WO2023286851A1 - Analysis system, analysis method, and analysis program - Google Patents

Analysis system, analysis method, and analysis program Download PDF

Info

Publication number
WO2023286851A1
WO2023286851A1 PCT/JP2022/027779 JP2022027779W WO2023286851A1 WO 2023286851 A1 WO2023286851 A1 WO 2023286851A1 JP 2022027779 W JP2022027779 W JP 2022027779W WO 2023286851 A1 WO2023286851 A1 WO 2023286851A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
amount
unit
analysis
relationship
Prior art date
Application number
PCT/JP2022/027779
Other languages
French (fr)
Japanese (ja)
Inventor
学 杉本
岳昭 佐々木
敏徳 蜂谷
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202280032902.6A priority Critical patent/CN117242213A/en
Priority to AU2022312861A priority patent/AU2022312861A1/en
Priority to JP2023534868A priority patent/JPWO2023286851A1/ja
Priority to KR1020237044923A priority patent/KR20240013230A/en
Publication of WO2023286851A1 publication Critical patent/WO2023286851A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/029Concentration
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to an analysis system, an analysis method and an analysis program.
  • Patent Documents 1 and 2 describe "the step of creating a correspondence table representing the relationship between the X-ray analysis data and the cumulative fatigue level” (claim 1).
  • Patent Literature 3 describes “a procedure for performing an accelerated deterioration test under predetermined conditions on a specimen on which a film to be diagnosed is formed” (Claim 1).
  • Patent Literature 4 states that "the degree of deterioration and the remaining life of the electronic device are estimated by comparing with the deterioration/life diagnosis curve and calculating" (claim 1).
  • Patent Literature [Patent Literature] [Patent Document 1] Japanese Patent No. 6762818 [Patent Document 2] Japanese Patent No. 6762817 [Patent Document 3] Japanese Unexamined Patent Publication No. 2005-009906 [Patent Document 4] Japanese Unexamined Patent Publication No. 10-313034
  • the ion exchange membrane, etc. has deteriorated in performance, it is preferable to be able to recognize the time from the timing when the performance deterioration is recognized until the life of the ion exchange membrane, etc. This makes it easier to determine the timing of regenerating the ion exchange membrane or the like. Also, when replacing the ion exchange membrane or the like, it becomes easier to determine the timing of preparing the ion exchange membrane or the like.
  • a first aspect of the present invention provides an analysis system.
  • the analysis system includes a terminal having an element acquisition unit that acquires the amount of the element contained in the target object in the electrolytic cell, a reception unit that receives the amount of the element acquired by the element acquisition unit, and an element received by the reception unit. and a server having a state analysis unit that analyzes the state of the object based on the amount of.
  • the electrolytic cell may have an ion exchange membrane, and an anode chamber and a cathode chamber separated by the ion exchange membrane.
  • An aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide may be introduced into the anode chamber, and an aqueous solution of an alkali metal hydroxide may be discharged from the cathode chamber.
  • the state analysis unit analyzes the state of the object based on a predetermined first relationship between the current efficiency of the electrolytic cell and the amount of the element, or analyzes the state of the object based on a predetermined first relationship between the voltage of the electrolytic cell and the amount of the element. 2 relationship, or the state of the object is determined based on a predetermined third relationship between the chloride ion concentration in the aqueous alkali metal hydroxide solution and the amount of the element. can be analyzed.
  • a plurality of electrolytic cells may be arranged at different positions.
  • Each element obtaining unit in each of the plurality of terminals may obtain the amount of the element contained in each of the plurality of objects.
  • the receiving unit may receive the amounts of the elements acquired by the respective element acquiring units in the plurality of terminals.
  • the state analysis unit may analyze the state of the one target object based on the amount of the element acquired by each element acquisition unit in the plurality of terminals and received by the reception unit.
  • the server predicts when the object will be in a predetermined first state based on the temporal change in the amount of the element and the first relationship, or based on the temporal change in the amount of the element and the second relationship state prediction for predicting when the object will be in a predetermined second state, or predicting when the object will be in a predetermined third state based on the amount of the element and the third relationship You may further have a part.
  • the state prediction unit predicts when the object in the one electrolytic cell or the other electrolytic cell will be in the first state based on the temporal change in the amount of the element in the one electrolytic cell and the first relationship, or Predict when the object in one electrolytic cell or another electrolytic cell will be in the second state based on the change in the amount of the element over time in the electrolytic cell and the second relationship, or Based on the change in amount of the element over time and the third relationship, it may be predicted when the object in one electrolytic cell or the other electrolytic cell will be in the third state.
  • the element acquisition unit may further acquire the type of element.
  • the receiver may further receive the type of element.
  • the state prediction unit predicts when the object will be in the first state for each type of element, predicts when the object will be in the second state for each type of element, or predicts when the object will be in the third state for each type of element. You may predict the time to become a state for every kind of element.
  • the server may further include an operating condition acquisition unit that acquires operating conditions for each of the multiple electrolytic cells.
  • the state prediction unit predicts when the object will be in the first state for each operating condition, predicts when the object will be in the second state for each operating condition, or predicts when the object will be in the third state. You may predict the timing for each operating condition.
  • the first state may be a predicted first state based on the temporal change in the amount of the element and the first relationship.
  • the state prediction unit predicts when the object will be in the first state for each operating condition and for each type of element, or predicts when the object will be in the second state for each operating condition and for each type of element.
  • the time when the object will be in the third state may be predicted for each operating condition and for each type of element.
  • the state prediction unit predicts the state of the object when the first countermeasure corresponding to the state of the object and recovering the current efficiency of the electrolytic cell is implemented, or predicts the state of the object according to the state of the object. Predict the state of the object in the case where the second measure, which is the second measure to recover the voltage of the electrolytic cell, is implemented, or the third measure according to the state of the object, which is the alkali metal
  • the state of the object may be predicted if a third measure to restore the chloride ion concentration in the aqueous hydroxide solution is implemented.
  • the element acquisition unit determines whether the other object in the one electrolytic cell The amount of the element contained may be obtained.
  • the analysis system may further comprise an information terminal arranged at the position where the electrolytic cell is arranged and having a first transmission section for transmitting the amount of the element acquired by the element acquisition section.
  • the server may further include a second transmission section that transmits the analysis result analyzed by the state analysis section to the information terminal.
  • the element acquisition unit may acquire the amount of the element based on the analysis result transmitted by the second transmission unit.
  • the electrolytic cell may be connected to an introduction pipe through which the liquid introduced into the electrolytic cell passes.
  • the state analysis unit analyzes that the target object is in the fourth state including the predetermined amount or more of the element contained in the introduction pipe
  • the second transmission unit instructs the element acquisition unit to obtain the element contained in the introduction pipe. You may send an instruction to obtain the
  • the server machine-learns the relationship between the current efficiency and the amount of the element to generate a first state inference model that outputs a first inference state of the object based on the current efficiency and the amount of the element.
  • a second state learning unit for generating a second state inference model that outputs a second inference state of the object based on the voltage and the amount of the element by machine learning the relationship between the voltage and the amount of the element.
  • the element acquisition unit may acquire the amount of the element for each position of the element in the object.
  • the receiver may receive the amount of the element for each position of the element.
  • the state analysis unit may analyze the state of the object based on the amount of the element for each position of the element.
  • the element acquisition unit may acquire the amount of the element for each position of the element in the object and for each type of element.
  • the receiving unit may receive the amount of the element for each position of the element and for each type of element.
  • the state analysis unit may analyze the state of the object based on the amount of the element for each position of the element and for each type of element.
  • the electrolytic cell may be provided with an opening through which the liquid introduced into the electrolytic cell passes.
  • the state analysis unit may analyze the state of the object based on the positions of the openings and the positions of the elements in the object.
  • a second aspect of the present invention provides an analysis method.
  • the analysis method includes an element acquisition step in which the element acquisition unit acquires the amount of the element contained in the target object in the electrolytic cell, a reception step in which the reception unit receives the amount of the element acquired in the element acquisition step, and a state a state analysis step in which the analysis unit analyzes the state of the object based on the amount of the element received in the reception step;
  • the electrolytic cell may have an ion exchange membrane, and an anode chamber and a cathode chamber separated by the ion exchange membrane.
  • An aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide may be introduced into the anode chamber, and an aqueous solution of an alkali metal hydroxide may be discharged from the cathode chamber.
  • the state analysis unit analyzes the state of the object based on a predetermined first relationship between the current efficiency of the electrolytic cell and the amount of the element, or analyzes the voltage of the electrolytic cell and the amount of the element.
  • the state prediction unit predicts when the object will be in a predetermined first state based on the temporal change in the amount of the element and the first relationship, or Predict when the object will be in a predetermined second state based on the second relationship, or predict the time when the object will be in a predetermined second state based on the change in the amount of the element over time and the third relationship
  • a state prediction step of predicting when the three states will occur may be further provided.
  • a third aspect of the present invention provides an analysis program.
  • the analysis program causes the computer to function as an analysis system.
  • FIG. 10 is a diagram showing an example of an acquisition result of the amounts and types of elements acquired by an element acquiring unit 12; 4 is a diagram showing an example of the relationship between the intensity of X-rays 114 and the current efficiency CE when the terminal 10 is a portable fluorescent X-ray analysis terminal and the object 110 is an ion exchange membrane 84.
  • FIG. 10 is a diagram showing an example of an acquisition result of the amounts and types of elements acquired by an element acquiring unit 12; 4 is a diagram showing an example of the relationship between the intensity of X-rays 114 and the current efficiency CE when the terminal 10 is a portable fluorescent X-ray analysis terminal and the object 110 is an ion exchange membrane 84.
  • FIG. 3 is a diagram showing an example of the relationship between the intensity of X-rays 114 and the voltage CV when the terminal 10 is a portable fluorescent X-ray analysis terminal and the object 110 is an ion exchange membrane 84.
  • FIG. 1 shows an example of the relationship between the intensity of X-rays 114 and the Cl ⁇ (chloride ion) concentration of liquid 75 when terminal 10 is a portable fluorescent X-ray analysis terminal and object 110 is ion exchange membrane 84. It is a diagram.
  • FIG. 1 shows an example of the relationship between the intensity of X-rays 114 and the Cl ⁇ (chloride ion) concentration of liquid 75 when terminal 10 is a portable fluorescent X-ray analysis terminal and object 110 is ion exchange membrane 84. It is a diagram.
  • FIG. 1 shows an example of the relationship between the intensity of X-rays 114 and the Cl ⁇ (chloride ion) concentration of liquid 75 when terminal 10 is a portable fluorescent X-ray analysis terminal and object
  • FIG. 4 is a diagram showing an example of the relationship between the intensity of X-rays 114 and voltage CV when terminal 10 is a portable X-ray fluorescence analysis terminal and object 110 is at least one of anode 80 and cathode 82; It is a figure which shows another example of the block diagram of the analysis system 100 which concerns on one Embodiment of this invention.
  • 3 shows another example of a block diagram of the analysis system 100 according to one embodiment of the present invention.
  • FIG. It is a figure which shows an example of analysis result Ra.
  • FIG. 3 is a view of the ion exchange membrane 84 and the introduction tube 92 in FIG.
  • FIG. 2 viewed in the direction from the anode 80 to the cathode 82.
  • FIG. It is a figure which shows another example of the block diagram of the server 20 in the analysis system 100 which concerns on one Embodiment of this invention.
  • FIG. 4 is a diagram showing an example of a first state inference model 122;
  • FIG. 13 is a diagram showing an example of a second state inference model 132;
  • FIG. 1 is a flow chart containing an example of an analysis method according to one embodiment of the present invention;
  • FIG. 22 illustrates an example computer 2200 in which analysis system 100 may be embodied in whole or in part, according to one embodiment of the invention.
  • FIG. 1 is a diagram showing an example of an electrolytic device 200 according to one embodiment of the present invention.
  • the electrolytic device 200 of this example includes an electrolytic bath 90 , an inlet pipe 92 , an inlet pipe 93 , an outlet pipe 94 and an outlet pipe 95 .
  • the electrolytic device 200 is a device that electrolyzes an electrolytic solution.
  • the electrolytic bath 90 is a bath that electrolyzes the electrolytic solution.
  • the electrolytic solution is, for example, an aqueous NaCl (sodium chloride) solution.
  • the electrolytic cell 90 generates Cl 2 (chlorine), NaOH (sodium hydroxide), and H 2 (hydrogen) by, for example, electrolyzing an aqueous solution of NaCl (sodium chloride).
  • the electrolytic bath 90 may include a plurality of electrolytic cells 91 (electrolytic cells 91-1 to 91-N, where N is an integer of 2 or more). N is 50, for example.
  • the introduction pipe 92 and the introduction pipe 93 are connected to the electrolytic cells 91-1 to 91-N, respectively.
  • a liquid 70 is introduced into each of the electrolytic cells 91-1 to 91-N.
  • the liquid 70 may be introduced into each of the electrolytic cells 91-1 to 91-N after passing through the introduction pipe 92.
  • the liquid 70 is an aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide.
  • Alkali metals are elements belonging to group 1 of the periodic table of the elements.
  • the liquid 70 is, for example, an aqueous NaCl (sodium chloride) solution.
  • the liquid 70 is an aqueous solution of an alkali metal hydroxide
  • the liquid 70 is, for example, a KOH (potassium hydroxide) aqueous solution or a NaOH (sodium hydroxide) aqueous solution.
  • a liquid 72 is introduced into each of the electrolytic cells 91-1 to 91-N. After passing through the introduction pipe 93, the liquid 72 may be introduced into each of the electrolytic cells 91-1 to 91-N.
  • the liquid 72 is an aqueous solution of alkali metal hydroxide.
  • the liquid 72 is, for example, NaOH (sodium hydroxide) aqueous solution.
  • liquid 70 is an aqueous solution of an alkali metal hydroxide
  • liquid 72 is an aqueous solution of the same alkali metal hydroxide (eg, KOH).
  • the lead-out tube 94 and the lead-out tube 95 are connected to the electrolytic cells 91-1 to 91-N, respectively.
  • a liquid 76 and a gas 78 (described later) are drawn out from each of the electrolytic cells 91-1 to 91-N.
  • the liquid 76 and the gas 78 (described later) may be led out of the electrolytic device 200 after passing through the outlet tube 95 .
  • Liquid 76 is an aqueous solution of an alkali metal hydroxide.
  • liquid 72 is NaOH (sodium hydroxide) aqueous solution
  • liquid 76 is NaOH (sodium hydroxide) aqueous solution.
  • Gas 78 (described below) may be H 2 (hydrogen).
  • a liquid 74 and a gas 77 are drawn out from each of the electrolytic cells 91-1 to 91-N.
  • the liquid 74 and the gas 77 may be led out of the electrolytic device 200 after passing through the outlet tube 94 .
  • the liquid 74 is an aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide. If the liquid 70 is an aqueous NaCl (sodium chloride) solution, the liquid 74 is an aqueous NaCl (sodium chloride) solution.
  • the liquid 74 is a KOH (potassium hydroxide) aqueous solution.
  • the liquid 70 is an aqueous NaCl (sodium chloride) solution
  • the gas 77 is Cl 2 (chlorine).
  • the liquid 74 is a KOH (potassium hydroxide) aqueous solution
  • the gas 77 is O 2 (oxygen).
  • FIG. 2 is a diagram showing an example of details of one electrolytic cell 91 in FIG.
  • the electrolytic cell 90 has an anode compartment 79 , an anode 80 , a cathode compartment 98 , a cathode 82 and an ion exchange membrane 84 .
  • one electrolytic cell 91 has an anode compartment 79 , an anode 80 , a cathode compartment 98 , a cathode 82 and an ion exchange membrane 84 .
  • Anode chamber 79 and cathode chamber 98 are provided inside electrolytic cell 91 .
  • the anode chamber 79 and cathode chamber 98 are separated by an ion exchange membrane 84 .
  • An anode 80 is arranged in the anode chamber 79 .
  • a cathode 82 is arranged in the cathode chamber 98 .
  • An introduction pipe 92 and a discharge pipe 94 are connected to the anode chamber 79 .
  • An introduction pipe 93 and an extraction pipe 95 are connected to the cathode chamber 98 .
  • a liquid 70 is introduced into the anode chamber 79 .
  • a liquid 72 is introduced into the cathode chamber 98 .
  • the ion-exchange membrane 84 is a membrane-like substance that blocks the passage of ions having the same sign as the ions arranged on the ion-exchange membrane 84 and allows only the ions having the opposite sign to pass through.
  • the ion exchange membrane 84 is a membrane that allows passage of Na + (sodium ions) and blocks passage of Cl ⁇ (chloride ions).
  • Anode 80 and cathode 82 may be maintained at predetermined positive and negative potentials, respectively.
  • Liquid 70 introduced into anode chamber 79 and liquid 72 introduced into cathode chamber 98 are electrolyzed by the potential difference between anode 80 and cathode 82 .
  • At the anode 80 the following chemical reactions take place. [Chemical Formula 1] 2Cl ⁇ ⁇ Cl 2 +2e ⁇
  • the liquid 70 is an NaCl (sodium chloride) aqueous solution
  • NaCl (sodium chloride) is ionized into Na + (sodium ions) and Cl ⁇ (chloride ions).
  • Cl 2 (chlorine) gas is generated by the chemical reaction shown in Chemical Formula 1.
  • Gas 77 (the Cl 2 (chlorine) gas) and liquid 74 may be drawn from the anode chamber 79 .
  • Na + (sodium ions) move from the anode chamber 79 to the cathode chamber 98 after passing through the ion exchange membrane 84 due to the attractive force from the cathode 82 .
  • the liquid 73 may stay in the anode chamber 79 .
  • the liquid 73 is an aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide.
  • the liquid 73 is an aqueous NaCl (sodium chloride) solution.
  • the Na + (sodium ion) and Cl ⁇ (chloride ion) concentrations of liquid 73 may be less than the Na + (sodium ion) and Cl ⁇ (chloride ion) concentrations of liquid 70 .
  • liquid 72 is a NaOH (sodium hydroxide) aqueous solution
  • NaOH sodium hydroxide
  • NaOH sodium hydroxide
  • OH - hydrooxide ions
  • a gas 78 such H 2 (hydrogen) gas
  • a liquid 76 may be drawn from the cathode chamber 98 .
  • the liquid 75 may stay in the cathode chamber 98 .
  • the liquid 75 is an aqueous solution of alkali metal hydroxide.
  • the liquid 75 is an aqueous NaOH (sodium hydroxide) solution.
  • the cathode chamber 98 contains a liquid 75 in which OH ⁇ (hydroxide ions) produced by the chemical reaction represented by Chemical Formula 2 and Na + (sodium ions) transferred from the anode chamber 79 are dissolved. staying.
  • FIG. 3 is an enlarged view of the vicinity of the ion exchange membrane 84 in the electrolytic cell 91 shown in FIG.
  • Anion groups 86 are immobilized on the ion exchange membrane 84 of this example. Since anions are repelled by the anion groups 86 , they are less likely to pass through the ion exchange membrane 84 .
  • the anion is Cl ⁇ (chloride ion).
  • the cations 71 are not repelled by the anionic groups 86 and thus can pass through the ion exchange membrane 84 .
  • the liquid 70 see FIG. 2 is an aqueous NaCl (sodium chloride) solution, the cations 71 are Na + (sodium ions).
  • FIG. 4 is a diagram showing an example of a block diagram of the analysis system 100 according to one embodiment of the present invention.
  • Analysis system 100 includes terminal 10 and server 20 .
  • the terminal 10 has an element acquisition unit 12 .
  • the server 20 has a receiver 22 and a state analyzer 24 .
  • the state analysis unit 24 is, for example, a CPU (Central Processing Unit).
  • the server 20 may be installed with an analysis program for executing an analysis method described later, or may be installed with an analysis program for causing the server 20 to function as the analysis system 100 .
  • the analysis system 100 may include an information terminal 30.
  • the information terminal 30 may have a display section 32 .
  • the information terminal 30 may be a stationary computer terminal or a tablet computer.
  • the display section 32 may be a monitor of the tablet computer.
  • the information terminal 30 and the terminal 10 may communicate by wire 99, or by short-range wireless communication such as WiFi (registered trademark) and Bluetooth (registered trademark).
  • the wire 99 is, for example, a USB cable or the like.
  • the information terminal 30 has a first transmitter 14 .
  • the electrolytic cell 90 and the server 20 may be arranged at different positions. Different locations may refer to different geographic locations.
  • the server 20 is installed, for example, in city A in Japan. When the server 20 is installed in a Japanese city A, the electrolyzer 90 may be installed in a Japanese city B different from the city A, or may be installed in a foreign country other than Japan.
  • the position where the server 20 is arranged is assumed to be position Sa.
  • the position where the electrolytic bath 90 is arranged is defined as position Sb.
  • the electrolytic cell 90, the terminal 10 and the information terminal 30 may be arranged at the same position.
  • the same location may refer to the same geographical location.
  • Terminal 10 and information terminal 30 may be located at position Sb.
  • electrolytic cell 90, terminal 10 and information terminal 30 may be used by the same user in the predetermined factory.
  • the element acquisition unit 12 acquires the amount of elements contained in the object 110 in the electrolytic bath 90 (see FIG. 1).
  • the terminal 10 is, for example, a portable fluorescent X-ray analysis terminal. If the terminal 10 is a portable X-ray fluorescence analysis terminal, the terminal 10 irradiates an object 110 with X-rays 112 . The X-rays 112 irradiated to the object 110 cause inner-shell electrons in elements contained in the object 110 to be emitted out of the shell. When the electrons emitted out of the shell fall into the inner shell, the object 110 emits X-rays 114 with energy peculiar to the element.
  • the element acquisition unit 12 acquires the amount of the element by measuring the intensity of the emitted X-rays 114 .
  • the intensity of the X-rays 114 may refer to the number of counts of the X-rays 114 obtained by the element obtaining unit 12 per unit time. The stronger the intensity of the X-rays 114, the greater the amount of the element acquired by the element acquiring unit 12. FIG.
  • the object 110 may be the ion exchange membrane 84 (see FIG. 2), the anode 80 (see FIG. 2), or the cathode 82 (see FIG. 2).
  • Object 110 may be ion exchange membrane 84 as installed in electrolytic cell 90 , anode 80 , or cathode 82 .
  • the element acquiring unit 12 can acquire the amount of elements contained in the target object 110 as it is installed in the electrolytic cell 90 .
  • the element acquisition unit 12 may further acquire the types of elements contained in the target object 110 .
  • the energy of the X-rays 114 emitted from the object 110 depends on the type of element. Therefore, when the terminal 10 is a portable X-ray fluorescence analysis terminal, the element acquisition unit 12 can acquire the type of element by measuring the energy of the emitted X-rays 114 .
  • a liquid 70 (see FIG. 1) obtained by subjecting salt water in which raw salt is dissolved to a predetermined treatment is introduced into the electrolytic cell 90 (see FIG. 1).
  • Predetermined treatments include, for example, precipitation of SS (suspended solids) contained in salt water by a clarifier, removal of the SS by a ceramic filter, Ca (calcium), Sr (strontium) contained in salt water by a resin tower, ), removal of at least one of Ba (barium) and Mg (magnesium), and the like.
  • the raw salt may contain I (iodine).
  • the electrolytic cell 90 electrolyzes the liquid 70
  • the elements introduced in the predetermined treatment of the salt water may accumulate in the ion exchange membrane 84 (see FIG. 2) as the electrolytic cell 90 operates.
  • the ion exchange performance of the ion exchange membrane 84 may be deteriorated.
  • Anode 80 and cathode 82 are in contact with liquid 73 and liquid 75, respectively.
  • Liquid 73 and liquid 75 are electrolytic solutions.
  • the surfaces of the anode 80 and the cathode 82 may be coated with Ru (ruthenium) or the like in order to prevent the voltage of the electrolytic cell 90 from increasing. If the coating applied to the surface of anode 80 and cathode 82 deteriorates, the voltage between anode 80, ion exchange membrane 84 and cathode 82 tends to rise.
  • a user of the analysis system 100 can measure the amount of the element contained in at least one of the ion exchange membrane 84, the anode 80 and the cathode 82 by bringing the terminal 10 close to at least one of the ion exchange membrane 84, the anode 80 and the cathode 82. and type. Thereby, the user of the analysis system 100 can obtain the amount of the element without removing at least one of the ion exchange membrane 84 , the anode 80 and the cathode 82 from the electrolytic cell 90 .
  • a user of the analysis system 100 may acquire the amount and type of elements contained in at least one of the ion exchange membrane 84 , the anode 80 and the cathode 82 installed in the electrolytic cell 90 .
  • FIG. 5 is a diagram showing an example of the acquisition result of the amount and type of elements acquired by the element acquisition unit 12.
  • the amount of an element is represented by the intensity of the X-ray 114 (see FIG. 4)
  • the type of element is represented by the energy at which the X-ray 114 shows a peak.
  • the x-rays 114 are spectrally distributed.
  • the element acquisition unit 12 may acquire a spectral distribution of the X-rays 114 .
  • the first transmission unit 14 (see FIG. 4) transmits the amount of the element acquired by the element acquisition unit 12.
  • the first transmission unit 14 may transmit the amount and type of the element acquired by the element acquisition unit 12 .
  • the first transmitter 14 may wirelessly transmit the amount and type of the element.
  • wireless refers to communication that does not rely on wires. Wireless may refer to all communications via the Internet, and is not limited to short-range wireless communications such as Wi-Fi (registered trademark) and Bluetooth (registered trademark).
  • the first transmitter 14 may wirelessly transmit the spectral distribution of the X-rays 114 shown in FIG.
  • the receiving unit 22 receives the amount of the element acquired by the element acquiring unit 12. In this example, the receiver 22 receives the amount of the element transmitted by the first transmitter 14 .
  • the receiving unit 22 may receive the amount and type of element transmitted by the first transmitting unit 14 .
  • the receiving unit 22 may wirelessly receive the amount and type of the element.
  • the receiver 22 may wirelessly receive the spectral distribution of the X-rays 114 transmitted by the first transmitter 14 .
  • the state analysis unit 24 analyzes the state of the object 110 based on the amount of elements received by the reception unit 22 .
  • the state of the object 110 may be the ion exchange performance state of the ion exchange membrane 84 .
  • the current efficiency of the electrolytic cell 90 may decrease. This current efficiency is referred to as current efficiency CE.
  • the current efficiency CE may refer to the current efficiency of the electrolytic cell 90 and may refer to the current efficiency of the ion exchange membrane 84 .
  • the current efficiency CE refers to the ratio of the actual production volume to the theoretical production volume of the product produced by the electrolytic cell 90. Let the product concerned be the product P. The theoretical production amount of the product P is assumed to be the production amount Pa. Let the actual production amount of the product P be the production amount Pr. The current efficiency CE refers to the ratio of the production amount Pr to the production amount Pa.
  • the voltage CV may be the voltage per electrolytic cell 91 (see FIG. 1).
  • anions of the liquid 73 may pass through the ion exchange membrane 84 .
  • the anions of liquid 73 may pass through ion exchange membrane 84 .
  • the anions are contained in liquid 75 .
  • the liquid 73 is an aqueous NaCl (sodium chloride) solution
  • the liquid 75 is an aqueous NaOH (sodium hydroxide) solution
  • Cl ⁇ (chloride ions) that have passed through the ion exchange membrane 84 are converted into an aqueous NaOH (sodium hydroxide) solution. included.
  • the Cl ⁇ (chloride ion) concentration of the NaOH (sodium hydroxide) aqueous solution tends to increase.
  • the Cl ⁇ (chloride ion) concentration of an aqueous NaOH (sodium hydroxide) solution is the so-called sodium chloride concentration.
  • analyzing the state of the target object 110 means analyzing the types and amounts of elements contained in the ion exchange membrane 84, thereby reducing the current efficiency CE. and may refer to identifying the cause of the increase in voltage CV.
  • the state of the object 110 may be the coating state of metal or the like coated on the surfaces of the anode 80 and the cathode 82. If the coating condition of anode 80 and cathode 82 deteriorates, voltage CV may increase.
  • analyzing the state of the object 110 means analyzing the types and amounts of elements contained in the anode 80 and the cathode 82, thereby increasing the voltage CV. It may refer to identifying the cause.
  • FIG. 6 and 7 show an example of the relationship between the intensity of the X-rays 114 and the current efficiency CE when the terminal 10 is a portable X-ray fluorescence analysis terminal and the object 110 is the ion exchange membrane 84
  • 4A and 4B are diagrams each showing an example of the relationship between the intensity of the X-ray 114 and the voltage CV
  • FIG. 8 shows the intensity of X-rays 114 and the Cl ⁇ (chloride ion) concentration of liquid 75 when terminal 10 is a portable X-ray fluorescence analysis terminal and object 110 is ion exchange membrane 84 . It is a figure which shows an example of relationship.
  • FIG. 8 shows the intensity of X-rays 114 and the Cl ⁇ (chloride ion) concentration of liquid 75 when terminal 10 is a portable X-ray fluorescence analysis terminal and object 110 is ion exchange membrane 84 . It is a figure which shows an example of relationship.
  • FIGS. 6-9 are diagram showing an example of the relationship between the intensity of the X-ray 114 and the voltage CV when the terminal 10 is a portable X-ray fluorescence analysis terminal and the object 110 is at least one of the anode 80 and the cathode 82. is.
  • the intensity of the X-rays 114 in FIGS. 6-9 may be the intensity of the X-rays 114 from any of the energy elements whose intensity peaks are shown in FIG.
  • the relationship between the intensity of the X-ray 114 and the current efficiency CE shown in FIG. 6 be a predetermined first relationship R1 between the current efficiency CE and the amount of the element.
  • the relationship between the intensity of the X-ray 114 and the voltage CV shown in FIG. 7 be a predetermined second relationship R21 between the voltage CV and the amount of the element.
  • the relationship between the intensity of the X-ray 114 and the voltage CV shown in FIG. 9 be a predetermined second relationship R22 between the voltage CV and the amount of the element.
  • the state analysis unit 24 may analyze the state of the ion exchange membrane 84 based on the first relationship R1.
  • the state analysis unit 24 may analyze the state of the ion exchange membrane 84 based on the second relationship R21.
  • the state analysis unit 24 may analyze the state of the ion exchange membrane 84 based on the first relationship R1 and the second relationship R21.
  • State analysis unit 24 may analyze the state of at least one of anode 80 and cathode 82 based on second relationship R22.
  • the state analysis unit 24 may analyze the state of the ion exchange membrane 84 based on the third relationship R3.
  • FIG. 10 is a diagram showing another example of a block diagram of the analysis system 100 according to one embodiment of the present invention.
  • the server 20 further has an operating condition acquisition section 23 , a storage section 25 and a second transmission section 27 .
  • the analysis system 100 of this example differs from the analysis system 100 shown in FIG. 4 in this respect.
  • the second transmission unit 27 transmits the analysis result of the state of the object 110 analyzed by the state analysis unit 24 to the information terminal 30 .
  • the analysis result be the analysis result Ra.
  • the second transmitter 27 may wirelessly transmit the analysis result Ra to the information terminal 30 .
  • the display unit 32 may display the analysis result Ra.
  • the amount of the element contained in the target object 110 acquired by the element acquisition unit 12 in the terminal 10 is transmitted to the server 20 by the first transmission unit 14, and the server 20 performs , the state of the object 110 is analyzed by the state analysis unit 24 . Therefore, the user of the analysis system 100 can recognize the analysis result Ra without sending a sample of the object 110 for analyzing the state from the position Sb to the position Sa. Compared to the case where the sample of the object 110 is sent from the position Sb to the position Sa, the time from the acquisition of the amount of the element contained in the object 110 to the calculation of the analysis result Ra tends to be shortened. Become.
  • the analysis result Ra is transmitted to the information terminal 30 by the second transmission unit 27. Therefore, the user of the electrolytic bath 90 can immediately recognize the analysis result Ra based on the amount of the element obtained by the terminal 10 by looking at the display section 32 . A user of the electrolytic cell 90 can operate the electrolytic cell 90 while viewing the analysis result Ra.
  • the operating condition acquisition unit 23 acquires the operating conditions of the electrolytic cell 90 .
  • This operating condition is referred to as operating condition Cd.
  • the operating condition Cd refers to operating conditions of the electrolytic cell 90 that can affect the state of the object 110 .
  • the operating conditions Cd include the current supplied to the electrolytic cell 90, the current efficiency CE of the electrolytic cell 90, the voltage CV of the electrolytic cell 90, the pH and flow rate of the liquid 70 (see FIG. 2), the pH and flow rate, target production of product P, etc. may be included.
  • the operating condition acquisition unit 23 may wirelessly acquire the operating condition Cd from the electrolytic cell 90 .
  • the operating condition Cd may be acquired continuously or periodically.
  • Periodic acquisition refers to continuous acquisition at predetermined time intervals, such as daily acquisition from 8:00 am to 20:00 pm, or continuous acquisition for 8 hours every three days.
  • the storage unit 25 may store the operating conditions Cd acquired by the operating condition acquisition unit 23 and the types and amounts of elements contained in the object 110 .
  • the storage unit 25 may store the types and amounts of elements for each of the plurality of operating conditions Cd.
  • the storage unit 25 may further store the analysis result Ra.
  • the storage unit 25 may store the operating conditions Cd input by the user of the analysis system 100 .
  • FIG. 11 is a diagram showing another example of a block diagram of the analysis system 100 according to one embodiment of the present invention.
  • the analysis system 100 of this example differs from the analysis system 100 shown in FIG. 10 in that it includes multiple terminals 10 and multiple information terminals 30 .
  • the plurality of electrolytic cells 90 are arranged at different positions.
  • electrolytic bath 90-1 is placed at position Sb1
  • electrolytic bath 90-2 is placed at position Sb2
  • electrolytic bath 90-m is placed at position Sbm.
  • m is an integer of 2 or more.
  • the positions Sb1 to Sbm may be different geographical positions.
  • the position Sb1 is, for example, a predetermined city in the United States
  • the position Sb2 is, for example, a predetermined city in Europe
  • the position Sbm is, for example, a predetermined city in Australia.
  • terminal 10-1 and information terminal 30-1 are located at location Sb1
  • terminal 10-2 and information terminal 30-2 are located at location Sb2
  • terminal 10-m and information terminal 30-m are located at location Sb2. Located in Sbm.
  • each of the element acquisition units 12 in the plurality of terminals 10 acquires the amount of the element contained in each of the plurality of targets 110 .
  • the receiving unit 22 in the server 20 receives the amount of the element acquired by each of the element acquiring units 12 in the plurality of terminals 10 .
  • each of the first transmitters 14 in the plurality of information terminals 30 transmits the amount of the element contained in each of the plurality of objects 110, and the receiver 22 transmits by the first transmitter 14 Receive the amount of each element of interest that has been added.
  • the state analysis unit 24 in the server 20 analyzes the state of one target object 110 based on the amounts of elements acquired by the element acquisition units 12 in the plurality of terminals 10 and received by the reception unit 22 .
  • the state analysis unit 24 determines the state of one target object 110 based on the amount of each element transmitted by the first transmission unit 14 of each of the plurality of information terminals 30 and received by the reception unit 22. to parse
  • One object 110 refers to one or a plurality of objects 110 among the electrolytic baths 90-1 to 90-m.
  • the storage unit 25 may store the operating conditions Cd for each of the plurality of electrolytic cells 90 and the types and amounts of elements contained in each of the plurality of objects 110 .
  • the storage unit 25 may store the operating conditions Cd and the types and amounts of elements for each of the plurality of electrolytic cells 90 .
  • the state analysis unit 24 calculates a first relationship R1 (see FIG. 6) based on the respective current efficiencies CE in the plurality of electrolytic cells 90 and the amounts of elements contained in the plurality of objects 110. good.
  • the first relationship R1 may be determined in advance, or may be calculated by the state analysis unit 24 .
  • the state analysis unit 24 determines a second relationship R21 (see FIG. 7) and a second relationship R22 (see FIG. 9) may be calculated.
  • the second relationship R ⁇ b>21 and the second relationship R ⁇ b>22 may be predetermined or calculated by the state analysis unit 24 .
  • the first relationship R1, the second relationship R21 and the second relationship R22 may be stored in the storage unit 25.
  • the state analysis unit 24 may analyze the state of one ion exchange membrane 84 based on the amount of the element received by the reception unit 22 and the first relationship R1 stored in the storage unit 25. This allows the user of the analysis system 100 to recognize the state of one ion-exchange membrane 84 compared with the state of other ion-exchange membranes 84 .
  • the receiving units 22 since the receiving units 22 receive the amounts of the elements transmitted by the respective first transmitting units 14 in the plurality of information terminals 30, the receiving units 22 are arranged far apart from each other. The quantity of elements of the object 110 in the electrolytic cell 90 can be received, and the state analysis unit 24 can analyze the state of one ion exchange membrane 84 .
  • the user of the analysis system 100 can recognize the analysis result Ra without sending samples of the object 110 for analyzing the state from each of the plurality of positions Sb to the position Sa.
  • Calculation of the analysis result Ra by the state analysis unit 24 becomes easier than when samples of the target object 110 are sent from each of the plurality of positions Sb to the position Sa.
  • the state analysis unit 24 may analyze the state of the one ion exchange membrane 84 based on the amount of the element received by the reception unit 22 and the second relationship R21 stored in the storage unit 25. . Similarly, the state analysis unit 24 analyzes the state of one anode 80 or cathode 82 based on the amount of the element received by the reception unit 22 and the second relationship R22 stored in the storage unit 25. good.
  • Each of the multiple element acquisition units 12 may further acquire identification information for identifying the target object 110 in one electrolytic bath 90 of the multiple electrolytic baths 90 and the target object 110 in the other electrolytic bath 90 . Let this identification information be identification information Id.
  • the identification information Id may be the type of the ion exchange membrane 84 .
  • the type of the ion-exchange membrane 84 may be a physical quantity that may vary depending on the individual ion-exchange membrane 84, such as the density of the anion groups 86 (see FIG. 3) in the ion-exchange membrane 84, the thickness of the ion-exchange membrane 84, and the like. .
  • the type of ion exchange membrane 84 may be a so-called lot number for each individual.
  • the type of ion exchange membrane 84 may be the type of anionic groups 86 (see FIG. 3).
  • the identification information Id may be the type of element coating the surface of the anode 80 or the cathode 82. If the object 110 is the anode 80 and the cathode 82 , the identification information Id may be the number of the frame that holds the anode 80 and the cathode 82 . The frame holds one anode 80 and one cathode 82 in pairs.
  • One ion exchange membrane 84 may be placed between the anode 80 in one frame and the cathode 82 in the other frame. The anode 80 in the one frame, the cathode 82 in the other frame, and the ion exchange membrane 84 may be included in one electrolytic cell 91 (see FIG. 2).
  • the receiving unit 22 may receive the identification information Id of each of the multiple objects 110 .
  • the first transmitter 14 may transmit the identification information Id.
  • Each of the multiple first transmitters 14 may transmit the identification information Id of each of the multiple targets 110 .
  • the receiver 22 receives the identification information Id transmitted by the first transmitter 14 .
  • the storage unit 25 stores operating conditions Cd for each of the plurality of electrolytic cells 90, types and amounts of elements contained in the plurality of objects 110, and identification information Id corresponding to each of the plurality of electrolytic cells 90. may be The storage unit 25 may store the operating conditions Cd, the types and amounts of the elements, and the identification information Id for each of the plurality of electrolytic cells 90 .
  • the storage unit 25 may further store a plurality of pieces of position information relating to the different positions in the plurality of electrolytic cells 90 arranged at different positions.
  • the storage unit 25 stores respective position information relating to positions Sb1 to Sbm.
  • the location information related to the location Sb is, for example, information that the location Sb is New York in the United States.
  • the storage unit 25 stores operating conditions Cd for each of the plurality of electrolytic cells 90, types and amounts of elements contained in the plurality of objects 110, identification information Id corresponding to each of the plurality of electrolytic cells 90, and a plurality of , and position information for each of the electrolytic cells 90 may be stored.
  • the storage unit 25 may store operating conditions Cd, types and amounts of elements, identification information Id, and position information for each of the plurality of electrolytic cells 90 .
  • the predetermined first state of the object 110 be the first state S1.
  • the first state S1 may be a state in which the target object 110 has reached the end of its life.
  • the object 110 is the ion exchange membrane 84 (see FIG. 2)
  • the first state S1 may be a state in which it is difficult for the ion exchange membrane 84 to repel anions.
  • the second state S2 may be a state in which the target object 110 has reached the end of its life.
  • the second state S2 is that the amount of coating material coating the surface of the anode 80 or the cathode 82 is a predetermined amount. less than the stated amount.
  • a predetermined third state of the object 110 is referred to as a third state S3.
  • the third state S3 when the object 110 is the ion-exchange membrane 84, the ion-exchange membrane 84 has reached the end of its service life and the Cl ⁇ (chloride ions) of the liquid 75 (aqueous solution of alkali metal hydroxide) ) the density may be a predetermined threshold density.
  • the second transmission unit 27 may transmit the analysis result Ra to the information terminal 30.
  • the second transmitter 27 may transmit the analysis result Ra to the terminal 10 .
  • the state analysis unit 24 may further analyze the types of elements acquired by the element acquisition unit 12 based on the analysis result Ra.
  • the second transmission unit 27 may transmit the type of element analyzed by the state analysis unit 24 to the information terminal 30 .
  • the types of elements analyzed by the state analysis unit 24 may be displayed on the display unit 32 (see FIG. 10).
  • FIG. 12 is a diagram showing an example of the analysis result Ra.
  • FIG. 12 is an example of the analysis result Ra of the state of the anode 80.
  • FIG. 12 shows analysis results Ra for a plurality of anodes 80.
  • time refers to the elapsed time from when the anode 80 is started to be used until the state of the anode 80 is analyzed.
  • the elapsed time may be the number of years elapsed.
  • the remaining amount refers to the remaining amount of coating material coating the anode 80 .
  • the coating material may be Ru (ruthenium).
  • the current analysis result Ra is indicated by a black circle.
  • the analysis result Ra indicated by the white circle may be the past analysis result Ra rather than the current one.
  • the analysis result Ra shown in FIG. 12 may be displayed on the display unit 32 (see FIG. 10).
  • the user of one electrolytic cell 90 see FIG. 11
  • the operation of the electrolytic device 200 is temporarily stopped in order to identify the cause of performance deterioration of the target object 110 . It is preferable that the time for stopping the operation of the electrolytic device 200 be as short as possible.
  • the terminal 10 is a portable X-ray fluorescence analysis terminal
  • the user of the electrolysis device 200 can easily identify the cause of performance deterioration of the object 110 without removing the object 110 from the electrolysis device 200, and the object It becomes easier to take measures to recover the performance of 110. Therefore, the time for stopping the operation of the electrolytic device 200 tends to be shortened.
  • a user of the electrolysis device 200 can restore the performance of the object 110 without replacing the object 110 , thus making the loss of the object 110 less likely.
  • the element acquisition unit 12 may acquire the amount of the element based on the analysis result Ra transmitted by the second transmission unit 27 (see FIG. 11).
  • the element acquisition unit 12 may acquire the amount of the element based on the analysis result Ra transmitted by the second transmission unit 27 and received by the information terminal 30 . Thereby, the element acquiring unit 12 can acquire the amount of the element reflecting the analysis result Ra.
  • the fact that the element acquisition unit 12 acquires the amount of the element reflecting the analysis result Ra means that, for example, the analysis result Ra of one ion exchange membrane 84 is the specific element at one position of the one ion exchange membrane 84 is accumulated, the element acquisition unit 12 acquires the specific element at another position of the ion exchange membrane 84 .
  • the element acquisition unit 12 performs one electrolysis.
  • the amounts of elements contained in other objects 110 in bath 90 may be obtained.
  • the element acquiring unit 12 (see FIG. 11) may acquire the amount of elements contained in another target object 110 (see FIG. 4) in one electrolytic bath 90 (see FIG. 11).
  • the second transmitter 27 sets the state of the ion exchange membrane 84 (see FIG. 2) arranged in one electrolytic cell 91-1 (see FIG. 1) in the electrolytic tank 90-1 to the first state.
  • the element acquisition unit 12-1 (see FIG. 11) is placed in the other electrolytic cell 91-2 in the electrolytic bath 90-1.
  • the amount of elements contained in the ion exchange membrane 84 may be obtained.
  • the ion-exchange membrane 84 arranged in one electrolytic cell 91-1 is in the first state S1
  • the ion-exchange membrane 84 arranged in the other electrolytic cell 91-2 is higher than when the ion-exchange membrane 84 is not in the first state S1.
  • the second transmitter 27 is, for example, an anode 80 (see FIG. 2) arranged in one electrolytic cell 91-2 (see FIG. 1) in an electrolytic bath 90-2 (see FIG. 11). is the second state S2 to the information terminal 30-2, the element acquisition unit 12-2 is placed in the other electrolytic cell 91-3 in the electrolytic bath 90-2.
  • the amount of elements contained in the anode 80 may be obtained.
  • the second transmitter 27 (see FIG. 11) is an ion-exchange membrane 84 (see FIG. 2) arranged in one electrolytic cell 91-3 (see FIG. 1) in the electrolytic bath 90-m (see FIG. 11), for example. ) is the third state S3 to the information terminal 30-m, the element acquisition unit 12-m (see FIG. 11) detects other electrolytic cell The amount of element contained in the ion exchange membrane 84 located at 91-1 may be obtained.
  • FIG. 13 is a diagram showing another example of a block diagram of the analysis system 100 according to one embodiment of the present invention.
  • the server 20 further has a state prediction section 26 .
  • the analysis system 100 of this example differs from the analysis system 100 shown in FIG. 11 in this respect.
  • the state prediction unit 26 is, for example, a CPU (Central Processing Unit).
  • the state analysis unit 24 and the state prediction unit 26 may be one CPU.
  • the element acquisition unit 12 may acquire changes over time in the amounts of elements contained in the object 110 .
  • Elements contained in the liquid 70 (see FIG. 2) or the like may accumulate in the object 110 as the operating time of the electrolytic cell 90 elapses. Thus, the amount of elements contained in object 110 may change over time.
  • the first transmission unit 14 may transmit changes over time in the amounts of elements acquired by the element acquisition unit 12 .
  • the receiving unit 22 may receive the temporal change in the amount of the element transmitted by the first transmitting unit 14 .
  • the state predicting unit 26 predicts the target based on the temporal change in the amount of the element received by the receiving unit 22 and the first relationship R1 (see FIG. 6) or the second relationship R21 (see FIG. 7). It may be predicted when the object 110 will be in the first state S1. As described above, the first state S1 may be a state in which the target object 110 has reached the end of its life. When the object 110 is the ion exchange membrane 84 (see FIG. 2), the first state S1 may be a state in which it is difficult for the ion exchange membrane 84 to repel anions.
  • i, j, and k are Ni (nickel), Ca (calcium), Sr (strontium), Ba (barium), I (iodine), Fe (iron), and Zr (zirconium), respectively. It can be either.
  • ⁇ 1 represents the degree of influence that element i has on the decrease in current efficiency CE.
  • ⁇ 1 represents the degree of influence of element j and element k on the decrease in current efficiency CE.
  • CEO represents the initial current efficiency before the current efficiency CE decreases.
  • ⁇ 2 represents the degree of influence of element i on the rise in voltage CV.
  • ⁇ 2 represents the degree of influence of element j and element k on the increase in voltage CV.
  • CV0 represents the initial voltage before the voltage CV rises.
  • the state prediction unit 26 may calculate the rate of increase of the intensity In.
  • the state prediction unit 26 may predict when the ion exchange membrane 84 will be in the first state S1 based on the rate of increase of the intensity In.
  • the first relationship R1 may be defined for each piece of identification information Id.
  • the state prediction unit 26 predicts that the object 110 in the one electrolytic cell 90 is in the first state based on the temporal change in the amount of the element in the one electrolytic cell 90 and the first relationship R1 in the one electrolytic cell 90. It may be possible to predict when the state will be in S1, or predict when the object 110 in the other electrolytic bath 90 will be in the first state S1.
  • the second relationship R21 may be defined for each piece of identification information Id.
  • the state predicting unit 26 predicts that the object 110 in the one electrolytic cell 90 is in the first state based on the temporal change in the amount of the element in the one electrolytic cell 90 and the second relationship R21 in the one electrolytic cell 90. It may be possible to predict when the state will be in S1, or predict when the object 110 in the other electrolytic bath 90 will be in the first state S1.
  • the state prediction unit 26 predicts when the object 110 will be in the second state S2 based on the temporal change in the amount of the element received by the reception unit 22 and the second relationship R22 (see FIG. 9). good.
  • the second state S2 may be a state in which the target object 110 has reached the end of its life.
  • the second state S2 is that the amount of coating material coating the surface of the anode 80 or the cathode 82 is a predetermined amount. less than the stated amount.
  • Voltage CV is also represented by Equation 3 below.
  • i may be Ru (ruthenium) and j may be Fe (iron).
  • ⁇ 3 and ⁇ 3 represent the degree of influence of element i (Ru (ruthenium) in this example) on voltage CV.
  • represents the degree of influence of element j (Fe (iron) in this example) on voltage CV.
  • is a constant.
  • the state predictor 26 may calculate the consumption rate of the coating material coating the surface of the anode 80 or the cathode 82 .
  • the consumption rate may be the amount of change of In i in Equation 3 per unit time.
  • the state prediction unit 26 may predict when the anode 80 (see FIG. 2) will be in the second state S2 based on the consumption rate of the coating material.
  • the second relationship R22 may be defined for each piece of identification information Id.
  • the state prediction unit 26 predicts that the object 110 in the one electrolytic bath 90 is in the second state based on the temporal change in the amount of the element in the one electrolytic bath 90 and the second relationship R22 in the one electrolytic bath 90.
  • the timing of S2 may be predicted, and the timing of the object 110 in the other electrolytic bath 90 being in the second state S2 may be predicted.
  • the state prediction unit 26 predicts when the object 110 will be in the third state S3 based on the temporal change in the amount of the element received by the reception unit 22 and the third relationship R3 (see FIG. 8). good.
  • the third state S3 when the object 110 is the ion-exchange membrane 84, the ion-exchange membrane 84 has reached the end of its service life and the Cl ⁇ (chloride ions) of the liquid 75 (aqueous solution of alkali metal hydroxide) ) the density may be a predetermined threshold density.
  • the third relationship R3 may be defined for each piece of identification information Id.
  • the state prediction unit 26 predicts that the object 110 in the one electrolytic cell 90 is in the third state based on the temporal change in the amount of the element in the one electrolytic cell 90 and the third relationship R3 in the one electrolytic cell 90.
  • the timing of S3 may be predicted, and the timing of the object 110 in the other electrolytic bath 90 being in the third state S3 may be predicted.
  • the second transmission unit 27 transmits to the information terminal 30 the time when the object 110 will be in the first state S1, the second state S2, or the third state S3 predicted by the state prediction unit 26. You can Thereby, the user of the electrolytic bath 90 can recognize when the object 110 is in the first state S1, the second state S2, or the third state S3.
  • the state predicting unit 26 predicts the target based on the temporal change in the amount of the element received by the receiving unit 22 and the first relationship R1 (see FIG. 6) or the second relationship R21 (see FIG. 7).
  • the time when the substance 110 will be in the first state S1 may be predicted for each type of element.
  • the state prediction unit 26 predicts when the object 110 will be in the second state S2 based on the temporal change in the amount of the element received by the reception unit 22 and the second relationship R22 (see FIG. 9). Predictions can be made for each type.
  • the state prediction unit 26 predicts when the target object 110 will be in the third state S3 based on the temporal change in the amount of the element received by the reception unit 22 and the third relationship R3 (see FIG. 8). Predictions can be made for each type.
  • the state prediction unit 26 may predict when the object 110 will be in the first state S1 for each operating condition Cd.
  • the operating conditions Cd are the current supplied to the electrolytic cell 90, the current efficiency CE of the electrolytic cell 90, the voltage CV of the electrolytic cell 90, the pH and flow rate of the liquid 70 (see FIG. 2), and the liquid 72 (see FIG. 2), the target output of product P, etc. may be included.
  • the object 110 is the ion exchange membrane 84
  • the time when the ion exchange membrane 84 becomes difficult to repel anions may depend on the operating conditions Cd.
  • the user of the electrolytic cell 90 can predict when the object 110 will be in the first state S1 for each operating condition Cd. can be recognized.
  • the state prediction unit 26 may predict when the object 110 will be in the second state S2 for each operating condition Cd, and predict when the object 110 will be in the third state S3 for each operating condition Cd. you can
  • the state prediction unit 26 may predict when the object 110 will be in the first state S1 for each operating condition Cd and for each type of element.
  • the state prediction unit 26 may predict when the object 110 will be in the second state S2 for each operating condition Cd and for each type of element.
  • the state prediction unit 26 may predict when the object 110 will be in the third state S3 for each operating condition Cd and for each type of element.
  • a countermeasure for recovering the current efficiency CE of the electrolytic cell 90 is defined as a first countermeasure Cm1.
  • the first countermeasure Cm1 is a countermeasure based on the cause of the current efficiency CE being less than the predetermined value. This is a countermeasure for recovering the current efficiency CE to a predetermined value or more by eliminating the problem. For example, if the current efficiency CE is less than the predetermined value due to the presence of predetermined impurities attached to the ion exchange membrane 84, the first measure Cm1 is to remove the impurities by ion exchange. to remove from membrane 84;
  • a countermeasure for recovering the voltage CV of the electrolytic cell 90 is a second countermeasure Cm2.
  • the second countermeasure Cm2 is a countermeasure based on the cause of the voltage CV exceeding the predetermined value. This is a countermeasure for recovering the current efficiency CE to a predetermined value or less.
  • the voltage CV exceeds a predetermined value. If this is the cause, the second countermeasure Cm2 is a countermeasure for returning the NaCl (sodium chloride) concentration to a predetermined range.
  • a countermeasure for recovering the Cl ⁇ (chloride ion) concentration of the liquid 75 is a third countermeasure Cm3.
  • the third measure Cm3 is to determine the cause of the Cl ⁇ (chloride ion) concentration exceeding the predetermined concentration. It is a countermeasure based on the above, and is a countermeasure for recovering the Cl ⁇ (chloride ion) concentration of the liquid 75 to a predetermined value or less by eliminating the cause. Restoring the Cl ⁇ (chloride ion) concentration to a predetermined value or less may refer to reducing the Cl ⁇ (chloride ion) concentration to a predetermined value or less.
  • the storage unit 25 may store at least one of the first countermeasure Cm1, the second countermeasure Cm2, and the third countermeasure Cm3.
  • the state prediction unit 26 may predict the state of the object 110 when the first measure Cm1 is implemented.
  • the state prediction unit 26 may predict the state of the object 110 when the first countermeasure Cm1 is implemented for each operating condition Cd.
  • the second transmission unit 27 may transmit to the information terminal 30 the state of the object 110 predicted by the state prediction unit 26 and the state of the object 110 when the first countermeasure Cm1 is implemented. Thereby, the user of the electrolytic bath 90 can predict the state of the target object 110 when the first countermeasure Cm1 is performed on the electrolytic bath 90 .
  • the second transmission unit 27 may transmit to the terminal 10 the state of the object 110 when the first countermeasure Cm1 is implemented.
  • the state prediction unit 26 may predict the state of the object 110 when the second measure Cm2 is implemented.
  • the state prediction unit 26 may predict the state of the object 110 when the second countermeasure Cm2 is implemented for each operating condition Cd.
  • the second transmission unit 27 may transmit to the information terminal 30 the state of the object 110 predicted by the state prediction unit 26 and the state of the object 110 when the second countermeasure Cm2 is implemented. Note that the second transmission unit 27 may transmit to the terminal 10 the state of the object 110 when the second measure Cm2 is implemented.
  • the state prediction unit 26 may predict the state of the object 110 when the third measure Cm3 is implemented.
  • the state prediction unit 26 may predict the state of the object 110 when the third measure Cm3 is implemented for each operating condition Cd.
  • the second transmission unit 27 may transmit to the information terminal 30 the state of the object 110 predicted by the state prediction unit 26 and the state of the object 110 when the third countermeasure Cm3 is implemented.
  • the second transmission unit 27 may transmit to the terminal 10 the state of the object 110 when the third measure Cm3 is implemented.
  • FIG. 14 is a view of the ion exchange membrane 84 and the introduction tube 92 in FIG. 2 viewed from the anode 80 to the cathode 82.
  • FIG. This direction from anode 80 to cathode 82 is referred to herein as a side view.
  • the ion exchange membrane 84 contains impurities 89 . Impurities 89 may be contained in liquid 70 .
  • An introduction pipe 92 through which the liquid 70 passes is connected to the electrolytic bath 90 .
  • the introduction pipe 92 is arranged below the ion exchange membrane 84 .
  • the electrolytic bath 90 is provided with an opening 60 through which the liquid 70 passes.
  • the upper end of the introduction tube 92 is connected to the opening 60 .
  • the position of the opening 60 in side view is indicated by a thick line, and the positions of both ends of the opening 60 in side view are indicated by broken lines.
  • the introduction pipe 92 contains elements forming the introduction pipe 92 .
  • the element concerned be the element E.
  • Element E may be introduced by liquid 70 into anode chamber 79 (see FIG. 2).
  • the element E is likely to be introduced into the anode chamber 79 when the introduction pipe 92 deteriorates over time.
  • Element E introduced into the anode chamber 79 may accumulate on the object 110 .
  • the state analysis unit 24 may analyze at least one of the amount and type of the element E contained in the object 110.
  • a state in which the object 110 contains a predetermined amount or more of the element E is defined as a fourth state S4 of the object 110 .
  • the second transmission unit 27 causes the element acquisition unit 12 (FIGS. 4, 10 and 11 ) to obtain the element E.
  • the second transmission unit 27 may transmit an instruction regarding the investigation of the introduction pipe 92 to the information terminal 30 .
  • the instruction regarding the investigation of the introduction tube 92 may be displayed on the display section 32 of the information terminal 30 . This allows the user of the electrolytic cell 90 to start investigating the inlet tube 92 .
  • the impurity 89 is assumed to be element E or a compound of element E.
  • the element acquisition unit 12 may acquire the amount of the element E for each position of the element E on the target object 110 .
  • the position of the element E refers to the position of the impurity 89 in the side view of the ion exchange membrane 84 in the side view of one electrolytic cell 91 (see FIG. 1).
  • the element acquisition unit 12 may acquire the amount of the element E for each predetermined position on the object 110, and acquire the position information of the element E on the object 110 and the amount of the element E corresponding to the position information. You may The element acquisition unit 12 may acquire the amount of the element E for each position of the element E on the object 110 and for each type of the element E.
  • the first transmission unit 14 may transmit the amount of the element E for each position of the element E.
  • the receiver 22 may receive the amount of the element E for each position of the element E.
  • the state analysis unit 24 may analyze the state of the object 110 based on the amount of the element E at each position of the element E.
  • FIG. The position of the impurity 89 may depend on the type of element E. Therefore, by analyzing the state of the object 110 based on the position of the element E, the element E causing the state of the object 110 can be easily identified.
  • the second transmitter 27 (see FIGS. 10 and 11) may transmit the analysis result Ra based on the position of the element E and the amount of the element E to the information terminal 30 .
  • the second transmission unit 27 may transmit the analysis result Ra to the terminal 10 .
  • the first transmission unit 14 may transmit the amount of element E for each position of element E and for each type of element E.
  • the receiving unit 22 may receive the amount of element E for each position of element E and for each type of element E.
  • the state analysis unit 24 may analyze the state of the target object 110 based on the amount of the element E for each position of the element E and for each type of the element E.
  • the second transmitter 27 (see FIGS. 10 and 11) may transmit the analysis result Ra based on the position of the element E, the type of the element E, and the amount of the element E to the information terminal 30 .
  • the second transmission unit 27 may transmit the analysis result Ra to the terminal 10 .
  • the state analysis unit 24 may analyze the state of the object 110 based on the position of the opening 60 and the position of the element E in the object 110.
  • the position of the opening 60 and the position of the element E may be the positions in a side view of one electrolytic cell 91 (see FIG. 1).
  • Based on the position of the opening 60 and the position of the element E may refer to based on the relative positional relationship between the position of the opening 60 and the position of the element E.
  • the relative positional relationship between the position of the opening 60 and the position of the element E is the distance between the position of the opening 60 and the position of the element E, for example.
  • the state of the object 110 may depend on the position of the opening 60 and the position of the element E. Therefore, by analyzing the state of the object 110 based on the position of the opening 60 and the position of the element E, the element E causing the state of the object 110 can be easily identified.
  • the second transmitter 27 may transmit the analysis result Ra based on the position of the aperture 60 and the position of the element E to the information terminal 30 .
  • FIG. 15 is a diagram showing another example of a block diagram of the server 20 in the analysis system 100 according to one embodiment of the present invention.
  • the terminal 10 the information terminal 30 and the electrolytic cell 90 are omitted.
  • Server 20 of this example differs from server 20 shown in FIGS. 10 and 11 in that it further includes first state learning section 120 and second state learning section 130 .
  • the first state learning unit 120 machine-learns the relationship between the current efficiency CE and the amount of the element acquired by the element acquisition unit 12 (see FIGS. 10 and 11) to obtain a first state inference model 122 (described later). ).
  • the second state learning unit 130 generates a second state inference model 132 (described later) by machine-learning the relationship between the voltage CV and the amount of the element acquired by the element acquisition unit 12 .
  • FIG. 16 is a diagram showing an example of the first state inference model 122.
  • the first state inference model 122 When the current efficiency CE and the amount of an element are input, the first state inference model 122 outputs a first inference state for the current efficiency CE and the amount of the element. This first inference state is referred to as a first inference state Se1.
  • FIG. 17 is a diagram showing an example of the second state inference model 132.
  • the second state inference model 132 When the voltage CV and the amount of the element are input, the second state inference model 132 outputs the second inference state for the voltage CV and the amount of the element. This second inference state is referred to as a second inference state Se2.
  • the first inference state Se1 and the second inference state Se2 may be the analysis result Ra by the state analysis unit 24.
  • the first state inference model 122 and the second state inference model 132 may be stored in the storage unit 25 .
  • State analysis unit 24 may analyze the state of object 110 based on at least one of first state inference model 122 and second state inference model 132 stored in storage unit 25 .
  • FIG. 18 is a flowchart including an example of an analysis method according to one embodiment of the present invention.
  • the analysis method according to one embodiment of the present invention is an example of the analysis method for the object 110 (see FIG. 4) in the analysis system 100 (see FIGS. 4, 10, 11 and 13).
  • the analysis method of this example includes an element acquisition step S100, a reception step S104, and a state analysis step S109.
  • the element acquisition step S100 is a step in which the element acquisition unit 12 acquires the amount of the element contained in the object 110 in the electrolytic bath 90.
  • the analysis method of this example includes a first transmission step S102.
  • the first transmission step S102 is a step in which the first transmission unit 14 transmits the amount of the element acquired in the element acquisition step S100.
  • the receiving step S104 is a step in which the receiving unit 22 receives the amount of the element obtained in the element obtaining step S100.
  • the receiving step S104 is a step in which the receiving unit 22 receives the amount of the element transmitted in the first transmitting step S102.
  • the analysis method of this example includes a determination step S106.
  • the determination step S ⁇ b>106 may be a step in which the state analysis unit 24 determines whether the object 110 is the ion exchange membrane 84 or at least one of the anode 80 and the cathode 82 .
  • the state analysis unit 24 determines whether the object 110 is the ion exchange membrane 84 or at least one of the anode 80 and the cathode 82 based on the type of element acquired in the element acquisition step S100. you can
  • the analysis method of this example includes a storage step S108 and a storage step S114.
  • the storage step S108 may be a step in which the storage unit 25 stores the amount of the element acquired in the element acquisition step S100 when the object 110 is determined to be the ion exchange membrane 84 in the determination step S106. .
  • the storage unit 25 stores the amount of the element obtained in the element obtaining step S100.
  • the state analysis step S109 is a step in which the state analysis unit 24 analyzes the state of the object 110 based on the amount of the element received in the reception step S104.
  • the range of state analysis step S109 is surrounded by a dashed line.
  • the state analysis step S109 of this example has an intensity acquisition step S110, a determination step S112, determination steps S200 to S212, and a comparison step S300.
  • the intensity acquisition step S ⁇ b>110 is a step in which the reception unit 22 acquires the intensity of the X-rays 114 (see FIG. 4 ) measured by the element acquisition unit 12 .
  • Determination step S112 is a step in which state analysis unit 24 determines whether or not the intensity of X-ray 114 acquired in intensity acquisition step S110 is equal to or greater than threshold intensity Stp. If it is determined in determination step S112 that the intensity of X-ray 114 is greater than or equal to threshold intensity Stp, the analysis method proceeds to step S200. If it is determined in determination step S112 that the intensity of X-ray 114 is less than threshold intensity Stp, the analysis method proceeds to step S300.
  • the state analysis unit 24 analyzes the target object 110 (the ion exchange membrane 84 in this example) based on the predetermined first relationship R1 between the current efficiency CE of the electrolytic cell 90 and the amount of the element. Analyze the state or state of the object 110 (ion exchange membrane 84 in this example) based on a predetermined second relationship R21 between the voltage CV of the electrolytic cell 90 and the amount of the element. good.
  • the state analysis unit 24 determines whether the intensity of the X-ray 114 is equal to or higher than the threshold intensity Stp for each element determined in advance.
  • the state of the ion exchange membrane 84) is analyzed.
  • the predetermined elements are Ni (nickel), Ca (calcium), Sr (strontium), Ba (barium), I (iodine), Fe (iron) and Zr (zirconium) in this example.
  • the state analysis step S109 of this example has an intensity acquisition step S116.
  • Intensity acquisition step S ⁇ b>116 is a step in which the reception unit 22 acquires the intensity of the X-rays 114 (see FIG. 4 ) measured by the element acquisition unit 12 .
  • the state analysis unit 24 determines the target object 110 (the anode 80 and the cathode 82 in this example) based on the predetermined second relationship R22 between the voltage CV of the electrolytic cell 90 and the amount of the element. at least one) may be analyzed. In this example, the state analysis unit 24 determines the object 110 (in this example, at least one of the anode 80 and the cathode 82) based on the intensity of the X-rays 114 (see FIG. 4) acquired in the intensity acquisition step S116. Analyze the state of
  • the state analysis unit 24 determines the target object based on the predetermined third relationship R3 between the Cl ⁇ (chloride ion) concentration in the alkali metal hydroxide aqueous solution and the amount of the element.
  • the condition of 110 ion exchange membrane 84 in this example
  • the state analysis unit 24 determines whether the intensity of the X-ray 114 is equal to or higher than the threshold intensity Stp for each element determined in advance. In the example, the state of the ion exchange membrane 84) is analyzed.
  • the analysis method of this example further includes a proposal step S220.
  • the proposing step S220 is a step of proposing investigation items, countermeasures, etc. to the user of the electrolytic cell 90 for the elements whose intensity of the X-ray 114 is equal to or higher than the threshold intensity Stp.
  • the countermeasure may be at least one of the above-described first countermeasure Cm1, second countermeasure Cm2, and third countermeasure Cm3.
  • the comparison step S300 is a step in which the state analysis unit 24 compares the analysis result Ra of one target object 110 and the analysis result Ra of the other target object 110 .
  • the one object 110 may be the object 110 to be analyzed.
  • the other target object 110 may be the target object 110 related to the past analysis result Ra.
  • the user of one electrolytic bath 90 can recognize the analysis result Ra of the state of the object 110 in one electrolytic bath 90 in comparison with the analysis result Ra of the object 110 in another electrolytic bath 90 .
  • the analysis method of this example further comprises a state prediction step S302, a second transmission step S304 and a display step S306.
  • the state prediction unit 26 predicts when the target object 110 (the ion exchange membrane 84 in this example) will be in the first state S1 based on the temporal change in the amount of the element and the first relationship R1.
  • the state prediction unit 26 determines that the object 110 (at least one of the anode 80 and the cathode 82 in this example) is in the second state S2 based on the temporal change in the amount of the element and the second relationship R22. This is the step of predicting the time when In the state prediction step S302, the state prediction unit 26 predicts when the object 110 (the ion exchange membrane 84 in this example) will be in the third state S3 based on the temporal change in the amount of the element and the third relationship R3. This is the step of predicting.
  • the second transmission step S304 is a step in which the second transmission unit 27 transmits the analysis result Ra in the state analysis step S109 to the information terminal 30.
  • the second transmission unit 27 transmits to the information terminal 30 the time when the object 110 will be in the first state S1 or the second state S2 predicted in the state prediction step S302. It may be a step.
  • the display step S306 is a step in which the display unit 32 of the information terminal 30 displays the analysis result Ra. Thereby, the user of the electrolytic bath 90 can recognize the analysis result Ra.
  • the display step S306 may be a step in which the display unit 32 of the information terminal 30 displays when the object 110 will be in the first state S1 or in the second state S2. Thereby, the user of the electrolytic cell 90 can recognize when the first state S1 or the second state S2 is reached.
  • a block may represent (1) a stage of a process in which an operation is performed or (2) a section of equipment responsible for performing the operation.
  • Certain steps may be performed by dedicated circuits, programmable circuits or processors. Certain sections may be implemented by dedicated circuitry, programmable circuitry or processors. The programmable circuit and the processor may be supplied with computer readable instructions. The computer readable instructions may be stored on a computer readable medium.
  • a dedicated circuit may include at least one of a digital hardware circuit and an analog hardware circuit.
  • Dedicated circuitry may include integrated circuits (ICs) and/or discrete circuits.
  • Programmable circuits may include hardware circuits for logical AND, logical OR, logical XOR, logical NAND, logical NOR, or other logical operations.
  • Programmable circuits may include reconfigurable hardware circuits, including flip-flops, registers, memory elements such as field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like.
  • a computer-readable medium may include any tangible device capable of storing instructions to be executed by a suitable device. By including the tangible device, the computer readable medium having instructions stored on the device can be executed to create means for performing the operations specified in the flowcharts or block diagrams. will have a product, including:
  • a computer-readable medium may be, for example, an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, or the like.
  • the computer readable medium is more particularly e.g. Electrically Erasable Programmable Read Only Memory (EEPROM), Static Random Access Memory (SRAM), Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD), Blu-ray (RTM) Disc, Memory Stick, Integration It may be a circuit card or the like.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • RTM Blu-ray
  • Memory Stick Integration It may be a circuit card or the like.
  • Computer readable instructions may include any of assembler instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, source code and object code.
  • the source code and the object code may be written in any combination of one or more programming languages, including object-oriented programming languages and traditional procedural programming languages.
  • Object-oriented programming languages may be, for example, Smalltalk®, JAVA®, C++, and the like.
  • the procedural programming language may be, for example, the "C" programming language.
  • Computer readable instructions may be transferred to a processor or programmable circuitry of a general purpose computer, special purpose computer, or other programmable data processing apparatus, either locally or over a wide area network (WAN), such as a local area network (LAN), the Internet, or the like. ) may be provided via A processor or programmable circuit of a general purpose computer, special purpose computer, or other programmable data processing apparatus may be implemented by the flow chart shown in FIG. 18 or the steps shown in FIGS.
  • the computer readable instructions may be executed to create means for performing the operations specified in the block diagrams.
  • a processor may be, for example, a computer processor, processing unit, microprocessor, digital signal processor, controller, microcontroller, or the like.
  • FIG. 19 is a diagram illustrating an example computer 2200 in which the analysis system 100 according to one embodiment of the invention may be embodied in whole or in part.
  • Programs installed on the computer 2200 may cause the computer 2200 to function as one or more sections of the operation or analysis system 100 associated with the analysis system 100 according to embodiments of the present invention, or Or multiple sections can be executed, or the computer 2200 can be caused to execute each step (see FIG. 18) of the analysis method of the present invention.
  • the program causes computer 2200 to associate with some or all of the blocks in the flowchart (FIG. 18) and block diagrams (FIGS. 4, 10, 11, 13 and 15) described herein. may be executed by the CPU 2212 to cause the specified operation to be performed.
  • a computer 2200 includes a CPU 2212 , a RAM 2214 , a graphics controller 2216 and a display device 2218 .
  • CPU 2212 , RAM 2214 , graphics controller 2216 and display device 2218 are interconnected by host controller 2210 .
  • Computer 2200 further includes input/output units such as communication interface 2222, hard disk drive 2224, DVD-ROM drive 2226 and IC card drive.
  • Communication interface 2222 , hard disk drive 2224 , DVD-ROM drive 2226 , IC card drive, etc. are connected to host controller 2210 via input/output controller 2220 .
  • the computer further includes legacy input/output units such as ROM 2230 and keyboard 2242 .
  • ROM 2230 , keyboard 2242 , etc. are connected to input/output controller 2220 via input/output chip 2240 .
  • the CPU 2212 controls each unit by operating according to programs stored in the ROM 2230 and RAM 2214.
  • Graphics controller 2216 causes the image data to be displayed on display device 2218 by retrieving image data generated by CPU 2212 into RAM 2214 , such as a frame buffer provided in RAM 2214 .
  • a communication interface 2222 communicates with other electronic devices via a network.
  • Hard disk drive 2224 stores programs and data used by CPU 2212 within computer 2200 .
  • DVD-ROM drive 2226 reads programs or data from DVD-ROM 2201 and provides the read programs or data to hard disk drive 2224 via RAM 2214 .
  • the IC card drive reads programs and data from IC cards or writes programs and data to IC cards.
  • the ROM 2230 stores a boot program or the like executed by the computer 2200 upon activation, or a program dependent on the hardware of the computer 2200.
  • Input/output chip 2240 may connect various input/output units to input/output controller 2220 via parallel ports, serial ports, keyboard ports, mouse ports, and the like.
  • a program is provided by a computer-readable medium such as a DVD-ROM 2201 or an IC card.
  • the program is read from a computer-readable medium, installed in hard disk drive 2224 , RAM 2214 , or ROM 2230 , which are also examples of computer-readable medium, and executed by CPU 2212 .
  • the information processing described within these programs is read by computer 2200 to provide coordination between the programs and the various types of hardware resources described above.
  • An apparatus or method may be configured by implementing information manipulation or processing in accordance with the use of computer 2200 .
  • the CPU 2212 executes a communication program loaded into the RAM 2214 and sends communication processing to the communication interface 2222 based on the processing described in the communication program. you can command.
  • the communication interface 2222 reads transmission data stored in a transmission buffer processing area provided in a recording medium such as the RAM 2214, the hard disk drive 2224, the DVD-ROM 2201, or an IC card, and outputs the read transmission data. to the network, or writes received data received from the network to a receive buffer processing area or the like provided on the recording medium.
  • the CPU 2212 may cause the RAM 2214 to read all or necessary portions of files or databases stored in external recording media such as the hard disk drive 2224, DVD-ROM drive 2226 (DVD-ROM 2201), and IC card.
  • CPU 2212 may perform various types of operations on data in RAM 2214 .
  • CPU 2212 may then write back the processed data to an external recording medium.
  • CPU 2212 may perform various types of manipulation, information processing, conditional judgment, conditional branching, unconditional branching, information retrieval or Various types of processing may be performed, including permutations and the like.
  • CPU 2212 may write results back to RAM 2214 .
  • the CPU 2212 may search for information in files, databases, etc. in the recording medium. For example, if a plurality of entries each having an attribute value of a first attribute associated with an attribute value of a second attribute are stored in the recording medium, the CPU 2212 determines that the attribute value of the first attribute is specified. search the plurality of entries for an entry that matches the condition, read the attribute value of the second attribute stored in the entry, and read the second attribute value to obtain the predetermined condition An attribute value of a second attribute associated with a first attribute that satisfies may be obtained.
  • the programs or software modules described above may be stored on the computer 2200 or in a computer-readable medium of the computer 2200 .
  • a storage medium such as a hard disk or RAM provided in a server system connected to a private communication network or the Internet can be used as the computer readable medium.
  • the program may be provided to computer 2200 by the recording medium.
  • lead-out tube 95... lead-out tube, 98... cathode chamber, 100... analysis system, 112 ... X-ray, 114 ... X-ray, 120 ... First state learning section, 122 ... First state inference model, 130 ... Second state learning section, 132 ... Second state Inference model 200...Electrolytic device 2200...Computer 2201...DVD-ROM 2210...Host controller 2212...CPU 2214...RAM 2216...Graphic controller 2218: display device, 2220: input/output controller, 2222: communication interface, 2224: hard disk drive, 2226: DVD-ROM drive, 2230: ROM, 2240: input/output Chip, 2242...Keyboard

Abstract

Provided is an analysis system equipped with a terminal comprising an element-acquiring part for acquiring the amount of an element contained in an object in an electrolysis tank, and a server comprising a receiver for receiving the amount of the element acquired by the element-acquiring part, and a state-analyzing part for analyzing the state of the object on the basis of the amount of the element received from the receiver. The electrolysis tank may comprise an ion exchange membrane, and a positive electrode chamber and a negative electrode chamber partitioned by the ion exchange membrane. An aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide may be introduced in the positive electrode chamber, and an aqueous solution of an alkali metal hydroxide may be drawn out from the negative electrode chamber. The state-analyzing part may: analyze the state of the object on the basis of a first predefined relationship between the current efficiency of the electrolysis tank and the amount of the element, analyze the state of the object on the basis of a second predefined relationship between the voltage of the electrolysis tank and the amount of the element, or analyze the state of the object on the basis of a third predefined relationship between the chlorine ion concentration in the aqueous solution of the alkali metal hydroxide and the amount of the element.

Description

解析システム、解析方法および解析プログラムAnalysis system, analysis method and analysis program
 本発明は、解析システム、解析方法および解析プログラムに関する。 The present invention relates to an analysis system, an analysis method and an analysis program.
 特許文献1および2には、「X線分析データと、前記累積疲労度との関係を表わす対応テーブルを作成するステップ」が記載されている(請求項1)。
 特許文献3には、「診断対象被膜が形成された試験体を所定条件で劣化促進試験をなす手順」が記載されている(請求項1)。
 特許文献4には、「劣化・寿命診断曲線と照合し計算することにより、前記電子装置の劣化度および余寿命を推定する」と記載されている(請求項1)。
[先行技術文献]
[特許文献]
  [特許文献1] 特許第6762818号
  [特許文献2] 特許第6762817号
  [特許文献3] 特開2005-009906号公報
  [特許文献4] 特開平10-313034号公報
Patent Documents 1 and 2 describe "the step of creating a correspondence table representing the relationship between the X-ray analysis data and the cumulative fatigue level" (claim 1).
Patent Literature 3 describes "a procedure for performing an accelerated deterioration test under predetermined conditions on a specimen on which a film to be diagnosed is formed" (Claim 1).
Patent Literature 4 states that "the degree of deterioration and the remaining life of the electronic device are estimated by comparing with the deterioration/life diagnosis curve and calculating" (claim 1).
[Prior art documents]
[Patent Literature]
[Patent Document 1] Japanese Patent No. 6762818 [Patent Document 2] Japanese Patent No. 6762817 [Patent Document 3] Japanese Unexamined Patent Publication No. 2005-009906 [Patent Document 4] Japanese Unexamined Patent Publication No. 10-313034
解決しようとする課題Problem to be solved
 イオン交換膜等を備えた電解装置の場合、イオン交換膜等の性能が劣化すると電解装置により生産される生産物の生産効率が低下しやすい。このため、イオン交換膜等の性能を早期に回復させることが好ましい。イオン交換膜等の性能を早期に回復させるためには、イオン交換膜等の性能劣化の原因を早期に特定するとともに、性能回復のための対策を早期に取ることが好ましい。 In the case of an electrolytic device equipped with an ion-exchange membrane, etc., if the performance of the ion-exchange membrane, etc. deteriorates, the production efficiency of the product produced by the electrolytic device tends to decrease. Therefore, it is preferable to restore the performance of the ion exchange membrane and the like as soon as possible. In order to recover the performance of the ion exchange membrane and the like at an early stage, it is preferable to identify the cause of the performance deterioration of the ion exchange membrane and the like at an early stage and take measures to recover the performance at an early stage.
 イオン交換膜等の性能劣化への対策を取るためには、過去の性能劣化とのベンチマークをすることにより、過去の性能劣化と比較した、ベンチマーク対象の性能劣化の位置付けを認識できることが好ましい。これにより、イオン交換膜等の性能回復策の内容、回復策を実施する時期を決定しやすくなる。また、このベンチマークのためには、過去の性能劣化のデータは、なるべく多いことが好ましい。  In order to take measures against performance deterioration of ion exchange membranes, etc., it is preferable to be able to recognize the position of performance deterioration targeted for benchmarking in comparison with past performance deterioration by benchmarking past performance deterioration. This makes it easier to determine the content of performance recovery measures for ion-exchange membranes and the like, and the time to implement the recovery measures. For this benchmark, it is preferable to have as much past performance degradation data as possible.
 イオン交換膜等に性能劣化が生じている場合、性能劣化を認識したタイミングから、イオン交換膜等の寿命までの時間を認識できることが好ましい。これにより、イオン交換膜等を更生させるタイミングを決定しやすくなる。また、イオン交換膜等を交換する場合は、イオン交換膜等を用意する時期を決定しやすくなる。  If the ion exchange membrane, etc. has deteriorated in performance, it is preferable to be able to recognize the time from the timing when the performance deterioration is recognized until the life of the ion exchange membrane, etc. This makes it easier to determine the timing of regenerating the ion exchange membrane or the like. Also, when replacing the ion exchange membrane or the like, it becomes easier to determine the timing of preparing the ion exchange membrane or the like.
一般的開示General disclosure
 本発明の第1の態様においては、解析システムを提供する。解析システムは、電解槽における対象物に含まれる元素の量を取得する元素取得部を有する端末と、元素取得部により取得された元素の量を受信する受信部と、受信部により受信された元素の量に基づいて対象物の状態を解析する状態解析部と、を有するサーバと、を備える。 A first aspect of the present invention provides an analysis system. The analysis system includes a terminal having an element acquisition unit that acquires the amount of the element contained in the target object in the electrolytic cell, a reception unit that receives the amount of the element acquired by the element acquisition unit, and an element received by the reception unit. and a server having a state analysis unit that analyzes the state of the object based on the amount of.
 電解槽は、イオン交換膜と、イオン交換膜により仕切られた陽極室および陰極室とを有してよい。陽極室にはアルカリ金属の塩化物の水溶液またはアルカリ金属の水酸化物の水溶液が導入され、陰極室からはアルカリ金属の水酸化物の水溶液が導出されてよい。状態解析部は、電解槽の電流効率と元素の量との予め定められた第1関係に基づいて対象物の状態を解析するか、電解槽の電圧と元素の量との予め定められた第2関係に基づいて対象物の状態を解析するか、または、アルカリ金属の水酸化物の水溶液における塩化物イオン濃度と、元素の量との予め定められた第3関係に基づいて対象物の状態を解析してよい。 The electrolytic cell may have an ion exchange membrane, and an anode chamber and a cathode chamber separated by the ion exchange membrane. An aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide may be introduced into the anode chamber, and an aqueous solution of an alkali metal hydroxide may be discharged from the cathode chamber. The state analysis unit analyzes the state of the object based on a predetermined first relationship between the current efficiency of the electrolytic cell and the amount of the element, or analyzes the state of the object based on a predetermined first relationship between the voltage of the electrolytic cell and the amount of the element. 2 relationship, or the state of the object is determined based on a predetermined third relationship between the chloride ion concentration in the aqueous alkali metal hydroxide solution and the amount of the element. can be analyzed.
 複数の電解槽は、それぞれ異なる位置に配置されてよい。複数の端末におけるそれぞれの元素取得部は、複数の対象物のそれぞれに含まれる元素の量をそれぞれ取得してよい。受信部は、複数の端末におけるそれぞれの元素取得部により取得された元素の量を受信してよい。状態解析部は、複数の端末におけるそれぞれの元素取得部により取得され受信部により受信された元素の量に基づいて、一の対象物の状態を解析してよい。 A plurality of electrolytic cells may be arranged at different positions. Each element obtaining unit in each of the plurality of terminals may obtain the amount of the element contained in each of the plurality of objects. The receiving unit may receive the amounts of the elements acquired by the respective element acquiring units in the plurality of terminals. The state analysis unit may analyze the state of the one target object based on the amount of the element acquired by each element acquisition unit in the plurality of terminals and received by the reception unit.
 サーバは、元素の量の経時変化と第1関係とに基づいて、対象物が予め定められた第1状態となる時期を予測するか、元素の量の経時変化と第2関係とに基づいて、対象物が予め定められた第2状態となる時期を予測するか、または、元素の量と第3関係とに基づいて対象物が予め定められた第3状態となる時期を予測する状態予測部をさらに有してよい。 The server predicts when the object will be in a predetermined first state based on the temporal change in the amount of the element and the first relationship, or based on the temporal change in the amount of the element and the second relationship state prediction for predicting when the object will be in a predetermined second state, or predicting when the object will be in a predetermined third state based on the amount of the element and the third relationship You may further have a part.
 状態予測部は、一の電解槽における元素の量の経時変化と第1関係とに基づいて、一の電解槽または他の電解槽における対象物が第1状態となる時期を予測するか、一の電解槽における元素の量の経時変化と第2関係とに基づいて、一の電解槽または他の電解槽における対象物が第2状態となる時期を予測するか、または、一の電解槽における元素の量の経時変化と第3関係とに基づいて、一の電解槽または他の電解槽における対象物が第3状態となる時期を予測してよい。 The state prediction unit predicts when the object in the one electrolytic cell or the other electrolytic cell will be in the first state based on the temporal change in the amount of the element in the one electrolytic cell and the first relationship, or Predict when the object in one electrolytic cell or another electrolytic cell will be in the second state based on the change in the amount of the element over time in the electrolytic cell and the second relationship, or Based on the change in amount of the element over time and the third relationship, it may be predicted when the object in one electrolytic cell or the other electrolytic cell will be in the third state.
 元素取得部は、元素の種類をさらに取得してよい。受信部は、元素の種類をさらに受信してよい。状態予測部は、対象物が第1状態となる時期を元素の種類ごとに予測するか、対象物が第2状態となる時期を元素の種類ごとに予測するか、または、対象物が第3状態となる時期を元素の種類ごとに予測してよい。 The element acquisition unit may further acquire the type of element. The receiver may further receive the type of element. The state prediction unit predicts when the object will be in the first state for each type of element, predicts when the object will be in the second state for each type of element, or predicts when the object will be in the third state for each type of element. You may predict the time to become a state for every kind of element.
 サーバは、複数の電解槽におけるそれぞれの運転条件を取得する運転条件取得部をさらに有してよい。状態予測部は、対象物が第1状態となる時期を運転条件ごとに予測するか、対象物が第2状態となる時期を運転条件ごとに予測するか、または、対象物が第3状態となる時期を運転条件ごとに予測してよい。 The server may further include an operating condition acquisition unit that acquires operating conditions for each of the multiple electrolytic cells. The state prediction unit predicts when the object will be in the first state for each operating condition, predicts when the object will be in the second state for each operating condition, or predicts when the object will be in the third state. You may predict the timing for each operating condition.
 上記第1状態は、元素の量の経時変化と第1関係とに基づいて予測された第1状態であってよい。状態予測部は、対象物が第1状態となる時期を運転条件ごと、且つ、元素の種類ごとに予測するか、対象物が第2状態となる時期を運転条件ごと、且つ、元素の種類ごとに予測するか、または、対象物が第3状態となる時期を運転条件ごと、且つ、元素の種類ごとに予測してよい。 The first state may be a predicted first state based on the temporal change in the amount of the element and the first relationship. The state prediction unit predicts when the object will be in the first state for each operating condition and for each type of element, or predicts when the object will be in the second state for each operating condition and for each type of element. Alternatively, the time when the object will be in the third state may be predicted for each operating condition and for each type of element.
 状態予測部は、対象物の状態に応じた第1対策であって電解槽の電流効率を回復させる第1対策が実施された場合における対象物の状態を予測するか、対象物の状態に応じた第2対策であって電解槽の電圧を回復させる第2対策が実施された場合における対象物の状態を予測するか、または、対象物の状態に応じた第3対策であってアルカリ金属の水酸化物の水溶液における塩化物イオン濃度を回復させる第3対策が実施された場合における対象物の状態を予測してよい。 The state prediction unit predicts the state of the object when the first countermeasure corresponding to the state of the object and recovering the current efficiency of the electrolytic cell is implemented, or predicts the state of the object according to the state of the object. Predict the state of the object in the case where the second measure, which is the second measure to recover the voltage of the electrolytic cell, is implemented, or the third measure according to the state of the object, which is the alkali metal The state of the object may be predicted if a third measure to restore the chloride ion concentration in the aqueous hydroxide solution is implemented.
 状態解析部により、一の電解槽における一の対象物の状態が第1状態および第2状態の少なくとも一方であると解析された場合、元素取得部は、一の電解槽における他の対象物に含まれる元素の量を取得してよい。 When the state analysis unit analyzes that the state of one object in one electrolytic cell is at least one of the first state and the second state, the element acquisition unit determines whether the other object in the one electrolytic cell The amount of the element contained may be obtained.
 解析システムは、電解槽が配置された位置に配置され、元素取得部により取得された元素の量を送信する第1送信部を有する情報端末をさらに備えてよい。 The analysis system may further comprise an information terminal arranged at the position where the electrolytic cell is arranged and having a first transmission section for transmitting the amount of the element acquired by the element acquisition section.
 サーバは、状態解析部により解析された解析結果を情報端末に送信する第2送信部をさらに有してよい。元素取得部は、第2送信部により送信された解析結果に基づいて、元素の量を取得してよい。 The server may further include a second transmission section that transmits the analysis result analyzed by the state analysis section to the information terminal. The element acquisition unit may acquire the amount of the element based on the analysis result transmitted by the second transmission unit.
 電解槽には、電解槽に導入される液体が通過する導入管が接続されてよい。状態解析部により、対象物が、導入管に含まれる元素を予め定められた量以上含む第4状態であると解析された場合、第2送信部は元素取得部に、導入管に含まれる元素を取得する旨の指示を送信してよい。 The electrolytic cell may be connected to an introduction pipe through which the liquid introduced into the electrolytic cell passes. When the state analysis unit analyzes that the target object is in the fourth state including the predetermined amount or more of the element contained in the introduction pipe, the second transmission unit instructs the element acquisition unit to obtain the element contained in the introduction pipe. You may send an instruction to obtain the
 サーバは、電流効率と、元素の量との関係を機械学習することにより、電流効率および元素の量に基づく対象物の第1推論状態を出力する第1状態推論モデルを生成する第1状態学習部、および、電圧と、元素の量との関係を機械学習することにより、電圧および元素の量に基づく対象物の第2推論状態を出力する第2状態推論モデルを生成する第2状態学習部の少なくとも一方をさらに有してよい。 The server machine-learns the relationship between the current efficiency and the amount of the element to generate a first state inference model that outputs a first inference state of the object based on the current efficiency and the amount of the element. and a second state learning unit for generating a second state inference model that outputs a second inference state of the object based on the voltage and the amount of the element by machine learning the relationship between the voltage and the amount of the element. may further have at least one of
 元素取得部は、元素の量を、対象物における元素の位置ごとに取得してよい。受信部は、元素の位置ごとの元素の量を受信してよい。状態解析部は、元素の位置ごとの元素の量に基づいて、対象物の状態を解析してよい。 The element acquisition unit may acquire the amount of the element for each position of the element in the object. The receiver may receive the amount of the element for each position of the element. The state analysis unit may analyze the state of the object based on the amount of the element for each position of the element.
 元素取得部は、元素の量を、対象物における元素の位置ごとおよび元素の種類ごとに取得してよい。受信部は、元素の位置ごとおよび元素の種類ごとの元素の量を受信してよい。状態解析部は、元素の位置ごとおよび元素の種類ごとの元素の量に基づいて、対象物の状態を解析してよい。 The element acquisition unit may acquire the amount of the element for each position of the element in the object and for each type of element. The receiving unit may receive the amount of the element for each position of the element and for each type of element. The state analysis unit may analyze the state of the object based on the amount of the element for each position of the element and for each type of element.
 電解槽には、電解槽に導入される液体が通過する開口が設けられてよい。状態解析部は、開口の位置と、対象物における元素の位置とに基づいて、対象物の状態を解析してよい。 The electrolytic cell may be provided with an opening through which the liquid introduced into the electrolytic cell passes. The state analysis unit may analyze the state of the object based on the positions of the openings and the positions of the elements in the object.
 本発明の第2の態様においては、解析方法を提供する。解析方法は、元素取得部が、電解槽における対象物に含まれる元素の量を取得する元素取得ステップと、受信部が、元素取得ステップにおいて取得された元素の量を受信する受信ステップと、状態解析部が、受信ステップにおいて受信された元素の量に基づいて、対象物の状態を解析する状態解析ステップと、を備える。 A second aspect of the present invention provides an analysis method. The analysis method includes an element acquisition step in which the element acquisition unit acquires the amount of the element contained in the target object in the electrolytic cell, a reception step in which the reception unit receives the amount of the element acquired in the element acquisition step, and a state a state analysis step in which the analysis unit analyzes the state of the object based on the amount of the element received in the reception step;
 電解槽は、イオン交換膜と、イオン交換膜により仕切られた陽極室および陰極室とを有してよい。陽極室にはアルカリ金属の塩化物の水溶液またはアルカリ金属の水酸化物の水溶液が導入され、陰極室からはアルカリ金属の水酸化物の水溶液が導出されてよい。状態解析ステップは、状態解析部が、電解槽の電流効率と元素の量との予め定められた第1関係に基づいて対象物の状態を解析するか、電解槽の電圧と元素の量との予め定められた第2関係に基づいて対象物の状態を解析するか、または、アルカリ金属の水酸化物の水溶液における塩化物イオン濃度と、元素の量との予め定められた第3関係に基づいて対象物の状態を解析するステップであってよい。 The electrolytic cell may have an ion exchange membrane, and an anode chamber and a cathode chamber separated by the ion exchange membrane. An aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide may be introduced into the anode chamber, and an aqueous solution of an alkali metal hydroxide may be discharged from the cathode chamber. In the state analysis step, the state analysis unit analyzes the state of the object based on a predetermined first relationship between the current efficiency of the electrolytic cell and the amount of the element, or analyzes the voltage of the electrolytic cell and the amount of the element. Analyzing the state of the object based on a predetermined second relationship, or based on a predetermined third relationship between the chloride ion concentration in the alkali metal hydroxide aqueous solution and the amount of the element and analyzing the state of the object.
 解析方法は、状態予測部が、元素の量の経時変化と第1関係とに基づいて、対象物が予め定められた第1状態となる時期を予測するか、元素の量の経時変化と第2関係とに基づいて、対象物が予め定められた第2状態となる時期を予測するか、または、元素の量の経時変化と第3関係とに基づいて、対象物が予め定められた第3状態となる時期を予測する状態予測ステップをさらに備えてよい。 In the analysis method, the state prediction unit predicts when the object will be in a predetermined first state based on the temporal change in the amount of the element and the first relationship, or Predict when the object will be in a predetermined second state based on the second relationship, or predict the time when the object will be in a predetermined second state based on the change in the amount of the element over time and the third relationship A state prediction step of predicting when the three states will occur may be further provided.
 本発明の第3の態様においては、解析プログラムを提供する。解析プログラムは、コンピュータを解析システムとして機能させる。 A third aspect of the present invention provides an analysis program. The analysis program causes the computer to function as an analysis system.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 It should be noted that the above outline of the invention does not list all the features of the present invention. Subcombinations of these feature groups can also be inventions.
本発明の一つの実施形態に係る電解装置200の一例を示す図である。It is a figure showing an example of electrolysis device 200 concerning one embodiment of the present invention. 図1における1つの電解セル91の詳細の一例を示す図である。It is a figure which shows an example of the detail of one electrolysis cell 91 in FIG. 図2に示される電解セル91におけるイオン交換膜84の近傍を拡大した図である。3 is an enlarged view of the vicinity of an ion exchange membrane 84 in the electrolytic cell 91 shown in FIG. 2. FIG. 本発明の一つの実施形態に係る解析システム100のブロック図の一例を示す図である。It is a figure showing an example of a block diagram of analysis system 100 concerning one embodiment of the present invention. 元素取得部12により取得された元素の量および種類の取得結果の一例を示す図である。FIG. 10 is a diagram showing an example of an acquisition result of the amounts and types of elements acquired by an element acquiring unit 12; 端末10が携帯型蛍光X線分析端末であり、対象物110がイオン交換膜84である場合における、X線114の強度と電流効率CEとの関係の一例を示す図である。4 is a diagram showing an example of the relationship between the intensity of X-rays 114 and the current efficiency CE when the terminal 10 is a portable fluorescent X-ray analysis terminal and the object 110 is an ion exchange membrane 84. FIG. 端末10が携帯型蛍光X線分析端末であり、対象物110がイオン交換膜84である場合における、X線114の強度と電圧CVとの関係の一例を示す図である。3 is a diagram showing an example of the relationship between the intensity of X-rays 114 and the voltage CV when the terminal 10 is a portable fluorescent X-ray analysis terminal and the object 110 is an ion exchange membrane 84. FIG. 端末10が携帯型蛍光X線分析端末であり、対象物110がイオン交換膜84である場合における、X線114の強度と液体75のCl(塩化物イオン)濃度との関係の一例を示す図である。1 shows an example of the relationship between the intensity of X-rays 114 and the Cl (chloride ion) concentration of liquid 75 when terminal 10 is a portable fluorescent X-ray analysis terminal and object 110 is ion exchange membrane 84. It is a diagram. 端末10が携帯型蛍光X線分析端末であり、対象物110が陽極80および陰極82の少なくとも一方である場合における、X線114の強度と電圧CVとの関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the intensity of X-rays 114 and voltage CV when terminal 10 is a portable X-ray fluorescence analysis terminal and object 110 is at least one of anode 80 and cathode 82; 本発明の一つの実施形態に係る解析システム100のブロック図の他の一例を示す図である。It is a figure which shows another example of the block diagram of the analysis system 100 which concerns on one Embodiment of this invention. 、本発明の一つの実施形態に係る解析システム100のブロック図の他の一例を示す図である。3 shows another example of a block diagram of the analysis system 100 according to one embodiment of the present invention. FIG. 解析結果Raの一例を示す図である。It is a figure which shows an example of analysis result Ra. 本発明の一つの実施形態に係る解析システム100のブロック図の他の一例を示す図である。It is a figure which shows another example of the block diagram of the analysis system 100 which concerns on one Embodiment of this invention. 図2におけるイオン交換膜84および導入管92を、陽極80から陰極82への方向に見た図である。3 is a view of the ion exchange membrane 84 and the introduction tube 92 in FIG. 2 viewed in the direction from the anode 80 to the cathode 82. FIG. 本発明の一つの実施形態に係る解析システム100におけるサーバ20のブロック図の他の一例を示す図である。It is a figure which shows another example of the block diagram of the server 20 in the analysis system 100 which concerns on one Embodiment of this invention. 第1状態推論モデル122の一例を示す図である。FIG. 4 is a diagram showing an example of a first state inference model 122; FIG. 第2状態推論モデル132の一例を示す図である。FIG. 13 is a diagram showing an example of a second state inference model 132; FIG. 本発明の一つの実施形態に係る解析方法の一例を含むフローチャートである。1 is a flow chart containing an example of an analysis method according to one embodiment of the present invention; 本発明の一つの実施形態に係る解析システム100が全体的または部分的に具現化されてよいコンピュータ2200の一例を示す図である。FIG. 22 illustrates an example computer 2200 in which analysis system 100 may be embodied in whole or in part, according to one embodiment of the invention.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Although the present invention will be described below through embodiments of the invention, the following embodiments do not limit the invention according to the scope of claims. Also, not all combinations of features described in the embodiments are essential for the solution of the invention.
 図1は、本発明の一つの実施形態に係る電解装置200の一例を示す図である。本例の電解装置200は、電解槽90、導入管92、導入管93、導出管94および導出管95を備える。 FIG. 1 is a diagram showing an example of an electrolytic device 200 according to one embodiment of the present invention. The electrolytic device 200 of this example includes an electrolytic bath 90 , an inlet pipe 92 , an inlet pipe 93 , an outlet pipe 94 and an outlet pipe 95 .
 電解装置200は、電解液を電気分解する装置である。電解槽90は、電解液を電気分解する槽である。当該電解液は、例えばNaCl(塩化ナトリウム)水溶液である。電解槽90は、例えば、NaCl(塩化ナトリウム)水溶液を電気分解することにより、Cl(塩素)とNaOH(水酸化ナトリウム)とH(水素)とを生成する。電解槽90は、複数の電解セル91(電解セル91-1~電解セル91-N。Nは2以上の整数)を備えてよい。Nは、例えば50である。 The electrolytic device 200 is a device that electrolyzes an electrolytic solution. The electrolytic bath 90 is a bath that electrolyzes the electrolytic solution. The electrolytic solution is, for example, an aqueous NaCl (sodium chloride) solution. The electrolytic cell 90 generates Cl 2 (chlorine), NaOH (sodium hydroxide), and H 2 (hydrogen) by, for example, electrolyzing an aqueous solution of NaCl (sodium chloride). The electrolytic bath 90 may include a plurality of electrolytic cells 91 (electrolytic cells 91-1 to 91-N, where N is an integer of 2 or more). N is 50, for example.
 本例において、導入管92および導入管93は、電解セル91-1~電解セル91-Nのそれぞれに接続されている。電解セル91-1~電解セル91-Nのそれぞれには、液体70が導入される。液体70は、導入管92を通過した後、電解セル91-1~電解セル91-Nのそれぞれに導入されてよい。液体70は、アルカリ金属の塩化物の水溶液またはアルカリ金属の水酸化物の水溶液である。アルカリ金属は、元素周期表第1族に属する元素である。液体70がアルカリ金属の塩化物の水溶液である場合、液体70は、例えばNaCl(塩化ナトリウム)水溶液である。液体70がアルカリ金属の水酸化物の水溶液である場合、液体70は、例えばKOH(水酸化カリウム)水溶液またはNaOH(水酸化ナトリウム)水溶液である。 In this example, the introduction pipe 92 and the introduction pipe 93 are connected to the electrolytic cells 91-1 to 91-N, respectively. A liquid 70 is introduced into each of the electrolytic cells 91-1 to 91-N. The liquid 70 may be introduced into each of the electrolytic cells 91-1 to 91-N after passing through the introduction pipe 92. FIG. The liquid 70 is an aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide. Alkali metals are elements belonging to group 1 of the periodic table of the elements. When the liquid 70 is an aqueous solution of an alkali metal chloride, the liquid 70 is, for example, an aqueous NaCl (sodium chloride) solution. When the liquid 70 is an aqueous solution of an alkali metal hydroxide, the liquid 70 is, for example, a KOH (potassium hydroxide) aqueous solution or a NaOH (sodium hydroxide) aqueous solution.
 電解セル91-1~電解セル91-Nのそれぞれには、液体72が導入される。液体72は、導入管93を通過した後、電解セル91-1~電解セル91-Nのそれぞれに導入されてよい。液体72は、アルカリ金属の水酸化物の水溶液である。液体72は、例えばNaOH(水酸化ナトリウム)水溶液である。液体70がアルカリ金属の水酸化物の水溶液である場合、液体72は同じアルカリ金属の水酸化物(例えばKOH)の水溶液である。 A liquid 72 is introduced into each of the electrolytic cells 91-1 to 91-N. After passing through the introduction pipe 93, the liquid 72 may be introduced into each of the electrolytic cells 91-1 to 91-N. The liquid 72 is an aqueous solution of alkali metal hydroxide. The liquid 72 is, for example, NaOH (sodium hydroxide) aqueous solution. When liquid 70 is an aqueous solution of an alkali metal hydroxide, liquid 72 is an aqueous solution of the same alkali metal hydroxide (eg, KOH).
 本例において、導出管94および導出管95は、電解セル91-1~電解セル91-Nのそれぞれに接続されている。電解セル91-1~電解セル91-Nのそれぞれからは、液体76および気体78(後述)が導出される。液体76および気体78(後述)は、導出管95を通過した後、電解装置200の外部に導出されてよい。液体76は、アルカリ金属の水酸化物の水溶液である。液体72がNaOH(水酸化ナトリウム)水溶液である場合、液体76はNaOH(水酸化ナトリウム)水溶液である。気体78(後述)は、H(水素)であってよい。 In this example, the lead-out tube 94 and the lead-out tube 95 are connected to the electrolytic cells 91-1 to 91-N, respectively. A liquid 76 and a gas 78 (described later) are drawn out from each of the electrolytic cells 91-1 to 91-N. The liquid 76 and the gas 78 (described later) may be led out of the electrolytic device 200 after passing through the outlet tube 95 . Liquid 76 is an aqueous solution of an alkali metal hydroxide. When liquid 72 is NaOH (sodium hydroxide) aqueous solution, liquid 76 is NaOH (sodium hydroxide) aqueous solution. Gas 78 (described below) may be H 2 (hydrogen).
 電解セル91-1~電解セル91-Nのそれぞれからは、液体74および気体77(後述)が導出される。液体74および気体77(後述)は、導出管94を通過した後、電解装置200の外部に導出されてよい。液体74は、アルカリ金属の塩化物の水溶液またはアルカリ金属の水酸化物の水溶液である。液体70がNaCl(塩化ナトリウム)水溶液である場合、液体74はNaCl(塩化ナトリウム)水溶液である。液体70がKOH(水酸化カリウム)水溶液である場合、液体74はKOH(水酸化カリウム)水溶液である。液体70がNaCl(塩化ナトリウム)水溶液である場合、気体77(後述)はCl(塩素)である。液体74がKOH(水酸化カリウム)水溶液である場合、気体77(後述)はO(酸素)である。 A liquid 74 and a gas 77 (described later) are drawn out from each of the electrolytic cells 91-1 to 91-N. The liquid 74 and the gas 77 (described later) may be led out of the electrolytic device 200 after passing through the outlet tube 94 . The liquid 74 is an aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide. If the liquid 70 is an aqueous NaCl (sodium chloride) solution, the liquid 74 is an aqueous NaCl (sodium chloride) solution. When the liquid 70 is a KOH (potassium hydroxide) aqueous solution, the liquid 74 is a KOH (potassium hydroxide) aqueous solution. If the liquid 70 is an aqueous NaCl (sodium chloride) solution, the gas 77 (described below) is Cl 2 (chlorine). If the liquid 74 is a KOH (potassium hydroxide) aqueous solution, the gas 77 (described later) is O 2 (oxygen).
 図2は、図1における1つの電解セル91の詳細の一例を示す図である。電解槽90は、陽極室79、陽極80、陰極室98、陰極82およびイオン交換膜84を有する。本例においては、1つの電解セル91が、陽極室79、陽極80、陰極室98、陰極82およびイオン交換膜84を有する。陽極室79および陰極室98は、電解セル91の内部に設けられている。陽極室79と陰極室98とは、イオン交換膜84により仕切られている。陽極室79には、陽極80が配置される。陰極室98には、陰極82が配置される。 FIG. 2 is a diagram showing an example of details of one electrolytic cell 91 in FIG. The electrolytic cell 90 has an anode compartment 79 , an anode 80 , a cathode compartment 98 , a cathode 82 and an ion exchange membrane 84 . In this example, one electrolytic cell 91 has an anode compartment 79 , an anode 80 , a cathode compartment 98 , a cathode 82 and an ion exchange membrane 84 . Anode chamber 79 and cathode chamber 98 are provided inside electrolytic cell 91 . The anode chamber 79 and cathode chamber 98 are separated by an ion exchange membrane 84 . An anode 80 is arranged in the anode chamber 79 . A cathode 82 is arranged in the cathode chamber 98 .
 陽極室79には、導入管92および導出管94が接続されている。陰極室98には、導入管93および導出管95が接続されている。陽極室79には、液体70が導入される。陰極室98には、液体72が導入される。 An introduction pipe 92 and a discharge pipe 94 are connected to the anode chamber 79 . An introduction pipe 93 and an extraction pipe 95 are connected to the cathode chamber 98 . A liquid 70 is introduced into the anode chamber 79 . A liquid 72 is introduced into the cathode chamber 98 .
 イオン交換膜84は、イオン交換膜84に配置されたイオンとは同符号のイオンの通過を阻止し、且つ、異符号のイオンのみを通過させる、膜状の物質である。本例においては、イオン交換膜84は、Na(ナトリウムイオン)を通過させ、且つ、Cl(塩化物イオン)の通過を阻止する膜である。 The ion-exchange membrane 84 is a membrane-like substance that blocks the passage of ions having the same sign as the ions arranged on the ion-exchange membrane 84 and allows only the ions having the opposite sign to pass through. In this example, the ion exchange membrane 84 is a membrane that allows passage of Na + (sodium ions) and blocks passage of Cl (chloride ions).
 陽極80および陰極82は、それぞれ予め定められた正の電位および負の電位に維持されてよい。陽極室79に導入された液体70、および、陰極室98に導入された液体72は、陽極80と陰極82との間の電位差により、電気分解される。陽極80においては、次の化学反応が起こる。
 [化学式1]
 2Cl→Cl+2e
Anode 80 and cathode 82 may be maintained at predetermined positive and negative potentials, respectively. Liquid 70 introduced into anode chamber 79 and liquid 72 introduced into cathode chamber 98 are electrolyzed by the potential difference between anode 80 and cathode 82 . At the anode 80 the following chemical reactions take place.
[Chemical Formula 1]
2Cl →Cl 2 +2e
 液体70がNaCl(塩化ナトリウム)水溶液である場合、NaCl(塩化ナトリウム)は、Na(ナトリウムイオン)とCl(塩化物イオン)とに電離している。陽極80においては、化学式1に示される化学反応によりCl(塩素)ガスが生成される。気体77(当該Cl(塩素)ガス)および液体74は、陽極室79から導出されてよい。Na(ナトリウムイオン)は、陰極82からの引力により、陽極室79からイオン交換膜84を経由した後、陰極室98に移動する。 When the liquid 70 is an NaCl (sodium chloride) aqueous solution, NaCl (sodium chloride) is ionized into Na + (sodium ions) and Cl (chloride ions). At the anode 80, Cl 2 (chlorine) gas is generated by the chemical reaction shown in Chemical Formula 1. Gas 77 (the Cl 2 (chlorine) gas) and liquid 74 may be drawn from the anode chamber 79 . Na + (sodium ions) move from the anode chamber 79 to the cathode chamber 98 after passing through the ion exchange membrane 84 due to the attractive force from the cathode 82 .
 陽極室79においては、液体73が滞留していてよい。液体73は、アルカリ金属の塩化物の水溶液またはアルカリ金属の水酸化物の水溶液である。本例においては、液体73はNaCl(塩化ナトリウム)水溶液である。液体73のNa(ナトリウムイオン)濃度およびCl(塩化物イオン)濃度は、液体70のNa(ナトリウムイオン)濃度およびCl(塩化物イオン)濃度よりも小さくてよい。 The liquid 73 may stay in the anode chamber 79 . The liquid 73 is an aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide. In this example, the liquid 73 is an aqueous NaCl (sodium chloride) solution. The Na + (sodium ion) and Cl (chloride ion) concentrations of liquid 73 may be less than the Na + (sodium ion) and Cl (chloride ion) concentrations of liquid 70 .
 陰極82においては、次の化学反応が起こる。
 [化学式2]
 2HO+2e→H+2OH
At the cathode 82 the following chemical reactions take place.
[Chemical Formula 2]
2H 2 O+2e →H 2 +2OH
 液体72がNaOH(水酸化ナトリウム)水溶液である場合、NaOH(水酸化ナトリウム)は、Na(ナトリウムイオン)とOH(水酸化物イオン)とに電離している。陰極82においては、化学式2に示される化学反応により、H(水素)ガスとOH(水酸化物イオン)が生成される。気体78(当該H(水素)ガス)および液体76は、陰極室98から導出されてよい。 When the liquid 72 is a NaOH (sodium hydroxide) aqueous solution, NaOH (sodium hydroxide) is ionized into Na + (sodium ions) and OH - (hydroxide ions). At the cathode 82, H 2 (hydrogen) gas and OH (hydroxide ions) are produced by the chemical reaction represented by Chemical Formula 2. A gas 78 (such H 2 (hydrogen) gas) and a liquid 76 may be drawn from the cathode chamber 98 .
 陰極室98においては、液体75が滞留していてよい。液体75は、アルカリ金属の水酸化物の水溶液である。本例においては、液体75はNaOH(水酸化ナトリウム)水溶液である。本例においては、陰極室98には、化学式2に示される化学反応より生成したOH(水酸化物イオン)と、陽極室79から移動したNa(ナトリウムイオン)とが溶解した液体75が滞留している。 The liquid 75 may stay in the cathode chamber 98 . The liquid 75 is an aqueous solution of alkali metal hydroxide. In this example, the liquid 75 is an aqueous NaOH (sodium hydroxide) solution. In this example, the cathode chamber 98 contains a liquid 75 in which OH (hydroxide ions) produced by the chemical reaction represented by Chemical Formula 2 and Na + (sodium ions) transferred from the anode chamber 79 are dissolved. staying.
 図3は、図2に示される電解セル91におけるイオン交換膜84の近傍を拡大した図である。本例のイオン交換膜84には、陰イオン基86が固定されている。陰イオンは、陰イオン基86により反発されるので、イオン交換膜84を通過しにくい。本例において、当該陰イオンは、Cl(塩化物イオン)である。陽イオン71は、陰イオン基86により反発されないので、イオン交換膜84を通過できる。液体70(図2参照)がNaCl(塩化ナトリウム)水溶液である場合、陽イオン71はNa(ナトリウムイオン)である。 FIG. 3 is an enlarged view of the vicinity of the ion exchange membrane 84 in the electrolytic cell 91 shown in FIG. Anion groups 86 are immobilized on the ion exchange membrane 84 of this example. Since anions are repelled by the anion groups 86 , they are less likely to pass through the ion exchange membrane 84 . In this example, the anion is Cl (chloride ion). The cations 71 are not repelled by the anionic groups 86 and thus can pass through the ion exchange membrane 84 . If the liquid 70 (see FIG. 2) is an aqueous NaCl (sodium chloride) solution, the cations 71 are Na + (sodium ions).
 図4は、本発明の一つの実施形態に係る解析システム100のブロック図の一例を示す図である。解析システム100は、端末10とサーバ20とを備える。端末10は、元素取得部12を有する。サーバ20は、受信部22と状態解析部24とを有する。状態解析部24は、例えばCPU(Central Processing Unit)である。サーバ20には、後述する解析方法を実行させるための解析プログラムがインストールされていてよく、サーバ20を解析システム100として機能させるための解析プログラムがインストールされていてもよい。 FIG. 4 is a diagram showing an example of a block diagram of the analysis system 100 according to one embodiment of the present invention. Analysis system 100 includes terminal 10 and server 20 . The terminal 10 has an element acquisition unit 12 . The server 20 has a receiver 22 and a state analyzer 24 . The state analysis unit 24 is, for example, a CPU (Central Processing Unit). The server 20 may be installed with an analysis program for executing an analysis method described later, or may be installed with an analysis program for causing the server 20 to function as the analysis system 100 .
 解析システム100は、情報端末30を備えてよい。情報端末30は、表示部32を有してよい。情報端末30は、据置型のコンピュータ端末であってよく、タブレットコンピュータであってもよい。情報端末30がタブレットコンピュータである場合、表示部32は、当該タブレットコンピュータのモニタであってよい。 The analysis system 100 may include an information terminal 30. The information terminal 30 may have a display section 32 . The information terminal 30 may be a stationary computer terminal or a tablet computer. When the information terminal 30 is a tablet computer, the display section 32 may be a monitor of the tablet computer.
