WO2023287037A1 - Refrigerator operation control method - Google Patents

Refrigerator operation control method Download PDF

Info

Publication number
WO2023287037A1
WO2023287037A1 PCT/KR2022/008432 KR2022008432W WO2023287037A1 WO 2023287037 A1 WO2023287037 A1 WO 2023287037A1 KR 2022008432 W KR2022008432 W KR 2022008432W WO 2023287037 A1 WO2023287037 A1 WO 2023287037A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage compartment
heat
temperature
evaporator
refrigerator
Prior art date
Application number
PCT/KR2022/008432
Other languages
French (fr)
Korean (ko)
Inventor
김호산
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210090871A external-priority patent/KR20230010387A/en
Priority claimed from KR1020210090864A external-priority patent/KR20230010380A/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023287037A1 publication Critical patent/WO2023287037A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the present invention relates to a method for controlling the operation of a refrigerator that provides heat to an evaporator using a heating heat source and a hot gas flow path.
  • a refrigerator is a home appliance provided to store various foods for a long time with cool air generated by using circulation of a refrigerant according to a refrigerating cycle.
  • one or a plurality of storage compartments for storing storage objects are partitioned from each other and provided.
  • the storage chamber receives cold air generated by a refrigeration system including a compressor, a condenser, an expander, and an evaporator, and is maintained within a set temperature range.
  • each storage compartment passes through an evaporator, and in the process, moisture contained in the cold air is deposited on the surface of the evaporator to form frost.
  • frost formed on the surface of the evaporator gradually accumulates and affects the flow of cold air passing through the evaporator. That is, as the flow of cold air passing through the evaporator worsens in proportion to the amount of frost, the heat exchange efficiency decreases.
  • the evaporator is operated for defrosting (defrosting operation) when a predetermined time elapses after operating the refrigerator or when conditions for the defrosting operation are satisfied.
  • the defrosting operation is performed using one or a plurality of defrost heaters installed in the evaporator, and when the defrosting operation is performed by the heat generated by these defrost heaters, the cooling operation for each storage compartment is stopped.
  • a defrost method using a defrost heater does not perform uniform defrost and requires more heating than necessary, which causes an increase in the temperature in the refrigerator, which adversely affects food stored in the storage compartment.
  • Prior Document 1 is applied only to a refrigerator in which a single compressor performs a cooling operation for one evaporator, and cannot be applied to a refrigerator in which a single compressor performs a cooling operation for two or more evaporators. .
  • the defrosting operation of the evaporator according to Prior Documents 2 and 3 should be operated in a manner capable of achieving a short operating time and minimum temperature rise in order to maintain freshness of food in the refrigerator and minimize power consumption.
  • an operation to lower the temperature of the refrigerating compartment and the freezing compartment is performed in order to maintain the freshness of the food in the refrigerator.
  • a deep cooling process for cooling each storage compartment is performed in consideration of the fact that the temperature of each storage compartment increases during the defrosting operation.
  • the refrigerating compartment reaches the excessive cooling temperature more quickly in the process of defrosting the evaporator for the freezing compartment using hot gas, causing damage to food stored in the refrigerating compartment.
  • the defrosting operation is terminated in a state in which this is not completely performed.
  • the defrosting time of the freezer compartment evaporator is longer than when the room temperature is high due to the influence of the room temperature.
  • the heat exchange efficiency of the refrigeration cycle decreases, and the temperature of the hot gas does not reach a sufficiently high temperature, so it takes a long time to defrost the evaporator for the freezer compartment.
  • the cooling power generated by the pre-defrost operation is no longer used and discarded as soon as the pre-defrost operation ends, resulting in unnecessary power consumption.
  • An object of the present invention is to prevent overcooling of the refrigerating compartment during the heat supply operation by maintaining the temperature of the refrigerating compartment sufficiently high before the heat supply operation is performed.
  • Another object of the present invention is to maintain the temperature of the refrigerating compartment within a range that does not affect food regardless of whether the heat supply operation is performed, before or after the heat supply operation is performed.
  • Another object of the present invention is to provide sufficient heat to an evaporator for a freezer compartment through a heat supply operation even when the room temperature is low.
  • An object of the present invention is to provide sufficient hot gas to the first evaporator quickly when the heat supply operation is performed.
  • An object of the present invention is to reduce the internal temperature of the freezing chamber as much as possible before the heat supply operation is performed.
  • Another object of the present invention is to reduce the operating time for heating the first evaporator.
  • a heat supply operation performed before a heat supply operation in which heat is supplied to the first evaporator may be included.
  • hot gas generated by the operation of the refrigerating cycle may be used for the heat supply operation.
  • hot gas is used to heat the first evaporator, and the refrigerant heat-exchanged while passing through the first evaporator cools the second evaporator.
  • the heat transfer operation may be performed from when the general cooling operation ends until the heat supply operation is performed.
  • the heat transfer operation may include a deep cooling process of cooling the first storage compartment.
  • the heat supply process may include a pause process in which the compressor is stopped until the heat supply operation is performed after the deep cooling process is finished.
  • heat when the heat supply operation is performed, heat may be supplied to the second storage compartment while the auxiliary heat source is operated.
  • the auxiliary heat source may include at least one heat source provided to increase or prevent a decrease in the temperature in the second storage compartment.
  • the auxiliary heat source may include at least one heat source located on an adjacent wall surface of the second storage compartment or a door for the second storage compartment.
  • the auxiliary heat source can generate heat with maximum output during the heat supply operation.
  • the auxiliary heat source may stop supplying heat when the end condition of the heat supply operation is satisfied.
  • the auxiliary heat source may stop supplying heat when the internal temperature of the second storage chamber reaches an excessive temperature.
  • the transient temperature at which heat supply from the auxiliary heat source is stopped may be higher than the first set reference temperature NT21 for the second storage compartment.
  • the transient temperature at which heat supply from the auxiliary heat source is stopped may be a temperature equal to or higher than the upper limit reference temperature (NT21 + Diff) of the second storage compartment.
  • a cold air blocking process may be performed in which the supply of cold air into the second storage compartment is blocked.
  • the cold air blocking process may be performed by stopping the compressor, stopping the blowing fan for the second storage compartment, or blocking the flow of refrigerant to the second evaporator.
  • the first storage compartment may be cooled up to the second lower limit reference temperature (NT12-Diff).
  • the second set reference temperatures NT12 and NT22 may be set to different temperatures from the first set reference temperatures NT11 and NT21.
  • the second set reference temperatures NT12 and NT22 may be set to a lower temperature than the first set reference temperatures NT11 and NT21.
  • the auxiliary heat source when the room temperature is higher than the reference temperature range, the auxiliary heat source may be controlled not to operate during the heat transfer operation.
  • the heat supply operation may include a heating process of heating the first evaporator by generating heat from a heating heat source.
  • the blower fan for the first storage compartment can be operated from the deep cooling process until the heating heat source generates heat.
  • the speed of the blowing fan for the first storage compartment may be increased from when the compressor is stopped until the heating heat source generates heat.
  • the heat transfer operation is performed at the second upper limit reference temperature (NT12 + Diff, NT12 + Diff, NT22+Diff) and the second lower limit reference temperatures (NT12-Diff, NT22-Diff), cooling may be performed while supplying cold air.
  • the first set reference temperatures NT11 and NT21 of the normal cooling operation may be set to different temperatures from the second set reference temperatures NT12 and NT22 of the heat transfer operation.
  • the second set reference temperatures NT12 and NT22 of the heat supply operation may be set to a lower temperature than the first set reference temperatures NT11 and NT21 of the normal cooling operation.
  • the first upper limit reference temperature (NT11 + Diff, NT21 + Diff) of the general cooling operation is the same as the second upper limit reference temperature (NT12 + Diff, NT22 + Diff) of the heat transfer operation. Can be set to different temperatures.
  • the second upper limit reference temperature (NT12 + Diff, NT22 + Diff) of the heat supply operation is higher than the first upper limit reference temperature (NT11 + Diff, NT21 + Diff) of the general cooling operation. It can be set to a lower temperature.
  • the first lower limit reference temperatures (NT11-Diff, NT21-Diff) of the general cooling operation are the same as the second lower limit reference temperatures (NT12-Diff, NT22-Diff) of the heat transfer operation. Can be set to different temperatures.
  • the second lower limit reference temperatures (NT12-Diff, NT22-Diff) of the heat supply operation are higher than the first lower limit reference temperatures (NT11-Diff, NT21-Diff) of the general cooling operation. It can be set to a lower temperature.
  • the internal temperature of the second storage compartment checked after the heat supply operation is completed may be excluded from the conditions for the cooling operation of the second storage compartment until the heat supply operation is performed.
  • the internal temperature of the second storage chamber may be controlled not to be measured until the heat supply operation is performed after the heat supply operation is finished.
  • a process of supplying cold air to the second storage compartment may be simultaneously performed.
  • the heat supply operation may include a heating process of heating the first evaporator.
  • the heat generation process may be performed when heat supply conditions for heating the first evaporator are satisfied after the heat supply operation of each storage compartment starts.
  • the heating process may be performed by supplying power to a heating heat source.
  • the heat supply operation may include a heat exchange process of heating the first evaporator and simultaneously cooling the second evaporator.
  • the heat exchange process may be performed while the high-temperature refrigerant compressed by the compressor is guided to flow sequentially through the first evaporator and the second evaporator along the hot gas flow path.
  • the operation control method of the refrigerator of the present invention after the heat supply operation of each storage compartment is started, it can be performed when hot gas supply conditions are satisfied.
  • hot gas supply conditions in the heat exchange process may include a case where a set time elapses after the heat transfer operation of each storage compartment is completed.
  • hot gas supply conditions in the heat exchange process may include a case where a set time elapses after power is supplied to the heating heat source.
  • hot gas supply conditions in the heat exchange process may include a case where the first evaporator temperature satisfies the set first temperature range after the heat transfer operation of each storage compartment is completed.
  • the compressor may be stopped when the heat supply operation is finished, and then operated again when the hot gas supply condition is satisfied.
  • the blower fan for the first storage compartment may be operated from when cold air is supplied to the first storage compartment for heat transfer operation until the heating heat source generates heat.
  • the temperature of the second storage compartment can be increased to the maximum due to the heat generated by the auxiliary heat source.
  • the temperature of the second storage compartment is prevented from excessively dropping during the heat supply operation.
  • the first storage compartment is cooled down to the second lower limit reference temperature (NT12-Diff) during the deep cooling process, even if the temperature of the first evaporator increases due to the heat supply operation, the first storage compartment An excessive increase in temperature is prevented.
  • N12-Diff second lower limit reference temperature
  • the blowing fan for the first storage compartment is operated until the heating heat source generates heat for the heat supply operation, the first storage compartment is cooled as much as possible before the heat supply operation.
  • the high-temperature refrigerant is rapidly and sufficiently supplied to the first evaporator when the heat exchange process of the heat supply operation is performed.
  • FIG. 1 is a state diagram showing the front appearance of a refrigerator according to an embodiment of the present invention.
  • Figure 2 is a state diagram showing the appearance of the rear side of the refrigerator according to an embodiment of the present invention
  • FIG. 3 is a state diagram showing the internal structure of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a state diagram showing a refrigeration system including a hot gas flow path of a refrigerator according to an embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention
  • FIG. 6 is a side view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention
  • FIG. 7 is a state diagram showing an operating state of each component during operation of a refrigerator according to an embodiment of the present invention.
  • FIGS. 8 to 10 are state diagrams illustrating the flow of refrigerant during a cooling operation of each storage compartment of a refrigerator according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a heat transfer operation of a refrigerator according to an embodiment of the present invention.
  • FIG. 13 is a state diagram illustrating a flow of refrigerant during a heat supply operation of a refrigerator according to an embodiment of the present invention
  • FIG. 14 is a flow chart for a temperature return operation of a refrigerator according to an embodiment of the present invention
  • 15 is a graph showing the temperature difference between the refrigerant inlet and the refrigerant outlet of the second evaporator when the cooling operation of the second storage compartment is performed before the heat supply operation of the refrigerator.
  • 16 is a graph showing the temperature difference between the refrigerant inlet and the refrigerant outlet of the second evaporator when the cooling operation of the second storage chamber is not performed before the heat supply operation of the refrigerator is performed.
  • 17 is a state diagram showing an operating state of each component during operation of a refrigerator according to another embodiment of the present invention.
  • FIG. 18 is a flow chart during a heat transfer operation of a refrigerator according to another embodiment of the present invention.
  • FIG. 19 is a flow chart during a heat supply operation of a refrigerator according to another embodiment of the present invention.
  • FIGS. 1 to 19 a preferred embodiment of the refrigerator of the present invention will be described with reference to FIGS. 1 to 19 attached.
  • each direction mentioned in the description of the installation position of each component takes an installation state in actual use (the same state as in the illustrated embodiment) as an example.
  • the refrigerator operation control method includes a heat transfer operation control method for preventing excessive cooling of the second storage compartment 102 during the heat supply operation of the refrigerator using the hot gas flow path 320. do. That is, excessive cooling of the second storage compartment 102 during the heat supply operation is prevented by raising the temperature of the second storage compartment 102 as much as possible before performing the heat supply operation.
  • 1 is a front side appearance of a refrigerator according to an embodiment of the present invention.
  • 2 is a rear side appearance of a refrigerator according to an embodiment of the present invention.
  • 3 is an internal structure of a refrigerator according to an embodiment of the present invention.
  • a refrigerator may include a refrigerator body 100 providing at least one or more storage compartments.
  • the storage compartment may include a first storage compartment 101 and a second storage compartment 102 as a storage space for storing stored goods.
  • the first storage compartment 101 or the second storage compartment 102 may be provided in plurality, or a separate storage compartment may be additionally provided.
  • the first storage compartment 101 and the second storage compartment 102 can be opened and closed by the first door 110 and the second door 120, respectively.
  • Each of the first door 110 and the second door 120 may be provided alone, or may be provided in a plurality of two or more.
  • Each of the storage chambers 101 and 102 has a first upper limit reference temperature (NT11+Diff, NT21+Diff) and a first lower limit reference temperature (NT11-Diff) set based on the first set reference temperature (NT11, NT21) by normal cooling operation. , NT21-Diff).
  • the first set reference temperature NT11 of the first storage chamber 101 may be a temperature sufficient to freeze stored goods.
  • the first set reference temperature NT11 may be set to a temperature of 0°C or less and -24°C or more.
  • the first set reference temperature NT21 of the second storage chamber 102 may be a temperature at which the stored goods are not frozen.
  • the first set reference temperature NT21 may be set to a temperature below 32°C and above 0°C.
  • the first set reference temperatures NT11 and NT21 may be set by a user. When the user does not set the first set reference temperature (NT11, NT21), an arbitrarily designated temperature is used as the first set reference temperature (NT11, NT21).
  • Each of the storage compartments 101 and 102 is supplied with cold air or stopped supplying cold air according to the upper limit or lower limit of the first set reference temperatures NT11 and NT21.
  • first upper limit reference temperature NT11 + Diff, NT21 + Diff
  • cold air is supplied to the corresponding storage compartments 101 and 102 .
  • the temperatures of the storage chambers 101 and 102 are lower than the first lower limit reference temperatures NT11-Diff and NT21-Diff, the supply of cold air is stopped.
  • each of the storage chambers 101 and 102 can be maintained at a temperature between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff).
  • the refrigerator according to the embodiment of the present invention is configured to include an auxiliary heat source 340 .
  • the auxiliary heat source 340 is a heat source other than the purpose of directly heating the first evaporator 250, and may include any heat source capable of increasing the internal temperature of the second storage compartment 102 or preventing a decrease thereof. .
  • the auxiliary heat source 340 may include at least one heat source located on an adjacent wall surface of the second storage compartment 102 or the door 120 for the second storage compartment.
  • the auxiliary heat source 340 may include a heat source positioned on a pillar supporting the door 120 for the second storage compartment.
  • the auxiliary heat source 340 is a refrigerator having a home-bar (a structure in which a hot/cold water dispenser or an ice maker is provided) on the door 120 for the second storage compartment
  • the heat source used in the home-bar may be included.
  • the auxiliary heat source 340 may include a heat source provided to prevent frost from forming along the edge of the door 120 for the second storage compartment.
  • the auxiliary heat source 340 may be a heat source that can affect the second storage compartment while generating heat by operation like a lamp, rather than a heat source for heating.
  • the auxiliary heat source 340 may be configured to enable output variation. For example, heat can be generated with maximum output during the heat supply operation.
  • a refrigerator includes a refrigeration system.
  • the refrigeration system may supply cold air capable of maintaining the respective storage compartments 101 and 102 at the first set reference temperatures NT11 and NT21.
  • the refrigeration system may include a compressor 210 for compressing refrigerant.
  • the compressor 210 may be located in the machine room 103 in the refrigerator body 100 .
  • a recovery passage 211 may be connected to the compressor 210 .
  • the recovery passage 211 guides the flow of the refrigerant recovered to the compressor 210 .
  • the recovery passage 211 is formed to receive refrigerant passing through each passage (eg, a first refrigerant passage and a second refrigerant passage, or a hot gas passage, etc.) and guide it to the compressor 210 .
  • each passage eg, a first refrigerant passage and a second refrigerant passage, or a hot gas passage, etc.
  • two or more recovery passages 211 may be provided in plurality and connected individually or in plurality to each passage.
  • the refrigeration system may include a condenser 220 in which refrigerant is condensed.
  • the condenser 220 condenses the refrigerant compressed in the compressor 210 .
  • the condenser 220 may be located in the machine room 103 in the refrigerator body 100 .
  • a cooling fan (C-Fan) 221 may be provided adjacent to the condenser 220 .
  • the cooling fan 221 may be provided in the machine room 103 .
  • the refrigerant passing inside the condenser 220 by the operation of the cooling fan 221 may exchange heat with air passing outside the condenser 220 .
  • the cooling fan 221 is not operated, the refrigerant passing through the condenser 220 is maintained at a high temperature.
  • the cooling fan 221 may be configured to interlock with the operation of the compressor 210 . That is, when the compressor 210 operates, the cooling fan 221 may also operate. In another preset situation, the cooling fan 221 may be set to stop even when the compressor 210 operates.
  • the refrigeration system may include a first expander 230 and a second expander 240 that depressurize and expand the refrigerant condensed in the condenser 220 .
  • the first expander 230 is provided to depressurize the refrigerant flowing into the first evaporator 250 after passing through the condenser 220 .
  • the second expander 240 is provided to depressurize the refrigerant flowing into the second evaporator 260 after passing through the condenser 220 .
  • the refrigeration system may include a first evaporator 250 and a second evaporator 260 .
  • the refrigerant reduced in pressure in the first expander 230 exchanges heat with air (cold air) flowing in the first storage chamber 101 while passing through the first evaporator 250 .
  • the refrigerant reduced in pressure in the second expander 240 exchanges heat with air (cold air) flowing in the second storage chamber 102 while passing through the second evaporator 260 .
  • the first evaporator 250 may be located in the first storage chamber 101 . Although not shown, the first evaporator 250 may be located in a location other than the first storage chamber 101 .
  • the air flowing by the driving of the F-Fan 281 for the first storage compartment undergoes heat exchange.
  • the second evaporator 260 may be located in the second storage chamber 102 . Although not shown, the second evaporator 260 may be located in a location other than the second storage chamber 102 .
  • the air flowing by the driving of the R-Fan 291 for the second storage compartment undergoes heat exchange.
  • the refrigeration system may include a first refrigerant flow path (F-Path) 201.
  • F-Path refrigerant flow path
  • the first refrigerant passage 201 passes through the first expander 230 and guides the flow of the refrigerant supplied to the first evaporator 250 .
  • the refrigeration system may include a second refrigerant flow path (R-Path) 202 .
  • the second refrigerant passage 202 passes through the second expander 240 and guides the flow of refrigerant provided to the second evaporator 260 .
  • the refrigeration system may include a physical property control unit 270.
  • the physical property controller 270 provides resistance to the flow of the refrigerant flowing through the hot gas flow path 320 to the second evaporator 260 through the first evaporator 250 . That is, resistance is provided to the flow of the refrigerant provided to the second evaporator 250 so that the physical properties of the refrigerant are adjusted (changed).
  • the physical properties of the refrigerant may include any one of temperature, flow rate, and flow rate of the refrigerant.
  • the refrigerant condensed and liquefied while passing through the first evaporator 250 has physical properties in a state where it can be heat exchanged in the second evaporator 260 while passing through the property control unit 270 . Accordingly, a problem in which operation reliability of the compressor 210 is deteriorated due to excessive liquefaction of the refrigerant returned to the compressor 210 after passing through the second evaporator 260 can be prevented.
  • the resistance provided by the above-described physical property adjusting unit 270 may be formed differently from the resistance provided by the second expander 240 . Accordingly, a difference in physical properties between the refrigerant passing through the first evaporator 250 and flowing into the second evaporator 260 and the refrigerant flowing directly into the second evaporator 260 without passing through the first evaporator 250 can be reduced.
  • the physical property control unit 270 may be designed in consideration of the flow path length, the pressure within the flow path, and the density of the refrigerant within the flow path. That is, the resistance may be adjusted by changing at least one of the flow path length of the material property controller 270, the pressure within the flow path, and the density of the refrigerant within the flow path.
  • the physical property control unit 270 may be formed with a different diameter or a different length from that of the second expander 240 . Through this, the refrigerant flowing into the second evaporator 260 after the physical properties are adjusted in the physical property controller 270 can be made substantially similar to or identical to the physical properties of the refrigerant that has passed through the second expander 240 .
  • the physical property control unit 270 may have the same diameter as the second expander 240 and may have a different length.
  • the physical property control unit 270 may be shorter than the second expander 240 .
  • the physical property control unit 270 and the second expander 240 have the advantage that they can be used in common if they have the same diameter.
  • the physical property control unit 270 may be formed to have the same length as the second expander 240 and have a different diameter.
  • the material property control unit 270 may have a larger pipe diameter than the second expander 240 .
  • the refrigeration system may include a flow path conversion valve 330.
  • the refrigerant passing through the condenser 220 may be guided along the discharge passage 203 .
  • the first refrigerant passage 201, the second refrigerant passage 202, and the hot gas passage 320 may be formed to be branched from the discharge passage 203, respectively.
  • the flow path conversion valve 330 may be installed at a portion where each flow path 201 , 202 , and 320 is branched from the discharge flow path 203 . That is, the refrigerant flowing into the discharge passage 203 by the operation of the flow path switching valve 330 is transferred to either the first refrigerant flow path 201, the second refrigerant flow path 202, or the hot gas flow path 320. It was made available to the euro.
  • At least one flow path conversion valve 330 may be provided.
  • the flow path conversion valve 330 may be formed as a 4-way valve.
  • the flow path switching valve 330 may include at least one 3-way valve, check valve, or solenoid valve.
  • the refrigeration system may include a hot gas flow path (H-Path) 320.
  • H-Path hot gas flow path
  • the hot gas flow path 320 provides high-temperature heat to a place where heat is needed.
  • the hot gas passage 320 may be formed to guide the refrigerant (hot gas) compressed by the compressor 210 and passing through the condenser 220 . That is, the hot gas (high-temperature refrigerant) guided by the hot gas passage 320 provides heat.
  • the hot gas passage 320 is formed to guide the flow of a refrigerant (hot gas) separately from the first refrigerant passage 201 and the second refrigerant passage 202 .
  • the hot gas passage 320 is connected to the discharge passage 203, and the hot gas (high temperature refrigerant) guided to the discharge passage 203 is directed to the first evaporator 250 without passing through the first expander 230. After being provided, it may pass through the first evaporator 250 and be provided to the second evaporator 260 . That is, the high-temperature refrigerant compressed in the compressor 210 by the hot gas flow path 320 can heat the first evaporator 250 while passing through the first evaporator 250 .
  • the hot gas passage 320 includes a first pass 321 from the passage switching valve 330 to the first evaporator 250 .
  • the first pass 321 may be formed to have the same diameter as the discharge passage 203 extending from the condenser 220 to the passage conversion valve 330 . As a result, common use of the discharge passage 203 and the first pass 321 is possible.
  • the hot gas flow path 320 includes a second pass 322 passing through the first evaporator 250 .
  • the second pass 322 may be formed to contact the heat exchange pins 251 through a pipe expansion operation after penetrating through each of the heat exchange pins 251 constituting the first evaporator 250 . As a result, the hot gas passing through the second pass 322 can smoothly remove the frost frozen in the first evaporator 250 .
  • the hot gas flow path 320 includes a third pass 323 from the second pass 322 to the physical property adjusting unit 270 .
  • the third pass 323 may be formed to have the same diameter as the first pass 321 .
  • the refrigeration system may include a guide passage 350.
  • the guide passage 350 guides the refrigerant flowing into the second evaporator 260 via the second expander 240 or the property control unit 270 .
  • the refrigerant passing through the second expander 240 or the property control unit 270 passes through the guide passage 350 or is mixed with each other in the guide passage 350 and then flows into the second evaporator 260. It can be. As a result, the deviation between the physical properties of the refrigerant passing through the second expander 240 and flowing into the second evaporator 260 and the physical properties of the refrigerant flowing into the second evaporator 260 through the property adjusting unit 270 can be reduced. .
  • the refrigerator according to the embodiment of the present invention may include a heating source 310 .
  • the heating heat source 310 is a heat source that provides high-temperature heat together with the hot gas flow path 320 .
  • Heat provided by the heating heat source 310 or the hot gas flow path 320 may be used in various ways. For example, heat provided by the heating heat source 310 or heat provided by the hot gas flow path 320 may be used to defrost the first evaporator 250 .
  • the heating heat source 310 may be formed of a sheath heater (Sheath HTR) that generates heat by power supply.
  • Sheath HTR sheath heater
  • the heating heat source 310 may be provided at any one adjacent part of the first evaporator 250 .
  • the heating heat source 310 may be located at the bottom of the heat exchange fin 251 of the lowest row constituting the first evaporator 250 . This is the same as the attached Figures 5 and 6.
  • the heating heat source 310 may be positioned to be spaced apart from the heat exchange fin 251 of the lowermost row constituting the first evaporator 250 . Thus, the heat generated by the heat generated by the heating heat source 310 may heat the first evaporator 250 while flowing upward.
  • reference numeral 280 denotes a first grill assembly that guides the flow of cold air into the first storage compartment.
  • reference numeral 290 denotes a second grill assembly that guides the flow of cold air into the second storage compartment.
  • the control unit may be a controller provided in the refrigerator or a control means (eg, a home network, an online service server, etc.) on a network connected to remotely control the controller of the refrigerator.
  • a control means eg, a home network, an online service server, etc.
  • the operation for each situation may include a general cooling operation (S100).
  • This general cooling operation (S100) is an operation for cooling the first storage compartment 101 and the second storage compartment 102 according to the respective first set reference temperatures NT11 and NT21. 8 is a flowchart showing the process of the general cooling operation (S100).
  • the first upper limit reference temperature (NT11+Diff, NT21+Diff) or the first lower limit reference temperature (NT11-Diff, NT21-Diff) cold air is supplied (S121, S131) or cold air supply is stopped (S122, S132), and a general cooling operation (S100) is performed.
  • the internal temperature of the first storage compartment 101 exceeds the first upper limit reference temperature (NT11 + Diff) and reaches an unsatisfactory temperature
  • cold air is supplied to the first storage compartment 101 (S131).
  • the internal temperature of the first storage compartment 101 reaches the first lower limit reference temperature (NT11-Diff)
  • the supply of cold air to the first storage compartment 101 is stopped (S132).
  • the compressor 210 and the cooling fan (C-Fan) 221 are operated.
  • the flow path switching valve 330 is operated so that the refrigerant flows through the first refrigerant flow path 201. This is the same as the attached figure 9.
  • the refrigerant compressed by the operation of the compressor 210 is condensed while passing through the condenser 220, and the condensed refrigerant is reduced in pressure and expanded while passing through the first expander 230.
  • the refrigerant expanded in the first expander 230 exchanges heat with air passing through the first evaporator 250 while passing through the first evaporator 250 .
  • the refrigerant heat-exchanged in the first evaporator 250 is returned to the compressor 210 through the return passage 211 and then compressed, repeating a circular operation.
  • the blowing fan 281 for the first storage compartment is operated.
  • the air in the first storage compartment 101 passes through the first evaporator 250 and is re-supplied into the first storage compartment 101, repeating a circulation operation.
  • the air in the first storage compartment 101 exchanges heat with the first evaporator 250 while passing through the first storage compartment 250, and is supplied into the first storage compartment 101 at a lower temperature, and the first storage compartment 101 ) lower the temperature inside.
  • the compressor 210 and the cooling fan (C-Fan) 221 are operated.
  • the flow path switching valve 330 is operated so that cold air flows through the second refrigerant flow path 202 .
  • the compressor 210 When the compressor 210 is operated, the refrigerant is compressed, and the compressed refrigerant is condensed while passing through the condenser 220 .
  • the condensed refrigerant is reduced in pressure and expanded while passing through the second expander 240 .
  • the refrigerant passes through the second evaporator 260, exchanges heat with air flowing around the refrigerant, flows into the compressor 210 along the return passage 211, and repeats a circulation operation in which it is compressed. This is shown in the attached figure 10.
  • the blowing fan 291 for the second storage compartment is operated.
  • the air in the second storage compartment 102 passes through the second evaporator 260 and is re-supplied into the second storage compartment 102 to repeat the circulation operation.
  • the air exchanges heat with the second evaporator 260 while passing through the second evaporator 260 and is supplied into the second storage compartment 102 at a lower temperature, thereby reducing the temperature R in the second storage compartment 102. lower it
  • the internal temperature (F, R) of the first storage compartment 101 and the second storage compartment 102 together can form a dissatisfaction temperature (temperature higher than the first upper limit reference temperature (NT11 + Diff, NT21 + Diff)).
  • the operation may be performed so that cold air is preferentially supplied to one storage compartment and then operated to supply cold air to another storage compartment.
  • cold air is preferentially supplied to the second storage compartment 102 to satisfy a temperature (between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff)).
  • a temperature between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff)
  • it may be operated so that cold air is supplied to the first storage compartment 101 .
  • the second storage compartment 102 is a storage compartment maintained at room temperature, the stored goods stored in the corresponding storage compartment 102 may be sensitive to temperature changes.
  • the operation of the refrigerator for each situation may include a heat transfer operation (S210).
  • the heat supply operation (S210) is performed before the heat supply operation (S220) when the start condition of the heat supply operation (S220) is satisfied during the normal cooling operation (S100).
  • the heat transfer operation (S210) may be performed to sequentially cool the first storage compartment 101 and the second storage compartment 102 (S211 and S212).
  • the heat supply operation (S220) is performed by performing the heat supply operation (S210) It is to cool each storage chamber (101, 102). This is shown in the attached figure 11.
  • the storage compartments 101 and 102 are operated to cool down to the second lower limit reference temperature (NT12-Diff, NT22-Diff) set based on the second set reference temperature (NT12, NT22). It can be.
  • the second set reference temperatures NT12 and NT22 may be set to different temperatures from the first set reference temperatures NT11 and NT21.
  • the second set reference temperatures NT12 and NT22 may be set to a lower temperature than the first set reference temperatures NT11 and NT21.
  • the second lower limit reference temperatures NT12-Diff and NT22-Diff may also be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
  • the second set reference temperature (NT12, NT22) is set to be the same as the first set reference temperature (NT11, NT21), and the first lower limit reference temperature (NT11-Diff, NT21-Diff) is the second lower limit reference temperature. It may be set to a temperature different from (NT12-Diff, NT22-Diff). Even in this case, the second lower limit reference temperatures NT12-Diff and NT22-Diff may be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
  • the second refrigerant passage 202 and the first refrigerant passage 201 are sequentially opened or closed by the operation of the passage switching valve 330.
  • the compressor 210 and the cooling fan 221 continue to operate.
  • the blower fan 291 for the second storage compartment and the blower fan 281 for the first storage compartment are sequentially operated.
  • the refrigerant flows into the first refrigerant passage 201 by the operation of the flow path switching valve 330.
  • the compressor 210 and the cooling fan 221 are operated.
  • the blowing fan 281 for the first storage compartment may be operated.
  • the refrigerant flows into the second refrigerant flow path 202 by the operation of the flow path switching valve 330.
  • the compressor 210 and the cooling fan 221 are operated.
  • the blowing fan 291 for the second storage compartment may be operated.
  • the heat transfer operation (S210) may be operated such that the second storage compartment 102 is preferentially cooled and then the first storage compartment 101 is cooled. That is, since the temperature of the second storage compartment 102 gradually decreases during the heat supply operation (S220), the second storage compartment 102 is cooled before the first storage compartment 101, and during the heat supply operation (S220), the first storage compartment ( 101) to reduce the temperature drop.
  • the pump may be controlled to be down. That is, when the heat transfer operation (S210) ends and the flow path switching valve 330 is operated to block the flow of refrigerant to the respective flow paths 201 and 202, the compressor 210 is additionally operated for a predetermined time. Accordingly, the refrigerant collected in the second evaporator 260 may be recovered to the compressor 210 . Accordingly, when the heat exchange process of the heat supply operation (S220) is performed, the high-temperature refrigerant can be rapidly supplied to the first evaporator 250 and supplied in a sufficient amount.
  • a pause process (S216) is performed for a predetermined time until the heat supply operation (S220) is performed. That is, excessive continuous operation of the compressor 210 can be prevented by the pause process (S216). This is as shown in the attached FIGS. 7, 11 and 12.
  • the pause process (S216) may be set by time.
  • the compressor 210 may be stopped for a set time after the heat supply operation (S210) is completed.
  • the pause process (S216) may be set to a longer time than the minimum pause time of the compressor 210.
  • the pause process may be set to 3 minutes.
  • the first storage compartment blower fan 281 sets the temperature of the first evaporator (FD) to the first storage compartment temperature (F) from when cold air is supplied to the first storage compartment (101). It can be operated until reaching
  • the blowing fan 281 for the first storage compartment is additionally operated until the heat supply operation (S220) is performed.
  • the temperature of the first evaporator 250 rises rapidly, and the time for heating the first evaporator 250 during the heat supply operation (S220) can be shortened.
  • the blowing fan 281 for the first storage compartment 281 has completed the cooling of the first storage compartment 101 (S213) and the heating condition of the heating heat source 310 is higher after the compressor 210 is stopped than before the compressor 210 is stopped. Until it is satisfied, it may be rotated at a higher speed (S214).
  • the second storage compartment 102 is circulated after the heat transfer operation (S210) by controlling the rotation to be faster than the rotation speed during the heat transfer operation (S210). This is to maximize the flow rate. Accordingly, it is possible to shorten the time required for the first evaporator temperature FD to become equal to the first storage compartment temperature F.
  • the cooling of the first storage compartment 101 is completed (S213) and the rotational speed of the first storage compartment fan 281 before the compressor 210 is stopped cools the first storage compartment 101 during the normal cooling operation (S100). It may be set to be slower than or equal to the rotation speed performed to do so.
  • the supply of cold air to the second storage compartment 102 may be blocked until the heat supply operation (S220) is performed after the heat supply operation (S210) is finished. That is, even if the temperature in the second storage compartment 102 reaches the dissatisfied region during the rest process (S216) before the heat supply operation (S220) after the heat transfer operation (S210), the cooling operation of the second storage compartment (102) not carried out Accordingly, during the heat supply operation (S220), overcooling of the second storage compartment 102 can be prevented.
  • a method of blocking the cold air supply (or a method of not performing a cooling operation) may be provided in various ways.
  • the second storage compartment temperature (R) checked before the heat supply operation (S220) is performed may be excluded from the conditions for the cooling operation of the second storage compartment (102).
  • the second storage room temperature (R) is an unsatisfactory temperature (temperature exceeding the second upper limit reference temperature (NT22 + diff)). Even if it is, the cooling operation of the second storage chamber 102 is not performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the compressor 210 may be controlled to stop until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the second storage compartment temperature (R) is not measured until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the flow path switching valve 330 may be controlled so that the refrigerant supply flowing to the second evaporator 260 is blocked until the heat supply operation (S220) is performed. there is. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the blower fan 291 for the second storage compartment may be controlled to stop after the heat supply operation ( S210 ) ends until the heat supply operation ( S220 ) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the operation of the refrigerator for each situation may include a heat supply operation (S220).
  • the heat supply operation (S220) may be an operation to provide heat for heating the first evaporator (250).
  • the heat supply operation (S220) may be used to defrost frost generated on the surface of the first evaporator 250.
  • the heat supply operation (S220) will be described with reference to FIGS. 12 and 13 attached.
  • the heat supply operation (S220) may be performed when the operation conditions are satisfied.
  • the defrosting operation of the first evaporator 250 when the defrosting operation of the first evaporator 250 is required, it may be determined that the operating condition of the heat supply operation (S220) is satisfied.
  • the defrosting operation checks the amount or flow rate of cold air passing through the first evaporator 250, checks whether the cumulative operation time of the compressor 210 has elapsed, It is possible to determine whether operation is necessary by checking whether the temperature is maintained at the unsatisfactory temperature.
  • the heat supply operation (S220) may be performed after the heat supply operation (S210) is performed first. .
  • the heat supply operation (S220) may include a heating process of providing heat to the first evaporator 250 using the heating heat source 310.
  • the heating process may be performed when the heating conditions for heating the first evaporator 250 are satisfied after the heat supply operation (S210) of each storage chamber 101 or 102 starts. That is, the first evaporator 250 is heated by generating heat from the heating source 310 only when the heating condition is satisfied.
  • An exothermic condition of the exothermic process may be set by time. For example, it may be determined that the heating condition is satisfied when a set time elapses after the heat supply operation (S210) ends.
  • the heating condition of the heating process is set to temperature. That is, by setting the heating condition to temperature, it is possible to accurately respond to changes in various surrounding environments.
  • the heating condition is set to temperature
  • the first evaporator temperature (FD) is checked (S221), and if the first evaporator temperature (FD) is equal to or higher than the first storage compartment temperature (F), it is determined that the heating condition is satisfied. . That is, when the temperature of the first evaporator (FD) gradually rises during the heat transfer operation or after the heat transfer operation is completed and becomes equal to or higher than the temperature (F) of the first storage compartment, it is determined that the heating condition is satisfied and the heating heat source ( 310) generates heat (S222).
  • the first evaporator temperature FD may include the temperature of the outlet side of the refrigerant or the temperature of the outlet side of the cold air of the first evaporator 250 .
  • the time set in the pause process (S216) may be disregarded. That is, even before the time set for the pause process (S216) elapses, if the heating condition of the heating heat source 310 is satisfied, the heating heat source 310 can be controlled to generate heat.
  • the heat supply operation (S220) may include a heat exchange process of providing heat to the first evaporator 250 using circulation of the refrigerant.
  • the first evaporator 250 may be heated and the second evaporator 260 may be operated to be cooled (S223). That is, it is possible to supply cold air to the second storage chamber 102 while performing the defrosting operation of the first evaporator 250 by the heat exchange process.
  • the temperature F of the first storage compartment may increase, while the temperature R of the second storage compartment may decrease.
  • This heat exchange process may be performed by supplying cool air to the hot gas flow path 320 . That is, the high-temperature refrigerant compressed by the operation of the compressor 210 flows along the condenser 220, the discharge passage 203, and the hot gas passage 320, and then passes through the first expander 230 to the first evaporator. While flowing to 250, the first evaporator 250 is heated. Subsequently, the refrigerant heated in the first evaporator 250 is depressurized through the physical property control unit 270 and then heat-exchanged while passing through the second evaporator 260 to cool the second evaporator 260 .
  • the blowing fan 291 for the second storage compartment is operated. Accordingly, the refrigerant depressurized after passing through the physical property control unit 270 exchanges heat with the air in the second storage chamber 102 while passing through the second evaporator 260 . The air is provided back into the second storage compartment 102 to lower the temperature in the second storage compartment 102 .
  • the heat exchange process by the refrigerant may be performed prior to the exothermic process or performed later than the exothermic process according to the room temperature.
  • the heating process may be performed prior to the heat exchange process.
  • the low temperature temperature range may be a temperature range lower than a preset reference temperature range. Even when the room temperature is within the reference temperature range, the heating process may be performed prior to the heat exchange process.
  • the first evaporator 250 is first heated with the heating heat source 310, and then the first evaporator 250 is heated using a high-temperature refrigerant ( 250) may be desirable.
  • the effect of the room temperature on the first evaporator 250 is insignificant. For this reason, heating the periphery of the first evaporator 250 using the heating heat source 310 and then heating the first evaporator 250 using hot gas shortens the defrosting time of the first evaporator 250.
  • the reference temperature range may be set to an average indoor temperature range in spring and autumn, or may be a temperature considering other indoor conditions.
  • the high-temperature temperature range may be set as an average indoor temperature range in summer or may be a temperature considering other indoor conditions.
  • the heat exchange process is preferably performed when the hot gas supply condition of each storage compartment 101 or 102 is satisfied. That is, when the heat supply operation (S210) ends, the compressor 210 is stopped, and then the compressor 210 is restarted when the hot gas supply condition is satisfied.
  • These hot gas supply conditions may include various cases.
  • the hot gas supply condition may include a case where a set time elapses after power is supplied to the heating heat source 310 . For example, when 10 minutes have elapsed after supplying power to the heating heat source 310, it is determined that the hot gas supply condition is satisfied and the heat exchange process is performed.
  • the high-temperature refrigerant is supplied along the hot gas flow path 320 to the first evaporator ( 250) can be further heated.
  • the hot gas supply condition may include a case where a set time elapses after the heat supply operation of each storage chamber 101 or 102 is finished. That is, when a set time elapses after the heat supply operation (S210) ends, it may be determined that the hot gas supply condition is satisfied.
  • the first evaporator temperature (FD) reaches the set second temperature (X2) (FD ⁇ X2). °C) may be included. That is, when the first evaporator temperature (FD) reaches the set second temperature (X2) after the heat supply operation (S210) ends, it can be determined that the hot gas supply condition is satisfied.
  • the second temperature X2 may be a temperature higher than the first storage compartment temperature F and lower than the first temperature X1 at which heat generation of the heating heat source 310 is terminated.
  • the first temperature (X1) is the first evaporator temperature (FD) at the time when the heat generation of the heating heat source 310 is set to end.
  • the second temperature (X2) when the second temperature (X2) is set to the first temperature (X1) at which the heat generation of the heating heat source 310 is terminated, heating by heat from the heating heat source 310 and heating using hot gas are not simultaneously performed. may not be Considering this, the second temperature (X2) may be set to a lower temperature than the first temperature (X1) at which heat generation of the heating heat source 310 is terminated.
  • the heat generation termination condition is a condition for terminating heat generation of the heating heat source 310 and may include a case where the first evaporator temperature FD satisfies the preset first temperature X1. That is, when the first evaporator temperature (FD) reaches the first temperature (X1), it is determined that the heat generation termination condition is satisfied, and the power supplied to the heating source 310 is cut off (S224).
  • the first temperature X1 may be a temperature considering the temperature rise of the first storage chamber 101 .
  • the first temperature X1 may be set to 5°C.
  • the first temperature X1 may be equal to or higher than the second temperature X2 for confirming the satisfaction of the hot gas supply condition.
  • the heat exchange termination condition is a condition in which the supply of hot gas (refrigerant) is terminated, and may actually be a condition in which the heat supply operation (S220) for heating the first evaporator 250 is terminated.
  • These heat exchange termination conditions may include a case where the second storage chamber 102 reaches a satisfactory temperature. That is, since the second storage compartment 102 is a storage compartment for refrigerated storage, damage such as freezing of stored items may occur when the temperature drops excessively.
  • the satisfactory temperature is a temperature equal to or less than the lower limit reference temperature (NT2-Diff) set based on the set reference temperature (NT2) of the second storage compartment (102). That is, when the temperature R of the second storage compartment reaches the lower limit reference temperature (NT2-Diff) or becomes lower than the lower limit reference temperature (NT2-Diff), the supply of refrigerant to the hot gas flow path 320 is cut off.
  • N2-Diff lower limit reference temperature
  • the blowing fan 291 for the second storage compartment may be controlled to stop. That is, by delaying the time for the second storage chamber 102 to reach a satisfactory temperature, it is possible to secure time for the first evaporator 250 to be sufficiently heated.
  • the heat exchange termination condition may be determined based on the entire operation time of the heat supply operation (S220).
  • the supply of refrigerant to the hot gas flow path 320 may be cut off and the heat exchange process may be ended (S225).
  • the blowing fan 291 for the second storage compartment may be stopped.
  • the compressor 210 may be additionally operated for a certain period of time and then stopped.
  • the compressor 210 by performing a pump down operation in which the compressor 210 is additionally operated while the flow of the refrigerant is blocked, the refrigerant in the hot gas flow path 320 passes through the compressor 210 and then enters the flow path switching valve 330. let's get together Accordingly, when the compressor 310 is restarted after stopping, the refrigerant supply to the evaporators 250 and 260 can be quickly and sufficiently performed without time delay.
  • operation of the refrigerator for each situation may include a temperature return operation (S230).
  • the temperature return operation (S230) is an operation for cooling the first storage chamber 101, which has been raised by heating of the first evaporator 250, to a satisfactory range.
  • the temperature return operation (S230) may be performed at the end of the heat supply operation (S220).
  • the temperature return operation (S230) may be performed after a pause process (S231) for a set time (eg, 3 minutes) when performed at the end of the heat supply operation (S220). That is, after the pause process (S231) is performed, an operation for cooling the first storage compartment 101 is performed.
  • the blowing fan 281 for the first storage compartment may be controlled to rotate (S233).
  • the blowing fan 281 for the first storage compartment may be controlled to operate from when the first evaporator temperature FD becomes lower than the first storage compartment temperature F.
  • the cooling operation of the first storage compartment 101 ends.
  • the second storage compartment 102 and the first storage compartment 101 alternately perform the cooling operation, and then return to normal cooling operation (S100).
  • the cooling operation of the second storage compartment 102 is omitted during the heat transfer operation (S210).
  • the heat transfer operation (S210) may include a deep cooling process of cooling the first storage compartment 101. In the deep cooling process, an operation for cooling the second storage compartment 102 is not performed.
  • the deep cooling process may be performed immediately after the normal cooling operation (S100) is stopped or after a certain period of time has elapsed.
  • the normal cooling operation ends. After that, a deep cooling process for cooling the first storage chamber 101 is performed immediately or after a certain period of time has elapsed.
  • the temperature of the first storage compartment 101 is increased, and thus the food stored in the first storage compartment 101 can receive heat.
  • the first storage chamber 101 is cooled (S218) by a deep cooling process before performing the heat supply operation (S220).
  • the first refrigerant passage 201 is opened by the operation of the passage switching valve 330.
  • the compressor 210 and the cooling fan 221 are operated, and the blowing fan 281 for the first storage compartment is operated.
  • the first storage chamber 101 may be operated to cool down to a second lower limit reference temperature (NT12-Diff) set based on the second set reference temperature (NT12).
  • NT12-Diff second lower limit reference temperature
  • the second set reference temperature NT12 may be set to a different temperature from the first set reference temperature NT11.
  • the second set reference temperature NT12 may be set to a lower temperature than the first set reference temperature NT11.
  • the second lower limit reference temperature NT12-Diff may also be set to a lower temperature than the first lower limit reference temperature NT11-Diff.
  • the second set reference temperature NT12 is set equal to the first set reference temperature NT11, and the first lower limit reference temperature NT11-Diff is a temperature different from the second lower limit reference temperature NT12-Diff. may be set to Even in this case, the second lower limit reference temperature NT12-Diff may be set to a temperature lower than the first lower limit reference temperature NT11-Diff.
  • the deep cooling process ends when the temperature (F) of the first storage compartment 101 reaches the second lower limit reference temperature (NT12-Diff) (S219).
  • the heat supply operation (S210) may include a heat supply process by the auxiliary heat source 340.
  • the auxiliary heat source 340 provides heat to the second storage compartment 102 while being turned on (S217) during the heat supply operation (S210). That is, in the process of supplying heat by the auxiliary heat source 340, the temperature of the second storage compartment 102 can be increased as much as possible until the heat supply operation (S220) is performed. Accordingly, a problem in which the temperature of the second storage compartment is excessively lowered during the heat supply operation (S220) can be prevented.
  • auxiliary heat source 340 may or may not be performed based on room temperature (RT).
  • the auxiliary heat source may be controlled not to operate in the reference temperature range or a temperature range higher than the reference temperature range.
  • the control unit may continuously acquire the room temperature (RT), and the acquired room temperature (RT) determines whether or not to generate heat from the auxiliary heat source 340 when the condition of the heat supply operation (S220) is satisfied during the normal cooling operation.
  • the auxiliary heat source 340 may be operated from when the normal cooling operation (S100) is stopped and the heat transfer operation (S220) starts.
  • the auxiliary heat source 340 is turned ON (S217) (refer to FIG. 18) from when the heat supply operation (S210) starts when the condition of the heat supply operation (S220) is satisfied during the normal cooling operation (S100). Accordingly, the heat supply operation (S220) can be started with the temperature R of the second storage compartment maximally increased, and excessive drop in temperature of the second storage compartment 102 can be prevented during the heat supply operation.
  • the auxiliary heat source 340 may be controlled to stop supplying heat (S227) (see FIG. 19) when the end condition of the heat supply operation (S220) is satisfied. That is, the auxiliary heat source 340 may be controlled to continuously provide heat even during the heat supply operation. Accordingly, even when the indoor temperature is low, it is possible to prevent a phenomenon in which the temperature R of the second storage compartment is excessively lowered or the heating effect of the first evaporator 250 by the hot gas is lowered during the heat supply operation (S220).
  • the auxiliary heat source 340 may generate heat with maximum output during the heat supply operation (S210). That is, while the auxiliary heat source 340 generates heat with maximum output, the temperature of the second storage compartment 102 can be increased to the maximum. Thus, excessive drop in temperature of the second storage compartment 102 during the heat supply operation can be prevented.
  • the auxiliary heat source 340 may generate heat with a maximum output during the heat supply operation (S220) or with an output lower than the maximum output.
  • auxiliary heat source 340 is used to prevent freezing in a specific part or configuration, even when operated at maximum output, the temperature of the second storage compartment 102 does not rise rapidly or rise to an excessive temperature.
  • the second storage chamber 102 may rise to a temperature at which deterioration of stored food may be concerned. For example, when high-temperature food is put into the second storage compartment 102, the temperature inside the second storage compartment 102 may increase excessively even though the room temperature is low.
  • the auxiliary heat source 340 may stop supplying heat when the internal temperature of the second storage compartment 102 reaches an excessive temperature.
  • a cold air blocking process may be performed in which the supply of cold air into the second storage compartment 102 is blocked. That is, even if heat is provided to the second storage compartment 102, a decrease in heating effect due to the supply of cold air can be prevented.
  • This cold air blocking process may be performed by stopping the operation of the blowing fan 291 for the second storage compartment or by blocking the flow of refrigerant to the second evaporator 260 .
  • the refrigerator of the present invention can be implemented in various forms not shown unlike the above-described embodiments.
  • heat generated by the refrigerant (hot gas) flowing through the hot gas flow path 320 may be used for other purposes than the defrosting operation of the first evaporator 250 .
  • the hot gas flow path 320 may be used for heating a part requiring heat (eg, an ice maker for ice removal, a door to prevent frost formation, and a storage compartment 101 or 102 to prevent overcooling).
  • a part requiring heat eg, an ice maker for ice removal, a door to prevent frost formation, and a storage compartment 101 or 102 to prevent overcooling.
  • the hot gas flow path 320 is not divided into the first pass 321, the second pass 322, and the third pass 323, but has the same outer diameter (or inner diameter). Can be formed into a conduit.
  • the flow path switching valve 330 may be operated to simultaneously open two or more flow paths.
  • first refrigerant passage 201 and the hot gas passage 320, the second refrigerant passage 202 and the hot gas passage 320, or the first refrigerant passage 201 and the second refrigerant passage 202 may flow while being opened at the same time.
  • the refrigerator of the present invention may be formed such that the hot gas flow path 320 is branched from the flow path between the compressor 210 and the condenser 220 . That is, the high-temperature refrigerant passing through the compressor 210 may be formed so as to pass directly through the first evaporator 250 without passing through the condenser 220 and the first expander 230 by the hot gas flow path 320. will be.

