WO2024000256A1 - 发光模组、发光基板和显示装置 - Google Patents

发光模组、发光基板和显示装置 Download PDF

Info

Publication number
WO2024000256A1
WO2024000256A1 PCT/CN2022/102307 CN2022102307W WO2024000256A1 WO 2024000256 A1 WO2024000256 A1 WO 2024000256A1 CN 2022102307 W CN2022102307 W CN 2022102307W WO 2024000256 A1 WO2024000256 A1 WO 2024000256A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
emitting element
emitting elements
row
Prior art date
Application number
PCT/CN2022/102307
Other languages
English (en)
French (fr)
Inventor
王玉
罗文诚
胡美龙
张晋红
冉伟
权雯琪
李志�
张贺宁
熊博文
袁琼
岑鑫
廖科
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280002038.5A priority Critical patent/CN117642687A/zh
Priority to PCT/CN2022/102307 priority patent/WO2024000256A1/zh
Publication of WO2024000256A1 publication Critical patent/WO2024000256A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • Embodiments of the present disclosure relate to a light-emitting module, a light-emitting substrate and a display device.
  • Mini-LED sub-millimeter light-emitting diodes
  • OLED organic light-emitting diode
  • Mini-LED products combine the unique advantages of traditional liquid crystal displays (LCD) and organic light emitting diode (OLED) displays, while avoiding their respective shortcomings.
  • LCD liquid crystal displays
  • OLED organic light emitting diode
  • Embodiments of the present disclosure provide a light-emitting module, a light-emitting substrate and a display device.
  • Embodiments of the present disclosure provide a light-emitting module, including: a plurality of light-emitting elements, the plurality of light-emitting elements are arranged in the row direction and the column direction, the plurality of light-emitting elements form multiple columns of light-emitting elements, and the multiple columns At least one row of light-emitting elements among the light-emitting elements includes a first light-emitting element, a second light-emitting element, a third light-emitting element, and a fourth light-emitting element arranged in sequence, and the second light-emitting element and the fourth light-emitting element are respectively arranged in the Both sides of the line connecting the center of the first light-emitting element and the third light-emitting element.
  • two adjacent rows of light-emitting elements are arranged in a staggered manner.
  • Each adjacent two rows of light-emitting elements form a light-emitting element group, and different light-emitting element groups include different light-emitting elements.
  • the adjacent light-emitting element groups are staggered in opposite directions.
  • the plurality of light-emitting elements further include a fifth light-emitting element and a sixth light-emitting element.
  • the fifth light-emitting element and the sixth light-emitting element are located in the same row as the second light-emitting element and are respectively connected with the second light-emitting element.
  • the light-emitting elements are adjacent, and the distance from the fifth light-emitting element to the center line connecting the first light-emitting element and the third light-emitting element is greater than the distance from the sixth light-emitting element to the first light-emitting element and the third light-emitting element.
  • the distance between the center lines of the light-emitting element, the distance between the center lines of the second light-emitting element and the first light-emitting element and the third light-emitting element is smaller than the distance between the sixth light-emitting element and the first light-emitting element.
  • the distance between the center lines of the third light-emitting element is smaller than the distance between the sixth light-emitting element and the first light-emitting element.
  • the distance from the sixth light-emitting element to the center line of the first light-emitting element and the third light-emitting element is the distance from the second light-emitting element to the first light-emitting element and the third light-emitting element. 3 to 10 times the distance between the centers.
  • the plurality of light-emitting elements further include a seventh light-emitting element and an eighth light-emitting element.
  • the seventh light-emitting element and the eighth light-emitting element are located in the same row as the fourth light-emitting element and are respectively connected with the fourth light-emitting element.
  • the light-emitting elements are adjacent, and the distance from the seventh light-emitting element to the center line connecting the first light-emitting element and the third light-emitting element is smaller than the distance from the eighth light-emitting element to the first light-emitting element and the third light-emitting element.
  • the distance between the center lines of the light-emitting element, the distance between the center lines of the fourth light-emitting element and the first light-emitting element and the third light-emitting element is smaller than the distance between the seventh light-emitting element and the first light-emitting element.
  • the distance between the center lines of the third light-emitting element is smaller than the distance between the seventh light-emitting element and the first light-emitting element.
  • the distance from the seventh light-emitting element to the center line of the first light-emitting element and the third light-emitting element is the distance from the fourth light-emitting element to the first light-emitting element and the third light-emitting element. 3 to 10 times the distance between the centers.
  • the distance from the center of the second light-emitting element to the line connecting the centers of the first and third light-emitting elements is equal to the distance from the center of the fourth light-emitting element to the first and third light-emitting elements.
  • the distance between the centers of the three light-emitting elements is equal to the distance from the center of the fourth light-emitting element to the first and third light-emitting elements.
  • the center lines of the second light-emitting element, the third light-emitting element, and the fourth light-emitting element are connected on a straight line.
  • the intersection between the center line of the first light-emitting element and the second light-emitting element and the line connecting the centers of the second light-emitting element, the third light-emitting element, and the fourth light-emitting element is The angle is obtuse.
  • the obtuse angle is greater than or equal to 120 degrees and less than or equal to 160 degrees.
  • the distance between two adjacent light-emitting elements located in the same row is equal.
  • the light-emitting module includes two opposite edges extending along the column direction, and the center connection of the light-emitting elements in a row of light-emitting elements closest to each edge of the two edges extending along the column direction.
  • the line is a polyline.
  • the light-emitting module includes two opposite edges extending along the column direction, and the center connection of the light-emitting elements in a row of light-emitting elements closest to each edge of the two edges extending along the column direction.
  • Line is a straight line.
  • the light-emitting module includes two opposite edges extending along the row direction, and the center connection of the light-emitting elements in a row of light-emitting elements closest to each edge of the two edges extending along the row direction.
  • Line is a straight line.
  • the plurality of columns of light-emitting elements include a plurality of first-type column light-emitting elements and a plurality of second-type column light-emitting elements, and the light emission in each of the first-type column light-emitting elements of the plurality of first-type column light-emitting elements is
  • the central connection lines of the elements are polygonal lines, the central connection lines of the light-emitting elements in each of the plurality of second-type column light-emitting elements are straight lines, and the plurality of first-type column light-emitting elements are located at between two second-type column light-emitting elements among the plurality of second-type column light-emitting elements.
  • the light emission of a row of light-emitting elements in which the center line of the light-emitting element closest to the edge of the light-emitting module extending along the column direction is a broken line and the center line of the light-emitting element closest to it is a straight line.
  • the distance between elements first decreases and then gradually increases or first increases and then gradually decreases along the column direction.
  • the light-emitting module is rectangular with four edges.
  • the center lines of the light-emitting elements closest to each of the four edges are all straight lines.
  • Each row of light-emitting elements located in the rectangular frame formed by the four straight lines They are all a row of light-emitting elements with the center line connecting the light-emitting elements being a polyline.
  • the light-emitting element includes a first electrode and a second electrode, and the first electrode and the second electrode of two adjacent light-emitting elements located in the same row are arranged in different directions.
  • first electrodes and the second electrodes of two adjacent light-emitting elements located in the same row are arranged in opposite directions.
  • the light-emitting element has a long axis and a short axis, the extending direction of the long axis is perpendicular to the extending direction of the short axis, the length of the long axis is greater than the length of the short axis, and the length of the light-emitting element is
  • the arrangement direction of the first electrode and the second electrode is the extension direction of the long axis.
  • the extension direction of the long axis of the light-emitting element in one of the odd-numbered columns and the even-numbered column is the column direction
  • the extension direction of the long axis of the light-emitting element in the other of the odd-numbered column and the even-numbered column is The direction is the row direction.
  • the angle between the extension direction of the long axis of at least one of the plurality of light-emitting elements and the row direction is greater than 0.
  • the angle between the extension direction of the long axis of at least one of the plurality of light-emitting elements and the row direction is greater than 0 and less than or equal to 45°.
  • the extension direction of the long axis of the light-emitting elements in one of the two adjacent rows of light-emitting elements is parallel to the column direction
  • the extension direction of the long axis of the light-emitting elements in the other row of the two adjacent rows of light-emitting elements is parallel to the The row direction.
  • the center connection line of the light-emitting elements in the row of light-emitting elements located at the edge is in a zigzag shape, the center connection line includes multiple repeating parts, and the number of light-emitting elements connected to the repeating parts of the center connection line is greater than 3.
  • the light-emitting module includes a plurality of partitions, the plurality of partitions are arranged along the row direction and the column direction, each partition includes at least two light-emitting elements among the plurality of light-emitting elements, and even-numbered rows
  • the light-emitting elements in the partitions are arranged in the same manner, the light-emitting elements in the odd-numbered row partitions are arranged in the same way, and the light-emitting elements in the even-numbered row partitions are arranged differently from the light-emitting elements in the odd-numbered row partitions.
  • An embodiment of the present disclosure also provides a light-emitting substrate, including any of the above-mentioned light-emitting modules.
  • An embodiment of the present disclosure also provides a display device including any of the above light-emitting substrates.
  • Figure 1 is a schematic diagram of a Mini-LED arrangement.
  • Figure 2 is a simulated light mixing effect diagram of Mini-LED arranged in the arrangement shown in Figure 1.
  • FIG. 3 is a schematic diagram of a light-emitting module provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the light-emitting elements in two adjacent partitions in the column direction in FIG. 3 .
  • FIG. 5 is a schematic diagram of the arrangement of light-emitting elements in the light-emitting module provided by an embodiment of the present disclosure.
  • FIG. 6 is a light mixing effect diagram of a light-emitting module using the arrangement of light-emitting elements in FIG. 4 .
