WO2023286756A1 - 環境調整装置の配置方法、装置及びシステム - Google Patents

環境調整装置の配置方法、装置及びシステム Download PDF

Info

Publication number
WO2023286756A1
WO2023286756A1 PCT/JP2022/027360 JP2022027360W WO2023286756A1 WO 2023286756 A1 WO2023286756 A1 WO 2023286756A1 JP 2022027360 W JP2022027360 W JP 2022027360W WO 2023286756 A1 WO2023286756 A1 WO 2023286756A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
model
environmental
arranging
adjustment device
Prior art date
Application number
PCT/JP2022/027360
Other languages
English (en)
French (fr)
Inventor
夢橋 張
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2023534808A priority Critical patent/JPWO2023286756A1/ja
Publication of WO2023286756A1 publication Critical patent/WO2023286756A1/ja
Priority to US18/409,566 priority patent/US20240143858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/52Air quality properties of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to the field of environmental conditioning devices, and more particularly to a method, apparatus and system for arranging environmental conditioning devices.
  • the design process of a conventional air conditioning system mainly includes several major steps such as load calculation, plan identification, equipment model selection, wiring and piping plotting.
  • the design flow is constant, different buildings require different HVAC engineers to redesign the air conditioning system according to the flow, due to the different building aspects and structural complexity. Engineers have to spend a lot of time on repetitive tasks such as load calculations, wiring and plumbing.
  • the building design is changed, the design of the air conditioner must be changed accordingly, and the entire design process must be redone.
  • model selection and distribution of air conditioners are nothing more than simple calculations and layouts, and are quite different from construction and selection in the actual process.
  • air conditioners can be placed and visualized in corresponding rooms, but there are large errors compared to the actual design accuracy.
  • Patent Document 1 (Chinese Patent Application Publication No. 110489875) discloses a layout design method of air conditioner vent openings in software, in which design drawings and interior models of building ventilation air conditioners are used. establishing a complete BIM model based on draft air conditioner design drawings and interior models, and identifying the location of the initial air conditioner vents for each room in the complete BIM model; , introducing the complete BIM model into Autodesk CFD software, performing temperature change and wind vector comprehensive evaluation analysis, identifying the optimal position of the air conditioner air outlet for each room in the complete BIM model, and verifying the optimal location of the air conditioner vents for each room in the relevant BIM model.
  • Patent Document 1 automated design is performed only within software, and overall, the effect of visualization is shown. , regardless of how the air conditioner is arranged.
  • an embodiment of the present invention provides a method, apparatus and system for arranging an environmental conditioning device, based on simulation results of target parameters within a preset region. , calculate the optimum position of the environmental adjustment device, and perform the layout of the environmental adjustment device based on the optimum position, not limited to the placement accuracy in the software, but the actual environment adjustment device design site and user needs Closer and more direct.
  • the accuracy of the arrangement position is higher and the applicability is wider.
  • an environmental adjustment device placement system including a collection device for collecting environmental parameters and the environment adjustment device placement device according to the second aspect of the embodiment of the present invention. I will provide a.
  • the optimum position of the environmental adjustment device is calculated based on the simulation results of the target parameters within a preset region, and the environment is adjusted based on the optimum position.
  • a fully automated environmental conditioning system capable of laying out the conditioning equipment and thus quickly and accurately identifying the optimum position of the environmental conditioning equipment and laying out the equipment in actual operation.
  • the design accuracy of the environmental conditioning device is closer to the actual installation situation. It can also be applied to the situation where the environmental adjustment device is actually installed without going through it, and the scope of application is wide.
  • Feature information described and illustrated by one embodiment may be used in the same or similar form in one or more other embodiments, combined with feature information in other embodiments, or combined with feature information in other embodiments. information can be substituted.
  • FIG. 4 is a flowchart of a method for implementing step 101 according to Embodiment 1 of the present invention
  • 4 is an example of a temperature change cloud map at a plurality of simulation points at a plurality of time points or a plurality of time periods according to Example 1 of the present invention
  • 4 is a flow chart of a simulation method for an outdoor unit of an air conditioner
  • 4 is a flow chart of a simulation method for an indoor unit of an air conditioner
  • FIG. 4 is a schematic diagram of calculating the optimum position of the environmental adjustment device by the machine learning model according to the first embodiment of the present invention
  • FIG. 4 is a flowchart of a method for implementing step 102 according to Embodiment 1 of the present invention
  • 4 is a flow chart of a machine learning model training method according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of another method for implementing step 102 according to Embodiment 1 of the present invention
  • FIG. 3 is a flow chart of a method for arranging an outdoor unit of an air conditioner according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of another method for arranging the outdoor unit of the air conditioner according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of a method for arranging an indoor unit of an air conditioner according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of another method for arranging the indoor unit of the air conditioner according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of a method for arranging an environment adjustment device in a real scene according to Embodiment 1 of the present invention
  • 4 is a flow chart of a method for arranging an environmental adjustment device in a BIM model according to Embodiment 1 of the present invention
  • Fig. 4 is a flowchart of a method for implementing step 1501 according to Embodiment 1 of the present invention
  • Fig. 4 is a flowchart of a method for implementing step 1502 according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of a method for implementing step 1503 according to Embodiment 1 of the present invention
  • Fig. 4 is a flowchart of a method for implementing step 1504 according to Embodiment 1 of the present invention
  • Fig. 4 is a flowchart of a method for implementing step 1505 according to Embodiment 1 of the present invention
  • Fig. 4 is a flowchart of a method for implementing step 1506 according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of another method for implementing step 1506 according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of a method for implementing steps 1507-1512 according to Embodiment 1 of the present invention
  • Fig. 4 is a flow chart of an embodiment of a method for implementing step 2303 according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of another embodiment of a method for implementing step 2303 according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of a method for implementing steps 1507-1512 according to Embodiment 1 of the present invention
  • Fig. 4 is a flow chart of an embodiment of a method for implementing step 2303 according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of another embodiment of a method for implementing step 2303 according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of a further embodiment of a method for implementing step 2303 according to Example 1 of the present invention
  • 1 is a flow chart of a method for simultaneously arranging an indoor unit and an outdoor unit of an air conditioner according to Embodiment 1 of the present invention
  • 1 is a flow chart of a method for arranging an air conditioner with excellent energy saving performance according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of an arrangement device for an environment adjustment device according to Embodiment 2 of the present invention
  • FIG. 7 is a structural diagram of an arrangement system for an environment adjusting device according to Embodiment 3 of the present invention
  • Embodiment 1 of the present invention provides a method for arranging an environment adjustment device.
  • FIG. 1 is a flowchart of a method for arranging an environment adjustment device according to Embodiment 1 of the present invention. As shown in FIG. 1, the method comprises: A step 101 of obtaining a simulation result of a target parameter within a preset region; a step 102 of calculating an optimal position of an environmental adjustment device based on the simulation result; and placing 103 the environmental conditioning device within the preset area.
  • the optimum position of the environmental adjustment device is calculated based on the simulation results of the target parameters within the preset region, and the layout of the environmental adjustment device is performed based on the optimum position.
  • the design accuracy of the environmental conditioning device is closer to the actual installation situation, and not only applies to the automatic placement within the software, but also the environmental conditioning device is actually installed without going through the design layout by the software. It applies equally to the mounting situation and has a wide range of application.
  • the environmental conditioning device may be any type of environmental conditioning device, for example, the environmental conditioning device may be an air conditioning device, an air purifier, a fresh air device, a humidifying device, a disinfecting device, At least one of a lighting device and a sound device.
  • the environmental conditioning device may be an air conditioning device, an air purifier, a fresh air device, a humidifying device, a disinfecting device, At least one of a lighting device and a sound device.
  • the environment adjustment device may be used for home use, or may be used for business or public use.
  • the environment adjustment device may be used in home environments, commercial environments such as offices, office buildings, and department stores, or public environments such as schools.
  • an air conditioner will be exemplified as an example.
  • the air conditioner may be a separate type or multi-type air conditioner, or a central air conditioning system.
  • the air conditioner includes an indoor unit of an air conditioner and/or an outdoor unit of an air conditioner.
  • the embodiments of the present invention are applied to the arrangement of the air conditioner room with respect to the indoor unit, and are also applied to the arrangement of the air conditioner with respect to the outdoor unit.
  • the preset area is an area in which the environmental adjustment device is arranged.
  • the preset area may be a roof area of a building.
  • a region may be a region of a room within a building.
  • the target parameter may be a parameter related to the performance of the environmental adjustment device to be deployed or a parameter that the environmental adjustment device affects the environment.
  • the target parameter is heat release
  • the target parameter is temperature and/or airflow
  • FIG. 2 is a flow chart of a method for implementing step 101 according to the first embodiment of the present invention. As shown in FIG. 2, the method includes step 201 of obtaining environmental parameters and location information of a plurality of regions and/or a plurality of location points within the preset region; inputting into a simulation model and obtaining simulation results of target parameters within the preset region (step 202).
  • the environmental parameters may be various parameters of the environment in which the environmental adjustment device is located.
  • the environmental parameters may include indoor and/or outdoor temperature, humidity, wind direction, air volume, volume, sound frequency, brightness, color temperature, air quality, height of the building where the environmental control device is located, geographic location of the building, At least one of location, climate information, room orientation, occlusion information of surrounding buildings, room type information of the room in which the environmental control device is located, and information of other devices within the preset area may be included. .
  • the building in which the environmental conditioning device is located is also called the main building.
  • the surrounding building shielding information may be the shielding area for a preset area of the building surrounding the building in which the environmental adjustment device is located.
  • the surrounding building shielding information may be the shielding area for a preset area of the building surrounding the building in which the environmental adjustment device is located.
  • other devices may be various other devices installed within the same preset area as the environmental conditioning device, such as a building roof water tower, outdoor and /or at least one of a room fresh air system, an exhaust machine and a machine room.
  • the information of the other devices can include the area and/or location of at least one of the water tower on the roof of the building, the outdoor and/or indoor fresh air device, the exhaust machine, and the machine room.
  • the room type information may include at least one of building information (BIM) model, scan modeling building model, home layout information, home two-dimensional drawing, and interior information.
  • BIM building information
  • the interior information may include interior style and/or suspended ceiling location and size information.
  • the difference from the actual scene can be reduced, the actual parameters can be simulated, the accuracy of the simulation result can be improved, and the difference from the actual scene can be reduced.
  • the placement accuracy is further improved. At the same time, it is highly practical.
  • the location information may further include areas of multiple regions, such as length and width of multiple regions, and further include height information of multiple regions. can be done.
  • the simulation model may be various simulation models, for example, the simulation model is a Computational Fluid Dynamics (CFD) simulation model.
  • CFD Computational Fluid Dynamics
  • the simulation result of the target parameter within the preset region is a temperature change cloud map of a plurality of simulation points within the preset region at a plurality of time points or a plurality of time periods. and/or a cloud map of changes in heat release at multiple simulation points within the preset region at multiple points in time or multiple time periods.
  • the simulation result is a cloud map of changes in the amount of heat dissipation at a plurality of simulation points at a plurality of points in time or in a plurality of time periods.
  • the simulation result is a change cloud map of temperature at multiple simulation points at multiple time points or multiple time periods.
  • FIG. 3 is an example of a temperature change cloud map at a plurality of simulation points at a plurality of points in time or at a plurality of time periods according to Example 1 of the present invention. As shown in FIG. 3, for simulation points numbered 1-n, cloud maps of their temperature at multiple time points are shown.
  • FIG. 4 is a flow chart of a simulation method for an outdoor unit of an air conditioner. As shown in FIG. 4, the method comprises a step 401 of randomly distributing a plurality of simulation points within a preset area of a building roof of a simulation model; and setting and simulating the heat dissipation of a plurality of simulation points 402; and a step 403 of performing a heat release amount simulation for the time period of , and using the simulation result of the heat release amount at the plurality of simulation points as the simulation result.
  • FIG. 5 is a flow chart of a simulation method for an indoor unit of an air conditioner.
  • the method includes step 501 of randomly distributing a plurality of simulation points within a preset region in a room of a simulation model; Then, step 502 of setting and simulating air supply and return methods for a plurality of simulation points, performing airflow and/or temperature simulation for each of the plurality of simulation points, and calculating the temperature of the plurality of simulation points and/or a step 503 where the airflow simulation result is used as the simulation result.
  • step 102 after obtaining the simulation results, in step 102, based on the simulation results, the optimal position of the environmental adjustment device is calculated.
  • the optimal position of the environmental conditioning device includes at least one optimal position point and/or optimal region.
  • the optimal position may be indicated by three-dimensional coordinates or may be indicated by two-dimensional coordinates.
  • the optimal position of the environment control device is selected from among a position with good heat dissipation performance, a position where the target temperature is reached most quickly, a position with good energy saving performance, a position with good comfort, and a position with good decorativeness. including at least one of
  • the machine learning model can calculate the optimal position of the environmental conditioning device, for example, the optimal position of the environmental conditioning device can be calculated by other methods such as scoring or ranking evaluation methods. can also be calculated by other methods such as scoring or ranking evaluation methods.
  • FIG. 6 is a schematic diagram of calculating the optimal position of the environmental adjustment device by the machine learning model according to the first embodiment of the present invention.
  • the simulation results are input to the machine learning model 10, and the optimum position of the environmental adjustment device is output.
  • the machine learning model may be any type of machine learning model, for example, the machine learning model may be a support vector machine (SVM) model or a convolutional neural network (CNN) model. be.
  • SVM support vector machine
  • CNN convolutional neural network
  • a portion corresponding to a preset height can be cut out from the simulation result and used as the simulation result input to the machine learning model.
  • the preset height is the mounting height of the environment adjustment device or the average height of the user.
  • the result of the simulation at the preset height is a simulation result that matches comfort, and furthermore, it is possible to further improve the placement accuracy of the optimum position.
  • the simulation results and user information can also be input into the machine learning model at the same time. You can get the best position with good performance.
  • the user information includes at least one of the user's position, action trajectory, and wear.
  • the simulation result and the operating parameters of the environmental conditioning device can be input into the machine learning model at the same time. position can be obtained.
  • the operating parameters may be obtained from the overall BIM linkage, the operating parameters may be extracted from simulation data, or the data for trial operation before shipment of the environmental adjustment device may be collected, and the environment adjustment device It may be used as an operating parameter.
  • the simulation results and operating parameters of the climate control device can be input into a machine learning model to obtain more optimal positions.
  • FIG. 7 is a flowchart of a method for implementing step 102 according to Embodiment 1 of the present invention.
  • the method includes step 701 of inputting the simulation results into a machine learning model and outputting a first optimal position of the environmental adjustment device; step 702 of inputting and outputting a second optimal position of the environmental conditioning device; and/or inputting the simulation results and operating parameters of the environmental conditioning device into a machine learning model to generate a third optimal position of the environmental conditioning device; and a step 703 of outputting .
