WO2024000342A1 - 一种亲水改性聚异氰酸酯及其制备方法和应用 - Google Patents

一种亲水改性聚异氰酸酯及其制备方法和应用 Download PDF

Info

Publication number
WO2024000342A1
WO2024000342A1 PCT/CN2022/102626 CN2022102626W WO2024000342A1 WO 2024000342 A1 WO2024000342 A1 WO 2024000342A1 CN 2022102626 W CN2022102626 W CN 2022102626W WO 2024000342 A1 WO2024000342 A1 WO 2024000342A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyisocyanate
diisocyanate
acid
sulfamic acid
component
Prior art date
Application number
PCT/CN2022/102626
Other languages
English (en)
French (fr)
Inventor
尹逊迪
晋云全
张延成
王萃萃
周操
张萌鑫
赵坤
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to PCT/CN2022/102626 priority Critical patent/WO2024000342A1/zh
Publication of WO2024000342A1 publication Critical patent/WO2024000342A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates

Definitions

  • the invention relates to the field of modified polyisocyanate, specifically to a hydrophilic modified polyisocyanate and its preparation method and application.
  • Water-based isocyanate curing agents can be divided into polyether-modified polyisocyanate curing agents and sulfonic acid-modified polyisocyanate curing agents according to their hydrophilic groups.
  • polyether-modified polyisocyanate curing agents have gained wide market recognition, but in order to obtain good hydrophilicity, a large amount of polyether needs to be introduced, which has the disadvantages of low effective isocyanate content and poor resistance.
  • These inherent shortcomings limit this type of Application of curing agent.
  • the sulfonic acid-modified polyisocyanate curing agent has the advantages of high functionality and easy dispersion, and its application range is becoming more and more extensive. However, how to improve the production efficiency of sulfonic acid-modified polyisocyanate and how to obtain products with light color and low turbidity are still one of the difficulties that trouble those skilled in the art.
  • Patent document CN1190450C uses 3-(cyclohexylamino)-propanesulfonic acid and 2-(cyclohexylamino)-ethanesulfonic acid solid powder to prepare sulfonic acid-modified polyisocyanate.
  • the obtained modified polyisocyanate does not require high shear force to Ability to disperse evenly in water.
  • CN104448232B uses 4-(cyclohexylamino)-butanesulfonic acid solid powder to prepare sulfonic acid-modified polyisocyanate, and also obtains sulfonic acid-modified polyisocyanate with excellent performance. Both of the above two documents use solid powder sulfonic acid to prepare modified curing agents.
  • the invention provides a hydrophilic modified polyisocyanate and its preparation method and application.
  • the method based on the invention can effectively and simultaneously improve the existing sulfonic acid modified polyisocyanate preparation process, which has problems such as slow reaction rate and high turbidity of the resulting product. The problem with the dark color of the product.
  • the invention provides a method for preparing hydrophilic modified polyisocyanate.
  • the method includes reacting materials containing component (a), component (b) and optional component (c) to obtain the hydrophilic modified polyisocyanate.
  • the particles with a particle size of ⁇ 900 mesh are less than 10wt%, preferably less than 5wt%, and more preferably less than 3wt%; and the particles with a particle size of >40 mesh are less than 10wt%, preferably less than 5wt%, and more preferably less than 5wt%. Preferably less than 3 wt%.
  • the sulfamic acid has the following structural formula:
  • R 1 is cyclohexyl, cyclohexylmethyl, p-methylcyclohexyl, 2-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,3,5-trimethylcyclohexyl, 4-tert. Butylcyclohexyl, cycloheptyl, cyclooctylmethyl, 2-norbornyl, 2-adamantyl or 3,5-dimethyl-1-adamantyl, R 2 is a straight chain with 2 to 6 carbon atoms or Branched aliphatic groups.
  • the sulfamic acid (b) is selected from one or more of 2-cyclohexylaminoethanesulfonic acid, 3-cyclohexylaminopropanesulfonic acid, and 4-cyclohexylaminobutanesulfonic acid. kind.
  • component (d): a weak acid with pKa>1 is optionally added to the reaction system;
  • the molar ratio of the weak acid to the sulfamic acid is 0-0.3, preferably 0.002-0.1.
  • the component (d) is selected from one or more of dibutyl phosphate, di(2-ethylhexyl) phosphate, phosphoric acid, and adipic acid.
  • the method includes reacting materials containing the component (a), the component (b), the component (c) and the component (d) to obtain the Hydrophilic modified polyisocyanate.
  • the amount of sulfamic acid used is 0.5-10% of the total mass of the polyisocyanate and the sulfamic acid.
  • the molar ratio of the tertiary amine to the sulfamic acid is 0-1.1, preferably 0.9-1.1.
  • the reaction is performed at 70-110°C.
  • the polyisocyanate is an aliphatic, alicyclic, araliphatic and/or aromatic polyisocyanate; preferably, the polyisocyanate contains uretdione, isocyanurate, urethane , allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure; preferably, the diisocyanate used to prepare the polyisocyanate is selected from tetramethylene-1,4 -Diisocyanate, pentamethylene-1,5-diisocyanate, hexamethylene-1,6-diisocyanate, dodecyl-1,12-diisocyanate, 1,4-cyclohexane diisocyanate , Isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 4,4'-dicyclohexylpropane diisocyanate, 1,4
  • the tertiary amine is selected from N,N-dimethylbutylamine, N,N-diethylmethylamine, N,N-diisopropylethylamine, N,N-dimethylbutylamine, One or more of methylcyclohexylamine, N-methylpiperidine and N-ethylmorpholine;
  • a catalyst is optionally added to the reaction system, and the catalyst is selected from one or more tertiary amine catalysts and organometallic catalysts that are different from component c);
  • an antioxidant is optionally added to the reaction system.
  • the present invention also provides a hydrophilic modified polyisocyanate prepared based on the method described above.
  • the present invention also provides the application of the hydrophilic modified polyisocyanate prepared by the above-described method or the above-described hydrophilic modified polyisocyanate.
  • the above-mentioned hydrophilic modified polyisocyanate is used to prepare coating agents, adhesives, etc. agents or sealants, or as starting components for the production of polyurethane plastics.
  • the inventor unexpectedly discovered that on the basis of the existing sulfonic acid-modified polyisocyanate preparation process, by using sulfamic acid raw materials with specific particle size requirements, low production efficiency, high product turbidity and color can be effectively improved. Deep deficiency.
  • the invention provides a method for preparing hydrophilic modified polyisocyanate.
  • the method includes reacting materials containing component (a), component (b) and optional component (c) to obtain hydrophilic modification.
  • the particles with particle size ⁇ 900 mesh are less than 10wt%, preferably less than 5wt%, more preferably less than 3wt%; and the particles with particle size >40 mesh are less than 10wt%, preferably less than 5wt%, more preferably less than 3wt%.
  • the present invention is a solution formed by improving the existing hydrophilic modified polyisocyanate process.
  • the inventor found that the hydrophilic modified polyisocyanate can be prepared by reacting sulfamic acid, polyisocyanate and optional tertiary amines.
  • solid particles of sulfamic acid react with polyisocyanate in a heterogeneous phase.
  • the reaction rate is low, and unreacted sulfamic acid easily exists in the form of particles in the product, causing high product turbidity.
  • the color number will continue to increase during product storage.
  • hydrophilic modified polyisocyanate sulfonic acid modified polyurethane
  • hydrophilic modified polyisocyanate sulfonic acid modified polyurethane
  • the particle size of sulfamic acid is controlled to meet the requirements of less than 10wt% of particles with particle size ⁇ 900 mesh, preferably less than 5wt%, more preferably less than 3wt%; and less than 10wt%, preferably less than 10wt% of particles with particle size >40 mesh.
  • the production efficiency can be effectively improved, while the turbidity of the product can be reduced and the color of the obtained product can be made lighter.
  • the sulfamic acid added in the reaction system has less than 10wt% of particles with a particle size of ⁇ 900 mesh, and less than 10wt% of particles with a particle size of >40 mesh; the particle size of the sulfamic acid meets this basic requirement.
