0_2, DCI format 1_2.
  • the format of MC-DCI can be a newly configured format.
  • MC-DCI can include DCI format 0_3 and DCI format 1_3.
  • MC-DCI can be used to schedule multiple cells, while legacy DCI is used to schedule a single cell. Therefore, the functions of the two DCIs are different, and the meanings of the information fields in the two DCIs are also different. For example, one in MC-DCI A type of information field can indicate the scheduling information of multiple cells, while a type of information field in legacy DCI can only indicate the scheduling information of one cell. Since the meanings of the information fields in the two DCIs are different, the parsing methods for parsing the two DCIs will also be different. Therefore, it is necessary to enable the terminal to determine whether the DCI is MC-DCI or legacy DCI, so that the corresponding parsing method can be adopted correctly. Parse DCI.
  • Figure 1 is a schematic flow chart of a downlink control information identification method according to an embodiment of the present disclosure.
  • the downlink control information identification method shown in this embodiment can be executed by a terminal, which includes but is not limited to mobile phones, tablet computers, wearable devices, sensors, Internet of Things devices and other communication devices.
  • the terminal can communicate with network equipment, which includes but is not limited to network equipment in 4G, 5G, 6G and other communication systems, such as base stations, core networks, etc.
  • the downlink control information identification method may include the following steps:
  • step S101 determine relevant information of downlink control information DCI
  • step S102 the type of the DCI is identified according to the relevant information of the DCI, where the type is MC-DCI or traditional legacy DCI used for scheduling data of multiple cells.
  • the terminal after receiving the DCI from the network device, the terminal can determine the relevant information of the DCI, and then based on the relevant information stored in advance (for example, it can be determined according to the protocol agreement or according to the signaling sent by the network). and the DCI type, determine the DCI type corresponding to the received DCI related information, that is, determine whether the DCI is MC-DCI used to schedule multiple cells or legacy DCI, so as to take appropriate measures.
  • the parsing method parses DCI correctly.
  • the embodiments of the present disclosure are mainly used to distinguish MC-DCI and legacy DCI, and the distinction between different DCIs in legacy DCI can be based on the size of the DCI (that is, the number of occupied bits) or signaling. Make a distinction.
  • DCI format 0_3 represents the MC-DCI that schedules the uplink of multiple cells
  • DCI format 1_3 represents the MC-DCI that schedules the downlink of multiple cells
  • DCI format 0_1 represents the MC-DCI that schedules the uplink of a single cell
  • DCI format1_1 represents the MC that schedules the downlink of a single cell.
  • -DCI Embodiments of the present disclosure can be used to distinguish DCI format 0_3 and DCI format 0_1, and can also be used to distinguish DCI format 1_3 and DCI format 1_1.
  • DCI format 0_1 and DCI format 0_2 in legacy DCI they can be distinguished based on the size or signaling of DCI.
  • DCI format 0_3 and DCI format 1_3 and the distinction between DCI format 0_1 and DCI format1_1 can be determined based on the value of the information field in DCI.
  • the relevant information includes one of the following:
  • the wireless network temporary identity RNTI Radio Network Temporary Identity
  • Indication information used to indicate that the DCI is MC-DCI or legacy DCI.
  • identifying the type of the DCI according to the relevant information of the DCI includes: when the relevant information of the DCI is the first relevant information, determining that the DCI is MC-DCI; and/ Or when the relevant information of the DCI is the second relevant information, determine that the DCI is a legacy DCI.
  • the terminal may determine the RNTI used to scramble the DCI. For example, the correlation between the relevant information and the type of DCI is that the first RNTI corresponds to legacy DCI, and the second RNTI corresponds to MC-DCI. Then when it is determined that the RNTI used for scrambling DCI is the first RNTI, the received DCI can be determined. For legacy DCI, when the RNTI used for scrambling DCI is determined to be the second RNTI, the received DCI can be determined to be MC-DCI.
  • the first RNTI may be the cell wireless network temporary identifier C-RNTI
  • the second RNTI may be other RNTI, such as a newly set RNTI, which may be called MC-RNTI.
  • MC represents multi-cell or multi-carrier, or is called MCS-RNTI.
  • SC-RNTI MCS stands for Multi-carrier scheduling (Multi-carrier scheduling), SC stands for scheduling cell (scheduling cell).
  • Figure 2 is a schematic diagram showing the application of a downlink control information identification method according to an embodiment of the present disclosure. As shown in Figure 2, taking three cells, Cell#0, Cell#1, and Cell#2, as an example, after the terminal receives DCI on Cell#0, it can determine the RNTI used to scramble the DCI.
  • the RNTI of the scrambling DCI is MCS-SC-RNTI
  • the RNTI of the scrambling DCI is the C-RNTI
  • the terminal may receive indication information indicating that the DCI is MC-DCI or legacy DCI, where the indication information includes but is not limited to Radio Resource Control (RRC) signaling, so Describes the information fields that are prioritized for analysis in DCI, etc.
  • RRC Radio Resource Control
  • the terminal can determine whether the received DCI is MC-DCI or legacy DCI according to the indication information.
  • the indication information may occupy 1 bit or 2 bits.
  • the indication information can be used to distinguish whether the DCI is MC-DCI or legacy DCI. For example, 0 indicates that the DCI is legacy DCI, and 1 indicates that the DCI is MC-DCI.
  • the indication information can be used to distinguish whether the DCI is MC-DCI or legacy DCI, and can further differentiate whether the DCI is used for scheduling uplink or downlink. For example, 00 indicates that the DCI is MC-DCI (e.g., DCI 0_3) used for scheduling uplink, 01 indicates that DCI is MC-DCI used for scheduling downlink (e.g., DCI 1_3), and 10 indicates that DCI is legacy DCI used for scheduling uplink. (e.g., DCI0_1), 11 indicates that the DCI is the legacy DCI (e.g., DCI 1_1) used for scheduling downlink.
  • 00 indicates that the DCI is MC-DCI (e.g., DCI 0_3) used for scheduling uplink
  • 01 indicates that DCI is MC-DCI used for scheduling downlink (e.g., DCI 1_3)
  • 10 indicates that DCI is legacy DCI used for scheduling uplink. (e.g., DCI0_1)
  • 11 indicates that the
  • association between the relevant information and the type of DCI can be indicated by the network device, or agreed upon by the protocol, or it can be a candidate set of the association stipulated by the protocol, and then the network device determines the relationship among the candidates through the indication information. Centrally indicate an association relationship to the terminal.
  • the terminal may determine the resources used to receive the DCI. For example, the association between the relevant information and the type of DCI is that the first resource corresponds to legacy DCI, and the second resource corresponds to MC-DCI. Then when it is determined that the DCI is received at the first resource, it can be determined that the received DCI is legacy DCI. , when it is determined that the DCI is received on the second resource, it may be determined that the received DCI is MC-DCI.
  • the resources include at least one of the following:
  • Search space SS Search Space
  • the association relationship is that the first BWP set corresponds to legacy DCI, and the second BWP set corresponds to MC-DCI.
  • the first BWP set corresponds to legacy DCI
  • the second BWP set corresponds to MC-DCI.
  • the SS information includes at least one of the following:
  • control resource set CORESET Control Resource Set
  • the number of Physical Downlink Control Channel (PDCCH) candidates in SS is the number of Physical Downlink Control Channel (PDCCH) candidates in SS;
  • the information elements (IE) of SS include searchSpaceId (search space identification), controlResourceSetId (control resource set identification), nrofCandidates (number of PDCCH candidates under multiple aggregation levels), monitoringSlotPeriodicityAndOffset (search space configuration period and corresponding Slot offset), duration (the number of continuous time slots in the search space), monitoringSymbolsWithinSlot (within the time slot range, the starting position of the CORESET symbol associated with the search space).
  • the identifier of the SS can be determined based on the searchSpaceId; the identifier of the CORESET associated with the SS can be determined based on the controlResourceSetId; the number of PDCCH candidates in the SS can be determined based on nrofCandidates; the listening slot cycle of the SS and the starting position of the SS timeslot can be determined based on monitoringSlotPeriodicityAndOffset is determined; the number of monitoring slots of SS can be determined according to duration; the number of monitoring symbols in SS time slot can be determined according to monitoringSymbolsWithinSlot.
  • the time slot position of the SS is used as an example.