  • step 701 after step 701, step 702 and/or step 703 can be performed repeatedly.
  • the machine learning model may be obtained by training in advance.
  • FIG. 8 is a flowchart of a machine learning model training method according to the first embodiment of the present invention.
  • the method includes step 801 of inputting into the machine learning model a plurality of location points within the preset region or a cloud map of the plurality of regions at different points in time or different time periods.
  • the simulation results of 10 simulation points are input into the SVM model, and the temperature change cloud maps at different times of the 10 simulation points or video segments of the temperature change cloud maps at different time periods are input into the machine learning model. to enter.
  • the SVM model automatically trains the logic to obtain the logical relationship between the 10-point location data and the optimal location point.
  • the logical relationship trained by the SVM can include the location point with the fastest heat dissipation, or it can be some other dimension that determines the optimal location. For example, the position point where the target temperature is reached fastest, or the most energy-saving position point, or the most comfortable position point.
  • the optimal position may be calculated without using machine learning models, e.g., each simulation point may be evaluated, e.g., ranked or scored, and depending on the evaluation results, to identify the best position.
  • FIG. 9 is a flow chart of another method for implementing step 102 according to Embodiment 1 of the present invention. As shown in FIG. 9, the method includes a step 901 of evaluating each simulation point in the simulation result, a step 902 of sorting each simulation point according to the evaluation result, and determining 903 the optimal location of the climate control device based on the results.
  • the evaluation criteria are set according to the purpose, for example, the optimum position is the position where the heat dissipation is the fastest, or the position where the target temperature is reached the fastest, or Specific evaluation criteria can be set based on whether it is the most energy-saving location point or the most comfortable location point.
  • Multiple evaluation conditions can be included for one of the evaluation criteria, e.g., for each simulation point, specify the number of evaluation conditions that the simulation point satisfies, e.g., satisfy two evaluation conditions. , the simulation point is assigned rank A, if one evaluation condition is met, the simulation point is assigned rank B, and if none of the evaluation conditions are met, the simulation point is assigned rank C. Then, after each simulation point is sorted according to the evaluation result, the simulation point with the highest evaluation rank, that is, the simulation point with rank A can be specified as the optimum location point.
  • step 103 after calculating the optimal position of the environmental control device, in step 103, place the environmental control device within the preset area according to the optimal position of the environmental control device. do.
  • a plurality of environment adjustment devices can be laid out in order based on the model number of the environment adjustment device and the matching spacing. Further, based on the ventilation influence of the environment adjustment device, the number of areas where the environment adjustment device is arranged and the number of the environment adjustment devices per unit area are calculated.
  • the corresponding interval is matched based on the model number of the outdoor unit, and the outdoor units are laid out in order. When laid out, the layout accuracy of the outdoor unit can be improved. Furthermore, after calculating the optimum point or area, based on the ventilation influence of the outdoor unit (for example, wind direction, air volume, distance), the number of outdoor unit placement areas and Get the number of outdoor units to be incremented within the position of .
  • the ventilation influence of the outdoor unit for example, wind direction, air volume, distance
  • FIG. 10 is a flow chart of a method for arranging an outdoor unit of an air conditioner according to Embodiment 1 of the present invention.
  • the method includes step 1001 of inputting building information including main building information and shielding information of surrounding buildings to the main building into a simulation model, and step 1002 of inputting outdoor environment parameters into the simulation model.
  • step 1003 of inputting the position coordinates (x, y, z) of a plurality of position points into the simulation model a step 1004 of outputting the result after the simulation by the simulation model is completed;
  • Step 1005 of calculating the optimum position of the outdoor unit using the method
  • Step 1006 of selecting and arranging the layout of the outdoor unit according to the plan of the optimum position.
  • the optimal layout position of the environmental equipment for the outdoor unit is calculated based on the simulation results. Furthermore, the layout accuracy of the outdoor unit is improved.
  • FIG. 11 is a flow chart of another method for arranging the outdoor unit of the air conditioner according to Embodiment 1 of the present invention. As shown in FIG.
  • the method includes step 1101 of inputting building information including main building information and shielding information of surrounding buildings against the main building into the simulation model; step 1102 of inputting outdoor environmental parameters including, etc., step 1103 of inputting the areas of a plurality of regions into the simulation model, for example, length, width, and height Z, and simulation results by the simulation model are completed upon completion of the simulation , the machine learning model calculates the optimum position of the outdoor unit based on the simulation result, step 1105, selects one area and selects the layout of the outdoor unit according to the optimum position. and arranging 1106 with.
  • FIG. 12 is a flowchart of a method for arranging indoor units of an air conditioner according to Embodiment 1 of the present invention.
  • the method includes steps 1201 of inputting room type information into the simulation model, steps 1202 of inputting indoor and/or outdoor environmental parameters into the simulation model, and inputting 1202 multiple location points into the simulation model.
  • step 1206 of selecting and arranging the layout of the indoor units according to the optimal location plan.
  • FIG. 13 is a flow chart of another method for arranging the indoor units of the air conditioner according to the first embodiment of the present invention.
  • the method comprises steps 1301 of inputting room type information into the simulation model, input 1302 of indoor and/or outdoor environmental parameters into the simulation model, and for each region based on the room type.
  • Step 1303 of identifying a plurality of location points (x, y, z), randomly distributing a plurality of simulation points in the room of the CFD model, marking the locations of the simulation points on the floor plan of the room, Perform a simulation by setting the point air supply and air return methods, perform airflow and temperature simulations for each of a plurality of simulation points, and output the temperature and airflow results of the plurality of simulation points as simulation results.
  • step 1304 inputting the simulation result of the temperature field change cloud map of different location points including a plurality of time points and/or time periods into the SVM model, and calculating the optimal location plan by the SVM model step 1305; Step 1306 of inputting the position of the person or the operating parameters of the air conditioner into the SVM model and repeating step 1305; and Step 1308 of laying out the indoor units of the air conditioner accordingly.
  • the method of arranging the environment adjustment device may be used in the actual scene, or may be automatically arranged in the building information model (Building Information Modeling, BIM), that is, the BIM model.
  • BIM Building Information Modeling
  • FIG. 14 is a flow chart of a method for arranging an environment adjustment device in an actual scene according to Embodiment 1 of the present invention.
  • the method includes step 1401 of inputting a scanned modeled building model or two-dimensional drawing into a simulation model, or inputting a BIM model, and step 1402 of inputting environmental parameters into the simulation model.
  • FIG. 15 is a flow chart of a method for arranging an environmental adjustment device within a BIM model according to Example 1 of the present invention. As shown in FIG. 15, the method includes a step 1501 of automatically converting a civil engineering drawing into a BIM model based on BIM software, and automatically arranging a space based on BIM software.
  • step 1502 step 1503 of setting building type and use, step 1504 of calculating room loads and forming a load table, step 1505 of introducing the load table into the model selection table, and A step 1506 of automatically selecting a model and automatically selecting the model number and number of environmental adjustment devices, a step 1507 of inputting the BIM model into the simulation model, and a step 1508 of inputting the environmental parameters into the simulation model; Step 1509 of inputting positional information of a plurality of regions and/or a plurality of position points into the simulation model; Step 1510 of performing a simulation using the simulation model and outputting the simulation results; and placing 1512 the environmental conditioning device within the preset area based on the optimal position of the environmental conditioning device.
  • the generated distribution plan matches the actual construction plan, further improves the design accuracy, and reduces the error between the position of the indoor unit and the actual calculated or arranged position.
  • the accuracy of the actual indoor unit air conditioner placement position is improved, the deviation from the actual position is reduced, and the corresponding pipes and wires are installed after the corresponding selection and placement. is correspondingly changed to the appropriate diameter. Stronger guidance for on-site assembly.
  • it is connected to the building design phase, shared on the cloud side, easy for each party to communicate, the accuracy of the material list is high, the information is exhaustive, shared by multiple parties, information is synchronized, Avoid errors due to subjective judgment.
  • the BIM-based software can include at least one of Revit, Kogyo BIMSpace, Kogyo Load Calculation 8.0, MagicCAD, and Navisworks software.
  • the software includes a conversion module that converts the two-dimensional drawing into a 3D (BIM) model, and a first automatic arrangement module that automatically arranges the corresponding room names (numbers) for each area.
  • a building load module that calculates the room's cooling load
  • an automatic model selection module that introduces the cooling load into the model selection table and performs automatic model selection
  • a load that automatically calculates the adjusted room's cooling load.
  • a verification module a second automatic arrangement module that automatically arranges the model of the corresponding air conditioner, an automatic connection module that automatically connects the air conditioner, and automatically corresponds to the model number of the air conditioner.
  • a material sharing module for outputting a material list of the air conditioner and sharing it in the cloud.
  • FIG. 16 is a flow chart of a method for implementing step 1501 according to the first embodiment of the present invention.
  • the method includes a step 1601 of introducing an AutoCAD drawing whose contents include building walls, doors, windows blocks and their parameter information into the revit software; After picking the door, window blocks, it includes a step 1602 of automatically converting the blocks to a 3D BIM model and a step 1603 of building the floor slabs and forming an enclosed space model.
  • drawings derived from within AutoCAD are in DWG format.
  • the floor slab may be constructed automatically or manually. Since most floor slabs above ground do not have conditions that would reduce the structural height, it is faster to choose to build the floor slabs manually. For basements, the ability to automatically build floor slabs can be used. Also, if the completeness of the CAD drawing is good, there is no need to choose to build it manually, it will naturally become a complete BIM model after a successful layout-model conversion, and the construction of the floor slab will need to be done. Absent.
  • FIG. 17 is a flowchart of a method for implementing step 1502 according to Embodiment 1 of the present invention. As shown in FIG. 17, the method includes step 1701 where the revit software automatically places room commands and automatically identifies rooms, and step 1702 where the revit software automatically picks space commands. , and a step 1703 of adjusting the name of each space.
  • each room is automatically arranged correspondingly, and the name of each room is manually adjusted, and furthermore, it is matched by providing a basis for automatic model selection at a later stage. Makes it easier to match the model to the room and is more accurate.
  • the adjustment here still belongs to manual adjustment at present.
  • batch editing is also possible.
  • FIG. 18 is a flow chart of a method for implementing step 1503 according to the first embodiment of the present invention. As shown in FIG. 18, the method includes a step 1801 of setting the building type based on the industry plug-in, a step 1802 of setting the building use based on the industry plug-in, and a step 1802 of building room type. and Step 1803 to derive a gbxml file containing area, room number, story height, building material, orientation, window area and door area.
  • the scope of use of the present invention is broadened by making the type of building and application a necessary factor for model selection that automatically corresponds. It avoids the situation of re-correcting the layout of the air conditioner according to the type and application area of the air conditioner arranged later, and improves the accuracy of the arrangement.
  • the basement is a parking lot
  • the first and second floors are a supermarket
  • the third floor is a restaurant
  • the fourth to top floors are for business or residential use. be. That is, the series of air conditioners required for each floor is different.
  • the application and type of the building are specified, and the function guide of each floor is confirmed in detail. After confirmation, each floor can be correspondingly batch edited to further ensure accuracy and improve speed.
  • FIG. 19 is a flowchart of a method for implementing step 1504 according to Embodiment 1 of the present invention.
  • the method includes step 1901 of deriving gbxml and IFC files based on revit software; step 1902 of importing gbxml files; Step 1903 automatically reads information on area, story height, building material, direction, window area, and door area; and Step 1904 of deriving a load calculation table containing information such as maximum time of day, summer total cooling load, and summer fresh air amount.
  • load calculation is performed on the BIM model based on two formats, IFC and gbXML, and the building geometric space information, room function, location climate information, building room area, room number, floor height, building It converts information on materials, orientation, window area, door area, etc., calculates the cooling load for each room, derives a load calculation table, and lays a high-precision basis for model selection.
  • FIG. 20 is a flowchart of a method for implementing step 1505 according to Embodiment 1 of the present invention. As shown in FIG. 20, the method includes step 2001 of introducing the data of the load table into a fixed model selection table, which when executed can automatically generate the model selection table of the corresponding model selection software. and step 2002 .
  • the contents of the model selection table include level, air conditioner number, room type, room name (room number), cold index, heat index, indoor unit series, indoor unit model number and number.
  • the information forms an exhaustive model selection list, which makes it easier for the system to automatically search and select models, avoiding the situation of manual matching and model selection in the conventional technology, and the system can automatically It is possible to select a model by searching for a specific model.
  • FIG. 21 is a flowchart of a method for implementing step 1506 according to Embodiment 1 of the present invention.
  • the method includes a step 2101 of introducing a model selection table into corresponding model selection software, and a corresponding model selection table, for example, using different series of air conditioners for one building.
  • a step 2102 of automatically selecting the air conditioner series to be used a step 2103 of automatically selecting an appropriate model number of the indoor unit and the number of indoor units, and a step 2103 of automatically selecting the outdoor unit so that, for example, 10P in 600 square meters step 2104 of matching the total cooling capacity of the indoor unit/cooling capacity of the outdoor unit ⁇ 100%; and a step 2105 of verifying the identity.
  • the selection of the air conditioner series is related to the application, and the air conditioner series can be matched based on energy saving.
  • commercial projects generally use medium static pressure fans, and specific situations make corresponding adjustments to meet customer needs.
  • Residential projects generally use the VRV housing N series, and the specific situation will make corresponding adjustments to meet the customer's needs.
  • the combination of the load table and the model selection table can be used to fully automate the model selection, thereby improving the efficiency and construction accuracy of BIM HVAC design, and improving the efficiency of the embodiment of the present invention.
  • the model selection method the accuracy of automatic model selection is higher, the applicability is wider, and it not only covers the applicability of the same type of air conditioner, To improve the efficiency of model selection on the premise of ensuring the accuracy of model selection by comprehensively considering factors for model selection, including applicable specifications and series.
  • some rooms may not be able to select the appropriate model number, and the corresponding model number and number of air conditioners can be manually adjusted to ensure accuracy.
  • FIG. 22 is a flow chart of another method for implementing step 1506 according to Embodiment 1 of the present invention.
  • the method includes a step 2201 of introducing a model selection table into the corresponding model selection software, and a corresponding model selection table, for example, using different series of air conditioners for one building.
  • FIG. 23 is a flow chart of a method for implementing steps 1507-1512 according to the first embodiment of the present invention. As shown in FIG. 23, the method includes step 2301 of introducing a model selection table into the revit software's air conditioner plug-in, and the revit software's air conditioner plug-in automatically reads the EXCEL model selection table. 2302 and step 2303 of automatically arranging the indoor units corresponding to each room of the BIM model.
  • plan design Both property owners and developers can get the most satisfying air conditioner layout plan, while HVAC design is not only easy visualization, but also factors such as construction time and designer's design plan. With more consideration, the accuracy of the plan design can guide the actual construction, and the site does not need subjective judgment, and at the same time, the plan design can see the effect of the construction completion. , and maximize BIM HVAC design guidance.
  • the following steps consider the interior style, and avoid the case where the position of the air conditioner in the later period changes due to the interior style and is different from the one automatically arranged by BIM. , is completed in one step, and is used by real estate developers and owners to select and use a scoring or ranking method to select the optimal air conditioner location point (coordinates) plan and determine the optimal location