  • the particle size of particles with a particle size of ⁇ 900 mesh is more preferably less than 5wt%, and further preferably less than 3%, which can further reduce the turbidity and color of the product; similarly, in amino
  • the sulfamic acid added in the reaction system should have particles with a particle size >40 mesh, preferably less than 5wt%, and further preferably less than 3%, which can further reduce the turbidity and color of the product. Number.
  • the particle size D of the sulfamic acid added in the reaction system is, for example, 900 mesh ⁇ D ⁇ 40 mesh, 800 mesh ⁇ D ⁇ 50 mesh, 700 mesh ⁇ D ⁇ 60 mesh, 60 mesh ⁇ D ⁇ 40 Mesh, 200 mesh ⁇ D ⁇ 100 mesh, 400 mesh ⁇ D ⁇ 200 mesh, 900 mesh ⁇ D ⁇ 400 mesh, 100 mesh ⁇ D ⁇ 60 mesh, etc.
  • “mesh” represents the mesh number of the sieve. The larger the mesh number, the smaller the particle size of the undersize material obtained by filtration with the sieve.
  • the product obtained by preparing sulfamic acid can be obtained by filtering and classifying it through a sieve of the required mesh size; or the amino acid obtained through purchase can be filtered and classified.
  • the sulfonic acid can be obtained by dispersing it in acetone and then filtering and classifying it through a sieve of the required mesh size; or it can be obtained by grinding the purchased sulfamic acid and filtering it and classifying it through a sieve mesh of the required mesh size, etc.
  • component (d): a weak acid with pKa>1 is optionally added to the reaction system.
  • the weak acid is preferably one or more of dibutyl phosphate, di(2-ethylhexyl) phosphate, phosphoric acid, and adipic acid.
  • the above-mentioned weak acid is added to the reaction system.
  • the molar ratio of weak acid to sulfamic acid can be 0-0.3, preferably 0.002-0.1 (for example, 0.002, 0.005, 0.01, 0.05, 0.1, etc.).
  • the method of the present invention includes reacting materials containing the above component (a), component (b), component (c) and component (d) to obtain hydrophilic modified polyisocyanate.
  • the polyisocyanate, sulfamic acid and tertiary amine used are all conventionally used raw materials in the process of preparing hydrophilic modified polyisocyanate (sulfonic acid modified polyisocyanate) in this field.
  • the selection can refer to the conventional selection in the field.
  • the present invention has no special restrictions on the specific compound selection of the above raw materials.
  • the component (b) sulfamic acid used has the following structural formula:
  • R 1 is cyclohexyl, cyclohexylmethyl, p-methylcyclohexyl, 2-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,3,5-trimethylcyclohexyl, 4-tert. Butylcyclohexyl, cycloheptyl, cyclooctylmethyl, 2-norbornyl, 2-adamantyl or 3,5-dimethyl-1-adamantyl, R 2 is a straight chain with 2 to 6 carbon atoms or Branched aliphatic groups.
  • sulfamic acid is selected from one or more of 2-cyclohexylaminoethanesulfonic acid, 3-cyclohexylaminopropanesulfonic acid, and 4-cyclohexylaminobutanesulfonic acid; some embodiments Among them, the sulfamic acid is selected from 3-cyclohexylaminopropanesulfonic acid and/or 4-cyclohexylaminobutanesulfonic acid.
  • component (c) tertiary amine is used simultaneously in the reaction system, sulfamic acid can be partially or fully neutralized by the tertiary amine to form a salt before, during and/or after the reaction with polyisocyanate.
  • the polyisocyanate is an aliphatic, cycloaliphatic, araliphatic, and/or aromatic polyisocyanate. In some embodiments, the polyisocyanate has an average isocyanate functionality of 2.0-5.0 and an NCO content of 7.0-32.0 wt%.
  • the polyisocyanate used as component (a) of the method of the present invention can be an unmodified or modified polyisocyanate. .
  • the polyisocyanate contains uretdione, isocyanurate, urethane, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure;
  • the hydrophilic modified polyisocyanate thus obtained also contains one or more of the above structures accordingly.
  • the above-mentioned polyisocyanate can be prepared by one or more of aliphatic, alicyclic, aromatic and/or araliphatic diisocyanates according to existing methods, for example, refer to patent documents DE1670666A, DE1954093A, DE2414413A, DE2452532A, DE2641380A , prepared by the methods described in DE3700209A, DE3900053A, DE3928503A, EP0336205A, EP0339396A and EP0798299A.
  • Suitable diisocyanates are those obtainable by phosgene or non-phosgene methods, for example any diisocyanate obtained by thermal decomposition of urethane.
  • the diisocyanate is a diisocyanate with a molecular weight of 100-500 and having aliphatic, cycloaliphatic, araliphatic and/or aromatic linkages, for example, selected from tetramethylene-1,4-diisocyanate.
  • the polyisocyanate is based on hexamethylene-1,6-diisocyanate (HDI), isophorone diisocyanate (IPDI) and 4,4'-dicyclohexylmethane diisocyanate (H12MDI)
  • HDI hexamethylene-1,6-diisocyanate
  • IPDI isophorone diisocyanate
  • H12MDI 4,4'-dicyclohexylmethane diisocyanate
  • the hydrophilic compound contains a uretdione, isocyanurate, urethane, allophanate, biuret, iminooxadiazinedione, and/or oxadiazinetrione structure.
  • additives such as antioxidants, free radical scavengers, inhibitors, etc. can be added.
  • the specific amount of additives can be the conventional dosage in the field, and those skilled in the art can also determine according to product requirements. Specific dosage.
  • the tertiary amine as component (c) may be those conventionally used in the art. In some embodiments, the tertiary amine as component (c) is selected from N,N-dimethylbutylamine, N,N-diethylmethylamine, N,N-diisopropylethylamine, One or more of N,N-dimethylcyclohexylamine, N-methylpiperidine and N-ethylmorpholine.
  • the tertiary amine as component (c) is used on the one hand to neutralize the sulfonic acid group in sulfamic acid to form a sulfonate, and on the other hand, it is used as a phase transfer catalyst for the reaction to catalyze the reaction between polyisocyanate and sulfamic acid.
  • hydrophilic modified polyisocyanate of the present invention it is also possible to add polyisocyanate, sulfamic acid and optional tertiary amines based on polyisocyanate, sulfamic acid and optional tertiary amines.
  • polyisocyanate, sulfamic acid and optional tertiary amines based on polyisocyanate, sulfamic acid and optional tertiary amines.
  • additional catalysts can also be added.
  • the catalysts are, for example, one or more selected from tertiary amine catalysts and organometallic catalysts that are different from component c).
  • the tertiary amine catalysts can be selected from, but are not limited to: pyridine.
  • the organometallic catalyst can be selected from, for example, but not limited to: tris(ethyl-acetyl acetate)aluminum, normal Tin octoate, zinc n-octoate, tin 2-ethyl-1-hexanoate (II), dibutyltin dichloride (IV), dibutyltin diacetate (IV), dibutyltin dilaurate (IV), diacetate One or a mixture of octyltin (IV) or molybdenum glycolate.
  • the usage amount of these conventional catalysts can be easily determined by those skilled in the art according to the reaction needs, for example, it is 10-2000 ppm, preferably 100-500 ppm, based on the total weight of the reaction materials.
  • the reaction in the method of preparing the hydrophilic modified polyisocyanate of the present invention between polyisocyanate and sulfamic acid in the presence of tertiary amine, the reaction can be carried out in an NCO reaction inert solvent; solvents such as but not limited to acetone, butyl Ketone, cyclopentanone, cyclohexanone, ethyl acetate, butyl acetate, tetrahydrofuran, N-methylpyrrolidone, N-ethylpyrrolidone, toluene, xylene, chlorobenzene, propylene glycol methyl ether acetate, 1-methoxy 2-propyl acetate, 3-methoxy-n-butyl acetate, aromatic compounds, dimethyl carbonate, diethyl carbonate, butyrolactone, caprolactone and methyl caprolactone, etc.
  • solvents such as but not limited to acetone, butyl Ketone,
  • antioxidants can also be added to further reduce the color number, but antioxidants are not necessarily added.