  • the terminal determines that the starting position of the time slot in which the SS is configured (in all embodiments of the present disclosure, the terminal determines the configuration SS, which may refer to the terminal determining the network device configuration SS) belongs to the first time slot location set, it may determine that blind detection is performed in the SS
  • the DCI (that is, the received DCI) is MC-DCI.
  • it can be determined that the DCI blindly detected in the SS is the legacy DCI.
  • the intersection of the first time slot position set and the second time slot position set may be an empty set.
  • the time slot start index included in the first time slot position set is an odd number
  • the time slot start index included in the second time slot position set is an even number.
  • the first time slot location set contains a time slot start index less than N
  • the second time slot location set contains a time slot start index greater than or equal to N.
  • N is a positive integer, which can be predefined or signaled.
  • Figure 3 is a schematic diagram showing the application of a downlink control information identification method according to an embodiment of the present disclosure.
  • the terminal determines that the starting position of the time slot in which the SS is configured is 0 or 1 and belongs to the first time slot position set, then it can be determined that the DCI blindly detected in the SS is MC-DCI; if the terminal It is determined that the starting position of the time slot in which the SS is configured is 2 or 3 and belongs to the second time slot position set, then it can be determined that the DCI blindly detected in the SS is the legacy DCI.
  • the listening slot period of the SS is used as an example.
  • the terminal determines that the listening slot period of the configured SS belongs to the first periodic set, it can determine that the DCI blindly detected in the SS is MC-DCI.
  • the terminal determines that the starting position of the time slot configured of the SS belongs to the second periodic set, it can The DCI blindly checked in SS is determined to be legacy DCI.
  • the intersection of the first periodic set and the second periodic set can be an empty set.
  • the first period set is ⁇ sl1, sl4, sl8, sl16, sl40, sl160, sl640, sl2560 ⁇
  • the second period set is ⁇ sl2, sl5, sl10, sl20, sl80, sl320, sl1280 ⁇ .
  • the number of listening slots of the SS (specifically, it may refer to the number of listening slots of the SS within one cycle) is used as an example.
  • the terminal When the terminal determines that the number of monitoring time slots configured in the SS belongs to the first time slot number set, the terminal can determine that the DCI blindly detected in the SS is MC-DCI. When it determines that the number of monitoring time slots configured in the SS belongs to the second time slot number set, , it can be determined that the DCI blindly checked in SS is legacy DCI.
  • the intersection of the first time slot number set and the second time slot number set may be an empty set.
  • the number of time slots included in the first time slot number set is an odd number
  • the number of time slots included in the second time slot number set is an even number.
  • the terminal determines that the number of time slots configured in the SS is an odd number, it can determine that the number of time slots in the SS belongs to the first time slot number set, and then it can determine that the DCI blindly detected in the SS is MC-DCI.
  • the starting position of the listening symbol in the SS time slot is used as an example.
  • the terminal determines that the starting position of the listening symbol in the time slot configured with SS belongs to the first symbol position set, it can determine that the DCI blindly detected in the SS is MC-DCI.
  • the starting position of the listening symbol in the time slot configured with SS belongs to
  • the second symbol position is assembled, it can be determined that the DCI blindly detected in SS is legacy DCI.
  • the intersection of the first symbol position set and the second symbol position set may be an empty set.
  • the starting position index of the monitoring symbol in the time slot included in the first symbol position set is an odd number
  • the starting position index of the monitoring symbol in the time slot included in the second symbol position set is an even number.
  • the first time slot position set contains the starting position index of the monitoring symbol in the time slot less than N 1
  • the second time slot position set contains the starting position index of the monitoring symbol in the time slot greater than or equal to N 1
  • N 1 is positive
  • the number of PDCCH candidates in SS is taken as an example.
  • the terminal determines that the number of PDCCH candidates in the configured SS belongs to the first quantitative set, it can determine that the DCI blindly detected in the SS is MC-DCI.
  • it determines that the number of PDCCH candidates in the configured SS belongs to the second quantitative set it can determine that the number of PDCCH candidates in the configured SS belongs to the second quantitative set.
  • the DCI of blind detection in SS is legacy DCI.
  • the intersection of the first quantity set and the second quantity set may be an empty set.
  • the number of PDCCH candidates in this embodiment can be the sum of the numbers of PDCCH candidates corresponding to different aggregation levels (Aggregation Level, AL), or it can be a specific (such as protocol agreement or network indication) aggregation level (such as AL16) The number of corresponding PDCCH candidates.
  • AL aggregation Level
  • the first quantity set contains odd numbers, for example, the first quantity set is ⁇ n1, n3, n5 ⁇ , and the second quantity set contains even numbers, for example, the second quantity set is ⁇ n0, n2, n4, n6. ,n8 ⁇ .
  • the terminal determines that the number of PDCCH candidates in the configured SS is an odd number, it can determine that the starting position of the monitoring symbol in the SS's time slot belongs to the first number set, and then it can determine that the DCI blindly detected in the SS is MC-DCI.
  • the terminal determines that the number of PDCCH candidates in the configured SS is an even number, it can determine that the starting position of the monitoring symbol in the SS's time slot belongs to the second number set, and then it can determine that the DCI blindly detected in the SS is legacy DCI.
  • the identifier of SS is taken as an example.
  • the terminal determines that the identifier of the configured SS belongs to the first SS identifier set, it can determine that the DCI blindly detected in the SS is MC-DCI.
  • the terminal determines that the identifier of the configured SS belongs to the second SS identifier set, it can determine that the blindly detected DCI in the SS DCI is legacy DCI.
  • the intersection of the first SS identification set and the second SS identification set may be an empty set.
  • the SS identifiers included in the first SS identifier set belong to odd numbers
  • the SS identifiers included in the second SS identifier set belong to even numbers.
  • the terminal determines that the identifier of the configured SS is an odd number, it can determine that the identifier of the SS belongs to the first SS identifier set, and then it can determine that the DCI blindly detected in the SS is MC-DCI.
  • the terminal determines that the identifier of the configured SS is an even number it can determine that the identifier of the SS belongs to the second SS identifier set, and then it can determine that the DCI blindly detected in the SS is the legacy DCI.
  • the first SS identifier set contains SS identifiers less than N 2
  • the second SS identifier set contains SS identifiers greater than or equal to N 2
  • N 2 is a positive integer, which can be determined through predefinition or signaling.
  • the terminal determines that the identifier of the configured SS is greater than or equal to N 2 , it can determine that the identifier of the SS belongs to the second SS identifier set, and then it can determine that the DCI blindly detected in the SS is the legacy DCI.
  • the identifier of the CORESET associated with the SS is taken as an example.
  • the terminal determines that the identity of the CORESET associated with the configuration SS belongs to the first CORESET identity set, it can determine that the DCI blindly checked in the SS is MC-DCI.
  • the terminal determines that the identity of the CORESET associated with the configuration SS belongs to the second CORESET identity set, it can be determined that the DCI blindly checked in SS is legacy DCI.
  • the intersection of the first CORESET identification set and the second CORESET identification set may be an empty set.
  • the CORESET identifiers included in the first CORESET identifier set belong to odd numbers
  • the CORESET identifiers included in the second CORESET identifier set belong to even numbers.
  • the terminal determines that the identifier of the CORESET associated with the configured SS is an odd number, it can determine that the identifier of the CORESET associated with the SS belongs to the first slot location set, and then it can determine that the DCI blindly detected in the SS is MC-DCI.
  • the terminal determines that the identifier of the CORESET associated with the configured SS is an even number, it can determine that the identifier of the CORESET associated with the SS belongs to the second time slot location set, and then it can determine that the DCI blindly detected in the SS is legacy DCI.
  • the CORESET identifiers contained in the first CORESET identifier set are less than N 3
  • the CORESET identifiers contained in the second CORESET identifier set are greater than or equal to N 3 .
  • N 3 is a positive integer, which can be determined through predefinition or signaling notification.
  • the terminal determines that the identity of the CORESET associated with the configured SS is greater than or equal to N 3 , it can determine that the identity of the CORESET associated with the SS belongs to the second CORESET identity set, and then it can be determined that the DCI blindly detected in the SS is legacy DCI.
  • Figure 4 is a schematic flow chart of a downlink control information configuration method according to an embodiment of the present disclosure.
  • the downlink control information configuration method shown in this embodiment can be executed by a network device that can communicate with a terminal.
  • the network device includes but is not limited to base stations in communication systems such as 4G base stations, 5G base stations, and 6G base stations.