  • the BIM model room is labeled and distributed.
  • the coordinates (X, Y, Z) of the optimal point of the scheme can be output accordingly.
  • the simulation system can specifically display a cross-sectional view of the height of the air supply port of the indoor unit, and visualize the direction of the supplied air from the indoor unit at this height position.
  • the process of selecting multiple simulation points may select simulation points at different heights and different locations.
  • FIG. 24 is a flowchart of an embodiment of a method for implementing step 2303 according to Example 1 of the present invention.
  • the method includes step 2401 of introducing a model selection table into the revit air conditioner plugin, the revit air conditioner plugin automatically reading the EXCEL model selection table, step 2402; Step 2403 of identifying room type, lighting, orientation, geographic location, or interior style; deriving 2404 a readable lightweight model of the CFD simulation model; and introducing the derived CFD simulation model into the CFD software.
  • Step 2405 identifying multiple location points (x, y, z) for each region based on room type
  • step 2406 randomly distributing the multiple simulation points in the room of the CFD simulation model, and simulating in plan view.
  • the machine learning module may adopt the calculation of the optimum position, and may adopt the ranking method to identify the optimum position.
  • FIG. 25 is a flowchart of another embodiment of a method for implementing step 2303 according to Example 1 of the present invention. As shown in Figure 25, the method includes:
  • step 2501 after identifying the plan for the interior suspended ceiling, a model of the interior suspended ceiling is constructed using revit.
  • the plan for the interior suspended ceiling can be designed, and after the design for the interior suspended ceiling is specified, the suspended ceiling model can be constructed. .
  • a readable model of the CFD software weight reduction is derived.
  • the derived weight reduction model includes various parameters.
  • the derived CFD simulation model is introduced into the CFD software.
  • the derived weight reduction model is introduced into the CFD simulation software.
  • Specific simulation software can further include simulation software such as SimuWorks, VR-Platform, airpark, and Floven.
  • a plurality of simulation points are randomly distributed in the room of the CFD simulation model, and the method of supplying and returning air for the plurality of simulation points is set.
  • step 2505 the airflow and temperature are simulated for each of the plurality of simulation points to generate simulation results.
  • the temperature and airflow results of the multiple simulation points are analyzed together to give a rank of the multiple simulation points.
  • the positions of the simulation points are marked on the plan view and the ranks of the simulation points are sorted.
  • air conditioners are arranged corresponding to the simulation point with the highest rank.
  • steps 2506-2508 may include the following.
  • step 2506-1 it is automatically determined and compared whether the temperature field during simulation at the simulation point covers the entire indoor space.
  • the reference standard is to install different series of air conditioners in different positions.
  • step 2507-1 the ranks or scores of multiple simulation points are output. If the above two evaluation criteria are met, the evaluation is A, if one of them is satisfied, the evaluation is B, and if not, the evaluation is C.
  • the distribution plan with the optimum decorativeness is specified.
  • Output plan A introduce it into the BIM model, and distribute plan A.
  • the optimal position of the air conditioner is simulated based on the decorativeness, and the accuracy is further improved.
  • the embodiment of the present invention further improves the design accuracy of the air conditioner layout by reserving the optimum position points in advance and simulating, and making the optimum position arrangement plan for the air conditioner in this interior style. .
  • FIG. 26 is a flowchart of a further embodiment of a method for implementing step 2303 according to Example 1 of the present invention.
  • the method includes step 2601 of identifying room type, lighting, orientation, geographic location; step 2602 of deriving a CFD software readable lightening model; into the CFD software; a step 2604 of randomly distributing a plurality of simulation points in the room of the CFD simulation model and setting the air supply and return air schemes of the plurality of simulation points; a step 2605 of performing airflow and temperature simulations for each to generate simulation results; a step 2606 of analyzing the temperature and airflow results for multiple simulation points together to give a score for the multiple simulation points; It includes a step 2607 of marking the positions of the simulation points on the diagram, sorting the scores of the simulation points, and a step 2608 of arranging the air conditioners corresponding to the simulation point with the highest score.
  • steps 2506-2508 may specifically include the following.
  • step 2506-2 the system simulates the simulation point.
  • a state diagram of the temperature field is collected, and the red ratio: green ratio is less than or equal to a predetermined ratio.
  • the ranks or scores of multiple simulation points are output. For example, if the condition is satisfied, it is determined as A, and if the condition is not satisfied, it is determined as B.
  • plan A is output and distribution settings are made using the BIM model.
  • the comfort evaluation criterion of the embodiment of the present invention is to further specify the comfortable mounting position of the air conditioner, instead of placing it at a position far from the person's position based on subjective judgment. Design accuracy is optimal.
  • steps 2506 to 2508 can specifically include the following.
  • step 2506-3 the system simulates the simulation point.
  • the simulation results are input, judged, analyzed and sorted, and sorted by rank ABC according to the length of time.
  • the A-rank plan is the most comfortable point
  • the A-rank distribution plan is output
  • the simulation points corresponding to BIM are distributed.
  • steps 2506-2508 specifically identify the temperature field, locate ten points distributed in the room, and determine the state with the highest or lowest temperature.
  • the A-rank plan is the most energy-saving point, outputting the A-rank distribution plan, and distributing the simulation points corresponding to BIM, step 2508-4.
  • the energy-saving evaluation criterion of the embodiment of the present invention further specifies the energy-saving installation position of the air conditioner, because it is not the location, and the design accuracy is optimal.
  • steps 2506 to 2508 specifically identify the temperature field, arrange ten points distributed in the room, preset the time period, and set the temperature.
  • Step 2506-5 of outputting the operation time of each air conditioner as a simulation result Step 2507-4 of inputting the simulation result, ranking and sorting based on rank ABC, It is an energy-saving point, and can include a step 2508-4 of outputting an A-rank distribution plan and distributing simulation points corresponding to BIM.
  • the standard for judging energy conservation based on the operating time of air conditioners is more effective in energy conservation when it is actually considered and simulated.
  • the above ranking-based placement method can provide customers with options. After obtaining the design of the air conditioner, the customer is free to make a choice, for example, select a highly decorative one, or select an energy-saving or comfortable one. A corresponding BIM model produces a corresponding effect based on the selection. It should be noted that the user may additionally be provided with a selection notice to enhance persuasiveness.
  • the indoor units are arranged in a straight line in the center, and the number of indoor units is 4 to 6.
  • the indoor units are arranged in two rows in a straight line and arranged in the center.
  • the cross sections of the air supply ports of the indoor units arranged in each row lie on the same horizontal plane.
  • the placement rule for indoor units in a square room type if the number of indoor units is 1 to 3, if they are arranged in a straight line in the center, and if there are 4 and 5 indoor units , the indoor units are arranged in a circle, and the air inlets of each row of indoor units are on the horizontal plane.
  • the indoor units are all arranged in a straight line, the air supply ports of the indoor units are on the same horizontal plane, and the indoor units are arranged in the room. Adopt something that does not exceed the scope.
  • the indoor interior drawing is uploaded, the position of the indoor unit is corrected in the opposite direction, the position of the indoor unit is corrected, and the layout of the indoor unit is adjusted according to the layout design or calculation, and step 2303.
  • the placement step can further include reverse corrections to facilitate maintenance of air conditioners at a later stage, specifically external intervention, uploading external interior design drawings into the BIM model. and matching the location of the air conditioner distribution in the BIM with the location on the design drawing.
  • step 2302 specifically reads the room number, room name, device model number and number data in the Excel table, and automatically captures the device family in the revit library in the revit software and inserts it into the revit model. correspondingly placing the device model numbers and numbers in the table based on the room number created in .
  • the arrangement of the indoor units is completed, taking the multi-air conditioner as an example, the arrangement of the indoor units is completed, and the main pipes of the refrigerant pipe and the condensed water pipe need to be connected to the same air conditioning system. It can further include selecting an indoor unit by box or clicking to select S81, manually arranging the outdoor unit S82, and manually connecting the outdoor unit and the indoor unit of the air conditioning system S83. .
  • step S9 of automatically changing the diameter based on the revit air conditioner piping can be further included.
  • step of S9 is to click and select the main pipe or branch pipe of the multi-air conditioner, automatically pick up the equipment and pipes of the entire air conditioning system in step S91, and the pipe is the refrigerant pipe of the air conditioner.
  • S92 automatically changes the diameter based on the principle
  • S93 automatically changes the diameter of the piping based on the principle of the condensed water pipe and the air conditioner.
  • step S92 specifically, the piping principle of the refrigerant pipes of the air conditioner is as shown in Table 1.
  • step S93 the specific piping principle of the cold condensation pipes is as shown in Table 2.
  • step S10 of plotting the drawing based on revit's material statistics and DWG format can be further included.
  • the step of S10 includes S11 for deriving a material list based on the parameters of pipe length, pipe specification, pipe specification, and pipe material in the revit electromechanical model; Automatically add marks and derive DWG drawing S12 and upload to cloud and share S13.
  • the indoor unit and the outdoor unit of the air conditioner may be arranged at the same time.
  • the placement accuracy is further improved, the operating efficiency of the air conditioner is improved, and the service life is extended.
  • FIG. 27 is a flow chart of a method for simultaneously arranging the indoor and outdoor units of the air conditioner according to Embodiment 1 of the present invention.
  • the method comprises steps 2701 of automatically converting civil engineering drawings into BIM models based on software (Revit) and automatically arranging spaces based on software (Revit).
  • 2702 step 2703 of setting building type and use, step 2704 of calculating loads and forming a load table, and introducing the load table into a model selection table containing model numbers corresponding to, for example, a living room, a kitchen, and a toilet.
  • FIG. 28 is a flow chart of a method for arranging air conditioners with excellent energy saving performance according to the first embodiment of the present invention.
  • the method includes a step 2801 of automatically converting a civil engineering drawing into a BIM model based on software, a step 2802 of automatically arranging spaces based on software, building type step 2803 to calculate loads and form a load table; step 2805 to introduce load table data into a fixed model selection table; A step 2806 that can automatically generate a model selection table; a step 2807 that introduces the model selection table into the corresponding model selection software; Step 2808 of automatically selecting the corresponding air conditioner series, Step 2809 of automatically selecting the appropriate indoor unit model number and the number of indoor units, for example, 10P in 600 square meters Step 2810 for automatically matching the outdoor unit so that the total cooling capacity of the indoor unit/cooling capacity of the outdoor unit ⁇ 100% is calculated, and after matching, the unit cooling load of the room after adjustment is automatically calculated.
  • a step 2811 of verifying the matching between the room type and the indoor unit a step 2812 of introducing the model selection table into the revit air conditioner plug-in; Step 2813 to read; Step 2814 to identify room type, lighting, orientation, geographic location; Step 2815 to derive readable lightweight model for CFD software; step 2816; randomly distributing a plurality of simulation points in the room of the CFD simulation model; A step 2818 of performing a temperature simulation to generate a simulation result, specifying the temperature field, arranging ten points distributed in the room, presetting the time period, setting the temperature, and performing each air conditioner
  • a step 2819 of outputting the operation time as a simulation result, a step 2820 of inputting the simulation results and sorting them according to rank ABC, is the most energy-saving point, output the A-rank distribution plan, and distribute the simulation points corresponding to BIM in step 2821, and automatically connect the pipes, that is, automatically connect the pipe lines step 2822 and automatically change diameters to correspond to pipe diameters based on model number, for example,
  • the optimum position of the environmental adjustment device is calculated based on the simulation results of the target parameters within the preset area, and the layout of the environmental adjustment device is determined based on the optimum position.
  • the optimal position of the environmental conditioning device can be specified quickly and accurately, and the layout can be performed, and a completely automated arrangement flow of the environmental conditioning device can be realized.
  • the design accuracy of the environmental adjustment device is closer to the actual installation situation. It also applies to situations where the adjustment device is actually installed, and has a wide range of applications.
  • Embodiment 2 of the present invention provides an environment adjustment device arranging device corresponding to the method of arranging the environment regulating device described in Embodiment 1, and its specific implementation is the implementation of the method described in Embodiment 1. It can be referred to, and the same content or related parts of the content will not be described repeatedly.
  • FIG. 29 is a schematic diagram of an environment adjustment device placement device according to a second embodiment of the present invention.
  • Acquisition means 2901 for acquiring a simulation result
  • calculation means 2902 for calculating an optimum position of the environmental adjustment device based on the simulation result
  • arranging means 2903 for arranging the environmental adjustment device within the set area.
  • the optimum position of the environmental adjustment device is calculated based on the simulation results of the target parameters within the preset area, and the layout of the environmental adjustment device is determined based on the optimum position.
  • the optimal position of the environmental conditioning device can be specified quickly and accurately, and the layout can be performed, and a completely automated arrangement flow of the environmental conditioning device can be realized.
  • the design accuracy of the environmental adjustment device is closer to the actual installation situation. It also applies to situations where the adjustment device is actually installed, and has a wide range of applications.
  • Embodiment 3 of the present invention provides an environmental conditioning device arranging system including the environmental regulating device arranging device according to Embodiment 2, and its specific implementation is the device according to Embodiment 2 and the device according to Embodiment 1. can be referred to the implementation of the method described in , and the same content or related parts of the content will not be repeated.
  • FIG. 30 is a structural diagram of an environment adjustment device placement system according to a third embodiment of the present invention.
  • an environment adjustment device placement system 3000 includes a collection device 3001 that collects environmental parameters, and an environmental conditioning device placement device 3002 .
  • the environmental conditioning device may be any type of environmental conditioning device, for example, the environmental conditioning device may be an air conditioning device, an air purifier, a fresh air device, a humidifying device, a disinfecting device, At least one of a lighting device and a sound device.
  • the environmental conditioning device may be an air conditioning device, an air purifier, a fresh air device, a humidifying device, a disinfecting device, At least one of a lighting device and a sound device.
  • the environment adjustment device placement system 3000 may be used for home use, business use, or public use.
  • the environment adjustment device arrangement system 3000 may be used in home environments, commercial environments such as offices, office buildings, and department stores, or public environments such as schools.
  • the collection device 3001 can include various sensors that collect environmental parameters, and can further include a server or the like that obtains and stores environmental parameters.
  • the specific structure and function of the arranging device 3002 of the environmental conditioning device can refer to the device described in Example 2 and the method described in Example 1, and will be repeated here. do not do.
  • the optimum position of the environmental adjustment device is calculated based on the simulation results of the target parameters within the preset area, and the layout of the environmental adjustment device is determined based on the optimum position.
  • the optimal position of the environmental conditioning device can be specified quickly and accurately, and the layout can be performed, and a completely automated arrangement flow of the environmental conditioning device can be realized.
  • the design accuracy of the environmental adjustment device is closer to the actual installation situation. It also applies to situations where the adjustment device is actually installed, and has a wide range of applications.
  • the above apparatus and method according to the embodiments of the present invention may be realized by hardware or by combining software with hardware.
  • the present invention relates to such a computer-readable program which, when executed by the logic component, causes the logic component to implement the above-described device or component, or causes the logic component to implement the various methods described above. or steps can be realized.
  • Embodiments of the present invention further relate to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, and flash memories.
  • each step according to the present solution means does not limit the order of steps before and after, on the premise that it does not affect the implementation of the concrete solution means, and the step written before is executed first. may be carried out later, or may be carried out at the same time as the later steps, as long as the solution can be implemented, should be regarded as belonging to the protection scope of the present application.