Abstract

A refrigerator operation control method of the present invention includes a control method for, during a heat providing operation of the refrigerator using a hot gas flow path, preventing the overcooling of a second storage compartment, which is caused when the indoor temperature is at a low temperature state. That is, when the indoor temperature is at a low temperature state, the temperature of the second storage compartment may be maximally raised prior to carrying out the heat providing operation.

Description

냉장고의 운전 제어방법Refrigerator operation control method
본 발명은 히팅열원 및 핫가스유로를 이용하여 증발기에 열을 제공하는 냉장고의 운전 제어방법에 관련된 것이다.The present invention relates to a method for controlling the operation of a refrigerator that provides heat to an evaporator using a heating heat source and a hot gas flow path.
일반적으로, 냉장고는 냉동사이클에 따른 냉매의 순환을 이용하여 생성한 냉기로 다양한 식품을 장시간 보관하도록 제공되는 가전 기기이다.In general, a refrigerator is a home appliance provided to store various foods for a long time with cool air generated by using circulation of a refrigerant according to a refrigerating cycle.
이와 같은 냉장고는 저장물(예컨대, 식품 혹은, 음료 등)을 보관하기 위한 하나 혹은, 복수의 저장실이 서로 구획되면서 제공된다. 이러한 저장실은 압축기와 응축기와 팽창기 및 증발기를 포함하는 냉동시스템에 의해 생성된 냉기를 공급받아 설정된 온도 범위로 유지된다.In such a refrigerator, one or a plurality of storage compartments for storing storage objects (eg, food or beverages, etc.) are partitioned from each other and provided. The storage chamber receives cold air generated by a refrigeration system including a compressor, a condenser, an expander, and an evaporator, and is maintained within a set temperature range.
한편, 냉장고가 운전되는 도중에는 각 저장실 내부를 순환한 냉기가 증발기를 통과하게 되고, 이의 과정에서 상기 냉기에 포함된 수분은 상기 증발기의 표면에 착상되어 성에를 생성하게 된다.Meanwhile, while the refrigerator is operating, cold air circulating inside each storage compartment passes through an evaporator, and in the process, moisture contained in the cold air is deposited on the surface of the evaporator to form frost.
특히, 상기 증발기 표면에 생성된 성에는 점차 쌓이면서 해당 증발기를 지나는 냉기의 유동에 영향을 미치게 된다. 즉, 상기 성에량에 비례하여 증발기를 지나는 냉기 유동이 나빠지면서 열교환 효율이 저하되었다.In particular, frost formed on the surface of the evaporator gradually accumulates and affects the flow of cold air passing through the evaporator. That is, as the flow of cold air passing through the evaporator worsens in proportion to the amount of frost, the heat exchange efficiency decreases.
이로써, 종래에는 냉장고의 운전후 일정 시간이 경과되거나 혹은, 제상 운전을 위한 조건이 만족되면 증발기의 제상을 위한 운전(제상 운전)이 수행되었다.Thus, conventionally, the evaporator is operated for defrosting (defrosting operation) when a predetermined time elapses after operating the refrigerator or when conditions for the defrosting operation are satisfied.
상기 제상 운전은 해당 증발기에 설치되는 하나 혹은, 둘 이상 복수의 제상히터를 이용하여 수행되며, 이러한 제상히터의 발열에 의한 제상 운전이 수행될 때에는 각 저장실에 대한 냉각 운전이 중단된다.The defrosting operation is performed using one or a plurality of defrost heaters installed in the evaporator, and when the defrosting operation is performed by the heat generated by these defrost heaters, the cooling operation for each storage compartment is stopped.
그러나, 제상히터만 이용하는 제상 방법의 경우는 제상 운전의 종료 후 각 저장실을 설정된 온도에 이르기까지 낮추는데 상당한 시간이 소요되고, 그 만큼 전력 소모가 심하다는 단점이 있다.However, in the case of the defrosting method using only the defrosting heater, it takes a considerable amount of time to lower each storage compartment to a set temperature after the defrosting operation is finished, and there is a disadvantage in that power consumption is severe.
특히, 제상히터를 이용한 제상 방식은 균일한 제상이 되지 않아 필요 이상의 가열이 요구되며, 이로 인해 고내 온도의 상승이 야기되어 저장실 내에 저장되는 식품류에 좋지 않은 영향을 미치게 된다.In particular, a defrost method using a defrost heater does not perform uniform defrost and requires more heating than necessary, which causes an increase in the temperature in the refrigerator, which adversely affects food stored in the storage compartment.
이에 따라, 종래에는 압축기를 통과한 뜨거운 냉매(핫 가스)를 이용하는 핫 가스 제상 방식이 제공되었으며, 이를 통해 제상 시간의 단축 및 제상 운전 도중 고내 온도의 상승이 최소되도록 하였다. 이에 관련하여는 공개특허 제10-2010-0034442호(선행문헌 1)에 제시되고 있는 바와 같다.Accordingly, a hot gas defrosting method using a hot refrigerant (hot gas) passing through a compressor has been conventionally provided, thereby shortening a defrosting time and minimizing an increase in temperature inside the refrigerator during a defrosting operation. In this regard, it is as suggested in Patent Publication No. 10-2010-0034442 (Prior Document 1).
하지만, 전술된 선행문헌 1의 기술은 핫 가스 제상과 히터 제상이 실내 온도에 따라 선택적으로 이루어지기 때문에 상기 제상히터만을 이용하는 제상 운전시의 문제점이 여전히 존재할 수밖에 없다.However, in the technology of Prior Document 1 described above, since the hot gas defrosting and the heater defrosting are selectively performed according to the room temperature, there is still a problem in the defrosting operation using only the defrosting heater.
또한, 전술된 선행문헌 1의 기술은 하나의 압축기로 하나의 증발기에 대한 냉각 운전을 수행하는 냉장고에만 적용되는 기술로써, 하나의 압축기로 둘 이상의 증발기에 대한 냉각 운전을 수행하는 냉장고에는 적용될 수 없었다.In addition, the above-described technology of Prior Document 1 is applied only to a refrigerator in which a single compressor performs a cooling operation for one evaporator, and cannot be applied to a refrigerator in which a single compressor performs a cooling operation for two or more evaporators. .
한편, 최근에는 하나의 압축기로 두 증발기에 대한 냉각 운전을 수행하는 냉장고에서 핫 가스(고온 냉매)를 이용하여 증발기를 제상하는 기술이 제공되고 있다. 이는 공개특허 제10-2017-0013766호(선행문헌 2) 및 공개특허 제10-2017-0013767호(선행문헌 3)에 제시되고 있는 바와 같다.Meanwhile, recently, a technique of defrosting the evaporator using a hot gas (high-temperature refrigerant) has been provided in a refrigerator in which a single compressor performs a cooling operation for two evaporators. This is as presented in Patent Publication No. 10-2017-0013766 (Prior Document 2) and Publication Patent Publication No. 10-2017-0013767 (Prior Document 3).
상기 선행문헌 2 및 선행문헌 3에 따른 증발기의 제상 운전은 고내 식품의 신선도 유지 및 전력 소모를 최소화하기 위해 짧은 운전 시간 및 최소한의 온도 상승을 이룰 수 있는 방식으로 운전되어야 한다.The defrosting operation of the evaporator according to Prior Documents 2 and 3 should be operated in a manner capable of achieving a short operating time and minimum temperature rise in order to maintain freshness of food in the refrigerator and minimize power consumption.
그러나, 전술된 선행기술 2 및 선행기술 3의 기술은 핫 가스를 이용하여 냉동실 증발기를 제상하면서도 냉장실은 냉각되도록 운전됨에도 불구하고 핫 가스를 공급할 때 이외에는 제상히터를 이용하여 냉동실 증발기를 제상하는 방식과 동일하게 운전하였다. 이에 따라, 제상 운전을 위한 운전 시간의 단축이나 온도 상승을 최소화하는데 한계가 있었다.However, the technologies of Prior Art 2 and 3 described above defrost the freezer compartment evaporator using hot gas and defrost the freezer compartment evaporator using a defrost heater except when hot gas is supplied despite the refrigerator compartment being operated to cool. drove the same. Accordingly, there is a limitation in reducing the operating time for the defrosting operation or minimizing the temperature rise.
예컨대, 제상 운전의 수행 전에는 고내 식품의 신선도를 유지하기 위해 냉장실과 냉동실의 온도를 낮추는 운전(제상전 운전)이 수행된다.For example, before performing the defrosting operation, an operation (pre-defrosting operation) to lower the temperature of the refrigerating compartment and the freezing compartment is performed in order to maintain the freshness of the food in the refrigerator.
하지만, 전술된 선행기술 2 및 선행기술 3의 경우 냉동실용 증발기를 제상하는 도중 냉장실이 과도하게 냉각되는 문제점이 있다. However, in the case of the prior art 2 and the prior art 3 described above, there is a problem in that the refrigerating compartment is excessively cooled during defrosting of the evaporator for the freezing compartment.
물론, 냉장실의 고내 온도(R)가 과도하게 하락되면 제상 운전이 종료됨으로써 고내 식품의 손상(과냉)을 방지될 수 있다. 그러나, 상기 냉장실의 고내 온도(R)로 제상 운전의 종료 시점이 결정될 경우 냉동실용 증발기에 대한 충분한 제상이 이루어지지 못한다는 문제점이 야기된다.Of course, if the temperature R in the freezer of the refrigerator compartment excessively drops, the defrosting operation is terminated, thereby preventing damage (overcooling) of food in the freezer. However, when the end point of the defrosting operation is determined by the internal temperature R of the refrigerating compartment, a problem arises in that sufficient defrosting is not performed on the evaporator for the freezing compartment.
한편, 통상적인 제상 운전이 수행되기 전에는 제상 운전 도중 각 저장실의 온도가 상승됨을 고려하여 각 저장실을 냉각하는 딥 쿨링과정이 수행된다.Meanwhile, before the normal defrosting operation is performed, a deep cooling process for cooling each storage compartment is performed in consideration of the fact that the temperature of each storage compartment increases during the defrosting operation.
하지만, 상기 제상 운전을 수행되기 전에 딥 쿨링과정이 수행될 경우 핫 가스를 이용하는 냉동실용 증발기를 제상하는 과정에서 냉장실이 더욱 빨리 과도 냉각 온도에 도달되어 냉장실에 보관중인 식품의 손상이 야기되고, 제상이 완전히 이루어지지 않은 상태로 제상 운전이 종료된다는 문제가 있다.However, if the deep cooling process is performed before the defrosting operation, the refrigerating compartment reaches the excessive cooling temperature more quickly in the process of defrosting the evaporator for the freezing compartment using hot gas, causing damage to food stored in the refrigerating compartment. There is a problem in that the defrosting operation is terminated in a state in which this is not completely performed.
또한, 실내 온도가 낮은 겨울철에 냉동실용 증발기를 제상할 때에는 실내 온도의 영향으로 상기 냉동실용 증발기의 제상 시간이 실내 온도가 높을 때보다 더욱 오래 소요된다.In addition, when defrosting the freezer compartment evaporator in winter when the room temperature is low, the defrosting time of the freezer compartment evaporator is longer than when the room temperature is high due to the influence of the room temperature.
즉, 실내 온도가 낮은 조건에서는 냉장실로 침투하는 부하가 작기 때문에 냉동실용 증발기의 제상 중 냉장실의 온도가 금방 만족 상태를 이룬다. 이로써 냉장실로의 냉기 공급이 과도하게 이루어지는 과도 냉각으로 고내 식품의 신선도를 유지하는데 어려움이 있게 된다.That is, since the load penetrating into the refrigerating compartment is small under conditions of low indoor temperature, the temperature of the refrigerating compartment quickly reaches a satisfactory state during defrosting of the evaporator for the freezing compartment. Accordingly, it is difficult to maintain the freshness of food in the refrigerator due to excessive cooling in which cold air is excessively supplied to the refrigerator compartment.
특히, 실내 온도가 낮은 조건에서는 냉동사이클의 열교환 효율이 저하되면서 핫 가스의 온도 역시 충분히 높은 온도를 이루지 못하기 때문에 냉동실용 증발기를 제상하는데 소요되는 시간이 오래 걸릴 수밖에 없었다.In particular, in low indoor temperature conditions, the heat exchange efficiency of the refrigeration cycle decreases, and the temperature of the hot gas does not reach a sufficiently high temperature, so it takes a long time to defrost the evaporator for the freezer compartment.
또한, 핫 가스를 이용한 제상 운전은 압축기의 운전이 요구되기 때문에 제상 운전이 수행되기 전에 일정한 시간 동안 압축기의 동작이 정지되는 휴지 기간이 제공되어야 한다.In addition, since the defrosting operation using hot gas requires the operation of the compressor, a rest period in which the operation of the compressor is stopped for a predetermined time must be provided before the defrosting operation is performed.
하지만, 종래에는 상기 휴지 기간이 완전히 경과된 이후에만 제상 운전이 수행되도록 설정되었기 때문에 제상전 운전의 운전 시간을 단축할 수가 없었고, 이로써 전체 제상을 위한 운전 시간의 단축에 어려움이 있었다.However, in the prior art, since the defrosting operation is set to be performed only after the idle period has completely elapsed, the operation time of the pre-defrost operation cannot be shortened, thereby making it difficult to shorten the operation time for the entire defrost.
또한, 종래에는 제상 운전이 수행되기 전 냉장실 내의 온도가 불만 영역에 이를 경우 냉장실로의 냉기 공급을 위한 운전이 수행된다. 이로써, 제상 운전직전 냉장실로의 냉기 공급 운전이 수행될 경우 냉장실의 과냉 우려가 더욱 크게 발생될 수밖에 없었던 문제점이 있었다.Also, conventionally, when the temperature in the refrigerating compartment reaches an unsatisfactory region before the defrosting operation is performed, an operation for supplying cold air to the refrigerating compartment is performed. Accordingly, when the operation to supply cold air to the refrigerating compartment is performed immediately before the defrosting operation, there is a problem in that the risk of overcooling of the refrigerating compartment inevitably increases.
또한, 종래에는 제상전 운전에 의해 생성된 냉력은 제상전 운전이 종료됨과 동시에 더 이상 사용되지 않고 버려지는 불필요한 전력 소비가 존재한다.In addition, in the related art, the cooling power generated by the pre-defrost operation is no longer used and discarded as soon as the pre-defrost operation ends, resulting in unnecessary power consumption.
본 발명의 목적은 열제공운전이 수행되기 전 냉장실의 온도가 충분히 높게 유지될 수 있도록 하여 열제공운전 중 냉장실의 과냉이 방지될 수 있도록 하는데 있다.An object of the present invention is to prevent overcooling of the refrigerating compartment during the heat supply operation by maintaining the temperature of the refrigerating compartment sufficiently high before the heat supply operation is performed.
본 발명의 다른 목적은 열제공운전이 수행되거나 열제공운전의 수행전 혹은, 열제공운전의 수행후에 상관없이 냉장실의 온도가 식품에 영향을 미치지 않는 범위로 유지되도록 하는데 있다.Another object of the present invention is to maintain the temperature of the refrigerating compartment within a range that does not affect food regardless of whether the heat supply operation is performed, before or after the heat supply operation is performed.
본 발명의 다른 목적은 실내 온도가 낮은 조건에서도 열제공운전으로 냉동실용 증발기에 충분한 열이 제공되도록 하는데 있다.Another object of the present invention is to provide sufficient heat to an evaporator for a freezer compartment through a heat supply operation even when the room temperature is low.
본 발명의 목적은 열제공운전이 수행될 때 충분한 핫 가스가 제1증발기로 빠르게 제공될 수 있도록 하는데 있다.An object of the present invention is to provide sufficient hot gas to the first evaporator quickly when the heat supply operation is performed.
본 발명의 목적은 열제공운전이 수행되기 전 냉동실 내의 고내 온도를 최대한 낮출 수 있도록 하는데 있다.An object of the present invention is to reduce the internal temperature of the freezing chamber as much as possible before the heat supply operation is performed.
본 발명의 다른 목적은 제1증발기의 가열을 위한 운전 시간이 단축될 수 있도록 하는데 있다.Another object of the present invention is to reduce the operating time for heating the first evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 제1증발기로 열을 제공하는 열제공운전 전에 수행되는 열제공전운전이 포함될 수 있다.According to the method for controlling the operation of a refrigerator of the present invention, a heat supply operation performed before a heat supply operation in which heat is supplied to the first evaporator may be included.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 냉동사이클의 동작에 의해 생성된 핫 가스가 사용될 수 있다.According to the operation control method of the refrigerator of the present invention, hot gas generated by the operation of the refrigerating cycle may be used for the heat supply operation.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 핫 가스를 이용하여 제1증발기를 가열함과 더불어 제1증발기를 통과하면서 열교환된 냉매는 제2증발기를 냉각할 수 있다.According to the operation control method of the refrigerator of the present invention, in the heat supply operation, hot gas is used to heat the first evaporator, and the refrigerant heat-exchanged while passing through the first evaporator cools the second evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 일반 냉각운전이 종료될 때부터 열제공운전이 수행되기 전까지 열제공전운전이 수행될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat transfer operation may be performed from when the general cooling operation ends until the heat supply operation is performed.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전은 제1저장실을 냉각하는 딥 쿨링과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat transfer operation may include a deep cooling process of cooling the first storage compartment.
본 발명의 냉장고의 운전 제어방법에 따르면, 열 제공과정은 딥 쿨링과정이 종료된 후 열제공운전이 수행되기까지 압축기가 정지되는 휴지과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat supply process may include a pause process in which the compressor is stopped until the heat supply operation is performed after the deep cooling process is finished.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전이 수행될 때에는 보조열원이 동작되면서 제2저장실로 열이 제공될 수 있다.According to the operation control method of the refrigerator of the present invention, when the heat supply operation is performed, heat may be supplied to the second storage compartment while the auxiliary heat source is operated.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원은 제2저장실 내의 온도를 상승시키거나 혹은, 하락을 방지하기 위해 제공되는 적어도 하나 이상의 열원이 포함될 수 있다.According to the refrigerator operation control method of the present invention, the auxiliary heat source may include at least one heat source provided to increase or prevent a decrease in the temperature in the second storage compartment.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원은 제2저장실의 인접 벽면이나 제2저장실용 도어에 위치되는 적어도 하나 이상의 열원이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the auxiliary heat source may include at least one heat source located on an adjacent wall surface of the second storage compartment or a door for the second storage compartment.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원은 열제공전운전시 최대 출력으로 발열될 수 있다.According to the operation control method of the refrigerator of the present invention, the auxiliary heat source can generate heat with maximum output during the heat supply operation.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원은 열제공운전의 종료 조건이 만족될 경우 열 제공이 중단될 수 있다.According to the refrigerator operation control method of the present invention, the auxiliary heat source may stop supplying heat when the end condition of the heat supply operation is satisfied.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원은 제2저장실의 고내 온도가 과도온도에 도달될 경우 열 제공이 중단될 수 있다.According to the operation control method of the refrigerator of the present invention, the auxiliary heat source may stop supplying heat when the internal temperature of the second storage chamber reaches an excessive temperature.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원으로부터 열 제공이 중단되는 과도온도는 제2저장실에 대한 제1설정 기준온도(NT21)보다 높은 온도가 될 수 있다.According to the operation control method of the refrigerator of the present invention, the transient temperature at which heat supply from the auxiliary heat source is stopped may be higher than the first set reference temperature NT21 for the second storage compartment.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원으로부터 열 제공이 중단되는 과도온도는 제2저장실의 상한 기준온도(NT21+Diff) 이상의 온도가 될 수 있다.According to the operation control method of the refrigerator of the present invention, the transient temperature at which heat supply from the auxiliary heat source is stopped may be a temperature equal to or higher than the upper limit reference temperature (NT21 + Diff) of the second storage compartment.
본 발명의 냉장고의 운전 제어방법에 따르면, 보조열원에 의해 제2저장실로 열이 제공될 때 제2저장실 내로 냉기 공급이 차단되는 냉기 차단과정이 수행될 수 있다.According to the operation control method of the refrigerator of the present invention, when heat is supplied to the second storage compartment by the auxiliary heat source, a cold air blocking process may be performed in which the supply of cold air into the second storage compartment is blocked.
본 발명의 냉장고의 운전 제어방법에 따르면, 냉기 차단과정은 압축기가 정지되거나 제2저장실용 송풍팬이 정지되거나 혹은, 제2증발기로의 냉매 유동이 차단됨으로써 수행될 수 있다.According to the refrigerator operation control method of the present invention, the cold air blocking process may be performed by stopping the compressor, stopping the blowing fan for the second storage compartment, or blocking the flow of refrigerant to the second evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 딥 쿨링과정시 제1저장실은 제2하한 기준온도(NT12-Diff)에 이르기까지 냉각될 수 있다.According to the operation control method of the refrigerator of the present invention, during the deep cooling process, the first storage compartment may be cooled up to the second lower limit reference temperature (NT12-Diff).
본 발명의 냉장고의 운전 제어방법에 따르면, 제2설정 기준온도(NT12,NT22)는 제1설정 기준온도(NT11,NT21)와 다른 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the second set reference temperatures NT12 and NT22 may be set to different temperatures from the first set reference temperatures NT11 and NT21.
본 발명의 냉장고의 운전 제어방법에 따르면, 제2설정 기준온도(NT12,NT22)는 제1설정 기준온도(NT11,NT21)보다 낮은 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the second set reference temperatures NT12 and NT22 may be set to a lower temperature than the first set reference temperatures NT11 and NT21.
본 발명의 냉장고의 운전 제어방법에 따르면, 실내 온도가 기준 온도범위 이상의 온도일 경우 열제공전운전시 보조열원이 동작되지 않도록 제어될 수 있다.According to the operation control method of the refrigerator of the present invention, when the room temperature is higher than the reference temperature range, the auxiliary heat source may be controlled not to operate during the heat transfer operation.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 히팅열원을 발열하여 제1증발기를 가열하는 발열과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat supply operation may include a heating process of heating the first evaporator by generating heat from a heating heat source.
본 발명의 냉장고의 운전 제어방법에 따르면, 제1저장실용 송풍팬은 딥 쿨링과정시부터 히팅열원이 발열될 때까지 동작될 수 있다.According to the operation control method of the refrigerator of the present invention, the blower fan for the first storage compartment can be operated from the deep cooling process until the heating heat source generates heat.
본 발명의 냉장고의 운전 제어방법에 따르면, 제1저장실용 송풍팬은 압축기가 정지된 후부터 히팅열원이 발열될 때까지 속도가 증가될 수 있다.According to the operation control method of the refrigerator of the present invention, the speed of the blowing fan for the first storage compartment may be increased from when the compressor is stopped until the heating heat source generates heat.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전은 제1저장실과 제2저장실을 각각의 제2설정 기준온도(NT12,NT22)를 기준으로 설정된 제2상한 기준온도(NT12+Diff,NT22+Diff) 및 제2하한 기준온도(NT12-Diff,NT22-Diff)에 따라 냉각하도록 냉기를 공급하면서 수행될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat transfer operation is performed at the second upper limit reference temperature (NT12 + Diff, NT12 + Diff, NT22+Diff) and the second lower limit reference temperatures (NT12-Diff, NT22-Diff), cooling may be performed while supplying cold air.
본 발명의 냉장고의 운전 제어방법에 따르면, 일반 냉각운전의 제1설정 기준온도(NT11,NT21)는 열제공전운전의 제2설정 기준온도(NT12,NT22)와 다른 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the first set reference temperatures NT11 and NT21 of the normal cooling operation may be set to different temperatures from the second set reference temperatures NT12 and NT22 of the heat transfer operation.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전의 제2설정 기준온도(NT12,NT22)는 일반 냉각운전의 제1설정 기준온도(NT11,NT21)보다 낮은 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the second set reference temperatures NT12 and NT22 of the heat supply operation may be set to a lower temperature than the first set reference temperatures NT11 and NT21 of the normal cooling operation.
본 발명의 냉장고의 운전 제어방법에 따르면, 일반 냉각운전의 제1상한 기준온도(NT11+Diff,NT21+Diff)는 열제공전운전의 제2상한 기준온도(NT12+Diff,NT22+Diff)와 다른 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the first upper limit reference temperature (NT11 + Diff, NT21 + Diff) of the general cooling operation is the same as the second upper limit reference temperature (NT12 + Diff, NT22 + Diff) of the heat transfer operation. Can be set to different temperatures.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전의 제2상한 기준온도(NT12+Diff,NT22+Diff)는 일반 냉각운전의 제1상한 기준온도(NT11+Diff,NT21+Diff)보다 낮은 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the second upper limit reference temperature (NT12 + Diff, NT22 + Diff) of the heat supply operation is higher than the first upper limit reference temperature (NT11 + Diff, NT21 + Diff) of the general cooling operation. It can be set to a lower temperature.
본 발명의 냉장고의 운전 제어방법에 따르면, 일반 냉각운전의 제1하한 기준온도(NT11-Diff,NT21-Diff)는 열제공전운전의 제2하한 기준온도(NT12-Diff,NT22-Diff)와 다른 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the first lower limit reference temperatures (NT11-Diff, NT21-Diff) of the general cooling operation are the same as the second lower limit reference temperatures (NT12-Diff, NT22-Diff) of the heat transfer operation. Can be set to different temperatures.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전의 제2하한 기준온도(NT12-Diff,NT22-Diff)는 일반 냉각운전의 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮은 온도로 설정될 수 있다.According to the refrigerator operation control method of the present invention, the second lower limit reference temperatures (NT12-Diff, NT22-Diff) of the heat supply operation are higher than the first lower limit reference temperatures (NT11-Diff, NT21-Diff) of the general cooling operation. It can be set to a lower temperature.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전이 종료된 후 확인된 제2저장실의 고내 온도는 열제공운전이 수행되기 전까지 제2저장실의 냉각 운전을 위한 조건에서 제외될 수 있다.According to the refrigerator operation control method of the present invention, the internal temperature of the second storage compartment checked after the heat supply operation is completed may be excluded from the conditions for the cooling operation of the second storage compartment until the heat supply operation is performed.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전이 종료된 후 열제공운전이 수행되기 전까지 제2저장실의 고내 온도는 측정하지 않도록 제어될 수 있다.According to the operation control method of the refrigerator of the present invention, the internal temperature of the second storage chamber may be controlled not to be measured until the heat supply operation is performed after the heat supply operation is finished.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전에서는 제2저장실로 냉기를 공급하는 과정이 동시에 수행될 수 있다.According to the operation control method of the refrigerator of the present invention, in the heat supply operation, a process of supplying cold air to the second storage compartment may be simultaneously performed.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 제1증발기를 가열하는 발열과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat supply operation may include a heating process of heating the first evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 발열과정은 각 저장실의 열제공전운전이 시작된 후 제1증발기의 가열을 위한 발열 조건이 만족될 경우 수행될 수 있다.According to the refrigerator operation control method of the present invention, the heat generation process may be performed when heat supply conditions for heating the first evaporator are satisfied after the heat supply operation of each storage compartment starts.