  • the terminals include but are not limited to mobile phones, tablets, wearable devices, sensors, Internet of Things devices and other communication devices.
  • the downlink control information configuration method may include the following steps:
  • step S401 determine the type of DCI sent to the terminal
  • step S402 the relevant information of the DCI is configured according to the type.
  • the network when the network sends DCI to the terminal, the network can set the relevant information of the DCI according to the association between the DCI related information and the type of DCI, so that after the terminal receives the DCI from the network device, , the DCI type corresponding to the received DCI related information can be determined based on the association between the relevant information stored in advance (for example, determined according to the protocol agreement or according to the signaling sent by the network) and the DCI type. , that is, determine whether the DCI is MC-DCI used to schedule multiple cells, or legacy DCI, so that an appropriate parsing method can be adopted to correctly parse the DCI.
  • the relevant information includes one of the following:
  • Indication information used to indicate that the DCI is MC-DCI or legacy DCI.
  • identifying the type of the DCI according to the related information of the DCI includes: when it is determined that the DCI is MC-DCI, configuring the related information of the DCI as the first related information; and /Or when it is determined that the DCI is a legacy DCI, configure the relevant information of the DCI as the second relevant information.
  • the network device can use different RNTIs for scrambling.
  • the correlation between the relevant information and the type of DCI is that the first RNTI corresponds to legacy DCI, and the second RNTI corresponds to MC-DCI. Then when it is determined that the DCI that needs to be sent to the terminal is legacy DCI, the first RNTI can be used to scramble the DCI.
  • the terminal can determine that the DCI is legacy DCI based on the RNTI of the scrambled DCI; when it is determined that the DCI that needs to be sent to the terminal is MC-DCI, the second RNTI can be used to scramble the DCI, so that the terminal receives After MC-DCI, the DCI can be determined to be MC-DCI based on the RNTI of the scrambled DCI.
  • the first RNTI may be the cell wireless network temporary identifier C-RNTI
  • the second RNTI may be other RNTI, such as a newly set RNTI, which may be called MC-RNTI.
  • MC represents multi-cell or multi-carrier, or is called MCS-RNTI.
  • SC-RNTI, MCS stands for multi-carrier scheduling
  • SC stands for scheduling cell.
  • the network device can send different indication information to the terminal to indicate that the DCI sent by the terminal to the terminal is MC-DCI or legacy DCI.
  • the indication information includes but is not limited to radio resource control signaling, information fields that are prioritized for parsing in the DCI, etc.
  • the terminal After receiving the DCI, the terminal can determine whether the received DCI is MC-DCI or legacy DCI according to the indication information.
  • the indication information may occupy 1 bit or 2 bits.
  • the indication information can be used to distinguish whether the DCI is MC-DCI or legacy DCI. For example, 0 indicates that the DCI is legacy DCI, and 1 indicates that the DCI is MC-DCI.
  • the indication information can be used to distinguish whether the DCI is MC-DCI or legacy DCI, and can further differentiate whether the DCI is used for scheduling uplink or downlink. For example, 00 indicates that the DCI is MC-DCI used for scheduling uplink, 01 indicates that DCI is MC-DCI used for scheduling downlink, 10 indicates that DCI is legacy DCI used for scheduling uplink, and 11 indicates that DCI is legacy DCI used for scheduling downlink. .
  • the network device can use different resources for transmission.
  • the correlation between the relevant information and the type of DCI is that the first resource corresponds to legacy DCI, and the second resource corresponds to MC-DCI. Then when it is determined that the DCI that needs to be sent to the terminal is legacy DCI, the first resource can be used to send DCI. Therefore, after receiving DCI, the terminal can use the resource DCI used to receive DCI as legacy DCI; when it is determined that the DCI that needs to be sent to the terminal is MC-DCI, the second resource can be used to send DCI, so that after receiving DCI, the terminal , the DCI can be MC-DCI according to the resource DCI used to receive DCI.
  • the resources include at least one of the following:
  • the association relationship is that the first BWP set corresponds to legacy DCI, and the second BWP set corresponds to MC-DCI.
  • the terminal determines that DCI is received at BWP#1, it can determine that the received DCI is legacy DCI; when it is necessary to send DCI to the terminal.
  • the terminal sends MC-DCI, it may choose to send DCI to the terminal in BWP#2 belonging to the second BWP set.
  • the terminal determines that DCI is received in BWP#2
  • the SS information includes at least one of the following:
  • the information elements (IE) of SS include searchSpaceId (search space identification), controlResourceSetId (control resource set identification), nrofCandidates (number of PDCCH candidates under multiple aggregation levels), monitoringSlotPeriodicityAndOffset (search space configuration period and corresponding Slot offset), duration (the number of continuous time slots in the search space), monitoringSymbolsWithinSlot (within the time slot range, the starting position of the CORESET symbol associated with the search space).
  • the identifier of the SS can be configured through searchSpaceId; the identifier of CORESET associated with the SS can be configured through controlResourceSetId; the number of PDCCH candidates in the SS can be configured through nrofCandidates; the listening slot cycle of the SS and the start of the SS timeslot The position can be configured through monitoringSlotPeriodicityAndOffset; the number of SS monitoring time slots can be configured through duration; the number of SS monitoring symbols in the time slot can be configured according to monitoringSymbolsWithinSlot.
  • the present disclosure also provides embodiments of a downlink control information identification device and a downlink control information configuration device.
  • FIG. 5 is a schematic block diagram of a downlink control information identification device according to an embodiment of the present disclosure.
  • the downlink control information identification device shown in this embodiment can be a terminal, or a device composed of modules in a terminal.
  • the terminal includes but is not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal can communicate with network equipment, which includes but is not limited to network equipment in 4G, 5G, 6G and other communication systems, such as base stations, core networks, etc.
  • the downlink control information identification device includes:
  • the processing module 501 is configured to determine relevant information of downlink control information DCI; identify the type of the DCI according to the relevant information of the DCI, wherein the type is MC-DCI or traditional legacy used for scheduling multiple cell data DCI.
  • the relevant information includes one of the following: information used to receive the resource of the DCI; RNTI used to scramble the DCI; used to indicate that the DCI is MC-DCI or legacy DCI. Instructions.
  • the resource includes at least one of the following: Cell; Partial Bandwidth BWP; Search Space SS.
  • the information of the SS includes at least one of the following: the identifier of the SS; the identifier of the control resource set CORESET associated with the SS; the number of physical downlink control channel candidates in the SS; the monitoring slot period of the SS; the time of the SS The starting position of the slot; the number of monitoring slots of the SS; the starting position of the monitoring symbol in the SS time slot.
  • the processing module is configured to determine that the DCI is MC-DCI when the relevant information of the DCI is the first relevant information; and/or when the relevant information of the DCI is In the case of second relevant information, determine that the DCI is legacy DCI.
  • FIG. 6 is a schematic block diagram of a downlink control information configuration device according to an embodiment of the present disclosure.
  • the downlink control information configuration device shown in this embodiment may be a terminal, or a device composed of modules in the terminal.
  • the terminal includes but is not limited to communication devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
  • the terminal can communicate with network equipment, which includes but is not limited to network equipment in 4G, 5G, 6G and other communication systems, such as base stations, core networks, etc.
  • the downlink control information configuration device includes:
  • the processing module 601 is configured to determine the type of DCI sent to the terminal; and configure the relevant information of the DCI according to the type.
  • the relevant information includes one of the following: information about resources used to send DCI; RNTI used to scramble the DCI; indication information used to indicate that the DCI is MC-DCI or legacy DCI. .
  • the resource includes at least one of the following: Cell; Partial Bandwidth BWP; Search Space SS.
  • the information of the SS includes at least one of the following: the identifier of the SS; the identifier of the control resource set CORESET associated with the SS; the number of physical downlink control channel candidates in the SS; the monitoring slot period of the SS; the time of the SS The starting position of the slot; the number of monitoring slots of the SS; the starting position of the monitoring symbol in the SS time slot.
  • the processing module is configured to configure the relevant information of the DCI as the first relevant information when it is determined that the DCI is MC-DCI; and/or when it is determined that the DCI is legacy.
  • the DCI related information is configured as the second related information.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the modules described as separate components may or may not be physically separated.
  • the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • An embodiment of the present disclosure also provides a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the downlink control information described in any of the above embodiments is implemented recognition methods.