  • Antioxidants can be those conventionally added in the art, specifically, for example, compounds such as aromatic amines and hindered phenols that can eliminate free radicals and their derivatives. They can also be antioxidants that can decompose hydroperoxides, such as phosphorus-containing and Organic compounds of sulfur, or combinations thereof. Those skilled in the art can easily determine the amount of antioxidants added according to actual needs. For example, the amount of antioxidants added is 0%-1.5% of the total mass of polyisocyanate (a) and sulfamic acid (b);
  • the dosages of sulfamic acid, polyisocyanate and tertiary amine are conventional in this field.
  • the amount of sulfamic acid used is 0.5-10% of the total mass of polyisocyanate and sulfamic acid; the molar ratio of tertiary amine to sulfamic acid is 0-1.1, preferably 0.9-1.1.
  • polyisocyanate (a) and sulfamic acid (b) are reacted at 70-110°C, wherein polyisocyanate (a) ) can be invested in one or more steps.
  • the judgment of the reaction end point is well known to those skilled in the art, for example, it can be determined by testing the NCO content. For example, when the NCO content reaches the theoretical value ⁇ 0.1%, it can be considered that the reaction end point has been reached. Of course, it can also be considered in conjunction with the degree of permeability of the reaction product. Whether to extend the reaction time, for example, if the reaction product is turbid, consider extending the reaction time.
  • the present invention also provides a hydrophilic modified polyisocyanate prepared based on the above method.
  • the present invention also provides the application of the above-mentioned hydrophilic modified polyisocyanate, which can be used to prepare coating agents, adhesives or sealants, or as a starting component for the production of polyurethane plastics. Specifically, it is used as a cross-linking agent in water-dispersible two-component coatings and adhesives.
  • the hydrophilic modified polyisocyanate provided by the invention can also be used as a starting component in the preparation of blocked polyisocyanates that are water-dispersible or exist in the form of a dispersion in water.
  • Suitable blocking agents such as methyl ethyl ketoxime, 3, One or more of 5-dimethylpyrazole, diethyl malonate, ethyl acetoacetate, imidazole, and ⁇ -caprolactam.
  • the hydrophilic modified polyisocyanate of the present invention can also be used as a cross-linking agent for fabric finishing, printing coating adhesives, and for cross-linking other products.
  • Sulfamic acid b1 In dioxane solvent, react with cyclohexylamine and 1,4-butanesulfonic acid lactone at a molar ratio of 3:1 at 80°C for 6 hours, filter with a 40-mesh filter, discard the filtrate, and use The collected solid on the 40 mesh filter was washed with acetone until white. After drying, 4-cyclohexylaminobutanesulfonic acid b1 with particle size D>40 mesh and purity>99.5% was obtained.
  • Sulfamic acid b2 In dioxane solvent, react with cyclohexylamine and 1,4-butanesultone at a molar ratio of 3:1 at 80°C for 6 hours. Use a 40-mesh filter to remove large particles. Filter the filtrate using a 60-mesh filter, discard the filtrate, and wash the solid collected on the 60-mesh filter with acetone until white. After drying, 4-cyclohexylaminobutanesulfonic acid b2 with a particle size D of 60 mesh ⁇ D ⁇ 40 mesh and a purity > 99.5% was obtained.
  • Sulfamic acid b3 In dioxane solvent, react with cyclohexylamine and 1,4-butanesultone at a molar ratio of 3:1 at 80°C for 6 hours. Use a 100-mesh filter to remove large particles. Filter the filtrate using a 200-mesh filter, discard the filtrate, and wash the collected solid on the 200-mesh filter with acetone until it turns white. After drying, 4-cyclohexylaminobutanesulfonic acid b3 with a particle size D of 200 mesh ⁇ D ⁇ 100 mesh and a purity > 99.5% was obtained.
  • Sulfamic acid b4 In dioxane solvent, react with cyclohexylamine and 1,4-butanesultone at a molar ratio of 3:1 at 80°C for 6 hours. Use a 200 mesh filter to remove large particles. The filtrate was filtered using a 400-mesh filter, the filtrate was discarded, and the collected solid on the 400-mesh filter was washed with acetone until it turned white. After drying, 4-cyclohexylaminobutanesulfonic acid b4 with a particle size D of 400 mesh ⁇ D ⁇ 200 mesh and a purity > 99.5% was obtained.
  • Sulfamic acid b5 react with cyclohexylamine and 1,4-butanesultone in a dioxane solvent at a molar ratio of 3:1 at 80°C for 6 hours. Use a 400-mesh filter to remove large particles. The filtrate was filtered using a 900-mesh filter, the filtrate was discarded, and the collected solid on the 900-mesh filter was washed with acetone until it turned white. After drying, 4-cyclohexylaminobutanesulfonic acid b5 with a particle size D of 900 mesh ⁇ D ⁇ 400 mesh and a purity > 99.5% was obtained.
  • Sulfamic acid b6 In dioxane solvent, react with cyclohexylamine and 1,4-butanesulfonic acid lactone at a molar ratio of 3:1 at 80°C for 6 hours. Use a 900 mesh filter to remove large particles. Filter the filtrate using a 1250 mesh filter, discard the filtrate, and wash the collected solid on the 1250 mesh filter with acetone until it becomes white. After drying, 4-cyclohexylaminobutanesulfonic acid b6 with a particle size D of 1250 mesh ⁇ D ⁇ 900 mesh and a purity > 99.5% was obtained.
  • Sulfamic acid b7 In dioxane solvent, react with cyclohexylamine and 1,3-propanesulfonic acid lactone at a molar ratio of 3:1 at 30°C for 5 hours. After using a 60-mesh filter to remove large particles, the filtrate Use a 100-mesh filter to collect the solid, discard the filtrate, and wash the collected solid on the 100-mesh filter with acetone until it turns white. After drying, 3-cyclohexylaminopropanesulfonic acid with a particle size D of 100 mesh ⁇ D ⁇ 60 mesh and a purity > 99.5% is obtained.
  • Tertiary amine c1 N,N-dimethylcyclohexylamine, purchased from Bailingwei Reagent, with a purity of 99%.
  • Tertiary amine c2 N-ethylmorpholine, purchased from Bailingwei Reagent, purity 99%.
  • Weak acid d1 dibutyl phosphate, purchased from Aladdin Reagent, purity 96%.
  • Viscosity test standard Brookfield LV 63#/3rpm, 25°C
  • Color number test standard Use the 723C visible spectrophotometer of Shanghai Yuanxi Instrument Co., Ltd. and use the Hazen scale to measure
  • Turbidity test standard measured using HACH 2100Q Portable Turbidimeter, unit NTU.
  • Comparative Example 1 uses sulfamic acid b1 with a particle size >40 mesh to prepare modified polyisocyanate. As a result, compared with Example 1, the temperature required for the reaction is higher and the reaction time required is longer. The reaction The efficiency dropped significantly, and the color and turbidity of the produced product increased significantly.
  • Comparative Example 2 uses sulfamic acid b6 with a particle size D of 1250 mesh ⁇ D ⁇ 900 mesh to prepare modified polyisocyanate.
  • the temperature required for the reaction is higher and the required The reaction time is longer, the reaction efficiency is significantly reduced, and the color number and turbidity of the produced product are significantly increased.
  • Comparative Example 3 increases the proportion of sulfamic acid b6 in sulfamic acid to more than 10wt% when the particle size D is 1250 mesh ⁇ D ⁇ 900 mesh. As a result, the reaction time is longer and the reaction efficiency decreases. , and the color number and turbidity of the produced product were significantly increased.
  • this comparative example increases the proportion of sulfamic acid b1 in sulfamic acid with particle size >40 mesh to more than 10wt%. As a result, the reaction time required is longer, the reaction efficiency decreases, and the obtained The color number and turbidity of the product increased significantly.
  • the particle size D of sulfamic acid is 1250 mesh ⁇ D ⁇ 900 mesh sulfamic acid b6.
