WO2024000243A1 - 分段式定子芯、电机和用于制造电机的定子组件的方法 - Google Patents

分段式定子芯、电机和用于制造电机的定子组件的方法 Download PDF

Info

Publication number
WO2024000243A1
WO2024000243A1 PCT/CN2022/102268 CN2022102268W WO2024000243A1 WO 2024000243 A1 WO2024000243 A1 WO 2024000243A1 CN 2022102268 W CN2022102268 W CN 2022102268W WO 2024000243 A1 WO2024000243 A1 WO 2024000243A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
yoke end
tooth
yoke
grain
Prior art date
Application number
PCT/CN2022/102268
Other languages
English (en)
French (fr)
Inventor
师喻
刘新华
臧晓云
何茂军
Original Assignee
罗伯特·博世有限公司
师喻
刘新华
臧晓云
何茂军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 师喻, 刘新华, 臧晓云, 何茂军 filed Critical 罗伯特·博世有限公司
Priority to PCT/CN2022/102268 priority Critical patent/WO2024000243A1/zh
Publication of WO2024000243A1 publication Critical patent/WO2024000243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings

Definitions

  • the present application relates generally to the technical field of electrical machines, and in particular to a segmented stator core for an electric machine and an electric machine including such a segmented stator core.
  • the application also relates to a method for manufacturing a stator assembly of an electric machine.
  • the stator includes a stator core and stator windings disposed around the teeth of the stator core and extending through slots between the teeth to define different electrical phases.
  • a winding process is usually used to wrap the stator windings around the teeth of the stator core. This winding process is complex and time-consuming, resulting in low production efficiency.
  • the present application aims to provide an improved stator core to improve manufacturing efficiency.
  • a segmented stator core for a motor characterized in that the segmented stator core includes: a plurality of individual first teeth, and the plurality of individual first teeth Each first one of the teeth includes a first yoke end and a first body extending radially from the first yoke end, the first yoke end having a width less than or equal to the width of the first body.
  • each second tooth of the plurality of individual second teeth It includes a second yoke end and a second body extending in the radial direction from the second yoke end, and the width of the second yoke end is greater than the width of the second body.
  • the plurality of individual first teeth and the plurality of individual second teeth are configured to be circumferentially arranged in an annular shape such that each of the plurality of individual second teeth extends along the is circumferentially disposed between two adjacent first teeth among the plurality of individual first teeth, wherein the second yoke end of each second tooth is respectively connected to the two adjacent first teeth.
  • the first yoke ends are connected, and the second body of each second tooth respectively defines a slot for accommodating the prefabricated winding component with the first body of the two adjacent first teeth.
  • the first yoke end is integral with the first body and is made of a first grain-oriented steel with a rolling direction along the diameter.
  • the second yoke end is integral with the second body and is made of a second grain-oriented steel with a rolling direction oriented along the radial direction.
  • the first yoke end is integral with the first body and is made of a first grain-oriented steel with a rolling direction along the diameter. Orientation, at least the second yoke end of the second tooth is made of non-grain oriented steel.
  • the second yoke end is integral with the second body and is made from non-grain oriented steel.
  • the second body is made from a second grain-oriented steel, the rolling direction of the second grain-oriented steel is oriented along the radial direction, and the second yoke end is fixed to the second body.
  • the width of the first body is substantially uniform along the radial direction.
  • the width of the second body gradually increases in a radially outward direction in the radial direction such that the width of the groove is substantially uniform.
  • the first body includes a first body side and a second body side opposite in the circumferential direction
  • the second body includes a third body side and a third body side opposite in the circumferential direction.
  • the first yoke end includes a first yoke end side and a second yoke end side opposite along the circumferential direction
  • the second yoke end includes a first yoke end side opposite along the circumferential direction.
  • a third yoke end side and a fourth yoke end side wherein: the first yoke end side is flush with the first body side in the circumferential direction, or is laterally retracted relative to the first body side in the circumferential direction.
  • the second yoke end side is flush with the second body side in the circumferential direction, or retracted relative to the second body side in the circumferential direction;
  • the third yoke end side is at the The fourth yoke end side extends beyond the third body side in the circumferential direction; and the fourth yoke end side extends beyond the fourth body side in the circumferential direction.
  • each second tooth of the plurality of individual second teeth when each second tooth of the plurality of individual second teeth is circumferentially disposed between two adjacent first teeth of the plurality of individual first teeth,
  • the third body side of the second body of each second tooth is parallel to the first body side of the first body of one of the two adjacent first teeth, and the third body side of the second body
  • the four main body sides are parallel to the second main body side of the first body of the other first tooth of the two adjacent first teeth.
  • the first yoke end further includes grooves recessed into the first yoke end from the first yoke end side and the second yoke end side respectively, and the second yoke end
  • the yoke end further includes protruding ribs protruding from the third yoke end side and the fourth yoke end side respectively.
  • the rib and the groove are configured such that when the first teeth and the second teeth are arranged in the circumferential direction, the rib is received in the groove to guide and Position the first tooth and the second tooth.
  • each of the first teeth further includes a first tooth end opposite the first yoke end, and the first body is in contact with the first yoke end in the radial direction.
  • each of the second teeth also includes a second tooth end opposite to the second yoke end, and the second body is in the radial direction on the first tooth end. Extending between the second yoke end and the second tooth end. The second tooth end portion of each second tooth respectively defines a gap therebetween with the first tooth end portions of the two adjacent first teeth, and the width of each of the gaps is smaller than that of the corresponding groove. width.
  • the prefabricated winding component includes a circular conductor prefabricated winding component, a rectangular conductor prefabricated winding component, or an oval conductor prefabricated winding component.
  • the prefabricated winding component includes an insulating sleeve and a winding prefabricated on the insulating sleeve, the insulating sleeve defines a sleeve portion therein, and the sleeve portion is sized to Suitable to be sleeved on the first body.
  • a motor is provided.
  • the electric machine includes a plurality of prefabricated winding components and the aforementioned segmented stator core.
  • Each of the plurality of prefabricated winding members is sleeved on a corresponding first tooth of a plurality of first teeth of the segmented stator core.
  • a method for manufacturing a stator assembly of an electric machine includes: providing a plurality of individual first teeth, wherein the plurality of individual first teeth each first tooth includes a first yoke end and a first body extending radially from the first yoke end, the width of the first yoke end being less than or equal to the width of the first body, to allow the prefabricated winding members to be sleeved onto the first body via the first yoke end; providing a plurality of prefabricated winding members and passing each of the plurality of prefabricated winding members through one of the plurality of individual first teeth.
  • the first yoke end corresponding to one first tooth is sleeved on the first body; a plurality of individual second teeth are provided, each of the plurality of individual second teeth including a third a second yoke end and a second body extending in the radial direction from the second yoke end, the width of the second yoke end being greater than the width of the second body; and connecting the plurality of individual The first teeth and the plurality of individual second teeth are arranged in an annular shape along the circumferential direction, such that each second tooth among the plurality of individual second teeth is disposed on the plurality of individual second teeth along the circumferential direction.
  • each second tooth is respectively connected to the first yoke end of the two adjacent first teeth, and
  • the second body of each second tooth respectively defines a slot therebetween with the first bodies of the two adjacent first teeth to accommodate the prefabricated winding component.
  • the method includes forming the first yoke end integrally with the first body from a first grain-oriented steel, and directing the first grain-oriented steel in a rolling direction Oriented along the radial direction, and the second yoke end integrally with the second body is made of a second grain-oriented steel, and the rolling direction of the second grain-oriented steel is along oriented in the radial direction.
  • the method includes making the width of the first body substantially uniform along the radial direction and making the width of the second body along a radial direction of the radial direction. It gradually increases in the outer direction so that the width of the groove is essentially uniform.
  • the method further includes: forming the first yoke end integrally with the first body from a first grain-oriented steel, and causing a rolling mill of the first grain-oriented steel to The manufacturing direction is oriented along the radial direction; and at least the second yoke end of the second tooth is made of non-grain oriented steel.
  • the method further includes: forming the second yoke end integrally with the second body from non-grain oriented steel; or forming the second body from a second grain oriented steel , orienting the rolling direction of the second grain-oriented steel along the radial direction, and fixing the second yoke end to the second body.
  • the stator assembly can be easily and efficiently manufactured by using a combination of prefabricated winding components and tooth configurations, thereby reducing the process cost of the motor and improving production efficiency.
  • the performance of the manufactured motor stator can be improved by utilizing a hybrid tooth configuration of grain-non-oriented steel-grain-oriented steel, thereby improving the performance of the motor.
  • Figure 1 schematically partially illustrates, at an axial angle, the structure of an electric machine including a segmented stator core according to a preferred embodiment of the present application;
  • Figure 2 is an axial view similar to Figure 1, but omitting other components including prefabricated winding members to show the assembly relationship between the first teeth and the second teeth of the segmented stator core;
  • Figure 3 schematically shows the assembly method between the prefabricated winding component and the first and second teeth of the segmented stator core from an axial angle, wherein the prefabricated winding component and the first and second teeth of the segmented stator core are The second tooth is in a disassembled state;
  • Figure 4 schematically shows another version of the second teeth of the segmented stator core
  • Figure 5 schematically shows the assembly steps of a segmented stator core and winding-making components according to a preferred embodiment of the present application.
  • Figures 1-3 depict a segmented stator core 100 in accordance with a preferred embodiment of the present application.
  • Figure 1 shows schematically and partially axially the structure of an electric machine 1 including a segmented stator core 100
  • Figure 2 is an axial view similar to Figure 1 but omitting other components including prefabricated winding components 200 , to show the assembly relationship between the first teeth 101 and the second teeth 102 of the segmented stator core 100
  • FIG. 3 schematically shows the prefabricated winding component 200 and the segmented stator core 100 at an axial angle.
  • An assembly method between the first teeth 101 and the second teeth 102 in which the prefabricated winding component 200 and the first teeth 101 and the second teeth 102 of the segmented stator core are in an exploded state.
  • the specific structure of the rotor 5 is not shown in detail in the drawings. Instead, only the relative positional relationship between the stator 3 and the rotor 5 of the motor 1 is schematically shown in FIG. 1 , while other components and structures are omitted. , but this does not mean that the motor 1, the stator 3 and the rotor 5 cannot include other components or structures.
  • the electric machine 1 operates by utilizing the interaction of the magnetic fields of the stator 3 and the rotor 5 which rotate relative to each other.
  • such an electric machine 1 can be an alternator, an alternator-starter, a traction motor, a hybrid drive motor, etc.
