WO2023287036A1 - Operation control method for refrigerator - Google Patents

Operation control method for refrigerator Download PDF

Info

Publication number
WO2023287036A1
WO2023287036A1 PCT/KR2022/008429 KR2022008429W WO2023287036A1 WO 2023287036 A1 WO2023287036 A1 WO 2023287036A1 KR 2022008429 W KR2022008429 W KR 2022008429W WO 2023287036 A1 WO2023287036 A1 WO 2023287036A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
evaporator
storage compartment
refrigerator
Prior art date
Application number
PCT/KR2022/008429
Other languages
French (fr)
Korean (ko)
Inventor
김호산
이호연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210090866A external-priority patent/KR20230010382A/en
Priority claimed from KR1020210090874A external-priority patent/KR20230010864A/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023287036A1 publication Critical patent/WO2023287036A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the present invention relates to a method for controlling the operation of a refrigerator that provides heat to an evaporator using a heating heat source and a hot gas flow path.
  • a refrigerator is a home appliance provided to store various foods for a long time with cool air generated by using circulation of a refrigerant according to a refrigerating cycle.
  • one or a plurality of storage compartments for storing storage objects are partitioned from each other and provided.
  • the storage chamber receives cold air generated by a refrigeration system including a compressor, a condenser, an expander, and an evaporator, and is maintained within a set temperature range.
  • each storage compartment passes through an evaporator, and in the process, moisture contained in the cold air is deposited on the surface of the evaporator to form frost.
  • frost formed on the surface of the evaporator gradually accumulates and affects the flow of cold air passing through the evaporator. That is, as the flow of cold air passing through the evaporator worsens in proportion to the amount of frost, the heat exchange efficiency decreases.
  • the evaporator is operated for defrosting (defrosting operation) when a predetermined time elapses after operating the refrigerator or when conditions for the defrosting operation are satisfied.
  • the defrosting operation is performed using one or a plurality of heating heat sources installed in the evaporator, and when the defrosting operation is performed by the heat generated by these heating heat sources, the cooling operation for each storage compartment is stopped.
  • the defrosting method using a heating heat source does not perform uniform defrosting and requires more heating than necessary, which causes an increase in the internal temperature of the refrigerator, which adversely affects foods stored in the storage compartment.
  • Prior Document 1 is applied only to a refrigerator in which a single compressor performs a cooling operation for one evaporator, and cannot be applied to a refrigerator in which a single compressor performs a cooling operation for two or more evaporators. .
  • the refrigerant flowing directly through the condenser into the evaporator of the other storage compartment and the refrigerant flowing into the evaporator of the other storage compartment after passing through the condenser and one evaporator have different pressures and temperatures. For this reason, a difference in heat exchange performance due to a difference in decompression in the process of passing through the same expander is inevitable.
  • An object of the present invention is to shorten the operating time for providing heat to an evaporator, thereby reducing the rise in temperature inside the furnace due to the heat supply.
  • Another object of the present invention is to improve the heating performance of the first evaporator by supplying the high-temperature refrigerant compressed in the compressor to the first evaporator in a state where the temperature drop is minimized.
  • Another object of the present invention is to quickly supply enough refrigerant to the first evaporator so that the first storage compartment can be quickly cooled when the heat supply operation is finished.
  • a general cooling operation in which cooling is performed while supplying cold air to each storage compartment, a heat supply operation in which heat is supplied to the first evaporator, and a heat supply operation performed before Heat transfer operation may be included.
  • the cooling fan provided to cool the condenser during the normal cooling operation and the heat supply operation can be controlled to be driven together with the operation of the compressor.
  • the cooling fan provided to cool the condenser may be controlled not to operate until the heat exchange process is completed even if the compressor is operated.
  • the heat supply operation may include a heating process in which the heating heat source generates heat.
  • the heat supply operation may include a heat exchange process in which heat is provided by hot gas (high-temperature refrigerant).
  • the heating process of the heat supply operation may be performed with priority over the heat exchange process.
  • the heat generation condition of the heat generation process may include a case where the temperature FD of the first evaporator is equal to or higher than the temperature F in the first storage compartment.
  • the temperature FD of the first evaporator may include the temperature of the refrigerant outlet side of the first evaporator.
  • the temperature FD of the first evaporator may include the cold air outflow side temperature of the first evaporator.
  • a stop process of stopping the operation of the compressor from the end of the heat supply operation until the start of the heat supply operation may be included.
  • supply of cold air to the second storage compartment may be cut off after the heat supply operation is finished until the heat supply operation is performed.
  • the heat supply operation may include a heating process of heating the first evaporator.
  • the heat generation process may be performed when heat supply conditions for heating the first evaporator are satisfied after the heat supply operation of each storage compartment starts.
  • the heating process may be performed by supplying power to a heating heat source.
  • heat generation when the heating heat source satisfies the heat generation termination condition, heat generation may be stopped.
  • the heat generation termination condition may include a case where the temperature of the first evaporator reaches the set first temperature X1.
  • the heat supply operation may include a heat exchange process of heating the first evaporator and simultaneously cooling the second evaporator.
  • the heat exchange process can be performed while the high-temperature refrigerant compressed in the compressor through the hot gas flow path is guided to flow sequentially through the first evaporator and the second evaporator.
  • the refrigerant passing through the first evaporator during the heat exchange process may flow into the second evaporator after adjusting its physical properties.
  • the heat exchange process may be performed when the hot gas supply condition is satisfied after the heat transfer operation of each storage compartment is started.
  • hot gas supply conditions in the heat exchange process may include a case where a set time elapses after the heat transfer operation of each storage compartment is completed.
  • hot gas supply conditions in the heat exchange process may include a case where a set time elapses after power is supplied to the heating heat source.
  • the hot gas supply condition in the heat exchange process may include a case where the first evaporator temperature reaches the set second temperature X2 after the heat transfer operation of each storage compartment is completed.
  • the compressor may be stopped when the heat supply operation ends and then operated when the hot gas supply condition is satisfied.
  • the blowing fan for the first storage compartment for circulating cold air in the first storage compartment may be stopped.
  • the blowing fan for the second storage compartment for circulating cold air in the second storage compartment can be controlled to operate.
  • the heat exchange process of the heat supply operation may be terminated when the heat exchange termination condition is satisfied.
  • the heat exchange termination condition may include a case where the temperature of the first evaporator reaches the set first temperature X1.
  • the heat exchange termination condition may include a case where the temperature in the second storage chamber reaches a satisfactory temperature.
  • the satisfactory temperature may include a temperature equal to or less than the lower limit reference temperature set based on the set reference temperature of the second storage compartment.
  • the heat exchange termination condition may include a case where a set time elapses from when the heating heat source generates heat.
  • the compressor may be stopped when the heat exchange termination condition is satisfied.
  • the supply of refrigerant to the hot gas flow path may be cut off when the heat exchange termination condition is satisfied.
  • the refrigerator of the present invention provides heat to the first evaporator by generating heat from a heating source and supplying a high-temperature refrigerant (hot gas).
  • a heating source for supplying heat to the first evaporator using only hot gas.
  • the operation time required to provide heat can be shortened, the temperature rise of the first storage compartment can be reduced as much as possible, or the temperature recovery of the first storage compartment can be reduced as much as possible. power consumption can be reduced.
  • the compressor and the blowing fan for the second storage compartment operate together.
  • heat supply to the first evaporator using hot gas and cooling to the second storage compartment can be simultaneously performed.
  • the cooling fan is controlled to stop during the heat exchange process of the heat supply operation.
  • the high-temperature refrigerant compressed by the compressor is supplied to the first evaporator without a sudden drop in temperature to heat the first evaporator.
  • a pump down operation is performed in which the compressor continues to operate for a predetermined time while the flow path switching valve is closed.
  • the heat supply operation is terminated when the temperature R of the second storage compartment deviates from the satisfactory temperature.
  • overcooling of the second storage compartment caused by excessive cooling of the second evaporator can be prevented.
  • the refrigerator of the present invention preferentially heats the first evaporator when the heat generation condition of the heating source is satisfied even during the rest process after the heat supply operation and before the heat supply operation. Thus, the time for the heat supply operation is shortened.
  • the heating heat source when the first evaporator temperature (FD) is equal to the first storage compartment temperature (F), the heating heat source generates heat. This minimizes unnecessary power consumption.
  • FIG. 1 is a state diagram showing the front appearance of a refrigerator according to an embodiment of the present invention.
  • Figure 2 is a state diagram showing the appearance of the rear side of the refrigerator according to an embodiment of the present invention
  • FIG. 3 is a state diagram showing the internal structure of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a state diagram showing a refrigeration system including a hot gas flow path of a refrigerator according to an embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention
  • FIG. 6 is a side view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention
  • FIG. 7 is a state diagram showing an operating state of each component related to a heat supply operation of a refrigerator according to an embodiment of the present invention.
  • FIGS. 8 to 10 are state diagrams illustrating the flow of refrigerant during a cooling operation for each storage compartment of a refrigerator according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a process of heat transfer operation of a refrigerator according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a process during a heat supply operation of a refrigerator according to an embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating another example of a process during a heat supply operation of a refrigerator according to an embodiment of the present invention.
  • FIG. 14 is a state diagram illustrating a flow of refrigerant during a heat supply operation of a refrigerator according to an embodiment of the present invention
  • 15 is a flowchart illustrating a process of temperature return operation of a refrigerator according to an embodiment of the present invention.
  • FIGS. 1 to 15 a preferred embodiment of a refrigerator and an operation control method thereof according to the present invention will be described with reference to FIGS. 1 to 15 attached.
  • each direction mentioned in the description of the installation position of each component takes an installation state in actual use (the same state as in the illustrated embodiment) as an example.
  • 1 is a front side appearance of a refrigerator according to an embodiment of the present invention.
  • 2 is a rear side appearance of a refrigerator according to an embodiment of the present invention.
  • 3 is an internal structure of a refrigerator according to an embodiment of the present invention.
  • the refrigerator according to the embodiment of the present invention can perform the heat supply operation (S220) by simultaneously using the heating heat source 310 and hot gas (high-temperature refrigerant).
  • S220 heat supply operation
  • hot gas high-temperature refrigerant
  • a refrigerator may include a refrigerator body 100 providing at least one or more storage compartments.
  • the storage compartment may include a first storage compartment 101 and a second storage compartment 102 as a storage space for storing stored goods.
  • the first storage compartment 101 and the second storage compartment 102 can be opened and closed by the first door 110 and the second door 120, respectively.
  • Each of the first door 110 and the second door 120 may be provided alone, or may be provided in a plurality of two or more.
  • Each of the storage chambers 101 and 102 has a first upper limit reference temperature (NT11+Diff, NT21+Diff) and a first lower limit reference temperature (NT11-Diff) set based on the first set reference temperature (NT11, NT21) by normal cooling operation. , NT21-Diff).
  • the first set reference temperature NT11 of the first storage chamber 101 may be a temperature sufficient to freeze stored goods.
  • the first set reference temperature NT11 of the first storage compartment 101 may be set to a temperature of 0°C or less and -24°C or more.
  • the first set reference temperature NT21 of the second storage chamber 102 may be a temperature at which the stored goods are not frozen.
  • the first set reference temperature NT21 of the second storage compartment 102 may be set to a temperature below 32°C and above 0°C.
  • the first set reference temperatures NT11 and NT21 may be set by a user. When the user does not set the first set reference temperature (NT11, NT21), an arbitrarily designated temperature is used as the first set reference temperature (NT11, NT21).
  • the supply of cold air to each of the storage compartments 101 and 102 is continued or stopped according to the upper or lower limit temperature of the first set reference temperatures NT11 or NT21.
  • the first upper limit reference temperature NT11 + Diff, NT21 + Diff
  • cold air is supplied to the corresponding storage compartments 101 and 102 .
  • the temperatures of the storage compartments 101 and 102 are lower than the first lower limit reference temperatures NT11-Diff and NT21-Diff, the supply of cold air is stopped.
  • each of the storage chambers 101 and 102 can be maintained at a temperature between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff).
  • a refrigerator includes a refrigeration system.
  • the cold air that can be maintained at the first set reference temperatures NT11 and NT21 is supplied to each of the storage compartments 101 and 102 by the refrigeration system.
  • the refrigeration system may include a compressor 210 for compressing refrigerant.
  • the compressor 210 may be located in the machine room 103 in the refrigerator body 100 .
  • a recovery passage 211 may be connected to the compressor 210 .
  • the recovery passage 211 guides the flow of the refrigerant recovered to the compressor 210 .
  • the recovery passage 211 is formed to receive refrigerant that has passed through each passage (eg, a first passage and a second passage, or a hot gas passage, etc.) and guide it to the compressor 210 .
  • each passage eg, a first passage and a second passage, or a hot gas passage, etc.
  • two or more recovery passages 211 may be provided in plurality and connected individually or in plurality to each passage.
  • the refrigeration system may include a condenser 220 in which refrigerant is condensed.
  • the condenser 220 may be located in the machine room 103 in the refrigerator body 100 .
  • a cooling fan 221 may be provided adjacent to the condenser 220 .
  • the cooling fan 221 may be provided in the machine room 103 .
  • the refrigerant passing inside the condenser 220 by the operation of the cooling fan 221 may exchange heat with air passing outside the condenser 220 .
  • the cooling fan 221 is not operated, the refrigerant passing through the condenser 220 is maintained at a high temperature.
  • the cooling fan 221 may be configured to interlock with the operation of the compressor 210 . That is, when the compressor 210 operates, the cooling fan 221 may also operate. In another preset situation, the cooling fan 221 may be set to stop even when the compressor 210 operates.
  • the cooling fan 221 may be controlled to stop during a heat supply operation in which heat is provided to the first evaporator 250 using a high-temperature refrigerant (hot gas). That is, in order to supply hot gas (high-temperature refrigerant) for providing heat to the first evaporator 250, the high-temperature refrigerant compressed in the compressor 210 is not condensed while passing through the condenser 220, but directly into the first evaporator. (250). To this end, during the heat supply operation, the cooling fan 221 may be controlled to stop even if the compressor 210 is operated.
  • a high-temperature refrigerant hot gas
  • the refrigeration system may include a first expander 230 and a second expander 240 that depressurize and expand the refrigerant condensed in the condenser 220 .
  • the first expander 230 is provided to depressurize the refrigerant flowing into the first evaporator 250 after passing through the condenser 220 .
  • the second expander 240 is provided to depressurize the refrigerant flowing into the second evaporator 260 after passing through the condenser 220 .
  • the refrigeration system may include a first evaporator 250 and a second evaporator 260 .
  • the refrigerant reduced in pressure in the first expander 230 exchanges heat with air (cold air) flowing in the first storage chamber 101 while passing through the first evaporator 250 .
  • the refrigerant reduced in pressure in the second expander 240 passes through the second evaporator 260 and exchanges heat with air (cold air) flowing in the second storage chamber 102 .
  • the first evaporator 250 may be located in the first storage chamber 101 . Although not shown, the first evaporator 250 may be located in a location other than the first storage chamber 101 .
  • the air flowing by the driving of the F-Fan 281 for the first storage compartment undergoes heat exchange.
  • the second evaporator 260 may be located in the second storage chamber 102 . Although not shown, the second evaporator 260 may be located in a location other than the second storage chamber 102 .
  • the air flowing by the driving of the R-Fan 291 for the second storage compartment undergoes heat exchange.
  • the refrigeration system may include a first refrigerant passage 201.
  • the first refrigerant passage 201 passes through the first expander 230 and guides the flow of the refrigerant supplied to the first evaporator 250 .
  • the refrigeration system may include a second refrigerant passage 202.
  • the second refrigerant passage 202 passes through the second expander 240 and guides the flow of refrigerant provided to the second evaporator 260 .
  • the refrigeration system may include a physical property control unit 270.
  • the physical property controller 270 provides resistance to the flow of the refrigerant flowing into the second evaporator 260 via the first evaporator 250 through the hot gas flow path 320 . That is, resistance is provided to the flow of the refrigerant provided to the second evaporator 250 so that the physical properties of the refrigerant are adjusted (changed).
  • the physical properties of the refrigerant may include any one of temperature, flow rate, and flow rate of the refrigerant.
  • the refrigerant condensed and liquefied while passing through the first evaporator 250 has physical properties in a state where it can be heat exchanged in the second evaporator 260 while passing through the property control unit 270 . Accordingly, a problem in which operation reliability of the compressor 210 is deteriorated due to excessive liquefaction of the refrigerant returned to the compressor 210 after passing through the second evaporator 260 can be prevented.
  • the resistance provided by the property control unit 270 may be formed differently from the resistance provided by the second expander 240 . Accordingly, a difference in physical properties between the refrigerant passing through the first evaporator 250 and flowing into the second evaporator 260 and the refrigerant flowing directly into the second evaporator 260 without passing through the first evaporator 250 can be reduced.
  • the physical property controller 270 may be provided as a pipe through which the refrigerant flows.
  • the physical property control unit 270 may be designed in consideration of the flow path length, the pressure within the flow path, and the density of the refrigerant within the flow path. That is, the resistance may be adjusted by changing at least one of the flow path length of the material property controller 270, the pressure within the flow path, and the density of the refrigerant within the flow path.
  • the physical property control unit 270 may be formed with a different diameter or a different length from that of the second expander 240 . Through this, the refrigerant flowing into the second evaporator 260 after the physical properties are adjusted in the physical property controller 270 can be made substantially similar to or identical to the physical properties of the refrigerant that has passed through the second expander 240 .
  • the physical property control unit 270 may have the same diameter as the second expander 240 and may have a different length.
  • the physical property control unit 270 may be shorter than the second expander 240 .
  • the physical property control unit 270 and the second expander 240 have the advantage that they can be used in common if they have the same diameter.
  • the physical property control unit 270 may be formed to have the same length as the second expander 240 and have a different diameter.
  • the material property control unit 270 may have a larger pipe diameter than the second expander 240 .
  • the refrigeration system may include a flow path conversion valve 330.
  • the refrigerant passing through the condenser 220 may be guided along the discharge passage 203 .
  • the first refrigerant passage 201, the second refrigerant passage 202, and the hot gas passage 320 may be formed to be branched from the discharge passage 203, respectively.
  • the flow path conversion valve 330 may be installed at a portion where each of the flow paths 201 , 202 , and 320 are branched from the discharge flow path 203 . That is, the refrigerant flowing into the discharge passage 203 by the operation of the flow passage switching valve 330 is transferred to either the first refrigerant passage 201, the second refrigerant passage 202, or the hot gas passage 320. It was made available to the euro.
  • At least one flow path conversion valve 330 may be provided.
  • the flow path conversion valve 330 may be formed as a 4-way valve.
  • the flow path switching valve 330 may include at least one 3-way valve, check valve, or solenoid valve.
  • the refrigeration system may include a hot gas flow path 320 .
  • the hot gas flow path 320 provides high-temperature heat to a place where heat is needed.
  • the hot gas flow path 320 guides the high-temperature refrigerant (hot gas) compressed by the compressor 210 and passing through the condenser 220 (refrigerant that is not heat-exchanged). That is, the hot gas (high-temperature refrigerant) guided by the hot gas passage 320 provides high-temperature heat.
  • the hot gas passage 320 is formed to guide the refrigerant flow separately from the first refrigerant passage 201 and the second refrigerant passage 202 .
  • the hot gas passage 320 is connected to the discharge passage 203, and the hot gas (high temperature refrigerant) guided to the discharge passage 203 is directed to the first evaporator 250 without passing through the first expander 230. After being provided, it may pass through the first evaporator 250 and be provided to the second evaporator 260 . That is, the high-temperature refrigerant compressed in the compressor 210 by the hot gas flow path 320 can heat the first evaporator 250 while passing through the first evaporator 250 .
  • the hot gas passage 320 includes a first pass 321 from the passage switching valve 330 to the first evaporator 250 .
  • the first pass 321 may be formed to have the same diameter as the discharge passage 203 extending from the condenser 220 to the passage conversion valve 330 . As a result, common use of the discharge passage 203 and the first pass 321 is possible.
  • the hot gas flow path 320 includes a second pass 322 passing through the first evaporator 250 .
  • the second pass 322 may be formed to contact the heat exchange pins 251 through a pipe expansion operation after penetrating through each of the heat exchange pins 251 constituting the first evaporator 250 . As a result, the hot gas passing through the second pass 322 can smoothly remove the frost frozen in the first evaporator 250 .
  • the hot gas passage 320 includes a third pass 323 from the second pass 322 to the physical property adjusting unit 270 .
  • the third pass 323 may be formed to have the same diameter as the first pass 321 .
  • the refrigeration system may include a guide passage 350.
  • the guide passage 350 guides the refrigerant flowing into the second evaporator 260 via the second expander 240 or the property control unit 270 .
  • the refrigerant passing through the second expander 240 or the property control unit 270 passes through the guide passage 350 or is mixed with each other in the guide passage 350 and then flows into the second evaporator 260. It can be. As a result, the deviation between the physical properties of the refrigerant passing through the second expander 240 and flowing into the second evaporator 260 and the physical properties of the refrigerant flowing into the second evaporator 260 through the property adjusting unit 270 can be reduced. .
  • the refrigerator according to the embodiment of the present invention may include a heating source 310 .
  • the heating heat source 310 is a heat source that provides high-temperature heat together with the hot gas flow path 320 .
  • the heat provided by the heating heat source 310 or the hot gas flow path 320 may be used in various ways.
  • heat provided by the heating heat source 310 or heat provided by the hot gas flow path 320 may be used to defrost the first evaporator 250 .
  • the heating heat source 310 may be formed of a sheath heater (Sheath HTR) that generates heat by power supply.
  • Sheath HTR sheath heater
  • the heating heat source 310 may be located adjacent to either side of the first evaporator 250 .
  • the heating heat source 310 may be located at the bottom of the heat exchange fin 251 of the lowest row constituting the first evaporator 250 . This is the same as the attached Figures 5 and 6.
  • the heating heat source 310 may be positioned to be spaced apart from the heat exchange fin 251 of the lowermost row constituting the first evaporator 250 . Thus, the heat generated by the heat generated by the heating heat source 310 may heat the first evaporator 250 while flowing upward.
  • reference numeral 280 denotes a first grill assembly that guides the flow of cold air into the first storage compartment.
  • reference numeral 290 denotes a second grill assembly that guides the flow of cold air into the second storage compartment.
  • the control unit may be a controller provided in the refrigerator or a control means (eg, a home network, an online service server, etc.) on a network connected to remotely control the controller of the refrigerator.
  • a control means eg, a home network, an online service server, etc.
  • the operation for each situation may include a general cooling operation (S100).
  • This general cooling operation is an operation for cooling the first storage compartment 101 and the second storage compartment 102 according to the first set reference temperatures NT11 and NT21, respectively, as shown in the flowchart of FIG.
  • a general cooling operation is performed while cold air is supplied or the supply of cold air is stopped.
  • the internal temperature of the first storage compartment 101 exceeds the first upper limit reference temperature (NT11 + Diff) and reaches an unsatisfactory temperature
  • cold air is supplied to the first storage compartment 101 (S131).
  • the internal temperature of the first storage compartment 101 reaches the first lower limit reference temperature (NT11-Diff)
  • the supply of cold air to the first storage compartment 101 is stopped (S132).
  • the compressor 210 and the blowing fan 281 for the first storage compartment are operated.
  • the flow path switching valve 330 is operated so that the refrigerant flows through the first refrigerant flow path 201. This is the same as the attached figure 9.
  • the refrigerant compressed by the operation of the compressor 210 is condensed while passing through the condenser 220, and the condensed refrigerant is reduced in pressure and expanded while passing through the first expander 230.
  • the refrigerant expanded in the first expander 230 exchanges heat with air passing through the first evaporator 250 while passing through the first evaporator 250 .
  • the refrigerant heat-exchanged in the first evaporator 250 is returned to the compressor 210 through the return passage 211 and then compressed, repeating a circular operation.
  • a cooling fan (C-Fan) 221 is operated so that the refrigerant passing through the condenser 220 exchanges heat with air passing through the condenser 220 .
  • the refrigerant is condensed while the temperature is lowered while passing through the condenser 220 .
  • the blowing fan 281 for the first storage compartment is operating.
  • the air in the first storage compartment 101 passes through the first evaporator 250 and is re-supplied into the first storage compartment 101, repeating a circulation operation.
  • the air exchanges heat with the first evaporator 250 while passing through the first evaporator 250 and is supplied into the first storage compartment 101 at a lower temperature to lower the temperature in the first storage compartment 101.
  • the compressor 210, the cooling fan 221, and the blowing fan 282 for the second storage compartment are operated.
  • the flow path switching valve 330 is operated so that cold air flows through the second refrigerant flow path 202 . This is the same as the attached figure 10.
  • the refrigerant compressed by the operation of the compressor 210 is condensed while passing through the condenser 220, and the condensed refrigerant is reduced in pressure while passing through the second expander 240 by the guidance of the second refrigerant flow path 202. Inflated.
  • the refrigerant passes through the second evaporator 260, exchanges heat with air flowing around the refrigerant, flows into the compressor 210 through the return passage 211, and repeats a circulation operation in which it is compressed.
  • the cooling fan 221 operates so that the refrigerant passing through the condenser 220 exchanges heat with the air passing through the condenser 220 .
  • the refrigerant is condensed while the temperature is lowered while passing through the condenser 220 .
  • the blowing fan 291 for the second storage compartment is operating.
  • the air in the second storage compartment 102 passes through the second evaporator 260 and is re-supplied into the second storage compartment 102 to repeat the circulation operation.
  • the air exchanges heat with the second evaporator 260 while passing through the second evaporator 260 and is supplied into the second storage compartment 102 at a lower temperature, thereby reducing the temperature R in the second storage compartment 102. lower it
  • the internal temperature (F, R) of the first storage compartment 101 and the second storage compartment 102 together can form a dissatisfaction temperature (temperature higher than the first upper limit reference temperature (NT11 + Diff, NT21 + Diff)).
  • the operation may be performed so that cold air is preferentially supplied to one storage compartment and then operated to supply cold air to another storage compartment.
  • cold air is preferentially supplied to the second storage compartment 102 to satisfy a temperature (between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff)).
  • a temperature between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff)
  • it may be operated so that cold air is supplied to the first storage compartment 101 .
  • the second storage compartment 102 is a storage compartment maintained at room temperature, the stored goods stored in the corresponding storage compartment may be sensitive to temperature changes.
  • the operation of the refrigerator for each situation may include a heat transfer operation (S210).
  • the heat supply operation (S210) is performed before the heat supply operation (S220) when the start condition of the heat supply operation (S220) is satisfied during the normal cooling operation (S100). That is, when the temperature of each of the storage compartments 101 and 102 is increased while the heat supply operation (S220) is being performed, the storage items in each of the storage compartments 101 and 102 may be adversely affected. Accordingly, the heat supply operation (S210) is performed before the heat supply operation (S220) is performed to sufficiently cool the storage compartments 101 and 102.
  • the heat transfer operation (S210) is performed to sequentially cool the first storage compartment 101 and the second storage compartment 102 (S211 and S212).
  • each of the storage compartments 101 and 102 is cooled (Deep cooling) can be operated.
  • the second set reference temperatures NT12 and NT22 may be set to temperatures different from the first set reference temperatures NT11 and NT21 during the normal cooling operation (S100).
  • the second set reference temperatures NT12 and NT22 may be set to a lower temperature than the first set reference temperatures NT11 and NT21.
  • the second lower limit reference temperatures NT12-Diff and NT22-Diff may also be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
  • the second set reference temperatures NT12 and NT22 may be set to the same temperature as the first set reference temperatures NT11 and NT21.
  • the first lower limit reference temperatures NT11-Diff and NT21-Diff may be set to different temperatures from the second lower limit reference temperatures NT12-Diff and NT22-Diff.
  • the second lower limit reference temperatures NT12-Diff and NT22-Diff may be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
  • the second refrigerant passage 202 and the first refrigerant passage 201 are sequentially opened or closed by the operation of the passage switching valve 330.
  • blowing fan 291 for the second storage compartment and the blowing fan 281 for the first storage compartment are sequentially operated.
  • the refrigerant flows into the first refrigerant passage 201 by the operation of the passage switching valve 330, and the compressor 210 and the cooling fan 221 And the blowing fan 281 for the first storage compartment is operated.
  • the refrigerant flows into the second refrigerant passage 202 by the operation of the flow path switching valve 330, and the compressor 210, the cooling fan 221, and the The blowing fan 291 for the second storage compartment is operated.
  • the heat transfer operation (S210) may be performed so that the second storage compartment 102 is first cooled and then the first storage compartment 101 is cooled. That is, since the temperature of the second storage compartment 102 gradually decreases during the heat supply operation (S220), the second storage compartment 102 is cooled before the first storage compartment 101 in the heat transfer operation (S210).
  • the pump When the cooling of the first storage chamber 101 in the heat transfer operation (S210) is completed (S213), the pump may be controlled to be down. That is, when the cooling of the first storage compartment 101 is completed (S213) and the flow path switching valve 330 is operated to block the flow of refrigerant to the respective flow paths 201 and 202, the compressor 210 is additionally operated for a certain period of time. Accordingly, the refrigerant collected in the second evaporator 260 may be recovered to the compressor 210 . Accordingly, when the heat exchange process (S223) of the heat supply operation (S220) is performed, the high-temperature refrigerant can be rapidly supplied to the first evaporator (250) and supplied in a sufficient amount.
  • a pause process (S216) is performed for a predetermined time until the heat supply operation (S220) is performed. That is, excessive continuous operation of the compressor 210 is prevented by providing the pause process (S216). This is the same as the attached FIGS. 7 and 11.
  • the pause process (S216) may be set by time. For example, after cooling of the first storage compartment 101 is completed (S213), a pause process (S216) may be performed for a predetermined time before the heat supply operation (S220) is performed.
  • the pause process (S216) may be set to a longer time than the minimum pause time of the compressor 210.
  • the pause process may be set to 3 minutes.
  • the first storage room blowing fan 281 supplies cold air to the first storage room 101 when the first evaporator temperature FD reaches the first storage room temperature F. It can operate until That is, when the temperature FD of the first evaporator reaches the temperature F of the first storage compartment, the blowing fan 281 for the first storage compartment is stopped (S215).
  • the blowing fan 281 for the first storage compartment generates heat from the heating heat source 310 after the compressor 210 is stopped, rather than before the compressor 210 is stopped when the cooling of the first storage compartment 101 is completed (S213). It may be rotated at a higher speed until the condition is satisfied (S214). That is, maximizing the flow rate circulating in the first storage chamber 101 after the compressor 210 is stopped until the heating heat source 310 is operated is advantageous in shortening the heating time (eg, the defrosting time of the first evaporator). Do.
  • the cooling of the first storage compartment 101 is completed (S213) and before the compressor 210 is stopped, the rotation speed of the blowing fan 281 for the first storage compartment is performed to cool the first storage compartment 101 during normal cooling operation. It may be set to be slower than or equal to the rotation speed to be set.
  • supply of cold air to the second storage chamber 102 may be blocked until the heat supply operation (S220) is performed after the heat supply operation (S210) is finished.
  • a method of blocking the cold air supply may be performed in various ways.
  • the second storage compartment temperature (R) checked before the heat supply operation (S220) is performed may be excluded from the conditions for the cooling operation of the second storage compartment (102).
  • the second storage room temperature (R) is an unsatisfactory temperature (temperature exceeding the second upper limit reference temperature (NT22 + diff)). Even if it is, the cooling operation of the second storage chamber 102 is not performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the compressor 210 may be controlled to stop until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the second storage compartment temperature (R) is not measured until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the flow path switching valve 330 may be controlled so that the refrigerant supply flowing to the second evaporator 260 is blocked until the heat supply operation (S220) is performed. there is. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the blower fan 291 for the second storage compartment may be controlled to stop after the heat supply operation ( S210 ) ends until the heat supply operation ( S220 ) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
  • the operation of the refrigerator for each situation may include a heat supply operation (S220).
  • the heat supply operation (S220) is an operation that provides heat for heating the first evaporator (250).
  • the heat supply operation (S220) may be used to defrost frost generated on the surface of the first evaporator 250.
  • This heat supply operation (S220) may be performed when the operation conditions are satisfied. For example, when the defrosting operation of the first evaporator 250 is required, it may be determined that the operating condition of the heat supply operation (S220) is satisfied.
  • the defrosting operation checks the amount or flow rate of cold air passing through the first evaporator 250, checks whether the cumulative operation time of the compressor 210 has elapsed, It is possible to determine whether operation is necessary by checking whether the temperature is maintained at the unsatisfactory temperature.
  • the heat supply operation (S210) is performed first, and then the heat supply operation (S220) is performed. can be performed
  • the heat supply operation (S220) may include a heating process of providing heat to the first evaporator 250 using the heating heat source 310.
  • the heating process may be performed by supplying power to the heating heat source 310 when the heating condition for heating the first evaporator 250 is satisfied after the heat supply operation (S210) of each storage compartment 101 and 102 starts. That is, the first evaporator 250 is heated by generating heat from the heating source 310 only when the heating condition is satisfied.
  • An exothermic condition of the exothermic process may be set by time. For example, it may be determined that the heating condition is satisfied when a set time elapses after the heat supply operation (S210) ends (deep cooling ends).
  • the heating condition of the heating process is set to temperature. That is, by setting the heating condition to temperature, it is possible to accurately respond to changes in various surrounding environments.
  • the heating condition is set to temperature
  • a case where the first evaporator temperature (FD) is equal to or higher than the first storage compartment temperature (F) may be included. That is, during the heat transfer operation (S210) or after the heat transfer operation (S210) is completed, the first evaporator temperature (FD) is checked (S221) so that the first evaporator temperature (FD) is the first storage compartment temperature (F). If it is equal to or higher than ), it is determined that the heating condition is satisfied, and the heating heat source 310 heats up (ON) (S222).
  • the first evaporator temperature FD may include the temperature of the outlet side of the refrigerant or the temperature of the outlet side of the cold air of the first evaporator 250 .
  • the heating heat source 310 When the heating heat source 310 generates heat (ON) by satisfying the heat generating condition described above, the time set in the pause process (S216) may be disregarded. That is, even before the time set for the pause process (S216) elapses, if the heating condition of the heating heat source 310 is satisfied, the heating heat source 310 can be controlled to generate heat.
  • the minimum idle time of the compressor 210 does not elapse, heat generation of the heating source 310 is delayed until the minimum idle time has elapsed. It is preferable to set it so that it is. For example, if 2 minutes have not elapsed after the heat supply operation (S210) is finished, even if the first evaporator temperature (FD) reaches the first storage compartment temperature (F), the heating heat source 310 will not pass the 2 minutes. It can be set to delay heat generation until
  • the heat supply operation (S220) may include a heat exchange process of providing heat to the first evaporator 250 using circulation of the refrigerant.
  • heat can be provided up to a desired temperature more quickly than when heat is provided to the first evaporator 250 only with the heating heat source 310, resulting from the operation of the heating heat source 310. This is to reduce power consumption.
  • This heat exchange process is performed by operating the compressor 210 with the hot gas flow path 320 open after the pause process (S216) for a set time (eg, 3 minutes) is completed at the end of the heat transfer operation (S210). (S223). That is, the high-temperature refrigerant generated by the operation of the compressor 210 passes through the condenser 220 and flows along the hot gas flow path 320 to the first evaporator 250 without passing through the first expander 230. The first evaporator 250 is heated. The refrigerant heated in the first evaporator 250 is returned to the compressor 210 after passing through the second evaporator 260 in a reduced pressure state through the physical property control unit 270 .
  • the refrigerant passing through the discharge passage 203 of the condenser 220 is guided to flow along the hot gas passage 320 by the operation of the flow path switching valve 330.
  • the cooling fan 221 when the heat exchange process is performed, the cooling fan 221 is controlled not to operate despite the operation of the compressor 210 . At this time, the cooling fan 221 may be controlled not to be driven until the corresponding heat exchange process is completed.
  • the refrigerant compressed in the compressor 210 can be provided to the first evaporator 250 in a state in which the temperature does not decrease while passing through the condenser 220, and the first evaporator 250 converts the high-temperature refrigerant into can be heated.
  • the second storage compartment can be controlled to be cooled while heating the first evaporator 250 with hot gas (high-temperature refrigerant) as shown in the flowchart of FIG. 13 attached thereto. .
  • This can be performed by also operating the R-Fan 291 for the second storage compartment.
  • the refrigerant passing through the first evaporator 250 passes through the physical property control unit 270 and is decompressed, and then passes through the second evaporator 260. Heat is exchanged with the air in the second storage compartment 102.
  • the heat-exchanged air is provided to the second storage compartment 102 to lower the temperature in the second storage compartment 102 . That is, when the first evaporator 250 is heated by the heat exchange process, the second storage compartment 102 is cooled, so that the operation for cooling the second storage compartment 102 can be omitted when the heat supply operation is finished. As a result, the first storage compartment 101 can be quickly cooled, the time for cooling the first storage compartment 101 is shortened, and power consumption can be reduced.
  • the blowing fan 291 for the second storage compartment is stopped when the heating of the first evaporator 250 is finished.
  • the heat exchange process by the refrigerant (S223) may be performed prior to the heating process (S222) or later than the heating process (S222) according to the room temperature.
  • the heating process may be performed prior to the heat exchange process.
  • the low temperature temperature range may be a temperature range lower than a preset reference temperature range. Even when the room temperature is within the reference temperature range, the heating process may be performed prior to the heat exchange process.
  • the first evaporator 250 is first heated with the heating heat source 310, and then the first evaporator 250 is heated using a high-temperature refrigerant ( 250) may be desirable.
  • the effect of the room temperature on the first evaporator 250 is insignificant. For this reason, heating the periphery of the first evaporator 250 using the heating heat source 310 and then heating the first evaporator 250 using hot gas shortens the defrosting time of the first evaporator 250.
  • the reference temperature range may be set to an average indoor temperature range in spring and autumn, or may be a temperature considering other indoor conditions.
  • the high-temperature temperature range may be set as an average indoor temperature range in summer or may be a temperature considering other indoor conditions.
  • the heat exchange process may be performed when the hot gas supply condition of each of the storage compartments 101 and 102 is satisfied. That is, the compressor 210 is restarted when the hot gas supply condition is satisfied after the heat supply operation (S210) is completed and the compressor 210 is stopped.
  • These hot gas supply conditions may include various cases.
  • the hot gas supply condition may include a case where a set time elapses after power is supplied to the heating heat source 310 . For example, when 10 minutes have elapsed after supplying power to the heating heat source 310, it may be determined that the hot gas supply condition is satisfied.
  • the heating heat source 310 when the heat of the heating heat source 310 affects the first evaporator 250, the high-temperature refrigerant is supplied along the hot gas flow path 320 to the first evaporator 250. ) can be further heated.
  • the hot gas supply condition may include a case where a set time elapses after the heat supply operation ( S210 ) of each storage chamber ( 101 , 102 ) ends. That is, when a set time elapses after the heat supply operation (S210) ends, it may be determined that the hot gas supply condition is satisfied.
  • the first evaporator temperature (FD) reaches the set second temperature (X2) (FD ⁇ X2).
  • °C may be included. That is, it can be determined that the hot gas supply condition is satisfied when the first evaporator temperature FD reaches the set second temperature X2 (FD ⁇ X2°C) after the heat transfer operation (S210) is finished.
  • the second temperature X2 may be a temperature higher than the first storage compartment temperature F and lower than the first temperature X1 at which heat generation of the heating heat source 310 is terminated.
  • the second temperature (X2) when the second temperature (X2) is set to the first temperature (X1) at which the heat generation of the heating heat source 310 is terminated, heating by heat from the heating heat source 310 and heating using hot gas are not simultaneously performed. may not be Considering this, the second temperature (X2) may be set to a lower temperature than the first temperature (X1) at which heat generation of the heating heat source 310 is terminated.
  • the cooling fan 221 may be controlled to stop until the heat exchange process (S223) ends even if the compressor 210 is operated.
  • the temperature drop (heat loss) caused by the operation of the cooling fan 221 is prevented, so that the highest-temperature refrigerant is transferred to the first evaporator ( 250) so that it can be provided.
  • the blowing fan 281 for the first storage compartment may be controlled to stop. That is, it is to prevent the temperature rise of the first evaporator 250 from being slow due to the operation of the blowing fan 281 for the first storage compartment.
  • the blowing fan 291 for the second storage compartment may be controlled to operate. That is, when the refrigerant flows along the hot gas flow path 320, the cooling fan 291 for the second storage compartment is operated so that the cold air in the second storage compartment 102 passes through the second evaporator 260 and exchanges heat. . As a result, while heating the first evaporator 250 , a process of supplying cold air to the second storage chamber 102 can be simultaneously performed.
  • the heat generation termination condition is a condition for terminating heat generation of the heating heat source 310 and may include a case where the first evaporator temperature FD reaches the preset first temperature X1. That is, when the first evaporator temperature (FD) reaches the first temperature (X1), it is determined that the heat generation end condition is satisfied, and the power supplied to the heating source 310 is cut off.
  • the first temperature X1 is a temperature in consideration of damage to stored objects due to a temperature rise of the first storage compartment 101, and may be set to, for example, 5°C.
  • the first temperature X1 described above may be equal to or higher than the second temperature X2 for confirming the satisfaction of the hot gas supply condition.
  • the heat exchange termination condition is a condition in which the supply of hot gas (refrigerant) is terminated, and may actually be a condition in which the heat supply operation for heating the first evaporator 250 is terminated.
  • These heat exchange termination conditions may include a case where the second storage chamber 102 reaches a satisfactory temperature. That is, since the second storage compartment 102 is a storage compartment for refrigerated storage, damage such as freezing of stored items may occur when the temperature drops excessively.
  • the satisfactory temperature is a temperature equal to or less than the lower limit reference temperature (NT2-Diff) set based on the set reference temperature (NT2) of the second storage compartment (102). That is, when the temperature R of the second storage chamber reaches the lower limit reference temperature (NT2-Diff) or becomes lower than the lower limit reference temperature (NT2-Diff), the supply of refrigerant to the hot gas passage 320 is cut off.
  • N2-Diff lower limit reference temperature
  • the blowing fan 291 for the second storage compartment may be controlled to stop. That is, by delaying the time for the second storage chamber 102 to reach a satisfactory temperature, it is possible to secure time for the first evaporator 250 to be sufficiently heated.
  • the heat exchange termination condition may be determined based on the entire operation time of the heat supply operation (S220).
  • the heat exchange process may be terminated while the refrigerant supply to the hot gas flow path 320 is cut off.
  • the blowing fan 291 for the second storage compartment may be stopped.
  • the supply of refrigerant to the hot gas flow path 320 may be cut off when the compressor 210 is stopped.
  • the first evaporator 250 is in a high temperature state
  • the second evaporator 260 is in a low temperature state.
  • the heat exchange process is finished and the compressor 210 is stopped.
  • Refrigerant flows. Accordingly, when the refrigerant is supplied to the first evaporator 250 for the cooling operation of the first storage compartment 102 after the heat exchange process is finished, a delay in the flow of the refrigerant to the first evaporator 250 occurs, and consumption Efficiency decreases.
  • the refrigerant collected in the second evaporator 260 is recovered to the compressor 210 by performing a pump down operation (S226) to additionally operate the compressor 210 while the flow of the refrigerant is blocked. Accordingly, when the cooling operation for the first storage chamber 101 of the temperature return operation (S230) is performed, the high-temperature refrigerant can be quickly and sufficiently supplied to the first evaporator 250.
  • operation of the refrigerator for each situation may include a temperature return operation (S230).
  • the temperature return operation (S230) is an operation for cooling the first storage compartment 101, the temperature of which has risen in the heat supply operation (S220), to a satisfactory range.
  • the temperature return operation (S230) may be performed at the end of the heat supply operation (S220).
  • the temperature return operation (S230) may be performed after a pause process (S231) for a set time (eg, 3 minutes) when performed at the end of the heat supply operation (S220). That is, after the pause process (S231) is performed, an operation for cooling the first storage compartment 101 is performed.
  • the flow path switching valve 330 is operated so that cold air flows through the first refrigerant flow path 201.
  • the compressor 210 and the cooling fan 221 operate together. As a result, a flow of refrigerant sequentially circulating through the compressor 210, the condenser 220, the first expander 230, and the first evaporator 250 is performed while cooling the first storage compartment 101.
  • the blowing fan 281 for the first storage compartment When the operation for cooling the first storage compartment 101 is performed, the blowing fan 281 for the first storage compartment may be operated.
  • the blowing fan 281 for the first storage compartment may be operated from when the first evaporator temperature (FD) becomes lower than the first storage compartment temperature (F). As a result, the temperature F of the first storage compartment may gradually decrease.
  • defrosting primary defrosting
  • the blowing fan 291 for the second storage compartment is maintained in an inoperative state.
  • the blowing fan 291 for the second storage compartment since the blowing fan 291 for the second storage compartment is not operated, the second evaporator 260 is naturally defrosted.
  • the operation of the blowing fan 291 for the second storage compartment may be stopped until the second evaporator temperature RD is equal to or higher than the first set temperature.
  • the first set temperature may be set to 3°C.
  • the flow path switching valve 330 is operated so that the second refrigerant flow path 202 is opened (refrigerant flows through the second refrigerant flow path), and the blowing fan 291 for the second storage compartment is operated. and the blowing fan 281 for the first storage compartment is stopped.
  • the pump-down (S235) may be performed for a predetermined time.
  • the refrigerator of the present invention provides heat to the first evaporator 250 by generating heat from the heating source 310 and supplying hot gas.
  • the operation time required to provide heat can be shortened and the temperature rise of the first storage compartment 101 can be reduced compared to the case of providing heat to the first evaporator 250 using only the high-temperature refrigerant.
  • the refrigerator of the present invention is controlled so that the cooling fan 221 is not driven during the heat exchange process (S223) of the heat supply operation (S220), the high-temperature refrigerant compressed by the compressor 210 does not rapidly decrease in temperature.
  • the evaporator 250 may be heated. As a result, the operating time of the heating heat source 310 is reduced, thereby reducing power consumption.
  • the compressor 210 is operated and the blowing fan 291 for the second storage compartment is controlled to operate at the same time, so that the first refrigerator using a high-temperature refrigerant is operated.
  • Heat supply to the evaporator 250 and cooling of the second storage chamber 102 can be performed simultaneously.
  • the flow path switching valve 330 is closed while the compressor 210 continues to operate for a certain period of time. Down) (S226) is performed. For this reason, when the heat exchange process (S223) of the heat supply operation (S220) is performed, the high-temperature refrigerant can be quickly and sufficiently supplied to the first evaporator (250).
  • the heat supply operation (S220) of cooling the second evaporator 260 while providing heat to the first evaporator 250 is terminated when the temperature of the second storage compartment 102 exceeds the desired temperature. Since it is controlled, overcooling of the second storage compartment 102 caused by excessive cooling of the second evaporator 260 can be prevented.
  • the refrigerator of the present invention operates the first evaporator 250 when the heating condition of the heating heat source 310 is satisfied even during the stop process (S216) before the heat supply operation (S220) after the heat supply operation (S210) is performed. Since it is made to heat first, it is possible to shorten the time for the entire heat supply operation (S220).
  • the heating condition of the heating heat source 310 includes a case where the first evaporator temperature FD is equal to the first storage compartment temperature F, the exact time of heat generation of the heating heat source 310 can be specified.
  • the refrigerator of the present invention can be implemented in various forms not shown unlike the above-described embodiments.
  • heat generated by the refrigerant (hot gas) flowing through the hot gas flow path 320 may be used for other purposes than the defrosting operation of the first evaporator 250 .
  • the hot gas flow path 320 may be used for heating a part requiring heat (eg, ice-breaking of an ice maker, prevention of frost formation on a door, prevention of overcooling in each storage compartment 101, 102, etc.) can
  • the hot gas flow path 320 is not divided into a first pass 321, a second pass 322, and a third pass 323 and has the same outer diameter (or inner diameter). It can be formed as a single conduit.
  • the flow path switching valve 330 may be operated to simultaneously open two or more flow paths.
  • first refrigerant passage 201 and the hot gas passage 320, the second refrigerant passage 202 and the hot gas passage 320, or the first refrigerant passage 201 and the second refrigerant passage 202 may flow while being opened at the same time.
  • the refrigerator of the present invention may be formed such that the hot gas flow path 320 is branched from the flow path between the compressor 210 and the condenser 220 . That is, the high-temperature refrigerant passing through the compressor 210 may be formed to pass directly through the first evaporator 250 without passing through the condenser 220 and the first expander 230 by the hot gas flow path 320. will be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A refrigerator of the present invention is capable of performing a heat providing operation by using a heating heat source and a hot gas simultaneously. Therefore, the present invention can: save operation time spent for providing heat; lower the temperature increase in a first storage chamber; and reduce power consumption for the temperature recovery of the first storage chamber.