본 발명의 냉장고의 운전 제어방법에 따르면, 발열과정은 히팅열원으로 전원을 공급하여 수행될 수 있다.According to the refrigerator operation control method of the present invention, the heating process may be performed by supplying power to a heating heat source.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 제1증발기를 가열함과 동시에 제2증발기는 냉각하는 열교환과정이 포함될 수 있다.According to the refrigerator operation control method of the present invention, the heat supply operation may include a heat exchange process of heating the first evaporator and simultaneously cooling the second evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정은 압축기에서 압축된 고온의 냉매가 핫가스유로를 따라서 제1증발기와 제2증발기를 순차적으로 유동하도록 안내되면서 수행될 수 있다.According to the refrigerator operation control method of the present invention, the heat exchange process may be performed while the high-temperature refrigerant compressed by the compressor is guided to flow sequentially through the first evaporator and the second evaporator along the hot gas flow path.
본 발명의 냉장고의 운전 제어방법에 따르면, 각 저장실의 열제공전운전이 시작된 후 핫 가스 공급조건이 만족될 경우 수행될 수 있다.According to the operation control method of the refrigerator of the present invention, after the heat supply operation of each storage compartment is started, it can be performed when hot gas supply conditions are satisfied.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정의 핫 가스 공급조건은 각 저장실의 열제공전운전이 종료된 후 설정된 시간이 경과될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, hot gas supply conditions in the heat exchange process may include a case where a set time elapses after the heat transfer operation of each storage compartment is completed.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정의 핫 가스 공급조건은 히팅열원으로의 전원 공급후 설정된 시간이 경과될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, hot gas supply conditions in the heat exchange process may include a case where a set time elapses after power is supplied to the heating heat source.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정의 핫 가스 공급조건은 각 저장실의 열제공전운전이 종료된 후 제1증발기 온도가 설정된 제1온도 범위를 만족할 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, hot gas supply conditions in the heat exchange process may include a case where the first evaporator temperature satisfies the set first temperature range after the heat transfer operation of each storage compartment is completed.
본 발명의 냉장고의 운전 제어방법에 따르면, 압축기는 열제공전운전이 종료될 경우 정지된 후 핫 가스 공급조건이 만족되면 다시 동작될 수 있다.According to the operation control method of the refrigerator of the present invention, the compressor may be stopped when the heat supply operation is finished, and then operated again when the hot gas supply condition is satisfied.
본 발명의 냉장고의 운전 제어방법에 따르면, 제1저장실용 송풍팬은 열제공전운전을 위해 제1저장실로의 냉기를 공급할 때부터 히팅열원이 발열될 때까지 동작될 수 있다.According to the operation control method of the refrigerator of the present invention, the blower fan for the first storage compartment may be operated from when cold air is supplied to the first storage compartment for heat transfer operation until the heating heat source generates heat.
본 발명의 냉장고의 운전 제어방법은 열제공전운전이 시작될 경우 보조열원의 발열에 의해 제2저장실의 온도가 최대한 상승될 수 있다.In the method for controlling the operation of the refrigerator according to the present invention, when the heat supply operation starts, the temperature of the second storage compartment can be increased to the maximum due to the heat generated by the auxiliary heat source.
본 발명에 따른 냉장고의 운전 제어방법은 열제공전운전시 열제공운전이 수행되기 전까지 제2저장실로 냉기가 공급되지 않기 때문에 열제공운전 도중 제2저장실의 온도가 과도히 하락됨이 방지된다. In the method for controlling the operation of a refrigerator according to the present invention, since cold air is not supplied to the second storage compartment until the heat supply operation is performed during the heat supply operation, excessive drop in temperature of the second storage compartment is prevented.
본 발명에 따른 냉장고의 운전 제어방법은 열제공전운전시 동작되는 보조열원이 최대 출력으로 발열되기 때문에 열제공운전 도중 제2저장실의 온도가 과도히 하락됨이 방지된다.In the operation control method of the refrigerator according to the present invention, since the auxiliary heat source operated during the heat supply operation generates heat with maximum output, the temperature of the second storage compartment is prevented from excessively dropping during the heat supply operation.
본 발명에 따른 냉장고의 운전 제어방법은 딥 쿨링과정시 제1저장실이 제2하한 기준온도(NT12-Diff)에 이르기까지 냉각되기 때문에 열제공운전에 의한 제1증발기의 온도가 상승하더라도 제1저장실의 온도가 과도히 상승됨은 방지된다.In the refrigerator operation control method according to the present invention, since the first storage compartment is cooled down to the second lower limit reference temperature (NT12-Diff) during the deep cooling process, even if the temperature of the first evaporator increases due to the heat supply operation, the first storage compartment An excessive increase in temperature is prevented.
본 발명에 따른 냉장고의 운전 제어방법은 제1저장실용 송풍팬이 열제공운전을 위해 히팅열원이 발열될 때까지 동작되기 때문에 열제공운전 전에 최대한 제1저장실이 냉각된다.In the operation control method of the refrigerator according to the present invention, since the blowing fan for the first storage compartment is operated until the heating heat source generates heat for the heat supply operation, the first storage compartment is cooled as much as possible before the heat supply operation.
본 발명에 따른 냉장고의 운전 제어방법은 제1저장실용 송풍팬이 압축기의 동작이 중단된 후 히팅열원이 발열될 때까지가 더욱 빠른 속도로 회전되기 때문에 열제공운전 전까지 충분한 냉기가 제1저장실에 공급된다.In the method for controlling the operation of a refrigerator according to the present invention, since the blowing fan for the first storage compartment rotates at a higher speed until the heating heat source generates heat after the operation of the compressor is stopped, sufficient cool air is supplied to the first storage compartment until the heat supply operation. are supplied
본 발명의 냉장고는 열제공전운전 후 열제공운전을 하기 전의 휴지과정 중 제2저장실의 냉각 운전이 수행되지 않기 때문에 열제공운전시 제2저장실의 과냉이 방지된다.In the refrigerator of the present invention, since the cooling operation of the second storage compartment is not performed during the pause process before the heat supply operation after the heat supply operation, overcooling of the second storage compartment is prevented during the heat supply operation.
본 발명의 냉장고는 열제공전운전 후 펌프 다운이 수행되기 때문에 열제공운전의 열교환과정이 수행될 때 고온의 냉매가 제1증발기에 빠르게 공급되면서도 충분히 공급된다.In the refrigerator of the present invention, since the pump-down is performed after the heat supply operation, the high-temperature refrigerant is rapidly and sufficiently supplied to the first evaporator when the heat exchange process of the heat supply operation is performed.
도 1은 본 발명의 실시예에 따른 냉장고의 전방측 외관을 나타낸 상태도1 is a state diagram showing the front appearance of a refrigerator according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 냉장고의 후방측 외관을 나타낸 상태도Figure 2 is a state diagram showing the appearance of the rear side of the refrigerator according to an embodiment of the present invention
도 3은 본 발명의 실시예에 따른 냉장고의 내부 구조를 나타낸 상태도3 is a state diagram showing the internal structure of a refrigerator according to an embodiment of the present invention;
도 4는 본 발명의 실시예에 따른 냉장고의 핫가스유로가 포함된 냉동시스템을 나타낸 상태도4 is a state diagram showing a refrigeration system including a hot gas flow path of a refrigerator according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 냉장고의 제1증발기에 핫가스유로 및 히팅열원이 설치된 상태를 설명하기 위해 나타낸 사시도5 is a perspective view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention;
도 6은 본 발명의 실시예에 따른 냉장고의 제1증발기에 핫가스유로 및 히팅열원이 설치된 상태를 설명하기 위해 나타낸 측면도6 is a side view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention;
도 7은 본 발명의 실시예에 따른 냉장고의 운전시 각 구성요소의 동작 상태를 나타낸 상태도7 is a state diagram showing an operating state of each component during operation of a refrigerator according to an embodiment of the present invention;
도 8 내지 도 10은 본 발명의 실시예에 따른 냉장고의 각 저장실의 냉각 운전시 냉매 유동을 설명하기 위해 나타낸 상태도8 to 10 are state diagrams illustrating the flow of refrigerant during a cooling operation of each storage compartment of a refrigerator according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 냉장고의 열제공전운전에 대한 순서도11 is a flowchart of a heat transfer operation of a refrigerator according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 냉장고의 열제공운전에 대한 순서도12 is a flowchart of heat supply operation of a refrigerator according to an embodiment of the present invention
도 13은 본 발명의 실시예에 따른 냉장고의 열제공운전시의 냉매 유동을 설명하기 위해 나타낸 상태도13 is a state diagram illustrating a flow of refrigerant during a heat supply operation of a refrigerator according to an embodiment of the present invention;
도 14는 본 발명의 실시예에 따른 냉장고의 온도 복귀운전에 대한 순서도14 is a flow chart for a temperature return operation of a refrigerator according to an embodiment of the present invention
도 15는 냉장고의 열제공운전 수행 전에 제2저장실의 냉각 운전을 수행할 경우 제2증발기의 냉매 입구와 냉매 출구의 온도 차이를 나타낸 그래프15 is a graph showing the temperature difference between the refrigerant inlet and the refrigerant outlet of the second evaporator when the cooling operation of the second storage compartment is performed before the heat supply operation of the refrigerator.
도 16은 냉장고의 열제공운전 수행 전에 제2저장실의 냉각 운전을 수행하지 않을 경우 제2증발기의 냉매 입구와 냉매 출구의 온도 차이를 나타낸 그래프 16 is a graph showing the temperature difference between the refrigerant inlet and the refrigerant outlet of the second evaporator when the cooling operation of the second storage chamber is not performed before the heat supply operation of the refrigerator is performed.
도 17은 본 발명의 다른 실시예에 따른 냉장고의 운전시 각 구성요소의 동작 상태를 나타낸 상태도17 is a state diagram showing an operating state of each component during operation of a refrigerator according to another embodiment of the present invention;
도 18은 본 발명의 다른 실시예에 따른 냉장고의 열제공전운전시 순서도18 is a flow chart during a heat transfer operation of a refrigerator according to another embodiment of the present invention.
도 19는 본 발명의 다른 실시예에 따른 냉장고의 열제공운전시 순서도19 is a flow chart during a heat supply operation of a refrigerator according to another embodiment of the present invention.
이하, 본 발명의 냉장고에 대한 바람직한 실시예를 첨부된 도 1 내지 도 19를 참조하여 설명한다.Hereinafter, a preferred embodiment of the refrigerator of the present invention will be described with reference to FIGS. 1 to 19 attached.
실시예의 설명에 앞서, 각 구성요소의 설치 위치에 대한 설명시 언급되는 각 방향은 실제 사용시의 설치 상태(도시된 실시예에서와 같은 상태)를 그 예로 한다.Prior to the description of the embodiment, each direction mentioned in the description of the installation position of each component takes an installation state in actual use (the same state as in the illustrated embodiment) as an example.
본 발명의 실시예에 따른 냉장고의 운전 제어방법은 상기 핫가스유로(320)를 이용한 냉장고의 열제공운전시 제2저장실(102)의 과도 냉각을 방지하기 위한 열제공전운전의 제어방법이 포함된다. 즉, 열제공운전을 수행하기 전에 제2저장실(102)의 온도를 최대한 상승시킴으로써 열제공운전시 제2저장실(102)의 과도 냉각이 방지되도록 한 것이다.The refrigerator operation control method according to an embodiment of the present invention includes a heat transfer operation control method for preventing excessive cooling of the second storage compartment 102 during the heat supply operation of the refrigerator using the hot gas flow path 320. do. That is, excessive cooling of the second storage compartment 102 during the heat supply operation is prevented by raising the temperature of the second storage compartment 102 as much as possible before performing the heat supply operation.
첨부된 도 1은 본 발명의 실시예에 따른 냉장고의 전방측 외관이다. 도 2는 본 발명의 실시예에 따른 냉장고의 후방측 외관이다. 도 3은 본 발명의 실시예에 따른 냉장고의 내부 구조이다.1 is a front side appearance of a refrigerator according to an embodiment of the present invention. 2 is a rear side appearance of a refrigerator according to an embodiment of the present invention. 3 is an internal structure of a refrigerator according to an embodiment of the present invention.
이들 도면을 참조하여 본 발명의 실시예에 따른 냉장고 및 그의 운전 제어방법을 설명한다.A refrigerator and an operation control method thereof according to an embodiment of the present invention will be described with reference to these drawings.
먼저, 본 발명의 실시예에 따른 냉장고는 적어도 하나 이상의 저장실을 제공하는 냉장고 본체(100)가 포함될 수 있다.First, a refrigerator according to an embodiment of the present invention may include a refrigerator body 100 providing at least one or more storage compartments.
상기 저장실은 저장물을 보관하는 저장 공간으로써 제1저장실(101) 및 제2저장실(102)이 포함될 수 있다. 상기 제1저장실(101) 혹은, 제2저장실(102)은 복수로 제공될 수도 있고, 별도의 저장실이 추가로 제공될 수도 있다.The storage compartment may include a first storage compartment 101 and a second storage compartment 102 as a storage space for storing stored goods. The first storage compartment 101 or the second storage compartment 102 may be provided in plurality, or a separate storage compartment may be additionally provided.
상기 제1저장실(101) 및 제2저장실(102)은 제1도어(110) 및 제2도어(120)에 의해 각각 개폐될 수 있다. 상기 제1도어(110) 및 제2도어(120)는 각각 하나만 제공되거나 혹은, 둘 이상 복수로 제공될 수 있다.The first storage compartment 101 and the second storage compartment 102 can be opened and closed by the first door 110 and the second door 120, respectively. Each of the first door 110 and the second door 120 may be provided alone, or may be provided in a plurality of two or more.
상기 각 저장실(101,102)은 일반 냉각운전에 의해 제1설정 기준온도(NT11,NT21)를 기준으로 설정된 제1상한 기준온도(NT11+Diff,NT21+Diff)와 제1하한 기준온도(NT11-Diff,NT21-Diff) 사이의 온도로 유지된다.Each of the storage chambers 101 and 102 has a first upper limit reference temperature (NT11+Diff, NT21+Diff) and a first lower limit reference temperature (NT11-Diff) set based on the first set reference temperature (NT11, NT21) by normal cooling operation. , NT21-Diff).
상기 제1저장실(101)의 제1설정 기준온도(NT11)는 저장물을 결빙할 수 있을 정도의 온도가 될 수 있다. 예컨대, 상기 제1설정 기준온도(NT11)는 0℃ 이하 -24℃ 이상의 온도로 설정될 수 있다.The first set reference temperature NT11 of the first storage chamber 101 may be a temperature sufficient to freeze stored goods. For example, the first set reference temperature NT11 may be set to a temperature of 0°C or less and -24°C or more.
상기 제2저장실(102)의 제1설정 기준온도(NT21)는 저장물이 결빙되지 않을 정도의 온도가 될 수 있다. 예컨대, 상기 제1설정 기준온도(NT21)는 32℃ 이하 0℃ 초과의 온도로 이루어질 수 있다.The first set reference temperature NT21 of the second storage chamber 102 may be a temperature at which the stored goods are not frozen. For example, the first set reference temperature NT21 may be set to a temperature below 32°C and above 0°C.
상기 제1설정 기준온도(NT11,NT21)는 사용자에 의해 설정될 수 있다. 사용자가 상기 제1설정 기준온도(NT11,NT21)를 설정하지 않을 경우에는 임의로 지정된 온도가 제1설정 기준온도(NT11,NT21)로 사용된다.The first set reference temperatures NT11 and NT21 may be set by a user. When the user does not set the first set reference temperature (NT11, NT21), an arbitrarily designated temperature is used as the first set reference temperature (NT11, NT21).
상기 각 저장실(101,102)은 상기 제1설정 기준온도(NT11,NT21)의 상한 혹은, 하한 온도에 따라 냉기가 공급되거나 혹은, 냉기 공급이 중단된다. 예컨대, 저장실(101,102) 온도가 제1상한 기준온도(NT11+Diff,NT21+Diff)를 초과할 경우 해당 저장실(101,102)로 냉기가 공급된다. 상기 저장실(101,102) 온도가 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮을 경우에는 냉기 공급이 중단된다. 이로써 각 저장실(101,102)은 제1상한 기준온도(NT11+Diff,NT21+Diff) 및 제1하한 기준온도(NT11-Diff,NT21-Diff) 사이의 온도로 유지될 수 있다.Each of the storage compartments 101 and 102 is supplied with cold air or stopped supplying cold air according to the upper limit or lower limit of the first set reference temperatures NT11 and NT21. For example, when the temperature of the storage compartments 101 and 102 exceeds the first upper limit reference temperature (NT11 + Diff, NT21 + Diff), cold air is supplied to the corresponding storage compartments 101 and 102 . When the temperatures of the storage chambers 101 and 102 are lower than the first lower limit reference temperatures NT11-Diff and NT21-Diff, the supply of cold air is stopped. As a result, each of the storage chambers 101 and 102 can be maintained at a temperature between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff).
다음으로, 본 발명의 실시예에 따른 냉장고는 보조열원(340)을 포함하여 구성된다.Next, the refrigerator according to the embodiment of the present invention is configured to include an auxiliary heat source 340 .
상기 보조열원(340)은 제1증발기(250)를 직접적으로 가열하는 목적 이외의 열원으로써 제2저장실(102)의 고내 온도를 상승시키거나 혹은, 하락을 방지할 수 있는 모든 열원이 포함될 수 있다.The auxiliary heat source 340 is a heat source other than the purpose of directly heating the first evaporator 250, and may include any heat source capable of increasing the internal temperature of the second storage compartment 102 or preventing a decrease thereof. .
상기 보조열원(340)은 제2저장실(102)의 인접 벽면이나 제2저장실용 도어(120)에 위치되는 적어도 하나 이상의 열원이 포함될 수 있다.The auxiliary heat source 340 may include at least one heat source located on an adjacent wall surface of the second storage compartment 102 or the door 120 for the second storage compartment.
예컨대, 상기 보조열원(340)은 양문형 냉장고일 경우 제2저장실용 도어(120)를 받쳐주는 필러(pillar)에 위치되는 열원이 포함될 수 있다.For example, in the case of a side-by-side refrigerator, the auxiliary heat source 340 may include a heat source positioned on a pillar supporting the door 120 for the second storage compartment.
예컨대, 상기 보조열원(340)은 제2저장실용 도어(120)에 홈바(home-bar)(냉온수기 혹은, 제빙기 등이 마련된 구조)를 가지는 냉장고일 경우 상기 홈바에 사용되는 열원이 포함될 수 있다.For example, when the auxiliary heat source 340 is a refrigerator having a home-bar (a structure in which a hot/cold water dispenser or an ice maker is provided) on the door 120 for the second storage compartment, the heat source used in the home-bar may be included.
예컨대, 상기 보조열원(340)은 제2저장실용 도어(120)의 테두리를 따라 서리 생성을 방지하도록 제공되는 열원이 포함될 수 있다.For example, the auxiliary heat source 340 may include a heat source provided to prevent frost from forming along the edge of the door 120 for the second storage compartment.
상기 보조열원(340)은 가열을 위한 용도의 열원이 아닌 램프와 같이 동작에 의해 발열되면서 제2저장실에 영향을 미칠 수 있는 열원이 될 수도 있다.The auxiliary heat source 340 may be a heat source that can affect the second storage compartment while generating heat by operation like a lamp, rather than a heat source for heating.
상기 보조열원(340)은 출력 변동이 가능하게 구성될 수 있다. 예컨대, 열제공전운전시 최대 출력으로 발열될 수 있다.The auxiliary heat source 340 may be configured to enable output variation. For example, heat can be generated with maximum output during the heat supply operation.
다음으로, 본 발명의 실시예에 따른 냉장고는 냉동시스템을 포함하여 구성된다. 상기 냉동시스템에 의해 각 저장실(101,102)이 제1설정 기준온도(NT11,NT21)로 유지될 수 있는 냉기가 공급될 수 있다.Next, a refrigerator according to an embodiment of the present invention includes a refrigeration system. The refrigeration system may supply cold air capable of maintaining the respective storage compartments 101 and 102 at the first set reference temperatures NT11 and NT21.
첨부된 도 4를 참조하여 상기 냉동시스템을 설명한다.The refrigeration system will be described with reference to attached FIG. 4 .
상기 냉동시스템에는 냉매를 압축하는 압축기(210)가 포함될 수 있다. 상기 압축기(210)는 냉장고 본체(100) 내의 기계실(103)에 위치될 수 있다.The refrigeration system may include a compressor 210 for compressing refrigerant. The compressor 210 may be located in the machine room 103 in the refrigerator body 100 .
상기 압축기(210)에는 회수유로(211)가 연결될 수 있다. 상기 회수유로(211)는 상기 압축기(210)로 회수되는 냉매의 유동을 안내한다.A recovery passage 211 may be connected to the compressor 210 . The recovery passage 211 guides the flow of the refrigerant recovered to the compressor 210 .
상기 회수유로(211)는 각 유로(예컨대, 제1냉매유로와 제2냉매유로 혹은, 핫가스유로 등)를 지난 냉매를 제공받아 압축기(210)로 안내하도록 형성된다. 도시되지는 않았으나 상기 회수유로(211)는 둘 이상 복수로 제공되면서 각각의 유로에 개별적 혹은, 복수개씩 연결되도록 구성될 수도 있다.The recovery passage 211 is formed to receive refrigerant passing through each passage (eg, a first refrigerant passage and a second refrigerant passage, or a hot gas passage, etc.) and guide it to the compressor 210 . Although not shown, two or more recovery passages 211 may be provided in plurality and connected individually or in plurality to each passage.
상기 냉동시스템에는 냉매가 응축되는 응축기(220)가 포함될 수 있다.The refrigeration system may include a condenser 220 in which refrigerant is condensed.
상기 응축기(220)는 상기 압축기(210)에서 압축된 냉매를 응축한다.The condenser 220 condenses the refrigerant compressed in the compressor 210 .
상기 응축기(220)는 냉장고 본체(100) 내의 기계실(103)에 위치될 수 있다.The condenser 220 may be located in the machine room 103 in the refrigerator body 100 .
상기 응축기(220)의 인접 부위에는 냉각팬(C-Fan)(221)이 구비될 수 있다. 예컨대, 상기 기계실(103)에는 상기 냉각팬(221)이 구비될 수 있다. 상기 냉각팬(221)의 동작에 의해 응축기(220) 내부를 지나는 냉매는 응축기(220) 외부를 지나는 공기와 서로 열교환될 수 있다. 상기 냉각팬(221)이 동작되지 않을 경우 응축기(220)를 지나는 냉매는 고온 상태로 유지된다.A cooling fan (C-Fan) 221 may be provided adjacent to the condenser 220 . For example, the cooling fan 221 may be provided in the machine room 103 . The refrigerant passing inside the condenser 220 by the operation of the cooling fan 221 may exchange heat with air passing outside the condenser 220 . When the cooling fan 221 is not operated, the refrigerant passing through the condenser 220 is maintained at a high temperature.
상기 냉각팬(221)은 상기 압축기(210)의 동작에 연동되도록 구성될 수 있다. 즉, 상기 압축기(210)가 동작할 경우에는 상기 냉각팬(221)도 동작되도록 설정될 수 있다. 미리 설정된 또 다른 상황에서는 상기 압축기(210)가 동작하더라도 상기 냉각팬(221)이 정지되도록 설정될 수 있다.The cooling fan 221 may be configured to interlock with the operation of the compressor 210 . That is, when the compressor 210 operates, the cooling fan 221 may also operate. In another preset situation, the cooling fan 221 may be set to stop even when the compressor 210 operates.
상기 냉동시스템에는 상기 응축기(220)에서 응축된 냉매를 감압하여 팽창시키는 제1팽창기(230) 및 제2팽창기(240)가 포함될 수 있다. The refrigeration system may include a first expander 230 and a second expander 240 that depressurize and expand the refrigerant condensed in the condenser 220 .
상기 제1팽창기(230)는 상기 응축기(220)를 지나 제1증발기(250)로 유동되는 냉매를 감압하도록 제공된다.The first expander 230 is provided to depressurize the refrigerant flowing into the first evaporator 250 after passing through the condenser 220 .
상기 제2팽창기(240)는 상기 응축기(220)를 지나 제2증발기(260)로 유동되는 냉매를 감압하도록 제공된다.The second expander 240 is provided to depressurize the refrigerant flowing into the second evaporator 260 after passing through the condenser 220 .
상기 냉동시스템에는 제1증발기(250) 및 제2증발기(260)가 포함될 수 있다.The refrigeration system may include a first evaporator 250 and a second evaporator 260 .
상기 제1팽창기(230)에서 감압된 냉매는 상기 제1증발기(250)를 지나면서 제1저장실(101)을 유동하는 공기(냉기)와 열교환된다.The refrigerant reduced in pressure in the first expander 230 exchanges heat with air (cold air) flowing in the first storage chamber 101 while passing through the first evaporator 250 .
상기 제2팽창기(240)에서 감압된 냉매는 상기 제2증발기(260)를 지나면서 제2저장실(102)을 유동하는 공기(냉기)와 열교환된다.The refrigerant reduced in pressure in the second expander 240 exchanges heat with air (cold air) flowing in the second storage chamber 102 while passing through the second evaporator 260 .
상기 제1증발기(250)는 제1저장실(101) 내에 위치될 수 있다. 도시되지는 않았지만 상기 제1증발기(250)는 제1저장실(101) 이외의 부위에 위치될 수도 있다.The first evaporator 250 may be located in the first storage chamber 101 . Although not shown, the first evaporator 250 may be located in a location other than the first storage chamber 101 .
상기 제1증발기(250)는 제1저장실용 송풍팬(F-Fan)(281)의 구동에 의해 유동되는 공기가 열교환된다.In the first evaporator 250, the air flowing by the driving of the F-Fan 281 for the first storage compartment undergoes heat exchange.
상기 제2증발기(260)는 제2저장실(102) 내에 위치될 수 있다. 도시되지는 않았지만 상기 제2증발기(260)는 제2저장실(102) 이외의 부위에 위치될 수도 있다.The second evaporator 260 may be located in the second storage chamber 102 . Although not shown, the second evaporator 260 may be located in a location other than the second storage chamber 102 .
상기 제2증발기(260)는 제2저장실용 송풍팬(R-Fan)(291)의 구동에 의해 유동되는 공기가 열교환된다.In the second evaporator 260, the air flowing by the driving of the R-Fan 291 for the second storage compartment undergoes heat exchange.
상기 냉동시스템에는 제1냉매유로(F-Path)(201)가 포함될 수 있다.The refrigeration system may include a first refrigerant flow path (F-Path) 201.
상기 제1냉매유로(201)는 제1팽창기(230)를 지나 제1증발기(250)로 제공되는 냉매의 유동을 안내한다.The first refrigerant passage 201 passes through the first expander 230 and guides the flow of the refrigerant supplied to the first evaporator 250 .
상기 냉동시스템은 제2냉매유로(R-Path)(202)가 포함될 수 있다.The refrigeration system may include a second refrigerant flow path (R-Path) 202 .
상기 제2냉매유로(202)는 제2팽창기(240)를 지나 제2증발기(260)로 제공되는 냉매의 유동을 안내한다.The second refrigerant passage 202 passes through the second expander 240 and guides the flow of refrigerant provided to the second evaporator 260 .
상기 냉동시스템에는 물성치 조절부(270)가 포함될 수 있다.The refrigeration system may include a physical property control unit 270.
상기 물성치 조절부(270)는 핫가스유로(320)를 통해 제1증발기(250)를 지나 제2증발기(260)로 유동되는 냉매의 유동에 저항을 제공한다. 즉, 제2증발기(250)로 제공되는 냉매의 유동에 저항을 제공하여 해당 냉매의 물성치가 조절(변동)되도록 한 것이다. 상기 냉매의 물성치는 냉매의 온도나 유량, 유속 중 어느 하나가 포함될 수 있다.The physical property controller 270 provides resistance to the flow of the refrigerant flowing through the hot gas flow path 320 to the second evaporator 260 through the first evaporator 250 . That is, resistance is provided to the flow of the refrigerant provided to the second evaporator 250 so that the physical properties of the refrigerant are adjusted (changed). The physical properties of the refrigerant may include any one of temperature, flow rate, and flow rate of the refrigerant.
상기 제1증발기(250)를 지나면서 응축되어 액화된 냉매는 상기 물성치 조절부(270)를 지나면서 제2증발기(260)에서 열교환될 수 있는 상태의 물성치를 갖게 된다. 이로써, 제2증발기(260)를 지나 압축기(210)로 회수되는 냉매의 과도한 액화로 압축기(210)의 동작 신뢰성이 저하되는 문제가 방지될 수 있다.The refrigerant condensed and liquefied while passing through the first evaporator 250 has physical properties in a state where it can be heat exchanged in the second evaporator 260 while passing through the property control unit 270 . Accordingly, a problem in which operation reliability of the compressor 210 is deteriorated due to excessive liquefaction of the refrigerant returned to the compressor 210 after passing through the second evaporator 260 can be prevented.