 情報端末30と端末10とは、有線99により通信してよく、WiFi(登録商標)、Bluetooth(登録商標)等の近距離無線により通信してもよい。有線99は、例えばUSBケーブル等である。本例において、情報端末30は、第1送信部14を有する。 The information terminal 30 and the terminal 10 may communicate by wire 99, or by short-range wireless communication such as WiFi (registered trademark) and Bluetooth (registered trademark). The wire 99 is, for example, a USB cable or the like. In this example, the information terminal 30 has a first transmitter 14 .
 電解槽90とサーバ20とは、異なる位置に配置されてよい。異なる位置とは、異なる地理上の位置を指してよい。サーバ20は、例えば日本の都市Aに設置される。サーバ20が日本の都市Aに設置される場合、電解槽90は、都市Aと異なる日本の都市Bに設置されてよく、日本以外の外国に設置されてもよい。サーバ20が配置されている位置を、位置Saとする。電解槽90が配置されている位置を、位置Sbとする。 The electrolytic cell 90 and the server 20 may be arranged at different positions. Different locations may refer to different geographic locations. The server 20 is installed, for example, in city A in Japan. When the server 20 is installed in a Japanese city A, the electrolyzer 90 may be installed in a Japanese city B different from the city A, or may be installed in a foreign country other than Japan. The position where the server 20 is arranged is assumed to be position Sa. The position where the electrolytic bath 90 is arranged is defined as position Sb.
 電解槽90と、端末10および情報端末30とは、同じ位置に配置されてよい。同じ位置とは、地理上の同じ位置を指してよい。端末10および情報端末30は、位置Sbに配置されてよい。電解槽90が所定の工場に設置されている場合、当該所定の工場において、電解槽90と、端末10および情報端末30とは、同じユーザにより使用されてよい。 The electrolytic cell 90, the terminal 10 and the information terminal 30 may be arranged at the same position. The same location may refer to the same geographical location. Terminal 10 and information terminal 30 may be located at position Sb. When electrolytic cell 90 is installed in a predetermined factory, electrolytic cell 90, terminal 10 and information terminal 30 may be used by the same user in the predetermined factory.
 元素取得部12は、電解槽90(図1参照)における対象物110に含まれる元素の量を取得する。端末10は、例えば携帯型蛍光X線分析端末である。端末10が携帯型蛍光X線分析端末である場合、端末10は、対象物110にX線112を照射する。対象物110に照射されたX線112は、対象物110に含まれる元素における内殻の電子を殻外に放出させる。殻外に放出させられた電子が内殻に落ち込むとき、対象物110から当該元素特有のエネルギーのX線114が放射される。端末10が携帯型蛍光X線分析端末である場合、元素取得部12は、放射されたX線114の強度を測定することにより、元素の量を取得する。X線114の強度とは、X線114が元素取得部12により単位時間当たりに取得されるカウント数を指してよい。X線114の強度が強いほど、元素取得部12により取得された元素の量は大きい。 The element acquisition unit 12 acquires the amount of elements contained in the object 110 in the electrolytic bath 90 (see FIG. 1). The terminal 10 is, for example, a portable fluorescent X-ray analysis terminal. If the terminal 10 is a portable X-ray fluorescence analysis terminal, the terminal 10 irradiates an object 110 with X-rays 112 . The X-rays 112 irradiated to the object 110 cause inner-shell electrons in elements contained in the object 110 to be emitted out of the shell. When the electrons emitted out of the shell fall into the inner shell, the object 110 emits X-rays 114 with energy peculiar to the element. If the terminal 10 is a portable X-ray fluorescence analysis terminal, the element acquisition unit 12 acquires the amount of the element by measuring the intensity of the emitted X-rays 114 . The intensity of the X-rays 114 may refer to the number of counts of the X-rays 114 obtained by the element obtaining unit 12 per unit time. The stronger the intensity of the X-rays 114, the greater the amount of the element acquired by the element acquiring unit 12. FIG.
 対象物110は、イオン交換膜84(図2参照)であってよく、陽極80(図2参照)であってもよく、陰極82(図2参照)であってもよい。対象物110は、電解槽90に設置されたままのイオン交換膜84であってよく、陽極80であってよく、陰極82であってよい。端末10が携帯型蛍光X線分析端末である場合、元素取得部12は、電解槽90に設置されたままの対象物110に含まれる元素の量を取得できる。 The object 110 may be the ion exchange membrane 84 (see FIG. 2), the anode 80 (see FIG. 2), or the cathode 82 (see FIG. 2). Object 110 may be ion exchange membrane 84 as installed in electrolytic cell 90 , anode 80 , or cathode 82 . When the terminal 10 is a portable X-ray fluorescence analysis terminal, the element acquiring unit 12 can acquire the amount of elements contained in the target object 110 as it is installed in the electrolytic cell 90 .
 元素取得部12は、対象物110に含まれる元素の種類をさらに取得してよい。対象物110にX線112が照射された場合、対象物110から放射されるX線114のエネルギーは、元素の種類に依存する。このため、端末10が携帯型蛍光X線分析端末である場合、元素取得部12は、放射されたX線114のエネルギーを測定することにより、元素の種類を取得できる。 The element acquisition unit 12 may further acquire the types of elements contained in the target object 110 . When the object 110 is irradiated with the X-rays 112, the energy of the X-rays 114 emitted from the object 110 depends on the type of element. Therefore, when the terminal 10 is a portable X-ray fluorescence analysis terminal, the element acquisition unit 12 can acquire the type of element by measuring the energy of the emitted X-rays 114 .
 電解槽90(図1参照)には、原塩が溶解した塩水に予め定められた処理がされた液体70(図1参照)が導入される。予め定められた処理とは、例えば、クラリファイヤによる、塩水に含まれるSS(サスペンデッドソリッド)の沈殿、セラミックフィルタによる当該SSの除去、樹脂塔による、塩水に含まれるCa(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)およびMg(マグネシウム)の少なくとも一つの除去、等である。原塩には、I(ヨウ素)が含まれる場合がある。 A liquid 70 (see FIG. 1) obtained by subjecting salt water in which raw salt is dissolved to a predetermined treatment is introduced into the electrolytic cell 90 (see FIG. 1). Predetermined treatments include, for example, precipitation of SS (suspended solids) contained in salt water by a clarifier, removal of the SS by a ceramic filter, Ca (calcium), Sr (strontium) contained in salt water by a resin tower, ), removal of at least one of Ba (barium) and Mg (magnesium), and the like. The raw salt may contain I (iodine).
 電解槽90は液体70を電気分解するので、電解槽90の稼働時間に伴い、塩水に対する予め定められた処理において導入された元素がイオン交換膜84(図2参照)に蓄積する場合がある。当該元素がイオン交換膜84に蓄積した場合、イオン交換膜84のイオン交換性能が低下し得る。 Since the electrolytic cell 90 electrolyzes the liquid 70, the elements introduced in the predetermined treatment of the salt water may accumulate in the ion exchange membrane 84 (see FIG. 2) as the electrolytic cell 90 operates. When the element is accumulated in the ion exchange membrane 84, the ion exchange performance of the ion exchange membrane 84 may be deteriorated.
 陽極80および陰極82は、それぞれ液体73および液体75に接触している。液体73および液体75は、電解液である。陽極80および陰極82の表面には、電解槽90の電圧が上昇することを抑制するため、Ru(ルテニウム)等がコーティングされている場合がある。陽極80および陰極82の表面にされたコーティングが劣化した場合、陽極80、イオン交換膜84および陰極82の間の電圧が上昇しやすい。 Anode 80 and cathode 82 are in contact with liquid 73 and liquid 75, respectively. Liquid 73 and liquid 75 are electrolytic solutions. The surfaces of the anode 80 and the cathode 82 may be coated with Ru (ruthenium) or the like in order to prevent the voltage of the electrolytic cell 90 from increasing. If the coating applied to the surface of anode 80 and cathode 82 deteriorates, the voltage between anode 80, ion exchange membrane 84 and cathode 82 tends to rise.
 解析システム100のユーザは、端末10をイオン交換膜84、陽極80および陰極82の少なくとも一つに近接させることにより、イオン交換膜84、陽極80および陰極82の少なくとも一つに含まれる元素の量および種類を取得してよい。これにより、解析システム100のユーザは、イオン交換膜84、陽極80および陰極82の少なくとも一つを電解槽90から外すことなく、当該元素の量を取得できる。解析システム100のユーザは、電解槽90に設置されている状態のイオン交換膜84、陽極80および陰極82の少なくとも一つに含まれる元素の量および種類を取得してよい。 A user of the analysis system 100 can measure the amount of the element contained in at least one of the ion exchange membrane 84, the anode 80 and the cathode 82 by bringing the terminal 10 close to at least one of the ion exchange membrane 84, the anode 80 and the cathode 82. and type. Thereby, the user of the analysis system 100 can obtain the amount of the element without removing at least one of the ion exchange membrane 84 , the anode 80 and the cathode 82 from the electrolytic cell 90 . A user of the analysis system 100 may acquire the amount and type of elements contained in at least one of the ion exchange membrane 84 , the anode 80 and the cathode 82 installed in the electrolytic cell 90 .
 図5は、元素取得部12により取得された元素の量および種類の取得結果の一例を示す図である。本例において、元素の量はX線114(図4参照)の強度で表され、元素の種類はX線114がピークを示すエネルギーで表される。本例において、X線114はスペクトル状に分布している。元素取得部12は、X線114のスペクトル状の分布を取得してよい。 FIG. 5 is a diagram showing an example of the acquisition result of the amount and type of elements acquired by the element acquisition unit 12. FIG. In this example, the amount of an element is represented by the intensity of the X-ray 114 (see FIG. 4), and the type of element is represented by the energy at which the X-ray 114 shows a peak. In this example, the x-rays 114 are spectrally distributed. The element acquisition unit 12 may acquire a spectral distribution of the X-rays 114 .
 第1送信部14(図4参照)は、元素取得部12により取得された元素の量を送信する。第1送信部14は、元素取得部12により取得された元素の量および種類を送信してよい。第1送信部14は、当該元素の量および種類を無線により送信してよい。本明細書において無線とは、有線によらない通信を指す。無線とは、インターネット経由による全ての通信を指してよく、Wi-Fi(登録商標)、Bluetooth(登録商標)等の近距離無線による通信に限られない。第1送信部14は、図5に示される、X線114のスペクトル状の分布を無線送信してよい。 The first transmission unit 14 (see FIG. 4) transmits the amount of the element acquired by the element acquisition unit 12. The first transmission unit 14 may transmit the amount and type of the element acquired by the element acquisition unit 12 . The first transmitter 14 may wirelessly transmit the amount and type of the element. As used herein, wireless refers to communication that does not rely on wires. Wireless may refer to all communications via the Internet, and is not limited to short-range wireless communications such as Wi-Fi (registered trademark) and Bluetooth (registered trademark). The first transmitter 14 may wirelessly transmit the spectral distribution of the X-rays 114 shown in FIG.
 受信部22(図4参照)は、元素取得部12により取得された元素の量を受信する。本例においては、受信部22は、第1送信部14により送信された元素の量を受信する。受信部22は、第1送信部14により送信された元素の量および種類を受信してよい。受信部22は、当該元素の量および種類を無線により受信してよい。受信部22は、第1送信部14により送信された、X線114のスペクトル状の分布を無線により受信してよい。 The receiving unit 22 (see FIG. 4) receives the amount of the element acquired by the element acquiring unit 12. In this example, the receiver 22 receives the amount of the element transmitted by the first transmitter 14 . The receiving unit 22 may receive the amount and type of element transmitted by the first transmitting unit 14 . The receiving unit 22 may wirelessly receive the amount and type of the element. The receiver 22 may wirelessly receive the spectral distribution of the X-rays 114 transmitted by the first transmitter 14 .
 状態解析部24は、受信部22により受信された元素の量に基づいて、対象物110の状態を解析する。対象物110がイオン交換膜84である場合、対象物110の状態とは、イオン交換膜84のイオン交換性能の状態であってよい。イオン交換膜84のイオン交換性能が劣化した場合、電解槽90の電流効率が低下する場合がある。当該電流効率を、電流効率CEとする。電流効率CEは、電解槽90の電流効率を指してよく、イオン交換膜84の電流効率を指してもよい。 The state analysis unit 24 analyzes the state of the object 110 based on the amount of elements received by the reception unit 22 . When the object 110 is the ion exchange membrane 84 , the state of the object 110 may be the ion exchange performance state of the ion exchange membrane 84 . When the ion exchange performance of the ion exchange membrane 84 deteriorates, the current efficiency of the electrolytic cell 90 may decrease. This current efficiency is referred to as current efficiency CE. The current efficiency CE may refer to the current efficiency of the electrolytic cell 90 and may refer to the current efficiency of the ion exchange membrane 84 .
 電流効率CEとは、電解槽90により生産される生産物の理論上の生産量に対する実際の生産量の割合を指す。当該生産物を、生産物Pとする。生産物Pの理論上の生産量を、生産量Paとする。生産物Pの実際の生産量を、生産量Prとする。電流効率CEとは、生産量Paに対する生産量Prの割合を指す。  The current efficiency CE refers to the ratio of the actual production volume to the theoretical production volume of the product produced by the electrolytic cell 90. Let the product concerned be the product P. The theoretical production amount of the product P is assumed to be the production amount Pa. Let the actual production amount of the product P be the production amount Pr. The current efficiency CE refers to the ratio of the production amount Pr to the production amount Pa.
 イオン交換膜84のイオン交換性能が劣化した場合、電解槽90の電圧が上昇する場合がある。当該電圧を、電圧CVとする。電圧CVは、電解セル91(図1参照)一つ当たりの電圧であってよい。 When the ion exchange performance of the ion exchange membrane 84 deteriorates, the voltage of the electrolytic cell 90 may rise. This voltage is referred to as voltage CV. The voltage CV may be the voltage per electrolytic cell 91 (see FIG. 1).
 イオン交換膜84のイオン交換性能が劣化した場合、液体73(図2参照)の陰イオンがイオン交換膜84を通過する場合がある。液体73(図2参照)の陰イオンがイオン交換膜84を通過した場合、当該陰イオンは液体75に含まれる。液体73がNaCl(塩化ナトリウム)水溶液であり、液体75がNaOH(水酸化ナトリウム)水溶液である場合、イオン交換膜84を通過したCl(塩化物イオン)は、NaOH(水酸化ナトリウム)水溶液に含まれる。イオン交換膜84のイオン交換性能が劣化するほど、NaOH(水酸化ナトリウム)水溶液のCl(塩化物イオン)濃度は高くなりやすい。NaOH(水酸化ナトリウム)水溶液のCl(塩化物イオン)濃度は、いわゆる苛性中食塩濃度である。 When the ion exchange performance of the ion exchange membrane 84 deteriorates, anions of the liquid 73 (see FIG. 2) may pass through the ion exchange membrane 84 . When the anions of liquid 73 (see FIG. 2) pass through ion exchange membrane 84 , the anions are contained in liquid 75 . When the liquid 73 is an aqueous NaCl (sodium chloride) solution and the liquid 75 is an aqueous NaOH (sodium hydroxide) solution, Cl (chloride ions) that have passed through the ion exchange membrane 84 are converted into an aqueous NaOH (sodium hydroxide) solution. included. As the ion exchange performance of the ion exchange membrane 84 deteriorates, the Cl (chloride ion) concentration of the NaOH (sodium hydroxide) aqueous solution tends to increase. The Cl (chloride ion) concentration of an aqueous NaOH (sodium hydroxide) solution is the so-called sodium chloride concentration.
 対象物110がイオン交換膜84である場合、対象物110の状態を解析するとは、イオン交換膜84に含まれる元素の種類および量を解析することにより、電流効率CEの低下をもたらしている原因を特定することを指してよく、電圧CVの上昇をもたらしている原因を特定することを指してもよい。 When the target object 110 is the ion exchange membrane 84, analyzing the state of the target object 110 means analyzing the types and amounts of elements contained in the ion exchange membrane 84, thereby reducing the current efficiency CE. and may refer to identifying the cause of the increase in voltage CV.
 対象物110が陽極80および陰極82である場合、対象物110の状態とは、陽極80および陰極82の表面にコーティングされている金属等のコーティング状態であってよい。陽極80および陰極82のコーティング状態が劣化した場合、電圧CVが上昇する場合がある。対象物110が陽極80および陰極82である場合、対象物110の状態を解析するとは、陽極80および陰極82に含まれる元素の種類および量を解析することにより、電圧CVの上昇をもたらしている原因を特定することを指してよい。 When the object 110 is the anode 80 and the cathode 82, the state of the object 110 may be the coating state of metal or the like coated on the surfaces of the anode 80 and the cathode 82. If the coating condition of anode 80 and cathode 82 deteriorates, voltage CV may increase. When the object 110 is the anode 80 and the cathode 82, analyzing the state of the object 110 means analyzing the types and amounts of elements contained in the anode 80 and the cathode 82, thereby increasing the voltage CV. It may refer to identifying the cause.
 図6および図7は、端末10が携帯型蛍光X線分析端末であり、対象物110がイオン交換膜84である場合における、X線114の強度と電流効率CEとの関係の一例、および、X線114の強度と電圧CVとの関係の一例をそれぞれ示す図である。図8は、端末10が携帯型蛍光X線分析端末であり、対象物110がイオン交換膜84である場合における、X線114の強度と、液体75のCl(塩化物イオン)濃度との関係の一例を示す図である。図9は、端末10が携帯型蛍光X線分析端末であり、対象物110が陽極80および陰極82の少なくとも一方である場合における、X線114の強度と電圧CVとの関係の一例を示す図である。図6~図9におけるX線114の強度は、図5において強度のピークを示したいずれかのエネルギーの元素によるX線114の強度であってよい。 6 and 7 show an example of the relationship between the intensity of the X-rays 114 and the current efficiency CE when the terminal 10 is a portable X-ray fluorescence analysis terminal and the object 110 is the ion exchange membrane 84, and 4A and 4B are diagrams each showing an example of the relationship between the intensity of the X-ray 114 and the voltage CV; FIG. FIG. 8 shows the intensity of X-rays 114 and the Cl (chloride ion) concentration of liquid 75 when terminal 10 is a portable X-ray fluorescence analysis terminal and object 110 is ion exchange membrane 84 . It is a figure which shows an example of relationship. FIG. 9 is a diagram showing an example of the relationship between the intensity of the X-ray 114 and the voltage CV when the terminal 10 is a portable X-ray fluorescence analysis terminal and the object 110 is at least one of the anode 80 and the cathode 82. is. The intensity of the X-rays 114 in FIGS. 6-9 may be the intensity of the X-rays 114 from any of the energy elements whose intensity peaks are shown in FIG.
 図6および図7に示されるとおり、対象物110がイオン交換膜84である場合、X線114の強度が強いほど、電流効率CEは小さくなりやすく、電圧CVは大きくなりやすい。図6に示されるX線114の強度と電流効率CEとの関係を、電流効率CEと元素の量との予め定められた第1関係R1とする。図7に示されるX線114の強度と電圧CVとの関係を、電圧CVと元素の量との予め定められた第2関係R21とする。 As shown in FIGS. 6 and 7, when the object 110 is the ion exchange membrane 84, the stronger the intensity of the X-rays 114, the smaller the current efficiency CE and the larger the voltage CV. Let the relationship between the intensity of the X-ray 114 and the current efficiency CE shown in FIG. 6 be a predetermined first relationship R1 between the current efficiency CE and the amount of the element. Let the relationship between the intensity of the X-ray 114 and the voltage CV shown in FIG. 7 be a predetermined second relationship R21 between the voltage CV and the amount of the element.
 図8に示されるとおり、対象物110がイオン交換膜84である場合、X線114の強度が強いほど、液体75のCl(塩化物イオン)濃度は高くなりやすい。図8に示される、X線114の強度と液体75のCl(塩化物イオン)濃度との関係を、アルカリ金属の水酸化物の水溶液におけるCl(塩化物イオン)濃度と、元素の量との予め定められた第3関係R3とする。 As shown in FIG. 8, when the object 110 is the ion exchange membrane 84, the higher the intensity of the X-rays 114, the higher the Cl (chloride ion) concentration of the liquid 75 tends to be. The relationship between the intensity of the X-ray 114 and the Cl- ( chloride ion) concentration of the liquid 75 shown in FIG. and a predetermined third relationship R3.
 図9に示されるとおり、対象物110が陽極80および陰極82の少なくとも一方である場合、X線114の強度が弱いほど電圧CVは大きくなりやすく、X線114の強度が弱いほど電圧CVの変化率は大きくなりやすい。図9に示されるX線114の強度と電圧CVとの関係を、電圧CVと元素の量との予め定められた第2関係R22とする。 As shown in FIG. 9, when the object 110 is at least one of the anode 80 and the cathode 82, the weaker the intensity of the X-rays 114, the higher the voltage CV. rate tends to be large. Let the relationship between the intensity of the X-ray 114 and the voltage CV shown in FIG. 9 be a predetermined second relationship R22 between the voltage CV and the amount of the element.
 状態解析部24(図4参照)は、第1関係R1に基づいてイオン交換膜84の状態を解析してよい。状態解析部24は、第2関係R21に基づいてイオン交換膜84の状態を解析してもよい。状態解析部24は、第1関係R1と第2関係R21とに基づいて、イオン交換膜84の状態を解析してもよい。状態解析部24は、第2関係R22に基づいて、陽極80および陰極82の少なくとも一方の状態を解析してよい。状態解析部24は、第3関係R3に基づいてイオン交換膜84の状態を解析してよい。 The state analysis unit 24 (see FIG. 4) may analyze the state of the ion exchange membrane 84 based on the first relationship R1. The state analysis unit 24 may analyze the state of the ion exchange membrane 84 based on the second relationship R21. The state analysis unit 24 may analyze the state of the ion exchange membrane 84 based on the first relationship R1 and the second relationship R21. State analysis unit 24 may analyze the state of at least one of anode 80 and cathode 82 based on second relationship R22. The state analysis unit 24 may analyze the state of the ion exchange membrane 84 based on the third relationship R3.
 図10は、本発明の一つの実施形態に係る解析システム100のブロック図の他の一例を示す図である。本例の解析システム100においては、サーバ20は、運転条件取得部23、記憶部25および第2送信部27をさらに有する。本例の解析システム100は、係る点において図4に示される解析システム100と異なる。 FIG. 10 is a diagram showing another example of a block diagram of the analysis system 100 according to one embodiment of the present invention. In the analysis system 100 of this example, the server 20 further has an operating condition acquisition section 23 , a storage section 25 and a second transmission section 27 . The analysis system 100 of this example differs from the analysis system 100 shown in FIG. 4 in this respect.
 第2送信部27は、状態解析部24により解析された対象物110の状態の解析結果を、情報端末30に送信する。当該解析結果を、解析結果Raとする。第2送信部27は、解析結果Raを情報端末30に無線送信してよい。表示部32には、解析結果Raが表示されてよい。 The second transmission unit 27 transmits the analysis result of the state of the object 110 analyzed by the state analysis unit 24 to the information terminal 30 . Let the analysis result be the analysis result Ra. The second transmitter 27 may wirelessly transmit the analysis result Ra to the information terminal 30 . The display unit 32 may display the analysis result Ra.
 本例においては、端末10において元素取得部12により取得された、対象物110に含まれる元素の量が第1送信部14によりサーバ20に送信され、サーバ20において、当該元素の量に基づいて、状態解析部24により対象物110の状態が解析される。このため、解析システム100のユーザは、状態を解析するための対象物110のサンプルを位置Sbから位置Saへ送付しなくとも、解析結果Raを認知できる。対象物110のサンプルが位置Sbから位置Saへ送付される場合と比較して、対象物110に含まれる元素の量を取得されてから解析結果Raが算出されるまでの時間が、短縮されやすくなる。 In this example, the amount of the element contained in the target object 110 acquired by the element acquisition unit 12 in the terminal 10 is transmitted to the server 20 by the first transmission unit 14, and the server 20 performs , the state of the object 110 is analyzed by the state analysis unit 24 . Therefore, the user of the analysis system 100 can recognize the analysis result Ra without sending a sample of the object 110 for analyzing the state from the position Sb to the position Sa. Compared to the case where the sample of the object 110 is sent from the position Sb to the position Sa, the time from the acquisition of the amount of the element contained in the object 110 to the calculation of the analysis result Ra tends to be shortened. Become.
 本例において、解析結果Raは、第2送信部27により情報端末30に送信される。このため、電解槽90のユーザは、端末10により取得した元素の量に基づく解析結果Raを、表示部32を見ることにより即座に認知できる。電解槽90のユーザは、解析結果Raを見ながら電解槽90を作業できる。 In this example, the analysis result Ra is transmitted to the information terminal 30 by the second transmission unit 27. Therefore, the user of the electrolytic bath 90 can immediately recognize the analysis result Ra based on the amount of the element obtained by the terminal 10 by looking at the display section 32 . A user of the electrolytic cell 90 can operate the electrolytic cell 90 while viewing the analysis result Ra.
 運転条件取得部23は、電解槽90の運転条件を取得する。当該運転条件を、運転条件Cdとする。運転条件Cdとは、対象物110の状態に影響を与え得る、電解槽90の運転状況を指す。運転条件Cdには、電解槽90に供給される電流、電解槽90の電流効率CE、電解槽90の電圧CV、液体70(図2参照)のpHおよび流量、液体72(図2参照)のpHおよび流量、生産物Pの目標生産量等が含まれてよい。運転条件取得部23は、電解槽90から無線により運転条件Cdを取得してよい。 The operating condition acquisition unit 23 acquires the operating conditions of the electrolytic cell 90 . This operating condition is referred to as operating condition Cd. The operating condition Cd refers to operating conditions of the electrolytic cell 90 that can affect the state of the object 110 . The operating conditions Cd include the current supplied to the electrolytic cell 90, the current efficiency CE of the electrolytic cell 90, the voltage CV of the electrolytic cell 90, the pH and flow rate of the liquid 70 (see FIG. 2), the pH and flow rate, target production of product P, etc. may be included. The operating condition acquisition unit 23 may wirelessly acquire the operating condition Cd from the electrolytic cell 90 .
 運転条件Cdは、継続的に取得をされてよく、定期的に取得されてもよい。定期的な取得とは、例えば午前8時から午後20時までの毎日の取得、継続的な8時間の取得を3日おき等、予め定められた時間間隔をおいた継続的な取得を指す。 The operating condition Cd may be acquired continuously or periodically. Periodic acquisition refers to continuous acquisition at predetermined time intervals, such as daily acquisition from 8:00 am to 20:00 pm, or continuous acquisition for 8 hours every three days.
 記憶部25には、運転条件取得部23により取得された運転条件Cdと、対象物110に含まれる元素の種類および量とが記憶されてよい。電解槽90が複数の運転条件Cdで稼働される場合、記憶部25には、複数の運転条件Cdごとに、元素の種類および量が記憶されてよい。記憶部25には、解析結果Raがさらに記憶されてよい。 The storage unit 25 may store the operating conditions Cd acquired by the operating condition acquisition unit 23 and the types and amounts of elements contained in the object 110 . When the electrolytic cell 90 is operated under a plurality of operating conditions Cd, the storage unit 25 may store the types and amounts of elements for each of the plurality of operating conditions Cd. The storage unit 25 may further store the analysis result Ra.
 なお、運転条件Cdは、運転条件取得部23により取得されなくてもよい。記憶部25には、解析システム100のユーザにより入力された運転条件Cdが記憶されてもよい。 Note that the operating condition Cd does not have to be acquired by the operating condition acquisition unit 23. The storage unit 25 may store the operating conditions Cd input by the user of the analysis system 100 .
 図11は、本発明の一つの実施形態に係る解析システム100のブロック図の他の一例を示す図である。本例の解析システム100は、複数の端末10および複数の情報端末30を備える点で、図10に示される解析システム100と異なる。 FIG. 11 is a diagram showing another example of a block diagram of the analysis system 100 according to one embodiment of the present invention. The analysis system 100 of this example differs from the analysis system 100 shown in FIG. 10 in that it includes multiple terminals 10 and multiple information terminals 30 .
 本例においては、複数の電解槽90は、それぞれ異なる位置に配置されている。本例において、電解槽90-1は位置Sb1に配置され、電解槽90-2は位置Sb2に配置され、電解槽90-mは位置Sbmに配置されている。ここで、mは2以上の整数である。 In this example, the plurality of electrolytic cells 90 are arranged at different positions. In this example, electrolytic bath 90-1 is placed at position Sb1, electrolytic bath 90-2 is placed at position Sb2, and electrolytic bath 90-m is placed at position Sbm. Here, m is an integer of 2 or more.
 位置Sb1~位置Sbmは、それぞれ異なる地理上の位置であってよい。位置Sb1は例えば米国の所定の都市であり、位置Sb2は例えば欧州の所定の都市であり、位置Sbmは例えば豪州の所定の都市である。本例において、端末10-1および情報端末30-1は位置Sb1に配置され、端末10-2および情報端末30-2は位置Sb2に配置され、端末10-mおよび情報端末30-mは位置Sbmに配置されている。 The positions Sb1 to Sbm may be different geographical positions. The position Sb1 is, for example, a predetermined city in the United States, the position Sb2 is, for example, a predetermined city in Europe, and the position Sbm is, for example, a predetermined city in Australia. In this example, terminal 10-1 and information terminal 30-1 are located at location Sb1, terminal 10-2 and information terminal 30-2 are located at location Sb2, and terminal 10-m and information terminal 30-m are located at location Sb2. Located in Sbm.
 本例においては、複数の端末10におけるそれぞれの元素取得部12は、複数の対象物110のそれぞれに含まれる元素の量をそれぞれ取得する。サーバ20における受信部22は、複数の端末10におけるそれぞれの元素取得部12により取得された元素の量を受信する。本例においては、複数の情報端末30におけるそれぞれの第1送信部14が、複数の対象物110のそれぞれに含まれる元素の量をそれぞれ送信し、受信部22が、第1送信部14により送信された、それぞれの当該元素の量を受信する。 In this example, each of the element acquisition units 12 in the plurality of terminals 10 acquires the amount of the element contained in each of the plurality of targets 110 . The receiving unit 22 in the server 20 receives the amount of the element acquired by each of the element acquiring units 12 in the plurality of terminals 10 . In this example, each of the first transmitters 14 in the plurality of information terminals 30 transmits the amount of the element contained in each of the plurality of objects 110, and the receiver 22 transmits by the first transmitter 14 Receive the amount of each element of interest that has been added.
 サーバ20における状態解析部24は、複数の端末10におけるそれぞれの元素取得部12により取得され受信部22により受信された元素の量に基づいて、一の対象物110の状態を解析する。本例においては、状態解析部24は、複数の情報端末30におけるそれぞれの第1送信部14により送信され受信部22により受信されたそれぞれの元素の量に基づいて、一の対象物110の状態を解析する。一の対象物110とは、電解槽90-1~電解槽90-mのいずれか一つまたは複数の対象物110を指す。 The state analysis unit 24 in the server 20 analyzes the state of one target object 110 based on the amounts of elements acquired by the element acquisition units 12 in the plurality of terminals 10 and received by the reception unit 22 . In this example, the state analysis unit 24 determines the state of one target object 110 based on the amount of each element transmitted by the first transmission unit 14 of each of the plurality of information terminals 30 and received by the reception unit 22. to parse One object 110 refers to one or a plurality of objects 110 among the electrolytic baths 90-1 to 90-m.
 記憶部25には、複数の電解槽90におけるそれぞれの運転条件Cdと、複数の対象物110のそれぞれに含まれる元素の種類および量とが記憶されてよい。記憶部25には、複数の電解槽90ごとに、運転条件Cdと、元素の種類および量とが記憶されてよい。 The storage unit 25 may store the operating conditions Cd for each of the plurality of electrolytic cells 90 and the types and amounts of elements contained in each of the plurality of objects 110 . The storage unit 25 may store the operating conditions Cd and the types and amounts of elements for each of the plurality of electrolytic cells 90 .
 状態解析部24は、複数の電解槽90におけるそれぞれの電流効率CEと、複数の対象物110のそれぞれに含まれる元素の量とに基づいて、第1関係R1(図6参照)を算出してよい。第1関係R1は、予め定められていてよく、状態解析部24により算出されてもよい。状態解析部24は、複数の電解槽90におけるそれぞれの電圧CVと、複数の対象物110のそれぞれに含まれる元素の量とに基づいて、第2関係R21(図7参照)および第2関係R22(図9参照)を算出してよい。第2関係R21および第2関係R22は、予め定められていてよく、状態解析部24により算出されてもよい。第1関係R1、第2関係R21および第2関係R22は、記憶部25に記憶されてもよい。 The state analysis unit 24 calculates a first relationship R1 (see FIG. 6) based on the respective current efficiencies CE in the plurality of electrolytic cells 90 and the amounts of elements contained in the plurality of objects 110. good. The first relationship R1 may be determined in advance, or may be calculated by the state analysis unit 24 . The state analysis unit 24 determines a second relationship R21 (see FIG. 7) and a second relationship R22 (see FIG. 9) may be calculated. The second relationship R<b>21 and the second relationship R<b>22 may be predetermined or calculated by the state analysis unit 24 . The first relationship R1, the second relationship R21 and the second relationship R22 may be stored in the storage unit 25.
 状態解析部24は、受信部22により受信された元素の量と、記憶部25に記憶された第1関係R1とに基づいて、一のイオン交換膜84の状態を解析してよい。これにより、解析システム100のユーザは、他のイオン交換膜84の状態と比較した一のイオン交換膜84の状態を認知できる。本例においては、受信部22が複数の情報端末30におけるそれぞれの第1送信部14により送信された元素の量を受信するので、受信部22は、相互に遠距離に離隔されて配置された電解槽90における対象物110の元素の量を受信でき、且つ、状態解析部24は一のイオン交換膜84の状態を解析できる。このため、解析システム100のユーザは、状態を解析するための対象物110のサンプルを複数の位置Sbのそれぞれから位置Saへ送付しなくとも、解析結果Raを認知できる。対象物110のサンプルが複数の位置Sbのそれぞれから位置Saへ送付される場合と比較して、状態解析部24による解析結果Raの算出は、容易になる。 The state analysis unit 24 may analyze the state of one ion exchange membrane 84 based on the amount of the element received by the reception unit 22 and the first relationship R1 stored in the storage unit 25. This allows the user of the analysis system 100 to recognize the state of one ion-exchange membrane 84 compared with the state of other ion-exchange membranes 84 . In this example, since the receiving units 22 receive the amounts of the elements transmitted by the respective first transmitting units 14 in the plurality of information terminals 30, the receiving units 22 are arranged far apart from each other. The quantity of elements of the object 110 in the electrolytic cell 90 can be received, and the state analysis unit 24 can analyze the state of one ion exchange membrane 84 . Therefore, the user of the analysis system 100 can recognize the analysis result Ra without sending samples of the object 110 for analyzing the state from each of the plurality of positions Sb to the position Sa. Calculation of the analysis result Ra by the state analysis unit 24 becomes easier than when samples of the target object 110 are sent from each of the plurality of positions Sb to the position Sa.
 同様に、状態解析部24は、受信部22により受信された元素の量と、記憶部25に記憶された第2関係R21とに基づいて、一のイオン交換膜84の状態を解析してよい。同様に、状態解析部24は、受信部22により受信された元素の量と、記憶部25に記憶された第2関係R22とに基づいて、一の陽極80または陰極82の状態を解析してよい。 Similarly, the state analysis unit 24 may analyze the state of the one ion exchange membrane 84 based on the amount of the element received by the reception unit 22 and the second relationship R21 stored in the storage unit 25. . Similarly, the state analysis unit 24 analyzes the state of one anode 80 or cathode 82 based on the amount of the element received by the reception unit 22 and the second relationship R22 stored in the storage unit 25. good.
 複数の元素取得部12のそれぞれは、複数の電解槽90のうち一の電解槽90における対象物110と、他の電解槽90における対象物110とを識別する識別情報をさらに取得してよい。当該識別情報を、識別情報Idとする。対象物110がイオン交換膜84である場合、識別情報Idは、イオン交換膜84の種類であってよい。イオン交換膜84の種類とは、イオン交換膜84における陰イオン基86(図3参照)の密度、イオン交換膜84の厚さ等、イオン交換膜84の個体ごとに異なり得る物理量であってよい。イオン交換膜84の種類とは、当該個体ごとの、いわゆるロット番号であってもよい。イオン交換膜84の種類とは、陰イオン基86(図3参照)の種類であってもよい。 Each of the multiple element acquisition units 12 may further acquire identification information for identifying the target object 110 in one electrolytic bath 90 of the multiple electrolytic baths 90 and the target object 110 in the other electrolytic bath 90 . Let this identification information be identification information Id. If the object 110 is the ion exchange membrane 84 , the identification information Id may be the type of the ion exchange membrane 84 . The type of the ion-exchange membrane 84 may be a physical quantity that may vary depending on the individual ion-exchange membrane 84, such as the density of the anion groups 86 (see FIG. 3) in the ion-exchange membrane 84, the thickness of the ion-exchange membrane 84, and the like. . The type of ion exchange membrane 84 may be a so-called lot number for each individual. The type of ion exchange membrane 84 may be the type of anionic groups 86 (see FIG. 3).
 対象物110が陽極80(図2参照)または陰極82(図2参照)である場合、識別情報Idは、陽極80または陰極82の表面をコーティングしている元素の種類であってよい。対象物110が陽極80および陰極82である場合、識別情報Idは、陽極80および陰極82を保持する枠の番号であってもよい。当該枠は、一つの陽極80と一つの陰極82とをペアで保持する。一のイオン交換膜84は、一の枠における陽極80と他の枠における陰極82との間に配置されてよい。当該一の枠における陽極80と当該他の枠における陰極82と当該一のイオン交換膜84とが、一つの電解セル91(図2参照)に含まれてよい。 When the object 110 is the anode 80 (see FIG. 2) or the cathode 82 (see FIG. 2), the identification information Id may be the type of element coating the surface of the anode 80 or the cathode 82. If the object 110 is the anode 80 and the cathode 82 , the identification information Id may be the number of the frame that holds the anode 80 and the cathode 82 . The frame holds one anode 80 and one cathode 82 in pairs. One ion exchange membrane 84 may be placed between the anode 80 in one frame and the cathode 82 in the other frame. The anode 80 in the one frame, the cathode 82 in the other frame, and the ion exchange membrane 84 may be included in one electrolytic cell 91 (see FIG. 2).
 受信部22は、複数の対象物110のそれぞれの識別情報Idを受信してよい。第1送信部14は、識別情報Idを送信してよい。複数の第1送信部14のそれぞれは、複数の対象物110のそれぞれの識別情報Idを送信してよい。本例においては、受信部22は、第1送信部14により送信された識別情報Idを受信する。 The receiving unit 22 may receive the identification information Id of each of the multiple objects 110 . The first transmitter 14 may transmit the identification information Id. Each of the multiple first transmitters 14 may transmit the identification information Id of each of the multiple targets 110 . In this example, the receiver 22 receives the identification information Id transmitted by the first transmitter 14 .
 記憶部25には、複数の電解槽90におけるそれぞれの運転条件Cdと、複数の対象物110に含まれる元素の種類および量と、複数の電解槽90のそれぞれに対応する識別情報Idとが記憶されてよい。記憶部25には、複数の電解槽90ごとに、運転条件Cdと、元素の種類および量と、識別情報Idとが記憶されてよい。 The storage unit 25 stores operating conditions Cd for each of the plurality of electrolytic cells 90, types and amounts of elements contained in the plurality of objects 110, and identification information Id corresponding to each of the plurality of electrolytic cells 90. may be The storage unit 25 may store the operating conditions Cd, the types and amounts of the elements, and the identification information Id for each of the plurality of electrolytic cells 90 .
 記憶部25には、それぞれ異なる位置に配置された複数の電解槽90における、当該異なる位置に係る複数の位置情報がさらに記憶されてよい。図11の例においては、記憶部25には、位置Sb1~位置Sbmに係るそれぞれの位置情報が記憶される。位置Sbに係る位置情報とは、例えば、位置Sbは米国のニューヨークであるとの情報である。 The storage unit 25 may further store a plurality of pieces of position information relating to the different positions in the plurality of electrolytic cells 90 arranged at different positions. In the example of FIG. 11, the storage unit 25 stores respective position information relating to positions Sb1 to Sbm. The location information related to the location Sb is, for example, information that the location Sb is New York in the United States.
 記憶部25には、複数の電解槽90におけるそれぞれの運転条件Cdと、複数の対象物110に含まれる元素の種類および量と、複数の電解槽90のそれぞれに対応する識別情報Idと、複数の電解槽90のそれぞれに係る位置情報とが記憶されてよい。記憶部25には、複数の電解槽90ごとに、運転条件Cdと、元素の種類および量と、識別情報Idと、位置情報とが記憶されてよい。 The storage unit 25 stores operating conditions Cd for each of the plurality of electrolytic cells 90, types and amounts of elements contained in the plurality of objects 110, identification information Id corresponding to each of the plurality of electrolytic cells 90, and a plurality of , and position information for each of the electrolytic cells 90 may be stored. The storage unit 25 may store operating conditions Cd, types and amounts of elements, identification information Id, and position information for each of the plurality of electrolytic cells 90 .