  • An embodiment of the present disclosure also provides a communication device, including: a processor; a memory for storing a computer program; wherein, when the computer program is executed by the processor, the downlink control information described in any of the above embodiments is implemented Configuration method.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in the downlink control information identification method described in any of the above embodiments are implemented.
  • Embodiments of the present disclosure also provide a computer-readable storage medium for storing a computer program.
  • the computer program is executed by a processor, the steps in the downlink control information configuration method described in any of the above embodiments are implemented.
  • Figure 7 is a schematic block diagram of a device 700 for configuring downlink control information according to an embodiment of the present disclosure.
  • the apparatus 700 may be provided as a base station.
  • apparatus 700 includes a processing component 722, which may further include one or more processors, a wireless transmit/receive component 724, an antenna component 726, and a signal processing portion specific to the wireless interface.
  • processors in the processing component 722 may be configured to implement the downlink control information configuration method described in any of the above embodiments.
  • Figure 8 is a schematic block diagram of a device 800 for downlink control information identification according to an embodiment of the present disclosure.
  • the device 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the apparatus 800 may include one or more of the following components: a processing component 802 , a memory 804 , a power supply component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and Communication component 816.
  • a processing component 802 a memory 804 , a power supply component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and Communication component 816.
  • Processing component 802 generally controls the overall operations of device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above-mentioned downlink control information identification method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at device 800 . Examples of such data include instructions for any application or method operating on device 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 806 provides power to the various components of device 800.
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when device 800 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the device 800, and the sensor component 814 can also detect a change in position of the device 800 or a component of the device 800. , the presence or absence of user contact with the device 800 , device 800 orientation or acceleration/deceleration and temperature changes of the device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between apparatus 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G, 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above downlink control information identification method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above downlink control information identification method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 804 including instructions, which are executable by the processor 820 of the apparatus 800 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及下行控制信息识别、配置方法和装置,其中,所述下行控制信息识别方法包括:确定下行控制信息DCI的相关信息;根据所述DCI的相关信息识别所述DCI的类型,其中,所述类型为用于调度多个小区数据的MC-DCI或传统legacy DCI。根据本公开,终端在从网络设备接收到DCI后,可以确定DCI的相关信息,进而根据预先存储的相关信息与DCI的类型之间的关联关系,确定接收到的DCI的相关信息对应的DCI的类型,也即确定所述DCI是用于调度多个小区的MC-DCI,还是legacy DCI,以便采取适当的解析方式正确地解析DCI。

Description

下行控制信息识别、配置方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及下行控制信息识别方法、下行控制信息配置方法、下行控制信息识别装置、下行控制信息配置装置、通信装置和计算机可读存储介质。
背景技术
在相关技术中,一个下行控制信息(Downlink Control Information,DCI)只用于调度一个小区的数据,例如调度一个小区的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)。
随着频率资源的碎片化,同时调度多个小区的数据的需求逐步提升,为了降低控制消息开销,提出了通过单个DCI调度多个小区的数据,例如用于调度多个小区(数据)的DCI,可以称作MC-DCI,其中,MC表示多小区(multi-cell)或多载波(multi-carrier)。而随着MC-DCI的引入,DCI中可以包含MC-DCI,也可以包含传统(legacy)DCI,而MC-DCI与传统DCI不同,因此,如何区分MC-DCI和传统DCI是亟待解决的技术问题。
发明内容
有鉴于此,本公开的实施例提出了下行控制信息识别方法、下行控制信息配置方法、下行控制信息识别装置、下行控制信息配置装置、通信装置和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种下行控制信息识别方法,由终端执行,所述方法包括:确定下行控制信息DCI的相关信息;根据所述DCI的相关信息识别所述DCI的类型,其中,所述类型为用于调度多个小区数据的MC-DCI或传统legacy DCI。
根据本公开实施例的第二方面,提出一种下行控制信息配置方法,由网络设备执行,所述方法包括:确定向终端发送的DCI的类型;根据所述类型配置所述DCI的相关信息。
根据本公开实施例的第三方面,提出一种下行控制信息识别装置,所述装置包括:处理模块,被配置为确定下行控制信息DCI的相关信息;根据所述DCI的相关信息识别所述DCI的类型,其中,所述类型为用于调度多个小区数据的MC-DCI或传统legacy DCI。
根据本公开实施例的第四方面,提出一种下行控制信息配置装置,所述装置包括:处理模块,被配置为确定向终端发送的DCI的类型;根据所述类型配置所述DCI的相关信息。
根据本公开实施例的第五方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述下行控制信息识别方法。