  • prefabricated winding component refers to a prefabricated component carrying windings (such as windings 203 described below) that has been assembled prior to installation to the stator core to form a stator assembly therewith.
  • the rotor 5 defines an axis of rotation 7 which extends in a direction perpendicular to the plane of the paper in FIGS. 1 and 2 .
  • the rotor 5 is configured to rotate relative to the stator 3 about an axis of rotation 7 .
  • axial refers to the extension direction of the rotation axis 7
  • radial refers to the radial direction relative to the rotation axis 7
  • circumferential refers to the direction relative to the rotation axis 7 .
  • the circumferential direction with respect to the rotation axis 7 is the direction around the rotation axis 7 .
  • each radial direction 9a, 9b, 9c and 9d includes a radially outward direction and a radially inward direction, wherein a radially outward direction means a radial direction pointing away from the axis of rotation 7 and a radially inward direction means a radial direction pointing towards the axis of rotation 7 .
  • the segmented stator core 100 includes a plurality of individual first teeth 101 and a plurality of individual second teeth 102 .
  • “Individual teeth” means that each tooth, ie each of the first tooth 101 and the second tooth 102, is a single tooth separate from the other teeth.
  • each first tooth 101 of the plurality of individual first teeth 101 includes a first yoke end 101a and a radial direction (eg, radial direction 9a) from the first yoke end 101a. and 9c) extended first body 101b.
  • the first yoke end 101a and the first body 101b may have a length, a width, and a thickness, respectively.
  • the "length" of the yoke end or body of a tooth refers to the dimension of the yoke end or body extending along the radial direction
  • the "width” refers to the yoke end or body.
  • the dimension of the body extending along the circumferential direction, and “thickness” refers to the dimension of the yoke end or the body extending along the axial direction.
  • the width of the first yoke end 101a is configured to be equal to the width of the first body 101b to allow the prefabricated winding member 200 ( Figures 1 and 3) to be sleeved onto the first body via the first yoke end 101a.
  • the width of the first yoke end 101a may also be configured to be smaller than the width of the first body 101b.
  • 101b to allow the prefabricated winding member 200 to be sleeved onto the first body 101b via the first yoke end 101a. That is, the first tooth 101 is configured such that the prefabricated winding member 200 can be easily and unhinderedly sleeved onto the first body 101b via the first yoke end 101a.
  • each second tooth 102 of the plurality of individual second teeth 102 includes a second yoke end 102a and a radial direction (eg, radial directions 9b and 9d) from the second yoke end 102a.
  • Extended second body 102b the width of the second yoke end 102a of the second tooth 102 is greater than the width of the second body 102b.
  • the configuration of the second teeth 102 may prevent the prefabricated winding member 200 from being sleeved onto the first body 101b via the first yoke end 101a. As will be described below, the second tooth 102 is not configured for nesting the prefabricated winding member 200 thereon.
  • first teeth 101 and two second teeth 102 are shown in FIGS. 1 and 2 , it should be understood that this is only exemplary and the segmented stator core 100 has more third teeth.
  • the plurality of individual first teeth 101 and the plurality of individual second teeth 102 of the segmented stator core 100 are configured to be circumferentially arranged in an annular shape such that each of the plurality of individual second teeth 102 has a second
  • the teeth 102 are circumferentially arranged between two adjacent first teeth 101 of the plurality of individual first teeth 101 (as clearly shown in Figure 2). That is to say, every two adjacent first teeth 101 share one second tooth 102 .
  • each second tooth 102 is respectively connected to the first yoke end portions 101a of the two adjacent first teeth 101, and the second body 102b of each second tooth 102 is respectively connected to the adjacent first yoke end portions 101a.
  • the first bodies 101 b of the two first teeth 101 define therebetween a slot 103 for receiving the prefabricated winding component 200 .
  • the segmented stator core 100 can be easily and quickly assembled with a plurality of prefabricated winding components 200 to form a stator assembly that serves as the stator 3 part.
  • the prefabricated winding component 200 is first sleeved onto the first body 101b of the first tooth 101 via the first yoke end 101a of the first tooth 101 (as schematically illustrated by arrow A in FIG. 3 indicated), and then the first teeth 101 and the second teeth 102 covered with the prefabricated winding component 200 are assembled together (schematically indicated by the arrows B1 and B2 in Figure 3), so as to
  • the configuration is arranged in a ring shape along the circumferential direction.
  • the first tooth 101 and the second tooth 102 may be secured to a stator core support (not shown) to hold the first tooth 101 and the second tooth 102 in position relative to each other.
  • the above-mentioned configuration of the first teeth 101 and the second teeth 102 of the segmented stator core 100 allows the stator 3 to be easily and efficiently manufactured using the prefabricated winding component 200, thereby reducing the process cost of the motor 1 and improving production efficiency. , especially when motor 1 is a near-pole slot motor (the number of poles of this motor is close to the number of slots).
  • Each of the first teeth 101 and the second teeth 102 may be formed from a plurality of laminations. Multiple laminations are interconnected in axial alignment and stacked one on top of the other to form a complete tooth.
  • the groove 103 may extend over the entire axial extent of the lamination stack.
  • the laminations can be made of ferromagnetic materials. Ferromagnetic materials suitable for fabricating laminations include, but are not limited to, ferrosilicon alloys and aluminum-ferroalloys.
  • the inventor has realized that for the above-mentioned configuration of the first teeth 101 and the second teeth 102 of the segmented stator core 100, the first teeth 101 are made of cold-rolled grain-oriented steel (CRGO). and the second tooth 102 can bring significant benefits.
  • the inventor has realized that utilizing the characteristics of grain-oriented steel in combination with the above-mentioned configurations of the first teeth 101 and the second teeth 102 can bring about unexpected effects.
  • Grain-oriented steel has complete anisotropy such that its magnetic permeability in the rolling direction is significantly higher than in the direction perpendicular to this rolling direction.
  • grain-oriented steel changes in different directions, with the highest value in the rolling direction and the lowest value in the direction perpendicular to the rolling direction.
  • grain-oriented steel has the lowest iron loss in the rolling direction and can provide material iron loss characteristics better than cold-rolled non-grain-oriented steel (CRNGO).
  • the first yoke end 101a is integrated with the first body 101b and is made of a first grain-oriented steel with a rolling direction along the radial direction (for example, the radial direction 9a or 9c) Orientation.
  • the second yoke end 102a is integral with the second body 102b and is made of a second grain-oriented steel with the rolling direction oriented along the radial direction (eg, radial direction 9b or 9d).
  • using grain-oriented steel to manufacture the first teeth 101 and the second teeth 102 can significantly improve the performance of the first teeth 101 and the second teeth 102 .
  • the saturation magnetic flux density of the teeth 102 is increased, thereby increasing the torque density of the motor 1 .
  • using grain-oriented steel to manufacture the first teeth 101 and the second teeth 102 can significantly reduce the iron loss of the first teeth 101 and the second teeth 102 . These can improve the efficiency of motor 1.
  • since the yoke end of the tooth is integrated with the main body, that is, can be manufactured in one piece, this can make the manufacturing of the tooth easier and more efficient, thereby reducing process costs and improving production efficiency.
  • combining the characteristics of grain-oriented steel with the above-mentioned configuration of the first teeth 101 and the second teeth 102 can not only improve the production efficiency of the stator 3 and the motor 1 including the stator 3, but also improve the production efficiency of the stator 3 and the motor 1 including the stator 3.
  • the inventor has further realized that although using grain-oriented steel to manufacture the first teeth 101 and the second teeth 102 can bring about the aforementioned benefits, since the width of the second yoke end 102a of the second teeth 102 is larger than that of the second body 102b (i.e., the second yoke end 102a protrudes transversely to the radial direction from the second body 102b), and due to the anisotropy of the grain-oriented steel, the second yoke end 102a on the magnetic flux path along the circumference
  • the magnetic permeability along the radial direction is significantly lower than the magnetic permeability along the radial direction in the first tooth 101 (including the first yoke end 101a and the first body 101b) and the second body 102b, and the second yoke end 102a
  • the material iron loss characteristics along the circumferential direction in the first tooth 101 (including the first yoke end 101 a and the first body 101 b) and the second body 102 b are significantly greater
  • the inventor further proposed that at least the second yoke end 102a of the second tooth 102 be made of grain-non-oriented steel.
  • the first yoke end 101a is integrated with the first body 101b, and the first teeth 101 are made of first grain-oriented steel with the rolling direction of the first grain-oriented steel along the radial direction (eg, radial direction). Oriented toward 9a or 9c), while at least the second yoke end 102a of the second tooth 102 is made of grain-non-oriented steel.
  • the iron loss in the yoke portion of the segmented stator core 100 can be further reduced, thereby improving the performance of the stator 3 and the motor 1 including the stator 3 . That is to say, by using a hybrid tooth configuration including grain non-oriented steel and grain-oriented steel, the production efficiency of the stator 3 and the motor 1 including the stator 3 can be improved. Performance of motor 1.
  • the second yoke end 102a of the second tooth 102 is integral with the second body 102b and is made of grain non-oriented steel. This configuration provides a good balance between manufacturing efficiency and performance.
  • the second yoke end 102a of the second tooth 102 is made of grain-non-oriented steel
  • the second body 102b is made of a second grain-oriented steel, the second grain-oriented steel being rolled The direction is oriented along the radial direction.
  • the second yoke end 102a and the second body 102b are manufactured separately and connected together.
  • Figure 4 schematically illustrates one such second tooth 102 configuration. As shown in FIG.
  • the second yoke end 102 a includes a dovetail-shaped rib 1025 that protrudes in a radial direction
  • the second body 102 b includes a dovetail-shaped recess 1026 that is recessed in the second body 102 b in the radial direction.
  • the second yoke end 102a and the second body 102b may be moved axially relative to each other during assembly such that the dovetail ribs 1025 are received in the dovetail recesses 1026 so that the second yoke end 102a is fixed to the second yoke end 102a.
  • Second subject 102b It should be understood that the second yoke end 102a and the second body 102b may also be secured together using other suitable features, and the application is not limited thereto.
  • first grain-oriented steel and “second grain-oriented steel” are only used to distinguish the grain-oriented steel used to make the first tooth 101 from the grain-oriented steel used to make the second tooth 102. oriented steels, but these grain-oriented steels should not be limited by such terms.
  • the first grain-oriented steel and the second grain-oriented steel may be the same or different types of grain-oriented steel.
  • the prefabricated winding component 200 includes an insulating sleeve 201 and a winding 203 prefabricated on the insulating sleeve 201 .
  • the winding 203 can be prefabricated on the insulating sleeve 201 by any process known in the art (as schematically represented by arrow C in Figure 3).
  • the insulating sleeve 201 may be hollow to define a sleeve portion (not shown) therein. The size of the sleeve portion is designed to be sleeved on the first body 101 b of the first tooth 101 .
  • the insulating sleeve 201 can be fixed on the first body 101b by any means known in the art (such as snap fit, friction fit, using fasteners, etc.).
  • Winding 203 is formed from an elongated conductor such as a copper magnetic conductor or rod.
  • the elongated conductor may be, for example, a circular conductor, a rectangular conductor or an elliptical conductor.
  • the prefabricated winding component 200 may be a circular conductor prefabricated winding component, a rectangular conductor prefabricated winding component or an oval conductor prefabricated winding component.
  • circular conductor As used in this application, the terms “circular conductor”, “rectangular conductor” and “elliptical conductor” refer to a conductor having a circular, rectangular shape, respectively, when viewed along a cross-sectional plane oriented perpendicular to the central axis of the conductor. or conductors with elliptical cross-sectional geometry.
  • the width of the first body 101 b of the first tooth 101 may be substantially uniform along the radial direction.
  • the expression “substantially” means within the allowable range of manufacturing tolerances. It should be understood that the width of the first body 101b may also vary along the radial direction, as long as it does not hinder the prefabricated winding component 200 from being sleeved thereon, and the application is not limited thereto.
  • the width of the second body 102b of the second tooth 102 gradually increases in the radially outward direction (i.e., the radial direction pointing away from the rotation axis 7). It should be understood that the width of the second body 102b may also vary along the radial direction, and the application is not limited thereto.
  • the width of the first body 101b of the first tooth 101 is substantially uniform along the radial direction
  • the width of the second body 102b of the second tooth 102 is substantially uniform along the radial direction.
  • the width gradually increases in the radially outward direction such that the width of the groove 103 is substantially uniform. This helps to increase the slot fill factor (or “slot fill factor”) when the prefabricated winding components 200 are arranged in the slots 103 and to reduce copper losses, thereby increasing the efficiency of the electric machine 1 , especially for prefabricated winding components using rectangular conductors. Case.
  • segmented stator core 100 is shown in Figure 1 as being configured for an inner stator configuration (ie, the rotor 5 is radially outside the stator 3 and the yoke ends of the teeth are radially inward end), but the segmented stator core 100 may also be configured for an outer stator configuration (i.e., the rotor 5 is radially inboard of the stator 3 and the yoke ends of the teeth are radially inward of the teeth near the outer end).
  • the width of the first body 101b of the first teeth 101 may also be substantially uniform in the radial direction, and the width of the first body 101b of the second teeth 102 may also be substantially uniform in the radial direction.
  • the width of the two main bodies 102b may also gradually increase along the radially outward direction, so that the width of the groove 103 is substantially consistent. Similar to the case where the segmented stator core 100 is configured for an inner stator configuration, this also facilitates the placement of the prefabricated winding members 200 in the case where the segmented stator core 100 is configured for an outer stator configuration.
  • the slot fullness ratio is increased and copper losses are reduced, thereby increasing the efficiency of the electric machine 1, especially when using rectangular conductor prefabricated winding components.
  • the first body 101b of the first tooth 101 includes first and second body sides 1011 and 1012 that are circumferentially opposite, and the first yoke end 101a includes circumferentially opposite The first yoke end side 1013 and the second yoke end side 1014.
  • the second body 102b of the second tooth 102 includes circumferentially opposite third and fourth body sides 1021 and 1022, and the second yoke end 102a includes circumferentially opposite third and fourth yoke end sides 1023 and 1023.
  • the first yoke end side 1013 may be circumferentially flush with the first body side 1011 or may be circumferentially set back relative to the first body side 1011 .
  • the second yoke end side 1014 may be circumferentially flush with the second body side 1012 , or may be circumferentially set back relative to the second body side 1012 .
  • the third yoke end side 1023 extends circumferentially beyond the third body side 1021 and the fourth yoke end side 1024 extends circumferentially beyond the fourth body side 1022 .
  • each second tooth 102 of the plurality of individual second teeth 102 is disposed circumferentially between two adjacent ones of the plurality of individual first teeth 101,
  • the second yoke end 102a of each second tooth 102 can be connected to the first yoke end 101a of the two adjacent first teeth 101 respectively, and
  • the second body 102b of each second tooth 102 can respectively define a slot 103 for accommodating the prefabricated winding component 200 with the first body 101b of two adjacent first teeth 101 therebetween.
  • the third body side 1021 of the second body 102b of the second tooth 102 and the first body side 1011 of the first body 101b of an adjacent first tooth 101 define a groove 103, and the second tooth 102 defines a slot 103.
  • the fourth body side 1022 of the second body 102b of the tooth 102 defines a groove 103 with the second body side 1012 of the first body 101b of the other adjacent first tooth 101 .
  • each second tooth 102 of the plurality of individual second teeth 102 is circumferentially disposed between two adjacent first teeth of the plurality of individual first teeth 101 101
  • the third body side 1021 of the second body 102b of each second tooth 102 is parallel to the first body side of the first body 101b of one of the two adjacent first teeth 101. 1011
  • the fourth body side 1022 of the second body 102b is parallel to the second body side 1012 of the first body 101b of the other first tooth 101 of the two adjacent first teeth 101.
  • the first and second teeth 101 and 102 may be included to help guide and position the first and second teeth 101 and 102 when they are circumferentially disposed.
  • the matching characteristics of the two teeth 102 include grooves 104 recessed into the first yoke end 101a from the first yoke end side 1013 and the second yoke end side 1014 respectively, and the second tooth 102
  • the second yoke end 102a includes protruding ribs 105 protruding from the third yoke end side 1023 and the fourth yoke end side 1024 respectively.
  • the protruding rib 105 and the groove 104 are configured such that when the first tooth 101 and the second tooth 102 are arranged circumferentially, the protruding rib 105 is received in the groove 104 to guide and position the first tooth 101 and the second tooth 102 . Teeth 102.
  • the protruding ribs 105 and the grooves 104 By means of the protruding ribs 105 and the grooves 104, the first teeth 101 and the second teeth 102 can be accurately positioned and held in position relative to each other, thereby improving the assembly efficiency and structural reliability of the segmented stator core 100.
  • the first tooth 101 also includes a first tooth end 101c opposite to the first yoke end 101a, and the first body 101b is radially between the first yoke end 101a and the first tooth end.
  • the second tooth 102 also includes a second tooth end 102c opposite to the second yoke end 102a, the second body 102b is radially between the second yoke end 102a and the second tooth end 102c extend between.
  • the second tooth end portion 102 c of each second tooth 102 respectively defines a gap therebetween with the first tooth end portions 101 c of two adjacent first teeth 101 .
  • the width (ie, circumferential dimension) of each gap is smaller than the width of the corresponding slot 103 .
  • the groove 103 is formed as a semi-closed groove or an approximately completely closed groove (since the first tooth 101 and the second tooth 102 are teeth separated at the tooth ends, the groove 103 is not completely closed).
  • the first tooth end portion 101 c of the first tooth 101 and the second tooth end portion 102 c of the second tooth 102 protrude from the first body side 1011 and the second body side 1012 of the first tooth 101 respectively. and the third body side 1021 and the fourth body side 1022 of the second tooth 102 and extend circumferentially toward each other.
  • This tooth end configuration of the first teeth 101 and the second teeth 102 helps to reduce the drop in magnetic flux density at the tooth ends, thereby helping to improve the efficiency of the motor 1 . Furthermore, for this tooth end configuration, since the first tooth 101 and the second tooth 102 have the above-described yoke end configuration, it is still possible to use the prefabricated winding member 200 to manufacture the stator 3 . This makes it easier and more efficient to manufacture high-performance motors1 than with existing technologies.
  • the inventor also proposes a motor 1 including the aforementioned segmented stator core 100 .
  • Such an electric machine 1 may comprise a plurality of prefabricated winding components 200 as well as the aforementioned segmented stator core 100 .
  • Each of the plurality of prefabricated winding components 200 is sleeved on a corresponding first tooth 101 of the plurality of first teeth 101 of the segmented stator core 100 .
  • No winding is provided on the second tooth 102 .
  • the prefabricated winding members 200 may be connected in a manner known in the art to define different electrical phases. As described above, this motor 1 can achieve a good balance between manufacturing efficiency and performance.
  • the inventors also propose a method for manufacturing a stator assembly including the aforementioned segmented stator core 100 .
  • the method includes: in step S1 , providing a plurality of individual first teeth 101 , each of the plurality of individual first teeth 101 including a first tooth 101 .
  • the yoke end 101a and the first body 101b extending radially from the first yoke end 101a, the width of the first yoke end 101a being less than or equal to the width of the first body 101b to allow the prefabricated winding member 200 to pass through the first yoke
  • the end portion 101a is sleeved onto the first body 101b; next, in step S2, a plurality of prefabricated winding members 200 are provided and each of the plurality of prefabricated winding members 200 is passed through a corresponding one of the plurality of individual first teeth 101.
  • the first yoke end 101a of a first tooth 101 is sleeved on the first body 101b; next, in step S3, a plurality of individual second teeth 102 are provided, each of the plurality of individual second teeth 102
  • the second tooth 102 includes a second yoke end 102a and a second body 102b extending radially from the second yoke end 102a.
  • the width of the second yoke end 102a is greater than the width of the second body 102b; next, in step S4, arrange the plurality of individual first teeth 101 and the plurality of individual second teeth 102 in an annular shape in the circumferential direction, so that each second tooth 102 of the plurality of individual second teeth 102 is disposed in the circumferential direction.
  • each second tooth 102 is respectively connected with the first end portion 102a of the two adjacent first teeth 101.
  • the yoke ends 101a are connected, and the second body 102b of each second tooth 102 respectively defines a slot 103 therebetween with the first bodies 101b of two adjacent first teeth 101 to accommodate the prefabricated winding component 200.
  • this method can easily and efficiently manufacture the stator assembly by using a combination of prefabricated winding components and tooth configurations, thereby reducing the process cost of the stator assembly and improving production efficiency. It should be understood that in some embodiments, some of the steps may be performed out of the order described above. For example, step S3 may be performed first, and then steps S1, S2, and S4 may be performed in sequence.
  • the method further includes: integrally making the first yoke end 101a and the first body 101b from a first grain-oriented steel, and causing a rolling direction of the first grain-oriented steel to be along a radial direction. Orientation in the radial direction, and the second yoke end 102a and the second body 102b are integrally made of the second grain-oriented steel, and the rolling direction of the second grain-oriented steel is oriented in the radial direction.
  • the method further includes: making the width of the first body 101b substantially uniform along the radial direction, and making the width of the second body 102b gradually increase along the radially outward direction in the radial direction. , so that the width of the groove 103 is basically consistent.
  • the method further includes: integrally making the first yoke end 101a and the first body 101b from a first grain-oriented steel, and causing a rolling direction of the first grain-oriented steel to be along a radial direction. orientation; and at least the second yoke end 102a of the second tooth 102 will be made of non-grain oriented steel.
  • making at least the second yoke end 102a of the second teeth 102 from non-grain-oriented steel includes making the second yoke end 102a and the second body 102b integrally made from non-grain-oriented steel.
  • making at least the second yoke end 102a of the second tooth 102 from a non-grain oriented steel includes making the second body 102b from a second grain oriented steel, making the second grain oriented steel.
  • the rolling direction is oriented radially and secures the second yoke end 102a to the second body 102b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本申请提供了一种用于电机的分段式定子芯。该分段式定子芯包括多个单独的第一齿和多个单独的第二齿。第一齿的第一轭端部的宽度小于或者等于第一主体的宽度,以允许预制绕组构件经由第一轭端部套设到第一主体上。第二齿的第二轭端部的宽度大于第二主体的宽度。第一齿和第二齿被配置成沿周向排布成环形,使得每个第二齿沿周向设置在相邻的两个第一齿之间。本申请还提供了包括前述分段式定子芯的电机、以及用于制造电机的定子组件的方法。根据本申请,能够通过使用预制绕组构件与齿构型的结合来容易且高效地制造定子组件,从而降低电机的工艺成本并提高生产效率。

Description

分段式定子芯、电机和用于制造电机的定子组件的方法 技术领域
本申请总体上涉及电机技术领域,尤其涉及一种用于电机的分段式定子芯以及包括这种分段式定子芯的电机。本申请还涉及一种用于制造电机的定子组件的方法。
背景技术
电机广泛用于发电、驱动等应用中,其通过利用相对彼此旋转的转子和定子的磁场的相互作用来运行。定子包括定子芯和定子绕组,定子绕组设置在定子芯的齿周围并且延伸通过齿之间的槽,用以限定不同的电相。在现有的定子制造工艺中,尤其是对于具有半闭口槽的定子芯,由于结构限制,通常采用绕线工艺将定子绕组缠绕在定子芯的齿上。这种绕线工艺复杂耗时,导致生产效率低下。
因此,需要对现有的定子芯进行改进,以解决上述问题。
发明内容
本申请旨在提供一种改进的定子芯,以提高制造效率。
根据本申请的一个方面,提供了一种用于电机的分段式定子芯,其特征在于,所述分段式定子芯包括:多个单独的第一齿,所述多个单独的第一齿中的每个第一齿包括第一轭端部以及从所述第一轭端部沿径向延伸的第一主体,所述第一轭端部的宽度小于或者等于所述第一主体的宽度,以允许预制绕组构件经由所述第一轭端部套设到所述第一主体上;以及多个单独的第二齿,所述多个单独的第二齿中的每个第二齿包括第二轭端部以及从所述第二轭端部沿所述径向延伸的第二主体,所述第二轭端部的宽度大于所述第二主体的宽度。所述多个单独的第一齿和所述多个单独的第二齿被配置成沿周向排布成环形,使得所述多个单独的第二齿中的每个第二齿沿所述周向设置在所述多个单独的第一齿中相邻的两个第一齿之间,其中,每个第二齿的第二轭端部分别与所述相邻的两个第一齿的第一轭端部相连,并且每个第二齿的第二主体分别与所述相邻的两个第一齿的第一主 体在其间限定出用于容纳预制绕组构件的槽。
在一些实施例中,所述第一轭端部与所述第一主体成一体,并且由第一晶粒取向钢制成,所述第一晶粒取向钢的轧制方向沿着所述径向定向,所述第二轭端部与所述第二主体成一体,并且由第二晶粒取向钢制成,所述第二晶粒取向钢的轧制方向沿着所述径向定向。
在一些实施例中,所述第一轭端部与所述第一主体成一体,并且由第一晶粒取向钢制成,所述第一晶粒取向钢的轧制方向沿着所述径向定向,所述第二齿的至少所述第二轭端部由非晶粒取向钢制成。
在一些实施例中,所述第二轭端部与所述第二主体成一体,并且由非晶粒取向钢制成。
在一些实施例中,所述第二主体由第二晶粒取向钢制成,所述第二晶粒取向钢的轧制方向沿着所述径向定向,所述第二轭端部被固定到所述第二主体。
在一些实施例中,所述第一主体的宽度沿着所述径向基本上是一致的。
在一些实施例中,所述第二主体的宽度沿着所述径向中的径向向外方向逐渐增大,以使得所述槽的宽度基本上是一致的。
在一些实施例中,所述第一主体包括沿着所述周向相反的第一主体侧和第二主体侧,所述第二主体包括沿着所述周向相反的第三主体侧和第四主体侧,所述第一轭端部包括沿着所述周向相反的第一轭端侧和第二轭端侧,并且所述第二轭端部包括沿着所述周向相反的第三轭端侧和第四轭端侧,其中:所述第一轭端侧在所述周向上与所述第一主体侧齐平,或者在所述周向上相对于所述第一主体侧缩进;所述第二轭端侧在所述周向上与所述第二主体侧齐平,或者在所述周向上相对于所述第二主体侧缩进;所述第三轭端侧在所述周向上延伸超出所述第三主体侧;以及所述第四轭端侧在所述周向上延伸超出所述第四主体侧。
在一些实施例中,当所述多个单独的第二齿中的每个第二齿沿周向设置在所述多个单独的第一齿中相邻的两个第一齿之间时,每个第二齿的第二主体的第三主体侧平行于所述相邻的两个第一齿中的一个第一齿的第一主体的第一主体侧,并且所述第二主体的第四主体侧平行于所述相邻的两个第一齿中的另一个第一齿的第一主体的第二主体侧。
在一些实施例中,所述第一轭端部还包括分别从所述第一轭端侧和所述第二轭端侧凹入所述第一轭端部中的凹槽,所述第二轭端部还包括分别 突出于所述第三轭端侧和所述第四轭端侧的突肋。所述突肋和所述凹槽被配置成使得在沿所述周向排布所述第一齿和所述第二齿时,所述突肋被接收在所述凹槽中,以引导和定位所述第一齿和所述第二齿。
在一些实施例中,每个所述第一齿还包括与所述第一轭端部相反的第一齿端部,所述第一主体在所述径向上在所述第一轭端部与所述第一齿端部之间延伸,每个所述第二齿还包括与所述第二轭端部相反的第二齿端部,所述第二主体在所述径向上在所述第二轭端部与所述第二齿端部之间延伸。每个第二齿的第二齿端部分别与所述相邻的两个第一齿的第一齿端部在其间限定出间隙,所述间隙中的每个的宽度小于相应的所述槽的宽度。
在一些实施例中,所述预制绕组构件包括圆形导体预制绕组构件、矩形导体预制绕组构件或椭圆形导体预制绕组构件。
在一些实施例中,所述预制绕组构件包括绝缘套筒以及预制在所述绝缘套筒上的绕组,所述绝缘套筒在其中界定出套设部,所述套设部的尺寸被设计成适于套设在所述第一主体上。
根据本申请的另一个方面,提供了一种电机。所述电机包括多个预制绕组构件以及前述的分段式定子芯。所述多个预制绕组构件中的每个被套设在所述分段式定子芯的多个第一齿中相应的第一齿上。
根据本申请的又一个方面,提供了一种用于制造电机的定子组件的方法,其特征在于,所述方法包括:提供多个单独的第一齿,所述多个单独的第一齿中的每个第一齿包括第一轭端部以及从所述第一轭端部沿径向延伸的第一主体,所述第一轭端部的宽度小于或者等于所述第一主体的宽度,以允许预制绕组构件经由第一轭端部套设到第一主体上;提供多个预制绕组构件并将所述多个预制绕组构件中的每个经由所述多个单独的第一齿中的相应一个第一齿的所述第一轭端部套设到所述第一主体上;提供多个单独的第二齿,所述多个单独的第二齿中的每个第二齿包括第二轭端部以及从所述第二轭端部沿所述径向延伸的第二主体,所述第二轭端部的宽度大于所述第二主体的宽度;以及将所述多个单独的第一齿和所述多个单独的第二齿沿周向排布成环形,使得所述多个单独的第二齿中的每个第二齿沿所述周向设置在所述多个单独的第一齿中相邻的两个第一齿之间,其中,每个第二齿的第二轭端部分别与所述相邻的两个第一齿的第一轭端部相连,并且每个第二齿的第二主体分别与所述相邻的两个第一齿的第一主体在其间限定出槽,以容纳所述预制绕组构件。
在一些实施例中,所述方法包括将所述第一轭端部与所述第一主体一体地由第一晶粒取向钢制成,并且使所述第一晶粒取向钢的轧制方向沿着所述径向定向,以及将所述第二轭端部与所述第二主体一体地由第二晶粒取向钢制成,并且使所述第二晶粒取向钢的轧制方向沿着所述径向定向。
在一些实施例中,所述方法包括使所述第一主体的宽度沿着所述径向基本上是一致的,并且使所述第二主体的宽度沿着所述径向中的径向向外方向逐渐增大,从而使所述槽的宽度基本上是一致的。
在一些实施例中,所述方法还包括:将所述第一轭端部与所述第一主体一体地由第一晶粒取向钢制成,并且使所述第一晶粒取向钢的轧制方向沿着所述径向定向;以及将所述第二齿的至少所述第二轭端部由非晶粒取向钢制成。
在一些实施例中,所述方法还包括:将所述第二轭端部与所述第二主体一体由非晶粒取向钢制成;或者将第二主体由第二晶粒取向钢制成,使所述第二晶粒取向钢的轧制方向沿着所述径向定向,并且将所述第二轭端部固定到所述第二主体。
根据本申请,能够通过使用预制绕组构件与齿构型的结合来容易且高效地制造定子组件,从而降低电机的工艺成本并提高生产效率。此外,利用晶粒无取向钢-晶粒取向钢的混合式齿配置,能够提高所制造的电机定子的性能,从而提高电机的性能。
附图说明
下面将结合附图来更彻底地理解并认识本申请的上述和其它方面。应当注意的是,附图仅为示意性的,并非按比例绘制。在附图中:
图1以轴向角度示意性地部分示出了包括根据本申请优选实施例的分段式定子芯的电机的结构;
图2是与图1类似的轴向视图,但省去了包括预制绕组构件的其它部件,以显示分段式定子芯的第一齿和第二齿之间的装配关系;
图3以轴向角度示意性地示出了预制绕组构件与分段式定子芯的第一齿和第二齿之间的装配方法,其中预制绕组构件和分段式定子芯的第一齿和第二齿处于分解状态;
图4示意性地示出了分段式定子芯的第二齿的另一种型式;以及
图5示意性地示出了根据本申请优选实施例的分段式定子芯与制绕组 构件的组装步骤。
附图标记列表
1            电机
3            定子
5            转子
7            旋转轴线
9a,9b,9c,9d  径向
100          分段式定子芯
101          第一齿
101a         第一轭端部
101b         第一主体
101c         第一齿端部
102          第二齿
102a         第二轭端部
102b         第二主体
102c         第二齿端部
103          槽
104          凹槽
105          突肋
200          预制绕组构件
201          绝缘套筒
203          绕组
1011         第一主体侧
1012         第二主体侧
1013         第一轭端侧
1014         第二轭端侧
1021         第三主体侧
1022         第四主体侧
1023         第三轭端侧
1024         第四轭端侧
1025         燕尾形突肋
1026        燕尾形凹部
具体实施方式
下面结合示例详细描述本申请的一些优选实施例。本领域技术人员应理解到的是,这些实施例仅是示例性的,并不意味着对本申请形成任何限制。此外,在不冲突的情况下,本申请的实施例中的特征可以相互组合。应理解到,附图中各部件的尺寸、比例关系以及部件的数目均不作为对本申请的限制。
图1至图3描绘了根据本申请优选实施例的分段式定子芯100。图1以轴向角度示意性地部分示出了包括分段式定子芯100的电机1的结构,图2是与图1类似的轴向视图,但省去了包括预制绕组构件200的其它部件,以显示分段式定子芯100的第一齿101和第二齿102之间的装配关系,并且图3以轴向角度示意性地示出了预制绕组构件200与分段式定子芯100的第一齿101和第二齿102之间的装配方法,其中预制绕组构件200和分段式定子芯的第一齿101和第二齿102处于分解状态。为简要起见,没有在附图中详细示出转子5的具体结构,而是在图1中仅示意性地示出了电机1的定子3与转子5相对位置关系,而省略了其它部件和结构,但这并不表明电机1、定子3和转子5不可包括其它部件或结构。电机1通过利用相对彼此旋转的定子3和转子5的磁场的相互作用来运行。例如,这种电机1可以是交流发电机、交流发电机-起动器、牵引电动机、混合动力驱动电动机等。如下文将要描述的,分段式定子芯100可以与预制绕组构件200装配在一起,以形成定子组件。如在本文中使用的,“预制绕组构件”是指在安装到定子芯以与其形成定子组件之前已经组装好的承载有绕组(如下文描述的绕组203)的预制构件。
转子5限定旋转轴线7,其在图1和图2中沿着垂直于纸面的方向延伸。转子5被配置成围绕旋转轴线7相对于定子3旋转。在本申请中,除非另有说明,否则“轴向”是指旋转轴线7的延伸方向,“径向”是指相对于旋转轴线7而言的径向方向,“周向”是指相对于旋转轴线7而言的周向方向,即环绕旋转轴线7的方向。径向在图1和图2中被以“9a”、“9b”、“9c”和“9d”示例性地标示,并且每个径向9a、9b、9c和9d包括径向向外的方向和径向向内的方向,其中,径向向外的方向是指远离旋转轴线7指向的径向方向,而径向向内的方向是指朝着旋转轴线7指向的径向方向。
如图1至图3所示,分段式定子芯100包括多个单独的第一齿101和多个单独的第二齿102。“单独的齿”是指每个齿,即第一齿101和第二齿102中的每个齿,是与其它齿分开的单个齿。如图2所最佳示出的,多个单独的第一齿101中的每个第一齿101包括第一轭端部101a以及从第一轭端部101a沿径向(例如,径向9a和9c)延伸的第一主体101b。第一轭端部101a和第一主体101b可以分别具有长度、宽度和厚度。在本申请中,除非另有说明,否则齿的轭端部或主体的“长度”是指该轭端部或主体沿着所述径向延伸的尺寸,“宽度”是指该轭端部或主体沿着所述周向延伸的尺寸,“厚度”是指该轭端部或主体沿着所述轴向延伸的尺寸。
请继续参见图2,第一轭端部101a的宽度被配置成等于第一主体101b的宽度,以允许预制绕组构件200(图1和图3)经由第一轭端部101a套设到第一主体101b上。应理解到,尽管在图2中示出的是第一轭端部101a的宽度被配置成等于第一主体101b的宽度,但是第一轭端部101a的宽度也可以被配置成小于第一主体101b的宽度,以允许预制绕组构件200经由第一轭端部101a套设到第一主体101b上。也就是说,第一齿101的构型使得预制绕组构件200能够容易且不受阻碍地经由第一轭端部101a套设到第一主体101b上。
与第一齿101类似,多个单独的第二齿102中的每个第二齿102包括第二轭端部102a以及从第二轭端部102a沿径向(例如,径向9b和9d)延伸的第二主体102b。但与第一齿101不同的是,第二齿102的第二轭端部102a的宽度大于第二主体102b的宽度。第二齿102的构型会阻碍预制绕组构件200经由第一轭端部101a套设到第一主体101b上。如下文将要描述的,第二齿102的构型不是被配置成用于在其上套设预制绕组构件200。
虽然在图1和图2中仅示出了两个第一齿101和两个第二齿102,但应理解到,这仅是示例性的,并且分段式定子芯100具有更多的第一齿101和第二齿102,以形成环形结构。分段式定子芯100的多个单独的第一齿101和多个单独的第二齿102被配置成沿周向排布成环形,使得多个单独的第二齿102中的每个第二齿102沿周向设置在多个单独的第一齿101中相邻的两个第一齿101之间(如图2所清楚显示的)。也就是说,每相邻两个第一齿101共用一个第二齿102。每个第二齿102的第二轭端部102a分别与相邻的两个第一齿101的第一轭端部101a相连,并且每个第二齿102的第二主体102b分别与相邻的两个第一齿101的第一主体101b在其间限 定出用于容纳预制绕组构件200的槽103。
借助于第一齿101和第二齿102的上述构型,分段式定子芯100可以容易且快速地与多个预制绕组构件200装配在一起,以形成定子组件,该定子组件作为定子3的一部分。具体而言,在装配时,预制绕组构件200首先经由第一齿101的第一轭端部101a套设到第一齿101的第一主体101b上(如图3中的箭头A所述示意性地表示的),随后套设有预制绕组构件200的第一齿101与第二齿102被装配在一起(如图3中的箭头B1和B2所述示意性地表示的),从而以前述的构型沿周向排布成环形。例如,第一齿101与第二齿102可以被固定到定子芯支架(未示出)上,以将第一齿101与第二齿102相对于彼此保持就位。
由此可见,分段式定子芯100的第一齿101和第二齿102的上述构型允许使用预制绕组构件200来容易且高效地制造定子3,从而降低电机1的工艺成本并提高生产效率,尤其是在电机1是近极槽式电机(这种电机的极数与槽数接近)的情况下。
第一齿101和第二齿102中的每个齿可由多个叠片形成。多个叠片沿着轴向对齐互连并且以一个堆叠在另一个上的方式形成完整的齿。槽103可以在叠片堆叠的整个轴向范围上延伸。叠片可由铁磁材料制成。适于制造叠片的铁磁材料包括但不限于硅铁合金和铝铁合金。
本发明人已经意识到,对于分段式定子芯100的第一齿101和第二齿102的上述构型,使用晶粒取向钢(Cold-Rolled Grain-Oriented Steel,CRGO)制造第一齿101和第二齿102能够带来显著的益处。换言之,本发明人已经意识到,利用晶粒取向钢的特性与第一齿101和第二齿102的上述构型的结合,能够带来出乎预料的效果。晶粒取向钢具有完全的各向异性,使得其在轧制方向上的磁导率明显比在与该轧制方向垂直的方向上的磁导率高。也就是说,晶粒取向钢的磁导率在不同方向上是变化的,在轧制方向上其值最高,在与该轧制方向垂直的方向上其值最低。此外,晶粒取向钢在轧制方向上铁损最低,并且能够提供优于晶粒无取向钢(Cold-Rolled Non-Grain-Oriented Steel,CRNGO)的材料铁损特性。
由于第一齿101和第二齿102均是单独的齿,这使得晶粒取向钢能够应用于每个齿,以显著提高第一齿101和第二齿102的饱和磁通密度。具体而言,第一轭端部101a与第一主体101b成一体,并且由第一晶粒取向钢制成,第一晶粒取向钢的轧制方向沿着径向(例如,径向9a或9c)定向。 第二轭端部102a与第二主体102b成一体,并且由第二晶粒取向钢制成,第二晶粒取向钢的轧制方向沿着径向(例如,径向9b或9d)定向。通过这种方式,相比于使用晶粒无取向钢制造第一齿101和第二齿102,使用晶粒取向钢制造第一齿101和第二齿102能够显著提高第一齿101和第二齿102的饱和磁通密度,从而提高电机1的转矩密度。此外,使用晶粒取向钢制造第一齿101和第二齿102能够显著降低第一齿101和第二齿102的铁损。这些都能够提高电机1的效率。此外,由于齿的轭端部与主体成一体,即,能够一体制造而成,这能够使齿的制造更容易且更高效,从而降低工艺成本并提高生产效率。也就是说,将晶粒取向钢的特性与第一齿101和第二齿102的上述构型结合,既能够提高定子3和包括该定子3的电机1的生产效率,又能够提高定子3和包括该定子3的电机1的性能。
本发明人进一步已经意识到,尽管使用晶粒取向钢制造第一齿101和第二齿102能够带来前述益处,但由于第二齿102的第二轭端部102a的宽度大于第二主体102b的宽度(即,第二轭端部102a横向于径向方向突出于第二主体102b),并且由于晶粒取向钢的各向异性,磁通路径上的第二轭端部102a中沿着周向方向的磁导率显著低于第一齿101(包括第一轭端部101a和第一主体101b)和第二主体102b中沿着径向方向的磁导率,并且第二轭端部102a中沿着周向方向的材料铁损特性显著大于第一齿101(包括第一轭端部101a和第一主体101b)和第二主体102b中沿着径向方向的材料铁损特性。
有鉴于此,本发明人进一步提出,将第二齿102的至少第二轭端部102a由晶粒无取向钢制成。具体地,第一轭端部101a与第一主体101b成一体,并且第一齿101由第一晶粒取向钢制成,第一晶粒取向钢的轧制方向沿着径向(例如,径向9a或9c)定向,而第二齿102的至少第二轭端部102a由晶粒无取向钢制成。通过这种晶粒无取向钢-晶粒取向钢的混合式齿配置,能够进一步降低分段式定子芯100的轭部中的铁损,从而提高定子3和包括该定子3的电机1的性能。也就是说,利用包含晶粒无取向钢-晶粒取向钢的混合式齿配置,能够在提高定子3和包括该定子3的电机1的生产效率的同时,提高定子3和包括该定子3的电机1的性能。
在一些示例中,如图2和图3所示,第二齿102的第二轭端部102a与第二主体102b成一体,并且由晶粒无取向钢制成。这种配置能够很好地兼顾制造效率和性能。在其它部分示例中,第二齿102的第二轭端部102a由 晶粒无取向钢制成,而第二主体102b由第二晶粒取向钢制成,第二晶粒取向钢的轧制方向沿着径向定向。在这种情况下,第二轭端部102a和第二主体102b被分开制造,并且被连接在一起。例如,图4示意性地示出了一种这样的第二齿102构型。如图4所示,第二轭端部102a包括沿着径向突出的燕尾形突肋1025,并且第二主体102b包括沿着径向凹入第二主体102b的燕尾形凹部1026。可以在装配时使第二轭端部102a和第二主体102b沿着轴向相对彼此移动,使得燕尾形突肋1025被接收在燕尾形凹部1026,从而使得第二轭端部102a被固定到第二主体102b。应理解到,第二轭端部102a和第二主体102b也可以利用其它合适的特征固定在一起,并且本申请不限于此。
应理解到,术语“第一晶粒取向钢”和“第二晶粒取向钢”仅是用来将用于制造第一齿101的晶粒取向钢与用于制造第二齿102的晶粒取向钢区分开来,但是这些晶粒取向钢不应受到此类术语的限制。第一晶粒取向钢和第二晶粒取向钢可以是相同或者不同种类的晶粒取向钢。
如图1和图3所示,在一些示例中,预制绕组构件200包括绝缘套筒201以及预制在绝缘套筒201上的绕组203。应理解,绕组203可以通过本领域中任何已知的工艺预制在绝缘套筒201上(如图3中的箭头C所示意性地表示的)。绝缘套筒201可以是中空的,以在其中界定出套设部(未示出)。该套设部的尺寸被设计成适于套设在第一齿101的第一主体101b上。绝缘套筒201可以通过本领域中任何已知的方式(例如卡扣配合、摩擦配合、利用固定件等)固定在第一主体101b上。绕组203由诸如铜磁导体或棒之类的细长导体形成。细长导体例如可以是圆形导体、矩形导体或椭圆形导体。相应地,预制绕组构件200可以是圆形导体预制绕组构件、矩形导体预制绕组构件或椭圆形导体预制绕组构件。如在本申请中所使用的,术语“圆形导体”、“矩形导体”和“椭圆形导体”分别是指当沿着垂直于导体的中心轴线定向的横截面平面观察时具有圆形、矩形或椭圆形横截面几何形状的导体。
在一些示例中,如图2所示,第一齿101的第一主体101b的宽度可以沿着径向基本上是一致的。在本申请中,除非另有说明,否则表述“基本上”是指在制造公差允许的范围内。应理解到,第一主体101b的宽度也可以是沿着径向变化的,只要其不会阻碍预制绕组构件200套设到其上,并且本申请不限于此。如图1和图2所示,第二齿102的第二主体102b的宽 度沿着径向中的径向向外方向(即,远离旋转轴线7指向的径向方向)逐渐增大。应理解到,第二主体102b的宽度也可以是沿着径向变化的,并且本申请不限于此。
在这些示例中的一个中,如图2所示,第一齿101的第一主体101b的宽度沿着径向基本上是一致的,并且第二齿102的第二主体102b的宽度沿着径向中的径向向外方向逐渐增大,以使得槽103的宽度基本上是一致的。这有助于在预制绕组构件200设置在槽103中时提高槽满率(或称“槽填充因数”),并降低铜损,从而提高电机1的效率,尤其是对于使用矩形导体预制绕组构件的情况。
应理解到,尽管分段式定子芯100在图1中被示出为被配置成用于内定子构型(即,转子5在定子3的径向外侧,并且齿的轭端部是齿的径向靠内端部),但分段式定子芯100也可以被配置成用于外定子构型(即,转子5在定子3的径向内侧,并且齿的轭端部是齿的径向靠外端部)。在分段式定子芯100被配置成用于外定子构型的情况下,第一齿101的第一主体101b的宽度也可以沿着径向基本上是一致的,并且第二齿102的第二主体102b的宽度也可以沿着径向中的径向向外方向逐渐增大,以使得槽103的宽度基本上是一致的。类似于分段式定子芯100被配置成用于内定子构型的情况,在分段式定子芯100被配置成用于外定子构型的情况下,这也有助于在预制绕组构件200设置在槽103中时提高槽满率,并降低铜损,从而提高电机1的效率,尤其是对于使用矩形导体预制绕组构件的情况。
请继续参见图2和图3,第一齿101的第一主体101b包括沿着周向相反的第一主体侧1011和第二主体侧1012,并且第一轭端部101a包括沿着周向相反的第一轭端侧1013和第二轭端侧1014。第二齿102的第二主体102b包括沿着周向相反的第三主体侧1021和第四主体侧1022,并且第二轭端部102a包括沿着周向相反的第三轭端侧1023和第四轭端侧1024。第一轭端侧1013可以在周向上与第一主体侧1011齐平,或者可以在周向上相对于第一主体侧1011缩进。并且,第二轭端侧1014可以在周向上与第二主体侧1012齐平,或者可以在周向上相对于第二主体侧1012缩进。借助于第一齿101的这种构型,能够允许预制绕组构件200经由第一轭端部101a套设到第一主体101b上。第三轭端侧1023在周向上延伸超出第三主体侧1021,并且第四轭端侧1024在周向上延伸超出第四主体侧1022。由于第二齿102的这种构型,预制绕组构件200不能经由第二轭端部102a套 设到第二主体102b上。但是,借助于第二齿102的这种构型,当多个单独的第二齿102中的每个第二齿102沿周向设置在多个单独的第一齿101中相邻的两个第一齿101之间时,如图2所示,每个第二齿102的第二轭端部102a能够分别与相邻的两个第一齿101的第一轭端部101a可以相连,并且每个第二齿102的第二主体102b能够分别与相邻的两个第一齿101的第一主体101b可以在其间限定出用于容纳预制绕组构件200的槽103。如图2所示,第二齿102的第二主体102b的第三主体侧1021与一个相邻的第一齿101的第一主体101b的第一主体侧1011限定槽103,并且该第二齿102的第二主体102b的第四主体侧1022与另一个相邻的第一齿101的第一主体101b的第二主体侧1012限定槽103。
在一些示例中,如图2所示,当多个单独的第二齿102中的每个第二齿102沿周向设置在多个单独的第一齿101中相邻的两个第一齿101之间时,每个第二齿102的第二主体102b的第三主体侧1021平行于相邻的两个第一齿101中的一个第一齿101的第一主体101b的第一主体侧1011,并且该第二主体102b的第四主体侧1022平行于相邻的两个第一齿101中的另一个第一齿101的第一主体101b的第二主体侧1012。借助于这种构型,可以使槽103的宽度基本上是一致的。这有助于在预制绕组构件200设置在槽103中时提高槽满率,并降低铜损,从而提高电机1的效率,尤其是对于使用矩形导体预制绕组构件的情况。
在一些示例中,如图1至图3所示,第一齿101和第二齿102可以包括在沿周向设置第一齿101和第二齿102时帮助引导和定位第一齿101和第二齿102的配合特征。具体而言,第一齿101的第一轭端部101a包括分别从第一轭端侧1013和第二轭端侧1014凹入第一轭端部101a中的凹槽104,并且第二齿102的第二轭端部102a包括分别突出于第三轭端侧1023和第四轭端侧1024的突肋105。突肋105和凹槽104被配置成使得在沿周向排布第一齿101和第二齿102时,突肋105被接收在凹槽104中,以引导和定位第一齿101和第二齿102。借助于突肋105和凹槽104,可以使第一齿101和第二齿102被相对彼此精确地定位和保持就位,从而提高分段式定子芯100的装配效率和结构可靠性。
如图1至图3所示,第一齿101还包括与第一轭端部101a相反的第一齿端部101c,第一主体101b在径向上在第一轭端部101a与第一齿端部101c之间延伸,并且第二齿102还包括与第二轭端部102a相反的第二齿端部 102c,第二主体102b在径向上在第二轭端部102a与第二齿端部102c之间延伸。在一些示例中,如图1至图3所示,每个第二齿102的第二齿端部102c分别与相邻的两个第一齿101的第一齿端部101c在其间限定出间隙,每个间隙的宽度(即,周向尺寸)小于对应的槽103的宽度。通过这种方式,槽103被形成为半闭口槽或者近似完全闭口槽(由于第一齿101和第二齿102是在齿端部分开的齿,因此槽103不是完全闭口的)。例如,如图2所示,第一齿101的第一齿端部101c和第二齿102的第二齿端部102c分别突出于第一齿101的第一主体侧1011和第二主体侧1012以及第二齿102的第三主体侧1021和第四主体侧1022,并且沿着周向朝着彼此延伸。第一齿101和第二齿102的这种齿端部构型有助于减小齿端部处磁通密度的下降,从而有助于提高电机1的效率。此外,对于这种齿端部构型而言,由于第一齿101和第二齿102具有上文描述的轭端部构型,因而仍能够允许使用预制绕组构件200来制造定子3。相比于现有技术,这能够更容易且更高效制造高性能的电机1。
本发明人还提出了包括前述的分段式定子芯100的电机1。这种电机1可以包括多个预制绕组构件200以及前述的分段式定子芯100。多个预制绕组构件200中的每个被套设在分段式定子芯100的多个第一齿101中相应的第一齿101上。第二齿102上没有设置绕组。预制绕组构件200可以被以本领域中已知的方式连接,以限定不同的电相。如上所述,这种电机1能够很好地兼顾制造效率和性能。
本发明人还提出了用于制造包括前述的分段式定子芯100的定子组件的方法。具体而言,如图5所示意性表示的,该方法包括:在步骤S1,提供多个单独的第一齿101,多个单独的第一齿101中的每个第一齿101包括第一轭端部101a以及从第一轭端部101a沿径向延伸的第一主体101b,第一轭端部101a的宽度小于或者等于第一主体101b的宽度,以允许预制绕组构件200经由第一轭端部101a套设到第一主体101b上;接下来,在步骤S2,提供多个预制绕组构件200并将多个预制绕组构件200中的每个经由多个单独的第一齿101中的相应一个第一齿101的第一轭端部101a套设到第一主体101b上;接下来,在步骤S3,提供多个单独的第二齿102,多个单独的第二齿102中的每个第二齿102包括第二轭端部102a以及从第二轭端部102a沿径向延伸的第二主体102b,第二轭端部102a的宽度大于第二主体102b的宽度;接下来,在步骤S4,将多个单独的第一齿101和多个 单独的第二齿102沿周向排布成环形,使得多个单独的第二齿102中的每个第二齿102沿周向设置在多个单独的第一齿101中相邻的两个第一齿101之间,其中,每个第二齿102的第二轭端部102a分别与相邻的两个第一齿101的第一轭端部101a相连,并且每个第二齿102的第二主体102b分别与相邻的两个第一齿101的第一主体101b在其间限定出槽103,以容纳预制绕组构件200。如上,这种方法通过使用预制绕组构件与齿构型的结合来容易且高效地制造定子组件,从而降低定子组件的工艺成本并提高生产效率。应理解到,在一些实施例中,其中一些步骤可以不按上述顺序执行。例如,可以首先执行步骤S3,而后依序执行步骤S1、S2和S4。
在一些实施例中,该方法还包括:将第一轭端部101a与第一主体101b一体地由第一晶粒取向钢制成,并且使第一晶粒取向钢的轧制方向沿着径向定向,以及将第二轭端部102a与第二主体102b一体地由第二晶粒取向钢制成,并且使第二晶粒取向钢的轧制方向沿着径向定向。
在一些实施例中,该方法还包括:使第一主体101b的宽度沿着径向基本上是一致的,并且使第二主体102b的宽度沿着径向中的径向向外方向逐渐增大,从而使槽103的宽度基本上是一致的。
在一些实施例中,该方法还包括:将第一轭端部101a与第一主体101b一体地由第一晶粒取向钢制成,并且使第一晶粒取向钢的轧制方向沿着径向定向;以及将第二齿102的至少第二轭端部102a由非晶粒取向钢制成。其中,将第二齿102的至少第二轭端部102a由非晶粒取向钢制成包括将第二轭端部102a与第二主体102b一体由非晶粒取向钢制成。可选地,将第二齿102的至少第二轭端部102a由非晶粒取向钢制成包括:将第二主体102b由第二晶粒取向钢制成,使第二晶粒取向钢的轧制方向沿着径向定向,并且将第二轭端部102a固定到第二主体102b。
应理解,术语“第一”、“第二”、“第三”和“第四”仅用于将一个元件或部分与另一个元件或部分区分开来,但是这些元件和/或部分不应受到此类术语的限制。
以上结合具体实施例对本申请进行了详细描述。显然,以上描述以及在附图中示出的实施例均应被理解为是示例性的,而不构成对本申请的限制。对于本领域技术人员而言,可以在不脱离本申请的精神的情况下对其进行各种变型或修改,这些变型或修改均不脱离本申请的范围。

Claims (17)

  1. 一种用于电机的分段式定子芯(100),其特征在于,所述分段式定子芯(100)包括:
    多个单独的第一齿(101),所述多个单独的第一齿(101)中的每个第一齿(101)包括第一轭端部(101a)以及从所述第一轭端部(101a)沿径向延伸的第一主体(101b),所述第一轭端部(101a)的宽度小于或者等于所述第一主体(101b)的宽度,以允许预制绕组构件(200)经由所述第一轭端部(101a)套设到所述第一主体(101b)上;以及
    多个单独的第二齿(102),所述多个单独的第二齿(102)中的每个第二齿(102)包括第二轭端部(102a)以及从所述第二轭端部(102a)沿所述径向延伸的第二主体(102b),所述第二轭端部(102a)的宽度大于所述第二主体(102b)的宽度;
    所述多个单独的第一齿(101)和所述多个单独的第二齿(102)被配置成沿周向排布成环形,使得所述多个单独的第二齿(102)中的每个第二齿(102)沿所述周向设置在所述多个单独的第一齿(101)中相邻的两个第一齿(101)之间,其中,每个第二齿(102)的第二轭端部(102a)分别与所述相邻的两个第一齿(101)的第一轭端部(101a)相连,并且每个第二齿(102)的第二主体(102b)分别与所述相邻的两个第一齿(101)的第一主体(101b)在其间限定出用于容纳预制绕组构件(200)的槽(103)。
  2. 根据权利要求1所述的分段式定子芯(100),其特征在于:
    所述第一轭端部(101a)与所述第一主体(101b)成一体,并且由第一晶粒取向钢制成,所述第一晶粒取向钢的轧制方向沿着所述径向定向;以及
    所述第二轭端部(102a)与所述第二主体(102b)成一体,并且由第二晶粒取向钢制成,所述第二晶粒取向钢的轧制方向沿着所述径向定向。
  3. 根据权利要求1所述的分段式定子芯(100),其特征在于:
    所述第一轭端部(101a)与所述第一主体(101b)成一体,并且由第一晶粒取向钢制成,所述第一晶粒取向钢的轧制方向沿着所述径向定向;以及
    所述第二齿(102)的至少所述第二轭端部(102a)由非晶粒取向钢制成。
  4. 根据权利要求3所述的分段式定子芯(100),其特征在于:
    所述第二轭端部(102a)与所述第二主体(102b)成一体,并且由非晶粒取向钢制成;或者
    所述第二主体(102b)由第二晶粒取向钢制成,所述第二晶粒取向钢的轧制方向沿着所述径向定向,所述第二轭端部(102a)被固定到所述第二主体(102b)。
  5. 根据权利要求1所述的分段式定子芯(100),其特征在于,所述第一主体(101b)的宽度沿着所述径向基本上是一致的。
  6. 根据权利要求5所述的分段式定子芯(100),其特征在于,所述第二主体(102b)的宽度沿着所述径向中的径向向外方向逐渐增大,以使得所述槽(103)的宽度基本上是一致的。
  7. 根据权利要求1所述的分段式定子芯(100),其特征在于,所述第一主体(101b)包括沿着所述周向相反的第一主体侧(1011)和第二主体侧(1012),所述第二主体(102b)包括沿着所述周向相反的第三主体侧(1021)和第四主体侧(1022),所述第一轭端部(101a)包括沿着所述周向相反的第一轭端侧(1013)和第二轭端侧(1014),并且所述第二轭端部(102a)包括沿着所述周向相反的第三轭端侧(1023)和第四轭端侧(1024),其中:
    所述第一轭端侧(1013)在所述周向上与所述第一主体侧(1011)齐平,或者在所述周向上相对于所述第一主体侧(1011)缩进;
    所述第二轭端侧(1014)在所述周向上与所述第二主体侧(1012)齐平,或者在所述周向上相对于所述第二主体侧(1012)缩进;
    所述第三轭端侧(1023)在所述周向上延伸超出所述第三主体侧(1021);以及
    所述第四轭端侧(1024)在所述周向上延伸超出所述第四主体侧(1022)。
  8. 根据权利要求7所述的分段式定子芯(100),其特征在于,当所述多个单独的第二齿(102)中的每个第二齿(102)沿周向设置在所述多个单独的第一齿(101)中相邻的两个第一齿(101)之间时,每个第二齿(102)的第二主体(102b)的第三主体侧(1021)平行于所述相邻的两个第一齿(101)中的一个第一齿(101)的第一主体(101b)的第一主体侧(1011),并且所述第二主体(102b)的第四主体侧(1022)平行于所述相邻的两个第一齿(101)中的另一个第一齿(101)的第一主体(101b)的第二主体侧(1012)。
  9. 根据权利要求7所述的分段式定子芯(100),其特征在于:
    所述第一轭端部(101a)还包括分别从所述第一轭端侧(1013)和所述第二轭端侧(1014)凹入所述第一轭端部(101a)中的凹槽(104);以及
    所述第二轭端部(102a)还包括分别突出于所述第三轭端侧(1023)和所述第四轭端侧(1024)的突肋(105);
    其中,所述突肋(105)和所述凹槽(104)被配置成使得在沿所述周向排布所述第一齿(101)和所述第二齿(102)时,所述突肋(105)被接收在所述凹槽(104)中,以引导和定位所述第一齿(101)和所述第二齿(102)。
  10. 根据权利要求1所述的分段式定子芯(100),其特征在于:
    每个所述第一齿(101)还包括与所述第一轭端部(101a)相反的第一齿端部(101c),所述第一主体(101b)在所述径向上在所述第一轭端部(101a)与所述第一齿端部(101c)之间延伸;以及
    每个所述第二齿(102)还包括与所述第二轭端部(102a)相反的第二齿端部(102c),所述第二主体(102b)在所述径向上在所述第二轭端部(102a)与所述第二齿端部(102c)之间延伸;
    其中,每个第二齿(102)的第二齿端部(102c)分别与所述相邻的两个第一齿(101)的第一齿端部(101c)在其间限定出间隙,所述间隙中的每个的宽度小于对应的所述槽(103)的宽度。
  11. 根据权利要求1所述的分段式定子芯(100),其特征在于:
    所述预制绕组构件(200)包括圆形导体预制绕组构件、矩形导体预制绕组构件或椭圆形导体预制绕组构件;和/或
    所述预制绕组构件(200)包括绝缘套筒(201)以及预制在所述绝缘套筒(201)上的绕组(203),所述绝缘套筒(201)在其中界定出套设部,所述套设部的尺寸被设计成适于套设在所述第一主体(101b)上。
  12. 一种电机,其特征在于,所述电机包括:
    多个预制绕组构件(200);以及
    根据权利要求1至11中任一项所述的分段式定子芯(100);
    其中,所述多个预制绕组构件(200)中的每个被套设在所述分段式定子芯(100)的多个第一齿(101)中相应的第一齿(101)上。
  13. 一种用于制造电机的定子组件的方法,其特征在于,所述方法包括:
    提供多个单独的第一齿(101),所述多个单独的第一齿(101)中的每个第一齿(101)包括第一轭端部(101a)以及从所述第一轭端部(101a)沿径向延伸的第一主体(101b),所述第一轭端部(101a)的宽度小于或者等于所述第一主体(101b)的宽度,以允许预制绕组构件(200)经由第一轭端部(101a)套设到第一主体(101b)上;
    提供多个预制绕组构件(200)并将所述多个预制绕组构件(200)中的每个经由所述多个单独的第一齿(101)中的相应一个第一齿(101)的第一轭端部(101a)套设到第一主体(101b)上;
    提供多个单独的第二齿(102),所述多个单独的第二齿(102)中的每个第二齿(102)包括第二轭端部(102a)以及从所述第二轭端部(102a)沿所述径向延伸的第二主体(102b),所述第二轭端部(102a)的宽度大于所述第二主体(102b)的宽度;以及
    将所述多个单独的第一齿(101)和所述多个单独的第二齿(102)沿周向排布成环形,使得所述多个单独的第二齿(102)中的每个第二齿(102)沿所述周向设置在所述多个单独的第一齿(101)中相邻的两个第一齿(101)之间,其中,每个第二齿(102)的第二轭端部(102a)分别与所述相邻的两个第一齿(101)的第一轭端部(101a)相连,并且每个第二齿(102)的第二主体(102b)分别与所述相邻的两个第一齿(101)的第一主体(101b) 在其间限定出槽(103),以容纳所述预制绕组构件(200)。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    将所述第一轭端部(101a)与所述第一主体(101b)一体地由第一晶粒取向钢制成,并且使所述第一晶粒取向钢的轧制方向沿着所述径向定向;以及
    将所述第二轭端部(102a)与所述第二主体(102b)一体地由第二晶粒取向钢制成,并且使所述第二晶粒取向钢的轧制方向沿着所述径向定向。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    将所述第一轭端部(101a)与所述第一主体(101b)一体地由第一晶粒取向钢制成,并且使所述第一晶粒取向钢的轧制方向沿着所述径向定向;以及
    将所述第二齿(102)的至少所述第二轭端部(102a)由非晶粒取向钢制成。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    将所述第二轭端部(102a)与所述第二主体(102b)一体由非晶粒取向钢制成;或者
    将第二主体(102b)由第二晶粒取向钢制成,使所述第二晶粒取向钢的轧制方向沿着所述径向定向,并且将所述第二轭端部(102a)固定到所述第二主体(102b)。
  17. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    使所述第一主体(101b)的宽度沿着所述径向基本上是一致的,并且使所述第二主体(102b)的宽度沿着所述径向中的径向向外方向逐渐增大,从而使所述槽(103)的宽度基本上是一致的。
PCT/CN2022/102268 2022-06-29 2022-06-29 分段式定子芯、电机和用于制造电机的定子组件的方法 WO2024000243A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102268 WO2024000243A1 (zh) 2022-06-29 2022-06-29 分段式定子芯、电机和用于制造电机的定子组件的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102268 WO2024000243A1 (zh) 2022-06-29 2022-06-29 分段式定子芯、电机和用于制造电机的定子组件的方法

Publications (1)

Publication Number Publication Date
WO2024000243A1 true WO2024000243A1 (zh) 2024-01-04

Family

ID=89383425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102268 WO2024000243A1 (zh) 2022-06-29 2022-06-29 分段式定子芯、电机和用于制造电机的定子组件的方法

Country Status (1)

Country Link
WO (1) WO2024000243A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024121720A1 (en) * 2022-12-09 2024-06-13 Dyson Technology Limited A stator assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261992A (zh) * 1997-07-02 2000-08-02 沃尔夫冈·希尔 具有软磁性齿的电机及其制造方法
US20020175587A1 (en) * 2001-05-18 2002-11-28 Rolf Vollmer Electrical machine
CN101371425A (zh) * 2007-10-29 2009-02-18 深圳航天科技创新研究院 方波三相无刷永磁直流电动机
CN114389385A (zh) * 2020-10-22 2022-04-22 通用汽车环球科技运作有限责任公司 分段定子叠片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1261992A (zh) * 1997-07-02 2000-08-02 沃尔夫冈·希尔 具有软磁性齿的电机及其制造方法
US20020175587A1 (en) * 2001-05-18 2002-11-28 Rolf Vollmer Electrical machine
CN101371425A (zh) * 2007-10-29 2009-02-18 深圳航天科技创新研究院 方波三相无刷永磁直流电动机
CN114389385A (zh) * 2020-10-22 2022-04-22 通用汽车环球科技运作有限责任公司 分段定子叠片

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024121720A1 (en) * 2022-12-09 2024-06-13 Dyson Technology Limited A stator assembly

Similar Documents

Publication Publication Date Title
JP2594813B2 (ja) 可変磁気抵抗モータ
US8258668B2 (en) Stator and rotating electric machine employing the same
JP2007068310A (ja) 回転機の積層巻きコア
JPH11332140A (ja) 放射リブ巻線式回転電機の電機子構造
JP2000156947A (ja) 磁石式電動機及び発電機
US20230006485A1 (en) Axial flux machine comprising mechanically fixed stator cores having radially extending sheet metal segments
WO2018037529A1 (ja) 回転電機
US11411447B2 (en) Axial gap motor
WO2024000243A1 (zh) 分段式定子芯、电机和用于制造电机的定子组件的方法
JP2014100054A (ja) 横磁束形電動機
JP6640910B2 (ja) 回転電機
US11545880B2 (en) Segmented stator laminations
CN115398774A (zh) 用于电动式轴向磁通机的定子以及电动式轴向磁通机
JP2003333813A (ja) シンクロナスリラクタンスモータのロータ
US10693329B2 (en) Polyphase claw pole motor and stator of the polyphase claw pole motor
US20230009136A1 (en) Axial flux machine comprising a stator having radially extending sheet metal segments
JP6350612B2 (ja) 回転電機
JP2009100490A (ja) 回転機およびその製造方法
CN111564915A (zh) 定子
JP6022962B2 (ja) ロータ及びモータ
JP2009095070A (ja) 回転電動機
WO2019146499A1 (ja) 回転電機の固定子及び回転電機の固定子の製造方法
JP5303958B2 (ja) 電動機および電動機固定子の固定方法
US20200099262A1 (en) Polyphase claw pole motor
JP6752379B1 (ja) 回転電機の回転子および回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948361

Country of ref document: EP

Kind code of ref document: A1