상기한 물성치 조절부(270)가 제공하는 저항은 제2팽창기(240)가 제공하는 저항과는 달리 형성될 수 있다. 이로써, 제1증발기(250)를 지나 제2증발기(260)로 유동되는 냉매와 상기 제1증발기(250)를 지나지 않고 제2증발기(260)로 곧장 유동되는 냉매의 물성치 차이를 줄일 수 있다.The resistance provided by the above-described physical property adjusting unit 270 may be formed differently from the resistance provided by the second expander 240 . Accordingly, a difference in physical properties between the refrigerant passing through the first evaporator 250 and flowing into the second evaporator 260 and the refrigerant flowing directly into the second evaporator 260 without passing through the first evaporator 250 can be reduced.
상기 물성치 조절부(270)는 유로 길이와, 유로 내의 압력, 유로 내의 냉매가 이루는 밀도를 고려하여 설계될 수 있다. 즉, 물성치 조절부(270)의 유로 길이, 유로 내의 압력, 유로 내의 냉매가 이루는 밀도 중 적어도 어느 한 인자를 변경함으로써 저항이 조절될 수 있다.The physical property control unit 270 may be designed in consideration of the flow path length, the pressure within the flow path, and the density of the refrigerant within the flow path. That is, the resistance may be adjusted by changing at least one of the flow path length of the material property controller 270, the pressure within the flow path, and the density of the refrigerant within the flow path.
상기 물성치 조절부(270)는 제2팽창기(240)와 다른 직경 혹은, 다른 길이로 형성될 수 있다. 이를 통해 물성치 조절부(270)에서 물성치가 조절된 후 제2증발기(260)로 유입되는 냉매는 제2팽창기(240)를 통과한 냉매의 물성치와 거의 유사 혹은, 동일하게 이루어질 수 있게 된다.The physical property control unit 270 may be formed with a different diameter or a different length from that of the second expander 240 . Through this, the refrigerant flowing into the second evaporator 260 after the physical properties are adjusted in the physical property controller 270 can be made substantially similar to or identical to the physical properties of the refrigerant that has passed through the second expander 240 .
일 예로써, 상기 물성치 조절부(270)는 제2팽창기(240)와 동일한 직경으로 형성되고, 길이는 다르게 형성될 수 있다. 예컨대, 상기 물성치 조절부(270)는 제2팽창기(240)보다 짧게 형성될 수 있다. 상기 물성치 조절부(270)와 제2팽창기(240)는 직경이 동일할 경우 공용으로 사용될 수 있다는 장점을 가진다.As an example, the physical property control unit 270 may have the same diameter as the second expander 240 and may have a different length. For example, the physical property control unit 270 may be shorter than the second expander 240 . The physical property control unit 270 and the second expander 240 have the advantage that they can be used in common if they have the same diameter.
다른 예로써 상기 물성치 조절부(270)는 제2팽창기(240)와 동일한 길이로 형성되고, 직경이 다르게 형성될 수 있다. 예컨대, 상기 물성치 조절부(270)는 제2팽창기(240)보다 관경이 더욱 크게 형성될 수 있다.As another example, the physical property control unit 270 may be formed to have the same length as the second expander 240 and have a different diameter. For example, the material property control unit 270 may have a larger pipe diameter than the second expander 240 .
상기 냉동시스템에는 유로전환밸브(330)가 포함될 수 있다.The refrigeration system may include a flow path conversion valve 330.
상기 응축기(220)를 통과한 냉매는 토출유로(203)를 따라 안내되도록 형성될 수 있다.The refrigerant passing through the condenser 220 may be guided along the discharge passage 203 .
상기 제1냉매유로(201)와 제2냉매유로(202) 및 핫가스유로(320)는 상기 토출유로(203)로부터 각각 분지되도록 형성될 수 있다. 상기 유로전환밸브(330)는 상기 토출유로(203)로부터 각 유로(201,202,320)가 분지되는 부위에 설치될 수 있다. 즉, 상기 유로전환밸브(330)의 동작에 의해 상기 토출유로(203)로 유동되는 냉매가 제1냉매유로(201)나 제2냉매유로(202) 혹은, 핫가스유로(320) 중 어느 한 유로에 공급될 수 있도록 한 것이다.The first refrigerant passage 201, the second refrigerant passage 202, and the hot gas passage 320 may be formed to be branched from the discharge passage 203, respectively. The flow path conversion valve 330 may be installed at a portion where each flow path 201 , 202 , and 320 is branched from the discharge flow path 203 . That is, the refrigerant flowing into the discharge passage 203 by the operation of the flow path switching valve 330 is transferred to either the first refrigerant flow path 201, the second refrigerant flow path 202, or the hot gas flow path 320. It was made available to the euro.
상기 유로전환밸브(330)는 적어도 하나 이상 제공될 수 있다. 예컨대, 상기 유로전환밸브(330)는 사방밸브(4way-valve)로 형성될 수 있다.At least one flow path conversion valve 330 may be provided. For example, the flow path conversion valve 330 may be formed as a 4-way valve.
상기 유로전환밸브(330)가 둘 이상 복수로 제공될 경우 상기 유로전환밸브(330)는 적어도 하나의 삼방밸브(3way valve)나 체크밸브(check valve) 혹은, 솔레노이드 밸브를 포함할 수 있다.When two or more flow path switching valves 330 are provided in plurality, the flow path switching valve 330 may include at least one 3-way valve, check valve, or solenoid valve.
상기 냉동시스템에는 핫가스유로(H-Path)(320)가 포함될 수 있다.The refrigeration system may include a hot gas flow path (H-Path) 320.
상기 핫가스유로(320)는 열이 필요한 곳으로 고온의 열을 제공한다.The hot gas flow path 320 provides high-temperature heat to a place where heat is needed.
상기 핫가스유로(320)는 압축기(210)에서 압축되어 응축기(220)를 통과한 냉매(핫 가스)를 안내하도록 형성될 수 있다. 즉, 핫가스유로(320)에 의해 안내되는 핫 가스(고온 냉매)가 열을 제공하게 된다.The hot gas passage 320 may be formed to guide the refrigerant (hot gas) compressed by the compressor 210 and passing through the condenser 220 . That is, the hot gas (high-temperature refrigerant) guided by the hot gas passage 320 provides heat.
상기 핫가스유로(320)는 상기 제1냉매유로(201) 및 제2냉매유로(202)와는 별개로 냉매(핫 가스) 유동을 안내하도록 형성된다. 상기 핫가스유로(320)는 상기 토출유로(203)에 연결되면서 상기 토출유로(203)로 안내되는 핫 가스(고온 냉매)가 제1팽창기(230)를 경유하지 않고 제1증발기(250)로 제공된 후 상기 제1증발기(250)를 지나 제2증발기(260)로 제공되도록 형성될 수 있다. 즉, 상기 핫가스유로(320)에 의해 압축기(210)에서 압축된 고온의 냉매는 제1증발기(250)를 지나면서 해당 제1증발기(250)를 가열할 수 있게 된다.The hot gas passage 320 is formed to guide the flow of a refrigerant (hot gas) separately from the first refrigerant passage 201 and the second refrigerant passage 202 . The hot gas passage 320 is connected to the discharge passage 203, and the hot gas (high temperature refrigerant) guided to the discharge passage 203 is directed to the first evaporator 250 without passing through the first expander 230. After being provided, it may pass through the first evaporator 250 and be provided to the second evaporator 260 . That is, the high-temperature refrigerant compressed in the compressor 210 by the hot gas flow path 320 can heat the first evaporator 250 while passing through the first evaporator 250 .
상기 핫가스유로(320)는 유로전환밸브(330)로부터 제1증발기(250)에 이르기까지의 제1패스(321)를 포함한다.The hot gas passage 320 includes a first pass 321 from the passage switching valve 330 to the first evaporator 250 .
상기 제1패스(321)는 상기 응축기(220)로부터 상기 유로전환밸브(330)에 이르기까지의 토출유로(203)와 동일한 직경을 갖도록 형성될 수 있다. 이로써, 토출유로(203)와 제1패스(321)의 공용화가 가능하게 된다.The first pass 321 may be formed to have the same diameter as the discharge passage 203 extending from the condenser 220 to the passage conversion valve 330 . As a result, common use of the discharge passage 203 and the first pass 321 is possible.
상기 핫가스유로(320)는 상기 제1증발기(250)를 통과하는 제2패스(322)를 포함한다.The hot gas flow path 320 includes a second pass 322 passing through the first evaporator 250 .
상기 제2패스(322)는 제1증발기(250)를 이루는 각 열교환핀(251)에 관통된 후 확관 작업을 통해 상기 열교환핀(251)에 접촉되도록 형성될 수 있다. 이로써 제2패스(322)를 지나는 핫 가스는 제1증발기(250)에 결빙된 성에를 원활히 제거할 수 있다.The second pass 322 may be formed to contact the heat exchange pins 251 through a pipe expansion operation after penetrating through each of the heat exchange pins 251 constituting the first evaporator 250 . As a result, the hot gas passing through the second pass 322 can smoothly remove the frost frozen in the first evaporator 250 .
상기 핫가스유로(320)는 상기 제2패스(322)로부터 상기 물성치 조절부(270)에 이르기까지의 제3패스(323)를 포함한다.The hot gas flow path 320 includes a third pass 323 from the second pass 322 to the physical property adjusting unit 270 .
상기 제3패스(323)는 상기 제1패스(321)와 동일한 직경을 갖도록 형성될 수 있다.The third pass 323 may be formed to have the same diameter as the first pass 321 .
상기 냉동시스템에는 안내유로(350)가 포함될 수 있다.The refrigeration system may include a guide passage 350.
상기 안내유로(350)는 상기 제2팽창기(240) 혹은, 물성치 조절부(270)를 지나 제2증발기(260)로 유동되는 냉매를 안내한다.The guide passage 350 guides the refrigerant flowing into the second evaporator 260 via the second expander 240 or the property control unit 270 .
상기 제2팽창기(240) 혹은, 물성치 조절부(270)를 지난 냉매는 상기 안내유로(350)를 각각 통과하거나 혹은, 상기 안내유로(350)에서 서로 혼합된 후 제2증발기(260)로 유동될 수 있다. 이로써 제2팽창기(240)를 통과하여 상기 제2증발기(260)로 유입되는 냉매의 물성치와 물성치 조절부(270)를 통과하여 제2증발기(260)로 유입되는 냉매의 물성치 편차는 줄어들 수 있다.The refrigerant passing through the second expander 240 or the property control unit 270 passes through the guide passage 350 or is mixed with each other in the guide passage 350 and then flows into the second evaporator 260. It can be. As a result, the deviation between the physical properties of the refrigerant passing through the second expander 240 and flowing into the second evaporator 260 and the physical properties of the refrigerant flowing into the second evaporator 260 through the property adjusting unit 270 can be reduced. .
다음으로, 본 발명의 실시예에 따른 냉장고는 히팅열원(310)이 포함될 수 있다.Next, the refrigerator according to the embodiment of the present invention may include a heating source 310 .
상기 히팅열원(310)은 상기 핫가스유로(320)와 함께 고온의 열을 제공하는 열원이다.The heating heat source 310 is a heat source that provides high-temperature heat together with the hot gas flow path 320 .
상기 히팅열원(310) 혹은, 핫가스유로(320)에 의해 제공되는 열은 다양하게 사용될 수 있다. 예컨대, 제1증발기(250)를 제상하기 위해 상기 히팅열원(310)이 제공하는 열 혹은, 핫가스유로(320)에 의해 제공되는 열이 사용될 수 있다.Heat provided by the heating heat source 310 or the hot gas flow path 320 may be used in various ways. For example, heat provided by the heating heat source 310 or heat provided by the hot gas flow path 320 may be used to defrost the first evaporator 250 .
상기 히팅열원(310)은 전원 공급에 의해 발열되는 시스 히터(Sheath HTR)로 형성될 수 있다.The heating heat source 310 may be formed of a sheath heater (Sheath HTR) that generates heat by power supply.
상기 히팅열원(310)은 상기 제1증발기(250)의 어느 한 인접 부위에 구비될 수 있다. 예컨대, 상기 히팅열원(310)은 상기 제1증발기(250)를 이루는 가장 하측 열의 열교환핀(251)의 저부에 위치될 수 있다. 이는 첨부된 도 5 및 도 6과 같다.The heating heat source 310 may be provided at any one adjacent part of the first evaporator 250 . For example, the heating heat source 310 may be located at the bottom of the heat exchange fin 251 of the lowest row constituting the first evaporator 250 . This is the same as the attached Figures 5 and 6.
상기 히팅열원(310)은 제1증발기(250)를 이루는 가장 하측열의 열교환핀(251)으로부터 이격되게 위치될 수 있다. 이로써, 히팅열원(310)의 발열로 생성된 열기는 상승 유동되면서 제1증발기(250)를 가열할 수 있다.The heating heat source 310 may be positioned to be spaced apart from the heat exchange fin 251 of the lowermost row constituting the first evaporator 250 . Thus, the heat generated by the heat generated by the heating heat source 310 may heat the first evaporator 250 while flowing upward.
한편, 미설명 부호 280은 제1저장실 내로의 냉기 유동을 안내하는 제1그릴어셈블리이다. 미설명 부호 290은 제2저장실 내로의 냉기 유동을 안내하는 제2그릴어셈블리이다.Meanwhile, reference numeral 280 denotes a first grill assembly that guides the flow of cold air into the first storage compartment. Reference numeral 290 denotes a second grill assembly that guides the flow of cold air into the second storage compartment.
하기에서는, 전술된 본 발명의 실시예에 따른 냉장고를 이용한 각 상황별 운전을 첨부된 도 7 내지 도 13을 참조하여 상세히 설명한다.In the following, operation for each situation using the refrigerator according to the embodiment of the present invention described above will be described in detail with reference to FIGS. 7 to 13 attached.
설명에 앞서, 본 발명의 실시예에 따른 냉장고는 제어부에 의해 각종 운전이 수행될 수 있다. 상기 제어부는 냉장고에 제공되는 컨트롤러이거나, 상기 냉장고의 컨트롤러를 원격 제어할 수 있도록 연결된 네트워크상의 제어 수단(예컨대, 홈 네트워크나, 온라인 상의 서비스 서버 등)일 수가 있다.Prior to the description, various operations of the refrigerator according to an embodiment of the present invention may be performed by a controller. The control unit may be a controller provided in the refrigerator or a control means (eg, a home network, an online service server, etc.) on a network connected to remotely control the controller of the refrigerator.
먼저, 상기 각 상황별 운전에는 일반 냉각운전(S100)이 포함될 수 있다.First, the operation for each situation may include a general cooling operation (S100).
이러한 일반 냉각운전(S100)은 제1저장실(101)과 제2저장실(102)을 각각의 제1설정 기준온도(NT11,NT21)에 따라 냉각하는 운전이다. 첨부된 도 8은 상기 일반 냉각운전(S100)의 과정을 나타낸 순서도이다.This general cooling operation (S100) is an operation for cooling the first storage compartment 101 and the second storage compartment 102 according to the respective first set reference temperatures NT11 and NT21. 8 is a flowchart showing the process of the general cooling operation (S100).
즉, 각 저장실(101,102)별 제1설정 기준온도(NT11,NT21)를 기준으로 제1상한 기준온도(NT11+Diff,NT21+Diff) 또는, 제1하한 기준온도(NT11-Diff,NT21-Diff)에 따라 냉기가 공급(S121,S131)되거나 혹은, 냉기 공급이 중단(S122,S132)되면서 일반 냉각운전(S100)이 수행된다.That is, based on the first set reference temperature (NT11, NT21) for each storage chamber (101, 102), the first upper limit reference temperature (NT11+Diff, NT21+Diff) or the first lower limit reference temperature (NT11-Diff, NT21-Diff) ), cold air is supplied (S121, S131) or cold air supply is stopped (S122, S132), and a general cooling operation (S100) is performed.
예컨대, 제1저장실(101)의 고내 온도가 제1상한 기준온도(NT11+Diff)를 초과하여 불만 온도를 이루면 제1저장실(101)에 냉기가 공급(S131)된다. 그리고, 제1저장실(101)의 고내 온도가 제1하한 기준온도(NT11-Diff)에 도달하면 제1저장실(101)로의 냉기 공급이 중단(S132)된다.For example, when the internal temperature of the first storage compartment 101 exceeds the first upper limit reference temperature (NT11 + Diff) and reaches an unsatisfactory temperature, cold air is supplied to the first storage compartment 101 (S131). Then, when the internal temperature of the first storage compartment 101 reaches the first lower limit reference temperature (NT11-Diff), the supply of cold air to the first storage compartment 101 is stopped (S132).
상기 제1저장실(101)로 냉기가 공급될 경우 압축기(210)와 냉각팬(C-Fan)(221)이 동작된다. 상기 제1저장실(101)로 냉기가 공급될 경우 유로전환밸브(330)는 제1냉매유로(201)를 통해 냉매가 유동되도록 동작된다. 이는 첨부된 도 9와 같다.When cold air is supplied to the first storage compartment 101, the compressor 210 and the cooling fan (C-Fan) 221 are operated. When cold air is supplied to the first storage compartment 101, the flow path switching valve 330 is operated so that the refrigerant flows through the first refrigerant flow path 201. This is the same as the attached figure 9.
상기 압축기(210)의 동작에 의해 압축된 냉매는 응축기(220)를 통과하는 과정에서 응축되고, 상기 응축된 냉매는 제1팽창기(230)를 통과하면서 감압되어 팽창된다. The refrigerant compressed by the operation of the compressor 210 is condensed while passing through the condenser 220, and the condensed refrigerant is reduced in pressure and expanded while passing through the first expander 230.
상기 제1팽창기(230)에서 팽창된 냉매는 제1증발기(250)를 통과하는 도중 상기 제1증발기(250)를 지나는 공기와 열교환된다. 상기 제1증발기(250)에서 열교환된 냉매는 회수유로(211)를 통해 압축기(210)로 회수된 후 압축되는 순환 동작을 반복한다.The refrigerant expanded in the first expander 230 exchanges heat with air passing through the first evaporator 250 while passing through the first evaporator 250 . The refrigerant heat-exchanged in the first evaporator 250 is returned to the compressor 210 through the return passage 211 and then compressed, repeating a circular operation.
상기 제1저장실(101)로의 냉기 공급을 위해 상기 압축기(210)가 동작될 경우 제1저장실용 송풍팬(281)이 동작된다. 이로써, 제1저장실(101) 내의 공기는 제1증발기(250)를 통과하여 제1저장실(101) 내로 재공급되는 순환 동작을 반복한다. 상기 제1저장실(101) 내의 공기는 상기 제1증발기(250)를 통과하는 도중 상기 제1증발기(250)와 열교환되어 더욱 낮은 온도로 제1저장실(101) 내에 공급되어 상기 제1저장실(101) 내의 온도를 낮춘다.When the compressor 210 is operated to supply cold air to the first storage compartment 101, the blowing fan 281 for the first storage compartment is operated. As a result, the air in the first storage compartment 101 passes through the first evaporator 250 and is re-supplied into the first storage compartment 101, repeating a circulation operation. The air in the first storage compartment 101 exchanges heat with the first evaporator 250 while passing through the first storage compartment 250, and is supplied into the first storage compartment 101 at a lower temperature, and the first storage compartment 101 ) lower the temperature inside.
상기 압축기(210)와 냉각팬(221) 및 제1저장실용 송풍팬(281)이 동작되는 도중 제1저장실(101)의 고내 온도(F)가 하한 기준온도(NT1-Diff)에 도달하면 제1저장실(101)로의 냉기 공급이 중단(S132)된다. 즉, 상기 압축기(210)와 냉각팬(221) 및 제1저장실용 송풍팬(281)이 정지된다.When the internal temperature (F) of the first storage compartment 101 reaches the lower limit reference temperature (NT1-Diff) while the compressor 210, the cooling fan 221, and the blowing fan 281 for the first storage compartment are operating, The supply of cold air to the first storage compartment 101 is stopped (S132). That is, the compressor 210, the cooling fan 221, and the blowing fan 281 for the first storage compartment are stopped.
상기 일반 냉각운전(S100)시 제2저장실(102)의 고내 온도(제2저장실 온도)(R)가 제1상한 기준온도(NT21+Diff)를 초과하여 불만 온도를 이루면 제2저장실(102)에 냉기가 공급되도록 운전(S121)된다.During the normal cooling operation (S100), when the internal temperature (second storage compartment temperature) (R) of the second storage compartment 102 exceeds the first upper limit reference temperature (NT21 + Diff) to reach an unsatisfactory temperature, the second storage compartment 102 It is operated to supply cold air to (S121).
상기 제2저장실(102)로 냉기가 공급될 경우 압축기(210)와 냉각팬(C-Fan)(221)이 동작된다. 상기 제2저장실(102)로 냉기가 공급될 경우 유로전환밸브(330)는 제2냉매유로(202)를 통해 냉기가 유동되도록 동작된다.When cold air is supplied to the second storage compartment 102, the compressor 210 and the cooling fan (C-Fan) 221 are operated. When cold air is supplied to the second storage chamber 102 , the flow path switching valve 330 is operated so that cold air flows through the second refrigerant flow path 202 .
상기 압축기(210)가 동작되면 냉매가 압축되고, 상기 압축된 냉매는 응축기(220)를 통과하는 과정에서 응축된다. 상기 응축된 냉매는 제2팽창기(240)를 통과하면서 감압되어 팽창된다. When the compressor 210 is operated, the refrigerant is compressed, and the compressed refrigerant is condensed while passing through the condenser 220 . The condensed refrigerant is reduced in pressure and expanded while passing through the second expander 240 .
계속해서, 상기 냉매는 제2증발기(260)를 통과하여 주변을 흐르는 공기와 열교환된 후 회수유로(211)를 따라 압축기(210)로 유동되어 압축되는 순환 동작을 반복한다. 이는 첨부된 도 10과 같다.Subsequently, the refrigerant passes through the second evaporator 260, exchanges heat with air flowing around the refrigerant, flows into the compressor 210 along the return passage 211, and repeats a circulation operation in which it is compressed. This is shown in the attached figure 10.
상기 제2저장실(102)로 냉기가 공급될 경우 제2저장실용 송풍팬(291)이 동작된다. 이로써, 제2저장실(102) 내의 공기는 제2증발기(260)를 통과하여 제2저장실(102) 내로 재공급되는 순환 동작을 반복한다. 상기 공기는 상기 제2증발기(260)를 통과하는 도중 상기 제2증발기(260)와 열교환되어 더욱 낮은 온도로 제2저장실(102) 내에 공급되어 상기 제2저장실(102) 내의 온도(R)를 낮춘다.When cold air is supplied to the second storage compartment 102, the blowing fan 291 for the second storage compartment is operated. As a result, the air in the second storage compartment 102 passes through the second evaporator 260 and is re-supplied into the second storage compartment 102 to repeat the circulation operation. The air exchanges heat with the second evaporator 260 while passing through the second evaporator 260 and is supplied into the second storage compartment 102 at a lower temperature, thereby reducing the temperature R in the second storage compartment 102. lower it
상기 압축기(210)와 냉각팬(221) 및 제2저장실용 송풍팬(291)이 동작되는 도중 상기 제2저장실(102)의 고내 온도(R)가 하한 기준온도(NT2-Diff)에 도달하면 제2저장실(102)로의 냉기 공급이 중단(S122)된다. 즉, 제2저장실(102)의 고내 온도(R)가 하한 기준온도(NT21-Diff)에 도달하면 상기 압축기(210)와 냉각팬(221) 및 제2저장실용 송풍팬(291)이 정지된다.When the internal temperature R of the second storage compartment 102 reaches the lower limit reference temperature (NT2-Diff) while the compressor 210, the cooling fan 221, and the blowing fan 291 for the second storage compartment are operating. The supply of cold air to the second storage compartment 102 is stopped (S122). That is, when the internal temperature R of the second storage compartment 102 reaches the lower limit reference temperature (NT21-Diff), the compressor 210, the cooling fan 221, and the blowing fan 291 for the second storage compartment are stopped. .
상기 제1저장실(101)과 제2저장실(102)의 고내 온도(F,R)가 함께 불만 온도(제1상한 기준온도(NT11+Diff,NT21+Diff)보다 높은 온도)를 이룰 수 있다. 이의 경우 어느 한 저장실로 냉기가 우선적으로 공급되도록 운전된 후 다른 한 저장실로 냉기가 공급되도록 운전될 수 있다.The internal temperature (F, R) of the first storage compartment 101 and the second storage compartment 102 together can form a dissatisfaction temperature (temperature higher than the first upper limit reference temperature (NT11 + Diff, NT21 + Diff)). In this case, the operation may be performed so that cold air is preferentially supplied to one storage compartment and then operated to supply cold air to another storage compartment.
바람직하게는, 제2저장실(102)로 냉기가 우선적으로 공급되어 만족 온도(제1상한 기준온도(NT11+Diff,NT21+Diff)와 제1하한 기준온도(NT11-Diff,NT21-Diff) 사이의 온도)를 이루도록 한 후 제1저장실(101)로 냉기가 공급되도록 운전될 수 있다. 이는 제2저장실(102)이 상온으로 유지되는 저장실이기 때문에 해당 저장실(102)에 보관되는 저장물이 온도 변화에 민감할 수 있기 때문이다.Preferably, cold air is preferentially supplied to the second storage compartment 102 to satisfy a temperature (between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff)). After achieving a temperature of), it may be operated so that cold air is supplied to the first storage compartment 101 . This is because since the second storage compartment 102 is a storage compartment maintained at room temperature, the stored goods stored in the corresponding storage compartment 102 may be sensitive to temperature changes.
다음으로, 냉장고의 각 상황별 운전에는 열제공전운전(S210)이 포함될 수 있다.Next, the operation of the refrigerator for each situation may include a heat transfer operation (S210).
상기 열제공전운전(S210)은 일반 냉각운전(S100) 도중 열제공운전(S220)의 시작 조건이 만족되었을 경우 상기 열제공운전(S220)을 수행하기 전에 실시된다.The heat supply operation (S210) is performed before the heat supply operation (S220) when the start condition of the heat supply operation (S220) is satisfied during the normal cooling operation (S100).
이러한 열제공전운전(S210)은 제1저장실(101)과 제2저장실(102)을 순차적으로 냉각(S211,S212)하도록 이루어질 수 있다.The heat transfer operation (S210) may be performed to sequentially cool the first storage compartment 101 and the second storage compartment 102 (S211 and S212).
즉, 열제공운전(S220)이 수행되는 도중 각 저장실(101,102)의 온도가 상승되더라도 보관물에 영향을 미치지 않도록 하기 위해 열제공운전(S220)의 수행 전에 열제공전운전(S210)을 수행하여 각 저장실(101,102)을 냉각하는 것이다. 이는 첨부된 도 11과 같다.That is, even if the temperature of each storage chamber (101, 102) rises while the heat supply operation (S220) is being performed, in order not to affect the stored goods, the heat supply operation (S220) is performed by performing the heat supply operation (S210) It is to cool each storage chamber (101, 102). This is shown in the attached figure 11.
상기 열제공전운전(S210)시 상기 각 저장실(101,102)은 제2설정 기준온도(NT12,NT22)를 기준으로 설정된 제2하한 기준온도(NT12-Diff,NT22-Diff)에 이르기까지 냉각되도록 운전될 수 있다.During the heat transfer operation (S210), the storage compartments 101 and 102 are operated to cool down to the second lower limit reference temperature (NT12-Diff, NT22-Diff) set based on the second set reference temperature (NT12, NT22). It can be.
상기 제2설정 기준온도(NT12,NT22)는 제1설정 기준온도(NT11,NT21)와 다른 온도로 설정될 수 있다. 예컨대, 상기 제2설정 기준온도(NT12,NT22)는 상기 제1설정 기준온도(NT11,NT21)보다 낮은 온도로 설정될 수 있다. 이로써 제2하한 기준온도(NT12-Diff,NT22-Diff) 역시 상기 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮은 온도로 설정될 수 있다.The second set reference temperatures NT12 and NT22 may be set to different temperatures from the first set reference temperatures NT11 and NT21. For example, the second set reference temperatures NT12 and NT22 may be set to a lower temperature than the first set reference temperatures NT11 and NT21. Accordingly, the second lower limit reference temperatures NT12-Diff and NT22-Diff may also be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
물론, 제2설정 기준온도(NT12,NT22)는 제1설정 기준온도(NT11,NT21)와 동일하게 설정되면서 상기 제1하한 기준온도(NT11-Diff,NT21-Diff)가 상기 제2하한 기준온도(NT12-Diff,NT22-Diff)와 다른 온도로 설정될 수도 있다. 이의 경우에도, 상기 제2하한 기준온도(NT12-Diff,NT22-Diff)는 상기 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮은 온도로 설정될 수 있다.Of course, the second set reference temperature (NT12, NT22) is set to be the same as the first set reference temperature (NT11, NT21), and the first lower limit reference temperature (NT11-Diff, NT21-Diff) is the second lower limit reference temperature. It may be set to a temperature different from (NT12-Diff, NT22-Diff). Even in this case, the second lower limit reference temperatures NT12-Diff and NT22-Diff may be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
상기 열제공전운전(S210)시에는 유로전환밸브(330)의 동작에 의해 제2냉매유로(202) 및 제1냉매유로(201)가 순차적으로 개방 혹은, 폐쇄된다. 상기 열제공전운전(S210)시에는 압축기(210) 및 냉각팬(221)은 계속 동작된다. 상기 열제공전운전(S210)시에는 제2저장실용 송풍팬(291)과 제1저장실용 송풍팬(281)이 순차적으로 동작된다.During the heat transfer operation (S210), the second refrigerant passage 202 and the first refrigerant passage 201 are sequentially opened or closed by the operation of the passage switching valve 330. During the heat transfer operation (S210), the compressor 210 and the cooling fan 221 continue to operate. During the heat transfer operation (S210), the blower fan 291 for the second storage compartment and the blower fan 281 for the first storage compartment are sequentially operated.