  • the reaction time is longer, the reaction efficiency is reduced, and the color number and turbidity of the product are were significantly elevated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明提供一种亲水改性聚异氰酸酯及其制备方法和应用,基于本发明的方法能够有效同步改善现有的磺酸改性聚异氰酸酯制备工艺中存在反应速率慢且所得产品浊度高、产品颜色深的问题。所述方法包括将包含组分(a)、组分(b)和任选的组分(c)的物料进行反应以得到所述亲水改性聚异氰酸酯:(a)至少一种聚异氰酸酯,(b)至少一种氨基磺酸,(c)至少一种叔胺;所述氨基磺酸中,粒径≤900目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%;且粒径>40目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%。

Description

一种亲水改性聚异氰酸酯及其制备方法和应用 技术领域
本发明涉及改性聚异氰酸酯领域,具体涉及一种亲水改性聚异氰酸酯及其制备方法和应用
背景技术
水性异氰酸酯固化剂根据亲水基团可分为聚醚改性聚异氰酸酯固化剂和磺酸改性聚异氰酸酯固化剂。其中聚醚改性聚异氰酸酯固化剂虽然获得了广泛的市场认可,但为了获得好的亲水性需要引入大量的聚醚,具有有效异氰酸酯含量低以及耐性差的缺点,这些固有缺点限制了该类固化剂的应用。而磺酸改性聚异氰酸酯固化剂因具有官能度高、易分散等优点,其应用范围也越来越广泛。但是如何提高磺酸改性聚异氰酸酯的生产效率,以及如何获得颜色浅和浊度低的产品依然是困扰本领域技术人员的难点之一。
专利文献CN1190450C使用3-(环己基氨基)-丙磺酸和2-(环己基氨基)-乙磺酸固体粉末制备磺酸改性多异氰酸酯,所得改性的多异氰酸酯不需要高剪切力就能够在水中均匀分散。CN104448232B使用4-(环己基氨基)-丁磺酸固体粉末制备磺酸改性多异氰酸酯,同样获得了性能优异的磺酸改性多异氰酸酯。以上两篇文献均使用固体粉末磺酸制备改性固化剂,该反应为非均相反应,导致反应时间长、产品颜色深、浊度高,且随着存储时间的延长颜色加深。为解决非均相反应带来的产品性能方面的弊端,专利CN 110396173A、专利CN 110396165A分别提出在反应体系内引入自由基清除剂和/或过氧化物分解剂、抗氧剂等添加剂,但这些方案仅能解决色号高的问题,而无法对产品浊度高、反应时间长的缺点进行同步改善。
发明内容
本发明提供一种亲水改性聚异氰酸酯及其制备方法和应用,基于本发明的方法能够有效同步改善现有的磺酸改性聚异氰酸酯制备工艺中存在反应速 率慢且所得产品浊度高、产品颜色深的问题。
本发明为达到其目的,提供如下技术方案:
本发明提供一种制备亲水改性聚异氰酸酯的方法,所述方法包括将包含组分(a)、组分(b)和任选的组分(c)的物料进行反应以得到所述亲水改性聚异氰酸酯:
(a)至少一种聚异氰酸酯,
(b)至少一种氨基磺酸,
(c)至少一种叔胺;
所述氨基磺酸中,粒径≤900目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%;且粒径>40目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%。
一些实施方式中,所述氨基磺酸具有如下结构式:
Figure PCTCN2022102626-appb-000001
其中R 1为环己基、环己甲基、对甲基环己基、2-甲基环己基、2,3-二甲基环己基、3,3,5-三甲基环己基、4-叔丁基环己基、环庚基、环辛甲基、2-降莰基、2-金刚烷基或3,5-二甲基-1-金刚烷基,R 2为具有2至6个碳原子的直链或支化脂族基团。
一些实施方式中,所述氨基磺酸(b)选自2-环己胺基乙磺酸、3-环己胺基丙磺酸、4-环己胺基丁磺酸中的一种或多种。
一些实施方式中,反应体系中还任选地加入组分(d):pKa>1的弱酸;
优选的,所述弱酸与所述氨基磺酸的摩尔比为0-0.3,优选0.002-0.1。
一些实施方式中,所述组分(d)选自磷酸二丁酯、二(2-乙基己基)磷酸酯、磷酸、己二酸中的一种或多种。
一些实施方式中,所述方法包括将包含所述组分(a)、所述组分(b)、 所述组分(c)和所述组分(d)的物料进行反应以得到所述亲水改性聚异氰酸酯。
一些实施方式中,所述氨基磺酸的用量为所述聚异氰酸酯和所述氨基磺酸总质量的0.5-10%。
一些实施方式中,所述叔胺与所述氨基磺酸的摩尔比为0-1.1,优选0.9-1.1。
一些实施方式中,所述反应在70-110℃下进行。
一些实施方式中,所述聚异氰酸酯为脂肪族、脂环族、芳脂族和/或芳族聚异氰酸酯;优选的,所述聚异氰酸酯含有脲二酮、异氰脲酸酯、氨基甲酸酯、脲基甲酸酯、缩二脲、亚氨基噁二嗪二酮和/或噁二嗪三酮结构;优选的,制备所述聚异氰酸酯所用的二异氰酸酯选自四亚甲基-1,4-二异氰酸酯、五亚甲基-1,5-二异氰酸酯、六亚甲基-1,6-二异氰酸酯、十二亚甲基-1,12-二异氰酸酯、1,4-环己烷二异氰酸酯、异佛尔酮二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、4,4'-二环己基丙烷二异氰酸酯、1,4-苯二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4'-二苯基甲烷二异氰酸酯、2,2'-二苯基甲烷二异氰酸酯、2,4'-二苯基甲烷二异氰酸酯、四甲基二甲苯基二异氰酸酯和对苯二甲基二异氰酸酯中的一种或多种的组合;
一些实施方式中,所述叔胺选自N,N-二甲基丁基胺、N,N-二乙基甲基胺、N,N-二异丙基乙基胺、N,N-二甲基环己基胺、N-甲基哌啶和N-乙基吗啉中的一种或多种;
一些实施方式中,反应体系中还任选的添加催化剂,所述催化剂选自与所述组分c)不同的叔胺催化剂、有机金属催化剂中的一种或多种;
一些实施方式中,所述反应体系中还任选地添加抗氧剂。
本发明还提供一种基于上文所述的方法制得的亲水改性聚异氰酸酯。
本发明还提供上文所述的方法制得的亲水改性聚异氰酸酯或上文所述的亲水改性聚异氰酸酯的应用,上述亲水改性聚异氰酸酯用于制备涂覆剂、粘 合剂或密封剂,或作为起始组分用于聚氨酯塑料的生产。
本发明提供的技术方案具有如下有益效果:
本发明人出乎预料的发现,在现有的磺酸改性聚异氰酸酯制备工艺基础上,通过采用特定粒径要求的氨基磺酸原料可以有效的兼顾改善生产效率低、产品浊度高和颜色深的不足。
具体实施方式
为了便于理解本发明,下面将结合实施例对本发明作进一步的说明。应当理解,下述实施例仅是为了更好的理解本发明,并不意味着本发明仅局限于以下实施例。
除非另有定义,本文所使用的所有的技术和科学术语与本发明所属技术领域的技术人员通常理解的含义相同。本文可能使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例中未注明具体实验步骤或条件之处,可按照本技术领域中相应的常规实验步骤的操作或条件进行即可。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本发明提供一种制备亲水改性聚异氰酸酯的方法,该方法包括将包含组分(a)、组分(b)和任选的组分(c)的物料进行反应以得到亲水改性聚异氰酸酯:
(a)至少一种聚异氰酸酯,
(b)至少一种氨基磺酸,
(c)至少一种叔胺;
其中组分(b)氨基磺酸中,粒径≤900目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%;且粒径>40目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%。
本发明是通过对现有的亲水改性聚异氰酸酯工艺进行改进而形成的方 案,本发明人发现,在氨基磺酸、聚异氰酸酯和任选的叔胺等物料进行反应制备亲水改性聚异氰酸酯的工艺中,固体颗粒的氨基磺酸与聚异氰酸酯进行非均相反应,其反应速率较低,且未反应的氨基磺酸容易以颗粒形式存在于产品中,造成产品浊度高,同时,在产品存储过程中会继续引起色号的增加。而过量的氨基磺酸残留还会严重影响作为固化剂使用的亲水改性聚异氰酸酯与水性乳液复配过程中乳液的稳定性;此外,产品色号的增加也会严重影响水性乳液制品的外观。在现有技术中,为了使氨基磺酸反应更加完全,常规做法是延长反应时间和提高反应温度,在制备过程中长时间的高温也会使未反应的氨基磺酸氧化而变色,造成产品色号升高。如何在提高生产效率的同时获得浊度小,色号低的亲水改性聚异氰酸酯(磺酸改性聚氨酯)成为本领域的技术难点之一。通常认为,颗粒越大,比表面积越小反应速率越低,与之相反,颗粒越小,比表面积越大反应速率越快。而本发明人经过长期探索,出乎预料的发现,与传统经验相违背的是,氨基磺酸颗粒粒径小于一定值时,生产效率反而变慢,产品浊度升高。而当将氨基磺酸的粒径控制为满足粒径≤900目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%;且粒径>40目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%时,可以有效的提升生产效率,同时能降低产品浊度和使所得产品颜色更浅。