  • FIG. 7 is a schematic diagram of the arrangement of light-emitting elements in a light-emitting module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the arrangement of light-emitting elements in a light-emitting module according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a light-emitting module provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a display device provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic plan view of a light-emitting element in a light-emitting module according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a display device provided by an embodiment of the present disclosure.
  • Figure 1 is a schematic diagram of a Mini-LED arrangement.
  • Figure 2 is a simulated light mixing effect diagram of Mini-LED arranged in the arrangement shown in Figure 1.
  • FIG. 1 shows a plurality of Mini-LEDs 21.
  • each Mini-LED 21 includes an electrode 011 and an electrode 012, one of the electrode 011 and the electrode 012 is a P electrode, and the other of the electrode 011 and the electrode 012 is an N electrode.
  • Mini-LED refers to LED devices with chip sizes between 50 and 200 ⁇ m.
  • FIG. 1 shows trace 70 and the current I in trace 70 .
  • the arrow of current I in the figure indicates the direction of the current.
  • the light mixing effect between Mini-LED and Mini-LED is poor.
  • the brightness of the area in the black coil is significantly weaker than that of the other locations, resulting in problems such as lamp shadow (Mura) and peripheral bluing.
  • the P electrode and N electrode of the LED are placed on the pads in an orderly manner.
  • the orderly arrangement of the P electrode and N electrode makes the internal wiring of the light-emitting substrate take up space, making the wiring more complicated and reducing the current.
  • the lines flowing through are long, and there are interactions between multiple sets of reverse currents in the internal wiring. The sound of current flowing through the lines is often heard.
  • the interaction of multiple sets of reverse currents generates ampere force.
  • the ampere force of the entire light-emitting substrate is superimposed to a certain value, , when the oscillation frequency that occurs is close to the oscillation frequency at the contact point, resonance occurs, and this resonance causes noise.
  • FIG. 3 is a schematic diagram of a light-emitting module provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the light-emitting elements in two adjacent partitions in the column direction in FIG. 3 .
  • the light-emitting module includes multiple partitions 20 , and each partition 20 includes multiple light-emitting elements 10 .
  • the light-emitting elements 10 in each partition 20 can be driven by one or more driver chips.
  • the light-emitting elements 10 in each partition 20 can be lit at the same time, but is not limited thereto.
  • the partition drive method is conducive to improving the resolution.
  • a rectangular frame in Figure 3 is a partition 20.
  • FIG. 3 illustrates an example in which six light-emitting elements 10 are provided in one partition 20 .
  • a plurality of partitions 20 are arranged along the row direction X and the column direction Y.
  • the light-emitting module includes: a plurality of light-emitting elements 10 arranged in the row direction X and the column direction Y.
  • the light-emitting elements 10 in two adjacent rows are staggered. As shown in FIG.
  • the same column of light-emitting elements 10 includes a first light-emitting element 1 , a second light-emitting element 2 , a third light-emitting element 3 , and a fourth light-emitting element 4 arranged in sequence, and the second light-emitting element 2 and the fourth light-emitting element 4
  • the elements 4 are arranged on both sides of the central connection line 100 between the first light-emitting element 1 and the third light-emitting element 3 .
  • the light-emitting module provided by the embodiment of the present disclosure, by adjusting the arrangement position and arrangement mode of the light-emitting elements, the sequentially adjacent first light-emitting element 1 , second light-emitting element 2 , third light-emitting element 3 in the same column, and In the fourth light-emitting element 4, the second light-emitting element 2 and the fourth light-emitting element 4 are respectively arranged on both sides of the central connection line 100 of the first light-emitting element 1 and the third light-emitting element 3.
  • the light-emitting module The number of light-emitting elements at the edge is relatively small, which is beneficial to reducing the luminous flux at the edge of the light-emitting module and improving the picture quality.
  • the arrangement of the light-emitting elements in the light-emitting module provided by the embodiments of the present disclosure can improve the peripheral bluing problem.
  • multiple columns of light-emitting elements are arranged sequentially along the row direction X, and the light-emitting elements in each column are arranged along the column direction Y.
  • FIG. 3 shows the central connection line 60 of the light-emitting elements 10 in a row of light-emitting elements.
  • the central connecting line 60 is in the shape of a polygonal line.
  • the central connection line 60 includes a plurality of repeating portions 600 , and the number of light-emitting elements connected to the repeating portions 600 of the center connection line 60 is greater than three.
  • the number of light-emitting elements connected to the repeating portion 600 of the central connection line 60 is five.
  • the repeating portion 600 means that the central connecting line 60 includes multiple portions with the same shape.
  • repeating portion 600 means that center line 60 includes multiple portions of the same shape and size.
  • FIG. 3 takes the repeated portion 600 having the same shape and the same size as an example for illustration.
  • the points in the partition 20 represented by each rectangular frame in Figure 3 represent the light-emitting elements 10.
  • Figure 3 uses a repeating part 600 connected to five light-emitting elements as an example for illustration, but is not limited thereto.
  • Each repeating part 600 connects the light-emitting elements The quantity can be determined as needed.
  • the division method of the repeating part 600 is not limited to that shown in FIG. 3 .
  • three light-emitting elements are disposed between the two adjacent light-emitting elements 10 (light-emitting element 101 and light-emitting element 102 ) closest to the edge of the light-emitting module. That is, the number of light-emitting elements between the two adjacent light-emitting elements 10 (light-emitting element 101 and light-emitting element 102) closest to the edge of the light-emitting module is greater than one. As shown in FIG.
  • three light-emitting elements are provided between the two light-emitting elements 10 (the light-emitting element 101 and the light-emitting element 102 ) closest to the edge of the light-emitting module in the two adjacent repeating parts 600 in the column direction Y. . That is, the number of light-emitting elements between the two light-emitting elements 10 (the light-emitting element 101 and the light-emitting element 102) closest to the edge of the light-emitting module in the two adjacent repeated portions 600 in the column direction Y is greater than one.
  • the center connection line 60 on the left side of the light-emitting module and the center connection line 60 on the right side of the light-emitting module are both in the shape of a broken line. As shown in FIG. 3 , the center connection line 60 on the left side of the light-emitting module and the center connection line 60 on the right side of the light-emitting module are bent in the same way. In an embodiment of the present disclosure, the central connection line 60 on the left side of the light-emitting module and the central connection line 60 on the right side of the light-emitting module can overlap after being translated.
  • Figure 3 shows the center C0 of the light-emitting module and the center line CL passing through the center C0.
  • the center line CL extends in the column direction Y.
  • the center connection line 60 on the left side of the light-emitting module and the center connection line 60 on the right side of the light-emitting module can be regarded as the center connection lines 60 of two rows of light-emitting elements located on both sides of the center line CL.
  • Figure 3 shows that the light-emitting module is rectangular, with edge E1, edge E2, edge E3, and edge E4.
  • Edge E1 and edge E3 are arranged oppositely, and both extend along the column direction Y.
  • Edge E2 and edge E4 are arranged oppositely, and All extend along the row direction X.
  • the edge E1, the edge E2, the edge E3, and the edge E4 may be referred to as the left edge, the upper edge, the right edge, and the lower edge, respectively.
  • the center of the light-emitting element 10 refers to the geometric center of the light-emitting element 10 .
  • the center of the light-emitting element 10 refers to the center of gravity of the light-emitting element 10, but is not limited thereto.
  • each row of light-emitting elements of the light-emitting module is a row of light-emitting elements with a central connecting line as a broken line.
  • each row of light-emitting elements of the light-emitting module is a row of light-emitting elements with a straight line in the center. Therefore, among the four edges of the light-emitting module shown in Figure 3, each edge of the two edges extending along the column direction Y is provided with a row of light-emitting elements with a central connecting line as a fold line, and a row of light-emitting elements extending along the row direction X.
  • each edge of the two edges there is a row of light-emitting elements with a straight line connecting the centers. That is, at the four edges of the light-emitting module, the row of light-emitting elements at the left edge is a row of light-emitting elements with the center line of the light-emitting elements being a polygonal line, and the row of light-emitting elements at the right edge is a column of light-emitting elements with the center line of the light-emitting element being a polygonal line.
  • a row of light-emitting elements, the row of light-emitting elements at the upper edge is a row of light-emitting elements with a straight line connecting the centers of the light-emitting elements, and the row of light-emitting elements at the lower edge is a row of light-emitting elements with a straight line connecting the centers of the light-emitting elements.
  • the center lines connecting the light-emitting elements of each column of light-emitting elements m0 are all polygonal lines.
  • a row of light-emitting elements is arranged along the column direction Y, but it is not required that the light-emitting elements in the row are all in a straight line.
  • the arrangement trend of a row of light-emitting elements only needs to be along the column direction Y.
  • Figure 4 shows four rows and three columns of light-emitting elements.
  • the second light-emitting element 2 is located on the left side of the center line 100 connecting the first light-emitting element 1 and the third light-emitting element 3, and the fourth light-emitting element 4 is located between the first light-emitting element 1 and the third light-emitting element 3.
  • the center of 3 is connected to the right side of 100.
  • multiple columns of light-emitting elements are arranged in the same manner.
  • different columns of light-emitting elements can be overlapped after translation.
  • light-emitting elements in different columns can be overlapped after being translated in the row direction X.
  • every two adjacent rows of light-emitting elements 10 form a light-emitting element group 30
  • different light-emitting element groups 30 include different light-emitting elements 10 .
  • the adjacent light-emitting element groups 30 are staggered in opposite directions to facilitate reduction of The light flux at the edge of the light-emitting module improves the picture quality.
  • the staggered direction refers to the staggered direction of a row of shifted light-emitting elements relative to a row of non-shifted light-emitting elements.
  • the light-emitting element group 30 includes a light-emitting element group 301 and a light-emitting element group 302 .
  • the lower row of light-emitting elements is staggered to the left relative to the upper row of light-emitting elements.
  • the lower row of light-emitting elements is offset to the left.
  • the upper row of light-emitting elements is offset to the right.
  • the first row of light-emitting elements is a row of non-displaced light-emitting elements
  • the second row of light-emitting elements is a row of misaligned light-emitting elements, staggered to the left relative to the first row of light-emitting elements.
  • the third row of light-emitting elements is a row of non-displaced light-emitting elements