예컨대, 제1저장실(101)의 냉각 운전시(S212)에는 유로전환밸브(330)의 동작에 의해 제1냉매유로(201)로 냉매가 유동된다. 상기 제1저장실(101)의 냉각 운전시(S212)에는 압축기(210)와 냉각팬(221)이 동작된다. 상기 제1저장실(101)의 냉각 운전시(S212)에는 제1저장실용 송풍팬(281)이 동작될 수 있다.For example, during the cooling operation of the first storage chamber 101 (S212), the refrigerant flows into the first refrigerant passage 201 by the operation of the flow path switching valve 330. During the cooling operation of the first storage compartment 101 (S212), the compressor 210 and the cooling fan 221 are operated. During the cooling operation of the first storage compartment 101 (S212), the blowing fan 281 for the first storage compartment may be operated.
만일, 제2저장실(102)의 냉각 운전시(S211)에는 유로전환밸브(330)의 동작에 의해 제2냉매유로(202)로 냉매가 유동된다. 상기 제2저장실(102)의 냉각 운전시(S211)에는 압축기(210)와 냉각팬(221)이 동작된다. 상기 제2저장실(102)의 냉각 운전시(S211)에는 제2저장실용 송풍팬(291)이 동작될 수 있다.If, during the cooling operation of the second storage compartment 102 (S211), the refrigerant flows into the second refrigerant flow path 202 by the operation of the flow path switching valve 330. During the cooling operation of the second storage compartment 102 (S211), the compressor 210 and the cooling fan 221 are operated. During the cooling operation of the second storage compartment 102 (S211), the blowing fan 291 for the second storage compartment may be operated.
상기 열제공전운전(S210)은 제2저장실(102)부터 우선적으로 냉각된 후 제1저장실(101)이 냉각되도록 운전될 수 있다. 즉, 열제공운전(S220)시에는 제2저장실(102)의 온도가 점차 낮아지기 때문에 제2저장실(102)을 제1저장실(101)보다 먼저 냉각하여 열제공운전(S220)시 제1저장실(101)의 온도 하락을 줄이도록 한다.The heat transfer operation (S210) may be operated such that the second storage compartment 102 is preferentially cooled and then the first storage compartment 101 is cooled. That is, since the temperature of the second storage compartment 102 gradually decreases during the heat supply operation (S220), the second storage compartment 102 is cooled before the first storage compartment 101, and during the heat supply operation (S220), the first storage compartment ( 101) to reduce the temperature drop.
상기 열제공전운전(S210)의 제1저장실(101)에 대한 냉각이 종료(S213)될 때에는 펌프 다운(Pump Down)되도록 제어될 수 있다. 즉, 열제공전운전(S210)이 종료되어 유로전환밸브(330)가 각 유로(201,202)로의 냉매 유동이 차단되도록 동작될 경우 압축기(210)는 일정 시간동안 추가 운전되도록 한다. 이에 따라 제2증발기(260)에 모인 냉매가 압축기(210)로 회수될 수 있다. 이로써 열제공운전(S220)의 열교환과정이 수행될 경우 고온의 냉매가 제1증발기(250)에 빠르게 공급되면서도 충분한 양이 공급될 수 있다.When the cooling of the first storage compartment 101 in the heat transfer operation (S210) is finished (S213), the pump may be controlled to be down. That is, when the heat transfer operation (S210) ends and the flow path switching valve 330 is operated to block the flow of refrigerant to the respective flow paths 201 and 202, the compressor 210 is additionally operated for a predetermined time. Accordingly, the refrigerant collected in the second evaporator 260 may be recovered to the compressor 210 . Accordingly, when the heat exchange process of the heat supply operation (S220) is performed, the high-temperature refrigerant can be rapidly supplied to the first evaporator 250 and supplied in a sufficient amount.
상기 제1저장실(101)의 냉각이 완료(S213)된 후 열제공운전(S220)이 수행되기 전까지는 일정 시간동안 휴지과정(S216)이 수행된다. 즉, 휴지과정(S216)에 의해 압축기(210)가 과도하게 연속 동작됨을 방지할 수 있다. 이는 첨부된 도 7과 도 11 및 도 12에 도시된 바와 같다.After the cooling of the first storage compartment 101 is completed (S213), a pause process (S216) is performed for a predetermined time until the heat supply operation (S220) is performed. That is, excessive continuous operation of the compressor 210 can be prevented by the pause process (S216). This is as shown in the attached FIGS. 7, 11 and 12.
상기 휴지과정(S216)은 시간으로 설정될 수 있다. 예컨대, 열제공전운전(S210)이 완료된 후 설정된 시간동안 압축기(210)가 정지될 수 있다.The pause process (S216) may be set by time. For example, the compressor 210 may be stopped for a set time after the heat supply operation (S210) is completed.
바람직하게는, 상기 휴지과정(S216)은 압축기(210)의 최소 휴지시간보다 오랜 시간으로 설정될 수 있다. 예컨대, 압축기(210)의 최소 휴지시간이 2분일 경우 상기 휴지과정은 3분으로 설정될 수 있다.Preferably, the pause process (S216) may be set to a longer time than the minimum pause time of the compressor 210. For example, when the minimum pause time of the compressor 210 is 2 minutes, the pause process may be set to 3 minutes.
한편, 상기 열제공전운전(S210) 중 제1저장실용 송풍팬(281)은 제1저장실(101)로 냉기가 공급될 때부터 제1증발기 온도(FD)가 제1저장실 온도(F)에 도달할 때까지 동작될 수 있다. Meanwhile, during the heat transfer operation (S210), the first storage compartment blower fan 281 sets the temperature of the first evaporator (FD) to the first storage compartment temperature (F) from when cold air is supplied to the first storage compartment (101). It can be operated until reaching
즉, 열제공운전(S220)이 수행되기 전 열제공전운전(S210)이 종료되더라도 제1저장실용 송풍팬(281)은 열제공운전(S220)이 수행될 때까지 추가로 운전된다. 이로써 제1증발기(250)의 온도가 빠르게 상승되어 열제공운전(S220)시 제1증발기(250)의 가열을 위한 시간이 단축될 수 있다.That is, even if the heat supply operation (S210) ends before the heat supply operation (S220) is performed, the blowing fan 281 for the first storage compartment is additionally operated until the heat supply operation (S220) is performed. As a result, the temperature of the first evaporator 250 rises rapidly, and the time for heating the first evaporator 250 during the heat supply operation (S220) can be shortened.
상기 제1저장실용 송풍팬(281)은 제1저장실(101)의 냉각이 완료(S213)되어 압축기(210)가 정지되기 전보다 압축기(210)가 정지된 후부터 히팅열원(310)의 발열 조건이 만족될 때까지가 더욱 빠른 속도로 회전(S214)될 수 있다. The blowing fan 281 for the first storage compartment 281 has completed the cooling of the first storage compartment 101 (S213) and the heating condition of the heating heat source 310 is higher after the compressor 210 is stopped than before the compressor 210 is stopped. Until it is satisfied, it may be rotated at a higher speed (S214).
즉, 상기 제1저장실용 송풍팬(281)이 추가로 운전되는 도중에는 열제공전운전(S210)시 회전 속도보다 빠르게 회전되도록 제어함으로써 열제공전운전(S210) 후 제2저장실(102)을 순환하는 유량이 최대화되도록 한 것이다. 이로써, 제1증발기 온도(FD)가 제1저장실 온도(F)와 같아지기까지의 소요 시간을 단축시킬 수 있게 된다.That is, while the fan 281 for the first storage compartment is additionally operated, the second storage compartment 102 is circulated after the heat transfer operation (S210) by controlling the rotation to be faster than the rotation speed during the heat transfer operation (S210). This is to maximize the flow rate. Accordingly, it is possible to shorten the time required for the first evaporator temperature FD to become equal to the first storage compartment temperature F.
상기 제1저장실(101)의 냉각이 완료(S213)되어 압축기(210)가 정지되기 전 제1저장실용 송풍팬(281) 회전 속도는 일반 냉각운전(S100)시 제1저장실(101)을 냉각하기 위해 수행되는 회전 속도보다 느리거나 혹은, 동일하게 설정될 수 있다.The cooling of the first storage compartment 101 is completed (S213) and the rotational speed of the first storage compartment fan 281 before the compressor 210 is stopped cools the first storage compartment 101 during the normal cooling operation (S100). It may be set to be slower than or equal to the rotation speed performed to do so.
상기 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지는 제2저장실(102)로의 냉기 공급이 차단될 수 있다. 즉, 상기 열제공전운전(S210) 후 열제공운전(S220)을 하기 전의 휴지과정(S216) 중 제2저장실(102) 내의 온도가 불만 영역을 이루더라도 제2저장실(102)의 냉각 운전은 수행되지 않는다. 이에 따라 열제공운전(S220)시 제2저장실(102)의 과냉이 방지될 수 있다.The supply of cold air to the second storage compartment 102 may be blocked until the heat supply operation (S220) is performed after the heat supply operation (S210) is finished. That is, even if the temperature in the second storage compartment 102 reaches the dissatisfied region during the rest process (S216) before the heat supply operation (S220) after the heat transfer operation (S210), the cooling operation of the second storage compartment (102) not carried out Accordingly, during the heat supply operation (S220), overcooling of the second storage compartment 102 can be prevented.
상기 냉기 공급을 차단하는 방법(혹은, 냉각 운전을 수행하지 않는 방법)은 다양하게 제공될 수 있다.A method of blocking the cold air supply (or a method of not performing a cooling operation) may be provided in various ways.
일 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 확인된 제2저장실 온도(R)를 제2저장실(102)의 냉각 운전을 위한 조건에서 제외할 수 있다. 즉, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지는 제2저장실 온도(R)가 불만족 온도(제2상한 기준온도(NT22+diff)를 초과한 온도)이더라도 제2저장실(102)의 냉각 운전이 수행되지 않도록 한다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As an example, after the heat supply operation (S210) is finished, the second storage compartment temperature (R) checked before the heat supply operation (S220) is performed may be excluded from the conditions for the cooling operation of the second storage compartment (102). can That is, after the heat supply operation (S210) is completed and before the heat supply operation (S220) is performed, the second storage room temperature (R) is an unsatisfactory temperature (temperature exceeding the second upper limit reference temperature (NT22 + diff)). Even if it is, the cooling operation of the second storage chamber 102 is not performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 압축기(210)가 정지되도록 제어할 수 있다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, after the heat supply operation (S210) ends, the compressor 210 may be controlled to stop until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
또 다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 제2저장실 온도(R)는 측정하지 않는다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, after the heat supply operation (S210) is finished, the second storage compartment temperature (R) is not measured until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
또 다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 제2증발기(260)로 유동되는 냉매 공급이 차단되도록 유로전환밸브(330)를 제어할 수 있다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, after the heat supply operation (S210) ends, the flow path switching valve 330 may be controlled so that the refrigerant supply flowing to the second evaporator 260 is blocked until the heat supply operation (S220) is performed. there is. As a result, supply of cold air to the second storage compartment 102 may be blocked.
또 다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 제2저장실용 송풍팬(291)이 정지되도록 제어할 수 있다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, the blower fan 291 for the second storage compartment may be controlled to stop after the heat supply operation ( S210 ) ends until the heat supply operation ( S220 ) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
첨부된 도 15의 그래프와 같이 상기 휴지과정(S216) 중 제2저장실(102) 내의 온도가 불만 영역을 이루어 제2저장실(102)의 냉각 운전을 수행하게 되면 제2증발기(260)의 냉매 입구 및 냉매 출구 온도가 급격히 차이나게 된다. 이에 따라 냉매 부족현상이 발생될 수 있다.As shown in the graph of FIG. 15, when the temperature in the second storage compartment 102 reaches the dissatisfied area during the shutdown process (S216) and the cooling operation of the second storage compartment 102 is performed, the refrigerant inlet of the second evaporator 260 is performed. And the refrigerant outlet temperature is rapidly different. Accordingly, a refrigerant shortage may occur.
하지만, 첨부된 도 16의 그래프와 같이 휴지과정(S216) 중 제2저장실(102) 내의 온도가 불만 영역을 이루더라도 제2저장실(102)의 냉각 운전을 수행하지 않으면 제2증발기(260)의 냉매 입구 및 냉매 출구 온도 차이가 줄어들어 냉매 부족현상이 방지될 수 있다.However, as shown in the accompanying graph of FIG. 16, even if the temperature in the second storage compartment 102 reaches the dissatisfied area during the shutdown process (S216), if the cooling operation of the second storage compartment 102 is not performed, the second evaporator 260 The temperature difference between the refrigerant inlet and the refrigerant outlet is reduced, so that a refrigerant shortage phenomenon can be prevented.
다음으로, 냉장고의 각 상황별 운전에는 열제공운전(S220)이 포함될 수 있다.Next, the operation of the refrigerator for each situation may include a heat supply operation (S220).
상기 열제공운전(S220)은 제1증발기(250)를 가열하기 위한 열을 제공하는 운전이 될 수 있다. 예컨대, 제1증발기(250)의 표면에 생성된 서리를 제상하기 위해 상기 열제공운전(S220)이 사용될 수 있다.The heat supply operation (S220) may be an operation to provide heat for heating the first evaporator (250). For example, the heat supply operation (S220) may be used to defrost frost generated on the surface of the first evaporator 250.
첨부된 도 12 및 도 13을 참조하여 상기 열제공운전(S220)을 설명한다.The heat supply operation (S220) will be described with reference to FIGS. 12 and 13 attached.
상기 열제공운전(S220)은 운전조건이 만족될 경우 수행될 수 있다.The heat supply operation (S220) may be performed when the operation conditions are satisfied.
일 예로써, 휴지과정(S216)의 종료 여부를 확인하여 휴지과정(S216)이 종료될 경우 열제공운전(220)의 운전조건이 만족된 것으로 판단될 수 있다.As an example, it may be determined that the operation conditions of the heat supply operation 220 are satisfied when the pause process S216 is terminated by checking whether the pause process S216 is terminated.
다른 예로써, 상기 제1증발기(250)의 제상 운전이 필요할 경우 열제공운전(S220)의 운전조건이 만족된 것으로 판단할 수 있다. 상기 제상 운전은 제1증발기(250)를 통과하는 냉기의 양이나 유속을 확인하거나, 압축기(210)의 적산 운전 시간이 설정된 시간을 경과하였는지를 확인하거나, 제1저장실(101)이 일정 시간 연속으로 불만 온도로 유지되는지를 확인함으로써 운전의 필요 여부를 판단할 수 있다.As another example, when the defrosting operation of the first evaporator 250 is required, it may be determined that the operating condition of the heat supply operation (S220) is satisfied. The defrosting operation checks the amount or flow rate of cold air passing through the first evaporator 250, checks whether the cumulative operation time of the compressor 210 has elapsed, It is possible to determine whether operation is necessary by checking whether the temperature is maintained at the unsatisfactory temperature.
상기 제상 운전의 필요 여부를 확인하여 열제공운전(S220)의 운전조건이 만족된 것으로 확인될 경우 상기 열제공전운전(S210)이 우선적으로 수행된 후 열제공운전(S220)이 수행될 수 있다.When it is determined whether the defrosting operation is necessary and the operating conditions of the heat supply operation (S220) are satisfied, the heat supply operation (S220) may be performed after the heat supply operation (S210) is performed first. .
상기 열제공운전(S220)은 히팅열원(310)을 이용하여 제1증발기(250)에 열을 제공하는 발열과정이 포함될 수 있다.The heat supply operation (S220) may include a heating process of providing heat to the first evaporator 250 using the heating heat source 310.
상기 발열과정은 각 저장실(101,102)의 열제공전운전(S210)이 시작된 후 제1증발기(250)의 가열을 위한 발열 조건이 만족되면 수행될 수 있다. 즉, 발열 조건이 만족되어야만 히팅열원(310)을 발열하여 제1증발기(250)를 가열하는 것이다.The heating process may be performed when the heating conditions for heating the first evaporator 250 are satisfied after the heat supply operation (S210) of each storage chamber 101 or 102 starts. That is, the first evaporator 250 is heated by generating heat from the heating source 310 only when the heating condition is satisfied.
상기 발열과정의 발열 조건은 시간으로 설정될 수 있다. 예컨대, 열제공전운전(S210)이 종료된 후 설정된 시간이 경과되면 발열 조건을 만족한 것으로 판단될 수도 있는 것이다.An exothermic condition of the exothermic process may be set by time. For example, it may be determined that the heating condition is satisfied when a set time elapses after the heat supply operation (S210) ends.
하지만, 발열 조건이 시간으로 설정된다면 다양한 주변 환경의 변화에 대응하기가 어려운 단점이 야기될 수 있다. 이를 고려한다면 상기 발열과정의 발열 조건은 온도로 설정됨이 바람직할 수 있다. 즉, 발열 조건을 온도로 설정함으로써 다양한 주변 환경의 변화에도 정확히 대응할 수 있게 된다.However, if the heating condition is set to time, a disadvantage in that it is difficult to respond to changes in various surrounding environments may be caused. Considering this, it may be preferable that the heating condition of the heating process is set to temperature. That is, by setting the heating condition to temperature, it is possible to accurately respond to changes in various surrounding environments.
상기 발열 조건이 온도로 설정되는 경우는 제1증발기 온도(FD)를 확인(S221)하여 제1증발기 온도(FD)가 제1저장실 온도(F)와 같거나 높을 경우 발열 조건을 만족함으로 판단된다. 즉, 열제공전운전 도중 혹은, 열제공전운전이 완료된 후 제1증발기 온도(FD)가 점차 상승되어 제1저장실 온도(F)와 같거나 높아지면 발열 조건이 만족된 것으로 판단하여 히팅열원(310)이 발열(S222)되는 것이다.When the heating condition is set to temperature, the first evaporator temperature (FD) is checked (S221), and if the first evaporator temperature (FD) is equal to or higher than the first storage compartment temperature (F), it is determined that the heating condition is satisfied. . That is, when the temperature of the first evaporator (FD) gradually rises during the heat transfer operation or after the heat transfer operation is completed and becomes equal to or higher than the temperature (F) of the first storage compartment, it is determined that the heating condition is satisfied and the heating heat source ( 310) generates heat (S222).
상기 제1증발기 온도(FD)는 상기 제1증발기(250)의 냉매 유출측 온도 혹은, 냉기 유출측 온도가 포함될 수 있다.The first evaporator temperature FD may include the temperature of the outlet side of the refrigerant or the temperature of the outlet side of the cold air of the first evaporator 250 .
상기한 발열 조건의 만족으로 히팅열원(310)이 발열될 경우에는 휴지과정(S216)으로 설정된 시간이 무시될 수 있다. 즉, 휴지과정(S216)으로 설정된 시간이 경과하기 전이라도 상기 히팅열원(310)의 발열 조건이 만족되면 히팅열원(310)이 발열되도록 제어될 수 있다.When the heating heat source 310 generates heat due to the satisfaction of the heat generating condition described above, the time set in the pause process (S216) may be disregarded. That is, even before the time set for the pause process (S216) elapses, if the heating condition of the heating heat source 310 is satisfied, the heating heat source 310 can be controlled to generate heat.
물론, 제1증발기 온도(FD)가 제1저장실 온도(F)에 도달되더라도 압축기(210)의 최소 휴지시간이 경과되지 않는다면 상기 최소 휴지시간이 경과될 때까지 히팅열원(310)의 발열이 지연되도록 제어될 수도 있다.Of course, even if the temperature of the first evaporator (FD) reaches the temperature of the first storage compartment (F), if the minimum idle time of the compressor 210 does not elapse, heat generation of the heating source 310 is delayed until the minimum idle time has elapsed. It may be controlled as much as possible.
상기 열제공운전(S220)은 냉매의 순환을 이용하여 제1증발기(250)에 열을 제공하는 열교환과정이 포함될 수 있다.The heat supply operation (S220) may include a heat exchange process of providing heat to the first evaporator 250 using circulation of the refrigerant.
상기한 열교환과정에서는 상기 제1증발기(250)가 가열됨과 동시에 제2증발기(260)는 냉각되도록 운전(S223)될 수 있다. 즉, 열교환과정에 의해 제1증발기(250)에 대한 제상 운전을 수행하면서도 제2저장실(102)로 냉기를 공급하는 것이 가능한 것이다.In the heat exchange process described above, the first evaporator 250 may be heated and the second evaporator 260 may be operated to be cooled (S223). That is, it is possible to supply cold air to the second storage chamber 102 while performing the defrosting operation of the first evaporator 250 by the heat exchange process.
이로써, 열교환과정이 수행될 경우에는 제1저장실 온도(F)는 상승되는 반면, 제2저장실 온도(R)는 하락될 수 있다.Thus, when the heat exchange process is performed, the temperature F of the first storage compartment may increase, while the temperature R of the second storage compartment may decrease.
이러한 열교환과정은 핫가스유로(320)에 냉기를 공급함으로써 수행될 수 있다. 즉, 압축기(210)의 동작에 의해 압축된 고온의 냉매는 응축기(220)와 토출유로(203)와 핫가스유로(320)를 따라 유동된 후 제1팽창기(230)를 거치지 않고 제1증발기(250)로 유동되면서 상기 제1증발기(250)를 가열한다. 계속해서 상기 제1증발기(250)를 가열한 냉매는 물성치 조절부(270)를 통해 감압된 후 제2증발기(260)를 통과하면서 열교환되어 상기 제2증발기(260)를 냉각시키게 된다.This heat exchange process may be performed by supplying cool air to the hot gas flow path 320 . That is, the high-temperature refrigerant compressed by the operation of the compressor 210 flows along the condenser 220, the discharge passage 203, and the hot gas passage 320, and then passes through the first expander 230 to the first evaporator. While flowing to 250, the first evaporator 250 is heated. Subsequently, the refrigerant heated in the first evaporator 250 is depressurized through the physical property control unit 270 and then heat-exchanged while passing through the second evaporator 260 to cool the second evaporator 260 .
상기 열교환과정이 수행될 경우에는 제2저장실용 송풍팬(291)이 동작된다. 이에 따라, 물성치 조절부(270)를 지나 감압된 냉매가 제2증발기(260)를 지나는 과정에서 제2저장실(102) 내의 공기와 열교환된다. 상기 공기는 제2저장실(102) 내로 다시 제공되어 상기 제2저장실(102) 내의 온도를 하락시키게 된다.When the heat exchange process is performed, the blowing fan 291 for the second storage compartment is operated. Accordingly, the refrigerant depressurized after passing through the physical property control unit 270 exchanges heat with the air in the second storage chamber 102 while passing through the second evaporator 260 . The air is provided back into the second storage compartment 102 to lower the temperature in the second storage compartment 102 .
한편, 상기 냉매에 의한 열교환과정은 실내 온도에 따라 발열과정보다 우선하여 수행되거나 혹은, 발열과정보다 늦게 수행될 수 있다.On the other hand, the heat exchange process by the refrigerant may be performed prior to the exothermic process or performed later than the exothermic process according to the room temperature.
예컨대, 실내 온도가 저온 온도범위에서는 발열과정이 상기 열교환과정보다 우선적으로 수행될 수 있다. 상기 저온 온도범위는 미리 설정된 기준 온도범위보다 낮은 온도범위가 될 수 있다. 상기 실내 온도가 기준 온도범위일 경우에도 발열과정이 상기 열교환과정보다 우선적으로 수행되도록 설정될 수 있다.For example, in a temperature range where the room temperature is low, the heating process may be performed prior to the heat exchange process. The low temperature temperature range may be a temperature range lower than a preset reference temperature range. Even when the room temperature is within the reference temperature range, the heating process may be performed prior to the heat exchange process.
즉, 상기 열교환과정으로 제2저장실(102)의 온도가 과도하게 떨어질 수 있음을 고려할 때 히팅열원(310)으로 제1증발기(250)를 우선적으로 가열한 후 고온 냉매를 이용하여 제1증발기(250)를 추가적으로 가열하는 것이 바람직할 수 있다.That is, considering that the temperature of the second storage chamber 102 may drop excessively due to the heat exchange process, the first evaporator 250 is first heated with the heating heat source 310, and then the first evaporator 250 is heated using a high-temperature refrigerant ( 250) may be desirable.
상기 실내 온도가 고온 온도범위가 아니라면 실내 온도가 제1증발기(250)에 미치는 영향이 미미하다. 이 때문에 히팅열원(310)을 이용하여 제1증발기(250)의 주변을 가열한 후 핫 가스를 이용하여 제1증발기(250)를 가열하는 것이 제1증발기(250)를 제상하는 시간을 단축시킬 수 있다.If the room temperature is not in the high temperature range, the effect of the room temperature on the first evaporator 250 is insignificant. For this reason, heating the periphery of the first evaporator 250 using the heating heat source 310 and then heating the first evaporator 250 using hot gas shortens the defrosting time of the first evaporator 250. can
상기 기준 온도범위는 봄 가을철의 평균적인 실내 온도 범위로 설정되거나 혹은, 여타의 실내 상황을 고려한 온도가 될 수 있다. 상기 고온 온도범위는 여름철의 평균적인 실내 온도 범위로 설정되거나 혹은, 여타의 실내 상황을 고려한 온도가 될 수 있다.The reference temperature range may be set to an average indoor temperature range in spring and autumn, or may be a temperature considering other indoor conditions. The high-temperature temperature range may be set as an average indoor temperature range in summer or may be a temperature considering other indoor conditions.
상기 열교환과정은 각 저장실(101,102)의 핫 가스 공급조건이 만족될 경우 수행됨이 바람직하다. 즉, 열제공전운전(S210)이 종료될 경우 압축기(210)가 정지된 후 핫 가스 공급조건이 만족되면 상기 압축기(210)가 재동작되도록 한 것이다.The heat exchange process is preferably performed when the hot gas supply condition of each storage compartment 101 or 102 is satisfied. That is, when the heat supply operation (S210) ends, the compressor 210 is stopped, and then the compressor 210 is restarted when the hot gas supply condition is satisfied.
이러한 핫 가스 공급조건에는 다양한 경우가 포함될 수 있다.These hot gas supply conditions may include various cases.
일 예로써, 핫 가스 공급조건에는 히팅열원(310)으로의 전원 공급후 설정된 시간이 경과될 경우가 포함될 수 있다. 예컨대, 히팅열원(310)으로의 전원 공급후 10분이 경과되면 핫 가스 공급조건이 만족됨으로 판단하여 열교환과정이 수행된다.As an example, the hot gas supply condition may include a case where a set time elapses after power is supplied to the heating heat source 310 . For example, when 10 minutes have elapsed after supplying power to the heating heat source 310, it is determined that the hot gas supply condition is satisfied and the heat exchange process is performed.
이로써, 히팅열원(310)의 발열된 후 히팅열원(310)으로부터의 열기가 제1증발기(250)에 영향을 제공할 경우 핫가스유로(320)를 따라 고온 냉매가 공급되면서 상기 제1증발기(250)를 추가로 가열할 수 있게 된다.Thus, when heat from the heating heat source 310 is generated and the heat from the heating heat source 310 affects the first evaporator 250, the high-temperature refrigerant is supplied along the hot gas flow path 320 to the first evaporator ( 250) can be further heated.
다른 예로써, 상기 핫 가스 공급조건에는 각 저장실(101,102)의 열제공전운전이 종료된 후 설정된 시간이 경과될 경우가 포함될 수도 있다. 즉, 열제공전운전(S210)이 종료된 후 설정된 시간이 경과되면 핫 가스 공급조건이 만족됨으로 판단할 수 있다.As another example, the hot gas supply condition may include a case where a set time elapses after the heat supply operation of each storage chamber 101 or 102 is finished. That is, when a set time elapses after the heat supply operation (S210) ends, it may be determined that the hot gas supply condition is satisfied.
또 다른 예로써, 상기 핫 가스 공급조건에는 각 저장실(101,102)의 열제공전운전(S210)이 종료된 후 상기 제1증발기 온도(FD)가 설정된 제2온도(X2)에 도달(FD≥X2℃)할 경우가 포함될 수도 있다. 즉, 열제공전운전(S210)이 종료된 후 제1증발기 온도(FD)가 설정된 제2온도(X2)에 도달하면 핫 가스 공급조건이 만족됨으로 판단할 수 있다.As another example, in the hot gas supply condition, after the heat supply operation (S210) of each storage chamber (101, 102) is completed, the first evaporator temperature (FD) reaches the set second temperature (X2) (FD≥X2). ℃) may be included. That is, when the first evaporator temperature (FD) reaches the set second temperature (X2) after the heat supply operation (S210) ends, it can be determined that the hot gas supply condition is satisfied.
상기 제2온도(X2)는 제1저장실 온도(F)보다 높은 온도이면서 히팅열원(310)의 발열이 종료되는 제1온도(X1) 이하의 온도가 될 수 있다. 상기 제1온도(X1)는 상기 히팅열원(310)의 발열이 종료되도록 설정되는 시점의 제1증발기 온도(FD)이다.The second temperature X2 may be a temperature higher than the first storage compartment temperature F and lower than the first temperature X1 at which heat generation of the heating heat source 310 is terminated. The first temperature (X1) is the first evaporator temperature (FD) at the time when the heat generation of the heating heat source 310 is set to end.
물론, 상기 제2온도(X2)가 히팅열원(310)의 발열이 종료되는 제1온도(X1)로 설정될 경우 히팅열원(310)의 발열에 의한 가열과 핫 가스를 이용한 가열이 동시에 수행되지 않을 수 있다. 이를 고려할 때 상기 제2온도(X2)는 히팅열원(310)의 발열이 종료되는 제1온도(X1)보다는 낮은 온도로 설정됨이 바람직할 수 있다.Of course, when the second temperature (X2) is set to the first temperature (X1) at which the heat generation of the heating heat source 310 is terminated, heating by heat from the heating heat source 310 and heating using hot gas are not simultaneously performed. may not be Considering this, the second temperature (X2) may be set to a lower temperature than the first temperature (X1) at which heat generation of the heating heat source 310 is terminated.