本发明的方法中,在反应体系中添加的氨基磺酸,粒径≤900目的颗粒少于10wt%,且粒径>40目的颗粒少于10wt%;在氨基磺酸的粒径满足该基本要求的情形下,在反应体系中添加的氨基磺酸,粒径在≤900目的颗粒更优选少于5wt%,进一步优选少于3%,可以进一步降低产品浊度和色号;类似的,在氨基磺酸粒径满足前述基本要求的情形下,在反应体系中添加的氨基磺酸,粒径>40目的颗粒更优选少于5wt%,进一步优选少于3%,可以进一步降低产品浊度和色号。一些实施方式中,在反应体系中添加的氨基磺酸,粒径D例如为900目<D≤40目、800目<D≤50目、700目<D≤60目、60目<D≤40目、200目<D≤100目、400目<D≤200目、900目<D≤400目、100目<D≤60目等等。本领域技术人员所公知的,“目”代表筛网的目数,目数的数值越大则用筛网过滤获得的筛下物的粒径越小。关于氨基磺酸粒径的控制, 可以采用常规的筛网过滤方式实现;例如可以将将制备氨基磺酸得到的产物采用所需目数的筛网过滤分级来获得;或可以将采购获得的氨基磺酸用丙酮分散后使用所需目数的筛网过滤分级来获得;或可以将采购获得的氨基磺酸研磨后使用所需目数的筛网过滤分级获得等等。
一些实施方式中,本发明的方法中,还在反应体系中任选地加入组分(d):pKa>1的弱酸。一些实施方式中,弱酸优选为磷酸二丁酯、二(2-乙基己基)磷酸酯、磷酸、己二酸中的一种或多种。较佳实施方式中,向反应体系中加入上述弱酸。弱酸与氨基磺酸的摩尔比可以为0-0.3,优选0.002-0.1(例如0.002、0.005、0.01、0.05、0.1等)。本发明人发现,当采用满足本发明粒径要求的氨基磺酸时,同时辅以pKa(酸度系数)>1的弱酸,在同等工艺条件下,能够进一步的提高生产效率、降低产品浊度和色号。
一些实施方式中,本发明方法包括将包含上述组分(a)、组分(b)、组分(c)和组分(d)的物料进行反应以得到亲水改性聚异氰酸酯。
本发明中的方法中,所用的聚异氰酸酯、氨基磺酸、叔胺均是本领域制备亲水改性聚异氰酸酯(磺酸改性聚异氰酸酯)的工艺中常规使用的原料,对其具体的化合物选择可参照本领域的常规选择,本发明对于上述原料的具体化合物选择没有特别限制。
一些实施方式中,所用的组分(b)氨基磺酸具有如下结构式:
Figure PCTCN2022102626-appb-000002
其中R 1为环己基、环己甲基、对甲基环己基、2-甲基环己基、2,3-二甲基环己基、3,3,5-三甲基环己基、4-叔丁基环己基、环庚基、环辛甲基、2-降莰基、2-金刚烷基或3,5-二甲基-1-金刚烷基,R 2为具有2至6个碳原子的直链或支化脂族基团。一些实施例中,氨基磺酸选自2-环己胺基乙磺酸、3-环己胺基丙磺酸、4-环己胺基丁磺酸中的一种或多种;一些实施例中,氨基磺酸选自3-环己胺基丙磺酸和/或4-环己胺基丁磺酸。当在反应体系中,同时使用组分(c)叔胺时,氨基磺酸可以在与聚异氰酸酯反应前、反应中和/ 或反应后被叔胺部分或全部中和成盐。
一些实施方式中,聚异氰酸酯为脂肪族、脂环族、芳脂族和/或芳族聚异氰酸酯。一些实施方式中,聚异氰酸酯的平均异氰酸酯官能度为2.0-5.0,NCO含量为7.0-32.0wt%,作为本发明方法的组分(a)的聚异氰酸酯可以是未改性或改性的聚异氰酸酯。
一些实施方式中,聚异氰酸酯含有脲二酮、异氰脲酸酯、氨基甲酸酯、脲基甲酸酯、缩二脲、亚氨基噁二嗪二酮和/或噁二嗪三酮结构;由此得到的的亲水改性聚异氰酸酯也相应地含有上述一种或多种结构。上述聚异氰酸酯可以通过脂肪族、脂环族、芳香族和/或芳脂族的二异氰酸酯中的一种或多种按照现有方法制备得到,例如参照专利文献DE1670666A,DE1954093A,DE2414413A,DE2452532A,DE2641380A,DE3700209A,DE3900053A、DE3928503A、EP0336205A、EP0339396A以及EP0798299A等中描述的方法制备。
用于制备上述含有脲二酮、异氰脲酸酯、氨基甲酸酯、脲基甲酸酯、缩二脲、亚氨基噁二嗪二酮和/或噁二嗪三酮结构的聚异氰酸酯的适合的二异氰酸酯是那些可以用光气法或者非光气法得到的二异氰酸酯,例如由氨基甲酸乙酯热分解得到的任何二异氰酸酯。一些实施方式中,二异氰酸酯是分子量在100-500、具有脂肪族、脂环族、芳脂族和/或者芳香族键接的二异氰酸酯,例如选自四亚甲基-1,4-二异氰酸酯、五亚甲基-1,5-二异氰酸酯、六亚甲基-1,6-二异氰酸酯、十二亚甲基-1,12-二异氰酸酯、1,4-环己烷二异氰酸酯、异佛尔酮二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、4,4'-二环己基丙烷二异氰酸酯、1,4-苯二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4'-二苯基甲烷二异氰酸酯、2,2'-二苯基甲烷二异氰酸酯、2,4'-二苯基甲烷二异氰酸酯、四甲基二甲苯基二异氰酸酯和对苯二甲基二异氰酸酯中的一种或多种的组合。一些较佳实施方式中,聚异氰酸酯为基于六亚甲基-1,6-二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)和4,4’-二环己基甲烷二异氰酸酯(H12MDI)中的一种或多种的具有异氰脲酸酯基团的聚异氰酸酯。
一些实施方式中,在含有脲二酮、异氰脲酸酯、氨基甲酸酯、脲基甲酸 酯、缩二脲、亚氨基噁二嗪二酮和/或噁二嗪三酮结构的亲水改性聚异氰酸酯的制备过程中,可以添加抗氧剂、自由基清除剂、抑制剂等助剂,助剂的具体添加量可以采用本领域常规用量,本领域技术人员也可根据产品需求确定具体用量。
一些实施方式中,作为组分(c)的叔胺可以为本技术领域中常规使用的那些。一些实施方式中,作为组分(c)的叔胺选自N,N-二甲基丁基胺、N,N-二乙基甲基胺、N,N-二异丙基乙基胺、N,N-二甲基环己基胺、N-甲基哌啶和N-乙基吗啉中的一种或多种。作为组分(c)的叔胺一方面用来中和氨基磺酸中的磺酸基团,形成磺酸盐,另一方面作为反应的相转移催化剂来催化多异氰酸酯和氨基磺酸的反应。
一些实施方式中,本发明制备亲水改性聚异氰酸酯的方法中,还可以添加基于聚异氰酸酯、氨基磺酸和任选的叔胺制备亲水改性聚异氰酸酯的本领域常规工艺中允许添加的其他物料,例如还可以添加额外的催化剂,催化剂例如为选自与组分c)不同的叔胺催化剂、有机金属催化剂中的一种或多种,叔胺催化剂例如可以选自但不限于:吡啶、甲基吡啶、苄基二甲胺、N,N-二甲基哌嗪中的一种或多种;有机金属催化剂例如可以选自但不限于:三(乙基-乙酸乙酰)铝、正辛酸锡、正辛酸锌、2-乙基-1-己酸锡(Ⅱ)、二氯化二丁基锡(Ⅳ)、二乙酸二丁基锡(Ⅳ)、二月桂酸二丁基锡(Ⅳ)、二乙酸二辛基锡(Ⅳ)或者乙醇酸钼中的一种或多种的混合物。这些常规催化剂使用量为本领域技术人员根据反应需要而容易确定的,例如为反应物料总重量的10-2000ppm,优选100-500ppm。
一些实施方式中,聚异氰酸酯和氨基磺酸在叔胺存在下制备本发明的亲水改性聚异氰酸酯的方法中,可选择在NCO反应惰性的溶剂中进行反应;溶剂例如但不限于丙酮、丁酮、环戊酮、环己酮、乙酸乙酯、乙酸丁酯、四氢呋喃、N-甲基吡咯烷酮、N-乙基吡咯烷酮、甲苯、二甲苯、氯苯、丙二醇甲醚醋酸酯、1-甲氧基-2-丙基乙酸酯、3-甲氧基-正丁基乙酸酯、芳香化合物、碳酸二甲酯、碳酸二乙酯、丁内酯、己内酯以及甲基己内酯等溶剂中的一种或者多种的混合物。
一些实施方式中,本发明制备亲水改性聚异氰酸酯的方法中,还可添加抗氧剂以进一步降低色号,但抗氧剂并非必须加入。抗氧剂可以是本领域常规添加的那些,具体例如为能消除自由基的芳香胺和受阻酚等化合物及其衍生物,也可以是能分解氢过氧化物的抗氧剂如含磷和含硫的有机化合物,或者是它们的组合物。本领域技术人员可以根据实际需要而容易地确定抗氧剂的加入量,例如抗氧剂的加入量为聚异氰酸酯(a)和氨基磺酸(b)总质量的0%-1.5%;
本发明的方法中,氨基磺酸、聚异氰酸酯、叔胺的用量为本领域常规的。一些实施方式中,氨基磺酸的用量为聚异氰酸酯和氨基磺酸总质量的0.5-10%;叔胺与氨基磺酸的摩尔比为0-1.1,优选0.9-1.1。
一些实施方式中,本发明的方法中,在任选的叔胺(c)存在下,使聚异氰酸酯(a)、氨基磺酸(b)在70-110℃条件下反应,其中聚异氰酸酯(a)可一步或多步投入。反应终点的判断为本领域技术人员熟知的,例如通过测试NCO含量来确定,例如当NCO含量到达理论值±0.1%即可认为到达反应终点,当然,还可以同时结合反应产物通透程度来考虑是否延长反应时间,例如若反应产物浑浊则可考虑延长反应时间。
采用本发明的方法,能够得到浊度和色号显著降低的亲水改性聚异氰酸酯,基于此,本发明还提供基于上述方法制得的亲水改性聚异氰酸酯。
本发明还提供上述亲水改性聚异氰酸酯的应用,其能够用于制备涂覆剂、粘合剂或密封剂,或作为起始组分用于聚氨酯塑料的生产。具体例如作为交联剂在水分散性双组份涂料、粘合剂中应用。本发明提供的亲水改性的聚异氰酸酯还能够作为起始组分在制备水分散性或在水中以分散体形式存在的封闭型多异氰酸酯中的用途,适合的封闭剂例如甲乙酮肟、3,5-二甲基吡唑、丙二酸二乙酯、乙酰乙酸乙酯、咪唑、ε-己内酰胺中的一种或多种。本发明的亲水改性聚异氰酸酯,除了作为交联成分用于双组份涂料和粘合剂以外,还可以作为交联剂用于织物整理、印花涂料粘合剂、以及用来交联其他水分散体或者作为助剂对纸张进行增湿处理。