  • the fourth row of light-emitting elements is a row of misaligned light-emitting elements, which are shifted to the right relative to the third row of light-emitting elements.
  • the staggering methods of the light-emitting elements in two adjacent light-emitting element groups in the column direction Y are different.
  • the arrangement of the light-emitting elements in two adjacent light-emitting element groups in the column direction Y is different.
  • the embodiment of the present disclosure takes the odd-numbered rows as being undisplaced and the even-numbered rows being misaligned as an example. However, it is not limited to this. In other embodiments, the odd-numbered rows may be misaligned and the even-numbered rows may not be misaligned. .
  • the plurality of light-emitting elements 10 further includes a fifth light-emitting element 5 and a sixth light-emitting element 6 .
  • the fifth light-emitting element 5 and the sixth light-emitting element 6 are located in the same row as the second light-emitting element 2 and are respectively connected with the second light-emitting element 2 .
  • the second light-emitting element 2 is adjacent, and the distance D5 from the fifth light-emitting element 5 to the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is greater than the distance D5 from the sixth light-emitting element 6 to the first light-emitting element 1 and the third light-emitting element.
  • the distance D6 from the center line 100 of 3, the distance D2 from the second light-emitting element 2 to the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is smaller than the distance D6 from the sixth light-emitting element 6 to the first light-emitting element 1 and the third light-emitting element 3.
  • the distance D6 from the sixth light-emitting element 6 to the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is
  • the distance D2 between the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is 3 to 10 times.
  • the distance D6 is 3 to 8 times the distance D2.
  • the plurality of light-emitting elements 10 further includes seventh light-emitting elements 7 and eighth light-emitting elements 8 .
  • the seventh and eighth light-emitting elements 7 and 8 are located in the same row as the fourth light-emitting element 4 and are respectively connected with the fourth light-emitting element 4 .
  • the fourth light-emitting element 4 is adjacent, and the distance D7 from the seventh light-emitting element 7 to the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is smaller than the distance D7 from the eighth light-emitting element 8 to the first light-emitting element 1 and the third light-emitting element.
  • the distance D8 from the center line 100 of 3, the distance D4 from the fourth light-emitting element 4 to the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is smaller than the distance D4 from the seventh light-emitting element 7 to the first light-emitting element 1 and the third light-emitting element 3.
  • the light-emitting elements of the first row and the light-emitting elements of the third row are not misaligned in the row direction X.
  • the distance D7 from the seventh light-emitting element 7 to the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is
  • the distance D4 between the center line 100 of the first light-emitting element 1 and the third light-emitting element 3 is 3 to 10 times.
  • the distance D7 is 3 to 8 times the distance D4.
  • the distance D2 from the center of the second light-emitting element 2 to the center line 100 connecting the first light-emitting element 1 and the third light-emitting element 3 is equal to the fourth light-emitting element 4
  • the distance D4 from the center to the line 100 connecting the centers of the first light-emitting element 1 and the third light-emitting element 3 is equal to distance D4.
  • This arrangement is such that the distance by which the light-emitting elements of the second row are offset to the left relative to the light-emitting elements of the first row is equal to the distance by which the light-emitting elements of the fourth row are offset to the right by the light-emitting elements of the third row.
  • the centers of the second light-emitting element 2 , the third light-emitting element 3 , and the fourth light-emitting element 4 are connected on a straight line L234 .
  • the angle A0 between the center connecting line 100 of the first light-emitting element 1 and the second light-emitting element 2 and the straight line L234 is an obtuse angle.
  • the obtuse angle is greater than or equal to 120 degrees and less than or equal to 160 degrees.
  • FIG. 4 shows the center C1 of the first light-emitting element 1 and the center C3 of the third light-emitting element 3 .
  • the center of each light-emitting element may be the center of gravity of the light-emitting element, but is not limited thereto.
  • Figure 4 shows the first electrode 11 and the second electrode 12 of the light emitting element.
  • One of the first electrode 11 and the second electrode 12 may be a P electrode, and the other one of the first electrode 11 and the second electrode 12 may be an N electrode.
  • the center of each light-emitting element may be located between the first electrode 11 and the second electrode 12 .
  • the distance between two adjacent light-emitting elements 10 located in the same row is equal.
  • the distance in the column direction Y between two adjacent light-emitting elements 10 located in the same column is equal.
  • the row direction X and the column direction Y intersect.
  • the row direction X is the horizontal direction
  • the column direction Y is the vertical direction.
  • the embodiments of the present disclosure are described by taking the row direction X and the column direction Y perpendicularly as an example.
  • the overall trend of the plurality of light-emitting elements 10 in the column direction Y is in the column direction, and it is not required that the plurality of light-emitting elements 10 in the column direction Y are arranged in a straight line.
  • the light-emitting elements in the same row can be arranged in a non-linear manner such as a zigzag line.
  • each partition 20 includes at least two light-emitting elements among a plurality of light-emitting elements. With this arrangement, the edge light-emitting elements of the light-emitting module are relatively few, which can improve the peripheral bluing problem.
  • FIG. 5 is a schematic diagram of the arrangement of light-emitting elements in the light-emitting module provided by an embodiment of the present disclosure.
  • the light-emitting element 10 includes a first electrode 11 and a second electrode 12 , and the arrangement direction of the first electrode 11 and the second electrode 12 of two adjacent light-emitting elements 10 located in the same row is different. Therefore, the first electrodes 11 and the second electrodes 12 of two adjacent light-emitting elements in the same row are staggered, making the wiring in the layout simple, simplifying the wiring arrangement, effectively reducing the sound of current flow, and effectively reducing the mutual interference of reverse currents.
  • the first electrodes and the second electrodes of two adjacent light-emitting elements 10 located in the same row are arranged in opposite directions.
  • the first electrode 11 and the second electrode 12 in the second column of light-emitting elements are arranged from top to bottom, and the first electrode 11 and the second electrode 12 in the third column of light-emitting elements are arranged from top to bottom.
  • the electrode 11 and the second electrode 12 are arranged from bottom to top.
  • the light-emitting element 10 has a long axis A1 and a short axis A2.
  • the extending direction of the long axis A1 is perpendicular to the extending direction of the short axis A2.
  • the length of the long axis A1 is greater than the length of the short axis A2.
  • the arrangement direction of the first electrode 11 and the second electrode 12 of the light-emitting element 10 is the extension direction of the long axis A1.
  • the long axis A1 is a line connecting the centers of two opposite short sides of the light-emitting element 10
  • the short axis A2 is a line connecting the centers of two opposite long sides of the light-emitting element 10 .
  • each light-emitting element 10 extends in the column direction Y
  • the short axis A2 of each light-emitting element 10 extends in the row direction X.
  • FIG. 5 shows trace 70 and the current I in trace 70 .
  • FIG. 6 is a light mixing effect diagram of a light-emitting module using the arrangement of light-emitting elements in FIG. 4 .
  • the light mixing effect of adjacent light-emitting elements in this arrangement is uniform and there is no darkening phenomenon.
  • the edge luminous flux of the light-emitting module is less than that in the rectangular arrangement.
  • FIG. 7 is a schematic diagram of the arrangement of light-emitting elements in a light-emitting module according to an embodiment of the present disclosure.
  • the extending direction of the long axis A1 of the light emitting element 10 in one of the odd and even columns is the column direction Y
  • the long axis A1 of the light emitting element 10 in the other of the odd and even columns is The extension direction is the row direction X.
  • the extending direction of the long axis A1 of the light emitting element 10 in one of the odd and even columns is perpendicular to the extending direction of the long axis A1 of the light emitting element 10 in the other of the odd and even columns.
  • the light-emitting elements 10 in odd-numbered columns are placed vertically, and the light-emitting elements 10 in even-numbered columns are placed horizontally.
  • the light-emitting elements 10 in one of the odd and even columns are placed along the column direction Y, and the light-emitting elements 10 in the other of the odd and even columns are placed along the row direction X, with adjacent columns and in the same row.
  • the two light-emitting elements 10 are placed staggeredly, that is, one light-emitting element is placed along the column direction Y, and one light-emitting element is placed along the row direction X.
  • the extending direction of the long axis of one of the two adjacent rows of light-emitting elements 10 is parallel to the column direction Y, and the long axis of the other row of the two adjacent rows of light-emitting elements 10
  • the extension direction is parallel to the row direction X.
  • vertical placement, placement along the column direction Y, horizontal placement, and placement along the row direction It refers to the arrangement manner in the extending direction of the long axis A1 of the light-emitting element 10 .
  • FIG. 7 shows dividing lines 501 extending in the row direction between different partitions 20 .
  • the dividing line 501 shown in FIG. 7 is a part of the rectangular frame showing the partition 20 shown in FIG. 3 .
  • FIG. 8 is a schematic diagram of the arrangement of light-emitting elements in a light-emitting module according to an embodiment of the present disclosure.
  • the angle a1 between the extending direction of the long axis A1 of at least one of the plurality of light-emitting elements 10 and the row direction X is greater than 0.
  • the angle a1 between the extension direction of the long axis of at least one of the plurality of light-emitting elements 10 and the row direction X is greater than 0 and less than or equal to 45°.
  • the plurality of light emitting elements 10 have the same tilt direction and the same tilt angle.
  • the light-emitting module shown in FIG. 8 is explained by taking the light-emitting element 10 tilted 45° to the right as an example.
  • FIG. 8 shows separation lines 501 extending in the row direction and separation lines 502 extending in the column direction between different partitions 20 .
  • each partition can be provided with a total of six light-emitting elements in two rows and three columns.
  • FIG. 9 is a schematic diagram of a light-emitting module provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of a light-emitting module provided by an embodiment of the present disclosure.
  • the light-emitting module In order to further improve the uniformity of brightness around the light-emitting module and make the light source more uniform, at the two opposite edges of the light-emitting module extending along the column direction Y, the light-emitting module Each has at least one row of light-emitting elements whose central connection line is a straight line.
  • Figures 9 and 10 show that the light-emitting module is rectangular, with edge E1, edge E2, edge E3, and edge E4. Edge E1 and edge E3 are opposite to each other and both extend along the column direction Y. Edge E2 and edge E4 are opposite to each other. are set, and all extend along the row direction X.
  • FIG. 9 and FIG. 10 take as an example a row of light-emitting elements with a straight line connected to the center at the edge E1 and a row of light-emitting elements with a straight line connected to the center at the edge E3, but are not limited to what is shown in the figures.