Abstract

本発明は、環境調整装置の配置方法、装置及びシステムを提供する。予め設定された領域内の目標パラメータのシミュレーション結果に基づいて、環境調整装置の最適な位置を計算するとともに、該最適な位置に基づいて環境調整装置のレイアウトを行い、このように、実際の運用において、環境調整装置の最適な位置を迅速かつ精確に特定するとともに、レイアウトを行うことができ、かつ、完全に自動化された環境調整装置の配置フローを実現することができると同時に、環境調整装置の設計精度は、実際の取付時の状況により近く、また、ソフトウェア内での自動的な配置に適用するだけでなく、ソフトウェアによる設計レイアウトを経ることなく、環境調整装置を実際に取り付る状況にも同様に適用し、適用範囲が広い。

Description

環境調整装置の配置方法、装置及びシステム
 本発明は、環境調整装置の分野に関し、特に環境調整装置の配置方法、装置及びシステムに関する。
 経済の発展及び生活レベルの向上に伴い、例えば、空気調和機などの様々な環境調整装置は、様々な分野に広く応用されている。
 空気調和機を例にして、従来の空調システムの設計過程は、主に負荷計算、方案特定、装置のモデル選択、配線配管プロットなどのいくつかの主要なステップを含む。設計フローが一定であるが、建物の態様がそれぞれ異なり、構造が複雑であるため、異なる建物には、HVACエンジニアがフローに応じて空調システムを再設計する必要がある。エンジニアは、負荷計算、配線配管などの繰り返し作業に多くの時間を費やす必要がある。それに、建物設計が変更されると、空気調和機の設計もそれに伴って変更しなければならず、設計過程全体を改めて行う必要がある。
 特に、空気調和機のモデル選択及び配布は、簡単な計算及び配置に過ぎず、実際の過程における施工及び選択とかなり相違する。現在、空気調和機を対応する部屋内に配置して可視化することができるが、実際の設計精度に比べて、大きな誤差が存在する。
 同時に、空調システムの設計において、多くの問題がエンジニアの経験に頼り、経験が豊富なエンジニアは、合理的な設計提案を行い、これにより、空調システムの設計過程は主観に満ちる。
 特許文献1(中国特許出願公開第110489875号明細書)には、ソフトウェア内での空気調和機の通風口のレイアウト設計方法が開示されており、建物の通風空気調和機の設計図面及び内装モデルを有したうえ、通風空気調和機の設計図面及び内装モデルに基づいて完全なBIMモデルを確立するとともに、完全なBIMモデルにおける各部屋の初期の空気調和機の送気口の位置を特定することと、完全なBIMモデルをAutodesk CFDソフトウェアに導入し、温度変化及び風ベクトル総合評価分析を行い、完全なBIMモデルにおける各部屋の空気調和機の送気口の最適な位置を特定することと、完全なBIMモデルにおける各部屋の空気調和機の送気口の最適な位置を検証することと、を含む。
 しかし、特許文献1では、ソフトウェア内のみで自動化設計を行い、全体的には、可視化の効果を示し、その配置精度は、ソフトウェア内での配置精度に限られるほか、送気口の位置設定のみに関し、空調装置を如何にして配置するかに関しない。
 以上の技術的背景に対する紹介は、本発明の技術的解決手段を明確で、完全に説明しやすく、かつ当業者の理解を容易にするために説明されるものに過ぎないということに注意すべきである。これらの解決手段が本発明の背景技術の部分に説明されただけで上記の技術的解決手段は当業者に公知されると考えられない。
 上記問題のうちの少なくとも一つを解決するために、本発明の実施例は、環境調整装置の配置方法、装置及びシステムを提供し、予め設定された領域内の目標パラメータのシミュレーション結果に基づいて、環境調整装置の最適な位置を計算するとともに、該最適な位置に基づいて環境調整装置のレイアウトを行い、ソフトウェア内での配置精度に限られず、実際の環境調整装置の設計現場及びユーザのニーズにより近く、指導性がより高い。なお、実際の環境調整装置を配置する過程において、配置位置の精度がより高く、適用性が広い。
 本発明の実施例の第一態様によれば、予め設定された領域内の目標パラメータのシミュレーション結果を取得することと、前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算することと、前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置することと、を含む環境調整装置の配置方法を提供する。
 本発明の実施例の第二態様によれば、予め設定された領域内の目標パラメータのシミュレーション結果を取得するための取得手段と、前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算するための計算手段と、前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置するための配置手段と、を含む環境調整装置の配置装置を提供する。
 本発明の実施例の第三態様によれば、環境パラメータを収集する収集装置と、本発明の実施例の第二態様に記載の環境調整装置の配置装置と、を含む環境調整装置の配置システムを提供する。
 本発明の実施例の有益な効果の一つとして、予め設定された領域内の目標パラメータのシミュレーション結果に基づいて、環境調整装置の最適な位置を計算するとともに、該最適な位置に基づいて環境調整装置のレイアウトを行い、このように、実際の運用において、環境調整装置の最適な位置を迅速かつ精確に特定するとともに、レイアウトを行うことができ、かつ、完全に自動化された環境調整装置の配置フローを実現することができると同時に、環境調整装置の設計精度は、実際の取付時の状況により近く、また、ソフトウェア内での自動的な配置に適用するだけでなく、ソフトウェアによる設計レイアウトを経ることなく、環境調整装置を実際に取り付る状況にも同様に適用し、適用範囲が広い。
 後述の説明と図面を参照して、本発明の特定の実施形態が詳しく開示されており、本発明の原理が採用され得る態様が明示されている。本発明の実施形態は範囲上で規制されないと理解されるべきである。添付した請求項の精神と条項の範囲内で、本発明の実施形態には、多くの変更、補正及び同等が含まれている。
 一つの実施形態により説明し示された特徴情報は、同じ又は類似する形態で一つ以上の他の実施形態で使用されたり、他の実施形態における特徴情報と組み合わせたり、他の実施形態における特徴情報を代替したりすることができる。
 「包括/含む」という用語は、本明細書の使用時に特徴情報、要素、ステップ又はアセンブリの存在を指すが、一つ以上の他の特徴情報、要素、ステップ又はアセンブリの存在又は付加を排除するものではないことを強調すべきである。
 以下の図面を参照して本発明の多くの態様をよりよく理解することができる。図面中の部材は、比例して描かれるものではなく、本発明の原理を示すためだけである。本発明のいくつかの部分を示したり説明したりしやすくするために、図面において対応する部分が拡大されたり、縮小されたりする可能性がある。本発明の一つの図面又は一つの実施形態に記載されている要素及び特徴情報は、一つ以上の他の図面又は実施形態に示されている要素及び特徴情報と組み合わせることができる。また、図面において、類似する符号は、いくつかの図面における対応する部材を示し、かつ、一つ以上の実施形態で使用される対応する部材を指示するために用いられることができる。図面において、
本発明の実施例1に係る環境調整装置の配置方法のフローチャートである。 本発明の実施例1に係るステップ101を実現する方法のフローチャートである。 本発明の実施例1に係る複数の時点又は複数の時間帯での複数のシミュレーション点の温度の変化クラウドマップの一例である。 空気調和機の室外機に対するシミュレーション方法のフローチャートである。 空気調和機の室内機に対するシミュレーション方法のフローチャートである。 本発明の実施例1に係る機械学習モデルにより環境調整装置の最適な位置を計算する概略図である。 本発明の実施例1に係るステップ102を実現する方法のフローチャートである。 本発明の実施例1に係る機械学習モデルのトレーニング方法のフローチャートである。 本発明の実施例1に係るステップ102を実現する別の方法のフローチャートである。 本発明の実施例1に係る空気調和機の室外機を配置する方法のフローチャートである。 本発明の実施例1に係る空気調和機の室外機を配置する別の方法のフローチャートである。 本発明の実施例1に係る空気調和機の室内機を配置する方法のフローチャートである。 本発明の実施例1に係る空気調和機の室内機を配置する別の方法のフローチャートである。 本発明の実施例1に係る実際のシーンにおいて環境調整装置を配置する方法のフローチャートである。 本発明の実施例1に係るBIMモデル内で環境調整装置を配置する方法のフローチャートである。 本発明の実施例1に係るステップ1501を実現する方法のフローチャートである。 本発明の実施例1に係るステップ1502を実現する方法のフローチャートである。 本発明の実施例1に係るステップ1503を実現する方法のフローチャートである。 本発明の実施例1に係るステップ1504を実現する方法のフローチャートである。 本発明の実施例1に係るステップ1505を実現する方法のフローチャートである。 本発明の実施例1に係るステップ1506を実現する方法のフローチャートである。 本発明の実施例1に係るステップ1506を実現する別の方法のフローチャートである。 本発明の実施例1に係るステップ1507~1512を実現する方法のフローチャートである。 本発明の実施例1に係るステップ2303を実現する方法の実施形態のフローチャートである。 本発明の実施例1に係るステップ2303を実現する方法の別の実施形態のフローチャートである。 本発明の実施例1に係るステップ2303を実現する方法のさらなる実施形態のフローチャートである。 本発明の実施例1に係る空気調和機の室内機および室外機を同時に配置する方法のフローチャートである。 本発明の実施例1に係る省エネルギー性に優れた空気調和機を配置する方法のフローチャートである。 本発明の実施例2に係る環境調整装置の配置装置の概略図である。 本発明の実施例3に係る環境調整装置の配置システムの構造図である。
 以下、本発明の好適な実施形態について、図面を参照しながら説明する。
(実施例1)
 本発明の実施例1は、環境調整装置の配置方法を提供する。図1は、本発明の実施例1に係る環境調整装置の配置方法のフローチャートである。図1に示すように、該方法は、
予め設定された領域内の目標パラメータのシミュレーション結果を取得するステップ101と、該シミュレーション結果に基づいて、環境調整装置の最適な位置を計算するステップ102と、該環境調整装置の最適な位置に基づいて、該予め設定された領域内に該環境調整装置を配置するステップ103と、を含む。
 このように、予め設定された領域内の目標パラメータのシミュレーション結果に基づいて、環境調整装置の最適な位置を計算するとともに、該最適な位置に基づいて環境調整装置のレイアウトを行い、このように、実際の運用において、環境調整装置の最適な位置を迅速かつ精確に特定するとともに、レイアウトを行うことができ、かつ、完全に自動化された環境調整装置の配置フローを実現することができると同時に、環境調整装置の設計精度は、実際の取付時の状況により近く、また、ソフトウェア内での自動的な配置に適用するだけでなく、ソフトウェアによる設計レイアウトを経ることなく、環境調整装置を実際に取り付る状況にも同様に適用し、適用範囲が広い。
 本発明の実施例において、環境調整装置は、様々なタイプの環境調整装置であってもよく、例えば、該環境調整装置は、空調装置、空気清浄機、新気装置、加湿装置、消毒装置、照明装置及び音響装置のうちの少なくとも一種である。
 本発明の実施例において、環境調整装置は、家庭用に用いられてもよく、業務用又は公共用に用いられてもよい。
 例えば、該環境調整装置は、ホーム環境に用いられてもよく、オフィス、オフィスビル、デパートなどの商業環境又は学校などの公共環境に用いられてもよい。
 本発明の実施例において、空調装置を例として例示的に説明する。該空調装置は、セパレートタイプまたはマルチタイプの空調でもよく、中央空調システムでもよい。
 本発明の実施例において、該空調装置は、空気調和機の室内機及び/又は空気調和機の室外機を含む。すなわち、本発明の実施例は、空気調和機室の室内機に対する配置に適用され、空気調和機の室外機に対する配置にも適用される。
 ステップ101において、予め設定された領域内の目標パラメータのシミュレーション結果を取得する。該予め設定された領域は、該環境調整装置を配置する領域である。
 例えば、空気調和機の室外機に対して、該予め設定された領域は、建物の屋根の領域であってもよく、また、例えば、空気調和機の室内機に対して、該予め設定された領域は、建物内の部屋の領域であってもよい。
 本発明の実施例において、該目標パラメータは、配置されるべき環境調整装置の性能に関連するパラメータ又は該環境調整装置が環境に影響を与えるパラメータであってもよい。
 例えば、空気調和機の室外機に対して、該目標パラメータは、放熱量であり、また、例えば、空気調和機の室内機に対して、該目標パラメータは、温度及び/又は気流である。
 図2は、本発明の実施例1に係るステップ101を実現する方法のフローチャートである。図2に示すように、該方法は、環境パラメータ及び該予め設定された領域内の複数の領域及び/又は複数の位置点の位置情報を取得するステップ201と、該環境パラメータ及び該位置情報をシミュレーションモデルに入力し、該予め設定された領域内の目標パラメータのシミュレーション結果を取得するステップ202と、を含む。
 本発明の実施例において、該環境パラメータは、環境調整装置が位置する環境の様々なパラメータであってもよい。
 例えば、該環境パラメータは、室内及び/又は室外の温度、湿度、風向、風量、音量、音声周波数、輝度、色温度、空気品質、環境調整装置が位置する建物の高さ、該建物の地理的位置、気候情報、部屋向き、周囲建物の遮蔽情報、環境調整装置が位置する部屋のルームタイプ情報及び該予め設定された領域内の他の装置の情報のうちの少なくとも一つを含むことができる。
 本発明の実施例において、環境調整装置が位置する建物は、本体建物とも呼ばれる。
 本発明の実施例において、例えば、周囲の建物の遮蔽情報は、環境調整装置が位置する建物の周囲の建物の予め設定された領域に対する遮蔽面積であってもよい。このように、環境調整装置が位置する建物の情報を考慮するだけでなく、周囲の建物の影響も考慮し、配置される環境調整装置への影響をより網羅的に考慮することができ、それにより、配置精度をさらに向上させる。
 本発明の実施例において、他の装置は、該環境調整装置と同じ予め設定された領域内に取り付けられた他の様々な装置であってもよく、例えば、建物の屋根の給水塔、室外及び/又は室内の新気装置、排気機及び機械室のうちの少なくとも一つである。
 該他の装置の情報は、建物の屋根の給水塔、室外及び/又は室内の新気装置、排気機及び機械室のうちの少なくとも一つの面積及び/又は位置を含むことができる。
 このように、近くに既に取り付けられた他の装置の情報を考慮することにより、配置されるべき環境調整装置への影響をより網羅的に考慮することができ、それにより、配置精度をさらに向上させる。
 本発明の実施例において、該ルームタイプ情報は、建物情報(BIM)モデル、スキャン・モデリングの建物モデル、ホームレイアウト情報、ホーム二次元図面及び内装情報のうちの少なくとも一つを含むことができる。
 例えば、該内装情報は、内装スタイル及び/又は吊り天井の位置及びサイズ情報を含むことができる。
 このように、ルームタイプ情報、例えば、内装情報を考慮することにより、実際のシーンとの相違を小さくし、実際のパラメータをシミュレーションし、さらにシミュレーション結果の精度を向上させ、実際のシーンとの相違を減少させることにより、配置精度をさらに向上させる。同時に、実用性が高い。
 本発明の実施例において、該位置情報は、複数の領域の面積をさらに含むことができ、例えば、複数の領域の長さ及び幅を含み、なお、複数の領域の高さ情報をさらに含むことができる。
 このように、複数の領域の面積を入力することにより、領域ごとにシミュレーションすることに相当することができ、それにより、配置精度をさらに向上させる。
 本発明の実施例において、シミュレーションモデルは、様々なシミュレーションモデルであってもよく、例えば、該シミュレーションモデルは、数値流体力学(CFD、Computational Fluid Dynamics)シミュレーションモデルである。
 本発明の実施例において、該予め設定された領域内の目標パラメータのシミュレーション結果は、複数の時点又は複数の時間帯での該予め設定された領域内の複数のシミュレーション点の温度の変化クラウドマップ、及び/又は、複数の時点又は複数の時間帯での該予め設定された領域内の複数のシミュレーション点の放熱量の変化クラウドマップを含むことができる。
 例えば、空気調和機の室外機に対して、そのシミュレーション結果は、複数の時点又は複数の時間帯での複数のシミュレーション点の放熱量の変化クラウドマップであり、空気調和機の室内機に対して、そのシミュレーション結果は、複数の時点又は複数の時間帯での複数のシミュレーション点の温度の変化クラウドマップである。
 図3は、本発明の実施例1に係る複数の時点又は複数の時間帯での複数のシミュレーション点の温度の変化クラウドマップの一例である。図3に示すように、番号が1-nのシミュレーション点に対して、複数の時点でのその温度のクラウドマップを示す。
 図4は、空気調和機の室外機に対するシミュレーション方法のフローチャートである。図4に示すように、該方法は、シミュレーションモデルの建物の屋根の予め設定された領域内に複数のシミュレーション点をランダムに分散させるステップ401と、建物の屋根の平面図に該複数のシミュレーション点の位置をマークし、複数のシミュレーション点の放熱を設定してシミュレーションするステップ402と、予め設定された温度又は予め設定された時間で、該複数のシミュレーション点のそれぞれに対して複数の時点又は複数の時間帯の放熱量シミュレーションを行い、該複数のシミュレーション点の放熱量のシミュレーション結果を該シミュレーション結果とするステップ403と、を含む。
 図5は、空気調和機の室内機に対するシミュレーション方法のフローチャートである。図5に示すように、該方法は、シミュレーションモデルの室内の予め設定された領域内に複数のシミュレーション点をランダムに分散させるステップ501と、室内の平面図に該複数のシミュレーション点の位置をマークし、複数のシミュレーション点の送気及び還気の方式を設定してシミュレーションするステップ502と、該複数のシミュレーション点のそれぞれに対して気流及び/又は温度シミュレーションを行い、該複数のシミュレーション点の温度及び/又は気流のシミュレーション結果を該シミュレーション結果とするステップ503と、を含む。
 本発明の実施例において、シミュレーション結果を取得した後で、ステップ102において、該シミュレーション結果に基づいて、環境調整装置の最適な位置を計算する。
 本発明の実施例において、該環境調整装置の最適な位置は、少なくとも一つの最適な位置点及び/又は最適な領域を含む。
 算出された最適な位置が複数ある場合、複数の最適な位置から選択するか、又は、複数の環境調整装置を複数の最適な位置にそれぞれ配置することができる。
 本発明の実施例において、最適な位置は、三次元座標により示されてもよく、二次元座標により示されてもよい。
 本発明の実施例において、該環境調整装置の最適な位置は、放熱性能が良い位置、目標温度に最も早く達する位置、省エネルギー性能が良い位置、快適性が良い位置及び装飾性が良い位置のうちの少なくとも一つを含む。
 すなわち、異なる目標又は異なる考慮要素に基づいて、異なる最適な位置を得ることができる。
 本発明の実施例において、機械学習モデルにより環境調整装置の最適な位置を計算することができ、例えば、スコアリングまたはランキングによる評価方法などの他の方法により環境調整装置の最適な位置を計算することもできる。
 まず、機械学習モデルにより環境調整装置の最適な位置を計算する方法について具体的に説明する。
 図6は、本発明の実施例1に係る機械学習モデルにより環境調整装置の最適な位置を計算する概略図である。
 図6に示すように、シミュレーション結果を機械学習モデル10に入力し、環境調整装置の最適な位置を出力する。
 本発明の実施例において、該機械学習モデルは、様々なタイプの機械学習モデルであってもよく、例えば、該機械学習モデルは、サポートベクターマシン(SVM)モデル又は畳み込みニューラルネットワーク(CNN)モデルである。
 本発明の実施例において、該シミュレーション結果から予め設定された高さに対応する部分を切り取り、該機械学習モデルに入力されたシミュレーション結果とすることができる。
 例えば、該予め設定された高さは、該環境調整装置の取付高さ又はユーザの平均身長である。
 このように、該予め設定された高さでシミュレーションした結果は、快適性に合わせたシミュレーション結果であり、さらに、最適な位置の配置精度をさらに向上させることができる。
 本発明の実施例において、さらに、シミュレーション結果及びユーザ情報を機械学習モデルに同時に入力することができ、このように、ユーザの情報を考慮するため、ユーザのニーズにより合わせた最適な位置である快適性が良い最適な位置を得ることができる。
 例えば、該ユーザ情報は、ユーザの位置、行動軌跡及び着用のうちの少なくとも一つを含む。
 本発明の実施例において、さらに、シミュレーション結果及び環境調整装置の運転パラメータを機械学習モデルに同時に入力することができ、このように、環境調整装置の運転パラメータを考慮するため、省エネルギー性が高い最適な位置を得ることができる。
 例えば、BIM全体的な連携から運転パラメータを取得してもよく、シミュレーションデータから運転パラメータを抽出してもよく、又は、環境調整装置の出荷前に試運転するデータを収集して、環境調整装置の運転パラメータとしてもよい。
 本発明の実施例において、シミュレーション結果を機械学習モデルに入力し、環境調整装置の最適な位置を出力した後で、さらに循環入力し、すなわち、シミュレーション結果及びユーザ情報を機械学習モデルに入力し、又は、シミュレーション結果及び環境調整装置の運転パラメータを機械学習モデルに入力し、より多くの最適な位置を得ることができる。
 図7は、本発明の実施例1に係るステップ102を実現する方法のフローチャートである。図7に示すように、該方法は、該シミュレーション結果を機械学習モデルに入力し、環境調整装置の第1の最適な位置を出力するステップ701と、該シミュレーション結果及びユーザ情報を機械学習モデルに入力し、環境調整装置の第2の最適な位置を出力するステップ702、および/または、該シミュレーション結果及び環境調整装置の運転パラメータを機械学習モデルに入力し、環境調整装置の第3の最適位置を出力するステップ703と、を含む。
 本発明の実施例において、ステップ701の後に、ステップ702および/またはステップ703を繰り返し実行することができる。
 本発明の実施例において、図6に示すように、シミュレーション結果を機械学習モデル10の入力とする以外に、さらに、ユーザ情報又は環境調整装置の運転パラメータを機械学習モデル10に入力することができる。
 本発明の実施例において、機械学習モデルは、予めトレーニングにより得られたものであってもよい。
 図8は、本発明の実施例1に係る機械学習モデルのトレーニング方法のフローチャートである。図8に示すように、該方法は、該予め設定された領域内の複数の位置点又は複数の領域の異なる時点又は異なる時間帯でのクラウドマップを該機械学習モデル内に入力するステップ801と、分類及び回帰を自動的に行い、複数の位置点又は複数の領域のデータと最適な位置点との論理関係を取得するとともに、最適な位置点を出力するステップ802と、該論理関係を取得した機械学習モデルを記憶するステップ803と、を含む。
 例えば、10個のシミュレーション点のシミュレーション結果をSVMモデル内に入力し、例えば、10個のシミュレーション点の異なる時刻の温度変化クラウドマップ又は異なる時間帯の温度変化クラウドマップのビデオセグメントを機械学習モデル内に入力する。SVMモデルは、論理を自動的にトレーニングして、10個の点の位置データと最適な位置点との論理関係を得る。ここに、SVMによりトレーニングされた論理関係は、放熱が最も速い位置点を含むことができ、又は、最適な位置を判断する他の次元であってもよい。例えば、目標温度に最も早く達する位置点、又は、最も省エネルギーの位置点、又は、最も快適な位置点である。
 本発明の実施例において、機械学習モデルを使用せずに最適な位置を計算してもよく、例えば、各シミュレーション点を評価してもよく、例えば、ランキングまたはスコアリングするとともに、評価結果に応じて最適な位置を特定する。
 図9は、本発明の実施例1に係るステップ102を実現する別の方法のフローチャートである。図9に示すように、該方法は、該シミュレーション結果における各シミュレーション点を評価するステップ901と、評価結果に応じて各シミュレーション点をソートするステップ902と、ソートされた各シミュレーション点の評価結果に基づいて、環境調整装置の最適な位置を特定するステップ903と、を含む。
 本発明の実施例において、目的に応じて評価基準を設定して、例えば、最適な位置が放熱が最も速い位置点であるか、又は、目標温度に最も早く達する位置点であるか、又は、最も省エネルギーの位置点であるか、又は、最も快適な位置点であるかに基づいて、具体的な評価基準を設定することができる。
 そのうちの一つの評価基準に対して、複数の評価条件を含むことができ、例えば、各シミュレーション点に対して、該シミュレーション点が満たす評価条件の数を特定し、例えば、2つの評価条件を満たす場合、該シミュレーション点をランクAに特定し、1つの評価条件を満たす場合、該シミュレーション点をランクBに特定し、何れの評価条件とも満たさない場合、該シミュレーション点をランクCに特定する。すると、各シミュレーション点を評価結果に応じてソートした後で、評価ランクが最も高いシミュレーション点、すなわちランクがAであるシミュレーション点を最適な位置点として特定することができる。
 本発明の実施例において、環境調整装置の最適な位置を算出した後で、ステップ103において、該環境調整装置の最適な位置に基づいて、該予め設定された領域内に該環境調整装置を配置する。
 ステップ103において、該環境調整装置の型番とマッチングする間隔に基づいて、複数の環境調整装置を順にレイアウトすることができる。さらに、該環境調整装置の換気影響に基づいて、該環境調整装置の配置領域の数及び単位面積内の該環境調整装置の数を算出する。
 例えば、空気調和機の室外機に対して、最適な位置点又は最適な領域を算出した後で、室外機の型番に基づいて対応する間隔をマッチングして室外機を順にレイアウトする方法を用いてレイアウトすると、室外機のレイアウト精度を向上させることができる。さらに、最適な点又は領域を算出した後で、室外機の換気影響(例えば、風向、風量の大きさ、距離)に基づいて、計算により室外機の配置領域の数、及び単位面積内の所定の位置内に増加される室外機の数を取得する。
 建物の屋根に他の装置が予め設けられた場合、強制的に選択された取付領域に基づいて放熱が最も速い位置点及び領域を算出して室外機のレイアウトを行うこともできる。
 以下、空気調和機の室外機又は室内機を例として、いくつかの具体的な実施形態を示す。
 図10は、本発明の実施例1に係る空気調和機の室外機を配置する方法のフローチャートである。図10に示すように、該方法は、シミュレーションモデルに本体建物情報及び周囲建物の本体建物に対する遮蔽情報を含む建物情報を入力するステップ1001と、シミュレーションモデルに室外の環境パラメータを入力するステップ1002と、シミュレーションモデルに複数の位置点の位置座標(x,y,z)を入力するステップ1003と、シミュレーションモデルによるシミュレーションが終了して結果を出力するステップ1004と、機械学習モデルは、シミュレーション結果に基づいて室外機の最適な位置を算出するステップ1005と、最適な位置の方案に応じて室外機のレイアウトを選択して配置するステップ1006と、を含む。
 このように、シミュレーション結果により、室外機の最適な環境装置のレイアウト位置を算出する。さらに室外機のレイアウト精度を向上させる。
 本発明の実施例において、さらに領域ごとにシミュレーションすることができ、このように、一つの領域を選定すれば室外機の配置を行うことができる。図11は、本発明の実施例1に係る空気調和機の室外機を配置する別の方法のフローチャートである。図11に示すように、該方法は、シミュレーションモデルに本体建物情報及び周囲建物の本体建物に対する遮蔽情報を含む建物情報を入力するステップ1101と、シミュレーションモデルに温湿度及び本建物の屋根装置の情報等を含む室外の環境パラメータを入力するステップ1102と、シミュレーションモデルに複数の領域の面積、例えば、長さと幅、及び高さZを入力するステップ1103と、シミュレーションモデルによるシミュレーションが終了するとともにシミュレーション結果を出力するステップ1104と、機械学習モデルは、シミュレーション結果に基づいて室外機の最適な位置を算出するステップ1105と、一つの領域を選定するとともに最適な位置に応じて室外機のレイアウトを選択して配置するステップ1106と、を含む。
 図12は、本発明の実施例1に係る空気調和機の室内機を配置する方法のフローチャートである。図12に示すように、該方法は、シミュレーションモデルにルームタイプ情報を入力するステップ1201と、シミュレーションモデルに室内及び/又は室外の環境パラメータを入力するステップ1202と、シミュレーションモデルに複数の位置点の位置座標(x,y,z)を入力するステップ1203と、シミュレーションモデルによるシミュレーションが終了して結果を出力するステップ1204と、機械学習モデルは、シミュレーション結果に基づいて室内機の最適な位置を算出するステップ1205と、最適な位置の方案に応じて室内機のレイアウトを選択して配置するステップ1206と、を含む。
 図13は、本発明の実施例1に係る空気調和機の室内機を配置する別の方法のフローチャートである。図13に示すように、該方法は、シミュレーションモデルにルームタイプ情報を入力するステップ1301と、シミュレーションモデルに室内及び/又は室外の環境パラメータを入力するステップ1302と、ルームタイプに基づいて領域ごとに複数の位置点(x,y,z)を特定するステップ1303と、CFDモデルの部屋内に複数のシミュレーション点をランダムに分散させ、部屋の平面図にシミュレーション点の位置をマークし、複数のシミュレーション点の送気及び還気の方式を設定してシミュレーションを行い、複数のシミュレーション点のそれぞれに対して気流及び温度のシミュレーションを行い、複数のシミュレーション点の温度及び気流の結果をシミュレーション結果として出力するステップ1304と、複数の時点及び/又は時間帯を含む異なる位置点の温度場の変化クラウドマップのシミュレーション結果をSVMモデルに入力して、SVMモデルにより最適な位置の方案を算出するステップ1305と、人の位置又は空気調和機の運転パラメータをSVMモデルに入力し、ステップ1305を繰り返すステップ1306と、最も快適又は最も省エネルギー位置の位置点を出力するステップ1307と、最も快適又は最も省エネルギーの位置方案に応じて空気調和機の室内機のレイアウトを行うステップ1308と、を含む。
 本発明の実施例において、環境調整装置の配置方法は、実際のシーンに用いられてもよく、建物情報モデル(Building Information Modeling、BIM)、すなわちBIMモデル内に自動的に配置してもよい。以下、それぞれ具体的に説明する。
 図14は、本発明の実施例1に係る実際のシーンにおいて環境調整装置を配置する方法のフローチャートである。図14に示すように、該方法は、シミュレーションモデルにスキャン・モデリングされた建物モデル又は二次元図面を入力し、又は、BIMモデルを入力するステップ1401と、シミュレーションモデルに環境パラメータを入力するステップ1402と、シミュレーションモデルに複数の領域及び/又は複数の位置点の位置情報を入力するステップ1403と、シミュレーションモデルによりシミュレーションするとともにシミュレーション結果を出力するステップ1404と、該シミュレーション結果に基づいて、環境調整装置の最適な位置を計算するステップ1405と、該環境調整装置の最適な位置に基づいて、該予め設定された領域内に該環境調整装置を配置するステップ1406と、を含む。
 このように、取得された最適な位置を現場の実際の状況によりマッチングさせ、環境パラメータは、現場のデータにより近く、シミュレーション結果もより正確になる。同時に、適用性が広い。
 図15は、本発明の実施例1に係るBIMモデル内で環境調整装置を配置する方法のフローチャートである。図15に示すように、該方法は、BIMのソフトウェアに基づいて、土木工事の図面をBIMモデルに自動的に変換するステップ1501と、BIMのソフトウェアに基づいて、空間を自動的に配置するステップ1502と、建物のタイプ及び用途を設定するステップ1503と、部屋の負荷を計算し、負荷テーブルを形成するステップ1504と、負荷テーブルをモデル選択テーブルに導入するステップ1505と、モデル選択ソフトウェアに基づいて自動的にモデル選択するとともに、環境調整装置の型番及び数を自動的に選定するステップ1506と、シミュレーションモデルに該BIMモデルを入力するステップ1507と、シミュレーションモデルに環境パラメータを入力するステップ1508と、シミュレーションモデルに複数の領域及び/又は複数の位置点の位置情報を入力するステップ1509と、シミュレーションモデルによりシミュレーションを行うとともに、シミュレーション結果を出力するステップ1510と、該シミュレーション結果に基づいて、環境調整装置の最適な位置を計算するステップ1511と、該環境調整装置の最適な位置に基づいて、該予め設定された領域内に該環境調整装置を配置するステップ1512と、を含む。
 このように、空気調和機を例に、例えば、空気調和機システム及び各装置情報をデジタル化することにより、空気調和機システムの設計の全過程を実現する。また、ここでの配布フェーズにおいて、生成された配布方案は、現実の施工の方案と一致し、さらに設計精度を向上させ、室内機の位置と実際の計算や配置された位置との誤差がより小さくなり、さらに、実際の室内機の空気調和機の配置位置の精度を向上させ、実際との偏差を減少させ、対応的に選択して配置することが終了した後で、対応する配管及び配線は、対応的に適切な直径に変化される。現場での組立への指導性がより強い。さらに、建物設計のフェーズにつながり、クラウド側で共有し、各関係者がコミュニケーションしやすく、材料リストの精度が高く、情報が網羅的であり、複数の関係者が共有し、情報が同期し、主観的な判断による誤差を回避する。
 本発明の実施例において、BIMに基づくソフトウェアは、Revit、鴻業BIMSpace、鴻業負荷計算8.0、MagiCAD、Navisworksソフトウェアのうちの少なくとも一種を含むことができる。
 上記ステップに対応して、ソフトウェアは、二次元図面を3D(BIM)モデルに変換する変換モジュールと、自動的に領域ごとに対応する部屋の名称(番号)を配置する第1の自動配置モジュールと、部屋の冷熱負荷を計算する建物負荷モジュールと、冷熱負荷をモデル選択テーブル内に導入し、自動モデル選択を実行する自動モデル選択モジュールと、調整後の部屋の冷熱負荷を自動的に計算する負荷検証モジュールと、対応する空気調和機の機種を自動的に配置する第2の自動配置モジュールと、空気調和機を自動的に接続する自動連管モジュールと、空気調和機の型番に自動的に対応して、対応する配管直径に変更する自動変径モジュールと、空気調和機の材料リストを出力して、クラウドで共有する材料共有モジュールと、の各モジュールを有する。
 図16は、本発明の実施例1に係るステップ1501を実現する方法のフローチャートである。図16に示すように、該方法は、内容が建物の壁、ドア、ウィンドウのブロック及びそれらのパラメータ情報を含むAutoCAD図面をrevitソフトウェアに導入するステップ1601と、階層高さを設定し、壁、ドア、ウィンドウのブロックをピックした後で、ブロックを3D BIMモデルに自動的に変換するステップ1602と、床スラブを構築し、密閉空間モデルを形成するステップ1603と、を含む。
 本発明の実施において、AutoCAD内から導出された図面は、DWGフォーマットである。ここでの床スラブを描画構築することについて、床スラブを自動的に構築してもよく手動で構築してもよい。地上の床スラブのほとんどには構造階高を低下させる状況が存在しないため、床スラブを手動で構築することを選択したほうが速い。地下室に対して、床スラブを自動的に構築する機能を用いることができる。また、CAD図面の完全度が良好であれば、手動で構築するのを選択する必要がなく、レイアウト-モデル変換に成功した後で自然に完全なBIMモデルとなり、床スラブの構築を行う必要がない。
 このように、2D図面を3DのBIMモデルにレイアウト-モデル変換すると、後に情報を参照したり取得したりしやすい。
 図17は、本発明の実施例1に係るステップ1502を実現する方法のフローチャートである。図17に示すように、該方法は、revitソフトウェアは、部屋コマンドを自動的に配置し、部屋を自動的に識別するステップ1701と、revitソフトウェアは、空間コマンドを自動的にピックするステップ1702と、各空間の名称を調整するステップ1703と、を含む。
 このように、各部屋に対応するように自動的に配置して、各部屋の名称を手動で調整し、さらに、後期に自動的にモデル選択することに基礎を提供することによって、マッチングされる機種を、部屋により合わせることを容易にし、より正確になる。勿論、ここでの調整は、現在、まだ手動調整に属する。勿論、バッチ編集することもできる。
 図18は、本発明の実施例1に係るステップ1503を実現する方法のフローチャートである。図18に示すように、該方法は、鴻業プラグインに基づいて、建物のタイプを設定するステップ1801と、鴻業プラグインに基づいて、建物の用途を設定するステップ1802と、建物の部屋面積、部屋番号、階層高さ、建物材質、向き、窓面積及びドア面積を含むgbxmlファイルを導出するステップ1803と、を含む。
 このように、建物のタイプ及び応用を自動的に対応してモデル選択する必要な要素とすることによって、本発明の使用範囲を広くする。後期に空気調和機を配置したが、タイプ及び応用領域によって空気調和機のレイアウトを再補正する状況を回避するとともに、配置の精度を向上させる。
 例えば、一棟の建物に対して、その地下は、駐車場であり、一階と二階は、スーパーマーケットであり、三階は、飲食であり、四階から最上階までは、業務用又は住宅である。すなわち、各階ごとに必要な空気調和機シリーズは、それぞれ異なる。勿論、季節及び地理的位置の影響があるため、モデル選択及び配布する前に建物の応用及びタイプを特定するとともに、各階の機能案内まで具体的に確認する。確認した後で、各階と対応してバッチ編集を行うことができ、さらに精度を確保する上で、速度を向上させる。
 図19は、本発明の実施例1に係るステップ1504を実現する方法のフローチャートである。図19に示すように、該方法は、revitソフトウェアに基づいてgbxml及びIFCファイルを導出するステップ1901と、gbxmlファイルを導入するステップ1902と、鴻業負荷計算ソフトウェアは、建物のタイプ、用途、部屋面積、階層高さ、建物材質、向き、窓面積、ドア面積の情報を自動的に読み取るステップ1903と、各部屋ごとに冷熱負荷を計算し、内容が部屋の面積、階層、夏の総冷房負荷の最大時刻、夏の総冷房負荷、夏の新気量などの情報を含む負荷計算テーブルを導出するステップ1904と、を含む。
 このように、IFC及びgbXMLの二種類のフォーマットに基づいてBIMモデルに負荷計算を行い、建物幾何学的空間情報、部屋機能、位置気候情報、建物の部屋面積、部屋番号、階層高さ、建物材質、向き、窓面積、ドア面積等に関する情報を変換し、各部屋ごとに冷熱負荷を計算し、負荷計算テーブルを導出し、さらにモデル選択に高精度の基礎を築く。
 図20は、本発明の実施例1に係るステップ1505を実現する方法のフローチャートである。図20に示すように、該方法は、負荷テーブルのデータを固定のモデル選択テーブル内に導入するステップ2001と、実行すれば対応するモデル選択ソフトウェアのモデル選択テーブルを自動的に生成することができるステップ2002と、を含む。
 本発明の実施例において、モデル選択テーブルの内容は、階層、空気調和機の番号、ルームタイプ、部屋名称(部屋番号)、冷指標、熱指標、室内機シリーズ、室内機の型番、数を含むことができ、情報が網羅的なモデル選択リストを形成し、システムが自動的に検索してモデル選択しやすく、従来の技術では手動で対応付けてモデル選択する状況を回避し、システムは、自動的に対応して検索してモデル選択することができる。
 図21は、本発明の実施例1に係るステップ1506を実現する方法のフローチャートである。図21に示すように、該方法は、モデル選択テーブルを対応するモデル選択ソフトウェアに導入するステップ2101と、例えば、一つの建物に対して、様々なシリーズの空気調和機を使用するように、対応する空気調和機シリーズを自動的に選択するステップ2102と、適切な室内機の型番及び室内機の数を自動的に選択するステップ2103と、例えば、600平方メートルで10Pとなるように室外機を自動的にマッチングし、室内機総冷房能力/室外機冷房能力×100%を計算するステップ2104と、マッチング後、調整後の部屋の単位冷房負荷を自動的に計算し、ルームタイプと室内機のマッチング性を検証するステップ2105と、を含む。
 このように、空気調和機シリーズの選択は、応用に関連し、省エネルギーを基にして空気調和機シリーズをマッチングすることができる。ここで、空調システムの設計を可視化するだけではなく、例えば、商業プロジェクトは、一般的に中静圧送風機を使用し、具体的な状況は、顧客のニーズに合わせて対応する調整を行う。住宅プロジェクトは、一般的にVRV住宅Nシリーズを使用し、具体的な状況は、顧客のニーズに合わせて対応する調整を行う。建物の応用と分野、及び機能的指導に基づいて、対応する空気調和機シリーズを自動的に判断し、各部屋ごとの負荷、地理的位置に基づいて対応する空気調和機の型番及び数、例えば、どれぐらいの馬力といくつかの室内機を自動的に判断する。
 本発明の実施例において、負荷テーブルとモデル選択テーブルの結合を利用してモデル選択を完全に自動化することができ、その分BIM HVAC設計の効率及び施工精度を向上させ、本発明の実施例のモデル選択方式を用いると、自動的なモデル選択の精度がより高くなり、適用性が広く、同じタイプの空気調和機の適用性をカバーするだけでなく、様々な影響要因での空気調和機の適用仕様及びシリーズを含み、モデル選択の要因を網羅的に考慮し、モデル選択の精度を確保する前提で、モデル選択の効率を向上させる。
 同時に、マッチング後の単位冷房負荷をさらに検証し、空気調和機の型番と部屋の適合精度を検証し、相互に双方向に検証し、さらに適合精度を向上させる。
 また、いくつかの部屋が適切な型番を選択できない可能性があり、精度を確保するために、対応する空気調和機の型番及び数を手動で調整することができる。
 図22は、本発明の実施例1に係るステップ1506を実現する別の方法のフローチャートである。図22に示すように、該方法は、モデル選択テーブルを対応するモデル選択ソフトウェアに導入するステップ2201と、例えば、一つの建物に対して、様々なシリーズの空気調和機を使用するように、対応する空気調和機シリーズを自動的に選択するステップ2202と、部屋に対してモデル選択された後で要求を満たさない場合、空気調和機の型番及び数を手動で調整するステップ2203と、マッチング後、調整後の部屋の単位冷房負荷を自動的に計算し、ルームタイプと室内機とのマッチング性を検証するステップ2204と、を含む。
 このように、家政婦の部屋又は洗濯室又は配電室などの小面積の部屋に対して、別途適合する必要があり、全ての部屋が適切なシリーズ及び型番と数にマッチングすることをさらに確保すると同時に、適合精度を確保するために、双方向検証を行う。
 図23は、本発明の実施例1に係るステップ1507~1512を実現する方法のフローチャートである。図23に示すように、該方法は、モデル選択テーブルをrevitソフトウェアの空気調和機プラグインに導入するステップ2301と、revitソフトウェアの空気調和機プラグインは、EXCELモデル選択テーブルを自動的に読み取るステップ2302と、BIMモデルの各部屋に対応して室内機を自動的に配置するステップ2303と、を含む。
 このように、空気調和機を室内の最適な位置にどのように配置するかについて、将来にBIM HVAC設計の変更に影響する可能性が最も高い要因を考慮し、配布の精度に対して網羅的な方案設計を行う。不動産の所有者及びデベロッパーは、いずれも最も満足する空気調和機の配置方案を得ることができると同時に、HVAC設計は、簡単な可視化だけでなく、施工時及び設計者の設計方案等の要因をより多く考慮することで、方案設計の精度は、現実の施工を指導することができ、現場に主観的な判断を必要としないと同時に、この方案設計により施工終了の効果図を見ることができ、かつBIMのHVAC設計の指導意義を最大化する。
 具体的には、以下のステップは、内装スタイルを考慮し、内装スタイルによる後期の空気調和機の位置が変化することにより、BIMにより自動的に配置されたものと相違している場合を回避し、一段階で完了し、不動産のデベロッパー及び所有者が選択するために用いられるとともに、スコアリング又はランキングの方式により、最適な空気調和機の位置点(座標)の方案を選択し、最適な位置点の方案に基づいてBIMモデルの室内に標識して配布する。勿論、室内機の位置点の高さを考慮して、方案の最適な点の座標(X,Y,Z)を対応して出力することができる。シミュレーションシステムは、室内機の送気口の高さの断面図を具体的に表示し、この高さ位置の室内機の送気風向を可視化することができる。勿論、室内機の形状、サイズを特定し、シミュレーションを行ったり、異なる季節でシミュレーションを行ったりすることもできる。複数のシミュレーション点を選定する過程は、異なる高さ及び異なる位置のシミュレーション点を選定してもよい。
 図24は、本発明の実施例1に係るステップ2303を実現する方法の実施形態のフローチャートである。図24に示すように、該方法は、モデル選択テーブルをrevitの空気調和機プラグインに導入するステップ2401と、revit空気調和機プラグインは、EXCELモデル選択テーブルを自動的に読み取るステップ2402と、ルームタイプ、採光、向き、地理的位置、または内装スタイルを特定するステップ2403と、CFDシミュレーションモデルの読み取り可能な軽量化モデルを導出するステップ2404と、導出されたCFDシミュレーションモデルをCFDソフトウェアに導入するステップ2405と、ルームタイプに基づいて領域ごとに複数の位置点(x,y,z)を特定するステップ2406と、CFDシミュレーションモデルの部屋に複数のシミュレーション点をランダムに分散させ、平面図にシミュレーション点の位置をマークし、複数のシミュレーション点の送気及び還気の方式を設定するステップ2407と、複数のシミュレーション点のそれぞれに対して気流及び温度のシミュレーションを行い、複数のシミュレーション点の温度及び気流の結果をシミュレーション結果として出力するステップ2408と、例えば、複数の時点/時間帯の異なる位置点の温度場の変化クラウドマップなどのシミュレーション結果を入力するステップ2409と、SVMモデル計算モジュールにより最適な位置の方案を算出するステップ2410と、人の位置(x,y)及び空気調和機の運転状態を入力するステップ2411と、SVMモデルにより最適な位置の方案を算出して出力し、すなわち、ステップ2410を繰り返すステップ2412と、最適な位置に応じて空気調和機の室内機のレイアウトを行うステップ2413と、を含む。
 以上は、機械学習モジュールが最適な位置を計算することを採用し、ランキングの方式で最適な位置を特定することを採用してもよい。
 図25は、本発明の実施例1に係るステップ2303を実現する方法の別の実施形態のフローチャートである。図25に示すように、該方法は、以下を含む。
 ステップ2501であって、内装吊り天井の方案を特定した後で、revitにより内装吊り天井のモデルを構築する。
 本発明の実施例において、ルームタイプ、向き、採光、ドア窓に基づいて、内装吊り天井の方案の設計を行い、内装吊り天井の方案を特定した後で、吊り天井モデルを構築することができる。
 ステップ2502であって、CFDソフトウェアの読み取り可能な軽量化のモデルを導出する。
本発明の実施例において、導出された軽量化のモデルは様々なパラメータを含む。
 ステップ2503であって、導出されたCFDシミュレーションモデルをCFDソフトウェアに導入する。
 具体的には、導出された軽量化モデルを、CFDシミュレーションソフトウェアに導入する。具体的なシミュレーションソフトウェアは、SimuWorks,VR-Platform、airpark、Floven等のシミュレーションソフトウェアをさらに含むことができる。
 ステップ2504であって、CFDシミュレーションモデルの部屋に複数のシミュレーション点をランダムに分散させ、複数のシミュレーション点の送気及び還気の方式を設定する。
 ステップ2505であって、複数のシミュレーション点のそれぞれに対して気流及び温度のシミュレーションを行い、シミュレーション結果を生成する。
 ステップ2506であって、複数のシミュレーション点の温度及び気流の結果をまとめて分析し、複数のシミュレーション点のランクを与える。
 ステップ2507であって、平面図にシミュレーション点の位置をマークするとともに、シミュレーション点のランクをソートする。
 ステップ2508であって、ランクが最も高いシミュレーション点に対応して空気調和機の配置を行う。
 本発明の実施例において、さらに、天井機を中間に置くものが最適であり、送気機を壁の縁部に近くするものが最適であることを参照として考慮し、位置の参照標準内に直接的に加える。
 ステップ2506~2508のステップは、具体的に、以下を含むことができる。
 ステップ2506-1であって、シミュレーション点でシミュレーションする時の温度場が室内空間全体をカバーするか否かを自動的に判断や比較する。
 例えば、室内の縁部に近いシミュレーション点ほど装飾性が最適な配置点である。異なるシリーズの空気調和機を異なる位置に取り付ることを参照基準とする。
 ステップ2507-1であって、複数のシミュレーション点のランク又はスコアを出力する。以上の二つの評価基準を満たすと、Aと評価し、そのうちの一つを満たすと、Bと評価し、満たさないと、Cと評価する。
 ステップ2508-1であって、装飾性が最適な配布方案を特定する。Aの方案を出力し、BIMモデルに導入し、Aの方案の配布を行う。
 このように、装飾性を踏まえて、最適な空気調和機の位置点をシミュレーションし、さらに精度を向上させる。後期に内装スタイルのため室内機の位置を変更することにより、実際との偏差が大きすぎることを回避する。本発明の実施例は、事前に最適な位置点を予約してシミュレーションし、この内装スタイルでの最適な空気調和機の位置配置方案とすることによって、さらに空気調和機配置の設計精度を向上させる。なお、さらに、異なる室内機のサイズ、形状を選択し、シミュレーションを行い、最終的に装飾性と最適にマッチングする空気調和機の位置を取得することができる。
 図26は、本発明の実施例1に係るステップ2303を実現する方法のさらなる実施形態のフローチャートである。図26に示すように、該方法は、ルームタイプ、採光、向き、地理的位置を特定するステップ2601と、CFDソフトウェアの読み取り可能な軽量化モデルを導出するステップ2602と、導出されたCFDシミュレーションモデルをCFDソフトウェアに導入するステップ2603と、CFDシミュレーションモデルの部屋に複数のシミュレーション点をランダムに分散させ、複数のシミュレーション点の送気及び還気の方式を設定するステップ2604と、複数のシミュレーション点のそれぞれに対して気流及び温度のシミュレーションを行い、シミュレーション結果を生成するステップ2605と、複数のシミュレーション点の温度及び気流の結果をまとめて分析し、複数のシミュレーション点のスコアを与えるステップ2606と、平面図にシミュレーション点の位置をマークするとともに、シミュレーション点のスコアをソートするステップ2607と、スコアが最も高いシミュレーション点に対応して空気調和機の配置を行うステップ2608と、を含む。
 本発明の実施例において、装飾性の評価基準に加えて、他の評価基準をさらに採用することができる。例えば、快適性の評価基準に対して、ステップ2506~2508のステップは、具体的に以下を含むことができる。
 ステップ2506-2であって、システムは、シミュレーション点のシミュレーションを行う。
 例えば、温度場の状態図を収集し、赤色比率:緑色比率が所定の比率以下である。
 ステップ2507-2であって、複数のシミュレーション点のランク又はスコアを出力する。例えば、条件を満たすと、Aと判定し、条件を満たさないと、Bと判定する。
 ステップ2508-2であって、Aの方案を出力し、BIMモデルによる配布設定を行う。
 このように、部屋の大きさ、ルームタイプ、向き、光照射、季節、窓の地理的位置、層高のパラメータから最も快適な位置をシミュレーションし、及び、異なる送気口と還気口の形状が異なるとき、主観的な判断により人の位置から遠い位置に配置して判定することではなく、本発明の実施例の快適性評価基準は、空気調和機の快適な取付位置をさらに特定し、設計精度が最適である。
 室内シミュレーション点の位置が快適性の高い位置点であるか否かを評価することについて、ステップ2506~2508のステップは、具体的に以下を含むことができる。
 ステップ2506-3であって、システムは、シミュレーション点のシミュレーションを行う。
 例えば、所定時間帯に、撮影し、温度場の均一化時間が最も速く均一となる時間結果を判断する。
 ステップ2507-3であって、シミュレーション結果を入力し、判断、分析およびソートをし、時間の長さに応じてランクABCでソートする。
 ステップ2508-3であって、Aランクの方案は、最も快適な点であり、Aランクの配布方案を出力し、BIMに対応するシミュレーション点の配布を行う。
 このように、最も快適な位置点を取得することができ、快適さの精度を向上させ、シミュレーション時間を節約する。さらに、ソートすることにより、他の位置点で空気調和機を配置できない理由が明らかに理解されることができる。
 例えば、省エネルギー性の評価基準について、ステップ2506~2508のステップは、具体的に、温度場を特定し、部屋内に分布する十個の点を配置し、温度が最も高いか又は最も低い状態を取り、温度を設定し、最も短い時間で設定温度に達するシミュレーション点をシミュレーション結果として出力するステップ2506-4と、シミュレーション結果を入力し、ランクABCに基づいてランキング及びソートを行うステップ2507-4と、Aランクの方案は最も省エネルギーの点であり、Aランクの配布方案を出力し、BIMに対応するシミュレーション点の配布を行うステップ2508-4と、を含むことができる。
 このように、最適な省エネルギーの空気調和機の配布点を最も早く選択することができ、設計精度を確保する上で、設計効率を向上させる。また、部屋の大きさ、ルームタイプ、向き、光照射、季節、窓の地理的位置、層高のパラメータに基づいて、最も省エネルギーの位置をシミュレーションし、主観的に判断してドアと窓から遠い場所に配置することではないため、本発明の実施例の省エネルギー評価基準は、空気調和機の省エネルギー取付位置をさらに特定し、設計精度が最適である。
 例えば、省エネルギー性の評価基準について、ステップ2506~2508のステップは、具体的に、温度場を特定し、部屋内に分布する十個の点を配置し、時間帯を予め設定し、温度を設定し、各空気調和機の運転時間をシミュレーション結果として出力するステップ2506-5と、シミュレーション結果を入力し、ランクABCに基づいてランキング及びソートを行うステップ2507-4と、Aランクの方案は、最も省エネルギーの点であり、Aランクの配布方案を出力し、BIMに対応するシミュレーション点の配布を行うステップ2508-4とを含むことができる。
 このように、空気調和機の運転時間を次元として省エネルギーを判断する標準は、より実際に考慮したうえ、シミュレーションすると、省エネルギーの効果がより高い。
 本発明の実施例において、以上のランキングに基づく配置方法は、顧客に選択肢を提供することができる。顧客は、空気調和機の設計を取得した後で選択し、例えば、装飾性が強いものを選択するか、又は省エネルギー又は快適であるものを選択し、自由に選択することができる。対応するBIMモデルは、選択に基づいて対応する効果を生成する。なお、納得力を強めるために、ユーザに選択通知書をさらに与えることができる。
 本発明の実施例において、ルームタイプのみに基づいて空気調和機の配布の位置を可視化することもでき、配置方法は、以下のとおりである。
 例えば、長方形のルームタイプルールであって、室内機の数が1~3個である場合、室内機は、一字状で一列に並んで中央に配置され、室内機の数が4~6個である場合、室内機は、一字状で二列に並んで中央に配置され、室内機の数が7~9個である場合、室内機は、一字状で三列に並んで中央に配置され、以上の各列の室内機の送気口の断面は、同一の水平面にある。
 例えば、正方形のルームタイプの室内機の配置ルールについて、室内機の数が1~3個である場合、一字状で一列に並んで中央に配置され、室内機が4と5個である場合、室内機が環状に配置され、各列の室内機の送気口が水平面にある。
 例えば、他のルームタイプの室内機の配置ルールについて、該場合に、室内機は、いずれも一字状で配置され、室内機の送気口が同一水平面にあり、室内機の配置が部屋の範囲を超えないものを採用する。
 以上がAIモデルで計算しない最適な位置である。
 具体的に、室内内装の図面をアップロードし、室内機の位置を逆方向に補正し、室内機の位置を補正し、室内機の配置を間取り設計により合わせたり、計算に合わせたりし、ステップ2303の配置ステップは、逆方向の補正をさらに含むことができ、後期に空気調和機のメンテナンスを容易にし、具体的に、外部介入であって、外部の内装設計図面をBIMモデル内にアップロードすることと、BIM内の空気調和機の配布の位置と、設計図面の位置とを一致させることと、を含む。
 それに応じて、ステップ2302は具体的に、Excelテーブルにおける部屋番号、部屋名称、装置型番及び数のデータを読み取ることと、revitソフトウェアにおいてrevitライブラリ内の装置ファミリを自動的にキャプチャし、revitモデル内に作成された部屋番号に基づいてテーブルにおける装置型番および数を対応して配置することと、を含む。
 本発明の実施例において、室内機の配置が終了した後、マルチエアコンを例として、室内機の配置が終了し、冷媒管及び凝縮水管の主管を描画し、同一の空調システムに接続する必要がある室内機をボックスにより選択するか又はクリックして選択するS81と、室外機を手動で配置するS82と、空調システムの室外機と室内機を手動で接続するS83と、をさらに含むことができる。
 なお、冷媒システムに対して、水システムや空気システムの標準と全く一致しない。
 ステップS83の後で、revitの空気調和機の配管に基づいて自動的に変径するS9をさらに含むことができる。
 S9のステップは、具体的に、マルチエアコンのメイン管又は分岐管をクリックして選択し、空調システム全体の装置及び配管を自動的にピックするS91と、配管は、空気調和機の冷媒管の原則に基づいて自動的に変径するS92と、配管は、凝縮水管の配管および空気調和機の配管の原則に基づいて自動的に変径するS93と、である。
 ステップS92において、具体的には、空気調和機の冷媒管の配管の原則は、表1の通りである。
Figure JPOXMLDOC01-appb-T000001
 ステップS93において、具体的な冷凝水管の配管の原則は、表2の通りである。
Figure JPOXMLDOC01-appb-T000002
 本発明の実施例において、ステップS9の後に、revitの材料統計およびDWGフォーマットに基づいて図面をプロットするS10をさらに含むことができる。
 S10のステップは、具体的には、revit電気機械モデルにおける配管長さ、配管仕様、パイプ仕様、配管の材質のパラメータに基づいて、材料リストを導出するS11と、revit平面図に配管マーク及び装置マークを自動的に追加し、DWG図面を導出するS12と、クラウドにアップロードし、共有するS13と、である。
 このように、リストテーブルを導出することにより、後期の設計精度及び施工作製で購入しようとする材料をよりよく指導することができ、さらに、環境調整装置の設計精度を向上させる。
 本発明の実施例において、空気調和機の室内機と室外機を同時に配置してもよい。さらに、配置精度をさらに向上させ、空気調和機の運転効率を向上させ、使用寿命を延長する。
 図27は、本発明の実施例1に係る空気調和機の室内機および室外機を同時に配置する方法のフローチャートである。図27に示すように、該方法は、ソフトウェア(Revit)に基づいて土木工事の図面をBIMモデルに自動的に変換するステップ2701と、ソフトウェア(Revit)に基づいて空間を自動的に配置するステップ2702と、建物のタイプ及び用途を設定するステップ2703と、負荷を計算し、負荷テーブルを形成するステップ2704と、負荷テーブルを例えば、リビング、台所、トイレに対応する型番を含むモデル選択テーブルに導入するステップ2705と、モデル選択ソフトウェアに基づいて自動的にモデル選択し、対応する空気調和機の馬力数及び数を自動的に選定するステップ2706と、BIMモデルを入力するステップ2707と、複数の位置点(x,y,z)を入力するステップ2708と、シミュレーションモデルがシミュレーションし、シミュレーション結果を出力するステップ2709と、シミュレーション結果に基づいて、計算モジュールにより最適な位置を計算するステップ2710と、最適な位置に応じて室内機を配置するステップ2711と、スキャン・モデリング、ポジショニングされた建物または二次元図面を入力するか、又はBIM建物モデルを入力するか、又は他の新気装置と機械室、給水塔などのモデルを入力するステップ2712と、例えば収集された室外温湿度等のデータである環境パラメータを入力するステップ2713と、複数の領域/位置点(X,Y,Z)を入力するステップ2714と、シミュレーションモデルによりシミュレーションするとともにシミュレーション結果を出力するステップ2715と、シミュレーション結果を入力するステップ2716と、シミュレーション結果に基づいて最適な位置点/領域を算出するステップ2717と、最適な位置点/領域方案に基づいて室外機を配置するステップ2718と、を含む。
 図28は、本発明の実施例1に係る省エネルギー性に優れた空気調和機を配置する方法のフローチャートである。図28に示すように、該方法は、ソフトウェアに基づいて土木工事の図面をBIMモデルに自動的に変換するステップ2801と、ソフトウェアに基づいて空間を自動的に配置するステップ2802と、建物のタイプ及び用途を設定するステップ2803と、負荷を計算し、負荷テーブルを形成するステップ2804と、負荷テーブルのデータを固定のモデル選択テーブル内に導入するステップ2805と、実行すれば対応するモデル選択ソフトウェアのモデル選択テーブルを自動的に生成することができるステップ2806と、モデル選択テーブルを対応するモデル選択ソフトウェアに導入するステップ2807と、例えば、一つの建物に対して、様々なシリーズの空気調和機を使用することができるように、対応する空気調和機シリーズを自動的に選択するステップ2808と、適切な室内機の型番及び室内機の数を自動的に選択するステップ2809と、例えば、600平方メートルで10Pとなるように室外機を自動的にマッチングし、室内機総冷房能力/室外機冷房能力×100%を計算するステップ2810と、マッチング後、調整後の部屋の単位冷房負荷を自動的に計算し、ルームタイプと室内機とのマッチング性を検証するステップ2811と、モデル選択テーブルをrevitの空気調和機プラグインに導入するステップ2812と、revit空気調和機プラグインがEXCELモデル選択テーブルを自動的に読み取るステップ2813と、ルームタイプ、採光、向き、地理的位置を特定するステップ2814と、CFDソフトウェアの読み取り可能な軽量化モデルを導出するステップ2815と、導出されたCFDシミュレーションモデルをCFDソフトウェアに導入するステップ2816と、CFDシミュレーションモデルの部屋に複数のシミュレーション点をランダムに分散させ、複数のシミュレーション点の送気及び還気の方式を設定するステップ2817と、複数のシミュレーション点のそれぞれに対して気流及び温度のシミュレーションを行い、シミュレーション結果を生成するステップ2818と、温度場を特定し、部屋内に分布する十個の点を配置し、時間帯を予め設定し、温度を設定し、各空気調和機の運転時間をシミュレーション結果として出力するステップ2819と、シミュレーション結果を入力し、ランクABCに基づいてソートするステップ2820と、Aランクの方案は、最も省エネルギーの点であり、Aランクの配布方案を出力し、BIMに対応するシミュレーション点の配布を行うステップ2821と、配管を自動的に接続し、すなわち、配管ラインを自動的に接続するステップ2822と、自動的に変径し、例えば、いくつかの馬力がいくつかの管径に対応するように、型番に基づいて対応する配管の直径に自動的に変更するステップ2823と、材料リストテーブル(例えば、装置、材料を含む)、図面を出力して、クラウドで共有するステップ2824と、を含む。
 以上は、省エネルギー性を例としている。内装スタイルと省エネルギー性又は装飾性を組み合わせて空気調和機の配置を行うこともできる。具体的な方法は類似し、ここで、詳しい説明を省略する。
 上記の実施例から分かるように、予め設定された領域内の目標パラメータのシミュレーション結果に基づいて、環境調整装置の最適な位置を計算するとともに、該最適な位置に基づいて環境調整装置のレイアウトを行い、このように、実際の運用において、環境調整装置の最適な位置を迅速かつ精確に特定するとともに、レイアウトを行うことができ、かつ、完全に自動化された環境調整装置の配置フローを実現することができると同時に、環境調整装置の設計精度は、実際の取付時の状況により近く、また、ソフトウェア内での自動的な配置に適用するだけでなく、ソフトウェアによる設計レイアウトを経ることなく、環境調整装置を実際に取り付る状況にも同様に適用し、適用範囲が広い。
(実施例2)
 本発明の実施例2は、実施例1に記載の環境調整装置の配置方法に対応する環境調整装置の配置装置を提供し、その具体的な実施は、実施例1に記載の方法の実施を参照することができ、同じ内容または内容の関連するところについて、繰返して説明しない。
 図29は、本発明の実施例2に係る環境調整装置の配置装置の概略図であり、図29に示すように、環境調整装置の配置装置2900は、予め設定された領域内の目標パラメータのシミュレーション結果を取得するための取得手段2901と、該シミュレーション結果に基づいて、環境調整装置の最適な位置を計算するための計算手段2902と、該環境調整装置の最適な位置に基づいて、該予め設定された領域内に該環境調整装置を配置する配置手段2903と、を含む。
 本発明の実施例において、上記の各手段の機能の実現は、実施例1における関連ステップの内容を参照することができ、ここで、繰返して説明しない。
 上記の実施例から分かるように、予め設定された領域内の目標パラメータのシミュレーション結果に基づいて、環境調整装置の最適な位置を計算するとともに、該最適な位置に基づいて環境調整装置のレイアウトを行い、このように、実際の運用において、環境調整装置の最適な位置を迅速かつ精確に特定するとともに、レイアウトを行うことができ、かつ、完全に自動化された環境調整装置の配置フローを実現することができると同時に、環境調整装置の設計精度は、実際の取付時の状況により近く、また、ソフトウェア内での自動的な配置に適用するだけでなく、ソフトウェアによる設計レイアウトを経ることなく、環境調整装置を実際に取り付る状況にも同様に適用し、適用範囲が広い。
(実施例3)
 本発明の実施例3は、実施例2に記載の環境調整装置の配置装置を含む環境調整装置の配置システムを提供し、その具体的な実施は、実施例2に記載の装置及び実施例1に記載の方法の実施を参照することができ、同じ内容または内容の関連するところについて、繰返して説明しない。
 図30は、本発明の実施例3に係る環境調整装置の配置システムの構造図であり、図30に示すように、環境調整装置の配置システム3000は、環境パラメータを収集する収集装置3001と、環境調整装置の配置装置3002と、を含む。
 本発明の実施例において、環境調整装置は、様々なタイプの環境調整装置であってもよく、例えば、該環境調整装置は、空調装置、空気清浄機、新気装置、加湿装置、消毒装置、照明装置及び音響装置のうちの少なくとも一種である。
 本発明の実施例において、環境調整装置の配置システム3000は、家庭用に用いられてもよく、業務用又は公共用に用いられてもよい。
 例えば、該環境調整装置の配置システム3000は、ホーム環境に用いられてもよく、オフィス、オフィスビル、デパートなどの商業環境又は学校などの公共環境に用いられてもよい。
 本発明の実施例において、収集装置3001は、環境パラメータを収集する様々なセンサを含むことができ、環境パラメータを取得したり、記憶したりするサーバ等をさらに含むことができる。
 本発明の実施例において、環境調整装置の配置装置3002の具体的な構造及び機能は、実施例2に記載の装置及び実施例1に記載の方法を参照することができ、ここで繰返して説明しない。
 上記の実施例から分かるように、予め設定された領域内の目標パラメータのシミュレーション結果に基づいて、環境調整装置の最適な位置を計算するとともに、該最適な位置に基づいて環境調整装置のレイアウトを行い、このように、実際の運用において、環境調整装置の最適な位置を迅速かつ精確に特定するとともに、レイアウトを行うことができ、かつ、完全に自動化された環境調整装置の配置フローを実現することができると同時に、環境調整装置の設計精度は、実際の取付時の状況により近く、また、ソフトウェア内での自動的な配置に適用するだけでなく、ソフトウェアによる設計レイアウトを経ることなく、環境調整装置を実際に取り付る状況にも同様に適用し、適用範囲が広い。
 本発明の実施例に係る以上の装置及び方法は、ハードウェアで実現されてもよく、ハードウェアにソフトウェアを組み合わせることで実現されてもよい。本発明は、このようなコンピュータ読取可能なプログラムに関し、該プログラムがロジック部品により実行される時、該ロジック部品に上記の装置又は構成部品を実現させるか、又は該ロジック部品に上記の様々な方法又はステップを実現させることができる。
 本発明の実施例は、さらに上記のプログラムを記憶するための記憶媒体、例えばハードディスク、磁気ディスク、光ディスク、DVD、flashメモリなどに関する。
 なお、本解決手段に係る各ステップの限定は、具体的な解決手段の実施に影響を与えない前提で、ステップの前後順序を限定するものではなく、前に書かれるステップは、先に実行されてもよく、後に実行されてもよく、さらに後のステップと同時に実行されてもよく、本解決手段を実施することができれば、いずれも本願の保護範囲に属すると見なすべきである。
 以上、具体的な実施形態を参照して本発明を説明したが、当業者であれば、これらの説明は、いずれも例示的なものであり、本発明の保護範囲を限定するものではないことがわかるはずである。当業者は、本発明の精神及び原理に基づいて本発明に様々な変形及び補正を行うことができ、これらの変形及び補正も本発明の範囲内にある。
中国特許出願公開第110489875号明細書

Claims (25)

  1.  予め設定された領域内の目標パラメータのシミュレーション結果を取得することと、
     前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算することと、
     前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置することと、を含む、
    ことを特徴とする環境調整装置の配置方法。
  2.  前記予め設定された領域内の目標パラメータのシミュレーション結果を取得することは、
     環境パラメータ及び前記予め設定された領域内の複数の領域及び/又は複数の位置点の位置情報を取得することと、
     前記環境パラメータ及び前記位置情報をシミュレーションモデルに入力し、前記予め設定された領域内の目標パラメータのシミュレーション結果を取得することと、を含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  3.  前記環境パラメータは、室内及び/又は室外の温度、湿度、風向、風量、音量、音声周波数、輝度、色温度、空気品質、環境調整装置が位置する建物の高さ、前記建物の地理的位置、気候情報、部屋向き、周囲建物の遮蔽情報、環境調整装置が位置する部屋のルームタイプ情報及び前記予め設定された領域内の他の装置の情報のうちの少なくとも一つを含む、
    ことを特徴とする請求項2に記載の環境調整装置の配置方法。
  4.  前記他の装置の情報は、建物の屋根の給水塔、室外及び/又は室内の新気装置、排気機及び機械室のうちの少なくとも一つの面積及び/又は位置を含む、
    ことを特徴とする請求項3に記載の環境調整装置の配置方法。
  5.  前記ルームタイプ情報は、建物情報(BIM)モデル、スキャン・モデリングの建物モデル、ホームレイアウト情報、ホーム二次元図面及び内装情報のうちの少なくとも一つを含む、
    ことを特徴とする請求項3に記載の環境調整装置の配置方法。
  6.  前記位置情報は、複数の領域の面積をさらに含む、
    ことを特徴とする請求項2に記載の環境調整装置の配置方法。
  7.  前記予め設定された領域内の目標パラメータのシミュレーション結果は、前記予め設定された領域内の複数のシミュレーション点の温度の複数の時点又は複数の時間帯での変化クラウドマップ、及び/又は、前記予め設定された領域内の複数のシミュレーション点の放熱量の複数の時点又は複数の時間帯での変化クラウドマップを含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  8.  前記予め設定された領域内の目標パラメータのシミュレーション結果を取得することは、
     シミュレーションモデルの建物の屋根の予め設定された領域内に複数のシミュレーション点をランダムに分散させることと、
     建物の屋根の平面図に前記複数のシミュレーション点の位置をマークし、複数のシミュレーション点の放熱を設定してシミュレーションすることと、
     予め設定された温度又は予め設定された時間で、前記複数のシミュレーション点のそれぞれに対して複数の時点又は複数の時間帯の放熱量シミュレーションを行い、前記複数のシミュレーション点の放熱量のシミュレーション結果を前記シミュレーション結果とすることと、を含む、
    ことを特徴とする請求項7に記載の環境調整装置の配置方法。
  9.  前記予め設定された領域内の目標パラメータのシミュレーション結果を取得することは、
     シミュレーションモデルの室内の予め設定された領域内に複数のシミュレーション点をランダムに分散させることと、
     室内の平面図に前記複数のシミュレーション点の位置をマークし、複数のシミュレーション点の送気及び還気の方式を設定してシミュレーションすることと、
     前記複数のシミュレーション点のそれぞれに対して気流及び/又は温度シミュレーションを行い、前記複数のシミュレーション点の温度及び/又は気流のシミュレーション結果を前記シミュレーション結果とすることと、を含む、
    ことを特徴とする請求項7に記載の環境調整装置の配置方法。
  10.  前記環境調整装置の最適な位置は、放熱性能が良い位置、目標温度に最も早く達する位置、省エネルギー性能が良い位置、快適性が良い位置及び装飾性が良い位置のうちの少なくとも一つを含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  11.  前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算する前記ことは、
     前記シミュレーション結果を機械学習モデルに入力し、環境調整装置の最適な位置を出力することを含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  12.  前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算する前記ことは、
     前記シミュレーション結果から予め設定された高さに対応する部分を切り取り、前記機械学習モデルに入力されたシミュレーション結果とすることをさらに含む、
    ことを特徴とする請求項11に記載の環境調整装置の配置方法。
  13.  前記予め設定された高さは、前記環境調整装置の取付高さ又はユーザの平均身長である、
    ことを特徴とする請求項12に記載の環境調整装置の配置方法。
  14.  前記機械学習モデルは、サポートベクターマシンモデル又は畳み込みニューラルネットワークモデルである、
    ことを特徴とする請求項11に記載の環境調整装置の配置方法。
  15.  前記シミュレーション結果を機械学習モデルに入力し、環境調整装置の最適な位置を出力する前記ことは、
     前記シミュレーション結果を機械学習モデルに入力し、環境調整装置の第1の最適な位置を出力することと、
     前記シミュレーション結果及びユーザ情報を機械学習モデルに入力し、環境調整装置の第2の最適な位置を出力することと、及び/または、前記シミュレーション結果及び環境調整装置の運転パラメータを機械学習モデルに入力し、環境調整装置の第3の最適位置を出力することと、を含む、
    ことを特徴とする請求項11に記載の環境調整装置の配置方法。
  16.  前記ユーザ情報は、ユーザの位置、行動軌跡及び着用のうちの少なくとも一つを含む、
    ことを特徴とする請求項15に記載の環境調整装置の配置方法。
  17.  前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算する前記ことは、
     前記シミュレーション結果における各シミュレーション点を評価することと、
     評価結果に応じて各シミュレーション点をソートすることと、
     ソートされた各シミュレーション点の評価結果に基づいて、環境調整装置の最適な位置を特定することと、を含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  18.  前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置する前記ことは、
     前記環境調整装置の型番とマッチングする間隔に基づいて、複数の環境調整装置を順にレイアウトすることを含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  19.  前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置する前記ことは、
     前記環境調整装置の換気影響に基づいて、前記環境調整装置の配置領域の数及び単位面積内の前記環境調整装置の数を算出することをさらに含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  20.  前記環境調整装置は、空調装置、空気清浄機、新気装置、加湿装置、消毒装置、照明装置及び音響装置のうちの少なくとも一種である、
    ことを特徴とする請求項1~19のいずれか1項に記載の環境調整装置の配置方法。
  21.  前記空調装置は、空気調和機の室内機および/または空気調和機の室外機を含む、
    ことを特徴とする請求項20に記載の環境調整装置の配置方法。
  22.  具体的に、
     シミュレーションモデルにスキャン・モデリングの建物モデルまたは二次元図面を入力するか、又はBIMモデルを入力することと、
     シミュレーションモデルに環境パラメータを入力することと、
     シミュレーションモデルに複数の領域および/または複数の位置点の位置情報を入力することと、
     シミュレーションモデルによりシミュレーションするとともに、シミュレーション結果を出力することと、
     前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算することと、
     前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置することと、を含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  23.  具体的に、
     ソフトウェアに基づいて、土木工事の図面をBIMモデルに自動的に変換することと、
     ソフトウェアに基づいて、空間を自動的に配置することと、
     建物のタイプ及び用途を設定することと、
     部屋の負荷を計算し、負荷テーブルを形成することと、
     負荷テーブルをモデル選択テーブルに導入することと、
     モデル選択ソフトウェアに基づいて自動的にモデル選択するとともに、環境調整装置の型番及び数を自動的に選択することと、
     シミュレーションモデルに前記BIMモデルを入力することと、
     シミュレーションモデルに環境パラメータを入力することと、
     シミュレーションモデルに複数の領域及び/又は複数の位置点の位置情報を入力することと、
     シミュレーションモデルによりシミュレーションを行うとともに、シミュレーション結果を出力することと、
     前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算することと、
     前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置することと、を含む、
    ことを特徴とする請求項1に記載の環境調整装置の配置方法。
  24.  予め設定された領域内の目標パラメータのシミュレーション結果を取得するための取得手段と、
     前記シミュレーション結果に基づいて、環境調整装置の最適な位置を計算するための計算手段と、
     前記環境調整装置の最適な位置に基づいて、前記予め設定された領域内に前記環境調整装置を配置するための配置手段と、を含む、
    ことを特徴とする環境調整装置の配置装置。
  25.  環境パラメータを収集する収集装置と、
     請求項24に記載の環境調整装置の配置装置と、を含む、
    ことを特徴とする環境調整装置の配置システム。
PCT/JP2022/027360 2021-07-13 2022-07-12 環境調整装置の配置方法、装置及びシステム WO2023286756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023534808A JPWO2023286756A1 (ja) 2021-07-13 2022-07-12
US18/409,566 US20240143858A1 (en) 2021-07-13 2024-01-10 Arrangement method, apparatus, and system for environment adjustment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110789485.7A CN115614940A (zh) 2021-07-13 2021-07-13 环境调节设备的布置方法、装置及系统
CN202110789485.7 2021-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/409,566 Continuation US20240143858A1 (en) 2021-07-13 2024-01-10 Arrangement method, apparatus, and system for environment adjustment device

Publications (1)

Publication Number Publication Date
WO2023286756A1 true WO2023286756A1 (ja) 2023-01-19

Family

ID=84854604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027360 WO2023286756A1 (ja) 2021-07-13 2022-07-12 環境調整装置の配置方法、装置及びシステム

Country Status (4)

Country Link
US (1) US20240143858A1 (ja)
JP (1) JPWO2023286756A1 (ja)
CN (1) CN115614940A (ja)
WO (1) WO2023286756A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116085937A (zh) * 2023-04-11 2023-05-09 湖南禾自能源科技有限公司 智能中央空调节能控制方法及系统
CN117436182A (zh) * 2023-12-20 2024-01-23 南京市第八建筑安装工程有限公司 基于bim技术的钢骨架幕墙施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116801596B (zh) * 2023-08-18 2023-10-31 宝德华南(深圳)热能系统有限公司 一种光伏逆变器的智能散热系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110489875A (zh) 2019-08-21 2019-11-22 天津住总机电设备安装有限公司 一种空调出风口布局设计方法
JP2019215135A (ja) * 2018-06-14 2019-12-19 アズビル株式会社 温度分布可視化装置および方法
CN111765575A (zh) * 2020-07-30 2020-10-13 中国铁路设计集团有限公司 一种蓄能型空气降温装置
WO2021024807A1 (ja) * 2019-08-08 2021-02-11 パナソニックIpマネジメント株式会社 空間提案システム、及び、空間提案方法
CN112818458A (zh) * 2021-02-26 2021-05-18 西安建筑科技大学 一种建筑绿色性能设计优化方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215135A (ja) * 2018-06-14 2019-12-19 アズビル株式会社 温度分布可視化装置および方法
WO2021024807A1 (ja) * 2019-08-08 2021-02-11 パナソニックIpマネジメント株式会社 空間提案システム、及び、空間提案方法
CN110489875A (zh) 2019-08-21 2019-11-22 天津住总机电设备安装有限公司 一种空调出风口布局设计方法
CN111765575A (zh) * 2020-07-30 2020-10-13 中国铁路设计集团有限公司 一种蓄能型空气降温装置
CN112818458A (zh) * 2021-02-26 2021-05-18 西安建筑科技大学 一种建筑绿色性能设计优化方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116085937A (zh) * 2023-04-11 2023-05-09 湖南禾自能源科技有限公司 智能中央空调节能控制方法及系统
CN117436182A (zh) * 2023-12-20 2024-01-23 南京市第八建筑安装工程有限公司 基于bim技术的钢骨架幕墙施工方法
CN117436182B (zh) * 2023-12-20 2024-02-20 南京市第八建筑安装工程有限公司 基于bim技术的钢骨架幕墙施工方法

Also Published As

Publication number Publication date
US20240143858A1 (en) 2024-05-02
JPWO2023286756A1 (ja) 2023-01-19
CN115614940A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2023286756A1 (ja) 環境調整装置の配置方法、装置及びシステム
Rallapalli A comparison of EnergyPlus and eQUEST whole building energy simulation results for a medium sized office building
Chen A green building information modelling approach: building energy performance analysis and design optimization
O'Neill et al. Modeling and Calibration of Energy Models for a DoD Building.
Shen et al. How neighborhood form influences building energy use in winter design condition: Case study of Chicago using CFD coupled simulation
Li Use of building energy simulation software in early-stage of design process
Hosseini et al. Dynamic thermal simulation based on building information modeling: A review
TWI720652B (zh) 建築能耗資訊處理方法及系統
Aksamija A strategy for energy performance analysis at the early design stage: predicted vs. Actual building energy performance
Mirashk-Daghiyan et al. The effect of surrounding buildings’ height and the width of the street on a building’s energy consumption
Bonnema et al. 50% Advanced Energy Design Guides
Pless et al. The Energy in Modular (EMOD) Buildings Method: A Guide to Energy-Efficient Design for Industrialized Construction of Modular Buildings
Toutou A Parametric Approach for Achieving Optimum Residential Building Performance in Hot Arid Zone
Lilis et al. Semi-automatic thermal simulation model generation from IFC data
Issa Building Performance Simulation for Architects, Comparing Three Leading Simulation Tools
Visitsak et al. An analysis of design strategies for climate-controlled residences in selected climates
Abdelalim et al. Visualization of building performance using sankey diagrams to enhance the decision-making process
Tkeshelashvili BIM to BEM: Development of integrated workflow from Archicad to Energy Evaluation
KR101468568B1 (ko) 웹을 활용한 에너지 성능 분석 시스템 및 방법
Baradaran-Noveiri A BIM-Based Approach for Optimizing HVAC Design and Air Distribution System Layouts in Panelized Houses
Hitchmough et al. The design of the co-operative head office, Manchester
Herk Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support
Yu et al. Improving Accuracy on Energy Use for High-rise Office Buildings via Considering Microclimate Effect
Perez Fernandez Therma performance of buildings with post-tensioned timber structure compared with concrete and steel alternatives
Chen Architectural Design Exploration of Low-Exergy (LowEx) Buildings in the Tropics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534808

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022842100

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022842100

Country of ref document: EP

Effective date: 20240213