상기 열제공운전(S220)의 발열과정과 열교환과정이 동시 혹은, 순차적으로 수행되는 도중 발열 종료조건 혹은, 열교환 종료조건이 만족되면 발열과정이 종료(S224)되거나 혹은, 열교환과정이 종료(S225)된다.While the heat generation process and the heat exchange process of the heat supply operation (S220) are performed simultaneously or sequentially, when the heat generation termination condition or the heat exchange termination condition is satisfied, the heat generation process ends (S224) or the heat exchange process ends (S225) do.
상기 발열 종료조건은 히팅열원(310)의 발열을 종료하기 위한 조건으로써 제1증발기 온도(FD)가 미리 설정된 제1온도(X1)를 만족할 경우가 포함될 수 있다. 즉, 제1증발기 온도(FD)가 제1온도(X1)에 도달되면 발열 종료조건이 만족됨으로 판단하여 히팅열원(310)으로 공급되는 전원을 차단(S224)하게 된다.The heat generation termination condition is a condition for terminating heat generation of the heating heat source 310 and may include a case where the first evaporator temperature FD satisfies the preset first temperature X1. That is, when the first evaporator temperature (FD) reaches the first temperature (X1), it is determined that the heat generation termination condition is satisfied, and the power supplied to the heating source 310 is cut off (S224).
상기 제1온도(X1)는 제1저장실(101)의 온도 상승을 고려한 온도가 될 수 있다. 예컨대, 상기 제1온도(X1)는 5℃로 설정될 수 있다. 특히, 상기 제1온도(X1)는 상기 핫 가스 공급조건의 만족을 확인하기 위한 제2온도(X2)와 같거나 상기 제2온도(X2)보다 높은 온도로 설정될 수도 있다.The first temperature X1 may be a temperature considering the temperature rise of the first storage chamber 101 . For example, the first temperature X1 may be set to 5°C. In particular, the first temperature X1 may be equal to or higher than the second temperature X2 for confirming the satisfaction of the hot gas supply condition.
상기 열교환 종료조건은 핫 가스(냉매) 공급이 종료되는 조건으로써 사실상 제1증발기(250)를 가열하는 열제공운전(S220)이 종료되는 조건이 될 수 있다.The heat exchange termination condition is a condition in which the supply of hot gas (refrigerant) is terminated, and may actually be a condition in which the heat supply operation (S220) for heating the first evaporator 250 is terminated.
이러한 열교환 종료조건은 제2저장실(102)이 만족 온도에 도달될 경우가 포함될 수도 있다. 즉, 제2저장실(102)의 경우 냉장 보관을 위한 저장실이기 때문에 과도한 온도 하락시 보관물이 어는 등의 손상이 발생될 수 있다.These heat exchange termination conditions may include a case where the second storage chamber 102 reaches a satisfactory temperature. That is, since the second storage compartment 102 is a storage compartment for refrigerated storage, damage such as freezing of stored items may occur when the temperature drops excessively.
이를 고려할 때, 보관물의 손상(과냉)이 발생되지 않도록 제2저장실 온도(R)를 만족 영역으로 유지함이 필요하다. 이로써 제2저장실(102)이 만족 온도에 도달되면 열교환 종료조건이 만족됨으로 판단하여 핫가스유로(320)로의 냉매 공급을 차단하여 열교환과정을 종료(S225)하게 된다.Considering this, it is necessary to maintain the temperature R of the second storage compartment in a satisfactory range so as not to cause damage (overcooling) of stored items. As a result, when the second storage compartment 102 reaches a satisfactory temperature, it is determined that the heat exchange termination condition is satisfied, and the refrigerant supply to the hot gas flow path 320 is cut off to end the heat exchange process (S225).
상기 만족 온도는 제2저장실(102)의 설정 기준온도(NT2)를 기준으로 설정된 하한 기준온도(NT2-Diff) 이하의 온도이다. 즉, 상기 제2저장실 온도(R)가 하한 기준온도(NT2-Diff)에 도달되거나 혹은, 하한 기준온도(NT2-Diff)보다 낮아질 경우 핫가스유로(320)로의 냉매 공급이 차단된다.The satisfactory temperature is a temperature equal to or less than the lower limit reference temperature (NT2-Diff) set based on the set reference temperature (NT2) of the second storage compartment (102). That is, when the temperature R of the second storage compartment reaches the lower limit reference temperature (NT2-Diff) or becomes lower than the lower limit reference temperature (NT2-Diff), the supply of refrigerant to the hot gas flow path 320 is cut off.
상기 제2저장실(102)이 하한 기준온도(NT2-Diff)에 도달할 경우 제2저장실용 송풍팬(291)이 정지되도록 제어될 수도 있다. 즉, 상기 제2저장실(102)이 만족 온도에 도달되는 시간을 지연시켜 제1증발기(250)가 충분히 가열될 수 있는 시간이 확보되도록 할 수 있는 것이다.When the second storage compartment 102 reaches the lower limit reference temperature (NT2-Diff), the blowing fan 291 for the second storage compartment may be controlled to stop. That is, by delaying the time for the second storage chamber 102 to reach a satisfactory temperature, it is possible to secure time for the first evaporator 250 to be sufficiently heated.
상기 열교환 종료조건은 열제공운전(S220)의 전체 운전 시간을 기준으로 결정될 수도 있다.The heat exchange termination condition may be determined based on the entire operation time of the heat supply operation (S220).
일 예로, 열교환과정이 시작된 후부터 설정된 시간이 경과되면 열교환 종료조건이 만족된 것으로 판단한다.For example, when a set time elapses after the heat exchange process starts, it is determined that the heat exchange end condition is satisfied.
다른 예로, 히팅열원(310)이 발열될 때부터 설정된 시간이 경과되면 열교환 종료조건이 만족된 것으로 판단할 수 있다.As another example, when a set time elapses from when the heating heat source 310 generates heat, it may be determined that the heat exchange end condition is satisfied.
상기 열교환 종료조건이 만족된 것으로 판단되면 핫가스유로(320)로의 냉매 공급이 차단되면서 열교환과정을 종료(S225)할 수 있다. 상기 열교환 종료조건이 만족된 것으로 판단되면 제2저장실용 송풍팬(291)이 정지될 수 있다.When it is determined that the heat exchange end condition is satisfied, the supply of refrigerant to the hot gas flow path 320 may be cut off and the heat exchange process may be ended (S225). When it is determined that the heat exchange termination condition is satisfied, the blowing fan 291 for the second storage compartment may be stopped.
상기 열교환 종료조건이 만족되어 핫가스유로(320)로의 냉매 공급이 차단되고 제2저장실용 송풍팬(291)의 동작이 중단되더라도 압축기(210)는 일정 시간 추가로 동작된 후 정지될 수 있다.Even if the supply of refrigerant to the hot gas flow path 320 is blocked and the operation of the blowing fan 291 for the second storage compartment is stopped when the heat exchange end condition is satisfied, the compressor 210 may be additionally operated for a certain period of time and then stopped.
즉, 냉매 유동은 차단한 상태로 압축기(210)를 추가 동작시키는 펌프 다운(Pump Down)을 수행함으로써 핫가스유로(320) 내의 냉매가 압축기(210)를 통과한 후 유로전환밸브(330)에 모이도록 한다. 이로써 압축기(310)의 정지 후 재동작시 각 증발기(250,260)에 이르기까지의 냉매 공급이 시간 지연없이 빠르고 충분히 이루어질 수 있다.That is, by performing a pump down operation in which the compressor 210 is additionally operated while the flow of the refrigerant is blocked, the refrigerant in the hot gas flow path 320 passes through the compressor 210 and then enters the flow path switching valve 330. let's get together Accordingly, when the compressor 310 is restarted after stopping, the refrigerant supply to the evaporators 250 and 260 can be quickly and sufficiently performed without time delay.
다음으로, 냉장고의 각 상황별 운전에는 온도 복귀운전(S230)이 포함될 수 있다.Next, operation of the refrigerator for each situation may include a temperature return operation (S230).
상기 온도 복귀운전(S230)은 제1증발기(250)의 가열로 상승된 제1저장실(101)을 만족 영역에 이르기까지 냉각하는 운전이다.The temperature return operation (S230) is an operation for cooling the first storage chamber 101, which has been raised by heating of the first evaporator 250, to a satisfactory range.
이러한 온도 복귀운전(S230)을 첨부된 도 14를 참조하여 설명한다.This temperature return operation (S230) will be described with reference to FIG. 14 attached.
상기 온도 복귀운전(S230)은 열제공운전(S220)의 종료시 수행될 수 있다. 특히, 상기 온도 복귀운전(S230)은 열제공운전(S220)의 종료시 수행시 설정 시간(예컨대, 3분) 동안의 휴지과정(S231) 후 수행될 수 있다. 즉, 휴지과정(S231)이 이루어진 후 제1저장실(101)을 냉각시키기 위한 운전이 수행된다.The temperature return operation (S230) may be performed at the end of the heat supply operation (S220). In particular, the temperature return operation (S230) may be performed after a pause process (S231) for a set time (eg, 3 minutes) when performed at the end of the heat supply operation (S220). That is, after the pause process (S231) is performed, an operation for cooling the first storage compartment 101 is performed.
상기 온도 복귀운전(S230)은 상기 휴지과정(S231) 후 제1저장실(101)이 하한 기준온도(NT12-Diff)에 이르기까지 냉각(S232)한다.In the temperature return operation (S230), after the pause process (S231), the first storage compartment 101 cools down to the lower limit reference temperature (NT12-Diff) (S232).
상기 온도 복귀운전(S230)시 제1저장실용 송풍팬(281)이 회전되도록 제어(S233)될 수 있다. 상기 제1저장실용 송풍팬(281)은 제1증발기 온도(FD)가 제1저장실 온도(F)보다 낮아질 때부터 동작되도록 제어될 수 있다.During the temperature return operation (S230), the blowing fan 281 for the first storage compartment may be controlled to rotate (S233). The blowing fan 281 for the first storage compartment may be controlled to operate from when the first evaporator temperature FD becomes lower than the first storage compartment temperature F.
상기 제1저장실(101)이 하한 기준온도(NT12-Diff)에 이르면 제1저장실(101)의 냉각 운전은 종료된다. 상기 제1저장실(101)의 냉각 운전은 종료되면 제2저장실(102)과 제1저장실(101)이 교대로 냉각 운전을 수행한 후 일반 냉각운전(S100)으로 복귀된다.When the first storage compartment 101 reaches the lower limit reference temperature (NT12-Diff), the cooling operation of the first storage compartment 101 ends. When the cooling operation of the first storage compartment 101 ends, the second storage compartment 102 and the first storage compartment 101 alternately perform the cooling operation, and then return to normal cooling operation (S100).
한편, 첨부된 도 17 내지 도 19에서는 본 발명의 운전 제어방법에 대한 다른실시예가 제시된다.Meanwhile, in the attached FIGS. 17 to 19, other embodiments of the operation control method of the present invention are presented.
이들 도면에서와 같이 본 발명의 운전 제어방법에 대한 다른 실시예에서는 열제공전운전(S210)시 제2저장실(102)의 냉각 운전이 생략됨을 제시한다.As shown in these drawings, in another embodiment of the operation control method of the present invention, the cooling operation of the second storage compartment 102 is omitted during the heat transfer operation (S210).
본 발명의 다른 실시예에 따른 열제공전운전(S210)을 설명하면 다음과 같다.The heat transfer operation (S210) according to another embodiment of the present invention will be described as follows.
본 발명의 다른 실시예에 따른 열제공전운전(S210)은 제1저장실(101)을 냉각하는 딥 쿨링과정이 포함될 수 있다. 상기 딥 쿨링과정에서는 제2저장실(102)의 냉각을 위한 운전은 수행되지 않는다.The heat transfer operation (S210) according to another embodiment of the present invention may include a deep cooling process of cooling the first storage compartment 101. In the deep cooling process, an operation for cooling the second storage compartment 102 is not performed.
상기 딥 쿨링과정은 일반 냉각운전(S100)이 중단된 후 바로 혹은, 일정 시간이 지난 후 수행될 수 있다.The deep cooling process may be performed immediately after the normal cooling operation (S100) is stopped or after a certain period of time has elapsed.
예컨대, 일반 냉각운전(S100)에 의해 제1저장실(101) 혹은, 제2저장실(102)에 대한 냉각운전을 수행하는 도중 열제공운전(S220)을 위한 운전 조건이 만족되면 상기 일반 냉각운전(S100)이 종료된다. 이후 바로 혹은, 일정 시간의 경과 후 제1저장실(101)의 냉각을 위한 딥 쿨링과정이 수행된다.For example, if the operating conditions for the heat supply operation (S220) are satisfied during the cooling operation for the first storage compartment 101 or the second storage compartment 102 by the normal cooling operation (S100), the normal cooling operation ( S100) ends. After that, a deep cooling process for cooling the first storage chamber 101 is performed immediately or after a certain period of time has elapsed.
즉, 열제공운전(S220)이 수행되는 도중 제1저장실(101)의 온도가 상승되며, 이로써 제1저장실(101)에 보관되는 식품이 열을 제공받을 수 있다. 이러한 열에 의한 식품 손상을 방지 하기 위해 열제공운전(S220)의 수행 전에 딥 쿨링과정으로 제1저장실(101)을 냉각(S218)하는 것이다.That is, while the heat supply operation (S220) is being performed, the temperature of the first storage compartment 101 is increased, and thus the food stored in the first storage compartment 101 can receive heat. In order to prevent food damage caused by such heat, the first storage chamber 101 is cooled (S218) by a deep cooling process before performing the heat supply operation (S220).
상기 제2저장실(102)의 경우 열제공운전(S220)시 온도가 하락된다. 이를 고려할 때 열제공운전(S220)이 수행되기 전 제2저장실(102)은 식품이 변질되지 않을 정도의 최대한 높은 온도로 유지됨이 바람직하다. 이에 따라 열제공운전(S220)이 수행되기 전인 열제공전운전(S210)에서는 제2저장실(102)의 냉각 운전을 수행하지 않음으로써 상기 제2저장실(102)이 열제공운전(S220)시까지 최대한 높은 온도로 유지될 수 있도록 한다.In the case of the second storage compartment 102, the temperature decreases during the heat supply operation (S220). Considering this, it is preferable that the temperature of the second storage compartment 102 before the heat supply operation (S220) is performed is maintained at a temperature as high as possible so that the food does not deteriorate. Accordingly, in the heat supply operation (S210) prior to the heat supply operation (S220), the cooling operation of the second storage compartment 102 is not performed, so that the second storage compartment 102 continues until the heat supply operation (S220). Keep the temperature as high as possible.
상기 딥 쿨링과정에서는 유로전환밸브(330)의 동작에 의해 제1냉매유로(201)가 개방된다. 상기 딥 쿨링과정에서는 압축기(210) 및 냉각팬(221)이 동작되며, 제1저장실용 송풍팬(281)이 동작된다.In the deep cooling process, the first refrigerant passage 201 is opened by the operation of the passage switching valve 330. In the deep cooling process, the compressor 210 and the cooling fan 221 are operated, and the blowing fan 281 for the first storage compartment is operated.
특히, 상기 딥 쿨링과정시 상기 제1저장실(101)은 제2설정 기준온도(NT12)를 기준으로 설정된 제2하한 기준온도(NT12-Diff)에 이르기까지 냉각되도록 운전될 수 있다.In particular, during the deep cooling process, the first storage chamber 101 may be operated to cool down to a second lower limit reference temperature (NT12-Diff) set based on the second set reference temperature (NT12).
상기 제2설정 기준온도(NT12)는 제1설정 기준온도(NT11)와 다른 온도로 설정될 수 있다. 예컨대, 상기 제2설정 기준온도(NT12)는 상기 제1설정 기준온도(NT11)보다 낮은 온도로 설정될 수 있다. 이로써 제2하한 기준온도(NT12-Diff) 역시 상기 제1하한 기준온도(NT11-Diff)보다 낮은 온도로 설정될 수 있다.The second set reference temperature NT12 may be set to a different temperature from the first set reference temperature NT11. For example, the second set reference temperature NT12 may be set to a lower temperature than the first set reference temperature NT11. Accordingly, the second lower limit reference temperature NT12-Diff may also be set to a lower temperature than the first lower limit reference temperature NT11-Diff.
물론, 제2설정 기준온도(NT12)는 제1설정 기준온도(NT11)와 동일하게 설정되면서 상기 제1하한 기준온도(NT11-Diff)가 상기 제2하한 기준온도(NT12-Diff)와 다른 온도로 설정될 수도 있다. 이의 경우에도, 상기 제2하한 기준온도(NT12-Diff)는 상기 제1하한 기준온도(NT11-Diff)보다 낮은 온도로 설정될 수 있다.Of course, the second set reference temperature NT12 is set equal to the first set reference temperature NT11, and the first lower limit reference temperature NT11-Diff is a temperature different from the second lower limit reference temperature NT12-Diff. may be set to Even in this case, the second lower limit reference temperature NT12-Diff may be set to a temperature lower than the first lower limit reference temperature NT11-Diff.
상기 딥 쿨링과정은 제1저장실(101)의 온도(F)가 제2하한 기준온도(NT12-Diff)에 이르면 종료(S219)된다. The deep cooling process ends when the temperature (F) of the first storage compartment 101 reaches the second lower limit reference temperature (NT12-Diff) (S219).
본 발명의 다른 실시예에 따른 열제공전운전(S210)에는 보조열원(340)에 의한 열공급 과정이 포함될 수 있다.The heat supply operation (S210) according to another embodiment of the present invention may include a heat supply process by the auxiliary heat source 340.
상기 보조열원(340)은 열제공전운전(S210) 중 동작(ON)(S217)되면서 제2저장실(102)로 열을 제공한다. 즉, 보조열원(340)에 의한 열공급 과정으로 열제공운전(S220)을 수행하기 전까지 제2저장실(102)의 온도를 최대한 상승시킬 수 있도록 한 것이다. 이로써 열제공운전(S220) 도중 제2저장실의 온도가 과도히 낮아지는 문제가 방지될 수 있다.The auxiliary heat source 340 provides heat to the second storage compartment 102 while being turned on (S217) during the heat supply operation (S210). That is, in the process of supplying heat by the auxiliary heat source 340, the temperature of the second storage compartment 102 can be increased as much as possible until the heat supply operation (S220) is performed. Accordingly, a problem in which the temperature of the second storage compartment is excessively lowered during the heat supply operation (S220) can be prevented.
특히, 상기한 보조열원(340)의 동작은 실내 온도(RT)를 기준으로 수행되거나 혹은, 수행되지 않을 수 있다.In particular, the operation of the auxiliary heat source 340 may or may not be performed based on room temperature (RT).
예컨대, 실내 온도(RT)가 기준 온도범위와 상기 기준 온도범위보다 낮은 저온 온도범위로 구분될 경우 상기 기준 온도범위 혹은, 그 이상의 온도 범위에서는 보조열원이 동작되지 않도록 제어될 수 있다.For example, when the room temperature (RT) is divided into a reference temperature range and a low-temperature range lower than the reference temperature range, the auxiliary heat source may be controlled not to operate in the reference temperature range or a temperature range higher than the reference temperature range.
즉, 실내 온도(RT)가 높은 여름철의 경우 열제공운전으로 제1증발기(250)를 가열함과 동시에 제2증발기(260)를 냉각하더라도 제2저장실(102)의 온도가 과도히 낮아지는 문제점이 발생되지 않는다.That is, in summer when the indoor temperature (RT) is high, the temperature of the second storage chamber 102 is excessively lowered even though the first evaporator 250 is heated and the second evaporator 260 is cooled at the same time by the heat supply operation. this doesn't happen
이를 고려한다면 실내 온도(RT)가 기준 온도범위보다 낮은 저온 온도일 경우에만 열제공전운전시 보조열원이 동작되도록 제어함이 바람직하다. 이의 경우 제어부는 실내 온도(RT)를 지속적으로 취득할 수 있고, 이렇게 취득된 실내 온도(RT)는 일반 냉각운전 도중 열제공운전(S220) 조건의 만족시 보조열원(340)의 발열 여부를 결정하는데 사용될 수 있다.Considering this, it is preferable to control the auxiliary heat source to be operated during the heat transfer operation only when the room temperature (RT) is a low-temperature temperature lower than the reference temperature range. In this case, the control unit may continuously acquire the room temperature (RT), and the acquired room temperature (RT) determines whether or not to generate heat from the auxiliary heat source 340 when the condition of the heat supply operation (S220) is satisfied during the normal cooling operation. can be used to
상기 보조열원(340)은 일반 냉각운전(S100)이 중단되고 열제공전운전(S220)이 시작될 때부터 동작될 수 있다.The auxiliary heat source 340 may be operated from when the normal cooling operation (S100) is stopped and the heat transfer operation (S220) starts.
즉, 일반 냉각운전(S100) 도중 열제공운전(S220) 조건이 만족되어 열제공전운전(S210)이 시작될 때부터 보조열원(340)이 동작(ON)(S217)(도 18 참조)된다. 이에 따라 제2저장실 온도(R)가 최대한 상승된 상태로 열제공운전(S220)이 시작될 수 있고, 열제공운전 도중 제2저장실(102)의 온도가 과도히 하락됨이 방지될 수 있다.That is, the auxiliary heat source 340 is turned ON (S217) (refer to FIG. 18) from when the heat supply operation (S210) starts when the condition of the heat supply operation (S220) is satisfied during the normal cooling operation (S100). Accordingly, the heat supply operation (S220) can be started with the temperature R of the second storage compartment maximally increased, and excessive drop in temperature of the second storage compartment 102 can be prevented during the heat supply operation.
상기 보조열원(340)은 열제공운전(S220)의 종료 조건이 만족될 경우 열 제공이 중단(S227)(도 19 참조)되도록 제어될 수 있다. 즉, 상기 보조열원(340)은 열제공운전 도중에도 계속해서 열을 제공하도록 제어될 수 있다. 이로써 실내 온도가 낮더라도 열제공운전(S220) 도중 제2저장실 온도(R)가 과도히 낮아지거나 핫 가스에 의한 제1증발기(250)의 가열 효과가 저하되는 현상이 방지될 수 있다.The auxiliary heat source 340 may be controlled to stop supplying heat (S227) (see FIG. 19) when the end condition of the heat supply operation (S220) is satisfied. That is, the auxiliary heat source 340 may be controlled to continuously provide heat even during the heat supply operation. Accordingly, even when the indoor temperature is low, it is possible to prevent a phenomenon in which the temperature R of the second storage compartment is excessively lowered or the heating effect of the first evaporator 250 by the hot gas is lowered during the heat supply operation (S220).
특히, 상기 보조열원(340)은 열제공전운전(S210)시 최대 출력으로 발열될 수 있다. 즉, 상기 보조열원(340)이 최대 출력으로 발열되면서 제2저장실(102)의 온도를 최대한 상승시킬 수 있도록 한 것이다. 이로써, 열제공운전 도중 제2저장실(102)의 온도가 과도히 하락됨이 방지될 수 있다. 상기 보조열원(340)은 열제공운전(S220) 도중에는 최대 출력으로 발열되거나 혹은, 최대 출력보다 낮은 출력으로 발열될 수 있다.In particular, the auxiliary heat source 340 may generate heat with maximum output during the heat supply operation (S210). That is, while the auxiliary heat source 340 generates heat with maximum output, the temperature of the second storage compartment 102 can be increased to the maximum. Thus, excessive drop in temperature of the second storage compartment 102 during the heat supply operation can be prevented. The auxiliary heat source 340 may generate heat with a maximum output during the heat supply operation (S220) or with an output lower than the maximum output.
물론, 상기 보조열원(340)이 특정 부위 혹은, 구성에 결빙을 방지하기 위한 용도로 사용되기 때문에 최대 출력으로 동작되더라도 제2저장실(102)의 온도가 급격히 상승되거나 혹은, 과도한 온도에까지 상승되지는 않는다.Of course, since the auxiliary heat source 340 is used to prevent freezing in a specific part or configuration, even when operated at maximum output, the temperature of the second storage compartment 102 does not rise rapidly or rise to an excessive temperature. don't
하지만, 예기치 못한 원인으로 인해 상기 보조열원(340)의 동작시 제2저장실(102)이 보관 식품의 변질이 우려될 수 있는 온도에 이르기까지 상승될 수 있다. 예컨대, 제2저장실(102)에 높은 온도의 음식물이 투입될 경우 실내 온도가 낮음에도 불구하고 제2저장실(102) 내부의 온도가 과도히 상승될 우려가 있다.However, due to an unexpected cause, when the auxiliary heat source 340 operates, the second storage chamber 102 may rise to a temperature at which deterioration of stored food may be concerned. For example, when high-temperature food is put into the second storage compartment 102, the temperature inside the second storage compartment 102 may increase excessively even though the room temperature is low.
이를 고려할 때, 상기 보조열원(340)은 제2저장실(102)의 고내 온도가 과도온도에 도달될 경우 열 제공이 중단되도록 이루어질 수 있다.Considering this, the auxiliary heat source 340 may stop supplying heat when the internal temperature of the second storage compartment 102 reaches an excessive temperature.
일 예로써, 제2저장실(102)의 고내 온도(R)가 제2저장실(102)의 제1설정 기준온도(NT21)보다 높은 온도를 이룰 경우 보조열원(340)에 의한 열 제공이 중단될 수 있다.For example, when the internal temperature R of the second storage compartment 102 reaches a temperature higher than the first set reference temperature NT21 of the second storage compartment 102, heat supply by the auxiliary heat source 340 is stopped. can
다른 예로써, 제2저장실(102)의 고내 온도가 상한 기준온도(NT21+Diff) 혹은, 그 이상의 온도일 경우 보조열원(340)에 의한 열 제공이 중단될 수 있다.As another example, when the internal temperature of the second storage compartment 102 is equal to or higher than the upper limit reference temperature (NT21+Diff), heat supply by the auxiliary heat source 340 may be stopped.
또한, 상기 보조열원(340)에 의해 제2저장실(102)로 열이 제공될 경우에는 제2저장실(102) 내로 냉기 공급이 차단되는 냉기 차단과정이 수행될 수 있다. 즉, 제2저장실(102)로 열이 제공되더라도 냉기가 공급됨으로 인한 가열 효과의 저하를 방지할 수 있도록 한 것이다.In addition, when heat is supplied to the second storage compartment 102 by the auxiliary heat source 340, a cold air blocking process may be performed in which the supply of cold air into the second storage compartment 102 is blocked. That is, even if heat is provided to the second storage compartment 102, a decrease in heating effect due to the supply of cold air can be prevented.
이러한 냉기 차단과정은 제2저장실용 송풍팬(291)의 동작을 정지시키거나 혹은, 제2증발기(260)로의 냉매 유동을 차단함으로써 수행될 수 있다.This cold air blocking process may be performed by stopping the operation of the blowing fan 291 for the second storage compartment or by blocking the flow of refrigerant to the second evaporator 260 .
한편, 본 발명의 냉장고는 전술된 실시예와는 달리 도시되지 않은 다양한 형태로의 실시가 가능하다.Meanwhile, the refrigerator of the present invention can be implemented in various forms not shown unlike the above-described embodiments.
일 예로, 본 발명의 냉장고는 핫가스유로(320)를 유동하는 냉매(핫 가스)에 의한 열기가 제1증발기(250)의 제상 운전이 아닌 여타의 용도로 사용될 수 있다.For example, in the refrigerator of the present invention, heat generated by the refrigerant (hot gas) flowing through the hot gas flow path 320 may be used for other purposes than the defrosting operation of the first evaporator 250 .
예컨대, 핫가스유로(320)는 열기를 필요로 하는 부위(예컨대, 아이스메이커의 탈빙 용도, 도어의 서리 맺힘 방지 용도, 각 저장실(101,102) 내의 과냉을 방지하는 용도 등)를 가열하는 용도로 사용될 수 있다.For example, the hot gas flow path 320 may be used for heating a part requiring heat (eg, an ice maker for ice removal, a door to prevent frost formation, and a storage compartment 101 or 102 to prevent overcooling). can
다른 예로, 본 발명의 냉장고는 핫가스유로(320)가 제1패스(321)와 제2패스(322) 및 제3패스(323)로 구분되지 않고 동일한 외경(혹은, 내경)을 가지는 하나의 관로로 형성될 수 있다.As another example, in the refrigerator of the present invention, the hot gas flow path 320 is not divided into the first pass 321, the second pass 322, and the third pass 323, but has the same outer diameter (or inner diameter). Can be formed into a conduit.
또 다른 예로, 본 발명의 냉장고는 유로전환밸브(330)가 둘 이상의 유로를 동시에 개방하도록 동작될 수 있다.As another example, in the refrigerator of the present invention, the flow path switching valve 330 may be operated to simultaneously open two or more flow paths.
예컨대, 제1냉매유로(201)와 핫가스유로(320)나, 제2냉매유로(202)와 핫가스유로(320) 혹은, 제1냉매유로(201)와 제2냉매유로(202)가 동시에 개방되면서 응축기(220)를 통과한 냉매가 유동될 수 있다.For example, the first refrigerant passage 201 and the hot gas passage 320, the second refrigerant passage 202 and the hot gas passage 320, or the first refrigerant passage 201 and the second refrigerant passage 202 The refrigerant passing through the condenser 220 may flow while being opened at the same time.
또 다른 예로, 본 발명의 냉장고는 핫가스유로(320)가 압축기(210)와 응축기(220) 사이의 유로로부터 분지되도록 형성될 수도 있다. 즉, 압축기(210)를 통과한 고온의 냉매가 핫가스유로(320)에 의해 응축기(220)와 제1팽창기(230)를 경유하지 않고 곧장 제1증발기(250)를 지나도록 형성될 수도 있는 것이다.As another example, the refrigerator of the present invention may be formed such that the hot gas flow path 320 is branched from the flow path between the compressor 210 and the condenser 220 . That is, the high-temperature refrigerant passing through the compressor 210 may be formed so as to pass directly through the first evaporator 250 without passing through the condenser 220 and the first expander 230 by the hot gas flow path 320. will be.