下面结合实施例对本发明作进一步的示例性说明,需要说明的是,并不意味着本发明仅局限于以下实施例。
聚异氰酸酯a1(万华化学
Figure PCTCN2022102626-appb-000003
HT-100,基于HDI的多异氰酸酯,NCO含量=21.7-22.2wt%);
聚异氰酸酯a2(拜耳NZ1,基于HDI和IPDI的多异氰酸酯,NCO含量=20wt%)
氨基磺酸b1:在二氧六环溶剂中,用环己胺和1,4-丁磺酸内酯以摩尔比3:1在80℃反应6h,使用40目滤网过滤,弃滤液,用丙酮洗涤位于40目滤网上的所收集的固体至白色。干燥后获得粒径D>40目,纯度>99.5%的4-环己胺基丁磺酸b1。
氨基磺酸b2:在二氧六环溶剂中,用环己胺和1,4-丁磺酸内酯以摩尔比3:1在80℃反应6h,使用40目滤网过滤去除大颗粒后,滤液使用60目滤网过滤,弃滤液,用丙酮洗涤位于60目滤网上所收集的固体至白色。干燥后获得粒径D为60目<D≤40目,纯度>99.5%的4-环己胺基丁磺酸b2。
氨基磺酸b3:在二氧六环溶剂中,用环己胺和1,4-丁磺酸内酯以摩尔比3:1在80℃反应6h,使用100目滤网过滤去除大颗粒后,滤液使用200目滤网过滤,弃滤液,用丙酮洗涤位于200目滤网上的所收集的固体至白色。干燥后获得粒径D为200目<D≤100目,纯度>99.5%的4-环己胺基丁磺酸b3。
氨基磺酸b4:在二氧六环溶剂中,用环己胺和1,4-丁磺酸内酯以摩尔比3:1在80℃反应6h,使用200目滤网过滤去除大颗粒后,滤液使用400目滤网过滤,弃滤液,用丙酮洗涤位于400目滤网上的所收集的固体至白色。干燥后获得粒径D为400目<D≤200目,纯度>99.5%的4-环己胺基丁磺酸b4。
氨基磺酸b5:在二氧六环溶剂中,用环己胺和1,4-丁磺酸内酯以摩尔比3:1在80℃反应6h,使用400目滤网过滤去除大颗粒后,滤液使用900目滤网过滤,弃滤液,用丙酮洗涤位于900目滤网上的所收集的固体至白色。干燥后获得粒径D为900目<D≤400目,纯度>99.5%的4-环己胺基丁磺酸b5。
氨基磺酸b6:在二氧六环溶剂中,用环己胺和1,4-丁磺酸内酯以摩尔比3:1在80℃反应6h,使用900目滤网过滤去除大颗粒后,滤液使用1250目滤 网过滤,弃滤液,用丙酮洗涤位于1250目滤网上的所收集的固体至白色。干燥后获得粒径D为1250目<D≤900目,纯度>99.5%的4-环己胺基丁磺酸b6。
氨基磺酸b7:在二氧六环溶剂中,用环己胺和1,3-丙磺酸内酯以摩尔比3:1在30℃反应5h,使用60目滤网去除大颗粒后,滤液使用100目滤网过滤收集固体,弃滤液,用丙酮洗涤位于100目滤网上的所收集的固体至白色。干燥后获得粒径D为100目<D≤60目,纯度>99.5%的3-环己胺基丙磺酸。
叔胺c1:N,N-二甲基环己胺,购买自百灵威试剂,纯度99%。
叔胺c2:N-乙基吗啉,购买自百灵威试剂,纯度99%。
弱酸d1:磷酸二丁酯,购买自阿拉丁试剂,纯度96%。
测试方法:
1.NCO含量测试标准:GB/T 12009.4-2016
2.粘度测试标准:Brookfield LV 63#/3rpm,25℃
3.色号测试标准:使用上海元析仪器有限公司的723C型可见分光光度计,采用Hazen标尺测量
4.浊度测试标准:使用HACH 2100Q Portable Turbidimeter测量,单位NTU。
5.SO 3 -含量:通过理论计算获得。
实施例1
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,19.75g(0.084mol)氨基磺酸b2和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.46wt%
粘度(25℃):5600mPa·s
SO 3 -含量:1.64wt%
色号:9
浊度:0.5
实施例2
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,18.57g(0.084mol)氨基磺酸b7和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到70℃反应7h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.50wt%
粘度(25℃):5300mPa·s
SO 3 -含量:1.64wt%
色号:4
浊度:0.2
实施例3
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、300rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,19.75g(0.084mol)氨基磺酸b3和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到90℃反应6h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.45wt%
粘度(25℃):5800mPa·s
SO 3 -含量:1.64wt%
色号:6
浊度:0.2
实施例4
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、300rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,19.75g(0.084mol)氨基磺酸b4和9.66g(0.084mol)叔胺c2加入到反应体系中,混合均匀,加热到80℃反应8h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.47wt%
粘度(25℃):5400mPa·s
SO 3 -含量:1.64wt%
色号:10
浊度:0.2
实施例5
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,19.75g(0.084mol)氨基磺酸b5和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到110℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.43wt%
粘度(25℃):5900mPa·s
SO 3 -含量:1.64wt%
色号:10
浊度:0.4
实施例6
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶 中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,17.97g(0.076mol)氨基磺酸b3,1.78g(0.008mol)氨基磺酸b1和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.47wt%
粘度(25℃):5500mPa·s
SO 3 -含量:1.64wt%
色号:26
浊度:1.2
实施例7
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,18.86g(0.08mol)氨基磺酸b3,0.89g(0.004mol)氨基磺酸b1和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.45wt%
粘度(25℃):5500mPa·s
SO 3 -含量:1.64wt%
色号:13
浊度:0.7
实施例8
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶 中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,17.97g(0.076mol)氨基磺酸b4,1.78g(0.008mol)氨基磺酸b6和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.45wt%
粘度(25℃):5600mPa·s
SO 3 -含量:1.64wt%
色号:32
浊度:1.5
实施例9
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,18.86g(0.08mol)氨基磺酸b3,0.89g(0.004mol)氨基磺酸b6和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.41wt%
粘度(25℃):6100mPa·s
SO 3 -含量:1.64wt%
色号:14
浊度:0.9
实施例10
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶 中,在50℃、200rpm搅拌下,将380g(1.81mol)聚异氰酸酯a2,19.75g(0.084mol)氨基磺酸b2和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:17.60wt%
粘度(25℃):5200mPa·s
SO 3 -含量:1.64wt%
色号:8
浊度:0.2
实施例11(与实施例8相比,添加弱酸)