根据本公开实施例的第六方面,提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述下行控制信息配置方法。
根据本公开实施例的第七方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述下行控制信息识别方法中的步骤。
根据本公开实施例的第八方面,提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述下行控制信息配置方法中的步骤。
根据本公开的实施例,终端在从网络设备接收到DCI后,可以确定DCI的相关信息,进而根据预先存储的相关信息与DCI的类型之间的关联关系,确定接收到的DCI的相关信息对应的DCI的类型,也即确定所述DCI是用于调度多个小区的MC-DCI,还是legacy DCI,以便采取适当的解析方式正确地解析DCI。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种下行控制信息识别方法的示意流程图。
图2是根据本公开的实施例示出的一种下行控制信息识别方法的应用示意图。
图3是根据本公开的实施例示出的一种下行控制信息识别方法的应用示意图。
图4是根据本公开的实施例示出的一种下行控制信息配置方法的示意流程图。
图5是根据本公开的实施例示出的一种下行控制信息识别装置的示意框图。
图6是根据本公开的实施例示出的一种下行控制信息配置装置的示意框图。
图7是根据本公开的实施例示出的一种用于下行控制信息配置的装置的示意框图。
图8是根据本公开的实施例示出的一种用于下行控制信息识别的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于 等于”的含义,“低于”也涵盖了“低于等于”的含义。
MC-DCI作为新引入的DCI,MC-DCI的格式(format)与传统(legacy)DCI的格式(format)可以不同,legacy DCI包括但不限于用于调度单小区的DCI,例如DCI format 0_0、DCI format 1_0、DCI format 0_1、DCI format 1_1、DCI format 0_2、DCI format 1_2。而MC-DCI的格式可以为新配置的格式,例如MC-DCI可以包括DCI format 0_3、DCI format 1_3。
MC-DCI可以用于调度多个小区,legacy DCI则用于调度单个小区,所以这两种DCI的功能是不同的,这两种DCI中信息域的含义也是不同的,例如MC-DCI中一个类型的信息域可以指示多个小区的调度信息,而legacy DCI中一个类型的信息域则只能指示一个小区的调度信息。由于这两种DCI中信息域的含义不同,解析这两种DCI的解析方式也就会存在差异,所以需要使得终端能够确定DCI是MC-DCI,还是legacy DCI,以便采取对应的解析方式正确地解析DCI。
图1是根据本公开的实施例示出的一种下行控制信息识别方法的示意流程图。本实施例所示的下行控制信息识别方法可以由终端执行,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以与网络设备通信,所述网络设备包括但不限于4G、5G、6G等通信系统中的网络设备,例如基站、核心网等。
如图1所示,所述下行控制信息识别方法可以包括以下步骤:
在步骤S101中,确定下行控制信息DCI的相关信息;
在步骤S102中,根据所述DCI的相关信息识别所述DCI的类型,其中,所述类型为用于调度多个小区数据的MC-DCI或传统legacy DCI。
根据本公开的实施例,终端在从网络设备接收到DCI后,可以确定DCI的相关信息,进而根据预先存储(例如可以是根据协议约定确定的或者根据网络发送的信令确定的)的相关信息与DCI的类型之间的关联关系,确定接收到的DCI的相关信息对应的DCI的类型,也即确定所述DCI是用于调度多个小区的MC-DCI,还是legacy DCI,以便采取适当的解析方式正确地解析DCI。
需要说明书的是,本公开的实施例主要用于MC-DCI和legacy DCI的区分,而关于legacy DCI中不同DCI的区分,可以根据DCI的尺寸(size,也即占用的比特数)或信令进行区分。
例如,DCI format 0_3表示调度多小区上行的MC-DCI,DCI format 1_3表示调度多小区下行的MC-DCI,DCI format 0_1表示调度单小区上行的MC-DCI,DCI format1_1表示调度单小区下行的MC-DCI。本公开的实施例可以用于区分DCI format 0_3和DCI format 0_1,也可以用于区分DCI format 1_3和DCI format 1_1。而关于legacy DCI中DCI format 0_1和DCI format 0_2的区分,则可以根据DCI的尺寸或信令进行区分。关于DCI format 0_3和DCI format 1_3区分,以及DCI format 0_1和DCI format1_1的区分,可以根据DCI中的信息域的值确定。
在一个实施例中,所述相关信息包括以下之一:
用于接收所述DCI的资源的信息;
用于加扰所述DCI的无线网络临时标识RNTI(Radio Network Temporary Identity);
用于指示所述DCI为MC-DCI或legacy DCI的指示信息。
在一个实施例中,所述根据所述DCI的相关信息识别所述DCI的类型包括:在所述DCI的相关信息为第一相关信息的情况下,确定所述DCI为MC-DCI;和/或在所述DCI的相关信息为第二相关信息的情况下,确定所述DCI为legacy DCI。
在一个实施例中,终端在接收到DCI后,可以确定用于加扰DCI的RNTI。例如相关信息与DCI的类型之间的关联关系为第一RNTI对应legacy DCI,第二RNTI对应MC-DCI,那么当确定用于加扰DCI的RNTI为第一RNTI时,可以确定接收到的DCI为legacy DCI,当确定用于加扰DCI的RNTI为第二RNTI时,可以确定接收到的DCI为MC-DCI。其中,第一RNTI可以是小区无线网络临时标识C-RNTI,第二RNTI可以是其他RNTI,例如新设置的RNTI,可以称作MC-RNTI,MC表示多小区或多载波,或者称作MCS-SC-RNTI,MCS表示多载波调度(Multi-carrier scheduling),SC表示调度小区(scheduling cell)。
图2是根据本公开的实施例示出的一种下行控制信息识别方法的应用示意图。如图2所示,例如以Cell#0、Cell#1和Cell#2这3个小区为例,终端在Cell#0上接收到DCI后,可以确定用于加扰DCI的RNTI。
在确定加扰DCI的RNTI为MCS-SC-RNTI时,可以确定DCI用于调度多个小区,例如调度Cell#0、Cell#1和Cell#2这3个小区(例如调度PDSCH)。在确定加扰DCI的RNTI为C-RNTI时,可以确定DCI用于调度单个小区,例如调度Cell#1。
在一个实施例中,终端可以接收用于指示所述DCI为MC-DCI或legacy DCI的指示信息,其中,所述指示信息包括但不限于无线资源控制(Radio Resource Control,RRC)信令,所述DCI中优先解析的信息域等。终端在接收到DCI后,可以根据所述指示信息确定接收到的DCI为MC-DCI还是legacy DCI。
其中,所述指示信息可以占用1比特,或者占用2比特。
在所述指示信息占用1比特的情况下,所述指示信息可以用于区分DCI为MC-DCI还是legacy DCI。例如0表示DCI为legacy DCI,1表示DCI为MC-DCI。
在所述指示信息占用2比特的情况下,所述指示信息可以用于区分DCI为MC-DCI还是legacy DCI,还可以进一步区分DCI用于调度上行,还是用于调度下行。例如00表示DCI为用于调度上行的MC-DCI(e.g.,DCI 0_3),01表示DCI为用于调度下行的MC-DCI(e.g.,DCI 1_3),10表示DCI为用于调度上行的legacy DCI(e.g.,DCI0_1),11表示DCI为用于调度下行的legacy DCI(e.g.,DCI 1_1)。
需要说明的是,相关信息与DCI的类型之间的关联关系,可以是网络设备指示的,也可以是协议约定的,还可以是协议约定关联关系的候选集,进而网络设备通过指示信息在候选集中指示一个关联关系给终端。
在一个实施例中,终端在接收到DCI后,可以确定用于接收所述DCI的资源。例如相关信息与DCI的类型之间的关联关系为第一资源对应legacy DCI,第二资源对应MC-DCI,那么当确定在第一资源接收所述DCI时,可以确定接收到的DCI为legacy DCI,当确定在第二资源接收所述DCI,可以确定接收到的DCI为MC-DCI。
在一个实施例中,所述资源包括以下至少之一:
小区Cell;
部分带宽BWP(BandWidth Part);
搜索空间SS(Search Space)。
以所述资源包括BWP进行示例,例如所述关联关系为第一BWP集合对应legacy DCI,第二BWP集合对应MC-DCI。当确定在BWP#1接收到DCI时,若BWP#1属于第一BWP集合,可以确定接收到的DCI为legacy DCI,当确定在BWP#2接收到DCI时,若BWP#2属于第二BWP集合,可以确定接收到的DCI为MC-DCI。
在一个实施例中,SS的信息包括以下至少之一:
SS的标识;
SS所关联的控制资源集CORESET(Control Resource Set)的标识;
SS中物理下行控制信道(Physical Downlink Control Channel,PDCCH)候选的数目;
SS的监听时隙周期;
SS的时隙的起始位置;
SS的监听时隙数;
SS的时隙内监听符号起始位置。
其中,SS的信息元素(Information Element,IE)包括searchSpaceId(搜索空间标识)、controlResourceSetId(控制资源集标识)、nrofCandidates(多个聚合等级下的PDCCH candidates数目)、monitoringSlotPeriodicityAndOffset(搜索空间配置周期以及对应的时隙偏移)、duration(搜索空间持续时隙数目)、monitoringSymbolsWithinSlot(在时隙范围内,搜索空间关联的CORESET符号起始位置)。
其中,SS的标识可以根据searchSpaceId确定;SS所关联的CORESET的标识可以根据controlResourceSetId确定;SS中PDCCH候选的数目可以根据nrofCandidates确定;SS的监听时隙周期和SS的时隙的起始位置可以根据monitoringSlotPeriodicityAndOffset确定;SS的监听时隙数可以根据duration确定;SS的时隙内监听符号数可以根据monitoringSymbolsWithinSlot确定。
在一个实施例中,以SS的时隙(slot)时隙位置进行示例。