Description

냉장고의 운전 제어방법Refrigerator operation control method
본 발명은 히팅열원 및 핫 가스유로를 이용하여 증발기에 열을 제공하는 냉장고의 운전 제어방법에 관련된 것이다.The present invention relates to a method for controlling the operation of a refrigerator that provides heat to an evaporator using a heating heat source and a hot gas flow path.
일반적으로, 냉장고는 냉동사이클에 따른 냉매의 순환을 이용하여 생성한 냉기로 다양한 식품을 장시간 보관하도록 제공되는 가전 기기이다.In general, a refrigerator is a home appliance provided to store various foods for a long time with cool air generated by using circulation of a refrigerant according to a refrigerating cycle.
이와 같은 냉장고는 저장물(예컨대, 식품 혹은, 음료 등)을 보관하기 위한 하나 혹은, 복수의 저장실이 서로 구획되면서 제공된다. 이러한 저장실은 압축기와 응축기와 팽창기 및 증발기를 포함하는 냉동시스템에 의해 생성된 냉기를 공급받아 설정된 온도 범위로 유지된다.In such a refrigerator, one or a plurality of storage compartments for storing storage objects (eg, food or beverages, etc.) are partitioned from each other and provided. The storage chamber receives cold air generated by a refrigeration system including a compressor, a condenser, an expander, and an evaporator, and is maintained within a set temperature range.
한편, 냉장고가 운전되는 도중에는 각 저장실 내부를 순환한 냉기가 증발기를 통과하게 되고, 이의 과정에서 상기 냉기에 포함된 수분은 상기 증발기의 표면에 착상되어 성에를 생성하게 된다.Meanwhile, while the refrigerator is operating, cold air circulating inside each storage compartment passes through an evaporator, and in the process, moisture contained in the cold air is deposited on the surface of the evaporator to form frost.
특히, 상기 증발기 표면에 생성된 성에는 점차 쌓이면서 해당 증발기를 지나는 냉기의 유동에 영향을 미치게 된다. 즉, 상기 성에량에 비례하여 증발기를 지나는 냉기 유동이 나빠지면서 열교환 효율이 저하되었다.In particular, frost formed on the surface of the evaporator gradually accumulates and affects the flow of cold air passing through the evaporator. That is, as the flow of cold air passing through the evaporator worsens in proportion to the amount of frost, the heat exchange efficiency decreases.
이로써, 종래에는 냉장고의 운전후 일정 시간이 경과되거나 혹은, 제상 운전을 위한 조건이 만족되면 증발기의 제상을 위한 운전(제상 운전)이 수행되었다.Thus, conventionally, the evaporator is operated for defrosting (defrosting operation) when a predetermined time elapses after operating the refrigerator or when conditions for the defrosting operation are satisfied.
상기 제상 운전은 해당 증발기에 설치되는 하나 혹은, 둘 이상 복수의 히팅열원를 이용하여 수행되며, 이러한 히팅열원의 발열에 의한 제상 운전이 수행될 때에는 각 저장실에 대한 냉각 운전이 중단된다.The defrosting operation is performed using one or a plurality of heating heat sources installed in the evaporator, and when the defrosting operation is performed by the heat generated by these heating heat sources, the cooling operation for each storage compartment is stopped.
그러나, 히팅열원만 이용하는 제상 방법의 경우는 제상 운전의 종료 후 각 저장실을 설정된 온도에 이르기까지 낮추는데 상당한 시간이 소요되고, 그 만큼 전력 소모가 심하다는 단점이 있다.However, in the case of the defrosting method using only the heating heat source, it takes a considerable amount of time to lower each storage chamber to a set temperature after the defrosting operation is finished, and there is a disadvantage in that power consumption is severe.
특히, 히팅열원를 이용한 제상 방식은 균일한 제상이 되지 않아 필요 이상의 가열이 요구되며, 이로 인해 고내 온도의 상승이 야기되어 저장실 내에 저장되는 식품류에 좋지 않은 영향을 미치게 된다.In particular, the defrosting method using a heating heat source does not perform uniform defrosting and requires more heating than necessary, which causes an increase in the internal temperature of the refrigerator, which adversely affects foods stored in the storage compartment.
이에 따라, 종래에는 압축기를 통과한 뜨거운 냉매(핫 가스)를 이용하는 핫 가스 제상 방식이 제공되었으며, 이를 통해 제상 시간의 단축 및 제상 운전 도중 고내 온도의 상승이 최소되도록 하였다. 이에 관련하여는 공개특허 제10-2010-0034442호(선행문헌 1)에 제시되고 있는 바와 같다.Accordingly, a hot gas defrosting method using a hot refrigerant (hot gas) passing through a compressor has been conventionally provided, thereby shortening a defrosting time and minimizing an increase in temperature inside the refrigerator during a defrosting operation. In this regard, it is as suggested in Patent Publication No. 10-2010-0034442 (Prior Document 1).
하지만, 전술된 선행문헌 1의 기술은 핫 가스 제상과 히터 제상이 실내 온도에 따라 선택적으로 이루어지기 때문에 상기 히팅열원만을 이용하는 제상 운전시의 문제점이 여전히 존재할 수밖에 없다.However, in the technology of Prior Document 1 described above, since the hot gas defrosting and the heater defrosting are selectively performed according to the room temperature, there is still a problem in the defrosting operation using only the heating heat source.
또한, 전술된 선행문헌 1의 기술은 하나의 압축기로 하나의 증발기에 대한 냉각 운전을 수행하는 냉장고에만 적용되는 기술로써, 하나의 압축기로 둘 이상의 증발기에 대한 냉각 운전을 수행하는 냉장고에는 적용될 수 없었다.In addition, the above-described technology of Prior Document 1 is applied only to a refrigerator in which a single compressor performs a cooling operation for one evaporator, and cannot be applied to a refrigerator in which a single compressor performs a cooling operation for two or more evaporators. .
한편, 최근에는 하나의 압축기로 두 증발기에 대한 냉각 운전을 수행하는 냉장고에서 핫 가스를 이용하여 증발기를 제상하는 기술이 제공되고 있다. 이는 공개특허 제10-2017-0013766호(선행문헌 2) 및 공개특허 제10-2017-0013767호(선행문헌 3)에 제시되고 있는 바와 같다.Meanwhile, recently, a technique for defrosting an evaporator using hot gas has been provided in a refrigerator in which a single compressor performs a cooling operation for two evaporators. This is as presented in Patent Publication No. 10-2017-0013766 (Prior Document 2) and Publication Patent Publication No. 10-2017-0013767 (Prior Document 3).
하지만, 전술된 선행문헌 2 및 선행문헌 3의 기술은 핫 가스만 이용하여 증발기를 제상하는 방식이기 때문에 소비전력은 줄어든 반면, 히팅열원를 이용하는 방식보다 제상 시간을 확연히 단축시키지는 못하였다.However, since the technologies of Prior Documents 2 and 3 described above use only hot gas to defrost the evaporator, power consumption is reduced, while defrosting time is not significantly reduced compared to the method using a heating source.
이와 함께, 전술된 선행문헌 2 및 선행문헌 3의 기술은 증발기를 통과한 핫 가스가 여타 저장실의 증발기로 투입될 경우 상기 여타 저장실의 증발기용 팽창기를 지나도록 이루어진다. 이에 따라 상기 여타 저장실의 증발기로 투입되는 냉매의 냉매량을 조절하기 어려운 문제점이 있었다.In addition, the above-described technologies of Prior Documents 2 and 3 pass through the expander for the evaporator of the other storage compartment when the hot gas passing through the evaporator is injected into the evaporator of the other storage compartment. Accordingly, there is a problem in that it is difficult to control the amount of refrigerant introduced into the evaporator of the other storage compartment.
즉, 응축기를 지나 곧장 여타 저장실의 증발기로 유입되는 냉매와 응축기 및 어느 한 증발기를 지난 후 상기 여타 저장실의 증발기로 유입되는 냉매는 서로 다른 압력과 온도 상태이다. 이 때문에 동일한 팽창기를 지나는 과정에서의 감압 차이로 인한 열교환 성능의 차이가 발생될 수밖에 없는 것이다.That is, the refrigerant flowing directly through the condenser into the evaporator of the other storage compartment and the refrigerant flowing into the evaporator of the other storage compartment after passing through the condenser and one evaporator have different pressures and temperatures. For this reason, a difference in heat exchange performance due to a difference in decompression in the process of passing through the same expander is inevitable.
본 발명의 목적은 증발기에 열을 제공하기 위한 운전 시간을 단축시켜 열 제공으로 인한 고내 온도 상승을 줄일 수 있도록 한 것이다.An object of the present invention is to shorten the operating time for providing heat to an evaporator, thereby reducing the rise in temperature inside the furnace due to the heat supply.
본 발명의 다른 목적은 압축기에서 압축된 고온의 냉매에 대한 온도 저하가 최소화된 상태로 제1증발기에 제공되도록 하여 제1증발기의 가열 성능이 향상될 수 있도록 한 것이다.Another object of the present invention is to improve the heating performance of the first evaporator by supplying the high-temperature refrigerant compressed in the compressor to the first evaporator in a state where the temperature drop is minimized.
본 발명의 다른 목적은 열제공운전의 종료시 제1저장실을 빠르게 냉각시킬 수 있도록 제1증발기에 충분한 냉매가 빠르게 공급되도록 한 것이다.Another object of the present invention is to quickly supply enough refrigerant to the first evaporator so that the first storage compartment can be quickly cooled when the heat supply operation is finished.
상기한 목적을 달성하기 위한 본 발명의 냉장고의 운전 제어방법에 따르면, 각 저장실로 냉기를 공급하면서 냉각하는 일반 냉각운전과, 제1증발기로 열을 제공하는 열제공운전과, 열제공운전 전에 수행되는 열제공전운전이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention for achieving the above object, a general cooling operation in which cooling is performed while supplying cold air to each storage compartment, a heat supply operation in which heat is supplied to the first evaporator, and a heat supply operation performed before Heat transfer operation may be included.
본 발명의 냉장고의 운전 제어방법에 따르면, 일반 냉각운전 및 열제공전운전시 응축기를 냉각하도록 제공되는 냉각팬이 압축기의 동작과 함께 구동되도록 제어될 수 있다.According to the operation control method of the refrigerator of the present invention, the cooling fan provided to cool the condenser during the normal cooling operation and the heat supply operation can be controlled to be driven together with the operation of the compressor.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전의 열교환과정시 응축기를 냉각하도록 제공되는 냉각팬은 압축기가 동작되더라도 열교환과정이 종료될 때까지 구동되지 않도록 제어될 수 있다.According to the operation control method of the refrigerator of the present invention, during the heat exchange process of the heat supply operation, the cooling fan provided to cool the condenser may be controlled not to operate until the heat exchange process is completed even if the compressor is operated.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 히팅열원이 발열되는 발열과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat supply operation may include a heating process in which the heating heat source generates heat.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 핫 가스(고온 냉매)에 의한 열이 제공되는 열교환과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat supply operation may include a heat exchange process in which heat is provided by hot gas (high-temperature refrigerant).
본 발명의 냉장고의 운전 제어방법에 따르면, 실내 온도가 기준 온도범위에서는 열제공운전의 발열과정이 열교환과정보다 우선적으로 수행될 수 있다.According to the operation control method of the refrigerator of the present invention, when the room temperature is within the reference temperature range, the heating process of the heat supply operation may be performed with priority over the heat exchange process.
본 발명의 냉장고의 운전 제어방법에 따르면, 발열과정의 발열 조건은 제1증발기의 온도(FD)가 제1저장실 내의 온도(F)와 같거나 높을 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the heat generation condition of the heat generation process may include a case where the temperature FD of the first evaporator is equal to or higher than the temperature F in the first storage compartment.
본 발명의 냉장고의 운전 제어방법에 따르면, 제1증발기의 온도(FD)는 제1증발기의 냉매 유출측 온도가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the temperature FD of the first evaporator may include the temperature of the refrigerant outlet side of the first evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 제1증발기의 온도(FD)는 제1증발기의 냉기 유출측 온도가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the temperature FD of the first evaporator may include the cold air outflow side temperature of the first evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전이 종료된 후 열제공운전이 시작되기까지 압축기의 동작을 정지하는 휴지과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, a stop process of stopping the operation of the compressor from the end of the heat supply operation until the start of the heat supply operation may be included.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공전운전이 종료된 후 열제공운전이 수행되기 전까지 제2저장실로의 냉기 공급이 차단될 수 있다.According to the operation control method of the refrigerator of the present invention, supply of cold air to the second storage compartment may be cut off after the heat supply operation is finished until the heat supply operation is performed.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 제1증발기를 가열하는 발열과정이 포함될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat supply operation may include a heating process of heating the first evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 발열과정은 각 저장실의 열제공전운전이 시작된 후 제1증발기의 가열을 위한 발열 조건이 만족될 경우 수행될 수 있다.According to the refrigerator operation control method of the present invention, the heat generation process may be performed when heat supply conditions for heating the first evaporator are satisfied after the heat supply operation of each storage compartment starts.
본 발명의 냉장고의 운전 제어방법에 따르면, 발열과정은 히팅열원으로 전원을 공급하여 수행될 수 있다.According to the refrigerator operation control method of the present invention, the heating process may be performed by supplying power to a heating heat source.
본 발명의 냉장고의 운전 제어방법에 따르면, 히팅열원은 발열 종료조건을 만족할 경우 발열이 중단될 수 있다.According to the operation control method of the refrigerator of the present invention, when the heating heat source satisfies the heat generation termination condition, heat generation may be stopped.
본 발명의 냉장고의 운전 제어방법에 따르면, 발열 종료조건은 제1증발기의 온도가 설정된 제1온도(X1)에 도달할 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the heat generation termination condition may include a case where the temperature of the first evaporator reaches the set first temperature X1.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전은 제1증발기를 가열함과 동시에 제2증발기는 냉각하는 열교환과정이 포함될 수 있다.According to the refrigerator operation control method of the present invention, the heat supply operation may include a heat exchange process of heating the first evaporator and simultaneously cooling the second evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정은 핫 가스유로를 통해 압축기에서 압축된 고온의 냉매가 제1증발기와 제2증발기를 순차적으로 유동하도록 안내되면서 수행될 수 있다.According to the refrigerator operation control method of the present invention, the heat exchange process can be performed while the high-temperature refrigerant compressed in the compressor through the hot gas flow path is guided to flow sequentially through the first evaporator and the second evaporator.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정 중 제1증발기를 지난 냉매는 물성치가 조절된 후 제2증발기로 유동될 수 있다.According to the refrigerator operation control method of the present invention, the refrigerant passing through the first evaporator during the heat exchange process may flow into the second evaporator after adjusting its physical properties.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정은 각 저장실의 열제공전운전이 시작된 후 핫 가스 공급조건이 만족될 경우 수행될 수 있다.According to the refrigerator operation control method of the present invention, the heat exchange process may be performed when the hot gas supply condition is satisfied after the heat transfer operation of each storage compartment is started.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정의 핫 가스 공급조건은 각 저장실의 열제공전운전이 종료된 후 설정된 시간이 경과될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, hot gas supply conditions in the heat exchange process may include a case where a set time elapses after the heat transfer operation of each storage compartment is completed.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정의 핫 가스 공급조건은 히팅열원으로의 전원 공급후 설정된 시간이 경과될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, hot gas supply conditions in the heat exchange process may include a case where a set time elapses after power is supplied to the heating heat source.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환과정의 핫 가스 공급조건은 각 저장실의 열제공전운전이 종료된 후 제1증발기 온도가 설정된 제2온도(X2)에 도달될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the hot gas supply condition in the heat exchange process may include a case where the first evaporator temperature reaches the set second temperature X2 after the heat transfer operation of each storage compartment is completed. .
본 발명의 냉장고의 운전 제어방법에 따르면, 압축기는 열제공전운전이 종료될 경우 정지된 후 핫 가스 공급조건이 만족되면 동작될 수 있다.According to the operation control method of the refrigerator of the present invention, the compressor may be stopped when the heat supply operation ends and then operated when the hot gas supply condition is satisfied.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전의 열교환과정시 제1저장실의 냉기 순환을 위한 제1저장실용 송풍팬은 정지될 수 있다.According to the operation control method of the refrigerator of the present invention, during the heat exchange process of the heat supply operation, the blowing fan for the first storage compartment for circulating cold air in the first storage compartment may be stopped.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전의 열교환과정시 제2저장실의 냉기 순환을 위한 제2저장실용 송풍팬은 동작되도록 제어될 수 있다.According to the operation control method of the refrigerator of the present invention, during the heat exchange process of the heat supply operation, the blowing fan for the second storage compartment for circulating cold air in the second storage compartment can be controlled to operate.
본 발명의 냉장고의 운전 제어방법에 따르면, 열제공운전의 열교환과정은 열교환 종료조건을 만족할 경우 종료될 수 있다.According to the operation control method of the refrigerator of the present invention, the heat exchange process of the heat supply operation may be terminated when the heat exchange termination condition is satisfied.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환 종료조건은 제1증발기의 온도가 설정된 제1온도(X1)에 도달될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the heat exchange termination condition may include a case where the temperature of the first evaporator reaches the set first temperature X1.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환 종료조건은 제2저장실 내의 온도가 만족 온도에 도달될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the heat exchange termination condition may include a case where the temperature in the second storage chamber reaches a satisfactory temperature.
본 발명의 냉장고의 운전 제어방법에 따르면, 만족 온도는 제2저장실의 설정 기준온도를 기준으로 설정된 하한 기준온도 이하의 온도가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the satisfactory temperature may include a temperature equal to or less than the lower limit reference temperature set based on the set reference temperature of the second storage compartment.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환 종료조건은 히팅열원이 발열될 때부터 설정된 시간이 경과될 경우가 포함될 수 있다.According to the refrigerator operation control method of the present invention, the heat exchange termination condition may include a case where a set time elapses from when the heating heat source generates heat.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환 종료조건이 만족되면 압축기가 정지될 수 있다.According to the refrigerator operation control method of the present invention, the compressor may be stopped when the heat exchange termination condition is satisfied.
본 발명의 냉장고의 운전 제어방법에 따르면, 열교환 종료조건이 만족되면 핫 가스유로로의 냉매 공급이 차단될 수 있다.According to the refrigerator operation control method of the present invention, the supply of refrigerant to the hot gas flow path may be cut off when the heat exchange termination condition is satisfied.
본 발명의 냉장고는 히팅열원의 발열과 고온 냉매(핫 가스)의 공급으로 제1증발기에 열을 제공한다. 이로써, 핫 가스만을 이용하여 제1증발기에 열을 제공할 경우보다 열 제공에 소요되는 운전 시간을 단축시킬 수 있거나, 제1저장실의 온도 상승을 최대한 낮출 수 있거나 혹은, 제1저장실의 온도 복귀를 위한 전력 소모를 줄일 수 있다.The refrigerator of the present invention provides heat to the first evaporator by generating heat from a heating source and supplying a high-temperature refrigerant (hot gas). As a result, compared to the case of providing heat to the first evaporator using only hot gas, the operation time required to provide heat can be shortened, the temperature rise of the first storage compartment can be reduced as much as possible, or the temperature recovery of the first storage compartment can be reduced as much as possible. power consumption can be reduced.
본 발명의 냉장고는 열제공운전의 열교환과정시 압축기와 제2저장실용 송풍팬이 함께 동작된다. 이로써, 핫 가스를 이용한 제1증발기로의 열 제공과 제2저장실에 대한 냉각이 동시에 수행될 수 있다.In the refrigerator of the present invention, during the heat exchange process of the heat supply operation, the compressor and the blowing fan for the second storage compartment operate together. Thus, heat supply to the first evaporator using hot gas and cooling to the second storage compartment can be simultaneously performed.
본 발명의 냉장고는 열제공운전의 열교환과정시 냉각팬이 정지되도록 제어된다. 이로써, 압축기에서 압축된 고온의 냉매가 급격한 온도의 저하없이 제1증발기에 제공되어 제1증발기를 가열할 수 있게 된다.In the refrigerator of the present invention, the cooling fan is controlled to stop during the heat exchange process of the heat supply operation. As a result, the high-temperature refrigerant compressed by the compressor is supplied to the first evaporator without a sudden drop in temperature to heat the first evaporator.
본 발명의 냉장고는 열제공전운전 후 열제공운전이 수행되기 전에 유로전환밸브는 폐쇄되면서도 압축기는 일정 시간동안 계속해서 동작되는 펌프 다운(Pump Down)이 수행된다. 이로써, 열교환과정시 핫 가스가 제1증발기에 빠르게 공급되면서도 충분히 공급될 수 있다.In the refrigerator of the present invention, after the heat supply operation, before the heat supply operation is performed, a pump down operation is performed in which the compressor continues to operate for a predetermined time while the flow path switching valve is closed. Thus, during the heat exchange process, the hot gas can be rapidly and sufficiently supplied to the first evaporator.
본 발명의 냉장고는 열제공운전이 제2저장실 온도(R)가 만족 온도를 벗어날 경우 종료된다. 이로써, 제2증발기의 과도한 냉각으로 야기되는 제2저장실의 과냉이 방지될 수 있다.In the refrigerator of the present invention, the heat supply operation is terminated when the temperature R of the second storage compartment deviates from the satisfactory temperature. Thus, overcooling of the second storage compartment caused by excessive cooling of the second evaporator can be prevented.
본 발명의 냉장고는 열제공전운전 후 열제공운전이 수행되기 전의 휴지과정 도중이라도 히팅열원의 발열 조건이 만족되면 제1증발기를 우선적으로 가열한다. 이로써, 열제공운전을 위한 시간이 단축된다.The refrigerator of the present invention preferentially heats the first evaporator when the heat generation condition of the heating source is satisfied even during the rest process after the heat supply operation and before the heat supply operation. Thus, the time for the heat supply operation is shortened.
본 발명의 냉장고는 제1증발기 온도(FD)가 제1저장실 온도(F)와 같아질 경우 히팅열원이 발열된다. 이로써, 불필요한 전력 소모가 최소화된다.In the refrigerator of the present invention, when the first evaporator temperature (FD) is equal to the first storage compartment temperature (F), the heating heat source generates heat. This minimizes unnecessary power consumption.
도 1은 본 발명의 실시예에 따른 냉장고의 전방측 외관을 나타낸 상태도1 is a state diagram showing the front appearance of a refrigerator according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 냉장고의 후방측 외관을 나타낸 상태도Figure 2 is a state diagram showing the appearance of the rear side of the refrigerator according to an embodiment of the present invention
도 3은 본 발명의 실시예에 따른 냉장고의 내부 구조를 나타낸 상태도3 is a state diagram showing the internal structure of a refrigerator according to an embodiment of the present invention;