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,17.97g(0.076mol)氨基磺酸b4,1.78g(0.008mol)氨基磺酸b6,10.67g(0.084mol)叔胺c1,0.21g(0.001mol)弱酸d1加入到反应体系中,混合均匀,加热到100℃反应5h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.47wt%
粘度(25℃):5500mPa·s
SO 3 -含量:1.64wt%
色号:16
浊度:0.9
对比例1(和实施例1相比)
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1, 19.75g(0.084mol)氨基磺酸b1和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到110℃反应8h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.48wt%
粘度(25℃):5400mPa·s
SO 3 -含量:1.64wt%
色号:80
浊度:6
对比例1和实施例1相比,采用粒径>40目的氨基磺酸b1来制备改性聚异氰酸酯,结果和实施例1相比,反应所需温度更高且所需反应时间更长,反应效率明显下降,而且所制得的产品色号和浊度均明显升高。
对比例2(和实施例1相比)
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,19.75g(0.084mol)氨基磺酸b6和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到110℃反应8h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.47wt%
粘度(25℃):5600mPa·s
SO 3 -含量:1.64wt%
色号:130
浊度:8.8
对比例2和实施例1相比,采用粒径D为1250目<D≤900目的氨基磺酸b6来制备改性聚异氰酸酯,结果和实施例1相比,反应所需温度更高且所需反应时间更长,反应效率明显下降,而且所制得的产品色号和浊度均明显升高。
对比例3(和实施例9相比)
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,16.79g(0.071mol)氨基磺酸b3,2.96g(0.013mol)氨基磺酸b6和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应8h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.45wt%
粘度(25℃):5800mPa·s
SO 3 -含量:1.64wt%
色号:65
浊度:2.4
对比例3和实施例9相比,将粒径D为1250目<D≤900目的氨基磺酸b6在氨基磺酸中的比例提高至超过10wt%,结果所需反应时间更长,反应效率下降,且所制得的产品色号和浊度均明显升高。
对比例4(和实施例7相比)
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,16.79g(0.071mol)氨基磺酸b3,2.96g(0.013mol)氨基磺酸b1和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应8h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.50wt%
粘度(25℃):5300mPa·s
SO 3 -含量:1.64wt%
色号:84
浊度:2.8
本对比例和实施例7相比,将粒径>40目的氨基磺酸b1在氨基磺酸中的占比提高至超过10wt%,结果所需反应时间更长,反应效率下降,且所制得的产品色号和浊度均明显升高。
对比例5(和实施例10相比)
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.81mol)聚异氰酸酯a2,19.75g(0.084mol)氨基磺酸b6和10.67g(0.084mol)叔胺c1加入到反应体系中,混合均匀,加热到100℃反应10h,停止反应,经325目滤网过滤后,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的聚异氰酸酯:
固体含量:100wt%
NCO含量:19.55wt%
粘度(25℃):4900mPa·s
SO 3 -含量:1.64wt%
色号:170
浊度:12
和实施例10相比,氨基磺酸采用粒径D为1250目<D≤900目的氨基磺酸b6,结果所需反应时间更长,反应效率下降,且所制得的产品色号和浊度均明显升高。
对比例6
在装有机械搅拌器、回流管、温度计和设有氮气进出口的四口圆底烧瓶中,在50℃、200rpm搅拌下,将380g(1.99mol)聚异氰酸酯a1,19.75g(0.084mol)氨基磺酸b6、10.67g(0.084mol)叔胺c1和0.21g(0.001mol)弱酸d1加入到反应体系中,混合均匀,加热到110℃反应8h,停止反应,经325目滤网过滤,冷却至室温,得到了具有以下特征数据的氨基磺酸改性的多异氰酸酯:
固体含量:100wt%
NCO含量:19.48wt%
粘度(25℃):5500mPa·s
SO3-含量:1.64wt%
色号:115
浊度:6.8
由实施例1-10以及对比例1-5可看出,通过控制反应体系的氨基磺酸中粒径大于40目和粒径小于等于900目的氨基磺酸的比例,可以在相对更高的反应速率下获得色号更小、浊度低的亲水改性聚异氰酸酯。通过将实施例11、实施例8、对比例6和对比例2进行对比,可以看出,在控制氨基磺酸粒径满足本发明要求的情况下,进一步引入弱酸,可以进一步显著降低产品色号和浊度。
容易理解的,上述实施例仅仅是为清楚地说明所作的举例,并不意味着本发明仅局限于此。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种制备亲水改性聚异氰酸酯的方法,所述方法包括将包含组分(a)、组分(b)和任选的组分(c)的物料进行反应以得到所述亲水改性聚异氰酸酯:
    (a)至少一种聚异氰酸酯,
    (b)至少一种氨基磺酸,
    (c)至少一种叔胺;
    其特征在于,所述氨基磺酸中,粒径≤900目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%;且粒径>40目的颗粒少于10wt%,优选少于5wt%,更优选少于3wt%。
  2. 根据权利要求1所述的方法,其特征在于,所述氨基磺酸具有如下结构式:
    Figure PCTCN2022102626-appb-100001
    其中R 1为环己基、环己甲基、对甲基环己基、2-甲基环己基、2,3-二甲基环己基、3,3,5-三甲基环己基、4-叔丁基环己基、环庚基、环辛甲基、2-降莰基、2-金刚烷基或3,5-二甲基-1-金刚烷基,R 2为具有2至6个碳原子的直链或支化脂族基团。
  3. 根据权利要求2所述的方法,其特征在于,所述氨基磺酸(b)选自2-环己胺基乙磺酸、3-环己胺基丙磺酸、4-环己胺基丁磺酸中的一种或多种。
  4. 根据权利要求1所述的方法,其特征在于,反应体系中还任选地加入组分(d):pKa>1的弱酸;
    优选的,所述弱酸与所述氨基磺酸的摩尔比为0-0.3,优选0.002-0.1。
  5. 根据权利要求4所述的方法,其特征在于,所述组分(d)选自磷酸二丁酯、二(2-乙基己基)磷酸酯、磷酸、己二酸中的一种或多种。
  6. 根据权利要求4所述的方法,其特征在于,所述方法包括将包含所述 组分(a)、所述组分(b)、所述组分(c)和所述组分(d)的物料进行反应以得到所述亲水改性聚异氰酸酯。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述氨基磺酸的用量为所述聚异氰酸酯和所述氨基磺酸总质量的0.5-10%;
    和/或,所述叔胺与所述氨基磺酸的摩尔比为0-1.1,优选0.9-1.1;
    和/或,所述反应在70-110℃下进行。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述聚异氰酸酯为脂肪族、脂环族、芳脂族和/或芳族聚异氰酸酯;优选的,所述聚异氰酸酯含有脲二酮、异氰脲酸酯、氨基甲酸酯、脲基甲酸酯、缩二脲、亚氨基噁二嗪二酮和/或噁二嗪三酮结构;优选的,制备所述聚异氰酸酯所用的二异氰酸酯选自四亚甲基-1,4-二异氰酸酯、五亚甲基-1,5-二异氰酸酯、六亚甲基-1,6-二异氰酸酯、十二亚甲基-1,12-二异氰酸酯、1,4-环己烷二异氰酸酯、异佛尔酮二异氰酸酯、4,4'-二环己基甲烷二异氰酸酯、4,4'-二环己基丙烷二异氰酸酯、1,4-苯二异氰酸酯、2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、4,4'-二苯基甲烷二异氰酸酯、2,2'-二苯基甲烷二异氰酸酯、2,4'-二苯基甲烷二异氰酸酯、四甲基二甲苯基二异氰酸酯和对苯二甲基二异氰酸酯中的一种或多种的组合;
    和/或,所述叔胺选自N,N-二甲基丁基胺、N,N-二乙基甲基胺、N,N-二异丙基乙基胺、N,N-二甲基环己基胺、N-甲基哌啶和N-乙基吗啉中的一种或多种;