终端在确定配置SS(本公开所有实施例中终端确定配置SS,可以是指终端确定网络设备配置SS)的时隙的起始位置属于第一时隙位置集合时,可以确定在SS中盲检的DCI(也即接收到的DCI)为MC-DCI,在确定配置SS的时隙的起始位置属于第二时隙位置集合时,可以确定在SS中盲检的DCI为legacy DCI。其中,第一时隙位置集合和第二时隙位置集合的交集可以为空集。
例如,第一时隙位置集合包含的时隙起始索引属于奇数,第二时隙位置集合包含的时隙起始索引属于偶数。终端在确定配置SS的时隙的起始位置为奇数的情况下,可以确定配置SS的时隙的起始位置属于第一时隙位置集合,那么可以确定在SS中盲 检的DCI为MC-DCI。
例如,第一时隙位置集合包含的时隙起始索引小于N,第二时隙位置集合包含的时隙起始索引大于或等于N,N为正整数,可以通过预定义或信令通知方式确定。示例性地,N为T s/2的向上取整,其中,T s为SS的配置周期。以第一SS和第二SS的配置周期等于4个slot为例,T s=4,对应N=2。
图3是根据本公开的实施例示出的一种下行控制信息识别方法的应用示意图。如图3所示,若终端确定配置SS的时隙的起始位置为0或1,属于第一时隙位置集合,那么可以确定在所述SS中盲检的DCI为MC-DCI;若终端确定配置SS的时隙的起始位置为2或3,属于第二时隙位置集合,那么可以确定在所述SS中盲检的DCI为legacy DCI。
在一个实施例中,以SS的监听时隙周期进行示例。
终端在确定配置SS的监听时隙周期属于第一周期集合时,可以确定在SS中盲检的DCI为MC-DCI,在确定配置SS的时隙的起始位置属于第二周期集合时,可以确定在SS中盲检的DCI为legacy DCI。其中,第一周期集合和第二周期集合的交集可以为空集。
例如,第一周期集合为{sl1,sl4,sl8,sl16,sl40,sl160,sl640,sl2560},第二周期集合为{sl2,sl5,sl10,sl20,sl80,sl320,sl1280}。若终端确定配置SS的监听时隙周期为sl4,属于第一周期集合,可以确定在SS中盲检的DCI为MC-DCI;若终端确定配置SS的监听时隙周期为sl5,属于第二周期集合,可以确定在SS中盲检的DCI为legacy DCI。
在一个实施例中,以SS的监听时隙数(具体可以是指SS一个周期内的监听时隙数)进行示例。
终端在确定配置SS的监听时隙数属于第一时隙数量集合时,可以确定在SS中盲检的DCI为MC-DCI,在确定配置SS的监听时隙数属于第二时隙数量集合时,可以确定在SS中盲检的DCI为legacy DCI。其中,第一时隙数量集合和第二时隙数量集合的交集可以为空集。
例如,第一时隙数量集合包含的时隙数量属于奇数,第二时隙数量集合包含的时隙数量属于偶数。终端在确定配置SS的时隙数量为奇数的情况下,可以确定SS的时隙数量属于第一时隙数量集合,那么可以确定在SS中盲检的DCI为MC-DCI。
在一个实施例中,以SS的时隙内监听符号起始位置进行示例。
终端在确定配置SS的时隙内监听符号起始位置属于第一符号位置集合时,可以确定在SS中盲检的DCI为MC-DCI,在确定配置SS的时隙内监听符号起始位置属于第二符号位置集合时,可以确定在SS中盲检的DCI为legacy DCI。其中,第一符号位置集合和第二符号位置集合的交集可以为空集。
例如,第一符号位置集合包含的时隙内监听符号起始位置索引属于奇数,第二符号位置集合包含的时隙内监听符号起始位置索引属于偶数。终端在确定配置SS的时隙内监听符号起始位置为奇数的情况下,可以确定SS的时隙内监听符号起始位置属于第一时隙位置集合,那么可以确定在SS中盲检的DCI为MC-DCI。
例如,第一时隙位置集合包含的时隙内监听符号起始位置索引小于N 1,第二时隙位置集合包含的时隙内监听符号起始位置索引大于或等于N 1,N 1为正整数,可以通过预定义或信令通知方式确定,例如N 1=7。终端在确定配置SS的时隙内监听符号起始位置为3的情况下,也即小于N 1,可以确定SS的时隙内监听符号起始位置属于第一时隙位置集合,那么可以确定在SS中盲检的DCI为MC-DCI。
在一个实施例中,以SS中PDCCH candidates的数目为例。
终端在确定配置SS中PDCCH candidates的数目属于第一数量集合时,可以确定在SS中盲检的DCI为MC-DCI,在确定配置SS中PDCCH candidates的数目属于第二数量集合时,可以确定在SS中盲检的DCI为legacy DCI。其中,第一数量集合和第二数量集合的交集可以为空集。其中,本实施例中的PDCCH candidates的数目可以是不同聚合等级(Aggregation Level,AL)分别对应的PDCCH candidates的数目之和,也可以是特定(例如协议约定或网络指示)聚合等级(例如AL16)对应的PDCCH candidates的数目。
例如,第一数量集合包含的数量属于奇数,例如第一数量集合为{n1,n3,n5},第二数量集合包含的数量属于偶数,例如第二数量集合为{n0,n2,n4,n6,n8}。终端在确定配置SS中PDCCH candidates的数目为奇数的情况下,可以确定SS的时隙内监听符号起始位置属于第一数量集合,那么可以确定在SS中盲检的DCI为MC-DCI。终端在确定配置SS中PDCCH candidates的数目为偶数的情况下,可以确定SS的时隙内监听符号起始位置属于第二数量集合,那么可以确定在SS中盲检的DCI为legacy DCI。
在一个实施例中,以SS的标识为例。
终端在确定配置SS的标识属于第一SS标识集合时,可以确定在SS中盲检的DCI为MC-DCI,在确定配置SS的标识属于第二SS标识集合时,可以确定在SS中盲检的DCI为legacy DCI。其中,第一SS标识集合和第二SS标识集合的交集可以为空集。
例如,第一SS标识集合包含的SS标识属于奇数,第二SS标识集合包含的SS标识属于偶数。终端在确定配置SS的标识为奇数的情况下,可以确定SS的标识属于第一SS标识集合,那么可以确定在SS中盲检的DCI为MC-DCI。终端在确定配置SS的标识为偶数的情况下,可以确定SS的标识属于第二SS标识集合,那么可以确定在SS中盲检的DCI为legacy DCI。
例如,第一SS标识集合包含的SS标识小于N 2,第二SS标识集合包含的SS标识大于或等于N 2,N 2为正整数,可以通过预定义或信令通知方式确定。终端在确定配置SS的标识小于N 2的情况下,可以确定SS的标识属于第一SS标识集合,那么可以确定在SS中盲检的DCI为MC-DCI。终端在确定配置SS的标识大于或等于N 2的情况下,可以确定SS的标识属于第二SS标识集合,那么可以确定在SS中盲检的DCI为legacy DCI。
在一个实施例中,以SS所关联的CORESET的标识为例。
终端在确定配置SS所关联的CORESET的标识属于第一CORESET标识集合时,可以确定在SS中盲检的DCI为MC-DCI,在确定配置SS所关联的CORESET的标识属于第二CORESET标识集合时,可以确定在SS中盲检的DCI为legacy DCI。其中,第一CORESET标识集合和第二CORESET标识集合的交集可以为空集。
例如,第一CORESET标识集合包含的CORESET标识属于奇数,第二CORESET标识集合包含的CORESET标识属于偶数。终端在确定配置SS所关联的CORESET的标识为奇数的情况下,可以确定SS所关联的CORESET的标识属于第一时隙位置集合,那么可以确定在SS中盲检的DCI为MC-DCI。终端在确定配置SS所关联的CORESET的标识为偶数的情况下,可以确定SS所关联的CORESET的标识属于第二时隙位置集合,那么可以确定在SS中盲检的DCI为legacy DCI。
例如,第一CORESET标识集合包含的CORESET标识小于N 3,第二CORESET标识集合包含的CORESET标识大于或等于N 3,N 3为正整数,可以通过预定义或信令通知方式确定。终端在确定配置SS所关联的CORESET的标识小于N 3的情况下,可 以确定SS所关联的CORESET的标识属于第一CORESET标识集合,那么可以确定在SS中盲检的DCI为MC-DCI。终端在确定配置SS所关联的CORESET的标识大于或等于N 3的情况下,可以确定SS所关联的CORESET的标识属于第二CORESET标识集合,那么可以确定在SS中盲检的DCI为legacy DCI。
图4是根据本公开的实施例示出的一种下行控制信息配置方法的示意流程图。本实施例所示的下行控制信息配置方法可以由网络设备执行,所述网络设备可以与终端通信,所述网络设备包括但不限于4G基站、5G基站、6G基站等通信系统中的基站,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。
如图4所示,所述下行控制信息配置方法可以包括以下步骤:
在步骤S401中,确定向终端发送的DCI的类型;
在步骤S402中,根据所述类型配置所述DCI的相关信息。
根据本公开的实施例,网络在向终端发送DCI的情况下,可以根据DCI的相关信息与DCI的类型之间的关联关系,设置DCI的相关信息,从而使得终端在从网络设备接收到DCI后,可以根据预先存储(例如可以是根据协议约定确定的或者根据网络发送的信令确定的)的相关信息与DCI的类型之间的关联关系,确定接收到的DCI的相关信息对应的DCI的类型,也即确定所述DCI是用于调度多个小区的MC-DCI,还是legacy DCI,以便采取适当的解析方式正确地解析DCI。
在一个实施例中,所述相关信息包括以下之一:
用于发送DCI的资源的信息;
用于加扰所述DCI的RNTI;
用于指示所述DCI为MC-DCI或legacy DCI的指示信息。
在一个实施例中,所述根据所述DCI的相关信息识别所述DCI的类型包括:在确定所述DCI为MC-DCI的情况下,配置所述DCI的相关信息为第一相关信息;和/或在确定所述DCI为legacy DCI的情况下,配置所述DCI的相关信息为第二相关信息。
在一个实施例中,对于legacy DCI和MC-DCI,网络设备可以采用不同的RNTI进行加扰。例如相关信息与DCI的类型之间的关联关系为第一RNTI对应legacy DCI, 第二RNTI对应MC-DCI,那么当确定需要发送至终端的DCI为legacy DCI时,可以采用第一RNTI加扰DCI,从而终端在接收到DCI后,可以根据加扰DCI的RNTI确定DCI为legacy DCI;当确定需要发送至终端的DCI为MC-DCI时,可以采用第二RNTI加扰DCI,从而终端在接收到MC-DCI后,可以根据加扰DCI的RNTI确定DCI为MC-DCI。其中,第一RNTI可以是小区无线网络临时标识C-RNTI,第二RNTI可以是其他RNTI,例如新设置的RNTI,可以称作MC-RNTI,MC表示多小区或多载波,或者称作MCS-SC-RNTI,MCS表示多载波调度,SC表示调度小区。
在一个实施例中,对于legacy DCI和MC-DCI,网络设备可以向终端发送不同的指示信息,以指示终端发送至终端的DCI为MC-DCI或legacy DCI。其中,所述指示信息包括但不限于无线资源控制信令,所述DCI中优先解析的信息域等。终端在接收到DCI后,可以根据所述指示信息确定接收到的DCI为MC-DCI还是legacy DCI。
其中,所述指示信息可以占用1比特,或者占用2比特。