도 4는 본 발명의 실시예에 따른 냉장고의 핫 가스유로가 포함된 냉동시스템을 나타낸 상태도4 is a state diagram showing a refrigeration system including a hot gas flow path of a refrigerator according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 냉장고의 제1증발기에 핫 가스유로 및 히팅열원이 설치된 상태를 설명하기 위해 나타낸 사시도5 is a perspective view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention;
도 6은 본 발명의 실시예에 따른 냉장고의 제1증발기에 핫 가스유로 및 히팅열원이 설치된 상태를 설명하기 위해 나타낸 측면도6 is a side view illustrating a state in which a hot gas flow path and a heating source are installed in a first evaporator of a refrigerator according to an embodiment of the present invention;
도 7은 본 발명의 실시예에 따른 냉장고의 열제공운전에 관련한 각 구성요소의 동작 상태를 나타낸 상태도7 is a state diagram showing an operating state of each component related to a heat supply operation of a refrigerator according to an embodiment of the present invention;
도 8 내지 도 10은 본 발명의 실시예에 따른 냉장고의 각 저장실에 대한 냉각 운전시 냉매 유동을 설명하기 위해 나타낸 상태도8 to 10 are state diagrams illustrating the flow of refrigerant during a cooling operation for each storage compartment of a refrigerator according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 냉장고의 열제공전운전의 과정을 설명하기 위해 나타낸 순서도11 is a flowchart illustrating a process of heat transfer operation of a refrigerator according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 냉장고의 열제공운전시의 과정을 설명하기 위해 나타낸 순서도12 is a flowchart illustrating a process during a heat supply operation of a refrigerator according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 냉장고의 열제공운전시의 과정에 대한 다른 예를 설명하기 위해 나타낸 순서도13 is a flowchart illustrating another example of a process during a heat supply operation of a refrigerator according to an embodiment of the present invention.
도 14은 본 발명의 실시예에 따른 냉장고의 열제공운전시의 냉매 유동을 설명하기 위해 나타낸 상태도14 is a state diagram illustrating a flow of refrigerant during a heat supply operation of a refrigerator according to an embodiment of the present invention;
도 15는 본 발명의 실시예에 따른 냉장고의 온도 복귀운전의 과정을 설명하기 위해 나타낸 순서도15 is a flowchart illustrating a process of temperature return operation of a refrigerator according to an embodiment of the present invention.
이하, 본 발명의 냉장고 및 그의 운전 제어방법에 대한 바람직한 실시예를 첨부된 도 1 내지 도 15를 참조하여 설명한다.Hereinafter, a preferred embodiment of a refrigerator and an operation control method thereof according to the present invention will be described with reference to FIGS. 1 to 15 attached.
실시예의 설명에 앞서, 각 구성요소의 설치 위치에 대한 설명시 언급되는 각 방향은 실제 사용시의 설치 상태(도시된 실시예에서와 같은 상태)를 그 예로 한다.Prior to the description of the embodiment, each direction mentioned in the description of the installation position of each component takes an installation state in actual use (the same state as in the illustrated embodiment) as an example.
첨부된 도 1은 본 발명의 실시예에 따른 냉장고의 전방측 외관이다. 도 2는 본 발명의 실시예에 따른 냉장고의 후방측 외관이다. 도 3은 본 발명의 실시예에 따른 냉장고의 내부 구조이다.1 is a front side appearance of a refrigerator according to an embodiment of the present invention. 2 is a rear side appearance of a refrigerator according to an embodiment of the present invention. 3 is an internal structure of a refrigerator according to an embodiment of the present invention.
이들 도면에 도시된 바와 같이 본 발명의 실시예에 따른 냉장고는 히팅열원(310) 및 핫 가스(고온 냉매)를 동시에 사용하여 열제공운전(S220)을 수행할 수 있도록 한 것이다. 이로써 열 제공에 소요되는 운전 시간을 단축시키고, 제1저장실(101)의 온도 상승을 낮출 수 있으며, 제1저장실(101)의 온도 복귀를 위한 전력 소모를 줄일 수 있도록 한다.As shown in these drawings, the refrigerator according to the embodiment of the present invention can perform the heat supply operation (S220) by simultaneously using the heating heat source 310 and hot gas (high-temperature refrigerant). As a result, the operation time required to provide heat can be shortened, the temperature rise of the first storage compartment 101 can be reduced, and power consumption for temperature recovery of the first storage compartment 101 can be reduced.
이를 위한 본 발명의 실시예에 따른 냉장고를 각 구성별로 설명하면 다음과 같다.For this purpose, a refrigerator according to an embodiment of the present invention will be described for each configuration as follows.
먼저, 본 발명의 실시예에 따른 냉장고는 적어도 하나 이상의 저장실을 제공하는 냉장고 본체(100)가 포함될 수 있다.First, a refrigerator according to an embodiment of the present invention may include a refrigerator body 100 providing at least one or more storage compartments.
상기 저장실은 저장물을 보관하는 저장 공간으로써 제1저장실(101) 및 제2저장실(102)이 포함될 수 있다.The storage compartment may include a first storage compartment 101 and a second storage compartment 102 as a storage space for storing stored goods.
상기 제1저장실(101) 및 제2저장실(102)은 제1도어(110) 및 제2도어(120)에 의해 각각 개폐될 수 있다. 상기 제1도어(110) 및 제2도어(120)는 각각 하나만 제공되거나 혹은, 둘 이상 복수로 제공될 수 있다.The first storage compartment 101 and the second storage compartment 102 can be opened and closed by the first door 110 and the second door 120, respectively. Each of the first door 110 and the second door 120 may be provided alone, or may be provided in a plurality of two or more.
상기 각 저장실(101,102)은 일반 냉각운전에 의해 제1설정 기준온도(NT11,NT21)를 기준으로 설정된 제1상한 기준온도(NT11+Diff,NT21+Diff)와 제1하한 기준온도(NT11-Diff,NT21-Diff) 사이의 온도로 유지된다.Each of the storage chambers 101 and 102 has a first upper limit reference temperature (NT11+Diff, NT21+Diff) and a first lower limit reference temperature (NT11-Diff) set based on the first set reference temperature (NT11, NT21) by normal cooling operation. , NT21-Diff).
상기 제1저장실(101)의 제1설정 기준온도(NT11)는 저장물을 결빙할 수 있을 정도의 온도가 될 수 있다. 예컨대, 상기 제1저장실(101)의 제1설정 기준온도(NT11)는 0℃ 이하 -24℃ 이상의 온도로 설정될 수 있다.The first set reference temperature NT11 of the first storage chamber 101 may be a temperature sufficient to freeze stored goods. For example, the first set reference temperature NT11 of the first storage compartment 101 may be set to a temperature of 0°C or less and -24°C or more.
상기 제2저장실(102)의 제1설정 기준온도(NT21)는 저장물이 결빙되지 않을 정도의 온도가 될 수 있다. 예컨대, 상기 제2저장실(102)의 제1설정 기준온도(NT21)는 32℃ 이하 0℃ 초과의 온도로 이루어질 수 있다.The first set reference temperature NT21 of the second storage chamber 102 may be a temperature at which the stored goods are not frozen. For example, the first set reference temperature NT21 of the second storage compartment 102 may be set to a temperature below 32°C and above 0°C.
상기 제1설정 기준온도(NT11,NT21)는 사용자에 의해 설정될 수 있다. 사용자가 상기 제1설정 기준온도(NT11,NT21)를 설정하지 않을 경우에는 임의로 지정된 온도가 제1설정 기준온도(NT11,NT21)로 사용된다.The first set reference temperatures NT11 and NT21 may be set by a user. When the user does not set the first set reference temperature (NT11, NT21), an arbitrarily designated temperature is used as the first set reference temperature (NT11, NT21).
상기 각 저장실(101,102)은 상기 제1설정 기준온도(NT11,NT21)의 상한 혹은, 하한 온도에 따라 냉기 공급이 계속되거나 혹은, 중단된다. 예컨대, 저장실(101,102) 온도가 제1상한 기준온도(NT11+Diff,NT21+Diff)를 초과할 경우 해당 저장실(101,102)로 냉기가 공급된다. 상기 저장실(101,102) 온도가 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮을 경우 냉기 공급이 중단된다. 이로써 각 저장실(101,102)은 제1상한 기준온도(NT11+Diff,NT21+Diff) 및 제1하한 기준온도(NT11-Diff,NT21-Diff) 사이의 온도로 유지될 수 있다.The supply of cold air to each of the storage compartments 101 and 102 is continued or stopped according to the upper or lower limit temperature of the first set reference temperatures NT11 or NT21. For example, when the temperature of the storage compartments 101 and 102 exceeds the first upper limit reference temperature (NT11 + Diff, NT21 + Diff), cold air is supplied to the corresponding storage compartments 101 and 102 . When the temperatures of the storage compartments 101 and 102 are lower than the first lower limit reference temperatures NT11-Diff and NT21-Diff, the supply of cold air is stopped. As a result, each of the storage chambers 101 and 102 can be maintained at a temperature between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff).
다음으로, 본 발명의 실시예에 따른 냉장고는 냉동시스템을 포함하여 구성된다.Next, a refrigerator according to an embodiment of the present invention includes a refrigeration system.
상기 냉동시스템에 의해 각 저장실(101,102)이 제1설정 기준온도(NT11,NT21)로 유지될 수 있는 냉기가 공급된다.The cold air that can be maintained at the first set reference temperatures NT11 and NT21 is supplied to each of the storage compartments 101 and 102 by the refrigeration system.
첨부된 도 4는 냉동시스템에 대한 실시예이다. 이를 참조하여 냉동시스템을 설명한다.4 is an embodiment of the refrigeration system. The refrigeration system will be described with reference to this.
상기 냉동시스템에는 냉매를 압축하는 압축기(210)가 포함될 수 있다. 상기 압축기(210)는 냉장고 본체(100) 내의 기계실(103)에 위치될 수 있다.The refrigeration system may include a compressor 210 for compressing refrigerant. The compressor 210 may be located in the machine room 103 in the refrigerator body 100 .
상기 압축기(210)에는 회수유로(211)가 연결될 수 있다. 상기 회수유로(211)는 상기 압축기(210)로 회수되는 냉매의 유동을 안내한다.A recovery passage 211 may be connected to the compressor 210 . The recovery passage 211 guides the flow of the refrigerant recovered to the compressor 210 .
상기 회수유로(211)는 각 유로(예컨대, 제1유로와 제2유로 혹은, 핫가스유로 등)를 지난 냉매를 제공받아 압축기(210)로 안내하도록 형성된다. 도시되지는 않았으나 상기 회수유로(211)는 둘 이상 복수로 제공되면서 각각의 유로에 개별적 혹은, 복수개씩 연결되도록 구성될 수도 있다.The recovery passage 211 is formed to receive refrigerant that has passed through each passage (eg, a first passage and a second passage, or a hot gas passage, etc.) and guide it to the compressor 210 . Although not shown, two or more recovery passages 211 may be provided in plurality and connected individually or in plurality to each passage.
상기 냉동시스템에는 냉매가 응축되는 응축기(220)가 포함될 수 있다.The refrigeration system may include a condenser 220 in which refrigerant is condensed.
상기 응축기(220)는 상기 냉장고 본체(100) 내의 기계실(103)에 위치될 수 있다.The condenser 220 may be located in the machine room 103 in the refrigerator body 100 .
상기 응축기(220)의 인접 부위에는 냉각팬(221)이 구비될 수 있다. 예컨대, 기계실(103)에는 상기 냉각팬(221)이 구비될 수 있다. 상기 냉각팬(221)의 동작에 의해 응축기(220) 내부를 지나는 냉매는 응축기(220) 외부를 지나는 공기와 서로 열교환될 수 있다. 상기 냉각팬(221)이 동작되지 않을 경우 응축기(220)를 지나는 냉매는 고온 상태로 유지된다.A cooling fan 221 may be provided adjacent to the condenser 220 . For example, the cooling fan 221 may be provided in the machine room 103 . The refrigerant passing inside the condenser 220 by the operation of the cooling fan 221 may exchange heat with air passing outside the condenser 220 . When the cooling fan 221 is not operated, the refrigerant passing through the condenser 220 is maintained at a high temperature.
상기 냉각팬(221)은 상기 압축기(210)의 동작에 연동되도록 구성될 수 있다. 즉, 상기 압축기(210)가 동작할 경우에는 상기 냉각팬(221)도 동작되도록 설정될 수 있다. 미리 설정된 또 다른 상황에서는 상기 압축기(210)가 동작하더라도 상기 냉각팬(221)이 정지되도록 설정될 수 있다.The cooling fan 221 may be configured to interlock with the operation of the compressor 210 . That is, when the compressor 210 operates, the cooling fan 221 may also operate. In another preset situation, the cooling fan 221 may be set to stop even when the compressor 210 operates.
일 예로써, 고온의 냉매(핫 가스)를 이용하여 제1증발기(250)에 열을 제공하는 열제공운전시 상기 냉각팬(221)이 정지되도록 제어될 수 있다. 즉, 열을 제공하기 위한 핫 가스(고온 냉매)를 상기 제1증발기(250)에 공급하기 위해서는 압축기(210)에서 압축된 고온의 냉매가 응축기(220)를 지나는 도중 응축되지 않고 곧장 제1증발기(250)로 공급되어야 한다. 이를 위해 열제공운전시에는 상기 압축기(210)가 동작되더라도 상기 냉각팬(221)은 정지되도록 제어될 수 있다.For example, the cooling fan 221 may be controlled to stop during a heat supply operation in which heat is provided to the first evaporator 250 using a high-temperature refrigerant (hot gas). That is, in order to supply hot gas (high-temperature refrigerant) for providing heat to the first evaporator 250, the high-temperature refrigerant compressed in the compressor 210 is not condensed while passing through the condenser 220, but directly into the first evaporator. (250). To this end, during the heat supply operation, the cooling fan 221 may be controlled to stop even if the compressor 210 is operated.
상기 냉동시스템에는 상기 응축기(220)에서 응축된 냉매를 감압하여 팽창시키는 제1팽창기(230) 및 제2팽창기(240)가 포함될 수 있다. The refrigeration system may include a first expander 230 and a second expander 240 that depressurize and expand the refrigerant condensed in the condenser 220 .
상기 제1팽창기(230)는 상기 응축기(220)를 지나 제1증발기(250)로 유동되는 냉매를 감압하도록 제공된다.The first expander 230 is provided to depressurize the refrigerant flowing into the first evaporator 250 after passing through the condenser 220 .
상기 제2팽창기(240)는 상기 응축기(220)를 지나 제2증발기(260)로 유동되는 냉매를 감압하도록 제공된다.The second expander 240 is provided to depressurize the refrigerant flowing into the second evaporator 260 after passing through the condenser 220 .
상기 냉동시스템에는 제1증발기(250) 및 제2증발기(260)가 포함될 수 있다.The refrigeration system may include a first evaporator 250 and a second evaporator 260 .
상기 제1팽창기(230)에서 감압된 냉매는 상기 제1증발기(250)를 지나면서 제1저장실(101)을 유동하는 공기(냉기)와 열교환된다.The refrigerant reduced in pressure in the first expander 230 exchanges heat with air (cold air) flowing in the first storage chamber 101 while passing through the first evaporator 250 .
상기 제2팽창기(240)에서 감압된 냉매는 상기 제2증발기(260)를 지나면서 제2저장실(102)을 유동하는 공기(냉기)와 열교환된다.The refrigerant reduced in pressure in the second expander 240 passes through the second evaporator 260 and exchanges heat with air (cold air) flowing in the second storage chamber 102 .
상기 제1증발기(250)는 제1저장실(101) 내에 위치될 수 있다. 도시되지는 않았지만 상기 제1증발기(250)는 제1저장실(101) 이외의 부위에 위치될 수도 있다.The first evaporator 250 may be located in the first storage chamber 101 . Although not shown, the first evaporator 250 may be located in a location other than the first storage chamber 101 .
상기 제1증발기(250)는 제1저장실용 송풍팬(F-Fan)(281)의 구동에 의해 유동되는 공기가 열교환된다.In the first evaporator 250, the air flowing by the driving of the F-Fan 281 for the first storage compartment undergoes heat exchange.
상기 제2증발기(260)는 제2저장실(102) 내에 위치될 수 있다. 도시되지는 않았지만 상기 제2증발기(260)는 제2저장실(102) 이외의 부위에 위치될 수도 있다.The second evaporator 260 may be located in the second storage chamber 102 . Although not shown, the second evaporator 260 may be located in a location other than the second storage chamber 102 .
상기 제2증발기(260)는 제2저장실용 송풍팬(R-Fan)(291)의 구동에 의해 유동되는 공기가 열교환된다.In the second evaporator 260, the air flowing by the driving of the R-Fan 291 for the second storage compartment undergoes heat exchange.
상기 냉동시스템에는 제1냉매유로(201)가 포함될 수 있다.The refrigeration system may include a first refrigerant passage 201.
상기 제1냉매유로(201)는 제1팽창기(230)를 지나 제1증발기(250)로 제공되는 냉매의 유동을 안내한다. The first refrigerant passage 201 passes through the first expander 230 and guides the flow of the refrigerant supplied to the first evaporator 250 .
상기 냉동시스템에는 제2냉매유로(202)가 포함될 수 있다.The refrigeration system may include a second refrigerant passage 202.
상기 제2냉매유로(202)는 제2팽창기(240)를 지나 제2증발기(260)로 제공되는 냉매의 유동을 안내한다.The second refrigerant passage 202 passes through the second expander 240 and guides the flow of refrigerant provided to the second evaporator 260 .
상기 냉동시스템에는 물성치 조절부(270)가 포함될 수 있다.The refrigeration system may include a physical property control unit 270.
상기 물성치 조절부(270)는 핫 가스유로(320)를 통해 제1증발기(250)를 지나 제2증발기(260)로 유동되는 냉매의 유동에 저항을 제공한다. 즉, 제2증발기(250)로 제공되는 냉매의 유동에 저항을 제공하여 해당 냉매의 물성치가 조절(변동)되도록 한 것이다. 상기 냉매의 물성치는 냉매의 온도나 유량, 유속 중 어느 하나가 포함될 수 있다.The physical property controller 270 provides resistance to the flow of the refrigerant flowing into the second evaporator 260 via the first evaporator 250 through the hot gas flow path 320 . That is, resistance is provided to the flow of the refrigerant provided to the second evaporator 250 so that the physical properties of the refrigerant are adjusted (changed). The physical properties of the refrigerant may include any one of temperature, flow rate, and flow rate of the refrigerant.
상기 제1증발기(250)를 지나면서 응축되어 액화된 냉매는 상기 물성치 조절부(270)를 지나면서 제2증발기(260)에서 열교환될 수 있는 상태의 물성치를 갖게 된다. 이로써, 제2증발기(260)를 지나 압축기(210)로 회수되는 냉매의 과도한 액화로 압축기(210)의 동작 신뢰성이 저하되는 문제가 방지될 수 있다.The refrigerant condensed and liquefied while passing through the first evaporator 250 has physical properties in a state where it can be heat exchanged in the second evaporator 260 while passing through the property control unit 270 . Accordingly, a problem in which operation reliability of the compressor 210 is deteriorated due to excessive liquefaction of the refrigerant returned to the compressor 210 after passing through the second evaporator 260 can be prevented.
상기 물성치 조절부(270)가 제공하는 저항은 제2팽창기(240)가 제공하는 저항과는 달리 형성될 수 있다. 이로써, 제1증발기(250)를 지나 제2증발기(260)로 유동되는 냉매와 상기 제1증발기(250)를 지나지 않고 제2증발기(260)로 곧장 유동되는 냉매의 물성치 차이를 줄일 수 있다.The resistance provided by the property control unit 270 may be formed differently from the resistance provided by the second expander 240 . Accordingly, a difference in physical properties between the refrigerant passing through the first evaporator 250 and flowing into the second evaporator 260 and the refrigerant flowing directly into the second evaporator 260 without passing through the first evaporator 250 can be reduced.
상기 물성치 조절부(270)는 상기 냉매가 유동되는 관으로 제공될 수 있다.The physical property controller 270 may be provided as a pipe through which the refrigerant flows.
상기 물성치 조절부(270)는 유로 길이와, 유로 내의 압력, 유로 내의 냉매가 이루는 밀도를 고려하여 설계될 수 있다. 즉, 물성치 조절부(270)의 유로 길이, 유로 내의 압력, 유로 내의 냉매가 이루는 밀도 중 적어도 어느 한 인자를 변경함으로써 저항이 조절될 수 있다.The physical property control unit 270 may be designed in consideration of the flow path length, the pressure within the flow path, and the density of the refrigerant within the flow path. That is, the resistance may be adjusted by changing at least one of the flow path length of the material property controller 270, the pressure within the flow path, and the density of the refrigerant within the flow path.
상기 물성치 조절부(270)는 제2팽창기(240)와 다른 직경 혹은, 다른 길이로 형성될 수 있다. 이를 통해 물성치 조절부(270)에서 물성치가 조절된 후 제2증발기(260)로 유입되는 냉매는 제2팽창기(240)를 통과한 냉매의 물성치와 거의 유사 혹은, 동일하게 이루어질 수 있게 된다.The physical property control unit 270 may be formed with a different diameter or a different length from that of the second expander 240 . Through this, the refrigerant flowing into the second evaporator 260 after the physical properties are adjusted in the physical property controller 270 can be made substantially similar to or identical to the physical properties of the refrigerant that has passed through the second expander 240 .
일 예로써, 상기 물성치 조절부(270)는 제2팽창기(240)와 동일한 직경으로 형성되고, 길이는 다르게 형성될 수 있다. 예컨대, 상기 물성치 조절부(270)는 제2팽창기(240)보다 짧게 형성될 수 있다. 상기 물성치 조절부(270)와 제2팽창기(240)는 직경이 동일할 경우 공용으로 사용될 수 있다는 장점을 가진다.As an example, the physical property control unit 270 may have the same diameter as the second expander 240 and may have a different length. For example, the physical property control unit 270 may be shorter than the second expander 240 . The physical property control unit 270 and the second expander 240 have the advantage that they can be used in common if they have the same diameter.
다른 예로써 상기 물성치 조절부(270)는 제2팽창기(240)와 동일한 길이로 형성되고, 직경이 다르게 형성될 수 있다. 예컨대, 상기 물성치 조절부(270)는 제2팽창기(240)보다 관경이 더욱 크게 형성될 수 있다.As another example, the physical property control unit 270 may be formed to have the same length as the second expander 240 and have a different diameter. For example, the material property control unit 270 may have a larger pipe diameter than the second expander 240 .
상기 냉동시스템에는 유로전환밸브(330)가 포함될 수 있다.The refrigeration system may include a flow path conversion valve 330.
상기 응축기(220)를 통과한 냉매는 토출유로(203)를 따라 안내되도록 형성될 수 있다. The refrigerant passing through the condenser 220 may be guided along the discharge passage 203 .
상기 제1냉매유로(201)와 제2냉매유로(202) 및 핫 가스유로(320)는 상기 토출유로(203)로부터 각각 분지되도록 형성될 수 있다. 상기 유로전환밸브(330)는 상기 토출유로(203)로부터 상기 각 유로(201,202,320)가 분지되는 부위에 설치될 수 있다. 즉, 상기 유로전환밸브(330)의 동작에 의해 상기 토출유로(203)로 유동되는 냉매가 제1냉매유로(201)나 제2냉매유로(202) 혹은, 핫 가스유로(320) 중 어느 한 유로에 공급될 수 있도록 한 것이다.The first refrigerant passage 201, the second refrigerant passage 202, and the hot gas passage 320 may be formed to be branched from the discharge passage 203, respectively. The flow path conversion valve 330 may be installed at a portion where each of the flow paths 201 , 202 , and 320 are branched from the discharge flow path 203 . That is, the refrigerant flowing into the discharge passage 203 by the operation of the flow passage switching valve 330 is transferred to either the first refrigerant passage 201, the second refrigerant passage 202, or the hot gas passage 320. It was made available to the euro.
상기 유로전환밸브(330)는 적어도 하나 이상 제공될 수 있다. 예컨대, 상기 유로전환밸브(330)는 사방밸브(4way-valve)로 형성될 수 있다.At least one flow path conversion valve 330 may be provided. For example, the flow path conversion valve 330 may be formed as a 4-way valve.
상기 유로전환밸브(330)가 둘 이상 복수로 제공될 경우 상기 유로전환밸브(330)는 적어도 하나의 삼방밸브(3way valve)나 체크밸브(check valve) 혹은, 솔레노이드 밸브를 포함할 수 있다.When two or more flow path switching valves 330 are provided in plurality, the flow path switching valve 330 may include at least one 3-way valve, check valve, or solenoid valve.
상기 냉동시스템에는 핫 가스유로(320)가 포함될 수 있다.The refrigeration system may include a hot gas flow path 320 .
상기 핫 가스유로(320)는 열이 필요한 곳으로 고온의 열을 제공한다.The hot gas flow path 320 provides high-temperature heat to a place where heat is needed.
상기 핫 가스유로(320)는 압축기(210)에서 압축되어 응축기(220)를 통과한 고온의 냉매(핫 가스)(열교환되지 않은 냉매)를 안내한다. 즉, 핫 가스유로(320)에 의해 안내되는 핫 가스(고온 냉매)가 고온의 열을 제공한다.The hot gas flow path 320 guides the high-temperature refrigerant (hot gas) compressed by the compressor 210 and passing through the condenser 220 (refrigerant that is not heat-exchanged). That is, the hot gas (high-temperature refrigerant) guided by the hot gas passage 320 provides high-temperature heat.
상기 핫 가스유로(320)는 상기 제1냉매유로(201) 및 제2냉매유로(202)와는 별개로 냉매 유동을 안내하도록 형성된다. 상기 핫 가스유로(320)는 상기 토출유로(203)에 연결되면서 상기 토출유로(203)로 안내되는 핫 가스(고온 냉매)가 제1팽창기(230)를 경유하지 않고 제1증발기(250)로 제공된 후 상기 제1증발기(250)를 지나 제2증발기(260)로 제공되도록 형성될 수 있다. 즉, 상기 핫 가스유로(320)에 의해 압축기(210)에서 압축된 고온의 냉매는 제1증발기(250)를 지나면서 해당 제1증발기(250)를 가열할 수 있게 된다.The hot gas passage 320 is formed to guide the refrigerant flow separately from the first refrigerant passage 201 and the second refrigerant passage 202 . The hot gas passage 320 is connected to the discharge passage 203, and the hot gas (high temperature refrigerant) guided to the discharge passage 203 is directed to the first evaporator 250 without passing through the first expander 230. After being provided, it may pass through the first evaporator 250 and be provided to the second evaporator 260 . That is, the high-temperature refrigerant compressed in the compressor 210 by the hot gas flow path 320 can heat the first evaporator 250 while passing through the first evaporator 250 .