    和/或,反应体系中还任选的添加催化剂,所述催化剂选自与所述组分c)不同的叔胺催化剂、有机金属催化剂中的一种或多种;
    和/或,所述反应体系中还任选地添加抗氧剂。
  9. 一种基于权利要求1-8任一项所述的方法制得的亲水改性聚异氰酸酯。
  10. 权利要求1-8任一项所述的方法制得的亲水改性聚异氰酸酯或权利要求9所述的亲水改性聚异氰酸酯的应用,其特征在于,用于制备涂覆剂、 粘合剂或密封剂,或作为起始组分用于聚氨酯塑料的生产。
PCT/CN2022/102626 2022-06-30 2022-06-30 一种亲水改性聚异氰酸酯及其制备方法和应用 WO2024000342A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102626 WO2024000342A1 (zh) 2022-06-30 2022-06-30 一种亲水改性聚异氰酸酯及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102626 WO2024000342A1 (zh) 2022-06-30 2022-06-30 一种亲水改性聚异氰酸酯及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024000342A1 true WO2024000342A1 (zh) 2024-01-04

Family

ID=89383516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102626 WO2024000342A1 (zh) 2022-06-30 2022-06-30 一种亲水改性聚异氰酸酯及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2024000342A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143062A (en) * 1976-09-07 1979-03-06 Bayer Aktiengesellschaft Stabilized preparations of aromatic isocyanato sulphonic acids
CN1429240A (zh) * 2000-05-18 2003-07-09 拜尔公司 改性聚异氰酸酯
CN104448232A (zh) * 2013-09-13 2015-03-25 万华化学集团股份有限公司 一种氨基磺酸改性的多异氰酸酯及其制备方法和用途
CN110092887A (zh) * 2019-04-22 2019-08-06 何嘉妍 一种水性聚氨酯固化剂的制备方法
CN111253552A (zh) * 2018-11-30 2020-06-09 科思创德国股份有限公司 改性聚异氰酸酯
CN111517994A (zh) * 2020-02-03 2020-08-11 广东拓普合成科技股份有限公司 一种磺酸盐改性的多异氰酸酯及其制备方法
CN112566957A (zh) * 2018-07-20 2021-03-26 科思创知识产权两合公司 具有改善的干燥性能的离子亲水化多异氰酸酯
US20210171698A1 (en) * 2018-04-25 2021-06-10 Covestro Intellectual Property Gmbh & Co. Kg Ionically hydrophilized polyisocyanates, water content

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143062A (en) * 1976-09-07 1979-03-06 Bayer Aktiengesellschaft Stabilized preparations of aromatic isocyanato sulphonic acids
CN1429240A (zh) * 2000-05-18 2003-07-09 拜尔公司 改性聚异氰酸酯
CN104448232A (zh) * 2013-09-13 2015-03-25 万华化学集团股份有限公司 一种氨基磺酸改性的多异氰酸酯及其制备方法和用途
US20210171698A1 (en) * 2018-04-25 2021-06-10 Covestro Intellectual Property Gmbh & Co. Kg Ionically hydrophilized polyisocyanates, water content
CN112566957A (zh) * 2018-07-20 2021-03-26 科思创知识产权两合公司 具有改善的干燥性能的离子亲水化多异氰酸酯
CN111253552A (zh) * 2018-11-30 2020-06-09 科思创德国股份有限公司 改性聚异氰酸酯
CN110092887A (zh) * 2019-04-22 2019-08-06 何嘉妍 一种水性聚氨酯固化剂的制备方法
CN111517994A (zh) * 2020-02-03 2020-08-11 广东拓普合成科技股份有限公司 一种磺酸盐改性的多异氰酸酯及其制备方法

Similar Documents

Publication Publication Date Title
EP3045485B1 (en) Polyisocyanate modified with sulphamic acid, preparation method therefor and use thereof
EP3271411B1 (de) Silangruppen enthaltende polyisocyanate auf basis von 1,5-diisocyanatopentan
EP1923412B1 (de) Nanopartikelmodifizierte polyisocyanate
EP2414419B1 (de) Nanopartikelmodifizierte hydrophile polyisocyanate
CN105829380B (zh) 液晶聚氨酯弹性体及其制造方法
JP4705013B2 (ja) 4価バナジウム触媒を含む一成分ポリウレタン被覆系
US20070270543A1 (en) Water-Dispersible Highly Functional polyisocyanates
JP2015533189A (ja) 貯蔵安定性の親水性ポリイソシアナート
JPH05148341A (ja) ポリイソシアネート混合物、その製造方法、および被覆組成物における架橋剤としてのその使用
EP2209838B1 (de) Polysiloxanmodifizierte polyisocyanate
CA2584487C (en) Aqueous polyurethane dispersions with improved storage stability
CA2116167C (en) One-component coating compositions containing oxime- or lactam-blocked polyisocyanates which have improved resistance to yellowing
KR100937304B1 (ko) 블로킹된 폴리이소시아네이트
EP1851277B1 (de) Lacke enthaltend partikel mit geschützten isocyanatgruppen
US20220056194A1 (en) Method for preparing high-temperature self-crosslinking aqueous polyurethane dispersion
WO2022257585A1 (zh) 一种磺酸改性多异氰酸酯及其制备方法
CN115010902B (zh) 一种亲水改性聚异氰酸酯及其制备方法和应用
US20090008613A1 (en) Hybrid polyisocyanates
PT1375551E (pt) Novos agentes bloqueadores para poliisocianatos não aquosos à base de aralquilaminas
DE10331787A1 (de) NCO-haltige Verbindungen mit kovalent gebundenen polyedrischen oligomeren Silizium-Sauerstoffclustereinheiten
KR20040015326A (ko) 블로킹제로서의 시클릭 케톤
WO2024000342A1 (zh) 一种亲水改性聚异氰酸酯及其制备方法和应用
KR20040065239A (ko) 코일 코팅 래커용 반응 pur 결합제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948455

Country of ref document: EP

Kind code of ref document: A1