  • the number of columns of light-emitting elements whose central connection line at edge E1 is a straight line can be determined according to needs, and the number of columns of light-emitting elements whose central connection line at edge E3 is a straight line can be determined according to need.
  • the number of columns of light-emitting elements with a straight line connecting the centers at the edge E1 is less than or equal to four, and the number of columns of light-emitting elements with a straight line connecting the centers at the edge E3 is less than Or equal to four. That is, there are less than or equal to four columns of light-emitting elements with straight lines connected to the centers at the edge E1, and there are less than or equal to four columns of light-emitting elements with straight lines connected to the centers at the edge E3.
  • the multiple columns of light-emitting elements with straight-line central connections are arranged in sequence, and at the edge E3, the multiple columns of light-emitting elements with straight-line central connections are arranged in sequence.
  • each row of light-emitting elements of the light-emitting module is a row of light-emitting elements with a central connecting line that is a polyline.
  • each row of light-emitting elements of the light-emitting module is a row of light-emitting elements with a straight line in the center.
  • each edge of the two edges extending along the column direction Y is provided with a row of light-emitting elements with a straight line connected by the center, along the row direction
  • the center lines of the light-emitting elements are all straight lines. This results in an arrangement of light-emitting elements with an internal staggered arrangement and a straight line arrangement on all four sides.
  • Figures 9 and 10 illustrate multiple columns of light emitting elements m0.
  • 9 and 10 illustrate a column of light-emitting elements m1, a column of light-emitting elements m2, a column of light-emitting elements m3, and a column of light-emitting elements m4.
  • Figures 9 and 10 illustrate multiple rows of light emitting elements r0.
  • Figures 9 and 10 illustrate a row of light-emitting elements r1, a row of light-emitting elements r2, a row of light-emitting elements r3, and a row of light-emitting elements r4.
  • Figures 9 and 10 take the example of a light-emitting module including seven rows of light-emitting elements r0 and six columns of light-emitting elements m0.
  • embodiments of the present disclosure include, but are not limited to, the number of rows of light-emitting elements and the number of columns of light-emitting elements. Can be determined according to needs.
  • the multiple columns of light-emitting elements m0 include a plurality of first-type column light-emitting elements m01 and a plurality of second-type column light-emitting elements m02.
  • Each of the plurality of first-type column light-emitting elements m01 has a first
  • the center connection line of the light-emitting elements in the type column light-emitting elements is a polygonal line
  • the center connection line of the light-emitting elements in each second type column light-emitting element m02 of the plurality of second type column light-emitting elements is a straight line
  • the plurality of first type column light-emitting elements are straight lines.
  • the column light-emitting element m01 is located between two second-type column light-emitting elements of the plurality of second-type column light-emitting elements m02.
  • the light-emitting module is rectangular with four edges (edge E1, edge E2, edge E3, and edge E4), and the center line of the light-emitting element closest to each of the four edges They are all straight lines, and each row of light-emitting elements located in the rectangular frame 306 formed by four straight lines is a row of light-emitting elements with the center line of the light-emitting elements 10 being a polyline.
  • the line connecting the center of the light-emitting element 10 closest to the edge of the light-emitting module extending along the column direction Y is a broken line, and the line connecting the center of the light-emitting element 10 closest to it is a straight line.
  • the distance between the light-emitting elements in a row of light-emitting elements may first decrease and then gradually increase along the column direction Y.
  • the line connecting the center of the light-emitting element 10 closest to the edge of the light-emitting module extending along the column direction Y is a broken line, and the line connecting the center of the light-emitting element 10 closest to it is a straight line.
  • the distance between the light-emitting elements in a row of light-emitting elements includes distance d1, distance d2, distance d3, and distance d4.
  • the distance d1, the distance d2, the distance d3, and the distance d4 are arranged in sequence along the column direction Y.
  • Distance d1 is greater than distance d2, distance d2 is less than distance d3, and distance d3 is less than distance d4.
  • distance d1, distance d2, distance d3, and distance d4 constitute a distance group d0, and multiple distance groups d0 are sequentially arranged along the column direction Y.
  • distance d1 is equal to distance d3, but is not limited thereto.
  • the distance in the row direction X between two adjacent light-emitting elements 10 is df.
  • distance d1 is equal to distance df
  • distance d2 is less than distance df
  • distance d3 is equal to distance df
  • distance d4 is greater than distance df.
  • distance d1, distance d2, distance d3, and distance d4 are respectively the first light-emitting element 1 and the second light-emitting element m01 in the first type column light-emitting element m01 closest to the edge extending in the column direction Y.
  • the distance d1, the distance d2, the distance d3, and the distance d4 can also be regarded as the first light-emitting element 1, the second light-emitting element 2, and the third light-emitting element m01 of the first type column light-emitting element m01 closest to the edge extending along the column direction Y.
  • the minimum distance between element 3, the fourth light-emitting element 4 and the straight line where the center line of the light-emitting element in the second type column light-emitting element m02 that is closest to it is located.
  • the edge E3 As shown in FIG. 10 , at the edge E3 , the first light-emitting element 1 , the second light-emitting element 2 , the third light-emitting element 3 , and the first-type column light-emitting element m01 closest to the edge extending in the column direction Y
  • the minimum distance between the four light-emitting elements 4 and the straight line connecting the centers of the light-emitting elements in the second type column m02 that is closest to it first increases and then gradually decreases.
  • the edge E3 at the edge E3 , the first light-emitting element 1 , the second light-emitting element 2 , the third light-emitting element 3 , and the first-type column light-emitting element m01 closest to the edge extending in the column direction Y
  • the minimum distances between the four light-emitting elements 4 and the straight line connecting the centers of the light-emitting elements in the closest second type column light-emitting element m02 are respectively the distance da, the distance db, the distance dc, and the distance dd.
  • the distance da is smaller than the distance db
  • the distance db is larger than the distance dc
  • the distance dc is larger than the distance dd, but is not limited thereto.
  • distance da is equal to distance df
  • distance db is greater than distance df
  • distance dc is equal to distance df
  • distance dd is less than distance df, but is not limited thereto.
  • the distance da, the distance db, the distance dc, and the distance dd constitute a distance group d6, and a plurality of distance groups d6 are sequentially arranged along the column direction Y.
  • the distance group d0 and the distance group d6 are respectively located at both ends of four rows of light-emitting elements.
  • distance d1 and distance da are respectively located at both ends of the same row of light-emitting elements
  • distance d2 and distance db are respectively located at both ends of the same row of light-emitting elements
  • distance d3 and distance dc are respectively located at both ends of the same row of light-emitting elements.
  • Both ends, the distance d4 and the distance dd are respectively located at both ends of the same row of light-emitting elements.
  • the light-emitting module provided by the embodiment of the present disclosure can be manufactured using common processes, which is beneficial to mass production.
  • FIG. 11 is a schematic plan view of a light-emitting element in a light-emitting module according to an embodiment of the present disclosure.
  • the center C0 of the light-emitting element 10 may refer to the arrangement of the first electrode 11 and the second electrode 12 of the light-emitting element 10.
  • FIG. 11 illustrates an example in which the first electrode 11 and the second electrode 12 are arranged along the column direction Y.
  • the center C0 of the light-emitting element 10 may refer to the intersection of the long axis A1 and the short axis A2.
  • reference numeral 11 and reference numeral 12 may also refer to a pad connected to the first electrode and a pad connected to the second electrode, respectively.
  • An embodiment of the present disclosure also provides a light-emitting substrate, including any of the above-mentioned light-emitting modules.
  • the light-emitting substrate may also be called a light panel.
  • An embodiment of the present disclosure also provides a display device including any of the above light-emitting substrates.
  • FIG. 12 is a schematic diagram of a display device provided by an embodiment of the present disclosure.
  • the display device 1000 includes a light-emitting substrate 01 , an optical layer 02 and a display panel 03 .
  • the optical layer 02 is disposed on a side of the light-emitting substrate 01 away from the circuit board 1010 .
  • the display panel 03 is disposed on a side far away from the optical layer 02 .
  • Figure 12 shows the light emitting module 201.
  • the optical layer 02 includes a diffusion layer 0202 , a quantum dot film layer 0203 , a diffusion layer 0204 and a composite film layer 0205 that are sequentially arranged in the vertical direction away from the circuit board 1010 .
  • the diffusion layer 0202 and the diffusion layer 0204 can improve the light shadow produced by the light-emitting substrate 01 and improve the display quality of the display device 1000 .
  • the quantum dot film layer 0203 can convert the blue light into white light under the excitation of the blue light emitted by the light-emitting substrate 01, thereby improving the utilization rate of the light energy of the light-emitting substrate 01.
  • the composite film layer 0205 can improve the brightness of the light propagated through the composite film layer 0205.
  • the optical layer 02 may also include other film layers to improve the optical performance of the display device 1000 .
  • Composite film layer 0205 can also be called a brightness enhancement film.
  • the light-emitting substrate 01 and the optical layer 02 may constitute at least a part of the light source module 012 in the display device 1000 .
  • the display panel 03 is disposed on one side of the light emitting module 012 and is configured to protect each device in the display device 1000 .
  • the display panel 03 may include multiple functional layers to better achieve the display effect.
  • the display panel 03 includes a liquid crystal display panel.
  • the number of light-emitting elements at the edge of the light-emitting module is relatively small, which is beneficial to reducing the luminous flux at the edge of the light-emitting module and improving the picture quality.
  • the display performance of the display device 1000 can be improved.
  • the arrangement of the light-emitting elements in the light-emitting module provided by the embodiments of the present disclosure can improve the peripheral bluing problem.
  • the display device includes a liquid crystal display device.
  • the display device includes any liquid crystal display product or component with a display function such as a television, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, a navigator, etc. that contain the above-mentioned light-emitting substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种发光模组、发光基板和显示装置。发光模组包括:多个发光元件(10),多个发光元件在行方向(X)和列方向(Y)上排列,所述多个发光元件(10)形成多列发光元件,所述多列发光元件中至少一列发光元件包括依次设置的第一发光元件(1)、第二发光元件(2)、第三发光元件(3)、以及第四发光元件(4),并且第二发光元件(2)和第四发光元件(4)分设在第一发光元件(1)和第三发光元件(3)的中心连线(100)的两侧。该发光模组使得发光模组的边缘的发光元件的数量相对较少,以利于减少发光模组的边缘的光通量,提升画面品质。

Description

发光模组、发光基板和显示装置 技术领域
本公开的实施例涉及一种发光模组、发光基板和显示装置。
背景技术
对比传统显示屏,包含次毫米发光二极管(Mini-LED)的显示屏拥有更好的显示效果,有更高的对比度以及更长的寿命。同时相比有机发光二极管(OLED)显示器,Mini-LED在产品组成上更具多样性,良率更高。
Mini-LED产品结合了传统液晶显示器(Liquid crystal display,LCD)和有机发光二极管(Organic light emitting diode,OLED)显示器这两者特有的优点,同时,又避开了各自的缺点。
发明内容
本公开的实施例提供一种发光模组、发光基板和显示装置。
本公开的实施例提供一种发光模组,包括:多个发光元件,所述多个发光元件在行方向和列方向上排列,所述多个发光元件形成多列发光元件,所述多列发光元件中至少一列发光元件包括依次设置的第一发光元件、第二发光元件、第三发光元件、以及第四发光元件,并且所述第二发光元件和所述第四发光元件分设在所述第一发光元件和所述第三发光元件的中心连线的两侧。
例如,相邻两行发光元件错开排布,每相邻两行发光元件构成一个发光元件组,且不同的发光元件组包括不同的发光元件,相邻的发光元件组的错开方向相反。
例如,所述多个发光元件还包括第五发光元件和第六发光元件,所述第五发光元件和所述第六发光元件与所述第二发光元件位于同一行且分别与所述第二发光元件相邻,所述第五发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离大于所述第六发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离,所述第二发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离小于所述第六发光元件到所述第一发光 元件和所述第三发光元件的中心连线的距离。
例如,所述第六发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离为所述第二发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离的3到10倍。
例如,所述多个发光元件还包括第七发光元件和第八发光元件,所述第七发光元件和所述第八发光元件与所述第四发光元件位于同一行且分别与所述第四发光元件相邻,所述第七发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离小于所述第八发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离,所述第四发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离小于所述第七发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离。
例如,所述第七发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离为所述第四发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离的3到10倍。
例如,所述第二发光元件的中心到所述第一发光元件和所述第三发光元件的中心连线的距离等于所述第四发光元件的中心到所述第一发光元件和所述第三发光元件的中心连线的距离。
例如,所述第二发光元件、所述第三发光元件、以及所述第四发光元件的中心连线在一条直线上。
例如,所述第一发光元件和所述第二发光元件的中心连线与所述第二发光元件、所述第三发光元件、以及所述第四发光元件的中心连线所在的直线的夹角为钝角。
例如,所述钝角大于或等于120度并且小于或等于160度。
例如,位于同一行且相邻的两个发光元件之间的距离相等。
例如,所述发光模组包括沿所述列方向延伸的相对的两个边缘,最靠近沿所述列方向延伸的所述两个边缘的每个边缘的一列发光元件中的发光元件的中心连线为折线。
例如,所述发光模组包括沿所述列方向延伸的相对的两个边缘,最靠近沿所述列方向延伸的所述两个边缘的每个边缘的一列发光元件中的发光元件的中心连线为直线。
例如,所述发光模组包括沿所述行方向延伸的相对的两个边缘,最靠近沿所述行方向延伸的所述两个边缘的每个边缘的一行发光元件中的发光元件的中心连线为直线。
例如,所述多列发光元件包括多个第一类型列发光元件和多个第二类型列发光元件,所述多个第一类型列发光元件中的每个第一类型列发光元件中的发光元件的中心连线为折线,所述多个第二类型列发光元件中的每个第二类型列发光元件中的发光元件的中心连线为直线,所述多个第一类型列发光元件位于所述多个第二类型列发光元件中的两个第二类型列发光元件之间。
例如,最靠近所述发光模组的沿所述列方向延伸的边缘的发光元件的中心连线为折线的一列发光元件和与其最靠近的发光元件的中心连线为直线的一列发光元件的发光元件之间的距离沿所述列方向先减小再逐渐增大或先增大再逐渐减小。
例如,所述发光模组呈矩形,具有四个边缘,最靠近所述四个边缘中每个边缘的发光元件的中心连线均呈直线,位于四条直线形成的矩形框内的每列发光元件均为发光元件的中心连线为折线的一列发光元件。
例如,所述发光元件包括第一电极和第二电极,位于同一行的两个相邻发光元件的所述第一电极和所述第二电极的排布方向不同。
例如,位于同一行的两个相邻发光元件的第一电极和第二电极的排布方向相反。
例如,所述发光元件具有长轴和短轴,所述长轴的延伸方向垂直于所述短轴的延伸方向,所述长轴的长度大于所述短轴的长度,所述发光元件的所述第一电极和所述第二电极的排布方向为所述长轴的延伸方向。
例如,奇数列和偶数列之一中的所述发光元件的所述长轴的延伸方向为所述列方向,奇数列和偶数列之另一中的所述发光元件的所述长轴的延伸方向为所述行方向。
例如,所述多个发光元件中的至少一个发光元件的所述长轴的延伸方向与所述行方向的夹角大于0。
例如,所述多个发光元件中的至少一个发光元件的所述长轴的延伸方向与所述行方向的夹角大于0并且小于或等于45°。
例如,相邻两列发光元件中的一列发光元件的所述长轴的延伸方向平行 于所述列方向,相邻两列发光元件中的另一列发光元件的所述长轴的延伸方向平行于所述行方向。
例如,位于最边缘的一列发光元件中的发光元件的中心连线呈折线型,所述中心连线包括多个重复部分,所述中心连线的重复部分连接的发光元件的数量大于3个。
例如,所述发光模组包括多个分区,所述多个分区沿所述行方向和所述列方向排布,每个分区包括所述多个发光元件中的至少两个发光元件,偶数行分区内的发光元件排布方式相同,奇数行分区内的发光元件排布方式相同,并且偶数行分区内的发光元件排布方式与奇数行分区内的发光元件排布方式不同。本公开的实施例还提供一种发光基板,包括上述任一发光模组。
本公开的实施例还提供一种显示装置,包括上述任一发光基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种Mini-LED的排布方式的示意图。
图2为图1所示的排布方式的Mini-LED的模拟混光效果图。
图3为本公开的实施例提供的一种发光模组的示意图。
图4为图3中在列方向上相邻的两个分区内的发光元件的示意图。
图5为本公开的实施例提供的发光模组中的发光元件的排布方式示意图。
图6为采用图4的发光元件的设置方式的发光模组的混光效果图。
图7为本公开的实施例提供的发光模组中的发光元件的排布方式示意图。
图8为本公开的实施例提供的发光模组中的发光元件的排布方式示意图。
图9为本公开的实施例提供的一种发光模组的示意图。
图10是本公开的实施例提供的一种显示装置的示意图。
图11为本公开的实施例提供的发光模组中的发光元件的平面示意图。
图12是本公开的实施例提供的一种显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为一种Mini-LED的排布方式的示意图。图2为图1所示的排布方式的Mini-LED的模拟混光效果图。
如图1所示,常规Mini-LED的排布方式多采用矩形排布,此种排布方式的模拟混光效果如图2所示。图1示出了多个Mini-LED 21。如图1所示,每个Mini-LED 21包括电极011和电极012,电极011和电极012之一为P电极,电极011和电极012之另一为N电极。
例如,Mini-LED是指芯片尺寸介于50~200μm之间的LED器件。
图1示出了走线70以及走线70中的电流I。图中电流I的箭头表示电流的方向。
对于矩形排布方案,Mini-LED和Mini-LED之间的混光效果较差,如图2中黑色线圈中的区域的亮度明显弱于其余位置,导致灯影(Mura)和周边发蓝等问题。同时,为了考虑打件效率,LED的P电极和N电极采用有序方式放置焊盘,然而,有序排布的P电极和N电极使得发光基板内部走线占用 空间,走线较复杂,电流流经线路长,且内部走线存在多组反向电流间相互作用,线路多会出现电流流经声音,多组反向电流相互作用产生安培力,整面发光基板安培力叠加达到一定数值时,发生的振荡频率与接触处的振荡频率接近一致时,发生共振现象,这种共振引起噪音。
图3为本公开的实施例提供的一种发光模组的示意图。图4为图3中在列方向上相邻的两个分区内的发光元件的示意图。
如图3所示,发光模组包括多个分区20,每个分区20包括多个发光元件10。每个分区20内的发光元件10可由一个或多个驱动芯片进行驱动。例如,每个分区20内的发光元件10可以被同时点亮,但不限于此。分区驱动的方式,利于提高分辨率。图3的一个矩形框即为一个分区20。图3以一个分区20内设有6个发光元件10为例进行说明。
如图3所示,多个分区20沿行方向X和列方向Y排布。
如图3和图4所示,该发光模组包括:多个发光元件10,多个发光元件10在行方向X和列方向Y上排列,相邻两行发光元件10错开排布。如图4所示,同一列发光元件10包括依次设置的第一发光元件1、第二发光元件2、第三发光元件3、以及第四发光元件4,并且第二发光元件2和第四发光元件4分设在第一发光元件1和第三发光元件3的中心连线100的两侧。
本公开的实施例提供的发光模组,通过调整发光元件的设置位置和设置方式,使得在同一列的依次相邻的第一发光元件1、第二发光元件2、第三发光元件3、以及第四发光元件4中,第二发光元件2和第四发光元件4分设在第一发光元件1和第三发光元件3的中心连线100的两侧,采用此排布方式,使得发光模组的边缘的发光元件的数量相对较少,以利于减少发光模组的边缘的光通量,提升画面品质。在发光元件10均发蓝光的情况下,本公开的实施例提供的发光模组中的发光元件的设置方式,可以改善周边发蓝问题。
如图3和图4所示,多列发光元件沿行方向X依次排布,每列发光元件中的发光元件沿列方向Y排布。
图3示出了一列发光元件中的发光元件10的中心连线60。如图3所示,中心连线60呈折线型。如图3所示,中心连线60包括多个重复部分600,中心连线60的重复部分600连接的发光元件的数量大于3个。如图3所示,中心连线60的重复部分600连接的发光元件的数量为5个。例如,重复部分 600是指中心连线60包括多个形状一致的部分。在一些实施例中,重复部分600是指中心连线60包括多个形状一致并且尺寸一致的部分。图3以重复部分600的形状一致并且尺寸一致为例进行说明。图3中每个矩形框表示的分区20内的点表示发光元件10,图3以一个重复部分600连接5个发光元件为例进行说明,但不限于此,每个重复部分600连接的发光元件的数量可根据需要而定。当然,重复部分600的划分方式不限于图3所示。
如图3所示,最靠近发光模组的边缘的两个相邻的发光元件10(发光元件101和发光元件102)之间设有三个发光元件。即,最靠近发光模组的边缘的两个相邻的发光元件10(发光元件101和发光元件102)之间的发光元件的个数大于一个。如图3所示,在列方向Y上相邻的两个重复部分600中的最靠近发光模组的边缘的两个发光元件10(发光元件101和发光元件102)之间设有三个发光元件。即,在列方向Y上相邻的两个重复部分600中的最靠近发光模组的边缘的两个发光元件10(发光元件101和发光元件102)之间的发光元件的个数大于一个。
如图3所示,发光模组的左侧的中心连线60和发光模组的右侧的中心连线60均呈折线型。如图3所示,发光模组的左侧的中心连线60和发光模组的右侧的中心连线60的弯折方式相同。在本公开的实施例中,发光模组的左侧的中心连线60和发光模组的右侧的中心连线60经平移后可重合。
图3示出了发光模组的中心C0和通过该中心C0的中心线CL。中心线CL沿列方向Y延伸。发光模组的左侧的中心连线60和发光模组的右侧的中心连线60可看成是位于中心线CL的两侧的两列发光元件的中心连线60。
图3示出了发光模组呈矩形,具有边缘E1、边缘E2、边缘E3、以及边缘E4,边缘E1和边缘E3相对设置,且均沿列方向Y延伸,边缘E2和边缘E4相对设置,且均沿行方向X延伸。
在本公开的实施例中,边缘E1、边缘E2、边缘E3、以及边缘E4可分别称作左边缘、上边缘、右边缘、以及下边缘。
在本公开的实施例中,发光元件10的中心是指发光元件10的几何中心。例如,发光元件10的中心是指发光元件10的重心,但不限于此。
如图3所示,发光模组的每列发光元件均为中心连线为折线的一列发光元件。如图3所示,发光模组的每行发光元件均为中心连线为直线的一行发 光元件。从而,图3所示的发光模组的四个边缘中,沿列方向Y延伸的两个边缘的每个边缘处,均设有中心连线为折线的一列发光元件,沿行方向X延伸的两个边缘的每个边缘处,均设有中心连线为直线的一行发光元件。即,在发光模组的四个边缘处,左边缘处的一列发光元件为发光元件的中心连线为折线的一列发光元件,右边缘处的一列发光元件为发光元件的中心连线为折线的一列发光元件,上边缘处的一列发光元件为发光元件的中心连线为直线的一列发光元件,下边缘处的一列发光元件为发光元件的中心连线为直线的一列发光元件。
如图3所示,每列发光元件m0的发光元件的中心连线均为折线。在本公开的实施例中,一列发光元件沿列方向Y排布,但并不要求该列中的发光元件均在一条直线上,一列发光元件的排布趋势沿列方向Y即可。
图4示出了四行三列发光元件。如图4所示,第二发光元件2设在第一发光元件1和第三发光元件3的中心连线100的左侧,第四发光元件4设在第一发光元件1和第三发光元件3的中心连线100的右侧。例如,如图3和图4所示,多列发光元件的设置方式相同。如图3和图4所示,不同列发光元件经平移后可重合。如图3和图4所示,不同列发光元件经在行方向X上平移后可重合。
如图4所示,每相邻两行发光元件10构成一个发光元件组30,且不同的发光元件组30包括不同的发光元件10,相邻的发光元件组30的错开方向相反,以利于减少发光模组的边缘的光通量,提升画面品质。例如,错开方向是指错位的一行发光元件相对于未错位的一行发光元件的错开方向。
如图4所示,发光元件组30包括发光元件组301和发光元件组302。在发光元件组301中的两行发光元件中,在下的一行发光元件相对于在上的一行发光元件向左错开,在发光元件组302中的两行发光元件中,在下的一行发光元件相对于在上的一行发光元件向右错开。
如图4所示,第一行发光元件为未错位的一行发光元件,第二行发光元件为错位的一行发光元件,相对于第一行发光元件向左错开。
如图4所示,第三行发光元件为未错位的一行发光元件,第四行发光元件为错位的一行发光元件,相对于第三行发光元件向右错开。
如图4所示,在列方向Y上相邻的两个发光元件组中发光元件的错开方 式不同。
如图4所示,在列方向Y上相邻的两个发光元件组中发光元件的排布方式不同。
如图3和图4所示,本公开的实施例以奇数行未错位而偶数行错位为例进行说明,但不限于此,在其他的实施例中,也可以奇数行错位而偶数行未错位。
例如,如图4所示,多个发光元件10还包括第五发光元件5和第六发光元件6,第五发光元件5和第六发光元件6与第二发光元件2位于同一行且分别与第二发光元件2相邻,第五发光元件5到第一发光元件1和第三发光元件3的中心连线100的距离D5大于第六发光元件6到第一发光元件1和第三发光元件3的中心连线100的距离D6,第二发光元件2到第一发光元件1和第三发光元件3的中心连线100的距离D2小于第六发光元件6到第一发光元件1和第三发光元件3的中心连线100的距离D6。从而,图4所示的第二行发光元件与第一行发光元件相比向左错开。
例如,如图4所示,为了获得较好的混光效果,第六发光元件6到第一发光元件1和第三发光元件3的中心连线100的距离D6为第二发光元件2到第一发光元件1和第三发光元件3的中心连线100的距离D2的3到10倍。进一步例如,距离D6为距离D2的3到8倍。
例如,如图4所示,多个发光元件10还包括第七发光元件7和第八发光元件8,第七发光元件7和第八发光元件8与第四发光元件4位于同一行且分别与第四发光元件4相邻,第七发光元件7到第一发光元件1和第三发光元件3的中心连线100的距离D7小于第八发光元件8到第一发光元件1和第三发光元件3的中心连线100的距离D8,第四发光元件4到第一发光元件1和第三发光元件3的中心连线100的距离D4小于第七发光元件7到第一发光元件1和第三发光元件3的中心连线100的距离D7。从而,图4所示的第四行发光元件与第三行发光元件相比向右错开。
例如,如图4所示,第一行发光元件与第三行发光元件在行方向X上不错位。
例如,如图4所示,为了获得较好的混光效果,第七发光元件7到第一发光元件1和第三发光元件3的中心连线100的距离D7为第四发光元件4 到第一发光元件1和第三发光元件3的中心连线100的距离D4的3到10倍。进一步例如,距离D7为距离D4的3到8倍。
例如,如图4所示,为了获得较好的混光效果,第二发光元件2的中心到第一发光元件1和第三发光元件3的中心连线100的距离D2等于第四发光元件4的中心到第一发光元件1和第三发光元件3的中心连线100的距离D4。即,距离D2等于距离D4。该设置使得第二行发光元件相对于第一行发光元件向左错开的距离等于第四行发光元件相对于第三行发光元件向右错开的距离。
例如,如图4所示,第二发光元件2、第三发光元件3、以及第四发光元件4的中心连线在一条直线L234上。
例如,如图4所示,第一发光元件1和第二发光元件2的中心连线100与直线L234的夹角A0为钝角。例如,该钝角大于或等于120度并且小于或等于160度。
图4示出了第一发光元件1的中心C1和第三发光元件3的中心C3。例如,各个发光元件的中心可以为该发光元件的重心,但不限于此。
图4示出了发光元件的第一电极11和第二电极12。第一电极11和第二电极12之一可以为P电极,第一电极11和第二电极12之另一可以为N电极。例如,各个发光元件的中心可以位于第一电极11和第二电极12之间。
例如,如图4所示,位于同一行且相邻的两个发光元件10之间的距离相等。例如,如图4所示,位于同一列且相邻的两个发光元件10之间的在列方向Y上的距离相等。
例如,在本公开的实施例中,行方向X和列方向Y相交。例如,行方向X为水平方向,列方向Y为竖直方向。本公开的实施例以行方向X和列方向Y垂直为例进行说明。在列方向Y上的多个发光元件10的总体走势在列方向上,并不要求列方向Y上的多个发光元件10按照直线排列。同一列发光元件可以按照非直线例如折线方式排列。
参考图3和图4,在一列分区20中,隔行的分区20中的发光元件的排布方式相同。如图3所示,偶数行的分区20内的发光元件的排布方式相同,奇数行的分区20内的发光元件的排布方式相同。如图3所示,偶数行的分区20内的发光元件的排布方式和奇数行的分区20内的发光元件的排布方式不 同。例如,每个分区20包括多个发光元件中的至少两个发光元件。采用此排布方式,发光模组的边缘发光元件相对较少,可改善周边发蓝问题。
图5为本公开的实施例提供的发光模组中的发光元件的排布方式示意图。
例如,如图4和图5所示,发光元件10包括第一电极11和第二电极12,位于同一行的两个相邻发光元件10的第一电极11和第二电极12的排布方向不同。从而,使得同一行的两个相邻发光元件的第一电极11和第二电极12交错设置,使得布局中的走线简单,简化走线布置,有效减少电流流动声音,有效减少反向电流相互作用产生的安培力引起的振荡频率。
例如,如图4和图5所示,位于同一行的两个相邻发光元件10的第一电极和第二电极的排布方向相反。如图4所示,在第一行发光元件中,第二列的发光元件中的第一电极11和第二电极12按照从上至下的方式设置,第三列的发光元件中的第一电极11和第二电极12按照从下至上的方式设置。
例如,如图4和图5所示,发光元件10具有长轴A1和短轴A2,长轴A1的延伸方向垂直于短轴A2的延伸方向,长轴A1的长度大于短轴A2的长度,发光元件10的第一电极11和第二电极12的排布方向为长轴A1的延伸方向。例如,长轴A1为发光元件10的相对的两个短边的中心连线,短轴A2为发光元件10的相对的两个长边的中心连线。
例如,如图4和图5所示,各个发光元件10的长轴A1的延伸方向为列方向Y,各个发光元件10的短轴A2的延伸方向为行方向X。
图5示出了走线70以及走线70中的电流I。
图6为采用图4的发光元件的设置方式的发光模组的混光效果图。如图6所示,此种排布方式临近的发光元件的混光效果均匀,无发暗现象,同时,发光模组的边缘光通量相对矩形排布较少,采用此种排布方式,不仅可有效提升画面品味,还可有效减少发光元件的数量(例如,通过提升发光元件的电流达到亮度),节约成本。在发光元件均发蓝光的情况下,此种排布方式可有效解决周边发蓝问题。
图7为本公开的实施例提供的发光模组中的发光元件的排布方式示意图。
例如,如图7所示,奇数列和偶数列之一中的发光元件10的长轴A1的 延伸方向为列方向Y,奇数列和偶数列之另一中的发光元件10的长轴A1的延伸方向为行方向X。
例如,如图7所示,奇数列和偶数列之一中的发光元件10的长轴A1的延伸方向垂直于奇数列和偶数列之另一中的发光元件10的长轴A1的延伸方向。
例如,如图7所示,即,奇数列的发光元件10竖向放置,偶数列的发光元件10横向放置。
如图7所示,奇数列和偶数列之一中的发光元件10沿列方向Y放置,奇数列和偶数列之另一中的发光元件10沿行方向X放置,相邻列且位于同一行的两个发光元件10交错放置,即,一个发光元件沿列方向Y放置,一个发光元件沿行方向X放置。
例如,如图7所示,相邻两列发光元件10中的一列发光元件10的长轴的延伸方向平行于列方向Y,相邻两列发光元件10中的另一列发光元件10的长轴的延伸方向平行于行方向X。
在本公开的实施例中,竖向放置、沿列方向Y放置、横向放置、沿行方向X放置均指发光元件10的第一电极11和第二电极12的排布方向的设置方式,或指发光元件10的长轴A1的延伸方向的设置方式。
图7示出了不同分区20之间的沿行方向延伸的分隔线501。图7所示的分隔线501即为图3所示的表示分区20的矩形框的一部分。
图8为本公开的实施例提供的发光模组中的发光元件的排布方式示意图。
例如,如图8所示,多个发光元件10中的至少一个发光元件10的长轴A1的延伸方向与行方向X的夹角a1大于0。
例如,如图8所示,多个发光元件10中的至少一个发光元件10的长轴的延伸方向与行方向X的夹角a1大于0并且小于或等于45°。
如图8所示,多个发光元件10的倾斜方向相同,并且倾斜角度相同。图8所示的发光模组以发光元件10向右倾斜45°为例进行说明。
图8示出了不同分区20之间的沿行方向延伸的分隔线501和沿列方向延伸的分隔线502。
例如,如图3、图4、图7和图8所示,在本公开的实施例中,每个分区 可以设置两行三列共6个发光元件。
例如,如图3至图5、图7和图8所示,在同一分区20中,相邻的四个发光元件形成平行四边形的排布方式。
图9为本公开的实施例提供的一种发光模组的示意图。图10为本公开的实施例提供的一种发光模组的示意图。
如图9和图10所示,为了进一步提升发光模组周边的亮度的均一性,使得光源均一性更好,在发光模组的沿列方向Y延伸的相对的两个边缘处,发光模组分别具有中心连线为直线的至少一列发光元件。
图9和图10示出了发光模组呈矩形,具有边缘E1、边缘E2、边缘E3、以及边缘E4,边缘E1和边缘E3相对设置,且均沿列方向Y延伸,边缘E2和边缘E4相对设置,且均沿行方向X延伸。
图9和图10以在边缘E1具有一列中心连线为直线的一列发光元件,并且在边缘E3具有一列中心连线为直线的一列发光元件为例进行说明,但不限于图中所示。在其他的实施例中,边缘E1处的中心连线为直线的发光元件的列数可根据需要而定,边缘E3处的中心连线为直线的发光元件的列数可根据需要而定。
例如,为了兼顾避免周边发蓝以及周边亮度均一性,边缘E1处的中心连线为直线的发光元件的列数小于或等于四,边缘E3处的中心连线为直线的发光元件的列数小于或等于四。即,在边缘E1具有小于或等于四列的中心连线为直线的发光元件,并且在边缘E3具有小于或等于四列的中心连线为直线的发光元件。在边缘E1处,这些中心连线为直线的多列发光元件依次排布,并且在边缘E3处,这些中心连线为直线的多列发光元件依次排布。
如图9和图10所示,除了边缘E1和边缘E3处之外,发光模组的每列发光元件均为中心连线为折线的一列发光元件。如图9和图10所示,发光模组的每行发光元件均为中心连线为直线的发光元件行。从而,图9和图10所示的发光模组的四个边缘中,沿列方向Y延伸的两个边缘的每个边缘处,均设有中心连线为直线的一列发光元件,沿行方向X延伸的两个边缘的每个边缘处,均设有中心连线为直线的一行发光元件。
如图9和图10所示,在发光模组的四个边缘处,发光元件的中心连线均为直线。从而形成内部错位排布,四边直线排布的发光元件排布方式。
图9和图10示出了多列发光元件m0。图9和图10标示出了一列发光元件m1、一列发光元件m2、一列发光元件m3、以及一列发光元件m4。
图9和图10示出了多行发光元件r0。图9和图10标示出了一行发光元件r1、一行发光元件r2、一行发光元件r3、一行发光元件r4。
图9和图10以发光模组包括7行发光元件r0和六列发光元件m0为例进行说明,然而,本公开的实施例包括但不限于此,发光元件的行数和发光元件的列数可根据需要而定。
如图9和图10所示,多列发光元件m0包括多个第一类型列发光元件m01和多个第二类型列发光元件m02,多个第一类型列发光元件m01中的每个第一类型列发光元件中的发光元件的中心连线为折线,多个第二类型列发光元件中的每个第二类型列发光元件m02中的发光元件的中心连线为直线,多个第一类型列发光元件m01位于多个第二类型列发光元件m02中的两个第二类型列发光元件之间。
如图9和图10所示,发光模组呈矩形,具有四个边缘(边缘E1、边缘E2、边缘E3、以及边缘E4),最靠近四个边缘中每个边缘的发光元件的中心连线均呈直线,位于四条直线形成的矩形框306内的每列发光元件均为发光元件10的中心连线为折线的一列发光元件。
如图9和图10所示,最靠近发光模组的沿列方向Y延伸的边缘的发光元件10的中心连线为折线的一列发光元件和与其最靠近的发光元件10的中心连线为直线的一列发光元件之间的发光元件之间的距离可沿列方向Y先减小再逐渐增大。
如图9和图10所示,最靠近发光模组的沿列方向Y延伸的边缘的发光元件10的中心连线为折线的一列发光元件和与其最靠近的发光元件10的中心连线为直线的一列发光元件之间的发光元件之间的距离包括距离d1、距离d2、距离d3、以及距离d4。距离d1、距离d2、距离d3、以及距离d4沿列方向Y依次排布。距离d1大于距离d2,距离d2小于距离d3,距离d3小于距离d4。