 対象物110の予め定められた第1状態を、第1状態S1とする。第1状態S1とは、対象物110が寿命である状態であってよい。対象物110がイオン交換膜84(図2参照)である場合、第1状態S1とは、イオン交換膜84が陰イオンを反発することが困難な状態であってよい。 Let the predetermined first state of the object 110 be the first state S1. The first state S1 may be a state in which the target object 110 has reached the end of its life. When the object 110 is the ion exchange membrane 84 (see FIG. 2), the first state S1 may be a state in which it is difficult for the ion exchange membrane 84 to repel anions.
 対象物110の予め定められた第2状態を、第2状態S2とする。第2状態S2とは、対象物110が寿命である状態であってよい。対象物110が陽極80(図2参照)または陰極82(図2参照)である場合、第2状態S2とは、陽極80または陰極82の表面をコーティングしているコーティング材料の量が、予め定められた量未満である状態であってよい。 Let the predetermined second state of the object 110 be the second state S2. The second state S2 may be a state in which the target object 110 has reached the end of its life. When the object 110 is the anode 80 (see FIG. 2) or the cathode 82 (see FIG. 2), the second state S2 is that the amount of coating material coating the surface of the anode 80 or the cathode 82 is a predetermined amount. less than the stated amount.
 対象物110の予め定められた第3状態を、第3状態S3とする。第3状態S3とは、対象物110がイオン交換膜84である場合において、イオン交換膜84が寿命であることにより、液体75(アルカリ金属の水酸化物の水溶液)のCl(塩化物イオン)濃度が予め定められた閾値濃度である状態であってよい。 A predetermined third state of the object 110 is referred to as a third state S3. In the third state S3, when the object 110 is the ion-exchange membrane 84, the ion-exchange membrane 84 has reached the end of its service life and the Cl (chloride ions) of the liquid 75 (aqueous solution of alkali metal hydroxide) ) the density may be a predetermined threshold density.
 第2送信部27は、解析結果Raを情報端末30に送信してよい。第2送信部27は、解析結果Raを端末10に送信してもよい。状態解析部24は、解析結果Raに基づいて、元素取得部12が取得する元素の種類をさらに解析してよい。第2送信部27は、情報端末30に、状態解析部24により解析された元素の種類を送信してよい。状態解析部24により解析された元素の種類は、表示部32(図10参照)に表示されてよい。 The second transmission unit 27 may transmit the analysis result Ra to the information terminal 30. The second transmitter 27 may transmit the analysis result Ra to the terminal 10 . The state analysis unit 24 may further analyze the types of elements acquired by the element acquisition unit 12 based on the analysis result Ra. The second transmission unit 27 may transmit the type of element analyzed by the state analysis unit 24 to the information terminal 30 . The types of elements analyzed by the state analysis unit 24 may be displayed on the display unit 32 (see FIG. 10).
 図12は、解析結果Raの一例を示す図である。図12は、陽極80の状態の解析結果Raの一例である。図12には、複数の陽極80についての解析結果Raが示されている。図12において、時間とは、陽極80を使用開始してから、陽極80の状態を解析するまでの経過時間を指す。経過時間は、経過年数であってもよい。図12において、残量とは、陽極80をコーティングしているコーティング材料の残量を指す。当該コーティング材料は、Ru(ルテニウム)であってよい。図12において、今回の解析結果Raが黒丸で示されている。白丸で示された解析結果Raは、今回よりも過去の解析結果Raであってよい。 FIG. 12 is a diagram showing an example of the analysis result Ra. FIG. 12 is an example of the analysis result Ra of the state of the anode 80. As shown in FIG. FIG. 12 shows analysis results Ra for a plurality of anodes 80. As shown in FIG. In FIG. 12, time refers to the elapsed time from when the anode 80 is started to be used until the state of the anode 80 is analyzed. The elapsed time may be the number of years elapsed. In FIG. 12, the remaining amount refers to the remaining amount of coating material coating the anode 80 . The coating material may be Ru (ruthenium). In FIG. 12, the current analysis result Ra is indicated by a black circle. The analysis result Ra indicated by the white circle may be the past analysis result Ra rather than the current one.
 図12に示される解析結果Raは、表示部32(図10参照)に表示されてよい。これにより、一の電解槽90(図11参照)のユーザは、他の電解槽90(図11参照)における陽極80の状態の解析結果Raと比較した、一の電解槽90における陽極80の状態の解析結果Raを認知できる。 The analysis result Ra shown in FIG. 12 may be displayed on the display unit 32 (see FIG. 10). As a result, the user of one electrolytic cell 90 (see FIG. 11) can compare the state of the anode 80 in one electrolytic cell 90 with the analysis result Ra of the state of the anode 80 in another electrolytic cell 90 (see FIG. 11). can recognize the analysis result Ra.
 対象物110の性能劣化の原因を特定するために、電解装置200の稼働が一時的に停止される場合がある。電解装置200の稼働を停止させる時間は、なるべく短いことが好ましい。端末10が携帯型蛍光X線分析端末である場合、電解装置200のユーザは、対象物110を電解装置200から取り外すことなく、対象物110の性能劣化の原因を特定しやすくなるとともに、対象物110の性能回復のための対策を取りやすくなる。そのため、電解装置200の稼働を停止させる時間が短くなりやすい。電解装置200のユーザは、対象物110を交換することなく対象物110の性能を回復し得るので、対象物110を損失しにくくなる。 In some cases, the operation of the electrolytic device 200 is temporarily stopped in order to identify the cause of performance deterioration of the target object 110 . It is preferable that the time for stopping the operation of the electrolytic device 200 be as short as possible. When the terminal 10 is a portable X-ray fluorescence analysis terminal, the user of the electrolysis device 200 can easily identify the cause of performance deterioration of the object 110 without removing the object 110 from the electrolysis device 200, and the object It becomes easier to take measures to recover the performance of 110. Therefore, the time for stopping the operation of the electrolytic device 200 tends to be shortened. A user of the electrolysis device 200 can restore the performance of the object 110 without replacing the object 110 , thus making the loss of the object 110 less likely.
 元素取得部12(図11参照)は、第2送信部27(図11参照)により送信された解析結果Raに基づいて、元素の量を取得してよい。元素取得部12は、第2送信部27により送信され情報端末30により受信された解析結果Raに基づいて、元素の量を取得してよい。これにより、元素取得部12は、解析結果Raが反映された元素の量を取得できる。元素取得部12が、解析結果Raが反映された元素の量を取得するとは、例えば、一のイオン交換膜84の解析結果Raが、当該一のイオン交換膜84の一の位置に特定の元素が蓄積しているとの解析結果Raである場合に、当該一のイオン交換膜84の他の位置における当該特定の元素を、元素取得部12が取得すること等を指す。 The element acquisition unit 12 (see FIG. 11) may acquire the amount of the element based on the analysis result Ra transmitted by the second transmission unit 27 (see FIG. 11). The element acquisition unit 12 may acquire the amount of the element based on the analysis result Ra transmitted by the second transmission unit 27 and received by the information terminal 30 . Thereby, the element acquiring unit 12 can acquire the amount of the element reflecting the analysis result Ra. The fact that the element acquisition unit 12 acquires the amount of the element reflecting the analysis result Ra means that, for example, the analysis result Ra of one ion exchange membrane 84 is the specific element at one position of the one ion exchange membrane 84 is accumulated, the element acquisition unit 12 acquires the specific element at another position of the ion exchange membrane 84 .
 状態解析部24により、一の電解槽90における一の対象物110の状態が第1状態S1~第3状態S3の少なくとも一つであると解析された場合、元素取得部12は、一の電解槽90における他の対象物110に含まれる元素の量を取得してよい。元素取得部12(図11参照)は、一の電解槽90(図11参照)における他の対象物110(図4参照)に含まれる元素の量を取得してよい。 When the state analysis unit 24 analyzes that the state of the object 110 in the electrolytic cell 90 is at least one of the first state S1 to the third state S3, the element acquisition unit 12 performs one electrolysis. The amounts of elements contained in other objects 110 in bath 90 may be obtained. The element acquiring unit 12 (see FIG. 11) may acquire the amount of elements contained in another target object 110 (see FIG. 4) in one electrolytic bath 90 (see FIG. 11).
 例えば、第2送信部27(図11参照)が、電解槽90-1における一の電解セル91-1(図1参照)に配置されたイオン交換膜84(図2参照)の状態が第1状態S1であるとの解析結果Raを情報端末30-1に送信した場合、元素取得部12-1(図11参照)は、電解槽90-1における他の電解セル91-2に配置されたイオン交換膜84に含まれる元素の量を取得してよい。一の電解セル91-1に配置されたイオン交換膜84が第1状態S1である場合、当該イオン交換膜84が第1状態S1でない場合よりも、他の電解セル91-2に配置されたイオン交換膜84が第1状態S1である蓋然性が高い。このため、解析システム100のユーザは、他の電解セル91-2に配置されたイオン交換膜84の状態を認知しやすくなる。 For example, the second transmitter 27 (see FIG. 11) sets the state of the ion exchange membrane 84 (see FIG. 2) arranged in one electrolytic cell 91-1 (see FIG. 1) in the electrolytic tank 90-1 to the first state. When the analysis result Ra indicating the state S1 is transmitted to the information terminal 30-1, the element acquisition unit 12-1 (see FIG. 11) is placed in the other electrolytic cell 91-2 in the electrolytic bath 90-1. The amount of elements contained in the ion exchange membrane 84 may be obtained. When the ion-exchange membrane 84 arranged in one electrolytic cell 91-1 is in the first state S1, the ion-exchange membrane 84 arranged in the other electrolytic cell 91-2 is higher than when the ion-exchange membrane 84 is not in the first state S1. There is a high probability that the ion exchange membrane 84 is in the first state S1. Therefore, the user of the analysis system 100 can easily recognize the state of the ion exchange membrane 84 arranged in the other electrolytic cell 91-2.
 同様に、第2送信部27(図11参照)が、例えば電解槽90-2(図11参照)における一の電解セル91-2(図1参照)に配置された陽極80(図2参照)の状態が第2状態S2であるとの解析結果Raを情報端末30-2に送信した場合、元素取得部12-2は、電解槽90-2における他の電解セル91-3に配置された陽極80に含まれる元素の量を取得してよい。 Similarly, the second transmitter 27 (see FIG. 11) is, for example, an anode 80 (see FIG. 2) arranged in one electrolytic cell 91-2 (see FIG. 1) in an electrolytic bath 90-2 (see FIG. 11). is the second state S2 to the information terminal 30-2, the element acquisition unit 12-2 is placed in the other electrolytic cell 91-3 in the electrolytic bath 90-2. The amount of elements contained in the anode 80 may be obtained.
 同様に、第2送信部27(図11参照)が、例えば電解槽90-m(図11参照)における一の電解セル91-3(図1参照)に配置されたイオン交換膜84(図2参照)の状態が第3状態S3であるとの解析結果Raを情報端末30-mに送信した場合、元素取得部12-m(図11参照)は、電解槽90-mにおける他の電解セル91-1に配置されたイオン交換膜84に含まれる元素の量を取得してよい。 Similarly, the second transmitter 27 (see FIG. 11) is an ion-exchange membrane 84 (see FIG. 2) arranged in one electrolytic cell 91-3 (see FIG. 1) in the electrolytic bath 90-m (see FIG. 11), for example. ) is the third state S3 to the information terminal 30-m, the element acquisition unit 12-m (see FIG. 11) detects other electrolytic cell The amount of element contained in the ion exchange membrane 84 located at 91-1 may be obtained.
 図13は、本発明の一つの実施形態に係る解析システム100のブロック図の他の一例を示す図である。本例の解析システム100において、サーバ20は状態予測部26をさらに有する。本例の解析システム100は、係る点で図11に示される解析システム100と異なる。状態予測部26は、例えばCPU(Central Processing Unit)である。状態解析部24および状態予測部26は、一つのCPUであってよい。 FIG. 13 is a diagram showing another example of a block diagram of the analysis system 100 according to one embodiment of the present invention. In the analysis system 100 of this example, the server 20 further has a state prediction section 26 . The analysis system 100 of this example differs from the analysis system 100 shown in FIG. 11 in this respect. The state prediction unit 26 is, for example, a CPU (Central Processing Unit). The state analysis unit 24 and the state prediction unit 26 may be one CPU.
 元素取得部12は、対象物110に含まれる元素の量の経時変化を取得してよい。電解槽90の稼働時間の経過に伴い、対象物110には液体70(図2参照)等に含まれる元素が蓄積し得る。このため、対象物110に含まれる元素の量は、経時変化し得る。 The element acquisition unit 12 may acquire changes over time in the amounts of elements contained in the object 110 . Elements contained in the liquid 70 (see FIG. 2) or the like may accumulate in the object 110 as the operating time of the electrolytic cell 90 elapses. Thus, the amount of elements contained in object 110 may change over time.
 第1送信部14は、元素取得部12により取得された元素の量の経時変化を送信してよい。受信部22は、第1送信部14により送信された元素の量の経時変化を受信してよい。 The first transmission unit 14 may transmit changes over time in the amounts of elements acquired by the element acquisition unit 12 . The receiving unit 22 may receive the temporal change in the amount of the element transmitted by the first transmitting unit 14 .
 状態予測部26は、受信部22により受信された元素の量の経時変化と、第1関係R1(図6参照)とに基づくかまたは第2関係R21(図7参照)とに基づいて、対象物110が第1状態S1となる時期を予測してよい。上述したとおり、第1状態S1とは、対象物110が寿命である状態であってよい。対象物110がイオン交換膜84(図2参照)である場合、第1状態S1とは、イオン交換膜84が陰イオンを反発することが困難な状態であってよい。 The state predicting unit 26 predicts the target based on the temporal change in the amount of the element received by the receiving unit 22 and the first relationship R1 (see FIG. 6) or the second relationship R21 (see FIG. 7). It may be predicted when the object 110 will be in the first state S1. As described above, the first state S1 may be a state in which the target object 110 has reached the end of its life. When the object 110 is the ion exchange membrane 84 (see FIG. 2), the first state S1 may be a state in which it is difficult for the ion exchange membrane 84 to repel anions.
 X線114(図4および図10参照)の強度を強度Inとすると、電流効率CEおよび電圧CVは、それぞれ以下の式1および式2で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 式1および式2において、i、jおよびkはそれぞれ、Ni(ニッケル)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、I(ヨウ素)、Fe(鉄)およびZr(ジルコニウム)のいずれかであってよい。
Assuming that the intensity of X-ray 114 (see FIGS. 4 and 10) is intensity In, current efficiency CE and voltage CV are expressed by the following equations 1 and 2, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
In Formulas 1 and 2, i, j, and k are Ni (nickel), Ca (calcium), Sr (strontium), Ba (barium), I (iodine), Fe (iron), and Zr (zirconium), respectively. It can be either.
 式1において、α1は元素iが電流効率CEの低下に与える影響の度合いを表す。式1において、β1は、元素jおよび元素kが電流効率CEの低下に与える影響の度合いを表す。式1において、CE0は電流効率CEの低下前における初期電流効率を表す。式2において、α2は元素iが電圧CVの上昇に与える影響の度合いを表す。式2において、β2は、元素jおよび元素kが電圧CVの上昇に与える影響の度合いを表す。式2において、CV0は電圧CVの上昇前における初期電圧を表す。状態予測部26は、強度Inの増加速度を算出してよい。状態予測部26は、強度Inの増加速度に基づいて、イオン交換膜84が第1状態S1となる時期を予測してよい。 In Equation 1, α1 represents the degree of influence that element i has on the decrease in current efficiency CE. In Equation 1, β1 represents the degree of influence of element j and element k on the decrease in current efficiency CE. In Equation 1, CEO represents the initial current efficiency before the current efficiency CE decreases. In Equation 2, α2 represents the degree of influence of element i on the rise in voltage CV. In Equation 2, β2 represents the degree of influence of element j and element k on the increase in voltage CV. In Equation 2, CV0 represents the initial voltage before the voltage CV rises. The state prediction unit 26 may calculate the rate of increase of the intensity In. The state prediction unit 26 may predict when the ion exchange membrane 84 will be in the first state S1 based on the rate of increase of the intensity In.
 第1関係R1は、識別情報Idごとに定められてもよい。状態予測部26は、一の電解槽90における元素の量の経時変化と、当該一の電解槽90における第1関係R1とに基づいて、当該一の電解槽90における対象物110が第1状態S1となる時期を予測してよく、他の電解槽90における対象物110が第1状態S1となる時期を予測してもよい。 The first relationship R1 may be defined for each piece of identification information Id. The state prediction unit 26 predicts that the object 110 in the one electrolytic cell 90 is in the first state based on the temporal change in the amount of the element in the one electrolytic cell 90 and the first relationship R1 in the one electrolytic cell 90. It may be possible to predict when the state will be in S1, or predict when the object 110 in the other electrolytic bath 90 will be in the first state S1.
 第2関係R21は、識別情報Idごとに定められてもよい。状態予測部26は、一の電解槽90における元素の量の経時変化と、当該一の電解槽90における第2関係R21とに基づいて、当該一の電解槽90における対象物110が第1状態S1となる時期を予測してよく、他の電解槽90における対象物110が第1状態S1となる時期を予測してもよい。 The second relationship R21 may be defined for each piece of identification information Id. The state predicting unit 26 predicts that the object 110 in the one electrolytic cell 90 is in the first state based on the temporal change in the amount of the element in the one electrolytic cell 90 and the second relationship R21 in the one electrolytic cell 90. It may be possible to predict when the state will be in S1, or predict when the object 110 in the other electrolytic bath 90 will be in the first state S1.
 状態予測部26は、受信部22により受信された元素の量の経時変化と、第2関係R22(図9参照)とに基づいて、対象物110が第2状態S2となる時期を予測してよい。上述したとおり、第2状態S2とは、対象物110が寿命である状態であってよい。対象物110が陽極80(図2参照)または陰極82(図2参照)である場合、第2状態S2とは、陽極80または陰極82の表面をコーティングしているコーティング材料の量が、予め定められた量未満である状態であってよい。 The state prediction unit 26 predicts when the object 110 will be in the second state S2 based on the temporal change in the amount of the element received by the reception unit 22 and the second relationship R22 (see FIG. 9). good. As described above, the second state S2 may be a state in which the target object 110 has reached the end of its life. When the object 110 is the anode 80 (see FIG. 2) or the cathode 82 (see FIG. 2), the second state S2 is that the amount of coating material coating the surface of the anode 80 or the cathode 82 is a predetermined amount. less than the stated amount.
 電圧CVは、以下の式3でも表される。
Figure JPOXMLDOC01-appb-M000003
 式3において、iはRu(ルテニウム)であってよく、jはFe(鉄)であってよい。式3において、α3およびβ3は、元素i(本例においてはRu(ルテニウム))の電圧CVへの影響の度合いを表す。式3において、εは元素j(本例においてはFe(鉄))による電圧CVへの影響の度合いを表す。式3において、γは定数である。
Voltage CV is also represented by Equation 3 below.
Figure JPOXMLDOC01-appb-M000003
In Formula 3, i may be Ru (ruthenium) and j may be Fe (iron). In Equation 3, α3 and β3 represent the degree of influence of element i (Ru (ruthenium) in this example) on voltage CV. In Equation 3, ε represents the degree of influence of element j (Fe (iron) in this example) on voltage CV. In Equation 3, γ is a constant.
 状態予測部26は、陽極80または陰極82の表面をコーティングしているコーティング材料の消耗速度を算出してよい。当該消耗速度は、式3におけるInの単位時間当たりの変化量であってよい。状態予測部26は、当該コーティング材料の当該消耗速度に基づいて、陽極80(図2参照)が第2状態S2となる時期を予測してよい。 The state predictor 26 may calculate the consumption rate of the coating material coating the surface of the anode 80 or the cathode 82 . The consumption rate may be the amount of change of In i in Equation 3 per unit time. The state prediction unit 26 may predict when the anode 80 (see FIG. 2) will be in the second state S2 based on the consumption rate of the coating material.
 第2関係R22は、識別情報Idごとに定められてもよい。状態予測部26は、一の電解槽90における元素の量の経時変化と、当該一の電解槽90における第2関係R22とに基づいて、当該一の電解槽90における対象物110が第2状態S2となる時期を予測してよく、他の電解槽90における対象物110が第2状態S2となる時期を予測してもよい。 The second relationship R22 may be defined for each piece of identification information Id. The state prediction unit 26 predicts that the object 110 in the one electrolytic bath 90 is in the second state based on the temporal change in the amount of the element in the one electrolytic bath 90 and the second relationship R22 in the one electrolytic bath 90. The timing of S2 may be predicted, and the timing of the object 110 in the other electrolytic bath 90 being in the second state S2 may be predicted.
 状態予測部26は、受信部22により受信された元素の量の経時変化と、第3関係R3(図8参照)とに基づいて、対象物110が第3状態S3となる時期を予測してよい。第3状態S3とは、対象物110がイオン交換膜84である場合において、イオン交換膜84が寿命であることにより、液体75(アルカリ金属の水酸化物の水溶液)のCl(塩化物イオン)濃度が予め定められた閾値濃度である状態であってよい。 The state prediction unit 26 predicts when the object 110 will be in the third state S3 based on the temporal change in the amount of the element received by the reception unit 22 and the third relationship R3 (see FIG. 8). good. In the third state S3, when the object 110 is the ion-exchange membrane 84, the ion-exchange membrane 84 has reached the end of its service life and the Cl (chloride ions) of the liquid 75 (aqueous solution of alkali metal hydroxide) ) the density may be a predetermined threshold density.
 第3関係R3は、識別情報Idごとに定められてもよい。状態予測部26は、一の電解槽90における元素の量の経時変化と、当該一の電解槽90における第3関係R3とに基づいて、当該一の電解槽90における対象物110が第3状態S3となる時期を予測してよく、他の電解槽90における対象物110が第3状態S3となる時期を予測してもよい。 The third relationship R3 may be defined for each piece of identification information Id. The state prediction unit 26 predicts that the object 110 in the one electrolytic cell 90 is in the third state based on the temporal change in the amount of the element in the one electrolytic cell 90 and the third relationship R3 in the one electrolytic cell 90. The timing of S3 may be predicted, and the timing of the object 110 in the other electrolytic bath 90 being in the third state S3 may be predicted.
 第2送信部27は、状態予測部26により予測された、対象物110が第1状態S1となる時期、第2状態S2となる時期または第3状態S3となる時期を、情報端末30に送信してよい。これにより、電解槽90のユーザは、対象物110が第1状態S1となる時期、第2状態S2となる時期または第3状態S3となる時期を認知できる。 The second transmission unit 27 transmits to the information terminal 30 the time when the object 110 will be in the first state S1, the second state S2, or the third state S3 predicted by the state prediction unit 26. You can Thereby, the user of the electrolytic bath 90 can recognize when the object 110 is in the first state S1, the second state S2, or the third state S3.
 状態予測部26は、受信部22により受信された元素の量の経時変化と、第1関係R1(図6参照)とに基づくかまたは第2関係R21(図7参照)とに基づいて、対象物110が第1状態S1となる時期を、元素の種類ごとに予測してよい。状態予測部26は、受信部22により受信された元素の量の経時変化と、第2関係R22(図9参照)とに基づいて、対象物110が第2状態S2となる時期を、元素の種類ごとに予測してよい。状態予測部26は、受信部22により受信された元素の量の経時変化と、第3関係R3(図8参照)とに基づいて、対象物110が第3状態S3となる時期を、元素の種類ごとに予測してよい。 The state predicting unit 26 predicts the target based on the temporal change in the amount of the element received by the receiving unit 22 and the first relationship R1 (see FIG. 6) or the second relationship R21 (see FIG. 7). The time when the substance 110 will be in the first state S1 may be predicted for each type of element. The state prediction unit 26 predicts when the object 110 will be in the second state S2 based on the temporal change in the amount of the element received by the reception unit 22 and the second relationship R22 (see FIG. 9). Predictions can be made for each type. The state prediction unit 26 predicts when the target object 110 will be in the third state S3 based on the temporal change in the amount of the element received by the reception unit 22 and the third relationship R3 (see FIG. 8). Predictions can be made for each type.
 状態予測部26は、対象物110が第1状態S1となる時期を運転条件Cdごとに予測してよい。運転条件Cdとは、上述したとおり、電解槽90に供給される電流、電解槽90の電流効率CE、電解槽90の電圧CV、液体70(図2参照)のpHおよび流量、液体72(図2参照)のpHおよび流量、生産物Pの目標生産量等が含まれてよい。対象物110がイオン交換膜84である場合、イオン交換膜84が、陰イオンを反発することが困難な状態となる時期は、運転条件Cdに依存し得る。このため、対象物110が第1状態S1となる時期が運転条件Cdごとに予測されることにより、電解槽90のユーザは、対象物110が第1状態S1となる時期を、運転条件Cdごとに認知できる。同様に、状態予測部26は、対象物110が第2状態S2となる時期を運転条件Cdごとに予測してよく、対象物110が第3状態S3となる時期を運転条件Cdごとに予測してよい。 The state prediction unit 26 may predict when the object 110 will be in the first state S1 for each operating condition Cd. As described above, the operating conditions Cd are the current supplied to the electrolytic cell 90, the current efficiency CE of the electrolytic cell 90, the voltage CV of the electrolytic cell 90, the pH and flow rate of the liquid 70 (see FIG. 2), and the liquid 72 (see FIG. 2), the target output of product P, etc. may be included. When the object 110 is the ion exchange membrane 84, the time when the ion exchange membrane 84 becomes difficult to repel anions may depend on the operating conditions Cd. Therefore, by predicting when the object 110 will be in the first state S1 for each operating condition Cd, the user of the electrolytic cell 90 can predict when the object 110 will be in the first state S1 for each operating condition Cd. can be recognized. Similarly, the state prediction unit 26 may predict when the object 110 will be in the second state S2 for each operating condition Cd, and predict when the object 110 will be in the third state S3 for each operating condition Cd. you can
 状態予測部26は、対象物110が第1状態S1となる時期を運転条件Cdごと、且つ、元素の種類ごとに予測してよい。状態予測部26は、対象物110が第2状態S2となる時期を運転条件Cdごと、且つ、元素の種類ごとに予測してよい。状態予測部26は、対象物110が第3状態S3となる時期を運転条件Cdごと、且つ、元素の種類ごとに予測してよい。 The state prediction unit 26 may predict when the object 110 will be in the first state S1 for each operating condition Cd and for each type of element. The state prediction unit 26 may predict when the object 110 will be in the second state S2 for each operating condition Cd and for each type of element. The state prediction unit 26 may predict when the object 110 will be in the third state S3 for each operating condition Cd and for each type of element.
 電解槽90の電流効率CEを回復させる対策を、第1対策Cm1とする。例えば、電流効率CEが予め定められた値未満になっている場合において、第1対策Cm1は、電流効率CEが予め定められた値未満になっている原因に基づく対策であって、当該原因を解消することにより電流効率CEを予め定められた値以上に回復させるための対策である。例えば、イオン交換膜84に予め定められた不純物が付着していることが、電流効率CEが予め定められた値未満になっている原因である場合、第1対策Cm1は、当該不純物をイオン交換膜84から除去することである。 A countermeasure for recovering the current efficiency CE of the electrolytic cell 90 is defined as a first countermeasure Cm1. For example, when the current efficiency CE is less than a predetermined value, the first countermeasure Cm1 is a countermeasure based on the cause of the current efficiency CE being less than the predetermined value. This is a countermeasure for recovering the current efficiency CE to a predetermined value or more by eliminating the problem. For example, if the current efficiency CE is less than the predetermined value due to the presence of predetermined impurities attached to the ion exchange membrane 84, the first measure Cm1 is to remove the impurities by ion exchange. to remove from membrane 84;
 電解槽90の電圧CVを回復させる対策を、第2対策Cm2とする。例えば、電圧CVが予め定められた値を超えている場合において、第2対策Cm2は、電圧CVが予め定められた値を超えている原因に基づく対策であって、当該原因を解消することにより電流効率CEを予め定められた値以下に回復させるための対策である。例えば、陽極室79にNaCl(塩化ナトリウム)水溶液が導入される場合であって当該水溶液のNaCl(塩化ナトリウム)濃度が予め定められた範囲にないことが、電圧CVが予め定められた値を超えている原因である場合、第2対策Cm2は、NaCl(塩化ナトリウム)濃度を予め定められた範囲に戻すための対策である。 A countermeasure for recovering the voltage CV of the electrolytic cell 90 is a second countermeasure Cm2. For example, when the voltage CV exceeds a predetermined value, the second countermeasure Cm2 is a countermeasure based on the cause of the voltage CV exceeding the predetermined value. This is a countermeasure for recovering the current efficiency CE to a predetermined value or less. For example, when an aqueous NaCl (sodium chloride) solution is introduced into the anode chamber 79 and the concentration of NaCl (sodium chloride) in the aqueous solution is not within a predetermined range, the voltage CV exceeds a predetermined value. If this is the cause, the second countermeasure Cm2 is a countermeasure for returning the NaCl (sodium chloride) concentration to a predetermined range.
 液体75のCl(塩化物イオン)濃度を回復させる対策を、第3対策Cm3とする。液体75のCl(塩化物イオン)濃度が予め定められた濃度を超えている場合において、第3対策Cm3は、当該Cl(塩化物イオン)濃度が予め定められた濃度を超えた原因に基づく対策であって、当該原因を解消することにより液体75のCl(塩化物イオン)濃度を予め定められた値以下に回復させるための対策である。当該Cl(塩化物イオン)濃度を予め定められた値以下に回復させるとは、当該Cl(塩化物イオン)濃度を予め定められた値以下に低下させることを指してよい。 A countermeasure for recovering the Cl (chloride ion) concentration of the liquid 75 is a third countermeasure Cm3. When the Cl (chloride ion) concentration of the liquid 75 exceeds a predetermined concentration, the third measure Cm3 is to determine the cause of the Cl (chloride ion) concentration exceeding the predetermined concentration. It is a countermeasure based on the above, and is a countermeasure for recovering the Cl (chloride ion) concentration of the liquid 75 to a predetermined value or less by eliminating the cause. Restoring the Cl (chloride ion) concentration to a predetermined value or less may refer to reducing the Cl (chloride ion) concentration to a predetermined value or less.
 記憶部25には、第1対策Cm1、第2対策Cm2および第3対策Cm3の少なくとも一つが記憶されてよい。第1対策Cm1が実施された場合、状態予測部26は、第1対策Cm1が実施された場合における対象物110の状態を予測してよい。状態予測部26は、第1対策Cm1が実施された場合における対象物110の状態を、運転条件Cdごとに予測してよい。第2送信部27は、状態予測部26により予測された対象物110の状態であって第1対策Cm1が実施された場合における対象物110の状態を、情報端末30に送信してよい。これにより、電解槽90のユーザは、当該電解槽90に対して第1対策Cm1を実施した場合の対象物110の状態を予測できる。なお、第2送信部27は、第1対策Cm1が実施された場合における対象物110の状態を、端末10に送信してもよい。 The storage unit 25 may store at least one of the first countermeasure Cm1, the second countermeasure Cm2, and the third countermeasure Cm3. When the first measure Cm1 is implemented, the state prediction unit 26 may predict the state of the object 110 when the first measure Cm1 is implemented. The state prediction unit 26 may predict the state of the object 110 when the first countermeasure Cm1 is implemented for each operating condition Cd. The second transmission unit 27 may transmit to the information terminal 30 the state of the object 110 predicted by the state prediction unit 26 and the state of the object 110 when the first countermeasure Cm1 is implemented. Thereby, the user of the electrolytic bath 90 can predict the state of the target object 110 when the first countermeasure Cm1 is performed on the electrolytic bath 90 . Note that the second transmission unit 27 may transmit to the terminal 10 the state of the object 110 when the first countermeasure Cm1 is implemented.
 同様に、第2対策Cm2が実施された場合、状態予測部26は、第2対策Cm2が実施された場合における対象物110の状態を予測してよい。状態予測部26は、第2対策Cm2が実施された場合における対象物110の状態を、運転条件Cdごとに予測してよい。第2送信部27は、状態予測部26により予測された対象物110の状態であって第2対策Cm2が実施された場合における対象物110の状態を、情報端末30に送信してよい。なお、第2送信部27は、第2対策Cm2が実施された場合における対象物110の状態を、端末10に送信してもよい。 Similarly, when the second measure Cm2 is implemented, the state prediction unit 26 may predict the state of the object 110 when the second measure Cm2 is implemented. The state prediction unit 26 may predict the state of the object 110 when the second countermeasure Cm2 is implemented for each operating condition Cd. The second transmission unit 27 may transmit to the information terminal 30 the state of the object 110 predicted by the state prediction unit 26 and the state of the object 110 when the second countermeasure Cm2 is implemented. Note that the second transmission unit 27 may transmit to the terminal 10 the state of the object 110 when the second measure Cm2 is implemented.
 同様に、第3対策Cm3が実施された場合、状態予測部26は、第3対策Cm3が実施された場合における対象物110の状態を予測してよい。状態予測部26は、第3対策Cm3が実施された場合における対象物110の状態を、運転条件Cdごとに予測してよい。第2送信部27は、状態予測部26により予測された対象物110の状態であって第3対策Cm3が実施された場合における対象物110の状態を、情報端末30に送信してよい。なお、第2送信部27は、第3対策Cm3が実施された場合における対象物110の状態を、端末10に送信してもよい。 Similarly, when the third measure Cm3 is implemented, the state prediction unit 26 may predict the state of the object 110 when the third measure Cm3 is implemented. The state prediction unit 26 may predict the state of the object 110 when the third measure Cm3 is implemented for each operating condition Cd. The second transmission unit 27 may transmit to the information terminal 30 the state of the object 110 predicted by the state prediction unit 26 and the state of the object 110 when the third countermeasure Cm3 is implemented. The second transmission unit 27 may transmit to the terminal 10 the state of the object 110 when the third measure Cm3 is implemented.
 図14は、図2におけるイオン交換膜84および導入管92を、陽極80から陰極82への方向に見た図である。本明細書において、陽極80から陰極82への当該方向を、側面視と称する。本例において、イオン交換膜84には不純物89が含まれている。不純物89は、液体70に含まれていてよい。 14 is a view of the ion exchange membrane 84 and the introduction tube 92 in FIG. 2 viewed from the anode 80 to the cathode 82. FIG. This direction from anode 80 to cathode 82 is referred to herein as a side view. In this example, the ion exchange membrane 84 contains impurities 89 . Impurities 89 may be contained in liquid 70 .
 電解槽90には、液体70が通過する導入管92が接続されている。1つの電解セル91(図1参照)の側面視において、導入管92はイオン交換膜84の下方に配置されている。電解槽90には、液体70が通過する開口60が設けられている。導入管92の上端は、開口60に接続されている。図14において、側面視における開口60の位置が太線で示され、側面視における開口60の両端の位置が破線で示されている。 An introduction pipe 92 through which the liquid 70 passes is connected to the electrolytic bath 90 . In a side view of one electrolytic cell 91 (see FIG. 1), the introduction pipe 92 is arranged below the ion exchange membrane 84 . The electrolytic bath 90 is provided with an opening 60 through which the liquid 70 passes. The upper end of the introduction tube 92 is connected to the opening 60 . In FIG. 14 , the position of the opening 60 in side view is indicated by a thick line, and the positions of both ends of the opening 60 in side view are indicated by broken lines.
 導入管92には、導入管92を形成する元素が含まれる。当該元素を、元素Eとする。元素Eは、液体70により陽極室79(図2参照)に導入される場合がある。導入管92が経年劣化した場合、元素Eは陽極室79に導入されやすい。陽極室79に導入された元素Eは、対象物110に蓄積する場合がある。 The introduction pipe 92 contains elements forming the introduction pipe 92 . Let the element concerned be the element E. Element E may be introduced by liquid 70 into anode chamber 79 (see FIG. 2). The element E is likely to be introduced into the anode chamber 79 when the introduction pipe 92 deteriorates over time. Element E introduced into the anode chamber 79 may accumulate on the object 110 .
 状態解析部24(図4、図10および図11参照)は、対象物110に含まれる元素Eの量および種類の少なくとも一方を解析してよい。対象物110が元素Eを予め定められた量以上含む状態を、対象物110の第4状態S4とする。 The state analysis unit 24 (see FIGS. 4, 10 and 11) may analyze at least one of the amount and type of the element E contained in the object 110. A state in which the object 110 contains a predetermined amount or more of the element E is defined as a fourth state S4 of the object 110 .
 状態解析部24により、対象物110が第4状態S4であると解析された場合、第2送信部27(図10および図11参照)は、元素取得部12(図4、図10および図11参照)に、元素Eを取得する旨の指示を送信してよい。第2送信部27は、情報端末30に導入管92の調査に関する指示を送信してよい。導入管92の調査に関する当該指示は、情報端末30の表示部32に表示されてよい。これにより、電解槽90のユーザは、導入管92の調査を開始できる。 When the state analysis unit 24 analyzes that the object 110 is in the fourth state S4, the second transmission unit 27 (see FIGS. 10 and 11) causes the element acquisition unit 12 (FIGS. 4, 10 and 11 ) to obtain the element E. The second transmission unit 27 may transmit an instruction regarding the investigation of the introduction pipe 92 to the information terminal 30 . The instruction regarding the investigation of the introduction tube 92 may be displayed on the display section 32 of the information terminal 30 . This allows the user of the electrolytic cell 90 to start investigating the inlet tube 92 .
 本例において、不純物89は、元素Eまたは元素Eの化合物であるとする。元素取得部12(図4、図10および図11参照)は、元素Eの量を、対象物110における元素Eの位置ごとに取得してよい。元素Eの位置とは、1つの電解セル91(図1参照)の側面視において、イオン交換膜84の側面視における不純物89の位置を指す。元素取得部12は、対象物110において予め定められた位置ごとに元素Eの量を取得してよく、対象物110における元素Eの位置情報と当該位置情報に対応する元素Eの量とを取得してもよい。元素取得部12は、元素Eの量を、対象物110における元素Eの位置ごとおよび元素Eの種類ごとに取得してもよい。 In this example, the impurity 89 is assumed to be element E or a compound of element E. The element acquisition unit 12 (see FIGS. 4, 10 and 11) may acquire the amount of the element E for each position of the element E on the target object 110 . The position of the element E refers to the position of the impurity 89 in the side view of the ion exchange membrane 84 in the side view of one electrolytic cell 91 (see FIG. 1). The element acquisition unit 12 may acquire the amount of the element E for each predetermined position on the object 110, and acquire the position information of the element E on the object 110 and the amount of the element E corresponding to the position information. You may The element acquisition unit 12 may acquire the amount of the element E for each position of the element E on the object 110 and for each type of the element E.
 第1送信部14(図4、図10および図11参照)は、元素Eの位置ごとの元素Eの量を送信してよい。受信部22(図4、図10および図11参照)は、元素Eの位置ごとの元素Eの量を受信してよい。状態解析部24は、元素Eの位置ごとの元素Eの量に基づいて、対象物110の状態を解析してよい。不純物89の位置は、元素Eの種類に依存する場合がある。このため、元素Eの位置に基づいて対象物110の状態が解析されることにより、対象物110の状態をもたらしている元素Eが特定されやすくなる。第2送信部27(図10および図11参照)は、元素Eの位置および元素Eの量に基づく解析結果Raを、情報端末30に送信してよい。第2送信部27は、当該解析結果Raを端末10に送信してもよい。 The first transmission unit 14 (see FIGS. 4, 10 and 11) may transmit the amount of the element E for each position of the element E. The receiver 22 (see FIGS. 4, 10 and 11) may receive the amount of the element E for each position of the element E. FIG. The state analysis unit 24 may analyze the state of the object 110 based on the amount of the element E at each position of the element E. FIG. The position of the impurity 89 may depend on the type of element E. Therefore, by analyzing the state of the object 110 based on the position of the element E, the element E causing the state of the object 110 can be easily identified. The second transmitter 27 (see FIGS. 10 and 11) may transmit the analysis result Ra based on the position of the element E and the amount of the element E to the information terminal 30 . The second transmission unit 27 may transmit the analysis result Ra to the terminal 10 .
 第1送信部14(図4、図10および図11参照)は、元素Eの位置ごとおよび元素Eの種類ごとの元素Eの量を送信してよい。受信部22(図4、図10および図11参照)は、元素Eの位置ごとおよび元素Eの種類ごとの元素Eの量を受信してよい。状態解析部24は、元素Eの位置ごとおよび元素Eの種類ごとの元素Eの量に基づいて、対象物110の状態を解析してよい。第2送信部27(図10および図11参照)は、元素Eの位置、元素Eの種類および元素Eの量に基づく解析結果Raを、情報端末30に送信してよい。第2送信部27は、当該解析結果Raを端末10に送信してもよい。 The first transmission unit 14 (see FIGS. 4, 10 and 11) may transmit the amount of element E for each position of element E and for each type of element E. The receiving unit 22 (see FIGS. 4, 10 and 11) may receive the amount of element E for each position of element E and for each type of element E. FIG. The state analysis unit 24 may analyze the state of the target object 110 based on the amount of the element E for each position of the element E and for each type of the element E. The second transmitter 27 (see FIGS. 10 and 11) may transmit the analysis result Ra based on the position of the element E, the type of the element E, and the amount of the element E to the information terminal 30 . The second transmission unit 27 may transmit the analysis result Ra to the terminal 10 .
 状態解析部24は、開口60の位置と、対象物110における元素Eの位置とに基づいて、対象物110の状態を解析してよい。開口60の位置および元素Eの位置は、1つの電解セル91(図1参照)の側面視における位置であってよい。開口60の位置と元素Eの位置とに基づくとは、開口60の位置と元素Eの位置との相対的な位置関係に基づくことを指してよい。開口60の位置と元素Eの位置との相対的な位置関係とは、例えば、開口60の位置と元素Eの位置との距離である。 The state analysis unit 24 may analyze the state of the object 110 based on the position of the opening 60 and the position of the element E in the object 110. The position of the opening 60 and the position of the element E may be the positions in a side view of one electrolytic cell 91 (see FIG. 1). Based on the position of the opening 60 and the position of the element E may refer to based on the relative positional relationship between the position of the opening 60 and the position of the element E. The relative positional relationship between the position of the opening 60 and the position of the element E is the distance between the position of the opening 60 and the position of the element E, for example.
 対象物110の状態は、開口60の位置および元素Eの位置に依存する場合がある。このため、開口60の位置と元素Eの位置に基づいて対象物110の状態が解析されることにより、対象物110の状態をもたらしている元素Eが特定されやすくなる。第2送信部27は、開口60の位置と元素Eの位置に基づく解析結果Raを、情報端末30に送信してよい。 The state of the object 110 may depend on the position of the opening 60 and the position of the element E. Therefore, by analyzing the state of the object 110 based on the position of the opening 60 and the position of the element E, the element E causing the state of the object 110 can be easily identified. The second transmitter 27 may transmit the analysis result Ra based on the position of the aperture 60 and the position of the element E to the information terminal 30 .
 図15は、本発明の一つの実施形態に係る解析システム100におけるサーバ20のブロック図の他の一例を示す図である。ただし、図15において、端末10、情報端末30および電解槽90は省略されている。本例のサーバ20は、第1状態学習部120および第2状態学習部130をさらに有する点で、図10および図11に示されるサーバ20と異なる。 FIG. 15 is a diagram showing another example of a block diagram of the server 20 in the analysis system 100 according to one embodiment of the present invention. However, in FIG. 15, the terminal 10, the information terminal 30 and the electrolytic cell 90 are omitted. Server 20 of this example differs from server 20 shown in FIGS. 10 and 11 in that it further includes first state learning section 120 and second state learning section 130 .
 第1状態学習部120は、電流効率CEと、元素取得部12(図10および図11参照)により取得された元素の量との関係を機械学習することにより、第1状態推論モデル122(後述)を生成する。第2状態学習部130は、電圧CVと、元素取得部12により取得された元素の量との関係を機械学習することにより、第2状態推論モデル132(後述)を生成する。 The first state learning unit 120 machine-learns the relationship between the current efficiency CE and the amount of the element acquired by the element acquisition unit 12 (see FIGS. 10 and 11) to obtain a first state inference model 122 (described later). ). The second state learning unit 130 generates a second state inference model 132 (described later) by machine-learning the relationship between the voltage CV and the amount of the element acquired by the element acquisition unit 12 .
 図16は、第1状態推論モデル122の一例を示す図である。第1状態推論モデル122は、電流効率CEと元素の量とが入力された場合、当該電流効率CEおよび当該元素の量に対する第1推論状態を出力する。当該第1推論状態を、第1推論状態Se1とする。 FIG. 16 is a diagram showing an example of the first state inference model 122. FIG. When the current efficiency CE and the amount of an element are input, the first state inference model 122 outputs a first inference state for the current efficiency CE and the amount of the element. This first inference state is referred to as a first inference state Se1.
 図17は、第2状態推論モデル132の一例を示す図である。第2状態推論モデル132は、電圧CVと元素の量とが入力された場合、当該電圧CVおよび当該元素の量に対する第2推論状態を出力する。当該第2推論状態を、第2推論状態Se2とする。 FIG. 17 is a diagram showing an example of the second state inference model 132. FIG. When the voltage CV and the amount of the element are input, the second state inference model 132 outputs the second inference state for the voltage CV and the amount of the element. This second inference state is referred to as a second inference state Se2.
 第1推論状態Se1および第2推論状態Se2は、状態解析部24による解析結果Raであってよい。第1状態推論モデル122および第2状態推論モデル132は、記憶部25に記憶されてよい。状態解析部24は、記憶部25に記憶された第1状態推論モデル122および第2状態推論モデル132の少なくとも一方に基づいて、対象物110の状態を解析してよい。 The first inference state Se1 and the second inference state Se2 may be the analysis result Ra by the state analysis unit 24. The first state inference model 122 and the second state inference model 132 may be stored in the storage unit 25 . State analysis unit 24 may analyze the state of object 110 based on at least one of first state inference model 122 and second state inference model 132 stored in storage unit 25 .
 図18は、本発明の一つの実施形態に係る解析方法の一例を含むフローチャートである。本発明の一つの実施形態に係る解析方法は、解析システム100(図4、図10、図11および図13参照)における対象物110(図4参照)の解析方法の一例である。本例の解析方法は、元素取得ステップS100、受信ステップS104および状態解析ステップS109を備える。 FIG. 18 is a flowchart including an example of an analysis method according to one embodiment of the present invention. The analysis method according to one embodiment of the present invention is an example of the analysis method for the object 110 (see FIG. 4) in the analysis system 100 (see FIGS. 4, 10, 11 and 13). The analysis method of this example includes an element acquisition step S100, a reception step S104, and a state analysis step S109.
 元素取得ステップS100は、元素取得部12が、電解槽90における対象物110に含まれる元素の量を取得するステップである。本例の解析方法は、第1送信ステップS102を備える。第1送信ステップS102は、第1送信部14が、元素取得ステップS100において取得された元素の量を送信するステップである。受信ステップS104は、受信部22が、元素取得ステップS100において取得された元素の量を受信するステップである。本例においては、受信ステップS104は、受信部22が、第1送信ステップS102において送信された元素の量を受信するステップである。 The element acquisition step S100 is a step in which the element acquisition unit 12 acquires the amount of the element contained in the object 110 in the electrolytic bath 90. The analysis method of this example includes a first transmission step S102. The first transmission step S102 is a step in which the first transmission unit 14 transmits the amount of the element acquired in the element acquisition step S100. The receiving step S104 is a step in which the receiving unit 22 receives the amount of the element obtained in the element obtaining step S100. In this example, the receiving step S104 is a step in which the receiving unit 22 receives the amount of the element transmitted in the first transmitting step S102.
 本例の解析方法は、判断ステップS106を備える。判断ステップS106は、状態解析部24が、対象物110がイオン交換膜84か、または、陽極80および陰極82の少なくとも一方かを判断するステップであってよい。判断ステップS106において、状態解析部24は、元素取得ステップS100において取得された元素の種類に基づいて、対象物110がイオン交換膜84か、または、陽極80および陰極82の少なくとも一方かを判断してよい。 The analysis method of this example includes a determination step S106. The determination step S<b>106 may be a step in which the state analysis unit 24 determines whether the object 110 is the ion exchange membrane 84 or at least one of the anode 80 and the cathode 82 . In determination step S106, the state analysis unit 24 determines whether the object 110 is the ion exchange membrane 84 or at least one of the anode 80 and the cathode 82 based on the type of element acquired in the element acquisition step S100. you can
 本例の解析方法は、記憶ステップS108および記憶ステップS114を備える。記憶ステップS108は、判断ステップS106において対象物110がイオン交換膜84であると判断された場合に、記憶部25が、元素取得ステップS100において取得された元素の量を記憶するステップであってよい。記憶ステップS114は、判断ステップS106において対象物110が陽極80および陰極82の少なくとも一方であると判断された場合において、記憶部25が、元素取得ステップS100において取得された元素の量を記憶するステップであってよい。 The analysis method of this example includes a storage step S108 and a storage step S114. The storage step S108 may be a step in which the storage unit 25 stores the amount of the element acquired in the element acquisition step S100 when the object 110 is determined to be the ion exchange membrane 84 in the determination step S106. . In the storing step S114, when it is determined that the object 110 is at least one of the anode 80 and the cathode 82 in the determination step S106, the storage unit 25 stores the amount of the element obtained in the element obtaining step S100. can be
 状態解析ステップS109は、状態解析部24が、受信ステップS104において受信された元素の量に基づいて、対象物110の状態を解析するステップである。図18において、状態解析ステップS109の範囲が破線で囲われている。 The state analysis step S109 is a step in which the state analysis unit 24 analyzes the state of the object 110 based on the amount of the element received in the reception step S104. In FIG. 18, the range of state analysis step S109 is surrounded by a dashed line.
 対象物110がイオン交換膜84である場合において、本例の状態解析ステップS109は、強度取得ステップS110、判断ステップS112、判断ステップS200~S212および比較ステップS300を有する。強度取得ステップS110は、元素取得部12により測定されたX線114(図4参照)の強度を、受信部22が取得するステップである。 When the object 110 is the ion exchange membrane 84, the state analysis step S109 of this example has an intensity acquisition step S110, a determination step S112, determination steps S200 to S212, and a comparison step S300. The intensity acquisition step S<b>110 is a step in which the reception unit 22 acquires the intensity of the X-rays 114 (see FIG. 4 ) measured by the element acquisition unit 12 .
 X線114の強度の閾値を、閾値強度Stpとする。閾値強度Stpは、元素の種類ごとに予め定められていてよい。判断ステップS112は、強度取得ステップS110において取得されたX線114の強度が閾値強度Stp以上であるか否かを、状態解析部24が判断するステップである。判断ステップS112において、X線114の強度が閾値強度Stp以上であると判断された場合、解析方法はステップS200に進む。判断ステップS112において、X線114の強度が閾値強度Stp未満であると判断された場合、解析方法はステップS300に進む。 Let the intensity threshold of the X-ray 114 be the threshold intensity Stp. The threshold strength Stp may be determined in advance for each type of element. Determination step S112 is a step in which state analysis unit 24 determines whether or not the intensity of X-ray 114 acquired in intensity acquisition step S110 is equal to or greater than threshold intensity Stp. If it is determined in determination step S112 that the intensity of X-ray 114 is greater than or equal to threshold intensity Stp, the analysis method proceeds to step S200. If it is determined in determination step S112 that the intensity of X-ray 114 is less than threshold intensity Stp, the analysis method proceeds to step S300.
 状態解析ステップS109において、状態解析部24は、電解槽90の電流効率CEと元素の量との予め定められた第1関係R1に基づいて対象物110(本例においてはイオン交換膜84)の状態を解析するか、または、電解槽90の電圧CVと元素の量との予め定められた第2関係R21に基づいて対象物110(本例においてはイオン交換膜84)の状態を解析してよい。本例においては、判断ステップS200~S212において、状態解析部24が予め定められた元素ごとにX線114の強度が閾値強度Stp以上であるか否かを判断することにより、対象物110(本例においてはイオン交換膜84)の状態を解析する。予め定められた元素とは、本例においては、Ni(ニッケル)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、I(ヨウ素)、Fe(鉄)およびZr(ジルコニウム)である。 In the state analysis step S109, the state analysis unit 24 analyzes the target object 110 (the ion exchange membrane 84 in this example) based on the predetermined first relationship R1 between the current efficiency CE of the electrolytic cell 90 and the amount of the element. Analyze the state or state of the object 110 (ion exchange membrane 84 in this example) based on a predetermined second relationship R21 between the voltage CV of the electrolytic cell 90 and the amount of the element. good. In this example, in the determination steps S200 to S212, the state analysis unit 24 determines whether the intensity of the X-ray 114 is equal to or higher than the threshold intensity Stp for each element determined in advance. In the example, the state of the ion exchange membrane 84) is analyzed. The predetermined elements are Ni (nickel), Ca (calcium), Sr (strontium), Ba (barium), I (iodine), Fe (iron) and Zr (zirconium) in this example.
 対象物110が陽極80および陰極82の少なくとも一方である場合において、本例の状態解析ステップS109は、強度取得ステップS116を有する。強度取得ステップS116は、元素取得部12により測定されたX線114(図4参照)の強度を、受信部22が取得するステップである。 When the object 110 is at least one of the anode 80 and the cathode 82, the state analysis step S109 of this example has an intensity acquisition step S116. Intensity acquisition step S<b>116 is a step in which the reception unit 22 acquires the intensity of the X-rays 114 (see FIG. 4 ) measured by the element acquisition unit 12 .
 状態解析ステップS109において、状態解析部24は、電解槽90の電圧CVと元素の量との予め定められた第2関係R22に基づいて、対象物110(本例においては陽極80および陰極82の少なくとも一方)の状態を解析してよい。本例においては、状態解析部24が、強度取得ステップS116において取得されたX線114(図4参照)の強度に基づいて、対象物110(本例においては陽極80および陰極82の少なくとも一方)の状態を解析する。 In the state analysis step S109, the state analysis unit 24 determines the target object 110 (the anode 80 and the cathode 82 in this example) based on the predetermined second relationship R22 between the voltage CV of the electrolytic cell 90 and the amount of the element. at least one) may be analyzed. In this example, the state analysis unit 24 determines the object 110 (in this example, at least one of the anode 80 and the cathode 82) based on the intensity of the X-rays 114 (see FIG. 4) acquired in the intensity acquisition step S116. Analyze the state of
 状態解析ステップS109において、状態解析部24は、アルカリ金属の水酸化物の水溶液におけるCl(塩化物イオン)濃度と、元素の量との予め定められた第3関係R3に基づいて、対象物110(本例においてはイオン交換膜84)の状態を解析してよい。本例においては、判断ステップS200~S212において、状態解析部24が予め定められた元素ごとにX線114の強度が閾値強度Stp以上であるか否かを判断することにより、対象物110(本例においてはイオン交換膜84)の状態を解析する。 In the state analysis step S109, the state analysis unit 24 determines the target object based on the predetermined third relationship R3 between the Cl (chloride ion) concentration in the alkali metal hydroxide aqueous solution and the amount of the element. The condition of 110 (ion exchange membrane 84 in this example) may be analyzed. In this example, in the determination steps S200 to S212, the state analysis unit 24 determines whether the intensity of the X-ray 114 is equal to or higher than the threshold intensity Stp for each element determined in advance. In the example, the state of the ion exchange membrane 84) is analyzed.
 本例の解析方法は、提案ステップS220をさらに備える。提案ステップS220は、X線114の強度が閾値強度Stp以上の元素について、電解槽90のユーザに調査項目、対策等を提案するステップである。当該対策は、上述した第1対策Cm1、第2対策Cm2および第3対策Cm3の少なくとも一つであってよい。 The analysis method of this example further includes a proposal step S220. The proposing step S220 is a step of proposing investigation items, countermeasures, etc. to the user of the electrolytic cell 90 for the elements whose intensity of the X-ray 114 is equal to or higher than the threshold intensity Stp. The countermeasure may be at least one of the above-described first countermeasure Cm1, second countermeasure Cm2, and third countermeasure Cm3.
 比較ステップS300は、状態解析部24が、一の対象物110の解析結果Raと他の対象物110の解析結果Raとを比較するステップである。一の対象物110とは、解析対象の対象物110であってよい。他の対象物110とは、過去の解析結果Raに係る対象物110であってよい。これにより、一の電解槽90のユーザは、他の電解槽90における対象物110の解析結果Raと比較した、一の電解槽90における対象物110の状態の解析結果Raを認知できる。 The comparison step S300 is a step in which the state analysis unit 24 compares the analysis result Ra of one target object 110 and the analysis result Ra of the other target object 110 . The one object 110 may be the object 110 to be analyzed. The other target object 110 may be the target object 110 related to the past analysis result Ra. Thereby, the user of one electrolytic bath 90 can recognize the analysis result Ra of the state of the object 110 in one electrolytic bath 90 in comparison with the analysis result Ra of the object 110 in another electrolytic bath 90 .
 本例の解析方法は、状態予測ステップS302、第2送信ステップS304および表示ステップS306をさらに備える。状態予測ステップS302は、状態予測部26が、元素の量の経時変化と第1関係R1とに基づいて、対象物110(本例においてはイオン交換膜84)が第1状態S1となる時期を予測するか、または、元素の量の経時変化と第2関係R21とに基づいて、対象物110(本例においてはイオン交換膜84)が第2状態S2となる時期を予測するステップである。状態予測ステップS302は、状態予測部26が、元素の量の経時変化と第2関係R22とに基づいて、対象物110(本例においては陽極80および陰極82の少なくとも一方)が第2状態S2となる時期を予測するステップである。状態予測ステップS302は、状態予測部26が、元素の量の経時変化と第3関係R3とに基づいて、対象物110(本例においてはイオン交換膜84)が第3状態S3となる時期を予測するステップである。 The analysis method of this example further comprises a state prediction step S302, a second transmission step S304 and a display step S306. In the state prediction step S302, the state prediction unit 26 predicts when the target object 110 (the ion exchange membrane 84 in this example) will be in the first state S1 based on the temporal change in the amount of the element and the first relationship R1. Alternatively, it is a step of predicting when the object 110 (the ion exchange membrane 84 in this example) will be in the second state S2 based on the temporal change in the amount of the element and the second relationship R21. In the state prediction step S302, the state prediction unit 26 determines that the object 110 (at least one of the anode 80 and the cathode 82 in this example) is in the second state S2 based on the temporal change in the amount of the element and the second relationship R22. This is the step of predicting the time when In the state prediction step S302, the state prediction unit 26 predicts when the object 110 (the ion exchange membrane 84 in this example) will be in the third state S3 based on the temporal change in the amount of the element and the third relationship R3. This is the step of predicting.
 第2送信ステップS304は、第2送信部27が、状態解析ステップS109における解析結果Raを情報端末30に送信するステップである。第2送信ステップS304は、第2送信部27が、状態予測ステップS302において予測された、対象物110が第1状態S1となる時期または第2状態S2となる時期を、情報端末30に送信するステップであってもよい。 The second transmission step S304 is a step in which the second transmission unit 27 transmits the analysis result Ra in the state analysis step S109 to the information terminal 30. In a second transmission step S304, the second transmission unit 27 transmits to the information terminal 30 the time when the object 110 will be in the first state S1 or the second state S2 predicted in the state prediction step S302. It may be a step.
 表示ステップS306は、情報端末30における表示部32が、解析結果Raを表示するステップである。これにより、電解槽90のユーザは、解析結果Raを認知できる。表示ステップS306は、情報端末30における表示部32が、対象物110が第1状態S1となる時期または第2状態S2となる時期を表示するステップであってもよい。これにより、電解槽90のユーザは、第1状態S1となる時期または第2状態S2となる時期を認知できる。 The display step S306 is a step in which the display unit 32 of the information terminal 30 displays the analysis result Ra. Thereby, the user of the electrolytic bath 90 can recognize the analysis result Ra. The display step S306 may be a step in which the display unit 32 of the information terminal 30 displays when the object 110 will be in the first state S1 or in the second state S2. Thereby, the user of the electrolytic cell 90 can recognize when the first state S1 or the second state S2 is reached.
 本発明の様々な実施形態は、 フローチャートおよびブロック図を参照して記載されてよい。本発明の様々な実施形態において、ブロックは、(1)操作が実行されるプロセスの段階または(2)操作を実行する役割を持つ装置のセクションを表わしてよい。 Various embodiments of the invention may be described with reference to flowchart illustrations and block diagrams. In various embodiments of the invention, a block may represent (1) a stage of a process in which an operation is performed or (2) a section of equipment responsible for performing the operation.
 特定の段階が、専用回路、プログラマブル回路またはプロセッサによって実行されてよい。特定のセクションが、専用回路、プログラマブル回路またはプロセッサによって実装されてよい。当該プログラマブル回路および当該プロセッサは、コンピュータ可読命令と共に供給されてよい。当該コンピュータ可読命令は、コンピュータ可読媒体上に格納されてよい。 Certain steps may be performed by dedicated circuits, programmable circuits or processors. Certain sections may be implemented by dedicated circuitry, programmable circuitry or processors. The programmable circuit and the processor may be supplied with computer readable instructions. The computer readable instructions may be stored on a computer readable medium.
 専用回路は、デジタルハードウェア回路およびアナログハードウェア回路の少なくとも一方を含んでよい。専用回路は、集積回路(IC)およびディスクリート回路の少なくとも一方を含んでもよい。プログラマブル回路は、論理AND、論理OR、論理XOR、論理NAND、論理NORまたは他の論理操作のハードウェア回路を含んでよい。プログラマブル回路は、フリップフロップ、レジスタ、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブルロジックアレイ(PLA)等のメモリ要素等を含む、再構成可能なハードウェア回路を含んでもよい。 A dedicated circuit may include at least one of a digital hardware circuit and an analog hardware circuit. Dedicated circuitry may include integrated circuits (ICs) and/or discrete circuits. Programmable circuits may include hardware circuits for logical AND, logical OR, logical XOR, logical NAND, logical NOR, or other logical operations. Programmable circuits may include reconfigurable hardware circuits, including flip-flops, registers, memory elements such as field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), and the like.
 コンピュータ可読媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよい。コンピュータ可読媒体が当該有形なデバイスを含むことにより、当該デバイスに格納される命令を有するコンピュータ可読媒体は、フローチャートまたはブロック図で指定された操作を実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。 A computer-readable medium may include any tangible device capable of storing instructions to be executed by a suitable device. By including the tangible device, the computer readable medium having instructions stored on the device can be executed to create means for performing the operations specified in the flowcharts or block diagrams. will have a product, including:
 コンピュータ可読媒体は、例えば電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等であってよい。コンピュータ可読媒体は、より具体的には、例えばフロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROMまたはフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(RTM)ディスク、メモリスティック、集積回路カード等であってよい。 A computer-readable medium may be, for example, an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, or the like. The computer readable medium is more particularly e.g. Electrically Erasable Programmable Read Only Memory (EEPROM), Static Random Access Memory (SRAM), Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD), Blu-ray (RTM) Disc, Memory Stick, Integration It may be a circuit card or the like.
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、ソースコードおよびオブジェクトコードのいずれかを含んでよい。当該ソースコードおよび当該オブジェクトコードは、オブジェクト指向プログラミング言語および従来の手続型プログラミング言語を含む、1または複数のプログラミング言語の任意の組み合わせで記述されてよい。オブジェクト指向プログラミング言語は、例えばSmalltalk(登録商標)、JAVA(登録商標)、C++等であってよい。手続型プログラミング言語は、例えば「C」プログラミング言語であってよい。 Computer readable instructions may include any of assembler instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, source code and object code. The source code and the object code may be written in any combination of one or more programming languages, including object-oriented programming languages and traditional procedural programming languages. Object-oriented programming languages may be, for example, Smalltalk®, JAVA®, C++, and the like. The procedural programming language may be, for example, the "C" programming language.
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路に対し、ローカルにまたはローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して提供されてよい。汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサまたはプログラマブル回路は、図18に示されるフローチャート、または、図4、図10、図11、図13および図15に示されるブロック図で指定された操作を実行するための手段を作成すべく、コンピュータ可読命令を実行してよい。プロセッサは、例えばコンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等であってよい。 Computer readable instructions may be transferred to a processor or programmable circuitry of a general purpose computer, special purpose computer, or other programmable data processing apparatus, either locally or over a wide area network (WAN), such as a local area network (LAN), the Internet, or the like. ) may be provided via A processor or programmable circuit of a general purpose computer, special purpose computer, or other programmable data processing apparatus may be implemented by the flow chart shown in FIG. 18 or the steps shown in FIGS. The computer readable instructions may be executed to create means for performing the operations specified in the block diagrams. A processor may be, for example, a computer processor, processing unit, microprocessor, digital signal processor, controller, microcontroller, or the like.
 図19は、本発明の一つの実施形態に係る解析システム100が全体的または部分的に具現化されてよいコンピュータ2200の一例を示す図である。コンピュータ2200にインストールされたプログラムは、コンピュータ2200に、本発明の実施形態に係る解析システム100に関連付けられる操作または解析システム100の1または複数のセクションとして機能させることができ、または当該操作または当該1または複数のセクションを実行させることができ、またはコンピュータ2200に、本発明の解析方法に係る各ステップ(図18参照)を実行させることができる。当該プログラムは、コンピュータ2200に、本明細書に記載されたフローチャート(図18)およびブロック図(図4、図10、図11、図13および図15)におけるブロックのうちのいくつかまたはすべてに関連付けられた特定の操作を実行させるべく、CPU2212によって実行されてよい。 FIG. 19 is a diagram illustrating an example computer 2200 in which the analysis system 100 according to one embodiment of the invention may be embodied in whole or in part. Programs installed on the computer 2200 may cause the computer 2200 to function as one or more sections of the operation or analysis system 100 associated with the analysis system 100 according to embodiments of the present invention, or Or multiple sections can be executed, or the computer 2200 can be caused to execute each step (see FIG. 18) of the analysis method of the present invention. The program causes computer 2200 to associate with some or all of the blocks in the flowchart (FIG. 18) and block diagrams (FIGS. 4, 10, 11, 13 and 15) described herein. may be executed by the CPU 2212 to cause the specified operation to be performed.
 本実施形態によるコンピュータ2200は、CPU2212、RAM2214、グラフィックコントローラ2216およびディスプレイデバイス2218を含む。CPU2212、RAM2214、グラフィックコントローラ2216およびディスプレイデバイス2218は、ホストコントローラ2210によって相互に接続されている。コンピュータ2200は、通信インターフェース2222、ハードディスクドライブ2224、DVD-ROMドライブ2226およびICカードドライブ等の入出力ユニットをさらに含む。通信インターフェース2222、ハードディスクドライブ2224、DVD-ROMドライブ2226およびICカードドライブ等は、入出力コントローラ2220を介してホストコントローラ2210に接続されている。コンピュータは、ROM2230およびキーボード2242等のレガシの入出力ユニットをさらに含む。ROM2230およびキーボード2242等は、入出力チップ2240を介して入出力コントローラ2220に接続されている。 A computer 2200 according to this embodiment includes a CPU 2212 , a RAM 2214 , a graphics controller 2216 and a display device 2218 . CPU 2212 , RAM 2214 , graphics controller 2216 and display device 2218 are interconnected by host controller 2210 . Computer 2200 further includes input/output units such as communication interface 2222, hard disk drive 2224, DVD-ROM drive 2226 and IC card drive. Communication interface 2222 , hard disk drive 2224 , DVD-ROM drive 2226 , IC card drive, etc. are connected to host controller 2210 via input/output controller 2220 . The computer further includes legacy input/output units such as ROM 2230 and keyboard 2242 . ROM 2230 , keyboard 2242 , etc. are connected to input/output controller 2220 via input/output chip 2240 .
 CPU2212は、ROM2230およびRAM2214内に格納されたプログラムに従い動作することにより、各ユニットを制御する。グラフィックコントローラ2216は、RAM2214内に提供されるフレームバッファ等またはRAM2214の中に、CPU2212によって生成されたイメージデータを取得することにより、イメージデータがディスプレイデバイス2218上に表示されるようにする。 The CPU 2212 controls each unit by operating according to programs stored in the ROM 2230 and RAM 2214. Graphics controller 2216 causes the image data to be displayed on display device 2218 by retrieving image data generated by CPU 2212 into RAM 2214 , such as a frame buffer provided in RAM 2214 .
 通信インターフェース2222は、ネットワークを介して他の電子デバイスと通信する。ハードディスクドライブ2224は、コンピュータ2200内のCPU2212によって使用されるプログラムおよびデータを格納する。DVD-ROMドライブ2226は、プログラムまたはデータをDVD-ROM2201から読み取り、読み取ったプログラムまたはデータを、RAM2214を介してハードディスクドライブ2224に提供する。ICカードドライブは、プログラムおよびデータをICカードから読み取るか、または、プログラムおよびデータをICカードに書き込む。 A communication interface 2222 communicates with other electronic devices via a network. Hard disk drive 2224 stores programs and data used by CPU 2212 within computer 2200 . DVD-ROM drive 2226 reads programs or data from DVD-ROM 2201 and provides the read programs or data to hard disk drive 2224 via RAM 2214 . The IC card drive reads programs and data from IC cards or writes programs and data to IC cards.
 ROM2230は、アクティブ化時にコンピュータ2200によって実行されるブートプログラム等、または、コンピュータ2200のハードウェアに依存するプログラムを格納する。入出力チップ2240は、様々な入出力ユニットをパラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ2220に接続してよい。 The ROM 2230 stores a boot program or the like executed by the computer 2200 upon activation, or a program dependent on the hardware of the computer 2200. Input/output chip 2240 may connect various input/output units to input/output controller 2220 via parallel ports, serial ports, keyboard ports, mouse ports, and the like.
 プログラムが、DVD-ROM2201またはICカードのようなコンピュータ可読媒体によって提供される。プログラムは、コンピュータ可読媒体から読み取られ、コンピュータ可読媒体の例でもあるハードディスクドライブ2224、RAM2214、またはROM2230にインストールされ、CPU2212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ2200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置または方法が、コンピュータ2200の使用に従い、情報の操作または処理を実現することによって構成されてよい。 A program is provided by a computer-readable medium such as a DVD-ROM 2201 or an IC card. The program is read from a computer-readable medium, installed in hard disk drive 2224 , RAM 2214 , or ROM 2230 , which are also examples of computer-readable medium, and executed by CPU 2212 . The information processing described within these programs is read by computer 2200 to provide coordination between the programs and the various types of hardware resources described above. An apparatus or method may be configured by implementing information manipulation or processing in accordance with the use of computer 2200 .
 例えば、通信がコンピュータ2200および外部デバイス間で実行される場合、CPU2212は、RAM2214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インターフェース2222に対し、通信処理を命令してよい。通信インターフェース2222は、CPU2212の制御下、RAM2214、ハードディスクドライブ2224、DVD-ROM2201またはICカードのような記録媒体内に提供される送信バッファ処理領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、またはネットワークから受信された受信データを記録媒体上に提供される受信バッファ処理領域等に書き込む。 For example, when communication is performed between the computer 2200 and an external device, the CPU 2212 executes a communication program loaded into the RAM 2214 and sends communication processing to the communication interface 2222 based on the processing described in the communication program. you can command. Under the control of the CPU 2212, the communication interface 2222 reads transmission data stored in a transmission buffer processing area provided in a recording medium such as the RAM 2214, the hard disk drive 2224, the DVD-ROM 2201, or an IC card, and outputs the read transmission data. to the network, or writes received data received from the network to a receive buffer processing area or the like provided on the recording medium.
 CPU2212は、ハードディスクドライブ2224、DVD-ROMドライブ2226(DVD-ROM2201)、ICカード等のような外部記録媒体に格納されたファイルまたはデータベースの全部または必要な部分がRAM2214に読み取られるようにしてよい。CPU2212は、RAM2214上のデータに対し、様々なタイプの処理を実行してよい。CPU2212は、次に、処理されたデータを外部記録媒体にライトバックしてよい。 The CPU 2212 may cause the RAM 2214 to read all or necessary portions of files or databases stored in external recording media such as the hard disk drive 2224, DVD-ROM drive 2226 (DVD-ROM 2201), and IC card. CPU 2212 may perform various types of operations on data in RAM 2214 . CPU 2212 may then write back the processed data to an external recording medium.
 様々なタイプのプログラム、データ、テーブル、およびデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理されてよい。CPU2212は、RAM2214から読み取られたデータに対し、本開示に記載された、プログラムの命令シーケンスによって指定される様々なタイプの操作、情報処理、条件判断、条件分岐、無条件分岐、情報の検索または置換等を含む、様々なタイプの処理を実行してよい。CPU2212は、結果をRAM2214に対しライトバックしてよい。 Various types of information such as various types of programs, data, tables, and databases may be stored in recording media and processed. CPU 2212 may perform various types of manipulation, information processing, conditional judgment, conditional branching, unconditional branching, information retrieval or Various types of processing may be performed, including permutations and the like. CPU 2212 may write results back to RAM 2214 .
 CPU2212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU2212は、第1の属性の属性値が指定される、条件に一致するエントリを当該複数のエントリの中から検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、第2の属性値を読み取ることにより、予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 The CPU 2212 may search for information in files, databases, etc. in the recording medium. For example, if a plurality of entries each having an attribute value of a first attribute associated with an attribute value of a second attribute are stored in the recording medium, the CPU 2212 determines that the attribute value of the first attribute is specified. search the plurality of entries for an entry that matches the condition, read the attribute value of the second attribute stored in the entry, and read the second attribute value to obtain the predetermined condition An attribute value of a second attribute associated with a first attribute that satisfies may be obtained.
 上述したプログラムまたはソフトウェアモジュールは、コンピュータ2200上またはコンピュータ2200のコンピュータ可読媒体に格納されてよい。専用通信ネットワークまたはインターネットに接続されたサーバーシステム内に提供されるハードディスクまたはRAMのような記録媒体が、コンピュータ可読媒体として使用可能である。プログラムは、当該記録媒体によりコンピュータ2200に提供されてよい。 The programs or software modules described above may be stored on the computer 2200 or in a computer-readable medium of the computer 2200 . A storage medium such as a hard disk or RAM provided in a server system connected to a private communication network or the Internet can be used as the computer readable medium. The program may be provided to computer 2200 by the recording medium.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It is obvious to those skilled in the art that various modifications and improvements can be made to the above embodiments. It is clear from the description of the scope of the claims that forms with such modifications or improvements can also be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as actions, procedures, steps, and stages in devices, systems, programs, and methods shown in claims, specifications, and drawings is etc., and it should be noted that they can be implemented in any order unless the output of a previous process is used in a later process. Regarding the operation flow in the claims, specification, and drawings, even if explanations are made using "first," "next," etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10・・・端末、12・・・元素取得部、14・・・第1送信部、20・・・サーバ、22・・・受信部、23・・・運転条件取得部、24・・・状態解析部、25・・・記憶部、26・・・状態予測部、27・・・第2送信部、30・・・情報端末、32・・・表示部、60・・・開口、70・・・液体、71・・・陽イオン、72・・・液体、73・・・液体、74・・・液体、75・・・液体、76・・・液体、77・・・気体、78・・・気体、79・・・陽極室、80・・・陽極、82・・・陰極、84・・・イオン交換膜、86・・・陰イオン基、89・・・不純物、90・・・電解槽、91・・・電解セル、92・・・導入管、93・・・導入管、94・・・導出管、95・・・導出管、98・・・陰極室、100・・・解析システム、112・・・X線、114・・・X線、120・・・第1状態学習部、122・・・第1状態推論モデル、130・・・第2状態学習部、132・・・第2状態推論モデル、200・・・電解装置、2200・・・コンピュータ、2201・・・DVD-ROM、2210・・・ホストコントローラ、2212・・・CPU、2214・・・RAM、2216・・・グラフィックコントローラ、2218・・・ディスプレイデバイス、2220・・・入出力コントローラ、2222・・・通信インターフェース、2224・・・ハードディスクドライブ、2226・・・DVD-ROMドライブ、2230・・・ROM、2240・・・入出力チップ、2242・・・キーボード DESCRIPTION OF SYMBOLS 10... Terminal, 12... Element acquisition part, 14... 1st transmission part, 20... Server, 22... Reception part, 23... Operating condition acquisition part, 24... State Analysis unit 25 Storage unit 26 State prediction unit 27 Second transmission unit 30 Information terminal 32 Display unit 60 Opening 70 liquid, 71... cation, 72... liquid, 73... liquid, 74... liquid, 75... liquid, 76... liquid, 77... gas, 78... gas, 79... anode chamber, 80... anode, 82... cathode, 84... ion exchange membrane, 86... anion group, 89... impurity, 90... electrolytic cell, 91... electrolytic cell, 92... lead-in tube, 93... lead-in tube, 94... lead-out tube, 95... lead-out tube, 98... cathode chamber, 100... analysis system, 112 ... X-ray, 114 ... X-ray, 120 ... First state learning section, 122 ... First state inference model, 130 ... Second state learning section, 132 ... Second state Inference model 200...Electrolytic device 2200...Computer 2201...DVD-ROM 2210...Host controller 2212...CPU 2214...RAM 2216...Graphic controller 2218: display device, 2220: input/output controller, 2222: communication interface, 2224: hard disk drive, 2226: DVD-ROM drive, 2230: ROM, 2240: input/output Chip, 2242...Keyboard