在所述指示信息占用1比特的情况下,所述指示信息可以用于区分DCI为MC-DCI还是legacy DCI。例如0表示DCI为legacy DCI,1表示DCI为MC-DCI。
在所述指示信息占用2比特的情况下,所述指示信息可以用于区分DCI为MC-DCI还是legacy DCI,还可以进一步区分DCI用于调度上行,还是用于调度下行。例如00表示DCI为用于调度上行的MC-DCI,01表示DCI为用于调度下行的MC-DCI,10表示DCI为用于调度上行的legacy DCI,11表示DCI为用于调度下行的legacy DCI。
在一个实施例中,对于legacy DCI和MC-DCI,网络设备可以采用不同的资源发送。例如相关信息与DCI的类型之间的关联关系为第一资源对应legacy DCI,第二资源对应MC-DCI,那么当确定需要发送至终端的DCI为legacy DCI时,可以采用第一资源发送DCI,从而终端在接收到DCI后,可以根据用于接收DCI的资源DCI为legacy DCI;当确定需要发送至终端的DCI为MC-DCI时,可以采用第二资源发送DCI,从而终端在接收到DCI后,可以根据用于接收DCI的资源DCI为MC-DCI。
在一个实施例中,所述资源包括以下至少之一:
小区Cell;
部分带宽BWP;
搜索空间SS。
以所述资源包括BWP进行示例,例如所述关联关系为第一BWP集合对应legacy DCI,第二BWP集合对应MC-DCI。当需要向终端发送legacy DCI时,可以选择在属于第一BWP集合的BWP#1向终端发送DCI,终端确定在BWP#1接收到DCI时,可以确定接收到的DCI为legacy DCI;当需要向终端发送MC-DCI时,可以选择在属于第二BWP集合的BWP#2向终端发送DCI,终端确定在BWP#2接收到DCI时,可以确定接收到的DCI为MC-DCI。
在一个实施例中,SS的信息包括以下至少之一:
SS的标识;
SS所关联的控制资源集CORESET的标识;
SS中物理下行控制信道候选的数目;
SS的监听时隙周期;
SS的时隙的起始位置;
SS的监听时隙数;
SS的时隙内监听符号起始位置。
其中,SS的信息元素(Information Element,IE)包括searchSpaceId(搜索空间标识)、controlResourceSetId(控制资源集标识)、nrofCandidates(多个聚合等级下的PDCCH candidates数目)、monitoringSlotPeriodicityAndOffset(搜索空间配置周期以及对应的时隙偏移)、duration(搜索空间持续时隙数目)、monitoringSymbolsWithinSlot(在时隙范围内,搜索空间关联的CORESET符号起始位置)。
其中,SS的标识可以通过searchSpaceId进行配置;SS所关联的CORESET的标识可以通过controlResourceSetId进行配置;SS中PDCCH候选的数目可以通过nrofCandidates进行配置;SS的监听时隙周期和SS的时隙的起始位置可以通过monitoringSlotPeriodicityAndOffset进行配置;SS的监听时隙数可以通过duration进行配置;SS的时隙内监听符号数可以根据monitoringSymbolsWithinSlot进行配置。
与前述的下行控制信息识别方法和下行控制信息配置方法的实施例相对应,本公开还提供了下行控制信息识别装置和下行控制信息配置装置的实施例。
图5是根据本公开的实施例示出的一种下行控制信息识别装置的示意框图。本 实施例所示的下行控制信息识别装置可以为终端,或者为终端中的模块构成的装置,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以与网络设备通信,所述网络设备包括但不限于4G、5G、6G等通信系统中的网络设备,例如基站、核心网等。
如图5所示,所述下行控制信息识别装置包括:
处理模块501,被配置为确定下行控制信息DCI的相关信息;根据所述DCI的相关信息识别所述DCI的类型,其中,所述类型为用于调度多个小区数据的MC-DCI或传统legacy DCI。
在一个实施例中,所述相关信息包括以下之一:用于接收所述DCI的资源的信息;用于加扰所述DCI的RNTI;用于指示所述DCI为MC-DCI或legacy DCI的指示信息。
在一个实施例中,所述资源包括以下至少之一:小区Cell;部分带宽BWP;搜索空间SS。
在一个实施例中,SS的信息包括以下至少之一:SS的标识;SS所关联的控制资源集CORESET的标识;SS中物理下行控制信道候选的数目;SS的监听时隙周期;SS的时隙的起始位置;SS的监听时隙数;SS的时隙内监听符号起始位置。
在一个实施例中,所述处理模块,被配置为在所述DCI的相关信息为第一相关信息的情况下,确定所述DCI为MC-DCI;和/或在所述DCI的相关信息为第二相关信息的情况下,确定所述DCI为legacy DCI。
图6是根据本公开的实施例示出的一种下行控制信息配置装置的示意框图。本实施例所示的下行控制信息配置装置可以为终端,或者为终端中的模块构成的装置,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等通信装置。所述终端可以与网络设备通信,所述网络设备包括但不限于4G、5G、6G等通信系统中的网络设备,例如基站、核心网等。
如图6所示,所述下行控制信息配置装置包括:
处理模块601,被配置为确定向终端发送的DCI的类型;根据所述类型配置所述DCI的相关信息。
在一个实施例中,所述相关信息包括以下之一:用于发送DCI的资源的信息; 用于加扰所述DCI的RNTI;用于指示所述DCI为MC-DCI或legacy DCI的指示信息。
在一个实施例中,所述资源包括以下至少之一:小区Cell;部分带宽BWP;搜索空间SS。
在一个实施例中,SS的信息包括以下至少之一:SS的标识;SS所关联的控制资源集CORESET的标识;SS中物理下行控制信道候选的数目;SS的监听时隙周期;SS的时隙的起始位置;SS的监听时隙数;SS的时隙内监听符号起始位置。
在一个实施例中,所述处理模块,被配置为在确定所述DCI为MC-DCI的情况下,配置所述DCI的相关信息为第一相关信息;和/或在确定所述DCI为legacy DCI的情况下,配置所述DCI的相关信息为第二相关信息。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的下行控制信息识别方法。
本公开的实施例还提出一种通信装置,包括:处理器;用于存储计算机程序的存储器;其中,当所述计算机程序被处理器执行时,实现上述任一实施例所述的下行控制信息配置方法。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的下行控制信息识别方法中的步骤。
本公开的实施例还提出一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被处理器执行时,实现上述任一实施例所述的下行控制信息配置方法中的步骤。
如图7所示,图7是根据本公开的实施例示出的一种用于下行控制信息配置的装置700的示意框图。装置700可以被提供为一基站。参照图7,装置700包括处理组件722、无线发射/接收组件724、天线组件726、以及无线接口特有的信号处理部分,处理组件722可进一步包括一个或多个处理器。处理组件722中的其中一个处理器可以被配置为实现上述任一实施例所述的下行控制信息配置方法。
图8是根据本公开的实施例示出的一种用于下行控制信息识别的装置800的示意框图。例如,装置800可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802、存储器804、电源组件806、多媒体组件808、音频组件810、输入/输出(I/O)的接口812、传感器组件814以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的下行控制信息识别方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM),只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以 不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、 数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述下行控制信息识别方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (16)

  1. 一种下行控制信息识别方法,其特征在于,由终端执行,所述方法包括:
    确定下行控制信息DCI的相关信息;
    根据所述DCI的相关信息识别所述DCI的类型,其中,所述类型为用于调度多个小区数据的MC-DCI或传统legacy DCI。
  2. 根据权利要求1所述的方法,其特征在于,所述相关信息包括以下之一:
    用于接收所述DCI的资源的信息;
    用于加扰所述DCI的无线网络临时标识RNTI;
    用于指示所述DCI为MC-DCI或legacy DCI的指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述资源包括以下至少之一:
    小区Cell;
    部分带宽BWP;
    搜索空间SS。
  4. 根据权利要求3所述的方法,其特征在于,SS的信息包括以下至少之一:
    SS的标识;
    SS所关联的控制资源集CORESET的标识;
    SS中物理下行控制信道候选的数目;
    SS的监听时隙周期;
    SS的时隙的起始位置;
    SS的监听时隙数;
    SS的时隙内监听符号起始位置。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述DCI的相关信息识别所述DCI的类型包括:
    在所述DCI的相关信息为第一相关信息的情况下,确定所述DCI为MC-DCI;
    和/或
    在所述DCI的相关信息为第二相关信息的情况下,确定所述DCI为legacy DCI。
  6. 一种下行控制信息配置方法,其特征在于,由网络设备执行,所述方法包括:
    确定向终端发送的DCI的类型;
    根据所述类型配置所述DCI的相关信息。
  7. 根据权利要求6所述的方法,其特征在于,所述相关信息包括以下之一:
    用于发送DCI的资源的信息;
    用于加扰所述DCI的无线网络临时标识RNTI;
    用于指示所述DCI为MC-DCI或legacy DCI的指示信息。
  8. 根据权利要求7所述的方法,其特征在于,所述资源包括以下至少之一:
    小区Cell;
    部分带宽BWP;
    搜索空间SS。
  9. 根据权利要求8所述的方法,其特征在于,SS的信息包括以下至少之一:
    SS的标识;
    SS所关联的控制资源集CORESET的标识;
    SS中物理下行控制信道候选的数目;
    SS的监听时隙周期;
    SS的时隙的起始位置;
    SS的监听时隙数;
    SS的时隙内监听符号起始位置。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述根据所述DCI的相关信息识别所述DCI的类型包括:
    在确定所述DCI为MC-DCI的情况下,配置所述DCI的相关信息为第一相关信息;
    和/或
    在确定所述DCI为legacy DCI的情况下,配置所述DCI的相关信息为第二相关信息。
  11. 一种下行控制信息识别装置,其特征在于,所述装置包括:
    处理模块,被配置为确定下行控制信息DCI的相关信息;根据所述DCI的相关信息识别所述DCI的类型,其中,所述类型为用于调度多个小区数据的MC-DCI或传统legacy DCI。
  12. 一种下行控制信息配置装置,其特征在于,所述装置包括:
    处理模块,被配置为确定向终端发送的DCI的类型;根据所述类型配置所述DCI的相关信息。
  13. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求1至5中任一项所述的 下行控制信息识别方法。
  14. 一种通信装置,其特征在于,包括:
    处理器;
    用于存储计算机程序的存储器;
    其中,当所述计算机程序被处理器执行时,实现权利要求6至10中任一项所述的下行控制信息配置方法。
  15. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求1至5中任一项所述的下行控制信息识别方法中的步骤。
  16. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,当所述计算机程序被处理器执行时,实现权利要求6至10中任一项所述的下行控制信息配置方法中的步骤。
PCT/CN2022/103182 2022-06-30 2022-06-30 下行控制信息识别、配置方法和装置 WO2024000543A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/103182 WO2024000543A1 (zh) 2022-06-30 2022-06-30 下行控制信息识别、配置方法和装置
CN202280002278.5A CN115298984A (zh) 2022-06-30 2022-06-30 下行控制信息识别、配置方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/103182 WO2024000543A1 (zh) 2022-06-30 2022-06-30 下行控制信息识别、配置方法和装置

Publications (1)

Publication Number Publication Date
WO2024000543A1 true WO2024000543A1 (zh) 2024-01-04

Family

ID=83819431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103182 WO2024000543A1 (zh) 2022-06-30 2022-06-30 下行控制信息识别、配置方法和装置

Country Status (2)

Country Link
CN (1) CN115298984A (zh)
WO (1) WO2024000543A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116076142A (zh) * 2022-11-07 2023-05-05 北京小米移动软件有限公司 小区确定方法、装置、通信装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210014647A1 (en) * 2019-07-08 2021-01-14 Qualcomm Incorporated Uplink control channel resource allocation for acknowledgement of downlink multicast/broadcast
WO2021133238A1 (en) * 2019-12-24 2021-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid automatic repeat request (harq) mechanism for multicast in nr
CN113543318A (zh) * 2020-04-15 2021-10-22 大唐移动通信设备有限公司 一种载波确定及指示方法、设备、装置、介质
WO2022047348A2 (en) * 2020-08-31 2022-03-03 Yunjung Yi Multi-cell downlink control information validation
CN114449595A (zh) * 2020-11-02 2022-05-06 中国电信股份有限公司 多载波调度方法和系统、用于多载波调度的基站和终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714892B (zh) * 2009-11-02 2014-12-31 中兴通讯股份有限公司 一种下行控制信息的传输方法及系统
CN109699054B (zh) * 2017-10-24 2020-11-06 华为技术有限公司 一种检测下行控制信息的方法、终端设备和网络设备
CN112671520B (zh) * 2019-10-16 2023-02-17 大唐移动通信设备有限公司 一种下行控制信息的确定方法、设备、装置及介质
CN117241400A (zh) * 2020-02-10 2023-12-15 北京小米移动软件有限公司 Dci的传输方法、装置、通信设备及存储介质
KR20210122417A (ko) * 2020-03-31 2021-10-12 삼성전자주식회사 무선 통신 시스템에서 통신을 수행하는 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210014647A1 (en) * 2019-07-08 2021-01-14 Qualcomm Incorporated Uplink control channel resource allocation for acknowledgement of downlink multicast/broadcast
WO2021133238A1 (en) * 2019-12-24 2021-07-01 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid automatic repeat request (harq) mechanism for multicast in nr
CN113543318A (zh) * 2020-04-15 2021-10-22 大唐移动通信设备有限公司 一种载波确定及指示方法、设备、装置、介质
WO2022047348A2 (en) * 2020-08-31 2022-03-03 Yunjung Yi Multi-cell downlink control information validation
CN114449595A (zh) * 2020-11-02 2022-05-06 中国电信股份有限公司 多载波调度方法和系统、用于多载波调度的基站和终端

Also Published As

Publication number Publication date
CN115298984A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
US20210168866A1 (en) Time slot format indication method, apparatus, equipment, and system, and storage medium
CN109075956B (zh) 时隙格式指示方法、装置、设备、系统及存储介质
US11917613B2 (en) Uplink transmission resource selection method, terminal and storage medium
CN109863810B (zh) 参考信号传输方法及装置
US20230232211A1 (en) Communication processing method, communication processing apparatus and storage medium
WO2023240646A1 (zh) 小区确定、下行控制信息发送方法和装置
WO2023240647A1 (zh) 调度确定、下行控制信息发送方法和装置
WO2018195910A1 (zh) 一种分配调度请求sr资源的方法和装置
US20200344778A1 (en) Method of indicating uplink feedback information and method of transmitting uplink feedback information
WO2023207046A1 (zh) 调度信息确定、下行控制信息发送方法和装置
WO2023206562A1 (zh) 控制信道接收、发送方法和装置、通信装置和存储介质
WO2023206561A1 (zh) 调度信息确定、下行控制信息发送方法和装置
WO2024000543A1 (zh) 下行控制信息识别、配置方法和装置
WO2019205022A1 (zh) 信息指示、解读方法及装置、基站和用户设备
WO2024066767A1 (zh) 信息域确定方法、小区确定及指示装置
WO2019028856A1 (zh) 寻呼指示方法及装置
WO2023184111A1 (zh) 信息域确定、指示方法和装置、通信装置和存储介质
WO2023130476A1 (zh) 搜索空间配置、确定方法和装置、通信装置和存储介质
WO2023240648A1 (zh) 下行控制信息检测、发送方法和装置
WO2024031676A1 (zh) 集合确定方法、装置、通信装置及存储介质
WO2024000544A1 (zh) 调度信息接收、发送方法和装置、通信装置及存储介质
WO2024000113A1 (zh) 调度确定、指示确定、关联关系指示方法和装置
WO2024098230A1 (zh) 小区确定方法、装置、通信装置和存储介质
WO2023050208A1 (zh) 波束切换、评估上报方法和装置、通信装置及存储介质
WO2024065851A1 (zh) 盲检控制、确定方法及装置、通信装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948645

Country of ref document: EP

Kind code of ref document: A1