如图9和图10所示,距离d1、距离d2、距离d3、以及距离d4构成距离组d0,多个距离组d0沿列方向Y依次排布。
例如,在一些实施例中,距离d1等于距离d3,但不限于此。
如图9和图10所示,在多个第一类型列发光元件m01中,两个相邻发光元件10之间在行方向X上的距离为df。例如,距离d1等于距离df,距离d2小于距离df,距离d3等于距离df,距离d4大于距离df。
如图9和图10所示,距离d1、距离d2、距离d3、以及距离d4分别为最靠近沿列方向Y延伸的边缘的第一类型列发光元件m01中的第一发光元件1、第二发光元件2、第三发光元件3、以及第四发光元件4和与其最接近的第二类型列发光元件m02中的发光元件之间的最小距离。距离d1、距离d2、距离d3、以及距离d4也可以看成最靠近沿列方向Y延伸的边缘的第一类型列发光元件m01中的第一发光元件1、第二发光元件2、第三发光元件3、以及第四发光元件4和与其最接近的第二类型列发光元件m02中的发光元件的中心连线所在的直线之间的最小距离。
如图10所示,在边缘E3处,最靠近沿列方向Y延伸的边缘的第一类型列发光元件m01中的第一发光元件1、第二发光元件2、第三发光元件3、以及第四发光元件4和与其最接近的第二类型列发光元件m02中的发光元件的中心连线所在的直线之间的最小距离先增大再逐渐减小。
如图10所示,在边缘E3处,最靠近沿列方向Y延伸的边缘的第一类型列发光元件m01中的第一发光元件1、第二发光元件2、第三发光元件3、以及第四发光元件4和与其最接近的第二类型列发光元件m02中的发光元件的中心连线所在的直线之间的最小距离分别为距离da、距离db、距离dc、以及距离dd。
例如,如图10所示,距离da小于距离db,距离db大于距离dc,距离dc大于距离dd,但不限于此。
例如,如图10所示,距离da等于距离df,距离db大于距离df,距离dc等于距离df,距离dd小于距离df,但不限于此。
例如,如图10所示,距离da、距离db、距离dc、以及距离dd构成距离组d6,多个距离组d6沿列方向Y依次排布。
例如,如图10所示,距离组d0和距离组d6分别位于四行发光元件的两端。
例如,如图10所示,距离d1和距离da分别位于同一行发光元件的两端,距离d2和距离db分别位于同一行发光元件的两端,距离d3和距离dc分别 位于同一行发光元件的两端,距离d4和距离dd分别位于同一行发光元件的两端。
本公开的实施例提供的发光模组,可以采用通常工艺制作,利于量产化。
图11为本公开的实施例提供的发光模组中的发光元件的平面示意图。在本公开的实施例中,如图4、图5、图7、图8、和图11所示,发光元件10的中心C0可指发光元件10的第一电极11和第二电极12在排布方向上的连线的中心。图11以第一电极11和第二电极12沿列方向Y排布为例进行说明。
如图11所示,发光元件10的中心C0可指长轴A1和短轴A2的交点。
例如,在本公开的实施例中,附图标记11和附图标记12也可分别指代与第一电极相连的焊盘和与第二电极相连的焊盘。
本公开的实施例还提供一种发光基板,包括上述任一发光模组。发光基板也可称作灯板。
本公开的实施例还提供一种显示装置,包括上述任一发光基板。
图12是本公开的实施例提供的一种显示装置的示意图。
如图12所示,显示装置1000包括发光基板01,光学层02以及显示面板03,且光学层02设置在发光基板01的远离电路板1010的一侧,显示面板03设置在光学层02的远离发光基板01的一侧。图12示出了发光模组201。
例如,如图12所示,光学层02包括沿远离电路板1010的垂直方向上依次设置的扩散层0202、量子点膜层0203、扩散层0204和复合膜层0205。例如,扩散层0202和扩散层0204可以改善发光基板01所产生的灯影,提高显示装置1000的显示画质。量子点膜层0203可在发光基板01所发出的蓝光的激发下,将蓝光转化为白光,可提高发光基板01的光能的利用率。复合膜层0205可以提高经复合膜层0205传播后的光线的亮度。例如,光学层02还可以包括其他膜层,以提高显示装置1000的光学性能。复合膜层0205也可称作增亮膜。
例如,如图12所示,发光基板01和光学层02可构成了显示装置1000中的光源模组012的至少一部分。显示面板03设置于发光模组012的一侧,被配置为保护显示装置1000中的各器件。例如,显示面板03可以包括多个功能层,以更好的实现显示效果。例如,显示面板03包括液晶显示面板。
在上述实施例所提供的显示装置1000中,发光模组的边缘的发光元件的数量相对较少,以利于减少发光模组的边缘的光通量,提升画面品质。由此,可以使得显示装置1000的显示性能得到提升。在发光元件10均发蓝光的情况下,本公开的实施例提供的发光模组中的发光元件的设置方式,可以改善周边发蓝问题。
例如,该显示装置包括液晶显示装置。例如,显示装置包括含有上述发光基板的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的液晶显示产品或者部件。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种发光模组,包括:多个发光元件,其中,
    所述多个发光元件在行方向和列方向上排列,所述多个发光元件形成多列发光元件,所述多列发光元件中至少一列发光元件包括依次设置的第一发光元件、第二发光元件、第三发光元件、以及第四发光元件,并且所述第二发光元件和所述第四发光元件分设在所述第一发光元件和所述第三发光元件的中心连线的两侧。
  2. 根据权利要求1所述的发光模组,其中,相邻两行发光元件错开排布,每相邻两行发光元件构成一个发光元件组,且不同的发光元件组包括不同的发光元件,相邻的发光元件组的错开方向相反。
  3. 根据权利要求1或2所述的发光模组,其中,所述多个发光元件还包括第五发光元件和第六发光元件,所述第五发光元件和所述第六发光元件与所述第二发光元件位于同一行且分别与所述第二发光元件相邻,所述第五发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离大于所述第六发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离,所述第二发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离小于所述第六发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离。
  4. 根据权利要求3所述的发光模组,其中,所述第六发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离为所述第二发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离的3到10倍。
  5. 根据权利要求3或4所述的发光模组,其中,所述多个发光元件还包括第七发光元件和第八发光元件,所述第七发光元件和所述第八发光元件与所述第四发光元件位于同一行且分别与所述第四发光元件相邻,所述第七发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离小于所述第八发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离,所述第四发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离小于所述第七发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离。
  6. 根据权利要求5所述的发光模组,其中,所述第七发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离为所述第四发光元件到所述第一发光元件和所述第三发光元件的中心连线的距离的3到10倍。
  7. 根据权利要求1-6任一项所述的发光模组,其中,所述第二发光元件的中心到所述第一发光元件和所述第三发光元件的中心连线的距离等于所述第四发光元件的中心到所述第一发光元件和所述第三发光元件的中心连线的距离。
  8. 根据权利要求1-7任一项所述的发光模组,其中,所述第二发光元件、所述第三发光元件、以及所述第四发光元件的中心连线在一条直线上。
  9. 根据权利要求8所述的发光模组,其中,所述第一发光元件和所述第二发光元件的中心连线与所述第二发光元件、所述第三发光元件、以及所述第四发光元件的中心连线所在的直线的夹角为钝角。
  10. 根据权利要求9所述的发光模组,其中,所述钝角大于或等于120度并且小于或等于160度。
  11. 根据权利要求1-10任一项所述的发光模组,其中,位于同一行且相邻的两个发光元件之间的距离相等。
  12. 根据权利要求1-10任一项所述的发光模组,其中,所述发光模组包括沿所述列方向延伸的相对的两个边缘,最靠近沿所述列方向延伸的所述两个边缘的每个边缘的一列发光元件中的发光元件的中心连线为折线。
  13. 根据权利要求1-10任一项所述的发光模组,其中,所述发光模组包括沿所述列方向延伸的相对的两个边缘,最靠近沿所述列方向延伸的所述两个边缘的每个边缘的一列发光元件中的发光元件的中心连线为直线。
  14. 根据权利要求13所述的发光模组,其中,所述发光模组包括沿所述行方向延伸的相对的两个边缘,最靠近沿所述行方向延伸的所述两个边缘的每个边缘的一行发光元件中的发光元件的中心连线为直线。
  15. 根据权利要求13所述的发光模组,其中,所述多列发光元件包括多个第一类型列发光元件和多个第二类型列发光元件,所述多个第一类型列发光元件中的每个第一类型列发光元件中的发光元件的中心连线为折线,所述多个第二类型列发光元件中的每个第二类型列发光元件中的发光元件的中心连线为直线,所述多个第一类型列发光元件位于所述多个第二类型列发光元 件中的两个第二类型列发光元件之间。
  16. 根据权利要求13述的发光模组,其中,最靠近所述发光模组的沿所述列方向延伸的边缘的发光元件的中心连线为折线的一列发光元件和与其最靠近的发光元件的中心连线为直线的一列发光元件的发光元件之间的距离沿所述列方向先减小再逐渐增大或先增大再逐渐减小。
  17. 根据权利要求1-10任一项所述的发光模组,其中,所述发光模组呈矩形,具有四个边缘,最靠近所述四个边缘中每个边缘的发光元件的中心连线均呈直线,位于四条直线形成的矩形框内的每列发光元件均为发光元件的中心连线为折线的一列发光元件。
  18. 根据权利要求1-11任一项所述的发光模组,其中,所述发光元件包括第一电极和第二电极,位于同一行的两个相邻发光元件的所述第一电极和所述第二电极的排布方向不同。
  19. 根据权利要求18所述的发光模组,其中,位于同一行的两个相邻发光元件的第一电极和第二电极的排布方向相反。
  20. 根据权利要求18或19所述的发光模组,其中,所述发光元件具有长轴和短轴,所述长轴的延伸方向垂直于所述短轴的延伸方向,所述长轴的长度大于所述短轴的长度,所述发光元件的所述第一电极和所述第二电极的排布方向为所述长轴的延伸方向。
  21. 根据权利要求20所述的发光模组,其中,奇数列和偶数列之一中的所述发光元件的所述长轴的延伸方向为所述列方向,奇数列和偶数列之另一中的所述发光元件的所述长轴的延伸方向为所述行方向。
  22. 根据权利要求20或21所述的发光模组,其中,所述多个发光元件中的至少一个发光元件的所述长轴的延伸方向与所述行方向的夹角大于0。
  23. 根据权利要求22所述的发光模组,其中,所述多个发光元件中的至少一个发光元件的所述长轴的延伸方向与所述行方向的夹角大于0并且小于或等于45°。
  24. 根据权利要求20-23任一项所述的发光模组,其中,相邻两列发光元件中的一列发光元件的所述长轴的延伸方向平行于所述列方向,相邻两列发光元件中的另一列发光元件的所述长轴的延伸方向平行于所述行方向。
  25. 根据权利要求1-24任一项所述的发光模组,其中,所述多列发光元 件中至少一列发光元件中的发光元件的中心连线呈折线型,所述呈折线型的中心连线包括多个重复部分,所述中心连线的重复部分连接的发光元件的数量大于3个。
  26. 根据权利要求1-25任一项所述的发光模组,其中,所述发光模组包括多个分区,所述多个分区沿所述行方向和所述列方向排布,每个分区包括所述多个发光元件中的至少两个发光元件,偶数行分区内的发光元件排布方式相同,奇数行分区内的发光元件排布方式相同,并且偶数行分区内的发光元件排布方式与奇数行分区内的发光元件排布方式不同。
  27. 一种发光基板,包括根据权利要求1-26任一项所述的发光模组。
  28. 一种显示装置,包括根据权利要求27所述的发光基板。
PCT/CN2022/102307 2022-06-29 2022-06-29 发光模组、发光基板和显示装置 WO2024000256A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002038.5A CN117642687A (zh) 2022-06-29 2022-06-29 发光模组、发光基板和显示装置
PCT/CN2022/102307 WO2024000256A1 (zh) 2022-06-29 2022-06-29 发光模组、发光基板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102307 WO2024000256A1 (zh) 2022-06-29 2022-06-29 发光模组、发光基板和显示装置

Publications (1)

Publication Number Publication Date
WO2024000256A1 true WO2024000256A1 (zh) 2024-01-04

Family

ID=89383431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102307 WO2024000256A1 (zh) 2022-06-29 2022-06-29 发光模组、发光基板和显示装置

Country Status (2)

Country Link
CN (1) CN117642687A (zh)
WO (1) WO2024000256A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110029273A (ko) * 2009-09-15 2011-03-23 서울옵토디바이스주식회사 전파 발광셀 및 반파 발광셀을 갖는 교류용 발광 다이오드
CN102472914A (zh) * 2009-08-27 2012-05-23 Lg电子株式会社 光学组件、背光单元和显示装置
CN102483538A (zh) * 2009-08-27 2012-05-30 Lg电子株式会社 光学组件,背光单元及其显示装置
US20170069805A1 (en) * 2015-09-03 2017-03-09 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus and illumination apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472914A (zh) * 2009-08-27 2012-05-23 Lg电子株式会社 光学组件、背光单元和显示装置
CN102483538A (zh) * 2009-08-27 2012-05-30 Lg电子株式会社 光学组件,背光单元及其显示装置
KR20110029273A (ko) * 2009-09-15 2011-03-23 서울옵토디바이스주식회사 전파 발광셀 및 반파 발광셀을 갖는 교류용 발광 다이오드
US20170069805A1 (en) * 2015-09-03 2017-03-09 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus and illumination apparatus

Also Published As

Publication number Publication date
CN117642687A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2023000830A1 (zh) 显示模组和显示设备
US11588085B2 (en) Light emitting drive substrate and manufacturing method thereof, light emitting substrate and display device
CN111162114B (zh) 显示阵列基板、显示面板及显示装置
US8421953B2 (en) Backlight unit and liquid crystal display device having the same
GB2373623A (en) Liquid crystal display panel and method for manufacturing the same
US10797128B2 (en) Display panel and device
CN113238402B (zh) 显示面板和显示装置
CN110632795B (zh) 背光源及其背板、制作方法
CN112599512A (zh) 一种Mini LED背光模组及背光源
KR20210075441A (ko) 투명 표시 패널 및 이를 포함하는 투명 표시 장치
JP2023528706A (ja) 発光基板及び表示装置
KR20210074704A (ko) 투명 표시 패널 및 이를 포함하는 투명 표시 장치
WO2021142558A1 (zh) 一种Micro-LED像素排列结构、排列方法及显示面板
CN209729907U (zh) 一种阵列基板及显示装置
US8730444B2 (en) Pixel array structure
WO2023279450A1 (zh) 显示面板
WO2024000256A1 (zh) 发光模组、发光基板和显示装置
WO2021147000A1 (zh) 发光基板及显示装置
TW202417950A (zh) 發光模組、發光基板和顯示裝置
CN114068609A (zh) Led单元、led源基板、显示面板和显示装置
WO2022082980A1 (zh) 显示装置及发光面板
CN111969018A (zh) 一种像素结构、显示面板及掩膜版组
WO2022205343A1 (zh) 发光基板及显示装置
WO2023206138A1 (zh) 显示基板和显示装置
US11768404B1 (en) Driving substrate, backlight, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002038.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948374

Country of ref document: EP

Kind code of ref document: A1