상기 핫 가스유로(320)는 유로전환밸브(330)로부터 제1증발기(250)에 이르기까지의 제1패스(321)를 포함한다.The hot gas passage 320 includes a first pass 321 from the passage switching valve 330 to the first evaporator 250 .
상기 제1패스(321)는 상기 응축기(220)로부터 상기 유로전환밸브(330)에 이르기까지의 토출유로(203)와 동일한 직경을 갖도록 형성될 수 있다. 이로써, 토출유로(203)와 제1패스(321)의 공용화가 가능하게 된다.The first pass 321 may be formed to have the same diameter as the discharge passage 203 extending from the condenser 220 to the passage conversion valve 330 . As a result, common use of the discharge passage 203 and the first pass 321 is possible.
상기 핫 가스유로(320)는 상기 제1증발기(250)를 통과하는 제2패스(322)를 포함한다.The hot gas flow path 320 includes a second pass 322 passing through the first evaporator 250 .
상기 제2패스(322)는 제1증발기(250)를 이루는 각 열교환핀(251)에 관통된 후 확관 작업을 통해 상기 열교환핀(251)에 접촉되도록 형성될 수 있다. 이로써 제2패스(322)를 지나는 핫 가스는 제1증발기(250)에 결빙된 성에를 원활히 제거할 수 있다.The second pass 322 may be formed to contact the heat exchange pins 251 through a pipe expansion operation after penetrating through each of the heat exchange pins 251 constituting the first evaporator 250 . As a result, the hot gas passing through the second pass 322 can smoothly remove the frost frozen in the first evaporator 250 .
상기 핫 가스유로(320)는 상기 제2패스(322)로부터 상기 물성치 조절부(270)에 이르기까지의 제3패스(323)를 포함한다.The hot gas passage 320 includes a third pass 323 from the second pass 322 to the physical property adjusting unit 270 .
상기 제3패스(323)는 상기 제1패스(321)와 동일한 직경을 갖도록 형성될 수 있다.The third pass 323 may be formed to have the same diameter as the first pass 321 .
상기 냉동시스템에는 안내유로(350)가 포함될 수 있다.The refrigeration system may include a guide passage 350.
상기 안내유로(350)는 상기 제2팽창기(240) 혹은, 물성치 조절부(270)를 지나 제2증발기(260)로 유동되는 냉매를 안내한다.The guide passage 350 guides the refrigerant flowing into the second evaporator 260 via the second expander 240 or the property control unit 270 .
상기 제2팽창기(240) 혹은, 물성치 조절부(270)를 지난 냉매는 상기 안내유로(350)를 각각 통과하거나 혹은, 상기 안내유로(350)에서 서로 혼합된 후 제2증발기(260)로 유동될 수 있다. 이로써 제2팽창기(240)를 통과하여 상기 제2증발기(260)로 유입되는 냉매의 물성치와 물성치 조절부(270)를 통과하여 제2증발기(260)로 유입되는 냉매의 물성치 편차는 줄어들 수 있다.The refrigerant passing through the second expander 240 or the property control unit 270 passes through the guide passage 350 or is mixed with each other in the guide passage 350 and then flows into the second evaporator 260. It can be. As a result, the deviation between the physical properties of the refrigerant passing through the second expander 240 and flowing into the second evaporator 260 and the physical properties of the refrigerant flowing into the second evaporator 260 through the property adjusting unit 270 can be reduced. .
다음으로, 본 발명의 실시예에 따른 냉장고는 히팅열원(310)이 포함될 수 있다.Next, the refrigerator according to the embodiment of the present invention may include a heating source 310 .
상기 히팅열원(310)은 상기 핫 가스유로(320)와 함께 고온의 열을 제공하는 열원이다.The heating heat source 310 is a heat source that provides high-temperature heat together with the hot gas flow path 320 .
상기 히팅열원(310) 혹은, 핫 가스유로(320)에 의해 제공되는 열은 다양하게 사용될 수 있다. 예컨대, 제1증발기(250)를 제상하기 위해 상기 히팅열원(310)이 제공하는 열 혹은, 핫 가스유로(320)에 의해 제공되는 열이 사용될 수 있다.The heat provided by the heating heat source 310 or the hot gas flow path 320 may be used in various ways. For example, heat provided by the heating heat source 310 or heat provided by the hot gas flow path 320 may be used to defrost the first evaporator 250 .
상기 히팅열원(310)은 전원 공급에 의해 발열되는 시스 히터(Sheath HTR)로 형성될 수 있다.The heating heat source 310 may be formed of a sheath heater (Sheath HTR) that generates heat by power supply.
상기 히팅열원(310)은 상기 제1증발기(250)의 어느 한 측에 인접하게 위치될 수 있다. 예컨대, 상기 히팅열원(310)은 상기 제1증발기(250)를 이루는 가장 하측 열의 열교환핀(251)의 저부에 위치될 수 있다. 이는 첨부된 도 5 및 도 6과 같다.The heating heat source 310 may be located adjacent to either side of the first evaporator 250 . For example, the heating heat source 310 may be located at the bottom of the heat exchange fin 251 of the lowest row constituting the first evaporator 250 . This is the same as the attached Figures 5 and 6.
상기 히팅열원(310)은 제1증발기(250)를 이루는 가장 하측열의 열교환핀(251)으로부터 이격되게 위치될 수 있다. 이로써, 히팅열원(310)의 발열로 생성된 열기는 상승 유동되면서 제1증발기(250)를 가열할 수 있다.The heating heat source 310 may be positioned to be spaced apart from the heat exchange fin 251 of the lowermost row constituting the first evaporator 250 . Thus, the heat generated by the heat generated by the heating heat source 310 may heat the first evaporator 250 while flowing upward.
한편, 미설명 부호 280은 제1저장실 내로의 냉기 유동을 안내하는 제1그릴어셈블리이다. 미설명 부호 290은 제2저장실 내로의 냉기 유동을 안내하는 제2그릴어셈블리이다.Meanwhile, reference numeral 280 denotes a first grill assembly that guides the flow of cold air into the first storage compartment. Reference numeral 290 denotes a second grill assembly that guides the flow of cold air into the second storage compartment.
하기에서는, 본 발명의 실시예에 따른 냉장고를 이용한 각 상황별 운전을 첨부된 도 7 내지 도 10을 참조하여 상세히 설명한다.Hereinafter, driving according to each situation using a refrigerator according to an embodiment of the present invention will be described in detail with reference to FIGS. 7 to 10 attached.
설명에 앞서, 본 발명의 실시예에 따른 냉장고는 제어부에 의해 각종 운전이 수행될 수 있다. 상기 제어부는 냉장고에 제공되는 컨트롤러이거나, 상기 냉장고의 컨트롤러를 원격 제어할 수 있도록 연결된 네트워크상의 제어 수단(예컨대, 홈 네트워크나, 온라인 상의 서비스 서버 등)일 수가 있다.Prior to the description, various operations of the refrigerator according to an embodiment of the present invention may be performed by a controller. The control unit may be a controller provided in the refrigerator or a control means (eg, a home network, an online service server, etc.) on a network connected to remotely control the controller of the refrigerator.
먼저, 상기 각 상황별 운전에는 일반 냉각운전(S100)이 포함될 수 있다.First, the operation for each situation may include a general cooling operation (S100).
이러한 일반 냉각운전(S100)은 첨부된 도 8의 순서도와 같이 제1저장실(101)과 제2저장실(102)을 각각의 제1설정 기준온도(NT11,NT21)에 따라 냉각하는 운전이다.This general cooling operation (S100) is an operation for cooling the first storage compartment 101 and the second storage compartment 102 according to the first set reference temperatures NT11 and NT21, respectively, as shown in the flowchart of FIG.
즉, 각 저장실(101,102)별 제1설정 기준온도(NT11,NT21)를 기준으로 제1상한 기준온도(NT11+Diff,NT21+Diff) 또는, 제1하한 기준온도(NT11-Diff,NT21-Diff)에 따라 냉기가 공급되거나 혹은, 냉기 공급이 중단되면서 일반 냉각운전(S100)이 수행된다.That is, based on the first set reference temperature (NT11, NT21) for each storage chamber (101, 102), the first upper limit reference temperature (NT11+Diff, NT21+Diff) or the first lower limit reference temperature (NT11-Diff, NT21-Diff) ), a general cooling operation (S100) is performed while cold air is supplied or the supply of cold air is stopped.
예컨대, 제1저장실(101)의 고내 온도가 제1상한 기준온도(NT11+Diff)를 초과하여 불만 온도를 이루면 제1저장실(101)에 냉기가 공급(S131)된다. 상기 제1저장실(101)의 고내 온도가 제1하한 기준온도(NT11-Diff)에 도달하면 제1저장실(101)로의 냉기 공급이 중단(S132)된다.For example, when the internal temperature of the first storage compartment 101 exceeds the first upper limit reference temperature (NT11 + Diff) and reaches an unsatisfactory temperature, cold air is supplied to the first storage compartment 101 (S131). When the internal temperature of the first storage compartment 101 reaches the first lower limit reference temperature (NT11-Diff), the supply of cold air to the first storage compartment 101 is stopped (S132).
상기 제1저장실(101)로 냉기가 공급될 경우 압축기(210)와 제1저장실용 송풍팬(281)이 동작된다. 상기 제1저장실(101)로 냉기가 공급될 경우 유로전환밸브(330)는 제1냉매유로(201)를 통해 냉매가 유동되도록 동작된다. 이는 첨부된 도 9와 같다.When cold air is supplied to the first storage compartment 101, the compressor 210 and the blowing fan 281 for the first storage compartment are operated. When cold air is supplied to the first storage compartment 101, the flow path switching valve 330 is operated so that the refrigerant flows through the first refrigerant flow path 201. This is the same as the attached figure 9.
상기 압축기(210)의 동작에 의해 압축된 냉매는 응축기(220)를 통과하면서 응축되고, 상기 응축된 냉매는 제1팽창기(230)를 통과하면서 감압되어 팽창된다.The refrigerant compressed by the operation of the compressor 210 is condensed while passing through the condenser 220, and the condensed refrigerant is reduced in pressure and expanded while passing through the first expander 230.
상기 제1팽창기(230)에서 팽창된 냉매는 제1증발기(250)를 통과하는 도중 상기 제1증발기(250)를 지나는 공기와 열교환된다. 상기 제1증발기(250)에서 열교환된 냉매는 회수유로(211)를 통해 압축기(210)로 회수된 후 압축되는 순환 동작을 반복한다. The refrigerant expanded in the first expander 230 exchanges heat with air passing through the first evaporator 250 while passing through the first evaporator 250 . The refrigerant heat-exchanged in the first evaporator 250 is returned to the compressor 210 through the return passage 211 and then compressed, repeating a circular operation.
상기 압축기(210)가 동작되는 도중에는 냉각팬(C-Fan)(221)이 동작되면서 상기 응축기(220)를 통과하는 냉매가 상기 응축기(220)를 지나는 공기와 열교환되도록 한다. 이로써, 상기 냉매는 상기 응축기(220)를 통과하는 도중 온도가 낮아지면서 응축된다.While the compressor 210 is operating, a cooling fan (C-Fan) 221 is operated so that the refrigerant passing through the condenser 220 exchanges heat with air passing through the condenser 220 . As a result, the refrigerant is condensed while the temperature is lowered while passing through the condenser 220 .
상기 압축기(210)가 동작되는 도중에는 제1저장실용 송풍팬(281)이 동작된다. 이로써, 제1저장실(101) 내의 공기는 제1증발기(250)를 통과하여 제1저장실(101) 내로 재공급되는 순환 동작을 반복한다. 상기 공기는 상기 제1증발기(250)를 통과하는 도중 상기 제1증발기(250)와 열교환되어 더욱 낮은 온도로 제1저장실(101) 내에 공급되어 상기 제1저장실(101) 내의 온도를 낮춘다.While the compressor 210 is operating, the blowing fan 281 for the first storage compartment is operating. As a result, the air in the first storage compartment 101 passes through the first evaporator 250 and is re-supplied into the first storage compartment 101, repeating a circulation operation. The air exchanges heat with the first evaporator 250 while passing through the first evaporator 250 and is supplied into the first storage compartment 101 at a lower temperature to lower the temperature in the first storage compartment 101.
상기 압축기(210)와 냉각팬(221) 및 제1저장실용 송풍팬(281)이 동작되는 도중 제1저장실(101)의 고내 온도(F)가 하한 기준온도(NT11-Diff)에 도달하면 제1저장실(101)로의 냉기 공급이 중단(S132)된다. 즉, 상기 압축기(210)와 냉각팬(221) 및 제1저장실용 송풍팬(281)이 정지된다.When the internal temperature F of the first storage compartment 101 reaches the lower limit reference temperature (NT11-Diff) while the compressor 210, the cooling fan 221, and the blowing fan 281 for the first storage compartment are operating, The supply of cold air to the first storage compartment 101 is stopped (S132). That is, the compressor 210, the cooling fan 221, and the blowing fan 281 for the first storage compartment are stopped.
상기 일반 냉각운전시 제2저장실(102)의 고내 온도(제2저장실 온도)(R)가 제1상한 기준온도(NT21+Diff)를 초과하여 불만 온도를 이루면 제2저장실(102)에 냉기가 공급되도록 운전(S121)된다.During the normal cooling operation, when the internal temperature (second storage compartment temperature) (R) of the second storage compartment 102 exceeds the first upper limit reference temperature (NT21 + Diff) to reach an unsatisfactory temperature, cold air enters the second storage compartment 102. It is operated to be supplied (S121).
상기 제2저장실(102)로 냉기가 공급될 경우 압축기(210)와 냉각팬(221) 및 제2저장실용 송풍팬(282)이 동작된다. 상기 제2저장실(102)로 냉기가 공급될 경우 유로전환밸브(330)는 제2냉매유로(202)를 통해 냉기가 유동되도록 동작된다. 이는 첨부된 도 10과 같다.When cold air is supplied to the second storage compartment 102, the compressor 210, the cooling fan 221, and the blowing fan 282 for the second storage compartment are operated. When cold air is supplied to the second storage chamber 102 , the flow path switching valve 330 is operated so that cold air flows through the second refrigerant flow path 202 . This is the same as the attached figure 10.
상기 압축기(210)의 동작에 의해 압축된 냉매는 응축기(220)를 통과하면서 응축되고, 상기 응축된 냉매는 제2냉매유로(202)의 안내에 의해 제2팽창기(240)를 통과하면서 감압되어 팽창된다.The refrigerant compressed by the operation of the compressor 210 is condensed while passing through the condenser 220, and the condensed refrigerant is reduced in pressure while passing through the second expander 240 by the guidance of the second refrigerant flow path 202. Inflated.
계속해서, 상기 냉매는 제2증발기(260)를 통과하여 주변을 흐르는 공기와 열교환된 후 회수유로(211)를 통해 압축기(210)로 유동되어 압축되는 순환 동작을 반복한다.Continuously, the refrigerant passes through the second evaporator 260, exchanges heat with air flowing around the refrigerant, flows into the compressor 210 through the return passage 211, and repeats a circulation operation in which it is compressed.
상기 압축기(210)가 동작되는 도중에는 냉각팬(221)이 동작되면서 상기 응축기(220)를 통과하는 냉매가 상기 응축기(220)를 지나는 공기와 열교환되도록 한다. 이로써, 상기 냉매는 상기 응축기(220)를 통과하는 도중 온도가 낮아지면서 응축된다.While the compressor 210 is operating, the cooling fan 221 operates so that the refrigerant passing through the condenser 220 exchanges heat with the air passing through the condenser 220 . As a result, the refrigerant is condensed while the temperature is lowered while passing through the condenser 220 .
상기 압축기(210)가 동작되는 도중에는 제2저장실용 송풍팬(291)이 동작된다. 이로써, 제2저장실(102) 내의 공기는 제2증발기(260)를 통과하여 제2저장실(102) 내로 재공급되는 순환 동작을 반복한다. 상기 공기는 상기 제2증발기(260)를 통과하는 도중 상기 제2증발기(260)와 열교환되어 더욱 낮은 온도로 제2저장실(102) 내에 공급되어 상기 제2저장실(102) 내의 온도(R)를 낮춘다.While the compressor 210 is operating, the blowing fan 291 for the second storage compartment is operating. As a result, the air in the second storage compartment 102 passes through the second evaporator 260 and is re-supplied into the second storage compartment 102 to repeat the circulation operation. The air exchanges heat with the second evaporator 260 while passing through the second evaporator 260 and is supplied into the second storage compartment 102 at a lower temperature, thereby reducing the temperature R in the second storage compartment 102. lower it
상기 압축기(210)와 냉각팬(221) 및 제2저장실용 송풍팬(291)이 동작되는 도중 제2저장실(102)의 고내 온도(R)가 하한 기준온도(NT21-Diff)에 도달하면 제2저장실(102)로의 냉기 공급이 중단(S122)된다. 즉, 제2저장실(102)의 고내 온도(R)가 하한 기준온도(NT21-Diff)에 도달하면 상기 압축기(210)와 냉각팬(221) 및 제2저장실용 송풍팬(291)이 정지된다.When the internal temperature R of the second storage compartment 102 reaches the lower limit reference temperature (NT21-Diff) while the compressor 210, the cooling fan 221, and the blowing fan 291 for the second storage compartment are operating, The supply of cold air to the second storage compartment 102 is stopped (S122). That is, when the internal temperature R of the second storage compartment 102 reaches the lower limit reference temperature (NT21-Diff), the compressor 210, the cooling fan 221, and the blowing fan 291 for the second storage compartment are stopped. .
상기 제1저장실(101)과 제2저장실(102)의 고내 온도(F,R)가 함께 불만 온도(제1상한 기준온도(NT11+Diff,NT21+Diff)보다 높은 온도)를 이룰 수 있다. 이의 경우 어느 한 저장실로 냉기가 우선적으로 공급되도록 운전된 후 다른 한 저장실로 냉기가 공급되도록 운전될 수 있다.The internal temperature (F, R) of the first storage compartment 101 and the second storage compartment 102 together can form a dissatisfaction temperature (temperature higher than the first upper limit reference temperature (NT11 + Diff, NT21 + Diff)). In this case, the operation may be performed so that cold air is preferentially supplied to one storage compartment and then operated to supply cold air to another storage compartment.
바람직하게는, 제2저장실(102)로 냉기가 우선적으로 공급되어 만족 온도(제1상한 기준온도(NT11+Diff,NT21+Diff)와 제1하한 기준온도(NT11-Diff,NT21-Diff) 사이의 온도)를 이루도록 한 후 제1저장실(101)로 냉기가 공급되도록 운전될 수 있다. 이는 제2저장실(102)이 상온으로 유지되는 저장실이기 때문에 해당 저장실에 보관되는 저장물이 온도 변화에 민감할 수 있기 때문이다.Preferably, cold air is preferentially supplied to the second storage compartment 102 to satisfy a temperature (between the first upper limit reference temperature (NT11+Diff, NT21+Diff) and the first lower limit reference temperature (NT11-Diff, NT21-Diff)). After achieving a temperature of), it may be operated so that cold air is supplied to the first storage compartment 101 . This is because since the second storage compartment 102 is a storage compartment maintained at room temperature, the stored goods stored in the corresponding storage compartment may be sensitive to temperature changes.
다음으로, 냉장고의 각 상황별 운전에는 열제공전운전(S210)이 포함될 수 있다.Next, the operation of the refrigerator for each situation may include a heat transfer operation (S210).
상기 열제공전운전(S210)은 일반 냉각운전(S100) 도중 열제공운전(S220)의 시작 조건이 만족되었을 경우 열제공운전(S220)을 수행하기 전에 실시된다. 즉, 열제공운전(S220)이 수행되는 도중 각 저장실(101,102)의 온도가 상승될 경우 각 저장실(101,102) 내의 보관물에 악영향이 미칠 수 있다. 이에 따라 상기 열제공운전(S220)의 수행 전에 열제공전운전(S210)을 수행하여 각 저장실(101,102)을 충분히 냉각하는 것이다.The heat supply operation (S210) is performed before the heat supply operation (S220) when the start condition of the heat supply operation (S220) is satisfied during the normal cooling operation (S100). That is, when the temperature of each of the storage compartments 101 and 102 is increased while the heat supply operation (S220) is being performed, the storage items in each of the storage compartments 101 and 102 may be adversely affected. Accordingly, the heat supply operation (S210) is performed before the heat supply operation (S220) is performed to sufficiently cool the storage compartments 101 and 102.
첨부된 도 11을 참조하여 상기 열제공전운전(S210)을 설명한다.The heat transfer operation (S210) will be described with reference to FIG. 11 attached.
상기 열제공전운전(S210)은 제1저장실(101)과 제2저장실(102)을 순차적으로 냉각(S211,S212)하도록 수행된다.The heat transfer operation (S210) is performed to sequentially cool the first storage compartment 101 and the second storage compartment 102 (S211 and S212).
상기 열제공전운전(S210)시 상기 각 저장실(101,102)은 제2설정 기준온도(NT12,NT22)를 기준으로 설정된 제2하한 기준온도(NT12-Diff,NT22-Diff)에 이르기까지 냉각(Deep cooling)되도록 운전될 수 있다.During the heat transfer operation (S210), each of the storage compartments 101 and 102 is cooled (Deep cooling) can be operated.
상기 제2설정 기준온도(NT12,NT22)는 일반 냉각운전(S100)시의 제1설정 기준온도(NT11,NT21)와 다른 온도로 설정될 수 있다. 예컨대, 상기 제2설정 기준온도(NT12,NT22)는 상기 제1설정 기준온도(NT11,NT21)보다 낮은 온도로 설정될 수 있다. 이로써 제2하한 기준온도(NT12-Diff,NT22-Diff) 역시 상기 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮은 온도로 설정될 수 있다.The second set reference temperatures NT12 and NT22 may be set to temperatures different from the first set reference temperatures NT11 and NT21 during the normal cooling operation (S100). For example, the second set reference temperatures NT12 and NT22 may be set to a lower temperature than the first set reference temperatures NT11 and NT21. Accordingly, the second lower limit reference temperatures NT12-Diff and NT22-Diff may also be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
상기 제2설정 기준온도(NT12,NT22)는 제1설정 기준온도(NT11,NT21)와 동일한 온도로 설정될 수도 있다. 이의 경우 상기 제1하한 기준온도(NT11-Diff,NT21-Diff)가 상기 제2하한 기준온도(NT12-Diff,NT22-Diff)와 다른 온도로 설정될 수 있다. 예컨대, 상기 제2하한 기준온도(NT12-Diff,NT22-Diff)는 상기 제1하한 기준온도(NT11-Diff,NT21-Diff)보다 낮은 온도로 설정될 수 있다.The second set reference temperatures NT12 and NT22 may be set to the same temperature as the first set reference temperatures NT11 and NT21. In this case, the first lower limit reference temperatures NT11-Diff and NT21-Diff may be set to different temperatures from the second lower limit reference temperatures NT12-Diff and NT22-Diff. For example, the second lower limit reference temperatures NT12-Diff and NT22-Diff may be set to a lower temperature than the first lower limit reference temperatures NT11-Diff and NT21-Diff.
상기 열제공전운전(S210)시에는 유로전환밸브(330)의 동작에 의해 제2냉매유로(202) 및 제1냉매유로(201)가 순차적으로 개방 혹은, 폐쇄된다.During the heat transfer operation (S210), the second refrigerant passage 202 and the first refrigerant passage 201 are sequentially opened or closed by the operation of the passage switching valve 330.
상기 열제공전운전(S210)시 압축기(210) 및 냉각팬(221)은 계속 동작된다.During the heat transfer operation (S210), the compressor 210 and the cooling fan 221 continue to operate.
상기 열제공전운전(S210)시 제2저장실용 송풍팬(291)과 제1저장실용 송풍팬(281)은 순차적으로 동작된다.During the heat transfer operation (S210), the blowing fan 291 for the second storage compartment and the blowing fan 281 for the first storage compartment are sequentially operated.
예컨대, 상기 제1저장실(101)의 냉각 운전시(S212)에는 유로전환밸브(330)의 동작에 의해 제1냉매유로(201)로 냉매가 유동되고, 압축기(210)와 냉각팬(221) 및 제1저장실용 송풍팬(281)이 동작된다.For example, during the cooling operation of the first storage chamber 101 (S212), the refrigerant flows into the first refrigerant passage 201 by the operation of the passage switching valve 330, and the compressor 210 and the cooling fan 221 And the blowing fan 281 for the first storage compartment is operated.
상기 제2저장실(102)의 냉각 운전시(S211)에는 유로전환밸브(330)의 동작에 의해 제2냉매유로(202)로 냉매가 유동되고, 압축기(210)와 냉각팬(221) 및 제2저장실용 송풍팬(291)이 동작된다.During the cooling operation of the second storage chamber 102 (S211), the refrigerant flows into the second refrigerant passage 202 by the operation of the flow path switching valve 330, and the compressor 210, the cooling fan 221, and the The blowing fan 291 for the second storage compartment is operated.
상기 열제공전운전(S210)은 제2저장실(102)부터 우선적으로 냉각된 후 제1저장실(101)이 냉각되도록 수행될 수 있다. 즉, 열제공운전(S220)시에는 제2저장실(102)의 온도가 점차 낮아지기 때문에 상기 열제공전운전(S210)에서는 제2저장실(102)이 제1저장실(101)보다 먼저 냉각되도록 한다.The heat transfer operation (S210) may be performed so that the second storage compartment 102 is first cooled and then the first storage compartment 101 is cooled. That is, since the temperature of the second storage compartment 102 gradually decreases during the heat supply operation (S220), the second storage compartment 102 is cooled before the first storage compartment 101 in the heat transfer operation (S210).
상기 열제공전운전(S210)의 제1저장실(101)에 대한 냉각이 완료(S213)될 때에는 펌프 다운(Pump Down)되도록 제어될 수 있다. 즉, 제1저장실(101)의 냉각이 완료(S213)되어 유로전환밸브(330)가 각 유로(201,202)로의 냉매 유동이 차단되도록 동작될 경우 압축기(210)는 일정 시간동안 추가 운전되도록 한다. 이에 따라 제2증발기(260)에 모인 냉매가 압축기(210)로 회수될 수 있다. 이로써 열제공운전(S220)의 열교환과정(S223)이 수행될 경우 고온의 냉매가 제1증발기(250)에 빠르게 공급되면서도 충분한 양이 공급될 수 있다.When the cooling of the first storage chamber 101 in the heat transfer operation (S210) is completed (S213), the pump may be controlled to be down. That is, when the cooling of the first storage compartment 101 is completed (S213) and the flow path switching valve 330 is operated to block the flow of refrigerant to the respective flow paths 201 and 202, the compressor 210 is additionally operated for a certain period of time. Accordingly, the refrigerant collected in the second evaporator 260 may be recovered to the compressor 210 . Accordingly, when the heat exchange process (S223) of the heat supply operation (S220) is performed, the high-temperature refrigerant can be rapidly supplied to the first evaporator (250) and supplied in a sufficient amount.
상기 제1저장실(101)의 냉각이 완료(S213)된 후 열제공운전(S220)이 수행되기 전까지는 일정 시간동안 휴지과정(S216)이 수행된다. 즉, 휴지과정(S216)의 제공을 통해 압축기(210)가 과도하게 연속동작됨을 방지하는 것이다. 이는, 첨부된 도 7과 도 11과 같다.After the cooling of the first storage compartment 101 is completed (S213), a pause process (S216) is performed for a predetermined time until the heat supply operation (S220) is performed. That is, excessive continuous operation of the compressor 210 is prevented by providing the pause process (S216). This is the same as the attached FIGS. 7 and 11.
상기 휴지과정(S216)은 시간으로 설정될 수 있다. 예컨대, 상기 제1저장실(101)의 냉각이 완료(S213)된 후 열제공운전(S220)이 수행되기 전까지 일정 시간동안 휴지과정(S216)이 수행될 수 있다.The pause process (S216) may be set by time. For example, after cooling of the first storage compartment 101 is completed (S213), a pause process (S216) may be performed for a predetermined time before the heat supply operation (S220) is performed.
바람직하게는, 상기 휴지과정(S216)은 압축기(210)의 최소 휴지시간보다 오랜 시간으로 설정될 수 있다. 예컨대, 압축기(210)의 최소 휴지시간이 2분일 경우 상기 휴지과정은 3분으로 설정될 수 있다.Preferably, the pause process (S216) may be set to a longer time than the minimum pause time of the compressor 210. For example, when the minimum pause time of the compressor 210 is 2 minutes, the pause process may be set to 3 minutes.
한편, 상기 열제공전운전(S210)시 제1저장실용 송풍팬(281)은 제1저장실(101)로 냉기를 공급할 때부터 제1증발기 온도(FD)가 제1저장실 온도(F)에 도달할 때까지 동작될 수 있다. 즉, 제1증발기 온도(FD)가 제1저장실 온도(F)에 도달되면 상기 제1저장실용 송풍팬(281)은 정지(S215)된다.Meanwhile, in the heat supply operation (S210), the first storage room blowing fan 281 supplies cold air to the first storage room 101 when the first evaporator temperature FD reaches the first storage room temperature F. It can operate until That is, when the temperature FD of the first evaporator reaches the temperature F of the first storage compartment, the blowing fan 281 for the first storage compartment is stopped (S215).
특히, 상기 제1저장실용 송풍팬(281)은 제1저장실(101)의 냉각이 완료(S213)되어 압축기(210)가 정지되기 전보다 압축기(210)가 정지된 후부터 히팅열원(310)의 발열 조건이 만족될 때까지가 더욱 빠른 속도로 회전(S214)될 수 있다. 즉, 압축기(210)가 정지된 후에는 히팅열원(310)이 가동되기 전까지 제1저장실(101)을 순환하는 유량을 최대화하는 것이 가열 시간(예컨대, 제1증발기의 제상 시간)을 단축시키는데 유리하다.In particular, the blowing fan 281 for the first storage compartment generates heat from the heating heat source 310 after the compressor 210 is stopped, rather than before the compressor 210 is stopped when the cooling of the first storage compartment 101 is completed (S213). It may be rotated at a higher speed until the condition is satisfied (S214). That is, maximizing the flow rate circulating in the first storage chamber 101 after the compressor 210 is stopped until the heating heat source 310 is operated is advantageous in shortening the heating time (eg, the defrosting time of the first evaporator). Do.
상기 제1저장실(101)의 냉각이 완료(S213)되어 압축기(210)가 정지되기 전 제1저장실용 송풍팬(281) 회전 속도는 일반 냉각 운전시 제1저장실(101)을 냉각하기 위해 수행되는 회전 속도보다 느리거나 혹은, 동일하게 설정될 수 있다.The cooling of the first storage compartment 101 is completed (S213) and before the compressor 210 is stopped, the rotation speed of the blowing fan 281 for the first storage compartment is performed to cool the first storage compartment 101 during normal cooling operation. It may be set to be slower than or equal to the rotation speed to be set.
한편, 상기 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지는 제2저장실(102)로의 냉기 공급이 차단될 수 있다.Meanwhile, supply of cold air to the second storage chamber 102 may be blocked until the heat supply operation (S220) is performed after the heat supply operation (S210) is finished.
상기 냉기 공급을 차단하는 방법은 다양하게 수행될 수 있다.A method of blocking the cold air supply may be performed in various ways.
일 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 확인된 제2저장실 온도(R)를 제2저장실(102)의 냉각 운전을 위한 조건에서 제외할 수 있다. 즉, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지는 제2저장실 온도(R)가 불만족 온도(제2상한 기준온도(NT22+diff)를 초과한 온도)이더라도 제2저장실(102)의 냉각 운전이 수행되지 않도록 한다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As an example, after the heat supply operation (S210) is finished, the second storage compartment temperature (R) checked before the heat supply operation (S220) is performed may be excluded from the conditions for the cooling operation of the second storage compartment (102). can That is, after the heat supply operation (S210) is completed and before the heat supply operation (S220) is performed, the second storage room temperature (R) is an unsatisfactory temperature (temperature exceeding the second upper limit reference temperature (NT22 + diff)). Even if it is, the cooling operation of the second storage chamber 102 is not performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 압축기(210)가 정지되도록 제어할 수 있다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, after the heat supply operation (S210) ends, the compressor 210 may be controlled to stop until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
또 다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 제2저장실 온도(R)는 측정하지 않는다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, after the heat supply operation (S210) is finished, the second storage compartment temperature (R) is not measured until the heat supply operation (S220) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
또 다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 제2증발기(260)로 유동되는 냉매 공급이 차단되도록 유로전환밸브(330)를 제어할 수 있다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, after the heat supply operation (S210) ends, the flow path switching valve 330 may be controlled so that the refrigerant supply flowing to the second evaporator 260 is blocked until the heat supply operation (S220) is performed. there is. As a result, supply of cold air to the second storage compartment 102 may be blocked.
또 다른 예로써, 열제공전운전(S210)이 종료된 후 열제공운전(S220)이 수행되기 전까지 제2저장실용 송풍팬(291)이 정지되도록 제어할 수 있다. 이로써 제2저장실(102)로의 냉기 공급이 차단될 수 있다.As another example, the blower fan 291 for the second storage compartment may be controlled to stop after the heat supply operation ( S210 ) ends until the heat supply operation ( S220 ) is performed. As a result, supply of cold air to the second storage compartment 102 may be blocked.
다음으로, 냉장고의 각 상황별 운전에는 열제공운전(S220)이 포함될 수 있다.Next, the operation of the refrigerator for each situation may include a heat supply operation (S220).
상기 열제공운전(S220)은 제1증발기(250)를 가열하기 위한 열을 제공하는 운전이다. 예컨대, 제1증발기(250)의 표면에 생성된 서리를 제상하기 위해 상기 열제공운전(S220)이 사용될 수 있다.The heat supply operation (S220) is an operation that provides heat for heating the first evaporator (250). For example, the heat supply operation (S220) may be used to defrost frost generated on the surface of the first evaporator 250.
이러한 열제공운전(S220)은 운전 조건이 만족될 경우 수행될 수 있다. 예컨대, 제1증발기(250)의 제상 운전이 필요할 경우 열제공운전(S220)의 운전 조건이 만족된 것으로 판단할 수 있다.This heat supply operation (S220) may be performed when the operation conditions are satisfied. For example, when the defrosting operation of the first evaporator 250 is required, it may be determined that the operating condition of the heat supply operation (S220) is satisfied.
상기 제상 운전은 제1증발기(250)를 통과하는 냉기의 양이나 유속을 확인하거나, 압축기(210)의 적산 운전 시간이 설정된 시간을 경과하였는지를 확인하거나, 제1저장실(101)이 일정 시간 연속으로 불만 온도로 유지되는지를 확인함으로써 운전의 필요 여부를 판단할 수 있다.The defrosting operation checks the amount or flow rate of cold air passing through the first evaporator 250, checks whether the cumulative operation time of the compressor 210 has elapsed, It is possible to determine whether operation is necessary by checking whether the temperature is maintained at the unsatisfactory temperature.
만일, 적어도 어느 한 방법에 의해 운전 조건(예컨대, 제1증발기의 제상 운전을 위한 조건)이 만족된 것으로 확인되면 상기 열제공전운전(S210)이 우선적으로 수행된 후 열제공운전(S220)이 수행될 수 있다.If it is confirmed that the operating condition (for example, the condition for the defrosting operation of the first evaporator) is satisfied by at least one method, the heat supply operation (S210) is performed first, and then the heat supply operation (S220) is performed. can be performed
상기 열제공운전(S220)은 히팅열원(310)을 이용하여 제1증발기(250)에 열을 제공하는 발열과정이 포함될 수 있다.The heat supply operation (S220) may include a heating process of providing heat to the first evaporator 250 using the heating heat source 310.
상기 발열과정은 각 저장실(101,102)의 열제공전운전(S210)이 시작된 후 제1증발기(250)의 가열을 위한 발열 조건이 만족되면 히팅열원(310)에 전원을 공급함으로써 수행될 수 있다. 즉, 발열 조건이 만족되어야만 히팅열원(310)을 발열하여 제1증발기(250)를 가열하는 것이다.The heating process may be performed by supplying power to the heating heat source 310 when the heating condition for heating the first evaporator 250 is satisfied after the heat supply operation (S210) of each storage compartment 101 and 102 starts. That is, the first evaporator 250 is heated by generating heat from the heating source 310 only when the heating condition is satisfied.
상기 발열과정의 발열 조건은 시간으로 설정될 수 있다. 예컨대, 열제공전운전(S210)이 종료(deep cooling 종료)된 후 설정된 시간이 경과되면 발열 조건을 만족한 것으로 판단될 수도 있는 것이다.An exothermic condition of the exothermic process may be set by time. For example, it may be determined that the heating condition is satisfied when a set time elapses after the heat supply operation (S210) ends (deep cooling ends).
하지만, 발열 조건이 시간으로 설정된다면 다양한 주변 환경의 변화에 대응하기가 어려운 단점이 야기될 수 있다. 이를 고려한다면 상기 발열과정의 발열 조건은 온도로 설정됨이 바람직할 수 있다. 즉, 발열 조건을 온도로 설정함으로써 다양한 주변 환경의 변화에도 정확히 대응할 수 있게 된다.However, if the heating condition is set to time, a disadvantage in that it is difficult to respond to changes in various surrounding environments may be caused. Considering this, it may be preferable that the heating condition of the heating process is set to temperature. That is, by setting the heating condition to temperature, it is possible to accurately respond to changes in various surrounding environments.
상기 발열 조건이 온도로 설정되는 경우는 제1증발기 온도(FD)가 제1저장실 온도(F)와 같거나 높을 경우가 포함될 수 있다. 즉, 열제공전운전(S210) 도중 혹은, 열제공전운전(S210)이 완료된 후 제1증발기 온도(FD)를 확인(S221)하여 상기 제1증발기 온도(FD)가 제1저장실 온도(F)와 같거나 높아지면 발열 조건이 만족된 것으로 판단하여 히팅열원(310)이 발열(ON)(S222)되는 것이다.When the heating condition is set to temperature, a case where the first evaporator temperature (FD) is equal to or higher than the first storage compartment temperature (F) may be included. That is, during the heat transfer operation (S210) or after the heat transfer operation (S210) is completed, the first evaporator temperature (FD) is checked (S221) so that the first evaporator temperature (FD) is the first storage compartment temperature (F). If it is equal to or higher than ), it is determined that the heating condition is satisfied, and the heating heat source 310 heats up (ON) (S222).
상기 제1증발기 온도(FD)는 상기 제1증발기(250)의 냉매 유출측 온도 혹은, 냉기 유출측 온도가 포함될 수 있다.The first evaporator temperature FD may include the temperature of the outlet side of the refrigerant or the temperature of the outlet side of the cold air of the first evaporator 250 .
상기한 발열 조건의 만족으로 히팅열원(310)이 발열(ON)될 경우에는 휴지과정(S216)으로 설정된 시간이 무시될 수 있다. 즉, 휴지과정(S216)으로 설정된 시간이 경과하기 전이라도 상기 히팅열원(310)의 발열 조건이 만족되면 히팅열원(310)이 발열되도록 제어될 수 있다.When the heating heat source 310 generates heat (ON) by satisfying the heat generating condition described above, the time set in the pause process (S216) may be disregarded. That is, even before the time set for the pause process (S216) elapses, if the heating condition of the heating heat source 310 is satisfied, the heating heat source 310 can be controlled to generate heat.
물론, 제1증발기 온도(FD)가 제1저장실 온도(F)에 도달되더라도 압축기(210)의 최소 휴지시간이 경과되지 않는다면 상기 최소 휴지시간이 경과될 때까지 히팅열원(310)의 발열이 지연되도록 설정됨이 바람직하다. 예컨대, 열제공전운전(S210)이 종료된 후 2분이 경과되지 않았을 경우에는 제1증발기 온도(FD)가 제1저장실 온도(F)에 도달되더라도 히팅열원(310)이 상기 2분을 경과할 때까지 발열이 지연되도록 설정될 수 있다.Of course, even if the temperature of the first evaporator (FD) reaches the temperature of the first storage compartment (F), if the minimum idle time of the compressor 210 does not elapse, heat generation of the heating source 310 is delayed until the minimum idle time has elapsed. It is preferable to set it so that it is. For example, if 2 minutes have not elapsed after the heat supply operation (S210) is finished, even if the first evaporator temperature (FD) reaches the first storage compartment temperature (F), the heating heat source 310 will not pass the 2 minutes. It can be set to delay heat generation until
상기 열제공운전(S220)은 냉매의 순환을 이용하여 제1증발기(250)에 열을 제공하는 열교환과정이 포함될 수 있다.The heat supply operation (S220) may include a heat exchange process of providing heat to the first evaporator 250 using circulation of the refrigerant.
즉, 열교환과정의 추가 제공에 의해 상기 히팅열원(310)으로만 제1증발기(250)에 열을 제공할 경우보다 더욱 빨리 원하는 온도에까지 열을 제공할 수 있어서 히팅열원(310)의 동작으로 인한 전력소모를 줄일 수 있도록 한 것이다.That is, by additionally providing a heat exchange process, heat can be provided up to a desired temperature more quickly than when heat is provided to the first evaporator 250 only with the heating heat source 310, resulting from the operation of the heating heat source 310. This is to reduce power consumption.
이러한 열교환과정은 열제공전운전(S210)의 종료시 설정 시간(예컨대, 3분) 동안의 휴지과정(S216)이 완료된 후 핫 가스유로(320)를 개방한 상태에서 압축기(210)를 동작시킴으로써 수행(S223)될 수 있다. 즉, 압축기(210)의 동작에 의해 생성된 고온의 냉매는 응축기(220)를 통과한 후 핫 가스유로(320)를 따라 제1팽창기(230)를 거치지 않고 제1증발기(250)로 유동되면서 상기 제1증발기(250)를 가열하게 된다. 상기 제1증발기(250)를 가열한 냉매는 물성치 조절부(270)를 통해 감압된 상태로 제2증발기(260)를 통과한 후 압축기(210)로 회수된다.This heat exchange process is performed by operating the compressor 210 with the hot gas flow path 320 open after the pause process (S216) for a set time (eg, 3 minutes) is completed at the end of the heat transfer operation (S210). (S223). That is, the high-temperature refrigerant generated by the operation of the compressor 210 passes through the condenser 220 and flows along the hot gas flow path 320 to the first evaporator 250 without passing through the first expander 230. The first evaporator 250 is heated. The refrigerant heated in the first evaporator 250 is returned to the compressor 210 after passing through the second evaporator 260 in a reduced pressure state through the physical property control unit 270 .
상기한 냉매에 의한 열교환과정이 수행될 경우에는 유로전환밸브(330)의 동작에 의해 응축기(220)의 토출유로(203)를 통과한 냉매가 핫 가스유로(320)를 따라 유동되도록 안내된다.When the heat exchange process by the refrigerant is performed, the refrigerant passing through the discharge passage 203 of the condenser 220 is guided to flow along the hot gas passage 320 by the operation of the flow path switching valve 330.
특히, 상기한 열교환과정이 수행될 경우에는 압축기(210)의 동작에도 불구하고 냉각팬(221)이 동작되지 않도록 제어된다. 이때, 상기 냉각팬(221)은 해당 열교환과정이 종료될 때까지 구동되지 않도록 제어될 수 있다.In particular, when the heat exchange process is performed, the cooling fan 221 is controlled not to operate despite the operation of the compressor 210 . At this time, the cooling fan 221 may be controlled not to be driven until the corresponding heat exchange process is completed.
이로써, 압축기(210)에서 압축된 냉매는 응축기(220)를 지나는 도중 온도 저하가 이루어지지 않은 상태로 제1증발기(250)에 제공될 수 있고, 상기 제1증발기(250)는 고온의 냉매로 가열될 수 있게 된다.As a result, the refrigerant compressed in the compressor 210 can be provided to the first evaporator 250 in a state in which the temperature does not decrease while passing through the condenser 220, and the first evaporator 250 converts the high-temperature refrigerant into can be heated.
한편, 상기 열교환과정(S223)이 수행될 경우 첨부된 도 12의 순서도에서와 같이 제2저장실용 송풍팬(R-Fan)(291)은 정지된 상태로 제1증발기(250)만 가열되도록 할 수도 있다.On the other hand, when the heat exchange process (S223) is performed, as shown in the flowchart of FIG. 12 attached, the R-Fan 291 for the second storage compartment is stopped and only the first evaporator 250 is heated. may be
그러나, 바람직하게는 상기 열교환과정(S223)이 수행될 경우 첨부된 도 13의 순서도에서와 같이 핫 가스(고온 냉매)로 제1증발기(250)를 가열하면서 제2저장실이 냉각되도록 제어될 수 있다. 이는 제2저장실용 송풍팬(R-Fan)(291)도 함께 동작함으로써 수행될 수 있다.However, preferably, when the heat exchange process (S223) is performed, the second storage compartment can be controlled to be cooled while heating the first evaporator 250 with hot gas (high-temperature refrigerant) as shown in the flowchart of FIG. 13 attached thereto. . This can be performed by also operating the R-Fan 291 for the second storage compartment.
이렇게 제2저장실용 송풍팬(R-Fan)(291)이 동작될 경우 제1증발기(250)를 지난 냉매는 물성치 조절부(270)를 지나 감압된 후 제2증발기(260)를 지나는 과정에서 제2저장실(102) 내의 공기와 열교환된다.When the R-Fan 291 for the second storage compartment is operated in this way, the refrigerant passing through the first evaporator 250 passes through the physical property control unit 270 and is decompressed, and then passes through the second evaporator 260. Heat is exchanged with the air in the second storage compartment 102.
상기 열교환된 공기는 상기 제2저장실(102)로 제공되어 상기 제2저장실(102) 내의 온도를 하락시키게 된다. 즉, 열교환과정으로 제1증발기(250)가 가열될 경우 제2저장실(102)은 냉각되기 때문에 열제공운전의 종료시 제2저장실(102)의 냉각을 위한 운전이 생략될 수 있다. 이로써 제1저장실(101)이 빠르게 냉각될 수 있고, 제1저장실(101)의 냉각을 위한 시간이 단축되며, 전력소모가 줄어들 수 있다.The heat-exchanged air is provided to the second storage compartment 102 to lower the temperature in the second storage compartment 102 . That is, when the first evaporator 250 is heated by the heat exchange process, the second storage compartment 102 is cooled, so that the operation for cooling the second storage compartment 102 can be omitted when the heat supply operation is finished. As a result, the first storage compartment 101 can be quickly cooled, the time for cooling the first storage compartment 101 is shortened, and power consumption can be reduced.
상기 제2저장실용 송풍팬(291)은 제1증발기(250)의 가열이 종료될 때 정지된다.The blowing fan 291 for the second storage compartment is stopped when the heating of the first evaporator 250 is finished.
한편, 상기 냉매에 의한 열교환과정(S223)은 실내 온도에 따라 발열과정(S222)보다 우선하여 수행되거나 혹은, 발열과정(S222)보다 늦게 수행될 수 있다.Meanwhile, the heat exchange process by the refrigerant (S223) may be performed prior to the heating process (S222) or later than the heating process (S222) according to the room temperature.
예컨대, 실내 온도가 저온 온도범위에서는 발열과정이 상기 열교환과정보다 우선적으로 수행될 수 있다. 상기 저온 온도범위는 미리 설정된 기준 온도범위보다 낮은 온도범위가 될 수 있다. 상기 실내 온도가 기준 온도범위일 경우에도 발열과정이 상기 열교환과정보다 우선적으로 수행되도록 설정될 수 있다.For example, in a temperature range where the room temperature is low, the heating process may be performed prior to the heat exchange process. The low temperature temperature range may be a temperature range lower than a preset reference temperature range. Even when the room temperature is within the reference temperature range, the heating process may be performed prior to the heat exchange process.
즉, 상기 열교환과정으로 제2저장실(102)의 온도가 과도하게 떨어질 수 있음을 고려할 때 히팅열원(310)으로 제1증발기(250)를 우선적으로 가열한 후 고온 냉매를 이용하여 제1증발기(250)를 추가적으로 가열하는 것이 바람직할 수 있다.That is, considering that the temperature of the second storage chamber 102 may drop excessively due to the heat exchange process, the first evaporator 250 is first heated with the heating heat source 310, and then the first evaporator 250 is heated using a high-temperature refrigerant ( 250) may be desirable.
상기 실내 온도가 고온 온도범위가 아니라면 실내 온도가 제1증발기(250)에 미치는 영향이 미미하다. 이 때문에 히팅열원(310)을 이용하여 제1증발기(250)의 주변을 가열한 후 핫 가스를 이용하여 제1증발기(250)를 가열하는 것이 제1증발기(250)를 제상하는 시간을 단축시킬 수 있다.If the room temperature is not in the high temperature range, the effect of the room temperature on the first evaporator 250 is insignificant. For this reason, heating the periphery of the first evaporator 250 using the heating heat source 310 and then heating the first evaporator 250 using hot gas shortens the defrosting time of the first evaporator 250. can
상기 기준 온도범위는 봄 가을철의 평균적인 실내 온도 범위로 설정되거나 혹은, 여타의 실내 상황을 고려한 온도가 될 수 있다. 상기 고온 온도범위는 여름철의 평균적인 실내 온도 범위로 설정되거나 혹은, 여타의 실내 상황을 고려한 온도가 될 수 있다.The reference temperature range may be set to an average indoor temperature range in spring and autumn, or may be a temperature considering other indoor conditions. The high-temperature temperature range may be set as an average indoor temperature range in summer or may be a temperature considering other indoor conditions.
상기 각 저장실(101,102)의 핫 가스 공급조건이 만족될 경우 상기 열교환과정이 수행될 수 있다. 즉, 열제공전운전(S210)이 종료되어 압축기(210)가 정지된 후 핫 가스 공급조건이 만족되면 상기 압축기(210)가 재동작되도록 한 것이다.The heat exchange process may be performed when the hot gas supply condition of each of the storage compartments 101 and 102 is satisfied. That is, the compressor 210 is restarted when the hot gas supply condition is satisfied after the heat supply operation (S210) is completed and the compressor 210 is stopped.
이러한 핫 가스 공급조건에는 다양한 경우가 포함될 수 있다.These hot gas supply conditions may include various cases.
일 예로써, 핫 가스 공급조건에는 히팅열원(310)으로의 전원 공급후 설정된 시간이 경과될 경우가 포함될 수 있다. 예컨대, 히팅열원(310)으로의 전원 공급후 10분이 경과되면 핫 가스 공급조건이 만족됨으로 판단할 수 있다.As an example, the hot gas supply condition may include a case where a set time elapses after power is supplied to the heating heat source 310 . For example, when 10 minutes have elapsed after supplying power to the heating heat source 310, it may be determined that the hot gas supply condition is satisfied.
이로써, 히팅열원(310)이 발열된 후 상기 히팅열원(310)의 열기가 제1증발기(250)에 영향을 제공할 경우 핫 가스유로(320)를 따라 고온 냉매가 공급되면서 제1증발기(250)를 추가로 가열할 수 있게 된다.Thus, after the heating heat source 310 generates heat, when the heat of the heating heat source 310 affects the first evaporator 250, the high-temperature refrigerant is supplied along the hot gas flow path 320 to the first evaporator 250. ) can be further heated.
다른 예로써, 상기 핫 가스 공급조건에는 각 저장실(101,102)의 열제공전운전(S210)이 종료된 후 설정된 시간이 경과될 경우가 포함될 수도 있다. 즉, 열제공전운전(S210)이 종료된 후 설정된 시간이 경과되면 핫 가스 공급조건이 만족됨으로 판단할 수 있다.As another example, the hot gas supply condition may include a case where a set time elapses after the heat supply operation ( S210 ) of each storage chamber ( 101 , 102 ) ends. That is, when a set time elapses after the heat supply operation (S210) ends, it may be determined that the hot gas supply condition is satisfied.
또 다른 예로써, 상기 핫 가스 공급조건에는 각 저장실(101,102)의 열제공전운전(S210)이 종료된 후 상기 제1증발기 온도(FD)가 설정된 제2온도(X2)에 도달(FD≥X2℃)할 경우가 포함될 수도 있다. 즉, 열제공전운전(S210)이 종료된 후 제1증발기 온도(FD)가 설정된 제2온도(X2)에 도달(FD≥X2℃)하면 핫 가스 공급조건이 만족됨으로 판단할 수 있다.As another example, in the hot gas supply condition, after the heat supply operation (S210) of each storage chamber (101, 102) is completed, the first evaporator temperature (FD) reaches the set second temperature (X2) (FD≥X2). ℃) may be included. That is, it can be determined that the hot gas supply condition is satisfied when the first evaporator temperature FD reaches the set second temperature X2 (FD≥X2°C) after the heat transfer operation (S210) is finished.
상기 제2온도(X2)는 제1저장실 온도(F)보다 높은 온도이면서 히팅열원(310)의 발열이 종료되는 제1온도(X1) 이하의 온도가 될 수 있다.The second temperature X2 may be a temperature higher than the first storage compartment temperature F and lower than the first temperature X1 at which heat generation of the heating heat source 310 is terminated.
물론, 상기 제2온도(X2)가 히팅열원(310)의 발열이 종료되는 제1온도(X1)로 설정될 경우 히팅열원(310)의 발열에 의한 가열과 핫 가스를 이용한 가열이 동시에 수행되지 않을 수 있다. 이를 고려할 때 상기 제2온도(X2)는 히팅열원(310)의 발열이 종료되는 제1온도(X1)보다는 낮은 온도로 설정됨이 바람직할 수 있다.Of course, when the second temperature (X2) is set to the first temperature (X1) at which the heat generation of the heating heat source 310 is terminated, heating by heat from the heating heat source 310 and heating using hot gas are not simultaneously performed. may not be Considering this, the second temperature (X2) may be set to a lower temperature than the first temperature (X1) at which heat generation of the heating heat source 310 is terminated.
상기 핫 가스 공급조건이 만족되어 열교환과정(S223)이 수행될 경우에는 압축기(210)가 동작되더라도 상기 열교환과정(S223)이 종료될 때까지 냉각팬(221)이 정지되도록 제어될 수 있다.When the hot gas supply condition is satisfied and the heat exchange process (S223) is performed, the cooling fan 221 may be controlled to stop until the heat exchange process (S223) ends even if the compressor 210 is operated.
즉, 압축기(210)에서 압축된 고온의 냉매가 응축기(220)를 통과하는 도중 상기 냉각팬(221)의 동작에 의한 온도 저하(열량 손실)를 방지하여, 최대한 고온의 냉매가 제1증발기(250)에 제공될 수 있도록 한 것이다.That is, while the high-temperature refrigerant compressed in the compressor 210 passes through the condenser 220, the temperature drop (heat loss) caused by the operation of the cooling fan 221 is prevented, so that the highest-temperature refrigerant is transferred to the first evaporator ( 250) so that it can be provided.
상기 핫 가스 공급조건이 만족되어 열교환과정이 수행될 경우에는 제1저장실용 송풍팬(281)이 정지되도록 제어될 수 있다. 즉, 제1저장실용 송풍팬(281)의 동작으로 제1증발기(250)의 온도 상승이 느려질 수 있음을 방지하는 것이다.When the hot gas supply condition is satisfied and the heat exchange process is performed, the blowing fan 281 for the first storage compartment may be controlled to stop. That is, it is to prevent the temperature rise of the first evaporator 250 from being slow due to the operation of the blowing fan 281 for the first storage compartment.
상기 핫 가스 공급조건이 만족되어 열교환과정이 수행될 경우에는 제2저장실용 송풍팬(291)이 동작되도록 제어될 수 있다. 즉, 핫 가스유로(320)를 따라 냉매가 유동될 때에는 제2저장실용 송풍팬(291)이 동작에 의해 제2저장실(102)의 냉기가 제2증발기(260)를 지나면서 열교환되도록 한 것이다. 이로써 제1증발기(250)를 가열하면서도 제2저장실(102)로 냉기를 공급하는 과정이 동시에 이루어질 수 있다.When the hot gas supply condition is satisfied and the heat exchange process is performed, the blowing fan 291 for the second storage compartment may be controlled to operate. That is, when the refrigerant flows along the hot gas flow path 320, the cooling fan 291 for the second storage compartment is operated so that the cold air in the second storage compartment 102 passes through the second evaporator 260 and exchanges heat. . As a result, while heating the first evaporator 250 , a process of supplying cold air to the second storage chamber 102 can be simultaneously performed.
한편, 전술된 열제공운전(S220)의 발열과정과 열교환과정은 발열 종료조건 혹은, 열교환 종료조건이 만족되면 발열과정이 종료(S224)되거나 혹은, 열교환과정이 종료(S225)된다.Meanwhile, in the heat generation process and the heat exchange process of the above-described heat supply operation (S220), the heat generation process ends (S224) or the heat exchange process ends (S225) when the heat generation end condition or the heat exchange end condition is satisfied.
상기 발열 종료조건은 히팅열원(310)의 발열을 종료하기 위한 조건으로써 제1증발기 온도(FD)가 미리 설정된 제1온도(X1)에 도달할 경우가 포함될 수 있다. 즉, 제1증발기 온도(FD)가 제1온도(X1)에 도달되면 발열 종료조건이 만족됨으로 판단하여 히팅열원(310)으로 공급되는 전원을 차단하게 된다.The heat generation termination condition is a condition for terminating heat generation of the heating heat source 310 and may include a case where the first evaporator temperature FD reaches the preset first temperature X1. That is, when the first evaporator temperature (FD) reaches the first temperature (X1), it is determined that the heat generation end condition is satisfied, and the power supplied to the heating source 310 is cut off.
상기 제1온도(X1)는 제1저장실(101)의 온도 상승으로 인한 보관물의 손상을 고려한 온도로써 예컨대, 5℃로 설정될 수 있다. 특히, 상기한 제1온도(X1)는 상기 핫 가스 공급조건의 만족을 확인하기 위한 제2온도(X2)와 같거나 상기 제2온도(X2)보다 높은 온도로 설정될 수도 있다.The first temperature X1 is a temperature in consideration of damage to stored objects due to a temperature rise of the first storage compartment 101, and may be set to, for example, 5°C. In particular, the first temperature X1 described above may be equal to or higher than the second temperature X2 for confirming the satisfaction of the hot gas supply condition.
상기 열교환 종료조건은 핫 가스(냉매) 공급이 종료되는 조건으로써 사실상 제1증발기(250)를 가열하는 열제공운전이 종료되는 조건이 될 수 있다.The heat exchange termination condition is a condition in which the supply of hot gas (refrigerant) is terminated, and may actually be a condition in which the heat supply operation for heating the first evaporator 250 is terminated.
이러한 열교환 종료조건은 제2저장실(102)이 만족 온도에 도달될 경우가 포함될 수도 있다. 즉, 제2저장실(102)의 경우 냉장 보관을 위한 저장실이기 때문에 과도한 온도 하락시 보관물이 어는 등의 손상이 발생될 수 있다.These heat exchange termination conditions may include a case where the second storage chamber 102 reaches a satisfactory temperature. That is, since the second storage compartment 102 is a storage compartment for refrigerated storage, damage such as freezing of stored items may occur when the temperature drops excessively.
이를 고려할 때, 보관물의 손상(과냉)이 발생되지 않도록 제2저장실 온도(R)를 만족 영역으로 유지함이 필요하다. 이로써 제2저장실(102)이 만족 온도에 도달되면 열교환 종료조건이 만족됨으로 판단하여 핫 가스유로(320)로의 냉매 공급을 차단하게 된다.Considering this, it is necessary to maintain the temperature R of the second storage compartment in a satisfactory range so as not to cause damage (overcooling) of stored items. Accordingly, when the second storage chamber 102 reaches a satisfactory temperature, it is determined that the heat exchange termination condition is satisfied, and the supply of refrigerant to the hot gas passage 320 is cut off.
상기 만족 온도는 제2저장실(102)의 설정 기준온도(NT2)를 기준으로 설정된 하한 기준온도(NT2-Diff) 이하의 온도이다. 즉, 상기 제2저장실 온도(R)가 하한 기준온도(NT2-Diff)에 도달되거나 혹은, 하한 기준온도(NT2-Diff)보다 낮아질 경우 핫 가스유로(320)로의 냉매 공급이 차단된다.The satisfactory temperature is a temperature equal to or less than the lower limit reference temperature (NT2-Diff) set based on the set reference temperature (NT2) of the second storage compartment (102). That is, when the temperature R of the second storage chamber reaches the lower limit reference temperature (NT2-Diff) or becomes lower than the lower limit reference temperature (NT2-Diff), the supply of refrigerant to the hot gas passage 320 is cut off.
한편, 상기 제2저장실(102)이 하한 기준온도(NT2-Diff)에 도달할 경우에는 제2저장실용 송풍팬(291)이 정지되도록 제어될 수도 있다. 즉, 상기 제2저장실(102)이 만족 온도에 도달되는 시간을 지연시켜 제1증발기(250)가 충분히 가열될 수 있는 시간이 확보되도록 할 수 있는 것이다.Meanwhile, when the second storage compartment 102 reaches the lower limit reference temperature (NT2-Diff), the blowing fan 291 for the second storage compartment may be controlled to stop. That is, by delaying the time for the second storage chamber 102 to reach a satisfactory temperature, it is possible to secure time for the first evaporator 250 to be sufficiently heated.
상기 열교환 종료조건은 열제공운전(S220)의 전체 운전 시간을 기준으로 결정될 수도 있다.The heat exchange termination condition may be determined based on the entire operation time of the heat supply operation (S220).
일 예로, 열교환과정이 시작된 후부터 설정된 시간이 경과되면 열교환 종료조건이 만족된 것으로 판단할 수 있다.For example, when a set time elapses from the start of the heat exchange process, it may be determined that the heat exchange end condition is satisfied.
다른 예로, 히팅열원(310)이 발열될 때부터 설정된 시간이 경과되면 열교환 종료조건이 만족된 것으로 판단할 수 있다.As another example, when a set time elapses from when the heating heat source 310 generates heat, it may be determined that the heat exchange end condition is satisfied.
상기 열교환 종료조건이 만족된 것으로 판단되면 핫 가스유로(320)로의 냉매 공급이 차단되면서 열교환과정을 종료할 수 있다. 상기 열교환 종료조건이 만족된 것으로 판단되면 제2저장실용 송풍팬(291)이 정지될 수 있다.When it is determined that the heat exchange termination condition is satisfied, the heat exchange process may be terminated while the refrigerant supply to the hot gas flow path 320 is cut off. When it is determined that the heat exchange termination condition is satisfied, the blowing fan 291 for the second storage compartment may be stopped.
상기 핫 가스유로(320)로의 냉매 공급은 압축기(210)가 정지됨으로써 차단될 수 있다. 하지만, 열교환과정이 수행되는 도중에는 제1증발기(250)가 고온의 상태인데 반해, 제2증발기(260)는 저온의 상태를 이룬다. 상기 제1증발기(250)와 제2증발기(260)가 큰 온도 차이를 이룰 경우 열교환과정이 종료되어 압축기(210)가 정지되면 두 증발기(250,260) 간의 압력 차이로 인해 제2증발기(260)로 냉매가 유동된다. 이에 따라 열교환과정의 종료 후 제1저장실(102)의 냉각 운전을 위해 제1증발기(250)로 냉매가 공급될 때 상기 제1증발기(250)까지 냉매가 유동되는 시간의 지연이 발생되고, 소비 효율이 저하된다.The supply of refrigerant to the hot gas flow path 320 may be cut off when the compressor 210 is stopped. However, while the heat exchange process is being performed, the first evaporator 250 is in a high temperature state, whereas the second evaporator 260 is in a low temperature state. When the temperature difference between the first evaporator 250 and the second evaporator 260 is large, the heat exchange process is finished and the compressor 210 is stopped. Refrigerant flows. Accordingly, when the refrigerant is supplied to the first evaporator 250 for the cooling operation of the first storage compartment 102 after the heat exchange process is finished, a delay in the flow of the refrigerant to the first evaporator 250 occurs, and consumption Efficiency decreases.
따라서, 상기 열교환과정이 종료될 경우에는 압축기(210)가 정지되기 전에 핫 가스유로(320)로의 냉매 공급을 차단한 상태로 압축기(210)를 일정 시간 추가 동작함이 바람직하다.Therefore, when the heat exchange process is finished, it is preferable to operate the compressor 210 for a certain period of time in a state in which the refrigerant supply to the hot gas flow path 320 is cut off before the compressor 210 is stopped.
즉, 냉매 유동은 차단한 상태로 압축기(210)를 추가 동작시키는 펌프 다운(Pump Down)을 수행(S226)하여 제2증발기(260)에 모여있던 냉매가 압축기(210)로 회수되도록 한 것이다. 이로써 온도 복귀운전(S230)의 제1저장실(101)에 대한 냉각운전이 수행될 경우 고온의 냉매가 제1증발기(250)에 빠르고 충분히 공급될 수 있다.That is, the refrigerant collected in the second evaporator 260 is recovered to the compressor 210 by performing a pump down operation (S226) to additionally operate the compressor 210 while the flow of the refrigerant is blocked. Accordingly, when the cooling operation for the first storage chamber 101 of the temperature return operation (S230) is performed, the high-temperature refrigerant can be quickly and sufficiently supplied to the first evaporator 250.
다음으로, 냉장고의 각 상황별 운전에는 온도 복귀운전(S230)이 포함될 수 있다.Next, operation of the refrigerator for each situation may include a temperature return operation (S230).
상기 온도 복귀운전(S230)은 열제공운전(S220)으로 온도가 상승된 제1저장실(101)을 만족 영역에 이르기까지 냉각하는 운전이다.The temperature return operation (S230) is an operation for cooling the first storage compartment 101, the temperature of which has risen in the heat supply operation (S220), to a satisfactory range.
이러한 온도 복귀운전(S230)을 첨부된 도 15를 참조하여 설명한다.This temperature return operation (S230) will be described with reference to FIG. 15 attached.
상기 온도 복귀운전(S230)은 열제공운전(S220)의 종료시 수행될 수 있다. 특히, 상기 온도 복귀운전(S230)은 열제공운전(S220)의 종료시 수행시 설정 시간(예컨대, 3분) 동안의 휴지과정(S231) 후 수행될 수 있다. 즉, 휴지과정(S231)이 이루어진 후 제1저장실(101)을 냉각시키기 위한 운전이 수행된다. The temperature return operation (S230) may be performed at the end of the heat supply operation (S220). In particular, the temperature return operation (S230) may be performed after a pause process (S231) for a set time (eg, 3 minutes) when performed at the end of the heat supply operation (S220). That is, after the pause process (S231) is performed, an operation for cooling the first storage compartment 101 is performed.
상기 온도 복귀운전(S230)시 유로전환밸브(330)는 제1냉매유로(201)를 통해 냉기가 유동되도록 동작된다.During the temperature return operation (S230), the flow path switching valve 330 is operated so that cold air flows through the first refrigerant flow path 201.
상기 온도 복귀운전(S230)시 압축기(210) 및 냉각팬(221)이 함께 동작된다. 이로써, 압축기(210)와 응축기(220)와 제1팽창기(230) 및 제1증발기(250)를 순차적으로 순환하는 냉매 유동이 이루어지면서 제1저장실(101)의 냉각을 위한 운전이 수행된다.During the temperature return operation (S230), the compressor 210 and the cooling fan 221 operate together. As a result, a flow of refrigerant sequentially circulating through the compressor 210, the condenser 220, the first expander 230, and the first evaporator 250 is performed while cooling the first storage compartment 101.
상기 제1저장실(101)의 냉각을 위한 운전의 수행시에는 제1저장실용 송풍팬(281)이 동작될 수 있다. 상기 제1저장실용 송풍팬(281)은 제1증발기 온도(FD)가 제1저장실 온도(F)보다 낮아질 때부터 동작될 수 있다. 이로써 제1저장실 온도(F)가 점차 낮아질 수 있다.When the operation for cooling the first storage compartment 101 is performed, the blowing fan 281 for the first storage compartment may be operated. The blowing fan 281 for the first storage compartment may be operated from when the first evaporator temperature (FD) becomes lower than the first storage compartment temperature (F). As a result, the temperature F of the first storage compartment may gradually decrease.
상기 제1저장실(101)의 냉각 운전이 수행되는 도중에는 제2증발기(260)에 대한 제상(1차 제상)이 이루어질 수 있다. 이때에는 제2저장실용 송풍팬(291)이 동작되지 않은 상태로 유지된다.While the cooling operation of the first storage compartment 101 is being performed, defrosting (primary defrosting) of the second evaporator 260 may be performed. At this time, the blowing fan 291 for the second storage compartment is maintained in an inoperative state.
즉, 제2저장실용 송풍팬(291)이 동작되지 않기 때문에 상기 제2증발기(260)는 자연 제상된다. 이러한 제2저장실용 송풍팬(291)의 동작 정지는 제2증발기 온도(RD)가 제1설정온도 이상일 때까지 수행될 수 있다. 예컨대, 상기 제1설정온도는 3℃로 설정될 수 있다.That is, since the blowing fan 291 for the second storage compartment is not operated, the second evaporator 260 is naturally defrosted. The operation of the blowing fan 291 for the second storage compartment may be stopped until the second evaporator temperature RD is equal to or higher than the first set temperature. For example, the first set temperature may be set to 3°C.
특히, 상기 제2증발기 온도(RD)가 제1설정온도에 도달되지 않을 경우에는 제1저장실 온도(F)가 하한 기준온도(NT11-Diff)에 이를 때까지 제1저장실(101)로 냉기를 공급하는 냉각 운전이 수행된다.In particular, when the second evaporator temperature (RD) does not reach the first set temperature, cool air is supplied to the first storage compartment (101) until the temperature (F) of the first storage compartment reaches the lower limit reference temperature (NT11-Diff). The supply cooling operation is performed.
반면, 상기 제2증발기 온도(RD)가 제1설정온도에 도달되었을 경우에는 제1저장실 온도(F)가 하한 기준온도(NT11-Diff)에 미치지 않더라도 펌프다운(Pump Down)(S235) 후 제2저장실(102) 및 제1저장실(101)의 냉각 운전을 위한 교대운전(S236)이 이루어진다.On the other hand, when the second evaporator temperature (RD) reaches the first set temperature, even if the first storage room temperature (F) does not reach the lower limit reference temperature (NT11-Diff), after pump down (S235) An alternate operation (S236) for cooling operation of the second storage compartment 102 and the first storage compartment 101 is performed.
즉, 상기 펌프다운(S235) 후 제2냉매유로(202)가 개방(제2냉매유로를 냉매가 유동)되도록 유로전환밸브(330)가 동작되고, 제2저장실용 송풍팬(291)이 동작되며, 제1저장실용 송풍팬(281)은 정지된다.That is, after the pump down (S235), the flow path switching valve 330 is operated so that the second refrigerant flow path 202 is opened (refrigerant flows through the second refrigerant flow path), and the blowing fan 291 for the second storage compartment is operated. and the blowing fan 281 for the first storage compartment is stopped.
상기 펌프다운(S235)은 일정 시간동안 수행될 수 있다.The pump-down (S235) may be performed for a predetermined time.
이렇듯, 본 발명의 냉장고는 히팅열원(310)의 발열과 고온 냉매(hot gas)의 공급으로 제1증발기(250)에 열을 제공한다. 이로써 고온 냉매만을 이용하여 제1증발기(250)에 열을 제공할 경우보다 열 제공에 소요되는 운전 시간을 단축시킬 수 있고, 제1저장실(101)의 온도 상승을 낮출 수 있게 된다.As such, the refrigerator of the present invention provides heat to the first evaporator 250 by generating heat from the heating source 310 and supplying hot gas. As a result, the operation time required to provide heat can be shortened and the temperature rise of the first storage compartment 101 can be reduced compared to the case of providing heat to the first evaporator 250 using only the high-temperature refrigerant.
특히, 본 발명의 냉장고는 열제공운전(S220)의 열교환과정(S223)시 냉각팬(221)이 구동되지 않도록 제어되기 때문에 압축기(210)에서 압축된 고온의 냉매가 급격한 온도의 저하없이 제1증발기(250)를 가열할 수 있다. 이로써 히팅열(310)원의 동작 시간이 줄어들어 전력소모를 줄일 수 있게 된다.In particular, since the refrigerator of the present invention is controlled so that the cooling fan 221 is not driven during the heat exchange process (S223) of the heat supply operation (S220), the high-temperature refrigerant compressed by the compressor 210 does not rapidly decrease in temperature. The evaporator 250 may be heated. As a result, the operating time of the heating heat source 310 is reduced, thereby reducing power consumption.
또한, 본 발명의 냉장고는 열제공운전(S220)의 열교환과정(S223)시 압축기(210)가 동작됨과 동시에 제2저장실용 송풍팬(291)이 동작되도록 제어되기 때문에 고온의 냉매를 이용한 제1증발기(250)로의 열 제공과 제2저장실(102)에 대한 냉각이 동시에 수행될 수 있게 된다.In addition, in the refrigerator of the present invention, during the heat exchange process (S223) of the heat supply operation (S220), the compressor 210 is operated and the blowing fan 291 for the second storage compartment is controlled to operate at the same time, so that the first refrigerator using a high-temperature refrigerant is operated. Heat supply to the evaporator 250 and cooling of the second storage chamber 102 can be performed simultaneously.
또한, 본 발명의 냉장고는 열제공전운전(S210) 후 열제공운전(S220)이 수행되기 전에 유로전환밸브(330)는 폐쇄되면서도 압축기(210)는 일정 시간동안 계속해서 동작되는 펌프다운(Pump Down)(S226)이 수행된다. 이 때문에 열제공운전(S220)의 열교환과정(S223)이 수행될 경우 고온의 냉매가 제1증발기(250)에 빠르게 공급되면서도 충분히 공급될 수 있게 된다.In addition, in the refrigerator of the present invention, after the heat supply operation (S210) and before the heat supply operation (S220) is performed, the flow path switching valve 330 is closed while the compressor 210 continues to operate for a certain period of time. Down) (S226) is performed. For this reason, when the heat exchange process (S223) of the heat supply operation (S220) is performed, the high-temperature refrigerant can be quickly and sufficiently supplied to the first evaporator (250).
또한, 본 발명의 냉장고는 제1증발기(250)로 열을 제공하면서 제2증발기(260)를 냉각하는 열제공운전(S220)이 제2저장실(102)의 온도가 만족 온도를 벗어날 경우 종료되도록 제어되기 때문에 제2증발기(260)의 과도한 냉각으로 야기되는 제2저장실(102)의 과냉이 방지될 수 있다.In addition, in the refrigerator of the present invention, the heat supply operation (S220) of cooling the second evaporator 260 while providing heat to the first evaporator 250 is terminated when the temperature of the second storage compartment 102 exceeds the desired temperature. Since it is controlled, overcooling of the second storage compartment 102 caused by excessive cooling of the second evaporator 260 can be prevented.
또한, 본 발명의 냉장고는 열제공전운전(S210) 후 열제공운전(S220)이 수행되기 전의 휴지과정(S216) 도중이라도 히팅열원(310)의 발열 조건이 만족되면 제1증발기(250)를 우선적으로 가열하도록 이루어지기 때문에 전체적인 열제공운전(S220)을 위한 시간을 단축시킬 수 있다.In addition, the refrigerator of the present invention operates the first evaporator 250 when the heating condition of the heating heat source 310 is satisfied even during the stop process (S216) before the heat supply operation (S220) after the heat supply operation (S210) is performed. Since it is made to heat first, it is possible to shorten the time for the entire heat supply operation (S220).
특히, 상기 히팅열원(310)의 발열 조건은 제1증발기 온도(FD)가 제1저장실 온도(F)와 같아질 경우를 포함하기 때문에 히팅열원(310)의 정확한 발열 시점을 특정할 수 있다.In particular, since the heating condition of the heating heat source 310 includes a case where the first evaporator temperature FD is equal to the first storage compartment temperature F, the exact time of heat generation of the heating heat source 310 can be specified.
한편, 본 발명의 냉장고는 전술된 실시예와는 달리 도시되지 않은 다양한 형태로의 실시가 가능하다.Meanwhile, the refrigerator of the present invention can be implemented in various forms not shown unlike the above-described embodiments.
일 실시예로, 본 발명의 냉장고는 핫 가스유로(320)를 유동하는 냉매(핫 가스)에 의한 열기가 제1증발기(250)의 제상 운전이 아닌 여타의 용도로 사용될 수 있다.As an embodiment, in the refrigerator of the present invention, heat generated by the refrigerant (hot gas) flowing through the hot gas flow path 320 may be used for other purposes than the defrosting operation of the first evaporator 250 .
예컨대, 핫 가스유로(320)는 열기를 필요로 하는 부위(예컨대, 아이스메이커의 탈빙 용도, 도어의 서리 맺힘 방지 용도, 각 저장실(101,102) 내의 과냉을 방지하는 용도 등)를 가열하는 용도로 사용될 수 있다.For example, the hot gas flow path 320 may be used for heating a part requiring heat (eg, ice-breaking of an ice maker, prevention of frost formation on a door, prevention of overcooling in each storage compartment 101, 102, etc.) can
다른 실시예로, 본 발명의 냉장고는 핫 가스유로(320)가 제1패스(321)와 제2패스(322) 및 제3패스(323)로 구분되지 않고 동일한 외경(혹은, 내경)을 가지는 하나의 관로로 형성될 수 있다.In another embodiment, in the refrigerator of the present invention, the hot gas flow path 320 is not divided into a first pass 321, a second pass 322, and a third pass 323 and has the same outer diameter (or inner diameter). It can be formed as a single conduit.
또 다른 실시예로, 본 발명의 냉장고는 유로전환밸브(330)가 둘 이상의 유로를 동시에 개방하도록 동작될 수 있다.As another embodiment, in the refrigerator of the present invention, the flow path switching valve 330 may be operated to simultaneously open two or more flow paths.
예컨대, 제1냉매유로(201)와 핫 가스유로(320)나, 제2냉매유로(202)와 핫 가스유로(320) 혹은, 제1냉매유로(201)와 제2냉매유로(202)가 동시에 개방되면서 응축기(220)를 통과한 냉매가 유동될 수 있다.For example, the first refrigerant passage 201 and the hot gas passage 320, the second refrigerant passage 202 and the hot gas passage 320, or the first refrigerant passage 201 and the second refrigerant passage 202 The refrigerant passing through the condenser 220 may flow while being opened at the same time.
또 다른 실시예로, 본 발명의 냉장고는 핫 가스유로(320)가 압축기(210)와 응축기(220) 사이의 유로로부터 분지되도록 형성될 수도 있다. 즉, 압축기(210)를 통과한 고온의 냉매가 핫 가스유로(320)에 의해 응축기(220)와 제1팽창기(230)를 경유하지 않고 곧장 제1증발기(250)를 지나도록 형성될 수도 있는 것이다.As another embodiment, the refrigerator of the present invention may be formed such that the hot gas flow path 320 is branched from the flow path between the compressor 210 and the condenser 220 . That is, the high-temperature refrigerant passing through the compressor 210 may be formed to pass directly through the first evaporator 250 without passing through the condenser 220 and the first expander 230 by the hot gas flow path 320. will be.

Claims (20)

  1. 제1저장실과 제2저장실 중 적어도 어느 한 저장실로 냉기를 공급하는 일반 냉각운전과,A general cooling operation of supplying cold air to at least one of the first storage compartment and the second storage compartment;
    제1증발기에 열을 제공하는 열제공운전과,A heat supply operation for providing heat to the first evaporator;
    상기 열제공운전이 수행되기 전에 적어도 어느 한 저장실을 냉각하는 열제공전운전을 포함하고,A heat transfer operation for cooling at least one storage compartment before the heat transfer operation is performed;
    상기 열제공운전은The heat transfer operation
    제1증발기의 가열을 위한 발열 조건이 만족되면 히팅열원을 발열하여 제1증발기에 열을 제공하는 발열과정과,A heating process of providing heat to the first evaporator by generating heat from the heating heat source when the heating condition for heating the first evaporator is satisfied;
    핫 가스 공급조건이 만족되면 압축기에서 압축된 고온의 냉매가 팽창기를 거치지 않고 제1증발기를 통과하면서 제1증발기를 가열한 후 제2증발기로 제공되어 제2증발기를 냉각하는 열교환과정이 포함됨을 특징으로 하는 냉장고의 운전 제어방법.When the hot gas supply condition is satisfied, the high-temperature refrigerant compressed by the compressor passes through the first evaporator without passing through the expander to heat the first evaporator and then is supplied to the second evaporator to cool the second evaporator. A method for controlling the operation of a refrigerator.
  2. 제 1 항에 있어서,According to claim 1,
    실내 온도가 기준 온도범위와 상기 기준 온도범위보다 높은 고온 온도범위로 구분될 경우When the indoor temperature is divided into a standard temperature range and a high temperature range higher than the standard temperature range
    상기 기준 온도범위에서는 상기 발열과정이 상기 열교환과정보다 우선적으로 수행됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the heating process is performed prior to the heat exchange process in the reference temperature range.
  3. 제 1 항에 있어서,According to claim 1,
    상기 발열과정의 발열 조건은The exothermic condition of the exothermic process is
    제1증발기의 온도(FD)가 제1저장실 내의 온도(F)와 같거나 높을 경우가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.A method for controlling operation of a refrigerator, comprising a case where the temperature (FD) of the first evaporator is equal to or higher than the temperature (F) in the first storage compartment.
  4. 제 3 항에 있어서,According to claim 3,
    상기 제1증발기의 온도(FD)는 상기 제1증발기의 냉매 유출측 온도가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the temperature (FD) of the first evaporator includes the temperature of the refrigerant outlet side of the first evaporator.
  5. 제 3 항에 있어서,According to claim 3,
    상기 제1증발기의 온도(FD)는 상기 제1증발기의 냉기 유출측 온도가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the temperature (FD) of the first evaporator includes the cold air outflow side temperature of the first evaporator.
  6. 제 1 항에 있어서,According to claim 1,
    상기 히팅열원은 발열 종료조건을 만족할 경우 발열이 중단됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that when the heating heat source satisfies a heat generation end condition, heat is stopped.
  7. 제 6 항에 있어서,According to claim 6,
    상기 발열 종료조건은 상기 제1증발기의 온도가 설정된 제1온도 범위에 도달될 경우가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator characterized in that the heat generation end condition includes a case where the temperature of the first evaporator reaches a set first temperature range.
  8. 제 1 항에 있어서,According to claim 1,
    상기 열교환과정의 핫 가스 공급조건은The hot gas supply condition of the heat exchange process is
    각 저장실의 열제공전운전이 종료된 후 설정된 시간이 경과될 경우가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.An operation control method of a refrigerator, characterized in that it includes a case where a set time elapses after the heat supply operation of each storage compartment is completed.
  9. 제 1 항에 있어서,According to claim 1,
    상기 열교환과정의 핫 가스 공급조건은The hot gas supply condition of the heat exchange process is
    히팅열원으로의 전원 공급후 설정된 시간이 경과될 경우가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.An operation control method of a refrigerator, characterized in that it includes a case where a set time elapses after supplying power to a heating heat source.
  10. 제 1 항에 있어서,According to claim 1,
    상기 열교환과정의 핫 가스 공급조건은The hot gas supply condition of the heat exchange process is
    각 저장실의 열제공전운전이 종료된 후 상기 제1증발기의 온도가 설정된 제2온도 범위에 도달될 경우가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that it includes a case where the temperature of the first evaporator reaches a set second temperature range after the heat transfer operation of each storage compartment is completed.
  11. 제 1 항에 있어서,According to claim 1,
    상기 압축기는 상기 열제공전운전이 종료될 때 정지된 후 핫 가스 공급조건이 만족되면 동작됨을 특징으로 하는 냉장고의 운전 제어방법.The refrigerator operation control method according to claim 1 , wherein the compressor is stopped when the heat supply operation is terminated and then operated when hot gas supply conditions are satisfied.
  12. 제 1 항에 있어서,According to claim 1,
    상기 열제공운전의 열교환과정시 제1저장실의 냉기 순환을 위한 제1저장실용 송풍팬이 정지되고, 제2저장실의 냉기 순환을 위한 제2저장실용 송풍팬은 동작되도록 제어됨을 특징으로 하는 냉장고의 운전 제어방법.In the heat exchange process of the heat supply operation, the blowing fan for the first storage compartment for circulating cold air in the first storage compartment is stopped, and the blowing fan for the second storage compartment for circulating cold air in the second storage compartment is controlled to operate. Driving control method.
  13. 제 1 항에 있어서,According to claim 1,
    상기 열제공운전의 열교환과정은 열교환 종료조건을 만족할 경우 종료됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the heat exchange process of the heat supply operation is terminated when a heat exchange termination condition is satisfied.
  14. 제 13 항에 있어서,According to claim 13,
    상기 열교환 종료조건은 상기 제1증발기의 온도가 설정된 제1온도 범위에 도달될 경우가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The heat exchange termination condition includes a case where the temperature of the first evaporator reaches a set first temperature range.
  15. 제 13 항에 있어서,According to claim 13,
    상기 열교환 종료조건은 상기 제2저장실 내의 온도가 만족 온도에 도달될 경우가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the heat exchange end condition includes a case where the temperature in the second storage chamber reaches a satisfactory temperature.
  16. 제 15 항에 있어서,According to claim 15,
    상기 만족 온도는 상기 제2저장실의 설정 기준온도(NT2)를 기준으로 설정된 하한 기준온도(NT2-Diff) 이하의 온도가 포함됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that the satisfactory temperature includes a temperature equal to or less than a lower limit reference temperature (NT2-Diff) set based on the set reference temperature (NT2) of the second storage compartment.
  17. 제 13 항에 있어서,According to claim 13,
    상기 열교환 종료조건이 만족되면 압축기가 정지되면서 열교환과정이 종료됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that when the heat exchange termination condition is satisfied, the compressor is stopped and the heat exchange process is terminated.
  18. 제 13 항에 있어서,According to claim 13,
    상기 열교환 종료조건이 만족되면 핫 가스유로로의 냉매 공급이 차단되면서 열교환과정이 종료됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator, characterized in that when the heat exchange termination condition is satisfied, the supply of refrigerant to the hot gas flow path is cut off and the heat exchange process is terminated.
  19. 제 1 항에 있어서,According to claim 1,
    상기 열제공운전의 열교환과정이 종료될 때 핫 가스유로로의 냉매 공급이 차단된 상태에서 일정시간 동안 펌프 다운이 수행된 후 압축기가 정지되도록 제어됨을 특징으로 하는 냉장고의 운전 제어방법.The operation control method of a refrigerator characterized in that when the heat exchange process of the heat supply operation is completed, the pump is down for a predetermined time in a state in which the supply of refrigerant to the hot gas flow path is cut off, and then the compressor is controlled to stop.
  20. 제 1 항에 있어서,According to claim 1,
    상기 일반 냉각운전 및 열제공전운전 중에는 응축기를 냉각하도록 제공되는 냉각팬이 상기 압축기의 동작시 구동되도록 제어되고,During the general cooling operation and the heat supply operation, a cooling fan provided to cool the condenser is controlled to be driven during operation of the compressor,
    상기 열제공운전의 열교환과정시 상기 냉각팬은 상기 열교환과정이 종료될 때까지 정지되도록 제어됨을 특징으로 하는 냉장고의 운전 제어방법.In the heat exchange process of the heat supply operation, the cooling fan is controlled to stop until the heat exchange process is completed.
PCT/KR2022/008429 2021-07-12 2022-06-14 Operation control method for refrigerator WO2023287036A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020210090866A KR20230010382A (en) 2021-07-12 2021-07-12 operating method for a refrigerator
KR10-2021-0090866 2021-07-12
KR10-2021-0090874 2021-07-12
KR1020210090874A KR20230010864A (en) 2021-07-12 2021-07-12 operating method for a refrigerator

Publications (1)

Publication Number Publication Date
WO2023287036A1 true WO2023287036A1 (en) 2023-01-19

Family

ID=84919514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008429 WO2023287036A1 (en) 2021-07-12 2022-06-14 Operation control method for refrigerator

Country Status (1)

Country Link
WO (1) WO2023287036A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043144A (en) * 1976-06-17 1977-08-23 Dole Refrigerating Company Hot gas defrost system
KR20130088914A (en) * 2012-01-31 2013-08-09 엘지전자 주식회사 Refrigerator and control method of the same
KR20170013767A (en) * 2015-07-28 2017-02-07 엘지전자 주식회사 Refrigerator
KR102065492B1 (en) * 2018-12-05 2020-01-13 (주)에이씨알텍 Movable refrigerator
WO2020175831A1 (en) * 2019-02-28 2020-09-03 엘지전자 주식회사 Method for controlling refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043144A (en) * 1976-06-17 1977-08-23 Dole Refrigerating Company Hot gas defrost system
KR20130088914A (en) * 2012-01-31 2013-08-09 엘지전자 주식회사 Refrigerator and control method of the same
KR20170013767A (en) * 2015-07-28 2017-02-07 엘지전자 주식회사 Refrigerator
KR102065492B1 (en) * 2018-12-05 2020-01-13 (주)에이씨알텍 Movable refrigerator
WO2020175831A1 (en) * 2019-02-28 2020-09-03 엘지전자 주식회사 Method for controlling refrigerator

Similar Documents

Publication Publication Date Title
WO2016013798A1 (en) Refrigerator and control method thereof
WO2019190113A1 (en) Refrigerator and method for controlling same
WO2017164711A1 (en) Control method for refrigerator
WO2017164712A1 (en) Refrigerator and control method therefor
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2020116987A1 (en) Refrigerator
WO2020111680A1 (en) Refrigerator and controlling method thereof
WO2023287036A1 (en) Operation control method for refrigerator
WO2023287032A1 (en) Operation control method of refrigerator
WO2018216858A1 (en) Defrosting apparatus and refrigerator comprising same
WO2023287030A1 (en) Refrigerator operation control method
WO2023287037A1 (en) Refrigerator operation control method
WO2022145847A1 (en) Refrigerator and control method therefor
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2022270772A1 (en) Refrigerator
WO2023287035A1 (en) Refrigerator
WO2023287034A1 (en) Refrigerator and operation control method therefor
WO2023287029A1 (en) Refrigerator and operation control method therefor
WO2019194604A1 (en) Refrigerator
WO2021045415A1 (en) Refrigerator and method of controlling the same
WO2022039429A1 (en) Refrigerator
WO2023287031A1 (en) Refrigerator and operation control method therefor
WO2020235801A1 (en) Air conditioning apparatus
WO2021149896A1 (en) Air conditioning apparatus
WO2020071744A1 (en) Refrigerator and method for controlling same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE