WO2023286746A1 - 接眼光学レンズ、光計測システム、及び光計測方法 - Google Patents

接眼光学レンズ、光計測システム、及び光計測方法 Download PDF

Info

Publication number
WO2023286746A1
WO2023286746A1 PCT/JP2022/027306 JP2022027306W WO2023286746A1 WO 2023286746 A1 WO2023286746 A1 WO 2023286746A1 JP 2022027306 W JP2022027306 W JP 2022027306W WO 2023286746 A1 WO2023286746 A1 WO 2023286746A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical lens
base
recess
eyepiece optical
Prior art date
Application number
PCT/JP2022/027306
Other languages
English (en)
French (fr)
Inventor
澪 澤田
卓 木下
慎 久保田
俊英 栗原
亜里 篠島
学 古屋
Original Assignee
株式会社シード
慶應義塾
株式会社センチュリーアークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シード, 慶應義塾, 株式会社センチュリーアークス filed Critical 株式会社シード
Priority to CN202280043184.2A priority Critical patent/CN117500428A/zh
Priority to EP22842090.7A priority patent/EP4338658A1/en
Priority to JP2023534801A priority patent/JPWO2023286746A1/ja
Publication of WO2023286746A1 publication Critical patent/WO2023286746A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/117Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes

Definitions

  • the present invention relates to an eyepiece optical lens, an optical measurement system, and an optical measurement method.
  • Patent Documents 1 to 4 disclose techniques for non-invasively examining an eye to be examined.
  • light is incident laterally from the nasal side or ear side of the subject's eye, and the aqueous humor is directed in a direction substantially perpendicular to the direction of the eye axis (the line connecting the vertex of the cornea and the fovea centralis) of the subject's eye. permeate along.
  • the light passes through the anterior cornea, the aqueous humor, and the posterior cornea of the eye to be examined in this order. It is proposed that this optical path reduces the number of transmitting tissues that are sources of noise and allows concentration measurements of aqueous humor metabolites to be performed. This optical path also prevents light from passing through the pupil and entering the eyeball to damage the retina.
  • the present invention has been made in view of the above, and provides an eyepiece optical lens, an optical measurement system, and an optical measurement method that enable non-invasive analysis of substances contained in the aqueous humor of an eye to be examined. It is.
  • an eyepiece optical lens provides a base having a plurality of surfaces, a spherical recess forming one surface of the base, and a reflecting portion that forms a surface of the base on the outer peripheral side of the recess and reflects light incident on the base from a surface different from the recess among the plurality of surfaces toward the recess.
  • the reflecting portion reflects the light incident on the base portion in a direction substantially orthogonal to the incident direction.
  • the reflecting portion reflects the light incident on the base portion in an axial direction passing through the apex of the concave portion.
  • the reflecting portion is determined according to the refractive index of a medium forming the eyepiece optical lens, and totally reflects the light incident on the reflecting portion. It is characterized by having a critical angle.
  • the reflecting portion forms a surface surrounding the outer periphery of the concave portion of the base portion.
  • the reflecting portion forms a surface of the base on the outer peripheral side of the recess, and a surface of the plurality of surfaces, which is different from the recess, extends from the base. and a surface of the base on the outer peripheral side of the recess, and the light reflected by the first reflection portion is reflected by the recess among the plurality of surfaces. and a second reflecting portion that reflects toward a different surface.
  • an optical measurement system includes the above eyepiece optical lens, a light source section that irradiates light toward the eyepiece optical lens, and a light receiving section that receives light from the eyepiece optical lens. and an optical measurement device.
  • the light receiving unit receives Raman scattered light in the aqueous humor of the eye to be inspected with which the eyepiece optical lens is brought into contact.
  • an optical measurement method includes a base having a plurality of surfaces, a concave portion that forms one surface of the base portion and is spherically recessed, and an outer peripheral side of the concave portion of the base portion.
  • a light measurement method using an eyepiece optical lens including a reflecting portion that forms a surface and reflects light incident on the base portion from a surface different from the concave portion among the plurality of surfaces toward the concave portion, an adjustment step of irradiating an eye to be inspected with an optical lens in contact with an inspection light and adjusting an incident position of the light so that a spot position of the inspection light is formed on the reflecting portion; and a measurement light irradiation step of irradiating the eyepiece optical lens with measurement light having a large intensity, and a light receiving step of receiving the measurement light.
  • the light receiving unit for receiving the measurement light is arranged so that the light intensity of the Raman scattered light in the aqueous humor of the eye to be examined reaches a maximum. It is characterized by including an arranging step of arranging at a position where
  • an eyepiece optical lens an optical measurement system, and an optical measurement method that make it possible to noninvasively analyze substances contained in the aqueous humor of an eye to be examined.
  • FIG. 1 is a schematic diagram of a Raman scattered light spectroscopic measurement system according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the eyepiece optical lens.
  • FIG. 3 is a partially enlarged view of the light source section.
  • FIG. 4 is a flow chart showing the procedure of the Raman spectroscopy measurement method.
  • FIG. 5 is an enlarged view of the eyepiece optical lens of Modification 1.
  • FIG. 6 is an enlarged view of the light source section of Modification 2.
  • FIG. FIG. 7 is an enlarged view of the light source section of Modification 3.
  • FIG. 1 is a schematic diagram of a Raman scattered light spectroscopic measurement system according to an embodiment of the present invention.
  • An eye 10 to be examined includes a cornea 11 that receives light into the eyeball, an aqueous humor 12 that is positioned inside the cornea 11 and adjusts intraocular pressure, a sclera 13 that is positioned on the outer periphery of the cornea 11, and an inner side of the aqueous humor 12. a located lens 14;
  • Aqueous humor 12 contains various metabolites, and it is believed that there is a correlation between these substances and eye diseases. Therefore, a technique for identifying and measuring the concentration of metabolites in the aqueous humor 12 is required.
  • the Raman scattered light spectroscopy measurement system 100 performs measurement for analyzing metabolites contained in the aqueous humor 12 by Raman spectroscopy.
  • the Raman scattered light spectroscopic measurement system 100 includes an eyepiece optical lens 1 brought into contact with an eye 10 to be inspected, irradiates the eyepiece optical lens 1 with excitation light, and emits light from the aqueous humor 12 of the eye 10 to be inspected. and a Raman scattered light spectrometer 20 for spectrally measuring Raman scattered light.
  • the term "contact” refers to a state in which the eyepiece optical lens 1 of the present invention is in contact with the cornea 11, such as “wearing", “wearing”, “adhering", and “contacting”. indicates a state similar to
  • FIG. 2 is an enlarged view of the eyepiece optical lens.
  • FIG. 2 shows a cross-section of the eyepiece optical lens 1.
  • the eyepiece optical lens 1 includes a base portion 1a having a plurality of surfaces, a concave portion 1b forming one surface of the base portion 1a, and an outer peripheral side of the concave portion 1b of the base portion 1a. and an incident portion 1d forming a surface on the opposite side of the concave portion 1b.
  • the surface of the base portion 1a on the incident portion 1d side (upper side in FIG. 2) is referred to as the front surface
  • the surface of the base portion 1a on the concave portion 1b side lower side in FIG. 2 is referred to as the rear surface.
  • the refractive index of the eyepiece optical lens 1 is preferably greater than the refractive index of air (1.00) and greater than the refractive index of the cornea 11 (1.376). In addition, it is preferable that the eyepiece optical lens 1 has hardness to such an extent that the radius of curvature of the base portion 1a does not change when it comes into contact with the cornea 11 . As a material that satisfies these conditions, the eyepiece optical lens 1 is made of, for example, glass or PMMA (Poly Methyl Methylate).
  • the concave portion 1b is concave in a spherical shape and has a radius of curvature corresponding to the cornea 11 of the eye 10 to be examined.
  • the radius of curvature of the concave portion 1 b is preferably equal to or greater than the radius of curvature of the cornea 11 .
  • the reflecting portion 1c (the surface where the reflecting portion 1c- 1 and the reflecting portion 1c- 2 are continuous) is, for example, an interface between glass and air. It has a critical angle for total reflection of light incident on the reflecting portion 1c.
  • the reflecting portion 1c is not limited to total reflection as long as it has a sufficiently high reflectance.
  • the reflecting portion 1c may be formed by forming a thin film made of metal or the like on the surface of the glass.
  • the reflecting portion 1c is formed in an annular shape so as to surround the outer circumference of the recessed portion 1b.
  • a cross section including the central axis C1 passing through the apex of the concave portion 1b and passing through the center of the spherical surface formed by the concave portion 1b, as shown in FIG. 2, has the same shape in any direction.
  • the vertex of the recess 1b means the most recessed point of the recess 1b.
  • the reflecting portion 1c1 reflects the light incident on the base portion 1a from the incident portion 1d toward the central axis C1 in a direction substantially orthogonal to the incident direction.
  • the reflecting portion 1c1 may reflect the light incident on the base portion 1a from the incident portion 1d toward the concave portion 1b, and the light reflected by the reflecting portion 1c1 may pass through part of the aqueous humor 12.
  • FIG. The angle ⁇ formed by the reflecting portion 1c1 with respect to the lateral direction of the subject's eye 10 (the lateral direction in FIG. 2) is an angle at which light incident from the front is reflected at a substantially right angle to the incident direction, and is, for example, 45°.
  • the reflection part The angle ⁇ formed by 1c1 should be set.
  • the reflecting portion 1c2 reflects the light reflected by the reflecting portion 1c1 and passing through the aqueous humor 12 toward the incident portion 1d.
  • the angle formed by the reflecting portion 1c2 with respect to the lateral direction of the eye 10 to be examined is the angle at which the light from the concave portion 1b is reflected forward, and is, for example, 45°. can be done.
  • the incident part 1d preferably has a low reflectance with respect to light from the front, and forms a plane orthogonal to the central axis C1, for example.
  • the Raman scattered light spectrometer 20 includes a light source unit 21 for irradiating the eyepiece optical lens 1 with light, an objective lens 22, a condenser lens 23, a notch filter 24, and an optical fiber coupler. 25 , an optical fiber 26 , a spectroscope 27 as a light receiving portion for receiving light from the eyepiece optical lens 1 , and an absorber 28 .
  • the Raman scattered light spectrometer 20 measures Raman scattered light scattered in a direction substantially perpendicular to the light introduced into the aqueous humor 12 by the concave portion 1b using incident light emitted from the light source unit 21 as excitation light. This is because the light intensity of Raman scattered light is the same regardless of the direction measured, whereas the light intensity of Rayleigh scattered light is the weakest in the direction substantially orthogonal to the excitation light. This is because it can be measured.
  • FIG. 3 is a partially enlarged view of the light source section.
  • the light source unit 21 has a light source 211 that irradiates the eye 10 to be examined with light, and a MEMS mirror 212 that can change the reflection direction.
  • the light source 211 emits measurement light used as excitation light for spectrally measuring the Raman scattered light in the aqueous humor 12 of the eye 10 to be examined. Also, the light source 211 emits inspection light having a light intensity lower than that of the measurement light. The inspection light is used to inspect whether the light from the light source 211 is applied to the reflecting portion 1c before measurement.
  • the wavelengths of measurement light and inspection light are, for example, 532 nm, but are not particularly limited.
  • the inspection light preferably has the same wavelength as the measurement light.
  • the light source 211 may be any light source that emits light of a predetermined wavelength, such as an LD (Laser Diode).
  • the objective lens 22 collects scattered light from the aqueous humor 12 .
  • the condensing lens 23 couples the light condensed by the objective lens 22 to the optical fiber coupler 25 .
  • the notch filter 24 is a bandstop filter that selectively shields Rayleigh scattered light included in the scattered light from the aqueous humor 12 . Therefore, the notch filter 24 blocks the Rayleigh scattered light contained in the scattered light from the aqueous humor 12 and transmits the Raman scattered light. However, the notch filter 24 selectively shields the light of the same wavelength as the Rayleigh scattered light contained in the scattered light from the aqueous humor 12, and blocks the Raman scattered light contained in the scattered light from the aqueous humor 12. Any filter may be used as long as it is permeable. For example, when Stokes Raman scattering is measured, a filter that transmits longer wavelengths than the excitation light emitted by the light source unit 21 may be used.
  • a filter that transmits light having a shorter wavelength than the excitation light emitted by the light source unit 21 may be used.
  • a bandpass filter that selectively transmits Raman scattered light may be used.
  • the optical fiber coupler 25 couples the light condensed by the condensing lens 23 to the optical fiber 26 .
  • the optical fiber 26 introduces scattered light from the aqueous humor 12 to the spectroscope 27 .
  • the spectroscope 27 spectroscopically measures the light transmitted through the notch filter 24 . Note that the light condensed by the condensing lens 23 may be directly incident on the spectroscope. In this case, the optical fiber coupler 25 and the optical fiber 26 are unnecessary.
  • the absorbent 28 absorbs the light emitted by the light source section 21 .
  • FIG. 4 is a flow chart showing the procedure of the Raman spectroscopy measurement method. As shown in FIG. 4, the eyepiece optical lens 1 is brought into contact with the subject's eye 10 (step S1).
  • the eye to be inspected 10 with which the eyepiece optical lens 1 is brought into contact is irradiated with inspection light from the light source unit 21 .
  • the incident position of the light is adjusted so that the spot position of the inspection light is formed on the reflecting portion 1c1 (step S2: adjustment step).
  • the optical path can be estimated according to Snell's law. That is, by adjusting the incident position of the light while checking the position of the spot, the optical path can be adjusted so that the incident light laterally passes through the aqueous humor 12 of the eye 10 to be inspected.
  • an optical fiber coupler 25 for introducing light into a spectroscope 27 as a light receiving unit is arranged at a position where the light intensity of Raman scattered light in the aqueous humor 12 of the eye 10 to be examined is maximized (step S3: arrangement step).
  • step S4 measurement light irradiation step
  • step S5 light receiving step
  • FIG. 5 is an enlarged view of the eyepiece optical lens of Modification 1.
  • FIG. FIG. 5 shows a cross section of an eyepiece optical lens 1A of Modified Example 1.
  • the eyepiece optical lens 1A has a base portion 1Aa having a plurality of surfaces, a concave portion 1Ab forming one surface of the base portion 1Aa, and a concave portion 1Ab of the base portion 1Aa.
  • Reflecting portion 1Ac (a surface formed by connecting reflecting portion 1Ac 1 and reflecting portion 1Ac 2 ) forming a surface on the outer peripheral side; 1Ad 1 and the third reflecting portion 1Ad 2 are continuous), and an incident portion 1Ae forming a side surface of the base portion 1Aa.
  • the reflecting portion 1Ac and the third reflecting portion 1Ad are formed in an annular shape so as to surround the outer circumference of the recessed portion 1Ab.
  • a cross section including the central axis C2 passing through the apex of the concave portion 1Ab and passing through the center of the spherical surface formed by the concave portion 1Ab, as shown in FIG. 5, has the same shape in any direction.
  • the reflecting portion 1Ac 1 reflects the light incident from the incident portion 1Ae and reflected by the third reflecting portion 1Ad 1 toward the direction of the central axis C2 in a direction substantially orthogonal to the incident direction. Further, the reflecting portion 1Ac- 2 reflects the light reflected by the reflecting portion 1Ac- 1 toward the third reflecting portion 1Ad- 2 .
  • the third reflecting portion 1Ad 1 reflects the light incident on the incident portion 1Ae from the side (nose side or ear side) of the subject's eye 10 in a direction substantially parallel to the central axis C2. Also, the third reflecting portion 1Ad 2 reflects the light reflected by the reflecting portion 1Ac 2 in a direction substantially orthogonal to the central axis C2.
  • the configuration may be such that the incident light is introduced from the side of the eye 10 to be examined.
  • the reflective portion 1Ac (the surface formed by the reflective portion 1Ac 1 and the reflective portion 1Ac 2 being continuous) and the third reflective portion 1Ad (the surface formed by the reflective portion 1Ad 1 and the third reflective portion 1Ad 2 being continuous)
  • the angle, position, size, etc. of the surface it is possible to make the light incident on the aqueous humor 12 easier than when direct incident light is introduced into the aqueous humor 12 from the side.
  • FIG. 6 is an enlarged view of the light source section of Modification 2.
  • the light source unit 21B includes a light source 211B that irradiates the eye 10 to be inspected with light, a driving unit 212B that drives the light source 211B, and a mirror 213B that reflects the light from the light source 211B toward the eye 10 to be inspected. and have
  • the drive unit 212B has a rail extending in a direction perpendicular to the direction in which the light source 211B emits light, and a motor for driving the light source 211B, and is movably held on the rail by driving the motor.
  • the light source 211B is moved. When the light source 211B moves on the rail, the position of the light emitted to the eyepiece optical lens 1 can be adjusted.
  • FIG. 7 is an enlarged view of the light source section of Modification 3.
  • the light source unit 21C includes a light source 211C that irradiates the eye 10 to be examined with light, a lens 212C, and a driving unit 213C that rotates the lens 212C to change the traveling direction of the light transmitted through the lens 212C. and have
  • the reflecting portion 1c forms a surface on the outer peripheral side of the concave portion 1b of the base portion 1a. None, and a second reflecting portion that reflects the light reflected by the first reflecting portion toward the incident portion 1d.
  • the reflecting portion 1c may have a plurality of reflecting portions spaced apart from each other. In this case, it is preferable to hold the eyepiece optical lens 1 so as not to rotate with respect to the eye 10 to be examined.
  • the reflecting portion 1c may have only a reflecting portion that forms the outer peripheral surface of the recessed portion 1b of the base portion 1a and reflects the light incident from the incident portion 1d toward the recessed portion 1b.
  • a reflecting portion 1c it is possible to laterally introduce light incident on the eye 10 to be examined 10 into the aqueous humor 12 from the front.
  • the light that has passed through the aqueous humor 12 is emitted to the side (nasal side or ear side) of the eye 10 to be examined, so the absorbent 28 may be arranged on the side of the eye 10 to be examined.
  • Reference Signs List 1 1A ocular optical lens 1a, 1Aa base 1b, 1Ab concave portion 1c, 1Ac reflecting portion 1d, 1Ae incident portion 1Ad third reflecting portion 10 eye to be examined 11 cornea 12 aqueous humor 13 sclera 14 lens 20 Raman scattered light spectrometer 21 , 21B, 21C light source unit 22 objective lens 23 condenser lens 24 notch filter 25 optical fiber coupler 26 optical fiber 27 spectrometer 28 absorber 100 Raman scattered light spectroscopic measurement system 211, 211B, 211C light source 212 MEMS mirror 212B, 213C drive Part 213B Mirror 212C Lens

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

接眼光学レンズは、複数の面を有する基部と、基部の一つの面をなしており、球面状にくぼんだ凹部と、基部の凹部の外周側の面をなし、複数の面のうち凹部と異なる面から基部に入射した光を凹部に向けて反射する反射部と、を備える。これにより、非侵襲で被検眼の房水に含まれる物質を分析することを可能とする接眼光学レンズを提供する。

Description

接眼光学レンズ、光計測システム、及び光計測方法
 本発明は、接眼光学レンズ、光計測システム、及び光計測方法に関する。
 従来、被検眼における房水に含まれる物質を分析し、被検眼の診断に役立てる技術が知られている。この技術では、穿刺により角膜下の房水を抽出する必要があり、被検査者の負担が大きかった。
 特許文献1~4には、非侵襲で被検眼の検査を行う技術が開示されている。これらの技術では、被検眼の鼻側あるいは耳側から光を横向きに入射させ、房水内を被検眼の眼軸(角膜の頂点と中心窩とを結ぶ線)の方向と略直交する方向に沿って透過させる。このとき、光は、被検眼の前方角膜と房水と後方角膜とをこの順に透過する。この光路により、ノイズ源となる透過組織の数を減らし、房水代謝産物の濃度計測を実施することが提案されている。また、この光路により、光が瞳孔を通過し眼球内部に進入して網膜に損傷を与えることを防止している。
特表平6-503245号公報 特開2018-175760号公報 特開2018-175481号公報 特開2011-83342号公報
 しかしながら、本発明者らの角膜輪部における形状の解剖学的研究結果及び導入する光束の広がりや眼球運動に関するデータを基礎とした試算によると、多くの被検者の眼において、房水内を横向きに透過させる光路を実現するには、被検眼に対する光の入射角を1°より小さい誤差で制御する必要があり、実現することが困難であると考えられる。
 本発明は、上記に鑑みてなされたものであって、非侵襲で被検眼の房水に含まれる物質を分析することを可能とする接眼光学レンズ、光計測システム、及び光計測方法を提供するものである。
 上述した課題を解決し、目的を達成するために、本発明に係る接眼光学レンズは、複数の面を有する基部と、前記基部の一つの面をなしており、球面状にくぼんだ凹部と、前記基部の前記凹部の外周側の面をなし、前記複数の面のうち前記凹部と異なる面から前記基部に入射した光を前記凹部に向けて反射する反射部と、を備えることを特徴とする。
 また、本発明の一態様に係る接眼光学レンズは、上記発明において、前記反射部は、前記基部に入射した光を入射方向と略直交する方向に反射することを特徴とする。
 また、本発明の一態様に係る接眼光学レンズは、上記発明において、前記反射部は、前記基部に入射した光を前記凹部の頂点を通る軸方向に反射することを特徴とする。
 また、本発明の一態様に係る接眼光学レンズは、上記発明において、前記反射部は、当該接眼光学レンズを形成する媒質の屈折率に応じて定まり、前記反射部に入射した光を全反射する臨界角を有することを特徴とする。
 また、本発明の一態様に係る接眼光学レンズは、上記発明において、前記反射部は、前記基部の前記凹部の外周を囲む面をなすことを特徴とする。
 また、本発明の一態様に係る接眼光学レンズは、上記発明において、前記反射部は、前記基部の前記凹部の外周側の面をなし、前記複数の面のうち前記凹部と異なる面から前記基部に入射した光を前記凹部に向けて反射する第1反射部と、前記基部の前記凹部の外周側の面をなし、前記第1反射部が反射した光を前記複数の面のうち前記凹部と異なる面に向けて反射する第2反射部と、を有することを特徴とする。
 また、本発明の一態様に係る光計測システムは、上記の接眼光学レンズと、前記接眼光学レンズに向けて光を照射する光源部、及び前記接眼光学レンズからの光を受光する受光部を有する光計測装置と、を備えることを特徴とする。
 また、本発明の一態様に係る光計測システムは、上記発明において、前記受光部は、前記接眼光学レンズを触接させた被検眼の房水におけるラマン散乱光を受光することを特徴とする。
 また、本発明の一態様に係る光計測方法は、複数の面を有する基部と、前記基部の一つの面をなしており、球面状にくぼんだ凹部と、前記基部の前記凹部の外周側の面をなし、前記複数の面のうち前記凹部と異なる面から前記基部に入射した光を前記凹部に向けて反射する反射部と、を備える接眼光学レンズを用いる光計測方法であって、前記接眼光学レンズを触接させた被検眼に検査光を照射し、前記検査光によるスポットの位置が前記反射部に形成されるように光の入射位置を調整する調整ステップと、前記検査光より光強度が大きい計測光を前記接眼光学レンズに照射する計測光照射ステップと、前記計測光を受光する受光ステップと、を含むことを特徴とする。
 また、本発明の一態様に係る光計測方法は、上記発明において、前記受光ステップの前に、前記計測光を受光する受光部を、前記被検眼の房水におけるラマン散乱光の光強度が最大となる位置に配置する配置ステップを含むことを特徴とする。
 本発明によれば、非侵襲で被検眼の房水に含まれる物質を分析することを可能とする接眼光学レンズ、光計測システム、及び光計測方法を実現することができる。
図1は、本発明の実施の形態に係るラマン散乱光分光計測システムの模式図である。 図2は、接眼光学レンズの拡大図である。 図3は、光源部の部分拡大図である。 図4は、ラマン分光計測方法の手順を表すフローチャートである。 図5は、変形例1の接眼光学レンズの拡大図である。 図6は、変形例2の光源部の拡大図である。 図7は、変形例3の光源部の拡大図である。
 以下、本発明の接眼光学レンズ、光計測システム、及び光計測方法の詳細について実施の形態に即して説明するが、これらは本発明を限定するものではない。
(実施の形態)
〔ラマン散乱光分光計測システムの構成〕
 図1は、本発明の実施の形態に係るラマン散乱光分光計測システムの模式図である。被検眼10は、眼球に光を取り込む角膜11と、角膜11の内側に位置し、眼圧を調整する房水12と、角膜11の外周に位置する強膜13と、房水12の内側に位置する水晶体14と、を含む。房水12中にはさまざまな代謝産物が含まれており、これらの物質と眼の疾病との間には相関があると考えられている。そのため、房水12内の代謝産物の同定や濃度を計測する技術が求められている。ラマン散乱光分光計測システム100は、房水12に含まれる代謝産物をラマン分光法により分析するための計測を行う。ラマン散乱光分光計測システム100は、図1に示すように、被検眼10に触接させる接眼光学レンズ1と、接眼光学レンズ1に励起光を照射するとともに、被検眼10の房水12からのラマン散乱光を分光計測するラマン散乱光分光計測装置20と、を備える。なお、本発明において、「触接」とは、本発明の接眼光学レンズ1が角膜11に接する状態を指すものであり、「装用」、「装着」、「着接」、「当接」などと同様の状態を示す。
〔接眼光学レンズの構成〕
 図2は、接眼光学レンズの拡大図である。図2は、接眼光学レンズ1の断面を表し、接眼光学レンズ1は、複数の面を有する基部1aと、基部1aの一つの面をなしている凹部1bと、基部1aの凹部1bの外周側の面をなす反射部1cと、凹部1bの反対側の面をなす入射部1dと、を備える。なお、本明細書において、基部1aの入射部1d側(図2の上方)の面を前面、基部1aの凹部1b側(図2の下方)の面を後面という。
 接眼光学レンズ1の屈折率は、空気の屈折率(1.00)より大きく、さらに角膜11の屈折率(1.376)より大きいことが好ましい。また、接眼光学レンズ1は、角膜11と当接した場合に、基部1aの曲率半径が変化しない程度に硬性を有することが好ましい。これらの条件を満たす材料として、接眼光学レンズ1は、例えばガラス、又はPMMA(Poly Methyl Methacrylate)等からなる。
 凹部1bは、球面状にくぼんでおり、被検眼10の角膜11に応じた曲率半径を有する。凹部1bの曲率半径は、角膜11の曲率半径と等しい、又は角膜11の曲率半径より大きいことが好ましい。凹部1bをこのような曲率半径とすることにより、接眼光学レンズ1を触接させた後、計測中において、被検眼10の形状が変化することを防止することができる。
 反射部1c(反射部1cと反射部1cとが連続してなる面)は、例えばガラスと空気との界面であるが、接眼光学レンズ1を形成する媒質の屈折率に応じて定まり、反射部1cに入射した光を全反射する臨界角を有する。ただし、反射部1cは、十分に反射率が高い反射部であればよく、全反射に限定されない。また、ガラスの表面に金属等からなる薄膜を形成することにより、反射部1cを形成してもよい。反射部1cは、凹部1bの外周を囲むように、円環状に形成されている。換言すると、図2のような、凹部1bの頂点を通り、凹部1bが形成する球面の中心を通る中心軸C1を含む断面は、どの方向においても同一の形状をなす。なお、凹部1bの頂点とは、凹部1bの最もくぼんだ点を意味する。
 図2に戻り、反射部1cは、入射部1dから基部1aに入射した光を入射方向と略直交する方向に、中心軸C1方向に向けて反射する。ただし、反射部1cは、入射部1dから基部1aに入射した光を凹部1bに向けて反射すればよく、反射部1cによる反射光が房水12の一部を通過すればよい。被検眼10の左右方向(図2の左右方向)に対する反射部1cのなす角θは、前方からの入射した光を入射方向と略直角に反射する角度であるから、例えば45°であるが、被検眼10に光を入射させる方向に応じて適宜選択することができる。例えば、被検眼10に対して、凹部1bの中心軸C1から外側(図2の右側)に傾きを持って光を入射する場合、反射光が中心軸C1に対して直行するように、反射部1cのなす角θを設定すればよい。
 また、反射部1cは、反射部1cが反射して房水12を通過した光を入射部1dに向けて反射する。被検眼10の左右方向に対する反射部1cのなす角は、凹部1bからの光を前方に反射する角度であるから、例えば45°であるが、光を測定する方向に応じて適宜選択することができる。
 入射部1dは、前方からの光に対する反射率が小さいことが好ましく、例えば中心軸C1に直交する平面をなす。
〔ラマン散乱光分光計測装置の構成〕
 ラマン散乱光分光計測装置20は、図1に示すように、接眼光学レンズ1に光を照射する光源部21と、対物レンズ22と、集光レンズ23と、ノッチフィルタ24と、光ファイバ結合器25と、光ファイバ26と、接眼光学レンズ1からの光を受光する受光部としての分光器27と、吸収材28と、を備える。
 ラマン散乱光分光計測装置20は、光源部21から照射した入射光を励起光として、凹部1bが房水12に導入した光に略直交する方向に散乱されたラマン散乱光を計測する。これは、ラマン散乱光がどの方向で計測しても同じ光強度であるのに対して、レイリー散乱光が励起光と略直交する方向において光強度が最も弱くなるため、ラマン散乱光を効率よく計測することができるためである。
 図3は、光源部の部分拡大図である。図3に示すように、光源部21は、被検眼10に光を照射する光源211と、反射方向が変更可能なMEMSミラー212と、を有する。
 光源211は、被検眼10の房水12におけるラマン散乱光を分光計測するための励起光として用いられる計測光を出射する。また、光源211は、この計測光より光強度が小さい検査光を出射する。検査光は、計測を行う前に光源211からの光が反射部1cに照射されているかを検査するために用いられる。計測光及び検査光の波長は、例えば532nmであるが、特に限定されない。検査光は、計測光と同じ波長であることが好ましい。光源211は、所定の波長の光を出射する光源であればよく、例えばLD(Laser Diode)である。
 対物レンズ22は、房水12からの散乱光を集光する。
 集光レンズ23は、対物レンズ22が集光した光を光ファイバ結合器25に結合する。
 ノッチフィルタ24は、房水12からの散乱光に含まれているレイリー散乱光を選択的に遮光するバンドストップフィルタである。従って、ノッチフィルタ24は、房水12からの散乱光に含まれているレイリー散乱光を遮光し、ラマン散乱光を透過する。ただし、ノッチフィルタ24は、房水12からの散乱光に含まれているレイリー散乱光と同じ波長の光を選択的に遮光し、房水12からの散乱光に含まれているラマン散乱光を透過するフィルタであればよい。例えば、ストークスラマン散乱を計測する場合には、光源部21が照射する励起光より長波長側を透過するフィルタを用いてもよい。また、反ストークス散乱を計測する場合には、光源部21が照射する励起光より短波長側を透過するフィルタを用いてもよい。また、波長が既知のラマン散乱光を計測する場合には、ラマン散乱光を選択的に透過するバンドパスフィルタを用いてもよい。
 光ファイバ結合器25は、集光レンズ23が集光した光を光ファイバ26に結合する。
 光ファイバ26は、房水12からの散乱光を分光器27に導入する。
 分光器27は、ノッチフィルタ24を透過した光を分光計測する。なお、集光レンズ23により集光した光を直接分光器に入射させてもよい。この場合、光ファイバ結合器25及び光ファイバ26は、不要である。
 吸収材28は、光源部21が照射した光を吸収する。
〔ラマン散乱光分光計測システムによるラマン散乱光分光計測方法〕
 次に、ラマン散乱光分光計測システム100による光計測方法であるラマン散乱光分光計測方法について説明する。図4は、ラマン分光計測方法の手順を表すフローチャートである。図4に示すように、被検眼10に接眼光学レンズ1を触接させる(ステップS1)。
 続いて、接眼光学レンズ1を触接させた被検眼10に光源部21から検査光を照射する。そして、検査光によるスポット位置が反射部1cに形成されるように光の入射位置を調整する(ステップS2:調整ステップ)。なお、光の入射方向とスポット位置とを確認し、光が通過する各物質の屈折率を用いると、スネルの法則により光路を推定することができる。すなわち、スポットの位置を確認しながら光の入射位置を調整することにより、入射光が被検眼10の房水12を横向きに通過するように光路を調整することができる。
 さらに、被検眼10の房水12におけるラマン散乱光の光強度が最大となる位置に受光部としての分光器27に光を導入する光ファイバ結合器25を配置する(ステップS3:配置ステップ)。
 その後、検査光より光強度が大きい計測光を光源部21から接眼光学レンズ1に照射する(ステップS4:計測光照射ステップ)。
 そして、光ファイバ結合器25から分光器27に計測光を導入し、分光器27により分光計測を行う(ステップS5:受光ステップ)。
 以上説明したラマン散乱光分光計測方法によれば、凹部1bが形成された接眼光学レンズ1を用いることにより、被検眼10に対して前方から光を入射して房水12に含まれる物質を分析することが可能となる。
〔接眼光学レンズの変形例〕
(変形例1)
 図5は、変形例1の接眼光学レンズの拡大図である。図5は、変形例1の接眼光学レンズ1Aの断面を表し、接眼光学レンズ1Aは、複数の面を有する基部1Aaと、基部1Aaの一つの面をなす凹部1Abと、基部1Aaの凹部1Abの外周側の面をなす反射部1Ac(反射部1Acと反射部1Acとが連続してなる面)、基部1Aaの反射部1Acに対向する面をなす第3反射部1Ad(第3反射部1Adと第3反射部1Adとが連続してなる面)と、基部1Aaの側面をなす入射部1Aeと、を備える。反射部1Ac及び第3反射部1Adは、凹部1Abの外周を囲むように、円環状に形成されている。換言すると、図5のような、凹部1Abの頂点を通り、凹部1Abが形成する球面の中心を通る中心軸C2を含む断面は、どの方向においても同一の形状をなす。
 反射部1Acは、入射部1Aeから入射し、第3反射部1Adが反射した光を入射方向と略直交する方向に、中心軸C2方向に向けて反射する。また、反射部1Acは、反射部1Acが反射した光を第3反射部1Adに向けて反射する。
 第3反射部1Adは、被検眼10の側方(鼻側、又は耳側)から入射部1Aeに入射した光を、中心軸C2に略平行な方向に向けて反射する。また、第3反射部1Adは、反射部1Acが反射した光を中心軸C2と略直交する方向に向けて反射する。
 以上説明した変形例1のように、被検眼10の側方から入射光を導入する構成であってもよい。この場合、反射部1Ac(反射部1Acと反射部1Acとが連続してなる面)及び第3反射部1Ad(第3反射部1Adと第3反射部1Adとが連続してなる面)の角度や位置、大きさ等を適宜に設定することにより、房水12に側方から直接入射光を導入する場合よりも、房水12に光を入射しやすくすることができる。
(変形例2)
 図6は、変形例2の光源部の拡大図である。図6に示すように、光源部21Bは、被検眼10に光を照射する光源211Bと、光源211Bを駆動させる駆動部212Bと、光源211Bからの光を被検眼10に向けて反射するミラー213Bと、を有する。
 駆動部212Bは、光源211Bが光を照射する方向と直交する方向に延在するレールと、光源211Bを駆動させるモータと、を有し、モータを駆動させることによりレール上に移動可能に保持された光源211Bを移動させる。光源211Bがレール上を移動すると、接眼光学レンズ1に対する光の照射位置を調整することができる。
(変形例3)
 図7は、変形例3の光源部の拡大図である。図7に示すように、光源部21Cは、被検眼10に光を照射する光源211Cと、レンズ212Cと、レンズ212Cを回転させることによりレンズ212Cを透過した光の進行方向を変更する駆動部213Cと、を有する。
 なお、実施の形態では、反射部1cが、円環状に凹部1bを囲んでいる例を説明したが、これに限られない。反射部1cは、基部1aの凹部1bの外周側の面をなし、入射部1dから入射した光を凹部1bに向けて反射する第1反射部と、基部1aの凹部1bの外周側の面をなし、第1反射部が反射した光を入射部1dに向けて反射する第2反射部と、を有していてもよい。換言すると、反射部1cは、互いに離間して設けられている複数の反射部を有していてもよい。この場合、接眼光学レンズ1が被検眼10に対して回転しないよう保持することが好ましい。また、反射部1cは、基部1aの凹部1bの外周側の面をなし、入射部1dから入射した光を凹部1bに向けて反射する反射部のみを有していてもよい。このような反射部1cが形成されていることにより、被検眼10に対して前方から入射した光を房水12に横向きに導入することができる。この場合、房水12を透過した光は、被検眼10の側方(鼻側、又は耳側)に出射するため、被検眼10の側方に吸収材28を配置してもよい。
 1、1A 接眼光学レンズ
 1a、1Aa 基部
 1b、1Ab 凹部
 1c、1Ac 反射部
 1d、1Ae 入射部
 1Ad 第3反射部
 10 被検眼
 11 角膜
 12 房水
 13 強膜
 14 水晶体
 20 ラマン散乱光分光計測装置
 21、21B、21C 光源部
 22 対物レンズ
 23 集光レンズ
 24 ノッチフィルタ
 25 光ファイバ結合器
 26 光ファイバ
 27 分光器
 28 吸収材
 100 ラマン散乱光分光計測システム
 211、211B、211C 光源
 212 MEMSミラー
 212B、213C 駆動部
 213B ミラー
 212C レンズ

Claims (10)

  1.  複数の面を有する基部と、
     前記基部の一つの面をなしており、球面状にくぼんだ凹部と、
     前記基部の前記凹部の外周側の面をなし、前記複数の面のうち前記凹部と異なる面から前記基部に入射した光を前記凹部に向けて反射する反射部と、
     を備えることを特徴とする接眼光学レンズ。
  2.  前記反射部は、前記基部に入射した光を入射方向と略直交する方向に反射することを特徴とする請求項1に記載の接眼光学レンズ。
  3.  前記反射部は、前記基部に入射した光を前記凹部の頂点を通る軸方向に反射することを特徴とする請求項1に記載の接眼光学レンズ。
  4.  前記反射部は、当該接眼光学レンズを形成する媒質の屈折率に応じて定まり、前記反射部に入射した光を全反射する臨界角を有することを特徴とする請求項1に記載の接眼光学レンズ。
  5.  前記反射部は、前記基部の前記凹部の外周を囲む面をなすことを特徴とする請求項1に記載の接眼光学レンズ。
  6.  前記反射部は、
     前記基部の前記凹部の外周側の面をなし、前記複数の面のうち前記凹部と異なる面から前記基部に入射した光を前記凹部に向けて反射する第1反射部と、
     前記基部の前記凹部の外周側の面をなし、前記第1反射部が反射した光を前記複数の面のうち前記凹部と異なる面に向けて反射する第2反射部と、
     を有することを特徴とする請求項1に記載の接眼光学レンズ。
  7.  請求項1に記載の接眼光学レンズと、
     前記接眼光学レンズに向けて光を照射する光源部、及び前記接眼光学レンズからの光を受光する受光部を有する光計測装置と、
     を備えることを特徴とする光計測システム。
  8.  前記受光部は、前記接眼光学レンズを接触させた被検眼の房水におけるラマン散乱光を受光することを特徴とする請求項7に記載の光計測システム。
  9.  複数の面を有する基部と、
     前記基部の一つの面をなしており、球面状にくぼんだ凹部と、
     前記基部の前記凹部の外周側の面をなし、前記複数の面のうち前記凹部と異なる面から前記基部に入射した光を前記凹部に向けて反射する反射部と、を備える接眼光学レンズを用いる光計測方法であって、
     前記接眼光学レンズを触接させた被検眼に検査光を照射し、前記検査光によるスポットの位置が前記反射部に形成されるように光の入射位置を調整する調整ステップと、
     前記検査光より光強度が大きい計測光を前記接眼光学レンズに照射する計測光照射ステップと、
     前記計測光を受光する受光ステップと、
     を含むことを特徴とする光計測方法。
  10.  前記受光ステップの前に、前記計測光を受光する受光部を、前記被検眼の房水におけるラマン散乱光の光強度が最大となる位置に配置する配置ステップを含むことを特徴とする請求項9に記載の光計測方法。
PCT/JP2022/027306 2021-07-14 2022-07-11 接眼光学レンズ、光計測システム、及び光計測方法 WO2023286746A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280043184.2A CN117500428A (zh) 2021-07-14 2022-07-11 接目光学透镜、光测量系统及光测量方法
EP22842090.7A EP4338658A1 (en) 2021-07-14 2022-07-11 Ocular optical lens, light measuring system, and light measuring method
JP2023534801A JPWO2023286746A1 (ja) 2021-07-14 2022-07-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-116647 2021-07-14
JP2021116647 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286746A1 true WO2023286746A1 (ja) 2023-01-19

Family

ID=84919403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027306 WO2023286746A1 (ja) 2021-07-14 2022-07-11 接眼光学レンズ、光計測システム、及び光計測方法

Country Status (4)

Country Link
EP (1) EP4338658A1 (ja)
JP (1) JPWO2023286746A1 (ja)
CN (1) CN117500428A (ja)
WO (1) WO2023286746A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503245A (ja) 1990-12-14 1994-04-14 ジョージア・テック・リサーチ・コーポレーション 非侵襲性血中グルコース測定系
US20080033261A1 (en) * 2003-05-28 2008-02-07 Zeller Philipp N Measuring Blood Glucose Concentration
JP2011083342A (ja) 2009-10-14 2011-04-28 Kowa Co 分子組成測定方法及び装置
JP2018175760A (ja) 2017-04-21 2018-11-15 富士ゼロックス株式会社 眼球の光計測装置及び眼球の光計測方法
JP2018175481A (ja) 2017-04-14 2018-11-15 富士ゼロックス株式会社 眼球の光計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503245A (ja) 1990-12-14 1994-04-14 ジョージア・テック・リサーチ・コーポレーション 非侵襲性血中グルコース測定系
US20080033261A1 (en) * 2003-05-28 2008-02-07 Zeller Philipp N Measuring Blood Glucose Concentration
JP2011083342A (ja) 2009-10-14 2011-04-28 Kowa Co 分子組成測定方法及び装置
JP2018175481A (ja) 2017-04-14 2018-11-15 富士ゼロックス株式会社 眼球の光計測装置
JP2018175760A (ja) 2017-04-21 2018-11-15 富士ゼロックス株式会社 眼球の光計測装置及び眼球の光計測方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIDEROUDI THEOHARIA I., NIKOLAOS M. PHARMAKAKIS, GEORGE N. PAPATHEODOROU, GEORGE A. VOYIATZIS: "Non-invasive detection of antibiotics and physiological substances in the aqueous humor by raman spectroscopy", LASERS IN SURGERY AND MEDICINE, vol. 38, no. 7, 30 May 2006 (2006-05-30), pages 695 - 703, XP093024236, DOI: 10.1002/lsm.20360 *
ZHANG SHUO, ROEL J. ERCKENS, FRANCISCUS H.M. JONGSMA, CARROLL A.B. WEBERS, TOS T.J.M. BERENDSCHOT: "Design and performance of a dark-field probe with confocal raman spectroscopy for ophthalmic application", JOURNAL OF RAMAN SPECTROSCOPY, vol. 52, no. 7, 5 May 2021 (2021-05-05), pages 1371 - 1375, XP093024231, DOI: 10.1002/jrs.6125 *

Also Published As

Publication number Publication date
CN117500428A (zh) 2024-02-02
EP4338658A1 (en) 2024-03-20
JPWO2023286746A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
Shao et al. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo
US20220054004A1 (en) Performing a procedure based on monitored properties of biological tissues
JP6188225B2 (ja) 疾患状態を決定するために予測値と測定値とが比較されるように予測値および測定値を表示する方法
AU661026B2 (en) Measuring molecular change in the ocular lens
US7896498B2 (en) Apparatus and method for optical measurements
US8967802B2 (en) Ophthalmic apparatus
EP3838123A1 (en) Methods and arrangements for obtaining information and providing analysis for biological tissues
US20100049057A1 (en) Imaging of macular pigment distributions
CA2323434C (en) Spectroreflectometric measurement of oxygenation in a patient's eye
US5919132A (en) On-line and real-time spectroreflectometry measurement of oxygenation in a patient's eye
WO2023286746A1 (ja) 接眼光学レンズ、光計測システム、及び光計測方法
JP7420476B2 (ja) 眼科装置、その制御方法、眼科情報処理装置、その制御方法、プログラム、及び記録媒体
US20170360297A1 (en) Performing a procedure based on monitored properties of biological tissues
US9232891B2 (en) Method and device for high-resolution retinal imaging
US20020095257A1 (en) Method and system for detection by raman measurements of bimolecular markers in the vitreous humor
WO2020195199A1 (ja) コンタクトレンズ、房水ラマン分光計測装置、房水ラマン分光計測システム、及び房水ラマン分光計測方法
RU2326582C1 (ru) Способ диагностики возрастной катаракты
Delori et al. In vivo technique for autofluorescent lipopigments
JP7412170B2 (ja) 眼科装置、その評価方法、プログラム、及び記録媒体
CN103598871B (zh) 一种眼科检查装置
JP7513099B2 (ja) 眼科装置
CN113331782A (zh) 一种电脑验光仪
March et al. Non-invasive measurement of corneal hydration
US6709109B1 (en) Differential spectroscopic imaging of the human retina
Stachowiak et al. In vivo imaging of the human eye using a 2-photon-excited fluorescence scanning laser ophthalmoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534801

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022842090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280043184.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022842090

Country of ref document: EP

Effective date: 20231213

NENP Non-entry into the national phase

Ref country code: DE