Claims (19)

  1.  電解槽における対象物に含まれる元素の量を取得する元素取得部を有する端末と、
     前記元素取得部により取得された前記元素の量を受信する受信部と、前記受信部により受信された前記元素の量に基づいて前記対象物の状態を解析する状態解析部と、を有するサーバと、
     を備える解析システム。
    a terminal having an element acquisition unit that acquires the amount of an element contained in an object in the electrolytic cell;
    a server having a receiving unit that receives the amount of the element acquired by the element acquiring unit; and a state analysis unit that analyzes the state of the object based on the amount of the element received by the receiving unit; ,
    Analysis system with
  2.  前記電解槽は、イオン交換膜と、前記イオン交換膜により仕切られた陽極室および陰極室とを有し、
     前記陽極室にはアルカリ金属の塩化物の水溶液またはアルカリ金属の水酸化物の水溶液が導入され、前記陰極室からはアルカリ金属の水酸化物の水溶液が導出され、
     前記状態解析部は、電解槽の電流効率と前記元素の量との予め定められた第1関係に基づいて前記対象物の状態を解析するか、電解槽の電圧と前記元素の量との予め定められた第2関係に基づいて前記対象物の状態を解析するか、または、前記アルカリ金属の水酸化物の水溶液における塩化物イオン濃度と、前記元素の量との予め定められた第3関係に基づいて前記対象物の状態を解析する、請求項1に記載の解析システム。
    The electrolytic cell has an ion exchange membrane and an anode chamber and a cathode chamber separated by the ion exchange membrane,
    An aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide is introduced into the anode chamber, and an aqueous solution of an alkali metal hydroxide is discharged from the cathode chamber,
    The state analysis unit analyzes the state of the object based on a predetermined first relationship between the current efficiency of the electrolytic cell and the amount of the element, or analyzes the state of the object based on a predetermined relationship between the voltage of the electrolytic cell and the amount of the element. Analyzing the state of the object based on a predetermined second relationship, or a predetermined third relationship between the chloride ion concentration in the alkali metal hydroxide aqueous solution and the amount of the element 2. The analysis system according to claim 1, which analyzes the state of said object based on.
  3.  複数の前記電解槽が、それぞれ異なる位置に配置され、
     複数の前記端末におけるそれぞれの前記元素取得部は、複数の前記対象物のそれぞれに含まれる前記元素の量をそれぞれ取得し、
     前記受信部は、複数の前記端末におけるそれぞれの前記元素取得部により取得された前記元素の量を受信し、
     前記状態解析部は、複数の前記端末におけるそれぞれの前記元素取得部により取得され前記受信部により受信された前記元素の量に基づいて、一の前記対象物の状態を解析する、
     請求項2に記載の解析システム。
    The plurality of electrolytic cells are arranged at different positions,
    each of the element acquisition units in the plurality of terminals respectively acquires the amount of the element contained in each of the plurality of objects;
    the receiving unit receives the amount of the element acquired by each of the element acquiring units in the plurality of terminals;
    The state analysis unit analyzes the state of the one object based on the amount of the element acquired by the element acquisition unit of each of the plurality of terminals and received by the reception unit.
    The analysis system according to claim 2.
  4.  前記サーバは、前記元素の量の経時変化と前記第1関係とに基づいて前記対象物が予め定められた第1状態となる時期を予測するか、前記元素の量の経時変化と前記第2関係とに基づいて前記対象物が予め定められた第2状態となる時期を予測するか、または、前記元素の量と前記第3関係とに基づいて前記対象物が予め定められた第3状態となる時期を予測する状態予測部をさらに有する、請求項3に記載の解析システム。 The server predicts when the object will be in a predetermined first state based on the time-dependent change in the amount of the element and the first relationship, or predicts the time-dependent change in the amount of the element and the second relationship. predicting when the object will be in a predetermined second state based on the relationship, or predicting when the object will be in a predetermined third state based on the amount of the element and the third relationship 4. The analysis system according to claim 3, further comprising a state predicting unit that predicts when to become
  5.  前記状態予測部は、一の前記電解槽における前記元素の量の経時変化と前記第1関係とに基づいて、一の前記電解槽または他の前記電解槽における前記対象物が前記第1状態となる時期を予測するか、一の前記電解槽における前記元素の量の経時変化と前記第2関係とに基づいて、一の前記電解槽または他の前記電解槽における前記対象物が前記第2状態となる時期を予測するか、または、一の前記電解槽における前記元素の量の経時変化と前記第3関係とに基づいて、一の前記電解槽または他の前記電解槽における前記対象物が前記第3状態となる時期を予測する、請求項4に記載の解析システム。 The state prediction unit determines whether the object in one of the electrolytic cells or the other electrolytic cell is in the first state based on the temporal change in the amount of the element in the one of the electrolytic cells and the first relationship. or predict when the object in one of the electrolytic cells or the other electrolytic cell will be in the second state based on the change in the amount of the element in one of the electrolytic cells over time and the second relationship or based on the change in the amount of the element in one of the electrolytic cells over time and the third relationship, the object in one of the electrolytic cells or the other electrolytic cell is 5. The analysis system according to claim 4, which predicts when the third state will occur.
  6.  前記元素取得部は、前記元素の種類をさらに取得し、
     前記受信部は、前記元素の種類をさらに受信し、
     前記状態予測部は、前記対象物が前記第1状態となる時期を前記元素の種類ごとに予測するか、前記対象物が前記第2状態となる時期を前記元素の種類ごとに予測するか、または、前記対象物が前記第3状態となる時期を前記元素の種類ごとに予測する、請求項4または5に記載の解析システム。
    The element acquiring unit further acquires the type of the element,
    The receiving unit further receives the type of the element,
    The state prediction unit predicts when the object will be in the first state for each type of element, or predicts when the object will be in the second state for each type of element, Alternatively, the analysis system according to claim 4 or 5, which predicts the time when the object will be in the third state for each type of the element.
  7.  前記サーバは、複数の前記電解槽におけるそれぞれの運転条件を取得する運転条件取得部をさらに有し、
     前記状態予測部は、前記対象物が前記第1状態となる時期を前記運転条件ごとに予測するか、前記対象物が前記第2状態となる時期を前記運転条件ごとに予測するか、または、前記対象物が前記第3状態となる時期を前記運転条件ごとに予測する、請求項4から6のいずれか一項に記載の解析システム。
    The server further has an operating condition acquisition unit that acquires operating conditions for each of the plurality of electrolytic cells,
    The state prediction unit predicts when the object will be in the first state for each operating condition, predicts when the object will be in the second state for each operating condition, or 7. The analysis system according to any one of claims 4 to 6, which predicts when the object will be in the third state for each operating condition.
  8.  前記状態予測部は、前記対象物の状態に応じた第1対策であって前記電解槽の電流効率を回復させる第1対策が実施された場合における前記対象物の状態を予測するか、前記対象物の状態に応じた第2対策であって前記電解槽の電圧を回復させる第2対策が実施された場合における前記対象物の状態を予測するか、または、前記対象物の状態に応じた第3対策であって前記アルカリ金属の水酸化物の水溶液における塩化物イオン濃度を回復させる第3対策が実施された場合における前記対象物の状態を予測する、
     請求項4から7のいずれか一項に記載の解析システム。
    The state prediction unit predicts the state of the object when a first countermeasure for recovering the current efficiency of the electrolytic cell, which is a first countermeasure according to the state of the object, is implemented. Predicting the state of the object when a second measure according to the state of the object and recovering the voltage of the electrolytic cell is implemented, or Predicting the state of the object when the third measure is implemented, which is to recover the chloride ion concentration in the aqueous solution of the alkali metal hydroxide,
    Analysis system according to any one of claims 4 to 7.
  9.  前記状態解析部により、一の前記電解槽における一の前記対象物の状態が前記第1状態および前記第2状態の少なくとも一方であると解析された場合、前記元素取得部は、一の前記電解槽における他の前記対象物に含まれる前記元素の量を取得する、請求項4から8のいずれか一項に記載の解析システム。 When the state analysis unit analyzes that the state of the one object in the one electrolytic cell is at least one of the first state and the second state, the element obtaining unit performs one of the electrolysis 9. The analysis system according to any one of claims 4 to 8, wherein the amount of said element contained in other said objects in a bath is obtained.
  10.  前記位置に配置され、前記元素取得部により取得された前記元素の量を送信する第1送信部を有する情報端末をさらに備える、請求項3から9のいずれか一項に記載の解析システム。 10. The analysis system according to any one of claims 3 to 9, further comprising an information terminal having a first transmission unit arranged at the position and transmitting the amount of the element acquired by the element acquisition unit.
  11.  前記サーバは、前記状態解析部により解析された解析結果を前記情報端末に送信する第2送信部をさらに有し、
     前記元素取得部は、前記第2送信部により送信された前記解析結果に基づいて、前記元素の量を取得する、
     請求項10に記載の解析システム。
    The server further has a second transmission unit that transmits the analysis result analyzed by the state analysis unit to the information terminal,
    The element acquisition unit acquires the amount of the element based on the analysis result transmitted by the second transmission unit.
    The analysis system according to claim 10.
  12.  前記電解槽には、前記電解槽に導入される液体が通過する導入管が接続され、
     前記状態解析部により、前記対象物が、前記導入管に含まれる元素を予め定められた量以上含む第4状態であると解析された場合、前記第2送信部は前記元素取得部に、前記導入管に含まれる前記元素を取得する旨の指示を送信する、
     請求項11に記載の解析システム。
    The electrolytic cell is connected to an introduction pipe through which a liquid to be introduced into the electrolytic cell passes,
    When the state analysis unit analyzes that the target object is in the fourth state containing a predetermined amount or more of the element contained in the introduction pipe, the second transmission unit instructs the element acquisition unit to sending an instruction to acquire the element contained in the introduction tube;
    The analysis system according to claim 11.
  13.  前記サーバは、前記電流効率と、前記元素の量との関係を機械学習することにより、前記電流効率および前記元素の量に基づく前記対象物の第1推論状態を出力する第1状態推論モデルを生成する第1状態学習部、および、前記電圧と、前記元素の量との関係を機械学習することにより、前記電圧および前記元素の量に基づく前記対象物の第2推論状態を出力する第2状態推論モデルを生成する第2状態学習部の少なくとも一方をさらに有する、請求項2から12のいずれか一項に記載の解析システム。 The server creates a first state inference model that outputs a first inference state of the object based on the current efficiency and the amount of the element by machine learning the relationship between the current efficiency and the amount of the element. and a second state learning unit for outputting a second inferred state of the object based on the voltage and the amount of the element by machine-learning the relationship between the voltage and the amount of the element. 13. The analysis system according to any one of claims 2 to 12, further comprising at least one of a second state learning unit that generates a state inference model.
  14.  前記元素取得部は、前記元素の量を、前記対象物における前記元素の位置ごとに取得し、
     前記受信部は、前記元素の位置ごとの前記元素の量を受信し、
     前記状態解析部は、前記元素の位置ごとの前記元素の量に基づいて、前記対象物の状態を解析する、
     請求項1から13のいずれか一項に記載の解析システム。
    The element acquisition unit acquires the amount of the element for each position of the element in the object,
    The receiving unit receives the amount of the element for each position of the element,
    The state analysis unit analyzes the state of the object based on the amount of the element at each position of the element.
    Analysis system according to any one of claims 1 to 13.
  15.  前記電解槽には、前記電解槽に導入される液体が通過する開口が設けられ、
     前記状態解析部は、前記開口の位置と、前記対象物における前記元素の位置とに基づいて、前記対象物の状態を解析する、
     請求項14に記載の解析システム。
    The electrolytic cell is provided with an opening through which a liquid introduced into the electrolytic cell passes,
    The state analysis unit analyzes the state of the object based on the position of the opening and the position of the element in the object.
    The analysis system according to claim 14.
  16.  元素取得部が、電解槽における対象物に含まれる元素の量を取得する元素取得ステップと、
     受信部が、前記元素取得ステップにおいて取得された前記元素の量を受信する受信ステップと、
     状態解析部が、前記受信ステップにおいて受信された前記元素の量に基づいて、前記対象物の状態を解析する状態解析ステップと、
     を備える解析方法。
    an element acquisition step in which the element acquisition unit acquires the amount of the element contained in the object in the electrolytic cell;
    a receiving step in which a receiving unit receives the amount of the element obtained in the element obtaining step;
    a state analysis step in which the state analysis unit analyzes the state of the object based on the amount of the element received in the reception step;
    A method of analysis comprising
  17.  前記電解槽は、イオン交換膜と、前記イオン交換膜により仕切られた陽極室および陰極室とを有し、
     前記陽極室にはアルカリ金属の塩化物の水溶液またはアルカリ金属の水酸化物の水溶液が導入され、前記陰極室からはアルカリ金属の水酸化物の水溶液が導出され、
     前記状態解析ステップは、前記状態解析部が、電解槽の電流効率と前記元素の量との予め定められた第1関係に基づいて前記対象物の状態を解析するか、電解槽の電圧と前記元素の量との予め定められた第2関係に基づいて前記対象物の状態を解析するか、または、前記アルカリ金属の水酸化物の水溶液における塩化物イオン濃度と、前記元素の量との予め定められた第3関係に基づいて前記対象物の状態を解析するステップである、
     請求項16に記載の解析方法。
    The electrolytic cell has an ion exchange membrane and an anode chamber and a cathode chamber separated by the ion exchange membrane,
    An aqueous solution of an alkali metal chloride or an aqueous solution of an alkali metal hydroxide is introduced into the anode chamber, and an aqueous solution of an alkali metal hydroxide is discharged from the cathode chamber,
    In the state analysis step, the state analysis unit analyzes the state of the object based on a predetermined first relationship between the current efficiency of the electrolytic cell and the amount of the element, or the voltage of the electrolytic cell and the Analyzing the state of the object based on a predetermined second relationship with the amount of the element, or analyzing the chloride ion concentration in the alkali metal hydroxide aqueous solution and the amount of the element in advance analyzing the state of the object based on a defined third relationship;
    The analysis method according to claim 16.
  18.  状態予測部が、前記元素の量の経時変化と前記第1関係とに基づいて、前記対象物が予め定められた第1状態となる時期を予測するか、前記元素の量の経時変化と前記第2関係とに基づいて、前記対象物が予め定められた第2状態となる時期を予測するか、または、前記元素の量の経時変化と前記第3関係とに基づいて、前記対象物が予め定められた第3状態となる時期を予測する状態予測ステップをさらに備える、請求項17に記載の解析方法。 A state prediction unit predicts when the object will be in a predetermined first state based on the temporal change in the amount of the element and the first relationship, or Predicting when the object will be in a predetermined second state based on the second relationship, or 18. The analysis method according to claim 17, further comprising a state prediction step of predicting when a predetermined third state will occur.
  19.  コンピュータを、請求項1から15のいずれか一項に記載の解析システムとして機能させるための解析プログラム。 An analysis program for causing a computer to function as the analysis system according to any one of claims 1 to 15.
PCT/JP2022/027779 2021-07-16 2022-07-14 Analysis system, analysis method, and analysis program WO2023286851A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280032902.6A CN117242213A (en) 2021-07-16 2022-07-14 Analysis system, analysis method, and analysis program
AU2022312861A AU2022312861A1 (en) 2021-07-16 2022-07-14 Analysis system, analysis method, and analysis program
JP2023534868A JPWO2023286851A1 (en) 2021-07-16 2022-07-14
KR1020237044923A KR20240013230A (en) 2021-07-16 2022-07-14 Analysis systems, analysis methods and analysis programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-117766 2021-07-16
JP2021117766 2021-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/544,477 Continuation US20240133064A1 (en) 2021-07-15 2023-12-19 Analysis system, analysis method, and computer readable medium

Publications (1)

Publication Number Publication Date
WO2023286851A1 true WO2023286851A1 (en) 2023-01-19

Family

ID=84920289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027779 WO2023286851A1 (en) 2021-07-16 2022-07-14 Analysis system, analysis method, and analysis program

Country Status (5)

Country Link
JP (1) JPWO2023286851A1 (en)
KR (1) KR20240013230A (en)
CN (1) CN117242213A (en)
AU (1) AU2022312861A1 (en)
WO (1) WO2023286851A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313034A (en) 1997-05-12 1998-11-24 Toshiba Corp Method for diagnosing deterioration and life of electronic device and device therefor
JP2005009906A (en) 2003-06-17 2005-01-13 Espec Corp Method and system for diagnosing deterioration of metal film
US20060289312A1 (en) * 2005-06-16 2006-12-28 Recherche 2000 Inc. Method and system for electrolyzer diagnosis based on curve fitting analysis and efficiency optimization
JP2015021187A (en) * 2013-07-17 2015-02-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Method and system for monitoring functionality of electrolysis cells
CN107400897A (en) * 2017-08-08 2017-11-28 滨化集团股份有限公司 A kind of ion-exchange membrane electrolyzer management and back-end data processing system
US20180245226A1 (en) * 2017-02-24 2018-08-30 Calera Corporation Monitoring condition of electrochemical cells
WO2020075767A1 (en) * 2018-10-10 2020-04-16 旭化成株式会社 Planning device, planning method, and planning program
JP6762817B2 (en) 2016-09-09 2020-09-30 Ntn株式会社 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
JP6762818B2 (en) 2016-09-09 2020-09-30 Ntn株式会社 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313034A (en) 1997-05-12 1998-11-24 Toshiba Corp Method for diagnosing deterioration and life of electronic device and device therefor
JP2005009906A (en) 2003-06-17 2005-01-13 Espec Corp Method and system for diagnosing deterioration of metal film
US20060289312A1 (en) * 2005-06-16 2006-12-28 Recherche 2000 Inc. Method and system for electrolyzer diagnosis based on curve fitting analysis and efficiency optimization
JP2015021187A (en) * 2013-07-17 2015-02-02 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG Method and system for monitoring functionality of electrolysis cells
JP6762817B2 (en) 2016-09-09 2020-09-30 Ntn株式会社 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
JP6762818B2 (en) 2016-09-09 2020-09-30 Ntn株式会社 Bearing part life diagnosis method, bearing part life diagnosis device, and bearing part life diagnosis program
US20180245226A1 (en) * 2017-02-24 2018-08-30 Calera Corporation Monitoring condition of electrochemical cells
CN107400897A (en) * 2017-08-08 2017-11-28 滨化集团股份有限公司 A kind of ion-exchange membrane electrolyzer management and back-end data processing system
WO2020075767A1 (en) * 2018-10-10 2020-04-16 旭化成株式会社 Planning device, planning method, and planning program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JALALI, A.A. ; MOHAMMADI, F. ; ASHRAFIZADEH, S.N.: "Effects of process conditions on cell voltage, current efficiency and voltage balance of a chlor-alkali membrane cell", DESALINATION., ELSEVIER, AMSTERDAM., NL, vol. 237, no. 1-3, 1 February 2009 (2009-02-01), NL , pages 126 - 139, XP025870008, ISSN: 0011-9164, DOI: 10.1016/j.desal.2007.11.056 *

Also Published As

Publication number Publication date
CN117242213A (en) 2023-12-15
AU2022312861A1 (en) 2024-01-18
JPWO2023286851A1 (en) 2023-01-19
KR20240013230A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
Ansell et al. X-ray and neutron scattering studies of the hydration structure of alkali ions in concentrated aqueous solutions
Deng et al. Synchronizing stochastic circadian oscillators in single cells of Neurospora crassa
WO2023286851A1 (en) Analysis system, analysis method, and analysis program
US20080257753A1 (en) Grey Water Filtering System
US20240133064A1 (en) Analysis system, analysis method, and computer readable medium
WO2022191082A1 (en) Driving assistance device, driving assistance system, driving assistance method, and driving assistance program
Dell'Era et al. Purification of nickel or cobalt ion containing effluents by electrolysis on reticulated vitreous carbon cathode
WO2023182286A1 (en) Operation assistance method, operation assistance device, operation assistance system, and operation assistance program
EP2419550B1 (en) Method and system for electrolyser single cell current efficiency
WO2023085419A1 (en) Operation support device, operation support method, and operation support program
WO2022250134A1 (en) Operation support device, operation support system, operation support method, and operation support program
Naumov et al. Gold Electrowinning from cyanide solutions using three-dimensional cathodes
Zhou et al. Nonstationary and multirate process monitoring by using common trends and multiple probability principal component analysis
US20140183056A1 (en) Producing electrolyzed liquid
CN114566280A (en) User state prediction method and device, electronic equipment and storage medium
WO2024014438A1 (en) Operation support device, operation support method and operation support program
JPWO2023286851A5 (en)
JP2023140846A (en) Driver support device, driver support method, and driver support program
JP2024049729A (en) Driving assistance device, driving assistance method, and driving assistance program
EP4183899A1 (en) Operation support method, operation support device, operation support system, and operation support program
CN111537424B (en) System for assessing prognosis of patient with glioma based on peripheral blood cells
Tambo et al. Temporal dynamics of tip fluorescence predict cell growth behavior in pollen tubes
Luo et al. Dynamic Alarm Causality Analysis Method Integrating Monitoring Contribution and Transfer Entropy
CN115824287A (en) Method, device, equipment and medium for analyzing effect of copper foil passivation solution wastewater recovery
Palagonia Lithium recovery from diluted brines by means of a flow-through electrodes electrochemical reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534868

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022312861

Country of ref document: AU

Ref document number: AU2022312861

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20237044923

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044923

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2022312861

Country of ref document: AU

Date of ref document: 20220714

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022842192

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022842192

Country of ref document: EP

Effective date: 20240216