Claims (20)

  1. 제1저장실과 제2저장실을 각각의 제1설정 기준온도(NT11,NT21)를 기준으로 냉각하는 일반 냉각운전과,A general cooling operation for cooling the first storage compartment and the second storage compartment based on the first set reference temperatures (NT11, NT21), respectively;
    압축기의 동작에 의해 생성된 핫 가스로 제1증발기를 가열함과 더불어 제1증발기를 통과한 냉매로 제2증발기를 냉각하는 열제공운전과,A heat supply operation of heating the first evaporator with hot gas generated by the operation of the compressor and cooling the second evaporator with the refrigerant that has passed through the first evaporator;
    일반 냉각운전이 종료될 때부터 상기 열제공운전이 수행되기 전까지 수행되는 열제공전운전을 포함하며,It includes a heat transfer operation performed from the end of the general cooling operation until the heat supply operation is performed,
    상기 열제공전운전에는 제1저장실을 냉각하는 딥 쿨링과정과, 상기 딥 쿨링과정이 종료된 후 열제공운전이 수행되기까지 압축기의 동작을 정지하는 휴지과정이 포함되고,The heat transfer operation includes a deep cooling process for cooling the first storage compartment and a rest process for stopping the operation of the compressor until the heat transfer operation is performed after the deep cooling process is finished;
    상기 열제공전운전이 수행될 경우 보조열원으로 제2저장실로 열을 제공함을 특징으로 하는 냉장고의 운전 제어방법.An operation control method of a refrigerator characterized in that when the heat transfer operation is performed, heat is supplied to the second storage compartment as an auxiliary heat source.
  2. 제 1 항에 있어서,According to claim 1,
    상기 보조열원은The auxiliary heat source
    제2저장실의 인접 벽면이나 제2저장실용 도어에 위치되는 적어도 하나 이상의 열원이 포함됨을 특징으로 하는 냉장고의 운전 제어방법.An operation control method of a refrigerator, characterized in that at least one heat source located on an adjacent wall surface of the second storage compartment or a door for the second storage compartment is included.
  3. 제 1 항에 있어서,According to claim 1,
    상기 열제공전운전시 보조열원은 최대 출력으로 발열됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of the refrigerator, characterized in that the auxiliary heat source generates heat with maximum output during the heat transfer operation.
  4. 제 1 항에 있어서,According to claim 1,
    상기 보조열원은 열제공운전의 종료 조건이 만족될 경우 열 제공이 중단되도록 제어됨을 특징으로 하는 냉장고의 운전 제어방법.The auxiliary heat source is controlled to stop supplying heat when a condition for ending the heat supply operation is satisfied.
  5. 제 1 항에 있어서,According to claim 1,
    상기 보조열원은 제2저장실의 고내 온도가 과도온도에 도달될 경우 열 제공이 중단됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of the refrigerator, characterized in that the supply of heat to the auxiliary heat source is stopped when the internal temperature of the second storage chamber reaches an excessive temperature.
  6. 제 1 항에 있어서,According to claim 1,
    상기 보조열원에 의해 제2저장실로 열이 제공될 경우 제2저장실 내로 냉기 공급을 차단하는 냉기 차단과정이 수행됨을 특징으로 하는 냉장고의 운전 제어방법.A method for controlling operation of a refrigerator, characterized in that, when heat is supplied to the second storage compartment by the auxiliary heat source, a cold air blocking process of blocking the supply of cold air into the second storage compartment is performed.
  7. 제 1 항에 있어서,According to claim 1,
    실내 온도가 기준 온도범위와 상기 기준 온도범위보다 낮은 저온 온도범위로 구분될 경우When the indoor temperature is divided into a standard temperature range and a low-temperature range lower than the standard temperature range
    상기 기준 온도범위 혹은, 그 이상의 온도일 경우에는 열제공전운전시 보조열원이 동작되지 않도록 제어됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that in the case of a temperature equal to or higher than the reference temperature range, the auxiliary heat source is controlled not to operate during the heat supply operation.
  8. 제 1 항에 있어서,According to claim 1,
    상기 열제공운전은 히팅열원을 발열하여 제1증발기를 가열하는 발열과정이 포함되고,The heat supply operation includes a heating process of heating the first evaporator by generating heat from a heating heat source,
    제1저장실의 냉기를 순환시키는 제1저장실용 송풍팬은 상기 딥 쿨링과정을 위해 제1저장실로의 냉기를 공급할 때부터 상기 열제공운전을 위해 히팅열원이 발열될 때까지 동작됨을 특징으로 하는 냉장고의 운전 제어방법.A blowing fan for the first storage compartment, which circulates cold air in the first storage compartment, is operated from when the cold air is supplied to the first storage compartment for the deep cooling process until the heating heat source generates heat for the heat supply operation. operation control method.
  9. 제1저장실과 제2저장실을 각각의 제1설정 기준온도(NT11,NT21)를 기준으로 냉각하는 일반 냉각운전과,A general cooling operation for cooling the first storage compartment and the second storage compartment based on the first set reference temperatures (NT11, NT21), respectively;
    냉동사이클의 동작에 의해 생성된 핫 가스로 제1증발기를 가열함과 더불어 제1증발기를 통과한 냉매로 제2증발기를 냉각하는 열제공운전과,A heat supply operation of heating the first evaporator with hot gas generated by the operation of the refrigeration cycle and cooling the second evaporator with the refrigerant that has passed through the first evaporator;
    일반 냉각운전이 종료될 때부터 상기 열제공운전이 수행되기 전까지 수행되는 열제공전운전을 포함하며,It includes a heat transfer operation performed from the end of the general cooling operation until the heat supply operation is performed,
    상기 열제공전운전에는 제1저장실을 냉각하는 딥 쿨링과정과, 상기 딥 쿨링과정이 종료된 후 열제공운전이 수행되기까지 압축기의 동작을 정지하는 휴지과정이 포함되고,The heat transfer operation includes a deep cooling process for cooling the first storage compartment and a rest process for stopping the operation of the compressor until the heat transfer operation is performed after the deep cooling process is finished;
    상기 열제공전운전 중에는 제2저장실로의 냉기 공급이 차단됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of the refrigerator, characterized in that the supply of cold air to the second storage compartment is blocked during the heat transfer operation.
  10. 제 9 항에 있어서,According to claim 9,
    상기 열제공전운전 중 제2저장실로의 냉기 공급을 차단하기 위해 제2증발기로의 냉매 공급이 차단됨을 특징으로 하는 냉장고의 운전 제어방법.Refrigerant supply to the second evaporator is cut off to cut off the supply of cold air to the second storage compartment during the heat transfer operation.
  11. 제 9 항에 있어서,According to claim 9,
    상기 열제공전운전 중 제2저장실로의 냉기 공급을 차단하기 위해 제2저장실의 공기를 순환시키는 제2저장실용 송풍팬이 정지됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that in order to block the supply of cold air to the second storage compartment during the heat transfer operation, a blower fan for the second storage compartment circulating air in the second storage compartment is stopped.
  12. 제1저장실과 제2저장실을 각각의 제1설정 기준온도(NT11,NT21)를 기준으로 설정된 제1상한 기준온도(NT11+Diff,NT21+Diff) 및 제1하한 기준온도(NT11-Diff,NT21-Diff)에 따라 냉각하도록 냉기를 공급하는 일반 냉각운전과,The first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21 -Diff), a general cooling operation that supplies cold air to be cooled,
    제1증발기로 열을 제공하는 열제공운전과,A heat supply operation for providing heat to the first evaporator;
    상기 열제공운전이 수행되기 전에 제1저장실과 제2저장실을 각각의 제2설정 기준온도(NT12,NT22)를 기준으로 설정된 제2하한 기준온도(NT12-Diff,NT22-Diff)에 이르기까지 냉각되도록 냉기를 공급하는 열제공전운전과,Before the heat supply operation is performed, the first storage compartment and the second storage compartment are cooled to the second lower limit reference temperature (NT12-Diff, NT22-Diff) set based on the second set reference temperature (NT12, NT22), respectively. A heat transfer operation that supplies cold air as much as possible;
    상기 열제공전운전이 종료된 후After the heat transfer operation is completed
    상기 열제공운전이 수행되기까지 압축기의 동작을 정지하는 휴지과정과,A pause process of stopping the operation of the compressor until the heat supply operation is performed;
    상기 열제공운전이 수행되기 전까지 제2저장실로의 냉기 공급을 차단하는 냉기 차단과정이 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that it includes a cold air blocking process of blocking the supply of cold air to the second storage compartment until the heat supply operation is performed.
  13. 제 12 항에 있어서,According to claim 12,
    상기 제2설정 기준온도(NT12,NT22)는 상기 제1설정 기준온도(NT11,NT21)보다 낮은 온도로 설정됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of the refrigerator, characterized in that the second set reference temperature (NT12, NT22) is set to a lower temperature than the first set reference temperature (NT11, NT21).
  14. 제 12 항에 있어서,According to claim 12,
    상기 제2하한 기준온도(NT12-Diff,NT22-Diff)는 상기 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮은 온도로 설정됨을 특징으로 하는 냉장고의 운전 제어방법.The second lower limit reference temperature (NT12-Diff, NT22-Diff) is set to a temperature lower than the first lower limit reference temperature (NT11-Diff, NT21-Diff).
  15. 제 12 항에 있어서,According to claim 12,
    상기 냉기 차단과정을 위해For the cold air blocking process
    압축기가 정지됨을 특징으로 하는 냉장고의 운전 제어방법.An operation control method of a refrigerator, characterized in that the compressor is stopped.
  16. 제 12 항에 있어서,According to claim 12,
    상기 냉기 차단과정을 위해For the cold air blocking process
    제2증발기로의 냉매 공급이 차단됨을 특징으로 하는 냉장고의 운전 제어방법.An operation control method of a refrigerator characterized in that the supply of refrigerant to the second evaporator is cut off.
  17. 제 12 항에 있어서,According to claim 12,
    상기 냉기 차단과정을 위해For the cold air blocking process
    제2저장실용 송풍팬의 동작이 정지됨을 특징으로 하는 냉장고의 운전 제어방법.An operation control method of a refrigerator, characterized in that the operation of the blowing fan for the second storage compartment is stopped.
  18. 제 12 항에 있어서,According to claim 12,
    상기 열제공전운전은 일반 냉각운전 도중 열제공운전의 시작 조건이 만족될 경우 열제공운전에 우선하여 수행됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the heat supply operation is performed prior to the heat supply operation when a start condition of the heat supply operation is satisfied during a general cooling operation.
  19. 제 1 항에 있어서,According to claim 1,
    상기 열제공운전은 히팅열원을 발열하여 제1증발기를 가열하는 발열과정이 포함되고,The heat supply operation includes a heating process of heating the first evaporator by generating heat from a heating heat source,
    상기 제1저장실용 송풍팬은 상기 열제공전운전을 위해 제1저장실로의 냉기를 공급할 때부터 상기 열제공운전을 위해 히팅열원이 발열될 때까지 동작됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the blowing fan for the first storage compartment is operated from when cold air is supplied to the first storage compartment for the heat supply operation until a heating source generates heat for the heat supply operation.
  20. 제 19 항에 있어서,According to claim 19,
    상기 제1저장실용 송풍팬은 상기 압축기의 동작이 중단되기 전보다 압축기의 동작이 중단된 후 히팅열원이 발열될 때까지가 더욱 빠른 속도로 회전됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of the refrigerator, characterized in that the blowing fan for the first storage compartment rotates at a higher speed until the heating heat source generates heat after the operation of the compressor is stopped than before the operation of the compressor is stopped.
PCT/KR2022/008432 2021-07-12 2022-06-14 Refrigerator operation control method WO2023287037A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0090871 2021-07-12
KR10-2021-0090864 2021-07-12
KR1020210090871A KR20230010387A (en) 2021-07-12 2021-07-12 operating method for a refrigerator
KR1020210090864A KR20230010380A (en) 2021-07-12 2021-07-12 operating method for a refrigerator

Publications (1)

Publication Number Publication Date
WO2023287037A1 true WO2023287037A1 (en) 2023-01-19

Family

ID=84919458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008432 WO2023287037A1 (en) 2021-07-12 2022-06-14 Refrigerator operation control method

Country Status (1)

Country Link
WO (1) WO2023287037A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043144A (en) * 1976-06-17 1977-08-23 Dole Refrigerating Company Hot gas defrost system
KR20130088914A (en) * 2012-01-31 2013-08-09 엘지전자 주식회사 Refrigerator and control method of the same
KR20170013767A (en) * 2015-07-28 2017-02-07 엘지전자 주식회사 Refrigerator
KR102065492B1 (en) * 2018-12-05 2020-01-13 (주)에이씨알텍 Movable refrigerator
WO2020175831A1 (en) * 2019-02-28 2020-09-03 엘지전자 주식회사 Method for controlling refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043144A (en) * 1976-06-17 1977-08-23 Dole Refrigerating Company Hot gas defrost system
KR20130088914A (en) * 2012-01-31 2013-08-09 엘지전자 주식회사 Refrigerator and control method of the same
KR20170013767A (en) * 2015-07-28 2017-02-07 엘지전자 주식회사 Refrigerator
KR102065492B1 (en) * 2018-12-05 2020-01-13 (주)에이씨알텍 Movable refrigerator
WO2020175831A1 (en) * 2019-02-28 2020-09-03 엘지전자 주식회사 Method for controlling refrigerator

Similar Documents

Publication Publication Date Title
WO2011081500A2 (en) Refrigerator
WO2020116987A1 (en) Refrigerator
WO2021137408A1 (en) Air conditioning apparatus
WO2016043407A1 (en) Refrigeration cycle and refrigerator having same
WO2023287037A1 (en) Refrigerator operation control method
WO2021045415A1 (en) Refrigerator and method of controlling the same
WO2023287034A1 (en) Refrigerator and operation control method therefor
WO2023287036A1 (en) Operation control method for refrigerator
WO2022039429A1 (en) Refrigerator
WO2023287032A1 (en) Operation control method of refrigerator
WO2021149896A1 (en) Air conditioning apparatus
WO2023287030A1 (en) Refrigerator operation control method
WO2021206238A1 (en) Refrigerator
WO2022030808A1 (en) Refrigerator
WO2020071741A1 (en) Refrigerator and method for controlling same
WO2022030809A1 (en) Refrigerator and operation control method therefor
WO2020071744A1 (en) Refrigerator and method for controlling same
WO2020071755A1 (en) Refrigerator and method for controlling same
WO2023287035A1 (en) Refrigerator
WO2020071761A1 (en) Refrigerator
WO2022103154A1 (en) Refrigerator and method for controlling same
WO2021091103A1 (en) Refrigerator and method of controlling the same
WO2023287029A1 (en) Refrigerator and operation control method therefor
WO2022030806A1 (en) Refrigerator
WO2024080576A1 (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE