WO2023286631A1 - Housing-inclusive device - Google Patents

Housing-inclusive device Download PDF

Info

Publication number
WO2023286631A1
WO2023286631A1 PCT/JP2022/026289 JP2022026289W WO2023286631A1 WO 2023286631 A1 WO2023286631 A1 WO 2023286631A1 JP 2022026289 W JP2022026289 W JP 2022026289W WO 2023286631 A1 WO2023286631 A1 WO 2023286631A1
Authority
WO
WIPO (PCT)
Prior art keywords
lattice structure
housing
rod
voronoi
delaunay
Prior art date
Application number
PCT/JP2022/026289
Other languages
French (fr)
Japanese (ja)
Inventor
健寛 右原
尚久 高橋
洋敬 栗田
洋之 永本
佳祐 栗本
孝幸 小林
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to TW111126226A priority Critical patent/TW202309470A/en
Publication of WO2023286631A1 publication Critical patent/WO2023286631A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a housing-equipped device having a housing that houses contents including a heat source.
  • the housing that houses the content including the heat source has a housing wall that forms a housing space that houses the content including the heat source.
  • an elongated coolant passage may be formed between the outer surface and the inner surface of the housing wall.
  • the heat generated by the heat source is radiated to the outside through the refrigerant flowing through the refrigerant passage.
  • An elongated refrigerant passage is a refrigerant passage formed so that the maximum width of the refrigerant passage in a cross section across the refrigerant flow direction is shorter than the length of the refrigerant passage in the refrigerant flow direction.
  • a housing that is mounted on the electric vehicle disclosed in Patent Documents 1 and 2 and houses a motor (heat source) has a housing wall portion in which an elongated refrigerant passage is formed.
  • the housing wall portion of Patent Documents 1 and 2 includes an inner cylinder and an outer cylinder that hold the stator of the motor.
  • a coolant passage is formed between the inner cylinder and the outer cylinder.
  • the refrigerant passage is devised to improve the cooling efficiency. Specifically, in Patent Documents 1 and 2, a plurality of narrowed portions (concave portions) are provided so that the cross-sectional area of the refrigerant passage is partially reduced.
  • a plurality of fins connected to at least the inner cylinder are provided inside the refrigerant passage of Patent Document 1.
  • the refrigerant passage of Patent Document 2 is provided with a plurality of cylinders that connect the inner cylinder and the outer cylinder.
  • Patent Literature 1 the efficiency of heat exchange is improved by generating turbulence in the refrigerant flow by the restrictor and bringing the turbulent coolant flow into contact with fins provided downstream of the restrictor.
  • Patent Literature 2 the efficiency of heat exchange is improved by generating turbulence in the refrigerant flow by means of the throttle portion and the cylinder to eliminate the stagnation of the refrigerant.
  • Patent Documents 3 and 4 there are cases where a plurality of heat radiation fins are provided on the surface of the housing wall portion, as in Patent Documents 3 and 4, for example.
  • the heat generated by the heat source is radiated to the outside of the housing through the radiation fins.
  • the housings of Patent Documents 3 and 4 are mounted on an unmanned air vehicle and accommodate a motor (heat source).
  • heat radiation fins having a solid structure are provided.
  • Patent Document 4 by providing the heat radiation fins with a lattice structure, the surface area of the heat radiation fins is increased compared to the case where the heat radiation fins with a solid structure are provided, thereby improving the cooling performance.
  • a case-equipped device that accommodates contents including a heat source and has a case that has a cooling structure is required to improve the cooling performance of the case while suppressing an increase in the size of the case-equipped device.
  • a case-equipped device that accommodates contents including a heat source and has a case that has a cooling structure is required to increase the degree of freedom in designing the shape of the case-equipped device while ensuring the cooling performance of the case. be done.
  • the present invention can improve the cooling performance of a housing while suppressing an increase in the size of a device equipped with a housing, or improve the degree of freedom in designing the shape of a device equipped with a housing while ensuring the cooling performance of the housing. It is an object of the present invention to provide a housing-equipped device that can
  • a housing that houses contents including a heat source has a problem that the shape of the outer surface and inner surface of the housing is restricted for the following two reasons.
  • the first reason is that it is necessary to consider the shape of the contents and the interference with surrounding parts when mounting the housing.
  • the second reason is that it is necessary to secure the rigidity and strength necessary to support the contents and the housing itself.
  • the housing has a cooling structure, the following problems still exist. Enclosures that are restricted by the shape of the outer and inner surfaces of the enclosure can improve cooling performance while suppressing the enlargement of the enclosure, or improve the design freedom of the enclosure shape while ensuring cooling performance. is required.
  • a long and narrow coolant passage is formed between the outer surface and the inner surface of the housing wall as the cooling structure, the following problems still exist.
  • Patent Literatures 1 and 2 by partially changing the cross-sectional area of the elongated refrigerant passage with a constricted portion, turbulent flow is generated to improve cooling performance.
  • the flow velocity of the refrigerant decreases after passing through the portion where the cross-sectional area is small, the range of turbulent flow generated by the constricted portion is limited.
  • Patent Document 2 since the constricted portions of Patent Documents 1 and 2 have a simple constricted shape, vortices forming turbulence tend to become large. Further, in Patent Document 2, a plurality of cylinders formed inside the coolant passage generate a turbulent flow of the coolant around the cylinders. The stirring action of this turbulent flow reduces the stagnation of the refrigerant, thereby increasing the efficiency of heat exchange and enhancing the cooling performance.
  • the range of turbulence generated by the cylinder is limited.
  • the eddy that constitutes the turbulent flow generated by the cylinder tends to grow large. Also, high flow velocities are required to create turbulence with a cylinder.
  • Patent Documents 3 and 4 In order to improve the cooling performance while suppressing an increase in the size of the housing, or to improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance, the inventors of Patent Documents 3 and 4 have been proposed. Thus, a more detailed study was conducted on a housing having a plurality of fins on the surface of the housing wall. When a plurality of fins having a solid structure are provided as in Patent Document 3, the air around the fins can only flow along the surfaces of the fins and is restricted in the direction of flow. Therefore, there is room for improving the cooling performance.
  • cooling structure by increasing the rigidity and strength of the cooling structure while suppressing the anisotropy of the shock absorption of the cooling structure provided on the surface of the housing wall, compared to the case where multiple fins with a lattice structure are provided, cooling There is room for improving the degree of freedom in designing the shape of the housing while ensuring performance.
  • a housing-equipped device has the following configuration.
  • a housing-equipped device comprising a housing having a housing wall forming a housing space for housing content including a heat source, wherein the housing dissipates heat generated by the heat source to the outside of the housing.
  • the cooling structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall, or the cooling structure is formed to be continuous with either the outer surface or the inner surface of the housing wall a lattice structure formed so as to be discontinuous and continuous with the housing wall forming a coolant passage through which a coolant flows, wherein the coolant passage extends between the outer surface and the inner surface of the housing wall; and the maximum width of the refrigerant passage in a cross section crossing the refrigerant flow direction is shorter than the length of the refrigerant passage in the refrigerant flow direction, and the housing wall portion of the When the maximum width in the thickness direction of the housing wall of the lattice structure formed so as to be continuous with the outer surface or the inner surface is defined as a first width, the outer surface of the housing wall or the When the lattice structure is viewed in a direction perpendicular to the region of the inner surface where the lattice structure is provided, any line segment that fits in the lattice structure and that is per
  • the housing of the housing-equipped device may have a lattice structure formed so as to be continuous with the housing wall forming the refrigerant passage through which the refrigerant flows.
  • the lattice structure consists of a plurality of rod-shaped parts.
  • the lattice structure includes a Delaunay lattice structure or a Voronoi lattice structure.
  • the Delaunay lattice structure consists of a plurality of first rod-shaped portions forming a plurality of Delaunay edges in a three-dimensional Delaunay diagram based on a plurality of Delaunay points randomly distributed in three dimensions.
  • the Delaunay lattice structure is formed so that each of the three line segments perpendicular to each other passes through two or more Delaunay triangular pyramids each having the four Delaunay points formed by the connecting points of the first rod-shaped portions. be done. Due to the characteristics of the Delaunay diagram, the Delaunay triangular pyramid is formed so that the constituent surfaces are as close to equilateral triangles as possible. Therefore, in the Delaunay lattice structure, the connection angle between the first rod-like portions is unlikely to be extremely large or small. Further, in the Delaunay lattice structure, the directions of the plurality of first rod-shaped portions are less likely to deviate in a specific direction.
  • the Voronoi lattice structure part is a plurality of first rod-like structures forming sides of a plurality of Voronoi polyhedrons formed only by Voronoi boundary surfaces in a three-dimensional Voronoi diagram having a plurality of virtual points randomly distributed in three dimensions as a base point.
  • the Voronoi lattice structure is formed such that each of the three line segments orthogonal to each other passes through two or more Voronoi polyhedrons having only vertices formed by connecting points between the first rod-shaped portions.
  • the Voronoi diagram is dual to the Delaunay diagram.
  • a Delaunay edge is formed by connecting two generating points on both sides of the Voronoi boundary surface in the Voronoi diagram.
  • the connection angle between the first rod-shaped portions is unlikely to be extremely large or small.
  • the directions of the plurality of first rod-shaped portions are less likely to deviate in a specific direction.
  • the cross section passing through the lattice structure of the coolant passage is not affected by these restrictions. It is easy to adjust the position where the coolant flows and/or the bias and/or the flow velocity of the coolant. If the lattice structure has a regular structure, even if the positional deviation of the coolant flow can be suppressed at a certain flow rate, the positional deviation of the coolant flow may occur when the flow rate changes. On the other hand, the directions of the plurality of rod-shaped portions that constitute the Delaunay lattice structure and the Voronoi lattice structure are random.
  • the rigidity and strength of the housing can be increased over a wide range rather than locally, and the rigidity and strength of the housing can be increased in more directions.
  • the housing may have a lattice structure formed contiguously with the outer surface or the inner surface of the housing wall.
  • the configuration of the lattice structure is the same as that of the lattice structure formed so as to be continuous with the housing wall forming the coolant passage. Since the fluid flows in the lattice structure having such a configuration, the fluid can also flow in multiple directions along the surface of the housing wall, for example.
  • the cooling performance can be made higher than in the configuration in which a plurality of solid-structured fins are provided on the surface of the housing wall.
  • the maximum width of the lattice structure in the thickness direction of the housing wall is defined as the first width
  • the lattice structure extends in a direction perpendicular to the region where the lattice structure is provided on the outer surface or the inner surface of the housing wall. Looking at the section, the length of any line segment within the lattice structure that is orthogonal to the longest line segment within the lattice structure is greater than the first width. Therefore, the lattice structure is not a thin plate like a fin.
  • the fins are laminated for cooling performance, the fins are spaced apart and are not connected to each other. Therefore, the lattice structure fins are not very rigid and strong.
  • the lattice structure is not in the form of a thin plate like fins, when the lattice structure is provided on the surface of the housing wall, a plurality of fins of the lattice structure are provided on the surface of the housing wall. Compared to the case, even if the thickness of the housing wall portion is about the same, the degree of freedom in designing the shape of the housing can be improved while ensuring the rigidity and strength of the housing.
  • the fins of solid structure and lattice structure have a large difference in the ease of deformation and the manner of deformation depending on the direction in which force is applied.
  • the fins with a solid structure and a fin with a lattice structure have a large difference in shock absorption depending on the direction in which the shock is applied.
  • the lattice structure part has a small difference in shock absorption due to the difference in the direction in which the shock is applied.
  • the degree of freedom in designing the shape of the housing can be further improved while ensuring the cooling performance of the housing.
  • the housing-equipped device of the present invention can improve the cooling performance of the housing while suppressing an increase in the size of the housing-equipped device, or can ensure the cooling performance of the housing.
  • the degree of freedom in designing the shape of the can be improved.
  • a housing-equipped device may have the following configuration.
  • some of the plurality of first rods are formed so as to be continuous with the housing wall.
  • a housing-equipped device may have the following configuration.
  • the plurality of rod-shaped portions constituting the lattice structure include, in addition to the plurality of first rod-shaped portions constituting the Delaunay lattice structure or the Voronoi lattice structure, a plurality of second rod-shaped portions.
  • the two rod-shaped portions are formed such that an end of the first rod-shaped portion forming one Delaunay point or one vertex of the Voronoi polyhedron, at least one of the second rod-shaped portions, and the housing wall are continuously formed. is provided as follows.
  • the plurality of second rod-shaped parts are not included in either the Delaunay lattice structure part or the Voronoi lattice structure part.
  • the plurality of second rod-shaped portions are formed such that the end of the first rod-shaped portion forming one Delaunay point or one vertex of the Voronoi polyhedron, at least one second rod-shaped portion, and the housing wall are continuously formed.
  • the second rod-shaped portion is a rod-shaped portion that is clearly not forming a Delaunay edge or a side of the Voronoi polyhedron, or a rod-shaped portion that cannot be determined from the lattice structure whether it forms a Delaunay edge or a side of the Voronoi polyhedron. be.
  • the Delaunay sides are formed at the ends of the structure of this specific shape.
  • a housing-equipped device may have the following configuration.
  • the lattice structure includes the Delaunay lattice structure
  • the shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is the plurality of first rod-shaped portions.
  • the lattice structure is less than or equal to the maximum length of the portion and the lattice structure includes the Voronoi lattice structure
  • the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is shorter than the maximum length of the diagonals of the plurality of Voronoi polyhedrons formed only by the Voronoi boundary surfaces.
  • the shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is shorter than the Delaunay side or the Voronoi polyhedron. That is, the space in which at least one second rod-shaped portion connecting between the end of the first rod-shaped portion and the housing wall portion is arranged is narrower than the Delaunay side or the Voronoi polyhedron. Therefore, there is a high possibility that the second rod-shaped portion is a rod-shaped portion that originally forms a Delaunay edge or a side of the Voronoi polyhedron, but cannot be identified from the lattice structure as to whether it forms a Delaunay edge or a side of the Voronoi polyhedron.
  • the second rod-shaped portion is originally a rod-shaped portion forming a Delaunay side or a side of a Voronoi polyhedron, in the lattice structure, it is possible to further suppress unevenness in connection angles between the rod-shaped portions and unevenness in the direction of the rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity.
  • the rigidity and strength of the housing are increased by the lattice structure, and the unevenness in the direction of the rigidity and strength of the housing is further reduced. can be suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
  • a housing-equipped device may have the following configuration.
  • the maximum length of the plurality of first rod-shaped portions is smaller than four times the average length of the plurality of first rod-shaped portions.
  • the plurality of first rod-shaped portions forming the Delaunay lattice structure do not include extremely long first rod-shaped portions. Therefore, in the lattice structure portion, it is possible to further suppress unevenness in connection angles between the first rod-shaped portions and unevenness in the direction of the first rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity.
  • the rigidity and strength of the housing are increased by the lattice structure, and the rigidity and strength of the housing are improved. bias can be further suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
  • a housing-equipped device may have the following configuration.
  • the maximum value of the distance between the two generating points located on both sides of the Voronoi boundary surface surrounded by the plurality of first rod-shaped portions is the Voronoi surrounded by the plurality of first rod-shaped portions. It is smaller than four times the average value of the distances of the two generating points located on both sides of the boundary surface.
  • the plurality of generating points do not include generating points where the distance between two generating points located on both sides of the Voronoi boundary surface is extremely long. Therefore, the plurality of first rod-shaped portions forming the Voronoi lattice structure do not include extremely long first rod-shaped portions. Therefore, in the lattice structure portion, it is possible to further suppress unevenness in connection angles between the first rod-shaped portions and unevenness in the direction of the first rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity.
  • the rigidity and strength of the housing are increased by the lattice structure, and the rigidity and strength of the housing are improved. bias can be further suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
  • a housing-equipped device may have the following configuration.
  • the maximum length of the plurality of first rod-shaped portions is less than five times the average length of the plurality of first rod-shaped portions.
  • the plurality of first rod-shaped portions that constitute the Voronoi lattice structure do not include extremely long first rod-shaped portions. Therefore, in the lattice structure portion, it is possible to further suppress unevenness in connection angles between the first rod-shaped portions and unevenness in the direction of the first rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity.
  • the rigidity and strength of the housing are increased by the lattice structure, and the rigidity and strength of the housing are improved. bias can be further suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
  • a housing-equipped device may have the following configuration.
  • the lattice structure portion is formed so as to be continuous with the housing wall portion forming the coolant passage without being continuous with either the outer surface or the inner surface of the housing wall portion, and the housing-equipped device. introduces the gas or liquid around the housing-equipped device as the refrigerant into the refrigerant passage, and discharges the refrigerant after passing through the refrigerant passage to the surroundings of the housing-equipped device.
  • the housing-equipped device does not have a radiator for cooling the coolant after passing through the coolant passage.
  • the housing-equipped device it is possible to suppress an increase in the size of the housing-equipped device, compared to the case where the housing-equipped device has a radiator and is configured to circulate a coolant.
  • a housing-equipped device may have the following configuration.
  • the lattice structure is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall and is continuous with the housing wall forming the coolant passage,
  • the length in the coolant flow direction is longer than the maximum width of the coolant passage in the cross section passing through the lattice structure.
  • the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow speed and/or the flow speed can be adjusted without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing. Easy to adjust. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
  • a housing-equipped device may have the following configuration.
  • the lattice structure is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall and is continuous with the housing wall forming the coolant passage,
  • the length in the coolant flow direction is longer than the circumferential length of the coolant passage in the cross section passing through the lattice structure.
  • the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow speed and/or the flow speed can be adjusted without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing. Easy to adjust. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
  • a housing-equipped device may have the following configuration.
  • the lattice structure portion is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall portion and is continuous with the housing wall portion forming the refrigerant passage, and the lattice structure portion is When the Delaunay lattice structure portion is included, the lattice structure portion has two mutually orthogonal line segments included in the first cross section that traverses the coolant flow direction, each formed by a connecting point between the first rod-shaped portions. a portion of the housing wall, the lattice structure and the housing wall in each of the directions of the two line segments passing through two or more Delaunay triangular pyramids having the four Delaunay points, respectively.
  • the lattice structure portion includes the Voronoi lattice structure portion
  • the lattice structure portion includes two line segments perpendicular to each other included in the first cross section crossing the coolant flow direction. each passes through two or more Voronoi polyhedra having only vertices formed by the connecting points of the first rods, and in each of the directions of the two line segments, a portion of the housing wall and the The lattice structure and another part of the housing wall are formed so as to be continuous.
  • the lattice structure can be arranged so that the coolant passage in the housing wall is filled with the lattice structure without sacrificing the flow of the coolant. Therefore, the rigidity, strength and cooling performance of the housing can be improved to a higher level. Specifically, the lattice structure makes it easier to adjust the bias and/or the flow velocity, so that the cooling performance of the housing can be further improved. In addition, while improving the rigidity and strength of the housing, the cooling performance of the housing can be further improved by adjusting the distance between the heat source and the coolant and the state of the flow of the coolant. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
  • a housing-equipped device may have the following configuration.
  • the lattice structure portion is formed so as to be continuous with the housing wall portion forming the coolant passage without being continuous with either the outer surface or the inner surface of the housing wall portion, and is continuous with the housing wall portion forming the coolant passage.
  • At least a portion of the coolant flow direction is provided with a first passage portion provided with at least a portion of the lattice structure portion, and the lattice structure portion aligned in a direction intersecting the first passage portion with the coolant flow direction.
  • the lattice structure includes the Delaunay lattice structure
  • the Delaunay lattice structure includes three mutually orthogonal line segments included in the first passage portion. , formed so as to pass through two or more Delaunay triangular pyramids each having four Delaunay points formed by connection points between the first rod-shaped portions, and the lattice structure includes the Voronoi lattice structure,
  • each of three mutually orthogonal line segments included in the first passage portion passes through two or more Voronoi polyhedrons each having only vertices formed by connection points between the first rod-shaped portions. is formed as
  • the coolant passage has a first passage portion provided with at least a portion of the lattice structure and a second passage portion not provided with the lattice structure. If the cross-sectional area of the coolant passage is the same, the lattice structure provided only in part of the cross-section of the coolant passage is better than the lattice structure provided over the entire cross-section of the coolant passage. Low fluid resistance. Since the refrigerant passage has the first passage portion and the second passage portion, in terms of the resistance of the refrigerant passage, the circumferential length of the refrigerant passage is reduced compared to the case where the entire cross section of the refrigerant passage is provided with a lattice structure. can be made smaller. When the circumference of the coolant passage is reduced, the cooling performance of the housing can be improved while suppressing the size of the housing, or the design freedom of the housing shape can be increased while maintaining the cooling performance of the housing. can improve.
  • a housing-equipped device may have the following configuration.
  • the lattice structure is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall and is continuous with the housing wall forming the coolant passage, At least a portion is provided in at least one of at least one of a flow direction changing portion in the refrigerant passage where the direction of refrigerant flow changes and a cross section changing portion in the refrigerant passage where the area of the cross section changes,
  • the lattice structure includes the Delaunay lattice structure
  • the Delaunay lattice structure has the flow direction changing portion.
  • Two line segments orthogonal to each other included in the second cross section crossing each other pass through two or more Delaunay triangular pyramids each having four said Delaunay points formed by connecting points between said first rod-shaped parts.
  • at least a portion of the lattice structure is provided in at least a portion of the flow direction changing portion, and the lattice structure includes the Voronoi lattice structure, the Voronoi lattice structure is the Two line segments orthogonal to each other included in the second cross section crossing the flow direction changing portion pass through two or more Voronoi polyhedrons having only vertices formed by connecting points of the first rod-shaped portions.
  • the lattice structure is provided in at least part of the cross-section changing part, and when the lattice structure includes the Delaunay lattice structure, the Delaunay lattice structure has the cross section Two or more Delaunay triangular pyramids each having four Delaunay points formed by connection points between the first rod-shaped portions, each of which is included in a third cross section crossing the change portion and which is perpendicular to each other.
  • the Voronoi lattice structure is formed to pass through: Two line segments perpendicular to each other included in the third cross section crossing the cross-section changing portion pass through two or more Voronoi polyhedrons having only vertices formed by connecting points between the first rod-shaped portions. formed in
  • At least part of the Delaunay lattice structure or the Voronoi lattice structure may be provided in at least part of the flow direction changing part.
  • the Delaunay lattice structure or the Voronoi lattice structure suppresses the generation of large vortices by the flow direction changing part, and the combination of the Delaunay lattice structure or the Voronoi lattice structure and the flow direction changing part creates a small vortex in the refrigerant flow. can be added. Therefore, it is easier to adjust the deviation and/or the flow velocity without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing.
  • At least part of the Delaunay lattice structure or the Voronoi lattice structure may be provided in at least part of the cross-section changing part.
  • the Delaunay lattice structure or the Voronoi lattice structure suppresses the generation of large vortices by the cross-section changing portion, and the combination of the Delaunay lattice structure or the Voronoi lattice structure and the cross-section changing portion adds a small vortex to the refrigerant flow. can be done. Therefore, it is easier to adjust the deviation and/or the flow velocity without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
  • a housing-equipped device may have the following configuration.
  • the lattice structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall, and the lattice structure is connected to the outer surface or the inner surface of the housing wall by metal additive manufacturing. It is integrally molded according to the law.
  • the lattice structure is integrally formed with at least a part of the housing wall, heat is easily conducted from the lattice structure to the housing wall or from the housing wall to the lattice structure. Therefore, the cooling performance of the housing can be further improved.
  • a device provided with a housing is a device provided with a housing for housing contents including a heat source and the contents.
  • the type of device is not particularly limited.
  • the housing-equipped device is, for example, an electric small vehicle such as an electric wheelchair, an electric saddle-ride type vehicle, or an electric small four-wheeled vehicle, an unmanned flying object (so-called drone), an electric outboard motor. , and industrial robots.
  • Straddle-type vehicles include, for example, motorcycles, motor tricycles, four-wheeled buggies (ATVs: All Terrain Vehicles), snowmobiles, personal water crafts, and the like.
  • motorcycles include scooters, motorized bicycles, mopeds, and the like.
  • Industrial robots may or may not be self-propelled.
  • An outboard motor has a portion that is placed underwater and a portion that is positioned above the surface of the water.
  • the part above the water level is attached to the ship.
  • the housing that houses the heat source may be included in the part that is placed underwater or in the part that is above the water surface.
  • the lattice structure may or may not be exposed to the outside of the housing-equipped device. If the lattice structure is not exposed to the exterior of the housing device, the fluid (gas or liquid) surrounding the housing device will enter the interior of the housing device and pass through the lattice structure.
  • a heat source means an object that generates heat by itself.
  • a heat source does not include anything that receives thermal energy and generates heat.
  • the heat source may or may not be a device.
  • Heat sources include objects that are capable of generating heat multiple times. Heat sources may include objects that are capable of generating heat multiple times and objects that generate heat only once.
  • a heat source need not include a one-time heat generating object.
  • Heat sources include objects that generate heat from electrical energy.
  • a heat source may be, for example, anything that generates heat from electrical energy.
  • Heat sources may include those that generate heat from electrical energy and those that generate heat from kinetic energy.
  • a heat source need not include anything that generates heat from electrical energy. Heat resulting from kinetic energy is, for example, frictional heat.
  • Heat sources may include those that generate heat from electrical energy and those that generate heat through chemical reactions. Heat sources may include those that generate heat from electrical energy, those that generate heat from kinetic energy, and those that generate heat through chemical reactions. The heat source may be free of substances that generate heat through chemical reactions.
  • the housing may be configured such that the housing space for housing the heat source is in a sealed state.
  • the housing may or may not have a sealing component for sealing the housing space.
  • the inner surface of the housing wall means the surface forming the accommodation space of the housing wall.
  • the inner surface of the housing wall is exposed to the gas within the housing space.
  • the inner surface of the housing wall is exposed to the liquid in the accommodation space.
  • the outer surface of the housing wall means the side opposite to the inner surface of the housing wall.
  • the outer surface of the housing wall may or may not be parallel to the inner surface of the housing wall.
  • the outer surface of the housing wall may or may not form the outer surface of the housing.
  • the housing wall may be composed of one independent component or may be composed of a plurality of components.
  • the housing wall may be composed of a plurality of parts that are connected in the refrigerant flow direction.
  • the outer surface and the inner surface of the housing wall may be formed of different components.
  • the inner surface of the housing wall portion to the coolant passage may be integrally molded.
  • the outer surface of the housing wall portion to the coolant passage may be integrally molded.
  • the material of the housing wall is not particularly limited.
  • the housing wall may be made of, for example, metal or synthetic resin.
  • a refrigerant passage means a space through which a refrigerant flows.
  • the refrigerant passage may have a shape that allows a single stroke from the inlet to the outlet of the refrigerant, or may have a branch point where the refrigerant flow branches and/or a confluence point where the refrigerant flows join.
  • the coolant passage may be tubular and formed between the tubular inner surface and the tubular outer peripheral surface of the housing wall portion. In this case, the refrigerant flows in the cylinder axis direction.
  • the housing wall may have multiple coolant passages or may have a single coolant passage. That is, the housing wall may have at least one coolant passage.
  • the refrigerant may be either liquid or gas.
  • the liquid refrigerant may be water or may be other than water.
  • the gas refrigerant may be air or may be other than air.
  • the housing-equipped device introduces the gas or liquid around the housing-equipped device as a refrigerant into the refrigerant passage, and the refrigerant after passing through the refrigerant passage is introduced into the surroundings of the housing-equipped device.
  • configured to discharge to it is meant that the coolant is not circulated in the enclosed device.
  • introduction of the refrigerant into the refrigerant passage includes airflow generated by the movement of the housing-equipped device, airflow generated by the flight propeller of the housing-equipped device, and At least one airflow generated by a fan included in the enclosure may be utilized.
  • the fan here is a blower having a smaller static pressure than a so-called compressor.
  • the fan may or may not be provided in the housing.
  • the fan may be a fan dedicated to introducing the refrigerant, or a fan used for purposes other than introducing the refrigerant. If the coolant is air, the enclosed device may not have a fan used to introduce the coolant.
  • the introduction of the refrigerant into the refrigerant passage is caused by the liquid flow caused by the movement of the housing-equipped device and the liquid flow caused by the pump of the housing-equipped device. At least one may be used. If the refrigerant is a liquid, the enclosure-equipped device may not have a pump used to introduce the refrigerant into the refrigerant passages. In the present invention and the embodiments, having no radiator for cooling the refrigerant after passing through the refrigerant passage means not having a device for cooling the refrigerant by heat exchange after passing through the refrigerant passage. means.
  • the coolant is air. If the housing-equipped device is a vehicle or an outboard motor that travels on water, the coolant may be air or water.
  • the enclosure-equipped device is an aircraft, at least one of the three air flows described above is used to introduce the coolant into the coolant passage.
  • the housing-equipped device is a vehicle, an industrial robot, or an outboard motor, and the coolant is air, the introduction of the coolant into the coolant passage includes the airflow generated by the movement of the housing-equipped device and the housing-equipped device. At least one of the airflows generated by the fan with the airflow is utilized.
  • the introduction of coolant into the coolant path will utilize the airflow generated by the fan included in the encased device.
  • the housing-equipped device is a vehicle or an outboard motor that travels on water and the coolant is water, at least one of the two liquid flows described above is used to introduce the coolant into the coolant passage.
  • the refrigerant flow direction is the direction in which the refrigerant flows.
  • the cross section crossing the coolant flow direction is also the cross section crossing the coolant passage.
  • the cross section is the cross section of the coolant passage.
  • the coolant passage is surrounded by the housing wall.
  • the cross-section that traverses the coolant flow direction may be a plane orthogonal or substantially orthogonal to the coolant flow direction. As long as it is not near a branch point or a confluence point, there may be only one direction of refrigerant flow defined for one cross-section of the refrigerant passage.
  • the coolant flow direction may be the direction of the central axis of the coolant passage. Depending on the use of the housing, the coolant flow direction may be switched to the opposite direction.
  • the maximum width of the refrigerant passage in a cross section is shorter than the length of the refrigerant passage in the direction of refrigerant flow means that the maximum width of the refrigerant passage in one cross section is shorter than the length of the refrigerant passage in the direction of refrigerant flow. means that The maximum width of the coolant passage in the cross section may be shorter than the length of the coolant passage in the coolant flow direction, regardless of the position of the cross section in the coolant flow direction. In the present invention and embodiments, the maximum width of the coolant passage in the cross section is the maximum length of a line segment that exists only in the coolant passage in the cross section. A line segment existing only in the coolant passage may overlap with the lattice structure portion.
  • the refrigerant passage may have a plurality of lengths in the refrigerant flow direction.
  • the maximum width of the refrigerant passage in the cross section is shorter than the length of the refrigerant flow direction of the refrigerant passage, the maximum width of the refrigerant passage in the cross section is It means shorter than the shortest length in the machine direction.
  • the coolant passage may have a flow direction changing portion where the coolant flow direction changes.
  • the fact that the direction of coolant flow changes at the flow direction changing portion means that the direction of coolant flow at the flow direction changing portion is not straight.
  • the change in the flow direction of the refrigerant at the flow direction changing portion may be a change such as a smooth turn or a change such as an angular turn.
  • the coolant passage may have a cross-sectional change portion in which the cross-sectional area changes.
  • the change in cross-sectional area in the cross-section changing portion means that the cross-sectional area in the cross-sectional changing portion is not constant.
  • the cross-sectional area of the cross-sectional change portion may change continuously or discontinuously.
  • the cross-sectional area of the cross-section changing portion may expand or contract in the coolant flow direction.
  • the coolant passage may have a flow direction change portion and a cross section change portion. In this case, at least a portion of the flow direction changing portion may also serve as at least a portion of the cross section changing portion.
  • the coolant passage may have separate flow direction change portions and cross section change portions. In the present invention and the embodiments, the coolant passage may have neither the flow direction change portion nor the cross section change portion.
  • the lattice structure of the present invention is included in the cooling structure of the present invention.
  • the cooling structure includes a lattice structure formed so as to be continuous with the housing wall forming the coolant passage
  • the cooling structure allows the heat generated by the heat source to flow through the coolant flowing through the coolant passage to the housing. It is configured to dissipate heat to the outside.
  • the lattice structure formed so as to be continuous with the housing wall forming the coolant passage may promote heat transfer from the inner surface of the housing wall to the coolant passage.
  • the lattice structure formed so as to be continuous with the outer surface of the housing wall may promote heat dissipation from the housing wall to the outside of the housing wall.
  • the lattice structure formed so as to be continuous with the inner surface of the housing wall may promote heat transfer from the housing space to the housing wall.
  • the material of the lattice structure is not particularly limited.
  • the lattice structure may be integrally molded.
  • the lattice structure may be made of, for example, metal or synthetic resin.
  • the lattice structure may be produced, for example, by additive manufacturing.
  • the lattice structure may be made by metal additive manufacturing.
  • the metal additive manufacturing method may be an additive manufacturing method involving a rapid melting, rapid cooling and solidification process using metallic materials. Specifically, for example, a three-dimensional layered manufacturing method, a thermal spraying method, a laser coating method, a build-up method, and the like.
  • the melting process of rapidly melting metallic materials such as metal powder with laser beams, electron beams, etc.
  • the solidification process of rapidly cooling and solidifying are repeatedly performed to create a modeled object. is formed.
  • At least a part of the lattice structure and the housing wall may be integrally formed by metal additive manufacturing.
  • the lattice structure When the lattice structure is not continuous with either the outer surface or the inner surface of the housing wall but is formed so as to be continuous with the housing wall forming the coolant passage, the lattice structure and the housing wall At least a portion may be integrally formed by metal additive manufacturing.
  • the lattice structure consists of a plurality of bar-shaped parts. Therefore, when the lattice structure is formed so as to be continuous with the housing wall forming the coolant passage, the coolant flowing through the coolant passage flows inside the lattice structure.
  • the lattice structure When the lattice structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall, the lattice structure has an edge in a direction orthogonal to the outer surface or the inner surface of the housing wall on which the lattice structure is provided. Fluid can enter and exit from the The fluid may be air, for example.
  • the rod-shaped portion that constitutes the lattice structure may be linear.
  • each rod-shaped portion means each of all the rod-shaped portions of the lattice structure.
  • the housing of the present invention may have multiple lattice structures.
  • a plurality of lattice structures may be provided in one coolant passage.
  • a plurality of lattice structures may be arranged side by side in the coolant flow direction in one coolant passage. Two lattice structure portions adjacent to each other in a direction crossing the coolant flow direction may be in contact with each other or may be arranged with a gap therebetween.
  • a plurality of lattice structures may be provided on the outer surface of the housing wall.
  • a plurality of lattice structures may be provided on the inner surface of the housing wall.
  • a lattice structure may be provided on each of the outer surface and the inner surface of the housing wall.
  • multiple lattice structures are not provided like fins. That is, a large number of lattice structures may be arranged on the same plane of the housing wall in a straight line at equal intervals, may be arranged radially on the same plane of the housing wall at equal intervals, or may be arranged on the same plane of the housing wall at equal intervals. are not arranged at equal intervals in the circumferential direction of this peripheral surface on the same peripheral surface.
  • the housing may have a lattice structure provided in the coolant passage and a lattice structure provided on the outer surface or the inner surface of the housing wall.
  • the lattice structure formed so as to be continuous with the housing wall forming the coolant passage may promote heat transfer from the housing wall to the coolant passage.
  • the lattice structure formed so as to be continuous with the outer surface of the housing wall may promote heat dissipation from the housing wall to the outside of the housing wall.
  • the lattice structure formed so as to be continuous with the inner surface of the housing wall may promote heat transfer from the housing space to the housing wall.
  • the specific surface area of the lattice structure may be the larger specific surface area in the housing.
  • the expression that the housing wall forming the coolant passage and the lattice structure are formed so as to be continuous means that at least a portion of the housing wall forming the coolant passage and the lattice structure is integrally formed, or the housing wall portion forming the refrigerant passage and the lattice structure portion are in contact with each other.
  • the lattice structure may be integrally molded with a portion of the housing wall and may be in contact with another portion of the housing wall.
  • the lattice structure may be in contact with the parts forming the inner surface of the housing wall and integrally molded with the parts forming the outer surface of the housing wall.
  • the housing wall forming the coolant passage and the lattice structure contact each other, for example, a part forming the inner surface of the housing wall, a part forming the outer surface of the housing wall, and the lattice structure. are formed, these may be combined to bring the housing wall portion and the lattice structure portion into contact with each other. Further, for example, after the housing wall and the lattice structure are formed, the lattice structure is inserted into the refrigerant passage of the housing wall, thereby bringing the housing wall forming the refrigerant passage into contact with the lattice structure.
  • the housing is preferably configured such that the relative position of the lattice structure with respect to the housing wall forming the coolant passage is fixed.
  • the length of the refrigerant passage in the refrigerant flow direction and the length of the lattice structure in the refrigerant flow direction are substantially the same, and members for restricting the movement of the lattice structure in the refrigerant flow direction are arranged at the inlet and outlet of the refrigerant passage.
  • a step that restricts the movement of the lattice structure in the coolant flow direction may be formed in the coolant passage.
  • the housing wall portion and the lattice structure portion may be connected by an adhesive, heat welding, or the like.
  • forming the outer surface or inner surface of the housing wall and the lattice structure so as to be continuous means that the outer surface or the inner surface of the housing wall and the lattice structure are integrally formed. Molded or otherwise means contact between the outer or inner surface of the housing wall and the lattice structure.
  • both the outer surface and the inner surface of the housing wall and the lattice structure may or may not be integrally molded. It doesn't have to be.
  • the outer surface or inner surface of the housing wall and the lattice structure are integrally formed, the entire housing wall and the lattice structure may be formed by one part.
  • a part of the housing wall and the lattice structure are formed by one part, and this part and the housing wall are formed. may be connected to another component that constitutes the A part forming at least a portion of the housing wall and the lattice structure may be connected when the outer surface or the inner surface of the housing wall and the lattice structure are in contact.
  • the housing is preferably configured such that the relative position of the lattice structure with respect to the housing wall is fixed when the lattice structure contacts the outer or inner surface of the housing wall.
  • a member that restricts movement of the lattice structure with respect to the housing wall may be arranged on the housing wall.
  • the lattice structure may be connected to the outer surface or the inner surface of the housing wall by adhesive, heat welding, or the like.
  • multiple Delaunay points or multiple generating points are randomly distributed in three dimensions.
  • Random distribution of a plurality of points means that the points are distributed without periodic regularity. For example, when a plurality of Delaunay points included in a portion of the lattice structure are arranged at regular intervals, the plurality of Delaunay points are not randomly distributed. Further, for example, when the lattice structure is viewed in a certain direction and all of the plurality of Delaunay points included in a portion of the lattice structure are arranged on a plurality of parallel straight lines, the plurality of Delaunay points are randomly distributed. not
  • a three-dimensional Delaunay diagram is a diagram obtained by Delaunay triangulation of a three-dimensional space based on a plurality of Delaunay points.
  • the Delaunay triangulation connects two Delaunay points with a line segment. This segment is called a Delaunay edge.
  • a Delaunay pyramid is a pyramid formed by six Delaunay sides. Since the plurality of Delaunay points are randomly distributed in the present invention, the shape and size of the plurality of Delaunay pyramids in the Delaunay diagram are irregular.
  • the Delaunay diagram has the geometric feature that it has no Delaunay points in the circumsphere of the Delaunay triangular pyramid.
  • a three-dimensional Voronoi diagram is a diagram obtained by performing Voronoi division of a three-dimensional space based on a plurality of generating points.
  • a Voronoi polyhedron is a polyhedron formed by a three-dimensional Voronoi tessellation.
  • a Voronoi boundary surface is a surface forming a Voronoi polyhedron and is a perpendicular bisector of a line segment connecting two generating points.
  • the three-dimensional Voronoi diagram includes a Voronoi polyhedron formed only by the Voronoi boundary surfaces and a Voronoi polyhedron formed by the Voronoi boundary surfaces and the end surfaces of the three-dimensional space to be divided.
  • Voronoi diagram has a geometric feature that a Voronoi polyhedron composed only of Voronoi boundary surfaces is a convex polyhedron.
  • the Delaunay lattice structure consists of a plurality of first rods forming a plurality of Delaunay sides.
  • a plurality of first rod-shaped portions forming a plurality of Delaunay sides means that each of the plurality of first rod-shaped portions forms at least part of a Delaunay side. At least one end of each first rod-shaped portion is connected to another first rod-shaped portion at the Delaunay point.
  • the Voronoi lattice structure consists of a plurality of first rod-shaped portions forming sides of a plurality of Voronoi polyhedra formed only by Voronoi interfaces.
  • a plurality of Voronoi polyhedrons formed only by Voronoi interfaces means a plurality of Voronoi polyhedrons respectively formed by a plurality of Voronoi interfaces.
  • the plurality of first rod-shaped portions forming the sides of the plurality of Voronoi polyhedrons formed only by Voronoi boundary surfaces means that each of the plurality of first rod-shaped portions is formed only by a plurality of Voronoi boundary surfaces. forming at least part of one side of one Voronoi polyhedron formed by At least one end of each first rod-shaped portion is connected to another first rod-shaped portion. The maximum number of other first rod-shaped parts connected to the end of one first rod-shaped part is three.
  • each first rod-shaped part means each of all the first rod-shaped parts of the Delaunay lattice structure or the Voronoi lattice structure.
  • the Delaunay lattice structure comprises two or more Delaunay triangular pyramids each having four Delaunay points, each of which has four Delaunay points formed by the connecting points of the first rod-shaped parts. formed to pass through
  • the Voronoi lattice structure is such that three mutually orthogonal line segments each pass through two or more Voronoi polyhedrons having only vertices formed by connecting points between the first rod-shaped portions. It is formed.
  • a Voronoi polyhedron having only vertices formed by connecting points between the first rod-shaped portions is a Voronoi polyhedron formed only by Voronoi boundary surfaces.
  • Three line segments orthogonal to each other are arbitrary line segments.
  • Three line segments orthogonal to each other are virtual line segments.
  • the cooling structure includes a lattice structure formed so as to be continuous with the housing wall forming the coolant passage, for example, two of the three line segments orthogonal to each other are included in one cross section.
  • a line segment included in the cross section is a line segment included in the cross section without intersecting the cross section.
  • a line segment included in the cross section is a line segment that exists entirely within the refrigerant passage.
  • the cooling structure includes a lattice structure formed so as to be continuous with the outer surface or the inner surface of the housing wall, for example, any one or two of the three line segments orthogonal to each other It may be parallel to the outer surface or the inner surface of the housing wall that is continuous with the lattice structure.
  • the first rod-shaped portion formed so as to be continuous with the housing wall portion means that the first rod-shaped portion and at least a portion of the housing wall portion are integrally molded, or , means that the first rod portion and the housing wall portion are in contact with each other.
  • the plurality of second rod-shaped portions when the lattice structure has a plurality of second rod-shaped portions, include second rod-shaped portions formed so as to be continuous with the housing wall portion. All of the plurality of second rod-shaped portions may be formed so as to be continuous with the housing wall portion.
  • the second rod-shaped portion formed so as to be continuous with the housing wall portion means that the second rod-shaped portion and at least a part of the housing wall portion are integrally molded, or that the second rod-shaped portion and the housing It means that the walls touch.
  • the plurality of second rods are directly connected to the ends of the first rods forming one Delaunay point or one vertex of the Voronoi polyhedron. Includes 2 rods. All of the plurality of second rod-shaped portions may be directly connected to ends of the plurality of first rod-shaped portions.
  • One Delaunay point or one vertex of the Voronoi polyhedron is formed by connecting points of a plurality of first rod-shaped parts. Therefore, when the second rod-shaped portion is directly connected to the ends of the first rod-shaped portions, the second rod-shaped portion is directly connected to the ends of the plurality of first rod-shaped portions.
  • the maximum length of the plurality of second rod-shaped portions may be less than or equal to the maximum length of the plurality of first rod-shaped portions.
  • the shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion means that the second rod-shaped portion among the plurality of first rod-shaped portions is connected.
  • the number of the first rod-shaped portions connected is plural, it means the shortest distance among the shortest distances between the ends of the plurality of first rod-shaped portions to which the second rod-shaped portions are connected and the housing wall portion.
  • the number of the first rod-shaped portion to which the second rod-shaped portion is connected among the plurality of first rod-shaped portions may be one.
  • a Voronoi boundary surface surrounded by a plurality of first rod-shaped portions means that a plurality of sides forming one Voronoi boundary surface are all formed of the first rod-shaped portions.
  • the two generating points positioned on both sides of the Voronoi boundary surface are two generating points such that the perpendicular bisector of the line segment connecting the two generating points is the Voronoi boundary surface. means a point.
  • the expression that the length of the lattice structure in the coolant flow direction is longer than the maximum width of the coolant passage in a cross section passing through the lattice structure means that the maximum width of the coolant passage in one cross section is equal to that of the lattice structure. It means that it is shorter than the length of the part in the refrigerant flow direction. Regardless of the position of the cross section in the coolant flow direction, the maximum width of the coolant passage in the cross section may be shorter than the length of the lattice structure in the coolant flow direction.
  • the phrase that the length of the lattice structure in the refrigerant flow direction is longer than the circumferential length of the refrigerant passage in a cross section passing through the lattice structure means that the circumferential length of the refrigerant passage in a certain cross section is equal to that of the lattice structure. It means that it is shorter than the length of the part in the refrigerant flow direction.
  • the circumferential length of the coolant passage in the cross section may be shorter than the length of the lattice structure in the coolant flow direction regardless of the position of the cross section in the coolant flow direction.
  • the circumferential length of the coolant passage in the cross section means the circumferential length of the outer circumferential surface of the refrigerant passage when the refrigerant passage has an outer circumferential surface and an inner circumferential surface. If the coolant passages have branch points and/or junctions, the lattice structure may also have branch points and/or junctions. If the lattice structure has branch points and/or confluences, the lattice structure may have a plurality of lengths in the coolant flow direction.
  • the fact that the length of the lattice structure in the coolant flow direction is longer than the maximum width or the circumferential length of the coolant passage in the cross section passing through the lattice structure means that the lattice structure is It means that the maximum length of the lattice structure in the coolant flow direction is longer than the maximum width or circumference of the coolant passage in the cross section passing through.
  • the term "lattice structure" means that a plurality of unit cells are connected so that the length of the lattice structure in the coolant flow direction is longer than the maximum width or circumferential length of the coolant passage in the cross section passing through the lattice structure.
  • a plurality of unit cells having a length in the refrigerant flow direction shorter than that of the lattice structure is arranged so that the length of the lattice structure in the refrigerant flow direction is longer than the maximum width or circumference of the refrigerant passage in a cross section passing through the lattice structure.
  • a plurality of unit cells may be connected in the coolant flow direction such that the length of the lattice structure in the coolant flow direction is longer than the maximum width or circumference of the coolant passage in the cross section passing through the lattice structure.
  • the lattice structure of the present invention has a portion of the housing wall, the lattice structure, and the housing wall in each direction of two mutually orthogonal line segments included in a first cross section that traverses the coolant flow direction. It may be formed so as to be continuous with another part.
  • the direction of the line segment included in the first cross section is not only parallel to the line segment included in the first cross section, but also the direction coaxial with this line segment.
  • the direction of a line segment included in the first cross-section is a linear direction included in the first cross-section without crossing the first cross-section.
  • the definition of the first cross section across the refrigerant flow direction is the same as the definition of the cross section described above.
  • a portion of the housing wall portion, the lattice structure portion, and another portion of the housing wall portion are formed so as to be continuous in each of the directions of two mutually orthogonal line segments included in the first cross section, A portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are formed so as to be continuous in each of directions of two line segments that are included in one first cross section and are orthogonal to each other. means that A portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are formed so as to be continuous in each of directions of two mutually orthogonal line segments included in each of the plurality of first cross sections.
  • a portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are formed so as to be continuous in each of the directions of the two line segments that are included in the first cross section and are orthogonal to each other.
  • a portion of the housing wall portion, the lattice structure portion, and another portion of the housing wall portion are formed so as to be continuous in the direction of the first line segment included in the first cross section explain.
  • a portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are aligned on a first straight line including the first line segment in the first cross section.
  • a portion of the housing wall and the rod-shaped portion of the lattice structure are formed so as to be continuous.
  • a portion of the housing wall portion and the rod-shaped portion of the lattice structure are formed so as to be continuous means that a portion of the housing wall portion and the rod-shaped portion of the lattice structure are formed integrally, or the housing wall portion is in contact with the rod-like portion of the lattice structure.
  • the second straight line may or may not be included in the first cross-section. In other words, the portion where the portion of the housing wall and the rod-like portion of the lattice structure are continuous may or may not be included in the first cross section.
  • a third straight line parallel to the first straight line another part of the housing wall and the rod-shaped portion of the lattice structure are formed so as to be continuous.
  • the meaning of the fact that the other portion of the housing wall and the rod-like portion of the lattice structure are formed to be continuous is the same as described above.
  • the third straight line may or may not be included in the first cross-section.
  • the portion where the other portion of the housing wall and the rod-like portion of the lattice structure are continuous may or may not be included in the first cross section.
  • the first cross section may be included in the first cross section.
  • the second straight line may be the same as or different from the first straight line.
  • the third straight line may be the same as or different from the first straight line.
  • the third straight line may be the same as or different from the second straight line.
  • the minimum or maximum width of the lattice structure portion or the coolant passage in the thickness direction of the housing wall portion is The dimensions may be as follows. At least one of the shortest distance from the inner surface of the housing wall to the coolant passage in the thickness direction of the housing wall and the longest distance from the outer surface of the housing wall to the coolant passage in the thickness direction of the housing wall is It may be smaller than the minimum width of the lattice structure or coolant passage in the thickness direction of the housing wall.
  • the shortest distance from the inner surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the minimum width of the lattice structure or the coolant passage in the thickness direction of the housing wall.
  • the shortest distance from the outer surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the minimum width of the lattice structure or the coolant passage in the thickness direction of the housing wall.
  • the longest distance from the inner surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the maximum width of the lattice structure or the coolant passage in the thickness direction of the housing wall. It can be bigger or the same.
  • the longest distance from the outer surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the maximum width of the lattice structure or the coolant passage in the thickness direction of the housing wall. It can be bigger or the same.
  • the thickness direction of the housing wall is the direction in which the outer surface and the inner surface of the housing wall are aligned. In other words, the thickness direction of the housing wall is the direction from the inner surface to the outer surface of the housing wall.
  • At least a portion of the refrigerant passage in the refrigerant flow direction is provided with a first passage portion provided with at least a portion of the lattice structure portion, and a lattice structure portion aligned in a direction intersecting the first passage portion with the refrigerant flow direction. and a second passage portion that is not closed.
  • the second passage portion and the first passage portion may be arranged in a direction orthogonal to the coolant flow direction. If the coolant passage has a first passage portion and a second passage portion, coolant is movable from the lattice structure to the second passage portion of the coolant passage and from the second passage portion of the coolant passage to the lattice structure. is.
  • a line segment included in the first passage portion is a line segment that exists wholly in the first passage portion.
  • two mutually orthogonal line segments included in the second cross section crossing the flow direction changing part each define four Delaunay points formed by connection points between the first rod-shaped parts. It may be formed through two or more Delaunay pyramids each having one.
  • each of two mutually orthogonal line segments included in the second cross section crossing the flow direction changing part has only vertexes formed by connecting points between the first rod-shaped parts. It may be formed through one or more Voronoi polyhedra.
  • the definition of the flow direction change section is as described above.
  • the definition of the second cross-section is the same as the definition of the cross-section described above.
  • Two mutually orthogonal line segments included in the second cross section passing through two or more Delaunay triangular pyramids or Voronoi polyhedrons means that two mutually orthogonal line segments included in one second cross section are , means passing through two or more Delaunay pyramids or Voronoi polyhedra.
  • the Delaunay lattice structure has two or more two or more Delaunay points, each of which is included in each of the plurality of second cross sections and has four Delaunay points formed by connection points between the first rod-shaped portions. It may be formed so as to pass through the Delaunay triangular pyramid.
  • the Voronoi lattice structure has two or more Voronoi polyhedrons, each of which includes two mutually orthogonal line segments included in each of the plurality of second cross sections and has only vertices formed by connecting points between the first rod-shaped portions. may be formed to pass through.
  • two mutually orthogonal line segments included in the third cross section crossing the cross-section changing portion each define four Delaunay points formed by connection points between the first rod-shaped portions. It may be formed through two or more Delaunay triangular pyramids.
  • two mutually orthogonal line segments included in a third cross section that passes through the cross-section changing part and traverses the coolant flow direction are vertexes formed by connecting points between the first rod-shaped parts. may be formed through more than one Voronoi polyhedron with only The definition of the cross-section changing portion is as described above.
  • the definition of the third cross-section is the same as the definition of the cross-section described above.
  • Two mutually orthogonal line segments included in the third cross section passing through two or more Delaunay triangular pyramids or Voronoi polyhedrons means that two mutually orthogonal line segments included in one third cross section are , means passing through two or more Delaunay pyramids or Voronoi polyhedra.
  • the Delaunay lattice structure has two or more two or more Delaunay points in which two mutually orthogonal line segments included in each of the plurality of third cross sections each have four Delaunay points formed by connection points between the first rod-shaped portions. It may be formed so as to pass through the Delaunay triangular pyramid.
  • the Voronoi lattice structure has two or more Voronoi polyhedrons, each of which includes two mutually orthogonal line segments included in each of the plurality of third cross sections and has only vertices formed by connecting points between the first rod-shaped portions. may be formed to pass through.
  • the housing cooling structure of the present invention has a lattice structure formed so as to be continuous with the outer surface or the inner surface of the housing wall
  • the lattice structure on the outer surface or the inner surface of the housing wall is Looking at the lattice structure in a direction orthogonal to the provided area, the length of any line segment within the lattice structure that is orthogonal to the longest line segment within the lattice structure is greater than the first width.
  • the first width is the maximum width in the thickness direction of the housing wall of the lattice structure.
  • the maximum width of the lattice structure in the thickness direction of the housing wall is the maximum length of a line segment that is on a straight line along the thickness direction of the housing wall and fits in the lattice structure.
  • the definition of the thickness direction of the housing wall portion is as described above. Viewing the lattice structure in a direction perpendicular to the area where the lattice structure is provided on the outer surface or inner surface of the housing wall, whichever fits in the lattice structure that is perpendicular to the longest line segment that fits in the lattice structure
  • the length of the line segment may be at least twice the first width.
  • the width of the lattice structure in the thickness direction of the housing wall may be as follows. good.
  • the maximum width of the lattice structure in the thickness direction of the housing wall may be greater than the minimum thickness of the housing wall.
  • the minimum width of the lattice structure in the thickness direction of the housing wall may be greater than the minimum thickness of the housing wall.
  • the definition of the thickness direction of the housing wall portion is as described above.
  • the thickness of the housing wall is the shortest distance between the outer surface and the inner surface of the housing wall.
  • the minimum thickness of the housing wall may be the thickness of the portion of the housing wall where the lattice structure is provided, or the thickness of the portion of the housing wall where the lattice structure is not provided.
  • At least one (one) of a plurality of options includes all conceivable combinations of the plurality of options.
  • At least one (one) of the multiple options may be any one of the multiple options, or may be all of the multiple options.
  • at least one of A, B and C may be A only, B only, C only, A and B, A and C There may be, it may be B and C, or it may be A, B and C.
  • a and/or B means that it can be A, it can be B, and it can be both A and B.
  • the invention may include a plurality of that element. good. Also, the invention may have only one of this component.
  • the housing-equipped device of the present invention it is possible to improve the cooling performance of the housing while suppressing an increase in the size of the housing-equipped device, or to improve the shape of the housing-equipped device while ensuring the cooling performance of the housing. design freedom can be improved.
  • FIGS. 1(a) to 1(h) are diagrams for explaining the housing provided apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a two-dimensional Delaunay diagram and also a two-dimensional Voronoi diagram.
  • 3(a) to 3(c) are diagrams schematically showing a part of the lattice structure part of the housing of the second embodiment of the present invention.
  • 4(a) to 4(e) are diagrams schematically showing a portion of the lattice structure of the housing of the third embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of part of the housing of the fifth embodiment of the present invention.
  • 6(a) and 6(c) are cross-sectional views of a portion of the housing of the sixth embodiment of the present invention.
  • FIG. 6(b) is a cross-sectional view taken along line AA in FIG. 6(a)
  • FIG. 6(d) is a cross-sectional view taken along line AA in FIG. 6(c).
  • FIG. 7(a) is a cross-sectional view of a portion of a housing according to a seventh embodiment of the present invention
  • FIG. 7(b) is a cross-sectional view taken along line BB of FIG. 7(a)
  • FIG. 7(c) is a cross-sectional view of a portion of the housing of the eighth embodiment of the present invention
  • FIG. 7(d) is a cross-sectional view taken along line CC of FIG. 7(c).
  • FIGS. 8(a) to 8(c) are sectional views of a housing according to a ninth embodiment of the present invention.
  • 9(a) is a perspective view of a part of the housing of FIGS. 8(a) to 8(c)
  • FIG. 9(b) is a housing of FIGS. 8(a) to 8(c).
  • 8(a) to 8(c) as viewed in the vertical direction of the paper surface.
  • 10A is a cross-sectional view of the housing of Modification 1 of the ninth embodiment
  • FIG. 10B is a cross-sectional view of the housing of Modification 2 of the ninth embodiment
  • FIG. (c) is a cross-sectional view of a housing of Modification 3 of the ninth embodiment.
  • FIG. 11(a) is a cross-sectional view of a housing according to a tenth embodiment of the present invention
  • FIG. 11(b) is a cross-sectional view taken along line DD of FIG. 11(a)
  • FIG. 11(c) is a cross-sectional view taken along line EE of FIG. 11(a).
  • FIG. 12(a) is a cross-sectional view of the housing of the eleventh embodiment of the present invention
  • FIG. 12(b) is a perspective view of the housing of the eleventh embodiment of the present invention.
  • 1(a) to 1(c) show three examples of the housing 1 of the first embodiment.
  • a housing 1 houses contents 2 including a heat source 3 .
  • 1(a) to 1(c) show cross sections of the housing 1 and the contents 2.
  • FIG. 1(a) to 1(c) the housing 1 is arranged inside the housing-equipped device 100, but at least a part of the outer surface of the housing 1 is located inside the housing-equipped device 100. It may be exposed to the outside.
  • the housing 1 and the contents 2 are not limited to those shown in FIGS. 1(a) to 1(c).
  • the housing 1 has a housing wall portion 5 forming a housing space 4 for housing a content 2 including a heat source 3 .
  • the housing 1 has a cooling structure in which heat generated by the heat source 3 is radiated to the outside of the housing 1 .
  • the cooling structure is formed to be continuous with the outer surface 6 or the inner surface 7 of the housing wall 5, or is not continuous with either the outer surface 6 or the inner surface 7 of the housing wall 5, and the coolant It includes a lattice structure portion 20 formed so as to be continuous with the housing wall portion 5 forming the coolant passage 10 through which the refrigerant flows.
  • the lattice structure 20 is not continuous with either the outer surface 6 or the inner surface 7 of the housing wall portion 5, but is continuous with the housing wall portion 5 forming the coolant passage 10 through which the coolant flows.
  • a coolant passage 10 is formed between an outer surface 6 and an inner surface 7 of the housing wall portion 5 .
  • the refrigerant passage 10 is formed such that the maximum width WP of the refrigerant passage 10 in a cross section across the refrigerant flow direction F is shorter than the length LP of the refrigerant passage 10 in the refrigerant flow direction F.
  • the coolant flow direction F is straight from one end to the other end of the coolant passage 10 .
  • the refrigerant passage 10 is not limited to such a shape.
  • FIG. 1(b) shows an example in which the lattice structure 20 is formed so as to be continuous with the outer surface 6 of the housing wall 5.
  • FIG. 1(c) shows an example in which the lattice structure portion 20 is formed so as to be continuous with the inner surface 7 of the housing wall portion 5.
  • the lattice structure 20 is provided on the flat outer surface 6 in the example of FIG. 1B, it may be provided on the circular outer surface 6 .
  • the lattice structure 20 has a semi-cylindrical shape and is provided on the circumferential inner surface 7, but it may be provided on the flat inner surface 7 as well.
  • the maximum width in the thickness direction of the housing wall portion 5 of the lattice structure portion 20 formed so as to be continuous with the outer surface 6 or the inner surface 7 of the housing wall portion 5 is defined as the width WL .
  • the longest of the plurality of line segments that fit in the lattice structure 20 Let the line segment be a line segment SL X.
  • the X direction is an arbitrary direction perpendicular to the region of the outer surface 6 or the inner surface 7 of the housing wall 5 where the lattice structure is provided.
  • FIG. 1(d) is a view of the lattice structure 20 of FIG. 1(c) viewed in the X direction shown in FIG. 1(c).
  • the line Let any line segment perpendicular to the segment SLx be a line segment SL1.
  • the lattice structure portion 20 formed so as to be continuous with the outer surface 6 or the inner surface 7 of the housing wall portion 5 is formed such that the length L1 of the line segment SL1 is longer than the width WL.
  • the length L1 of the line segment SL1 is also greater than the width WL in the lattice structure portion 20 of FIG. 1(b). is designed to be longer.
  • the lattice structure 20 includes a Delaunay lattice structure 30 or a Voronoi lattice structure 40 .
  • FIG. 1( e ) shows a portion of an example of the Delaunay lattice structure 30
  • FIG. 1( f ) shows a portion of an example of the Voronoi lattice structure 40 .
  • the Delaunay lattice structure 30 and the Voronoi lattice structure 40 are not limited to those shown in FIGS. 1(e) and 1(f).
  • the lattice structure portion 20 is composed of a plurality of rod-shaped portions 21 .
  • the Delaunay lattice structure 30 consists of a plurality of first rod-shaped parts 22 .
  • the plurality of first rod-shaped portions 22 forming the Delaunay lattice structure 30 form a plurality of Delaunay sides 32 in a three-dimensional Delaunay diagram based on a plurality of Delaunay points 31 randomly distributed in three dimensions.
  • FIG. 1(e) shows a part of the Delaunay lattice structure 30 existing in the rectangular parallelepiped space T1.
  • FIG. 1(g) shows all the Delaunay points 31 existing in the same space T1 as in FIG. .
  • the Delaunay triangular pyramid 33 is a triangular pyramid formed by six Delaunay sides 32 .
  • the Delaunay lattice structures 30 are two or more Delaunay triangular pyramids each having four Delaunay points 31 formed by connecting points between the first rod-shaped portions 22 at three line segments S1, S2, and S3 orthogonal to each other. 33 is formed. Line segments S1, S2, and S3 are not limited to those shown in FIG.
  • the Voronoi lattice structure part 40 consists of a plurality of first rod-shaped parts 22 .
  • the plurality of first rod-shaped portions 22 constituting the Voronoi lattice structure portion 40 are formed only by the Voronoi boundary surfaces 42 in a three-dimensional Voronoi diagram with a plurality of virtual points 41 randomly distributed in three dimensions as generating points. form the edges of the Voronoi polyhedron 43 of .
  • FIG. 1(f) shows a portion of the Voronoi lattice structure 40 existing in the rectangular parallelepiped space T2.
  • FIG. 1(h) shows all generating points 41 existing in the same space T2 as in FIG.
  • Voronoi polyhedron 43 among a plurality of Voronoi polyhedrons 43 existing in the space T2.
  • the Voronoi lattice structure part 40 is arranged such that three line segments S1, S2, and S3 perpendicular to each other pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped parts 22, respectively. It is formed.
  • the line segments S1, S2, and S3 are not limited to those shown in FIG. 1(h).
  • the housing-equipped device 100 can improve the cooling performance of the housing 1 while suppressing the enlargement of the housing-equipped device 100.
  • the degree of freedom in designing the shape of the housing-equipped device 100 can be improved while ensuring the cooling performance of the housing 1 .
  • the length of the lattice structure portion 20 in the refrigerant flow direction F is the same as the length LP of the refrigerant passage 10 in the refrigerant flow direction F, but the lattice structure portion 20 in the refrigerant flow direction
  • the length F may be shorter than the length LP in the coolant flow direction F of the coolant passage 10 .
  • the length of the lattice structure portion 20 in the coolant flow direction F may be longer than the maximum width WP of the coolant passage 10 in the cross section passing through the lattice structure portion 20 .
  • the length of the lattice structure portion 20 in the coolant flow direction F may be equal to or less than the maximum width WP of the coolant passage 10 in the cross section passing through the lattice structure portion 20 .
  • the length of the lattice structure portion 20 in the coolant flow direction F may be longer than the circumferential length of the coolant passage 10 in the cross section passing through the lattice structure portion 20 .
  • the length of the lattice structure portion 20 in the coolant flow direction F may be less than or equal to the circumferential length of the coolant passage 10 in the cross section passing through the lattice structure portion 20 .
  • the housing-equipped device 100 When the lattice structure 20 is provided in the coolant passage 10 , the housing-equipped device 100 introduces the gas or liquid around the housing-equipped device 100 as a coolant into the coolant passage 10 , and after passing through the coolant passage 10 . of refrigerant to the surroundings of the enclosure-equipped device 100 .
  • the housing-equipped device 100 does not have a radiator for cooling the coolant after passing through the coolant passage 10 .
  • the lattice structure portion 20 When the lattice structure portion 20 is provided in the coolant passage 10, the lattice structure portion 20 may be integrally formed with at least a portion of the housing wall portion 5 by metal additive manufacturing.
  • the lattice structure 20 is formed so as to be continuous with the outer surface 6 or the inner peripheral surface 7 of the housing wall 5 , the lattice structure 20 is metal-laminated with the outer surface 6 or the inner surface 7 of the housing wall 5 . It may be integrally formed by a molding method.
  • Fig. 2 shows a 2D Delaunay diagram DD and a 2D Voronoi diagram VD.
  • the Delaunay diagram DD and the Voronoi diagram VD have a dual relationship, and the generating point P of the Voronoi diagram VD becomes the Delaunay point P of the Delaunay diagram DD.
  • a two-dimensional Voronoi diagram VD a two-dimensional space R is divided into a plurality of Voronoi regions VR.
  • the plurality of Voronoi regions VR are divided into two dimensions: a Voronoi region VR surrounded only by the perpendicular bisector of a line segment connecting two generating points P, a perpendicular bisector of a line segment connecting two generating points P, and two-dimensional and a Voronoi region VR surrounded by the edge of the space R.
  • the perpendicular bisectors forming the Voronoi region VR are called Voronoi boundaries VE.
  • the three-dimensional Voronoi diagram of the first embodiment the three-dimensional space is divided into a plurality of Voronoi polyhedra.
  • the plurality of Voronoi polyhedrons are a Voronoi polyhedron 43 surrounded only by perpendicular bisectors of lines connecting two generating points 41, and a perpendicular bisector of lines connecting two generating points 41 and a three-dimensional space. and a Voronoi polyhedron bounded by the end faces of .
  • the Voronoi boundary surface 42 is a perpendicular bisector of a line segment connecting two generating points 41 .
  • a Delaunay edge DE in the two-dimensional Delaunay diagram DD is a line segment connecting two generating points P in two Voronoi regions VR adjacent to each other via one Voronoi region VR.
  • a Delaunay edge 32 in the three-dimensional Delaunay diagram of the first embodiment is a line connecting two generating points in two Voronoi polyhedrons adjacent to each other via one Voronoi boundary surface in a Voronoi diagram dual to the Delaunay diagram. minutes.
  • FIGS. 3(a)-3(c) are merely examples of the second embodiment.
  • 3(a) to 3(c) each schematically show a portion of the Delaunay lattice structure 30.
  • FIG. Illustration of the Voronoi lattice structure 40 of the second embodiment is omitted.
  • some of the plurality of first rod-shaped portions 22 are formed so as to be continuous with the housing wall portion 5 .
  • the end of the first rod-shaped portion 22 forming part of the Delaunay side 32 or part of the side of the Voronoi polyhedron 43 may be formed so as to be continuous with the housing wall portion 5 (see, for example, FIG. 3A). ). Also, the connection point between the first rod-shaped portions 22 may be formed so as to be continuous with the housing wall portion 5 (see, for example, FIGS. 3(b) and 3(c)). Also, the first rod-shaped portion 22 may be formed so as to be continuous with the housing wall portion 5 along the longitudinal direction of the first rod-shaped portion 22 (see, for example, FIG. 3(c)).
  • FIGS. 4(a)-4(e) are merely examples of the third embodiment.
  • 4(a) and 4(b) each schematically show a portion of the lattice structure 20 including the Delaunay lattice structure 30.
  • FIG. 4(c) to 4(e) each schematically show a portion of the lattice structure 20 including the Voronoi lattice structure 40.
  • the plurality of rod-shaped portions 21 forming the lattice structure portion 20 includes a plurality of second rod-shaped portions 23 in addition to the plurality of first rod-shaped portions 22 forming the Delaunay lattice structure portion 30 or the Voronoi lattice structure portion 40 .
  • the plurality of second rod-shaped portions 23 are connected to the end of the first rod-shaped portion 22 forming one Delaunay point 31 or one vertex of the Voronoi polyhedron 43, at least one second rod-shaped portion 23, and the housing wall portion 5.
  • the second rod-shaped portion 23 is the rod-shaped portion 21 that originally forms the Delaunay side 32 or the side of the Voronoi polyhedron 43, but cannot be specified from the lattice structure portion 20 whether it forms the Delaunay side 32 or the side of the Voronoi polyhedron 43. good too.
  • the lattice structure 20 is formed by continuously forming the end of the first rod-shaped portion 22 forming one Delaunay point 31 or one vertex of the Voronoi polyhedron 43, one second rod-shaped portion 23, and the housing wall portion 5. It may also have a first portion 24 (see, eg, FIGS. 4(a) and 4(c)).
  • the lattice structure portion 20 is formed by connecting the end of the first rod-shaped portion 22 forming one Delaunay point 31 or one vertex of the Voronoi polyhedron 43, the plurality of second rod-shaped portions 23, and the housing wall portion 5.
  • second portion 25 see, eg, FIGS. 4(b), 4(d), and 4(e)).
  • Lattice structure 20 may have both first portion 24 and second portion 25 .
  • the lattice structure 20 may have only the first portion 24 or only the second portion 25 out of the first portion 24 and the second portion 25 .
  • the second portion 25 includes one second rod-shaped portion 23 directly connected to the end of the first rod-shaped portion 22 forming one Delaunay point 31. , is directly connected to at least one second rod-like portion 23 formed continuously with the housing wall portion 5 (see, for example, FIG. 4(b)).
  • one second rod-shaped portion directly connected to the end of the first rod-shaped portion 22 forming one vertex of the Voronoi polyhedron 43. 23 may be directly connected to at least one second rod-like portion 23 formed continuously with the housing wall portion 5 (see, for example, FIG. 4(d)).
  • the lattice structure portion 20 includes the Voronoi lattice structure portion 40 in the second portion 25 , the ends of the first rod-shaped portions 22 forming one vertex of the Voronoi polyhedron 43 are directly connected to the plurality of second rod-shaped portions 23 . (see, for example, FIG. 4(e)).
  • the lattice structure 20 includes the Delaunay lattice structure 30
  • the shortest distance between the end of the first rod-shaped portion 22 to which the second rod-shaped portion 23 is connected and the housing wall portion 5 is less than the maximum length of 22.
  • the lattice structure portion 20 includes the Voronoi lattice structure portion 40
  • the shortest distance between the end of the first rod-shaped portion 22 to which the second rod-shaped portion 23 is connected and the housing wall portion 5 is only the Voronoi boundary surface 42. It is shorter than the maximum diagonal length of the plurality of Voronoi polyhedrons 43 to be formed.
  • the housing 1 included in the housing providing device 100 according to the fourth embodiment of the present invention will be described.
  • the fourth embodiment may or may not have the configurations of the second to third embodiments.
  • the fourth embodiment has the following configuration in addition to the configuration of the first embodiment.
  • the lattice structure 20 includes the Delaunay lattice structure 30
  • the maximum length of the plurality of first rod-shaped portions 22 is less than four times the average length of the plurality of first rod-shaped portions 22 .
  • the maximum length of the plurality of first rod-shaped portions 22 may be smaller than three times the average length of the plurality of first rod-shaped portions 22 .
  • the maximum value of the distance between the two generating points 41 located on both sides of the Voronoi boundary surface 42 surrounded by the plurality of first rod-shaped portions 22 is the same as the plurality of first It is smaller than four times the average value of the distances between the two generating points 41 positioned on both sides of the Voronoi boundary surface 42 surrounded by the bar-shaped portion 22 .
  • the maximum value of the distance between the two generating points 41 positioned on both sides of the Voronoi boundary surface 42 surrounded by the plurality of first rod-shaped portions 22 is on both sides of the Voronoi boundary surface 42 surrounded by the plurality of first rod-shaped portions 22 It may be smaller than three times the average value of the distances between the two generating points 41 located. In the Voronoi lattice structure 40 , the maximum length of the plurality of first rod-shaped portions 22 is less than five times the average length of the plurality of first rod-shaped portions 22 .
  • the housing 1 included in the housing providing device 100 according to the fifth embodiment of the present invention will be described with reference to FIG.
  • the fifth embodiment has the configuration of the first embodiment.
  • the fifth embodiment may or may not have the configurations of the second to fourth embodiments.
  • FIG. 5 is merely an example of the fifth embodiment.
  • the housing 1 of the fifth embodiment has a lattice structure 20 provided in the coolant passage 10 .
  • Two line segments that are included in the first cross section that crosses the coolant flow direction F and that are perpendicular to each other are set to line segments S4 and S5.
  • a first transverse plane passes through the Delaunay lattice structure 30 or the Voronoi lattice structure 40 .
  • FIG. 5 shows the first cross-section.
  • the Delaunay lattice structure 30 is formed so that two line segments S4 and S5 each pass through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rods 22. It is formed.
  • the Voronoi lattice structure part 40 is formed such that two line segments S4 and S5 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped parts 22 .
  • the lattice structure 20 forms a portion of the housing wall 5 and the lattice in each of the directions of the two line segments S4 and S5.
  • the structural portion 20 and another part of the housing wall portion 5 are formed so as to be continuous.
  • the two line segments S4 and S5 are parallel to the edge of the coolant passage 10, respectively.
  • the shape of the coolant passage 10 in the first cross section and the directions and positions of the two line segments S4 and S5 are not limited to those shown in FIG.
  • the line segments S4 and S5 may be the same as or different from any two of the three line segments S1, S2 and S3 in the first embodiment.
  • the housing 1 provided in the housing providing device 100 of the sixth embodiment of the present invention will be described with reference to FIGS. 6(a) to 6(d).
  • the sixth embodiment has the configuration of the first embodiment.
  • the sixth embodiment may or may not have the configurations of the second to fifth embodiments.
  • 6(a) and 6(b) show one example of the sixth embodiment
  • FIGS. 6(c) and 6(d) show another example of the sixth embodiment.
  • the housing 1 of the sixth embodiment has a lattice structure 20 provided in the refrigerant passage 10 .
  • 6(a) and 6(c) show cross sections along the coolant flow direction F, respectively.
  • FIGS. 6(b) and 6(d) show cross sections taken along line AA shown in FIGS.
  • At least part of the refrigerant passage 10 in the refrigerant flow direction F has a first passage portion 11 provided with at least a portion of the lattice structure 20 and a second passage portion 12 not provided with the lattice structure 20. .
  • the second passage portion 12 and the first passage portion 11 are arranged in a direction crossing the refrigerant flow direction F.
  • At least part of the Delaunay lattice structure 30 or the Voronoi lattice structure 40 is provided in the first passage portion 11 .
  • Three line segments included in the first passage portion 11 and orthogonal to each other are set to line segments S6, S7, and S8.
  • the Delaunay lattice structure 30 has three line segments S6, S7, and S8 each passing through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rods 22. is formed as
  • the Voronoi lattice structure portion 40 is formed such that three line segments S6, S7, and S8 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped portions 22. . 6(a) to 6(d), the three line segments S6, S7, and S8 are parallel to the edge of the coolant passage 10, respectively.
  • the shape of the refrigerant passage 10 and the directions and positions of the three line segments S6, S7 and S8 are not limited to those shown in FIGS. 6(a) to 6(d).
  • the housing 1 included in the housing providing device 100 of the seventh embodiment of the present invention will be described with reference to FIGS. 7(a) and 7(b).
  • the seventh embodiment has the configuration of the first embodiment.
  • the seventh embodiment may or may not have the configurations of the second to sixth embodiments.
  • FIGS. 7(a) and 7(b) are merely examples of the seventh embodiment.
  • the housing 1 of the seventh embodiment has a lattice structure 20 provided in the coolant passage 10 .
  • the refrigerant passage 10 has a flow direction changing portion 13 in which the refrigerant flow direction F changes. At least a portion of the lattice structure portion 20 is provided on at least a portion of the flow direction changing portion 13 .
  • FIG. 7(a) shows a cross section along the coolant flow direction F
  • FIG. 7(b) shows a cross section taken along line BB shown in FIG. 7(a).
  • FIG. 7(b) shows the second cross section.
  • the Delaunay lattice structure 30 is formed so that two line segments S9 and S10 each pass through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rod-shaped portions 22. It is formed.
  • the Voronoi lattice structure portion 40 is formed such that two line segments S9 and S10 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped portions 22 .
  • the shape of the flow direction changing portion 13 is not limited to the shape shown in FIGS. 7(a) and 7(b). Also, in FIG. 7A, the two line segments S9 and S10 are parallel to the edge of the coolant passage 10, respectively. However, the shape of the refrigerant passage 10 in the second cross section and the directions and positions of the two line segments S9 and S10 are not limited to those shown in FIG. 7(a).
  • the housing 1 included in the housing providing device 100 of the eighth embodiment of the present invention will be described with reference to FIGS. 7(c) and 7(d).
  • the eighth embodiment has the configuration of the first embodiment.
  • the eighth embodiment may or may not have the configurations of the second to seventh embodiments.
  • FIGS. 7(c) and 7(d) are merely examples of the eighth embodiment.
  • the housing 1 of the eighth embodiment has a lattice structure 20 provided in the coolant passage 10 .
  • the coolant passage 10 has a cross-sectional change portion 14 in which the cross-sectional area of the coolant passage 10 changes. At least a portion of the lattice structure portion 20 is provided on at least a portion of the cross-section changing portion 14 .
  • FIG. 7(c) shows a cross section along the coolant flow direction F
  • FIG. 7(d) shows a cross section taken along line CC shown in FIG. 7(c).
  • FIG. 7(d) shows a third cross section.
  • the Delaunay lattice structure 30 has two line segments S11 and S12 each passing through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rod-shaped portions 22.
  • the Voronoi lattice structure part 40 is formed such that two line segments S11 and S12 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped parts 22 .
  • the shape of the cross-section changing portion 14 is not limited to the shapes shown in FIGS. 7(c) and 7(d).
  • the two line segments S11 and S12 are parallel to the edge of the coolant passage 10, respectively.
  • the shape of the coolant passage 10 in the third cross section and the directions and positions of the two line segments S11 and S12 are not limited to those shown in FIG. 7(c).
  • a housing 101 included in the housing providing apparatus 100 of the ninth embodiment of the present invention will be described with reference to FIGS. 8(a) to 8(c), 9(a), and 9(b).
  • a housing 101 of the ninth embodiment has the configuration of the housing 1 of the first embodiment.
  • the housing 101 of the ninth embodiment may have the configuration of the housing 1 of any one of the second to eighth embodiments.
  • a housing 101 of the ninth embodiment accommodates a rotating electric machine 190 .
  • the rotating electric machine 190 may be a motor, a generator, or may have the functions of both a motor and a generator.
  • the rotating electrical machine 190 may be an axial gap type rotating electrical machine 190 as shown in FIG.
  • the rotary electric machine 190 may be an outer rotor type radial gap type rotary electric machine 190 as shown in c).
  • the rotating electric machine 190 has a shaft 191 , a rotor 192 and a stator 193 .
  • the shaft 191 is rotatably supported by the housing 101 via bearings.
  • Rotor 192 is fixed to shaft 191 and rotates integrally with shaft 191 .
  • the rotor 192 has magnets 192a.
  • the stator 193 has a stator yoke 193a and a winding portion 193b. As shown in FIG.
  • a rotor 192 and a stator 193 face each other in a direction parallel to the central axis of the shaft 191 .
  • a rotor 192 is arranged radially inside a stator 193 in an inner rotor type radial gap type rotating electric machine 190 .
  • the magnets 192 a of the rotor 192 are arranged radially outward of the stator 193 in an outer rotor type radial gap type rotating electric machine 190 .
  • the housing 101 has a housing wall portion 105 that forms a housing space 104 that houses the rotating electrical machine 190.
  • the housing wall portion 105 has a substantially plate-shaped lower wall portion 151 , a cylindrical side wall portion 152 , and a substantially plate-shaped upper wall portion 153 .
  • Side wall portion 152 connects upper wall portion 153 and lower wall portion 151 .
  • the side wall portion 152 is formed integrally with the upper wall portion 153 .
  • the side wall portion 152 may be integrally molded with the lower wall portion 151 .
  • the lower wall portion 151 is located below the upper wall portion 153 in the vertical direction of the paper surface, it is not always located below the upper wall portion 153 when the housing 101 is used.
  • the lower wall portion 151 may be positioned above the upper wall portion 153, and the lower wall portion 151 and the upper wall portion 153 may be horizontally aligned.
  • Side wall portion 152 is positioned radially outward of rotating electric machine 190 .
  • the stator 193 is fixed to the lower wall portion 151 and is in contact with the lower wall portion 151 or in contact with a member (not shown) that contacts the lower wall portion 151 .
  • FIG. 8B the stator 193 is fixed to the side wall portion 152 and is in contact with the side wall portion 152 or in contact with a member (not shown) that contacts the side wall portion 152 .
  • FIG. 8A the stator 193 is fixed to the lower wall portion 151 and is in contact with the lower wall portion 151 or in contact with a member (not shown) that contacts the lower wall portion 151 .
  • the stator 193 is fixed to the side wall portion 152 and is in contact with the side wall portion 152 or in contact with a member (not shown) that
  • the housing wall portion 105 has an inner cylindrical portion 154 connected to the lower wall portion 151 and positioned radially inside the stator 193 .
  • the stator 193 is fixed to the inner tubular portion 154 and is in contact with the inner tubular portion 154 or in contact with a member (not shown) that contacts the inner tubular portion 154 .
  • the housing wall portion 105 forms a plurality of refrigerant passages 110 .
  • the refrigerant flowing through each refrigerant passage 110 may be gas (for example, air) or liquid.
  • a fan (not shown) may be provided on the shaft 191 for sending the air outside the housing 101 to the inlet of the coolant passage 110 .
  • the inlet and outlet of each coolant passage 110 are formed on the outer surface 106 of the housing wall portion 105 .
  • a plurality of coolant passages 110 are formed at intervals in the circumferential direction around the central axis of shaft 191 .
  • Each coolant passage 110 is formed in an upper wall portion 153 , a side wall portion 152 and a lower wall portion 151 .
  • Each refrigerant passage 110 is composed of a refrigerant passage lower portion 110a, a refrigerant passage intermediate portion 110b, and a refrigerant passage upper portion 110c.
  • the refrigerant passage lower portion 110 a is a portion of the refrigerant passage 110 formed in the lower wall portion 151 .
  • the refrigerant passage intermediate portion 110 b is a portion of the refrigerant passage 110 formed in the side wall portion 152 .
  • the coolant passage upper portion 110 c is a portion of the coolant passage 110 formed in the upper wall portion 153 .
  • Each coolant passage 110 is provided with two lattice structure portions 20 .
  • One of the two lattice structure portions 20 is provided on the lower wall portion 151 and the other lattice structure portion 20 is provided on the side wall portion 152 and the upper wall portion 153 .
  • the two lattice structure portions 20 are provided throughout the coolant flow direction F of the coolant passage 110 .
  • the two lattice structure portions 20 may be provided only in a portion of the coolant passage 110 in the coolant flow direction F.
  • Each lattice structure 20 is integrally molded.
  • the coolant passage 110 has a bent portion at a corner of the housing 101 or the like, where the coolant flow direction F is bent.
  • the bent portion is included in the flow direction change portion 13 .
  • the coolant passage 110 has bent portions at both ends of the coolant passage lower portion 110a and both ends of the coolant passage upper portion 110c.
  • the coolant passage 110 has a tapered portion in a portion including the inlet in which the area of the cross section continuously decreases toward the downstream in the coolant flow direction F. As shown in FIG. This makes it easier for the coolant to flow into the coolant passage 110 from the inlet of the coolant passage 110 .
  • the tapered portion is included in the cross-section changing portion 14 of the eighth embodiment.
  • 9A is a perspective view of the side wall portion 152.
  • the coolant flow direction F of the coolant passage intermediate portion 110b is spiral. That is, the coolant flow direction F of the coolant passage intermediate portion 110b is inclined in the circumferential direction with respect to the direction of the central axis of the shaft 191 . Since the length of the refrigerant passage middle portion 110b in the refrigerant flow direction F is longer than when the refrigerant passage middle portion 110b is parallel to the central axis of the shaft 191, the cooling performance can be improved. Since the refrigerant passage intermediate portion 110 b is formed in a spiral shape on the cylindrical side wall portion 152 , the refrigerant flow direction F of the refrigerant passage intermediate portion 110 b gently curves along the side wall portion 152 .
  • the refrigerant passage intermediate portion 110 b is included in the flow direction changing portion 13 .
  • 9B is a view of the upper wall portion 153 viewed in the direction of the central axis of the shaft 191, and a view of the lower wall portion 151 viewed in the direction of the central axis of the shaft 191.
  • FIG. 9(b) the refrigerant passage upper portion 110c and the refrigerant passage lower portion 110a have curved portions in which the refrigerant flow direction F is substantially radial.
  • the refrigerant passage upper portion 110c and the refrigerant passage lower portion 110a are longer in the refrigerant flow direction F. , can improve the cooling performance.
  • a curved portion in which the refrigerant flow direction F is substantially radial when viewed in the direction of the central axis of the shaft 191 is included in the flow direction changing portion 13 .
  • the coolant passage lower portion 110a in FIG. 8A is a portion of the housing wall portion 105 in contact with the stator 193, a portion in contact with a member (not shown) in contact with the stator 193, or a minute gap. It is formed so as to pass through a position close to the part facing the stator 193 with an opening.
  • the upper part 110c of the coolant passage in FIG. 8(b) is a portion of the housing wall portion 105 in contact with the stator 193, a portion in contact with a member (not shown) in contact with the stator 193, or a minute gap. It is formed so as to pass through a position close to the part facing the stator 193 with an opening.
  • the refrigerant passage lower portion 110a among the refrigerant passage lower portion 110a, the refrigerant passage intermediate portion 110b, and the refrigerant passage upper portion 110c is in contact with the stator 193 in the housing wall portion 105 or It is closest to the point where a member (not shown) that contacts the stator 193 is in contact. Therefore, the coolant flowing through the coolant passage 110 in FIGS. 8A to 8C easily receives heat generated by the stator 193 and the rotor 192 . Since the lattice structure 20 is provided in the coolant passage 110 having high cooling performance in this manner, the cooling performance of the housing 101 can be further improved.
  • the refrigerant passage lower portion 110a does not have to have a bent portion. That is, the refrigerant flow direction F of the entire refrigerant passage lower portion 110a may be the same as the refrigerant flow direction F of the refrigerant passage intermediate portion 110b.
  • the coolant passage upper portion 110c may not have a bent portion. That is, the refrigerant flow direction F of the entire refrigerant passage upper portion 110c may be the same as the refrigerant flow direction F of the refrigerant passage intermediate portion 110b.
  • the refrigerant flow direction F of the refrigerant passage intermediate portion 110b may be linear parallel to the direction of the center axis of the shaft 191 .
  • the side wall portion 152 may have a square tubular shape. In this case, the coolant flow direction F of the coolant passage intermediate portion 110 b may be a straight line that is inclined with respect to the direction of the central axis of the shaft 191 .
  • FIG. 10(a) shows an example in which the housing 101 of FIG. 8(a) is changed
  • the housing 101 of FIGS. 8(b) and 8(c) may be changed.
  • the housing 101 shown in FIG. 10A will be described below.
  • a housing wall portion 105 of the housing 101 forms a plurality of first refrigerant passages 110A1 and a plurality of second refrigerant passages 110A2.
  • the refrigerant passage 110A is a general term for the first refrigerant passage 110A1 and the second refrigerant passage 110A2.
  • each coolant passage 110A is formed on the outer surface 106 of the housing wall portion 105 .
  • the first refrigerant passage 110A1 differs from the refrigerant passage 110 of the ninth embodiment in the shape of the refrigerant passage lower portion 110a, and otherwise has the same configuration as the refrigerant passage 110 of the ninth embodiment.
  • the second coolant passage 110A2 is formed only in the lower wall portion 151. As shown in FIG.
  • the second refrigerant passage 110A2 has the same shape as most of the refrigerant passage lower portion 110a of the refrigerant passage 110 of the ninth embodiment, and differs from the refrigerant passage lower portion 110a in the shape near the outlet.
  • the first coolant passages 110A1 and the second coolant passages 110A2 are alternately arranged in the circumferential direction around the central axis of the shaft 191.
  • Two lattice structure portions 20 are provided in each first coolant passage 110A1.
  • One of the two lattice structure portions 20 is provided on the lower wall portion 151 and the other lattice structure portion 20 is provided on the side wall portion 152 and the upper wall portion 153 .
  • the two lattice structure portions 20 are provided over the entire area of the first coolant passage 110A1 in the coolant flow direction F.
  • the two lattice structure portions 20 may be provided only partially in the coolant flow direction F of the first coolant passage 110A1.
  • Each lattice structure 20 is integrally molded.
  • One lattice structure portion 20 is provided in each second coolant passage 110A2.
  • the lattice structure portion 20 is provided over the entire area of the second refrigerant passage 110A2 in the refrigerant flow direction F. As shown in FIG.
  • the lattice structure portion 20 may be provided only in a portion of the second coolant passage 110A2 in the coolant flow direction F.
  • the lattice structure 20 is integrally molded.
  • Modification 1 of the ninth embodiment although the locations where the refrigerant passages are formed are substantially the same as in the ninth embodiment, the length of each refrigerant passage in the refrigerant flow direction F can be made shorter than in the ninth embodiment. , can improve the cooling performance. Since the lattice structure 20 is provided in the coolant passage 110A having high cooling performance in this manner, the cooling performance of the housing 101 can be further improved.
  • the housing 101 may have an internal circulation refrigerant passage 110B for circulating the air in the housing space 104.
  • FIG. FIG. 10(b) shows an example in which the housing 101 of FIG. 8(a) is changed, but the housing 101 of FIGS. 8(b) and 8(c) may be changed.
  • a fan (not shown) may be provided on shaft 191 or rotor 192 for sending the air (refrigerant) in housing space 104 to internal circulation refrigerant passage 110B.
  • the housing 101 shown in FIG. 10B will be described below.
  • the housing wall portion 105 of the housing 101 has a plurality of internal circulation refrigerant passages 110B in addition to the plurality of first refrigerant passages 110A1 and the plurality of second refrigerant passages 110A2 of Modification 1 of the ninth embodiment.
  • the internal circulation refrigerant passage 110B is not included in the refrigerant passage of the present invention.
  • the inlet and outlet of each internal circulation coolant passage 110B are formed on the inner surface 107 of the housing wall portion 105 .
  • the plurality of internal circulation refrigerant passages 110B are formed at intervals in the circumferential direction around the central axis of the shaft 191 .
  • Each internal circulation refrigerant passage 110B is formed in the upper wall portion 153 and the side wall portion 152 .
  • the internal circulation refrigerant passages 110B and the first refrigerant passages 110A1 are alternately arranged in the circumferential direction around the central axis of the shaft 191. As shown in FIG. One lattice structure portion 20 is provided in each internal circulation refrigerant passage 110B. The lattice structure 20 is provided over the entire area in the refrigerant flow direction F of the internal circulation refrigerant passage 110B. The lattice structure portion 20 may be provided only in a portion of the internal circulation refrigerant passage 110B in the refrigerant flow direction F. The lattice structure 20 is integrally molded.
  • the housing 101 of Modification 2 of the ninth embodiment has the internal circulation refrigerant passage 110B for circulating the air in the housing space 104, the cooling performance can be improved. Since the lattice structure 20 is provided in the internal circulation coolant passage 110B having high cooling performance in this way, the cooling performance of the housing 101 can be further improved.
  • the refrigerant passage combined with the internal circulation refrigerant passage 110B is not limited to the first refrigerant passage 110A1 and the second refrigerant passage 110A2.
  • the coolant passage 110 of the ninth embodiment may be provided instead of the first coolant passage 110A1.
  • the refrigerant passage 110 of the ninth embodiment may be provided instead of the second refrigerant passage 110A2.
  • the refrigerant passage 110 of the ninth embodiment may be provided instead of the first refrigerant passage 110A1 and the second refrigerant passage 110A2.
  • FIG. 10(c) shows an example in which the housing 101 of FIG. 8(a) is changed, but the housing 101 of FIGS. 8(b) and 8(c) may be changed.
  • the lattice structure 20 is provided only on the lower wall 151 in FIG.
  • the housing 101 does not have the coolant passage 110 in FIG. 10C, it may have the coolant passage 110 .
  • FIG. 11(b) is a cross-sectional view taken along line DD shown in FIG. 11(a).
  • FIG. 11(c) is a cross-sectional view taken along line EE shown in FIG. 11(a).
  • a housing 201 of the tenth embodiment has the configuration of the housing 1 of the first embodiment.
  • the housing 201 of the tenth embodiment may have the configuration of the housing 1 of any one of the second to eighth embodiments. As shown in FIGS.
  • the housing 201 of the tenth embodiment accommodates a content 290 including a plurality of rechargeable power storage devices 291 .
  • the power storage device 291 may be a cell or an assembled battery composed of a plurality of cells.
  • the cells may be cylindrical, rectangular, or laminated. Heat is generated in the power storage device 291 when the power storage device 291 is discharged or charged.
  • the power storage device 291 corresponds to the heat source of the present invention.
  • the content 290 includes a heat dissipation member 292 with high thermal conductivity. Heat dissipation member 292 is arranged so as to be in contact with power storage device 291 .
  • Contents 290 may include a battery management system (BMS: battery management system) that manages charging and discharging of power storage device 291 .
  • BMS battery management system
  • the housing 201 has a housing wall portion 205 that forms a housing space 204 that houses a content 290 including a plurality of power storage devices 291 .
  • the housing 201 has a substantially rectangular parallelepiped shape.
  • the housing wall portion 205 has a substantially plate-shaped lower wall portion 251 , a rectangular tubular side wall portion 252 , a substantially plate-shaped upper wall portion 253 , and a plurality of partition wall portions 254 .
  • Side wall portion 252 connects upper wall portion 253 and lower wall portion 251 .
  • the side wall portion 252 is formed integrally with the lower wall portion 251 .
  • the side wall portion 252 may be integrally formed with the upper wall portion 253 .
  • the lower wall portion 251 is located below the upper wall portion 253 in the vertical direction of the paper surface of FIG. In a situation where the housing 201 is used, the lower wall portion 251 may be positioned above the upper wall portion 253, and the lower wall portion 251 and the upper wall portion 253 may be horizontally aligned.
  • a plurality of partition wall portions 254 are connected to the lower wall portion 251 .
  • the plurality of partition wall portions 254 may be connected to the upper wall portion 253 without being connected to the lower wall portion 251 .
  • a plurality of partition wall portions 254 may be connected to both the lower wall portion 251 and the upper wall portion 253 .
  • Each partition wall portion 254 is arranged between a power storage device 291 and an adjacent power storage device 291 .
  • a plurality of heat dissipation members 292 are in contact with the housing wall portion 205 .
  • Each heat radiating member 292 contacts the lower wall portion 251 .
  • each heat dissipation member 292 contacts at least one of the partition wall portion 254 and the side wall portion 252 .
  • the portion of the heat radiating member 292 that contacts the housing wall portion 205 is not limited to this.
  • the heat dissipation member 292 may function as a shock absorber.
  • the housing wall portion 205 forms a plurality of refrigerant passages 210 .
  • the refrigerant flowing through each refrigerant passage 210 may be gas (for example, air) or liquid.
  • the inlet and outlet of each coolant passage 210 are formed in the outer surface 206 of the housing wall portion 205 .
  • the plurality of coolant passages 210 are formed at intervals in the vertical direction of the paper surface of FIG. 11(a).
  • the plurality of refrigerant passages 210 includes a plurality of first refrigerant passages 210A and second refrigerant passages 210B.
  • Each first coolant passage 210 ⁇ /b>A is formed in a side wall portion 252 and a plurality of partition wall portions 254 .
  • the second coolant passage 210B is formed in the lower wall portion 251 .
  • Each coolant passage 210 is provided with one lattice structure 20 .
  • the lattice structure portion 20 is provided over the entire area of the refrigerant passage 210 in the refrigerant flow direction F. As shown in FIG.
  • the lattice structure portion 20 may be provided only in a portion of the coolant passage 210 in the coolant flow direction F.
  • the lattice structure 20 is integrally molded.
  • the first refrigerant passage 210A and the second refrigerant passage 210B have bent portions at the corners of the housing 201 or the like where the refrigerant flow direction F bends.
  • the bent portions of the first refrigerant passage 210A and the second refrigerant passage 210B are included in the flow direction changing portion 13 .
  • the second refrigerant passage 210B has a shape that can be drawn with a single stroke from the inlet to the outlet.
  • the first refrigerant passage 210A has a branch point where the refrigerant flow branches and a confluence point where the refrigerant flow joins.
  • the branching portion including the branching point and the branching portion including the merging point of the first refrigerant passage 210A serve as both the flow direction changing portion 13 and the cross section changing portion 14 .
  • the first refrigerant passage 210A and the second refrigerant passage 210B have tapered portions in which the area of the cross section continuously decreases toward the downstream in the refrigerant flow direction F in the portions including the inlets.
  • the tapered portion is included in the cross-section changing portion 14 .
  • a plurality of first coolant passages 210A are formed to surround a plurality of power storage devices 291 . Therefore, the coolant flowing through the first coolant passage 210A easily receives the heat generated in the power storage device 291 .
  • the second refrigerant passage 210B is positioned directly below the power storage device 291 in the vertical direction of the paper surface of FIG. 11(a). Therefore, the coolant flowing through the second coolant passage 210 ⁇ /b>B easily receives the heat generated in the power storage device 291 . Since the lattice structure portion 20 is provided in the coolant passages 210A and 210B having high cooling performance in this manner, the cooling performance of the housing 201 can be further improved. Note that the housing wall portion 205 having the second refrigerant passage 210B may not have the plurality of first refrigerant passages 210A. The housing wall portion 205 having the plurality of first coolant passages 210A may not have the second coolant passages 210B.
  • a housing 301 included in the housing providing apparatus 100 according to the eleventh embodiment of the present invention will be described with reference to FIGS. 12(a) and 12(b).
  • a housing 301 of the eleventh embodiment has the configuration of the housing 1 of the first embodiment.
  • the housing 301 of the eleventh embodiment may have the configuration of the housing 1 of any one of the second to eighth embodiments.
  • a housing 301 of the eleventh embodiment accommodates an electronic device 390 .
  • the electronic device 390 has a circuit board 391, electronic components 392 mounted on the surface of the circuit board 391, and a heat dissipation member 393 with high thermal conductivity.
  • Circuit board 391 and electronic component 392 correspond to the heat source of the present invention.
  • the heat dissipation member 393 is in contact with the back surface of the circuit board 391 .
  • the housing 301 has a housing wall portion 305 that forms a housing space 304 that houses the electronic device 390 .
  • the housing 301 has a substantially rectangular parallelepiped shape.
  • the housing wall portion 305 has a substantially plate-shaped lower wall portion 351 , a rectangular tubular side wall portion 352 , and a substantially plate-shaped upper wall portion 353 .
  • the side wall portion 352 connects the upper wall portion 353 and the lower wall portion 351 .
  • the side wall portion 352 is formed integrally with the upper wall portion 353 .
  • the side wall portion 352 may be integrally formed with the lower wall portion 351 .
  • the lower wall portion 351 may be positioned above the upper wall portion 353, and the lower wall portion 351 and the upper wall portion 353 may be horizontally aligned.
  • the circuit board 391 is fixed to the lower wall portion 351 .
  • a heat dissipation member 393 is arranged between the circuit board 391 and the lower wall portion 351 . The heat dissipation member 393 is in contact with the lower wall portion 351 .
  • housing wall portion 305 forms refrigerant passage 310 .
  • the refrigerant flowing through the refrigerant passage 310 may be gas (for example, air) or liquid.
  • the inlet and outlet of the coolant passage 310 are formed on the outer surface 306 of the housing wall portion 305 .
  • the coolant passage 310 is formed in the lower wall portion 351 , the side wall portion 352 and the upper wall portion 353 .
  • Two lattice structure portions 20 are provided in the coolant passage 310 .
  • One of the two lattice structure portions 20 is provided on the lower wall portion 351 and the other lattice structure portion 20 is provided on the side wall portion 352 and the upper wall portion 353 .
  • the two lattice structure portions 20 are provided over the entire area of the coolant passage 310 in the coolant flow direction F. As shown in FIG. The two lattice structure portions 20 may be provided only in a portion of the coolant passage 310 in the coolant flow direction F. Each lattice structure 20 is integrally molded.
  • the coolant passage 310 has a bent portion where the coolant flow direction F is bent, such as at a corner of the housing 301 . The bent portion is included in the flow direction change portion 13 .
  • the refrigerant passage 310 has a branch point where the refrigerant flow branches and a confluence point where the refrigerant flow joins.
  • the branching portion including the branching point and the merging portion including the merging point of the refrigerant passage 310 serve as both the flow direction changing portion 13 and the cross section changing portion 14 .
  • the coolant passage 310 has a tapered portion in a portion including the inlet in which the area of the cross section continuously decreases toward the downstream in the coolant flow direction F. As shown in FIG. The tapered portion is included in the cross-section changing portion 14 .
  • a portion of the coolant passage 310 is formed in the lower wall portion 351 of the housing wall portion 305 . In other words, part of the coolant passage 310 passes through a portion of the housing wall portion 305 that is most likely to receive heat from the electronic device 390 .
  • the coolant flowing through coolant passage 310 easily receives heat generated by circuit board 391 and electronic component 392 . Since the lattice structure 20 is provided in the coolant passage 310 having high cooling performance in this manner, the cooling performance of the housing 301 can be further improved. Note that the coolant passage 310 may be formed only in the lower wall portion 351 .
  • the ninth embodiment and modifications 1 and 2 thereof are merely examples in which the present invention is applied to a housing that accommodates a rotating electric machine.
  • the configuration of the housing that accommodates the rotating electric machine to which the present invention is applied is not limited to the configuration of the ninth embodiment and its modification examples 1 and 2.
  • the coolant passage may be formed along the circumferential direction around the central axis of the shaft.
  • the housing that accommodates the rotating electrical machine may have a lattice structure formed so as to be continuous with the inner surface of the housing wall.
  • the tenth embodiment is merely an example in which the present invention is applied to a housing that accommodates a power storage device.
  • the configuration of the housing that accommodates the power storage device to which the present invention is applied is not limited to the configuration of the tenth embodiment.
  • the housing that houses the power storage device may have a lattice structure that is continuous with the outer surface or the inner surface of the housing wall.
  • the eleventh embodiment is merely an example in which the present invention is applied to a housing that accommodates electronic equipment.
  • the configuration of the housing that accommodates the electronic device to which the present invention is applied is not limited to the configuration of the eleventh embodiment.
  • a housing that houses an electronic device may have a lattice structure that is continuous with the outer surface or the inner surface of the housing wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A housing (1) with which a housing-inclusive device (100) is provided has a cooling structure whereby heat generated by a heat source (3) accommodated in an accommodating space (4) formed by means of a housing wall portion (5) is dissipated to the outside of the housing. The housing cooling structure includes a lattice structure portion (20) which is either formed so as to be continuous with an outer surface (6) or an inner surface (7) of the housing wall portion, or is formed so as to be continuous with the housing wall portion that forms a refrigerant passage (10) through which a refrigerant flows, without being continuous with either the outer surface or the inner surface of the housing wall portion. The lattice structure portion (20) includes either a Delaunay lattice structure portion (30) comprising a plurality of first rod-shaped portions (22) forming a plurality of Delaunay edges (32) in a three-dimensional Delaunay graph, or a Voronoi lattice structure portion (40) comprising a plurality of first rod-shaped portions (22) forming the sides of a plurality of Voronoi polyhedrons (43) formed only from Voronoi boundary surfaces (42) of a three-dimensional Voronoi diagram.

Description

筐体具備装置Enclosure equipment
 この発明は、熱源を含む内容物を収容する筐体を備える筐体具備装置に関する。 The present invention relates to a housing-equipped device having a housing that houses contents including a heat source.
 熱源を含む内容物を収容する筐体は、熱源を含む内容物を収容する収容空間を形成する筐体壁部を有する。従来、熱源を含む内容物を収容する筐体として、熱源で発生した熱を筐体の外部に放熱するための冷却構造を有するものがある。 The housing that houses the content including the heat source has a housing wall that forms a housing space that houses the content including the heat source. 2. Description of the Related Art Conventionally, as a housing for housing contents including a heat source, there is a housing having a cooling structure for dissipating heat generated by the heat source to the outside of the housing.
 筐体の冷却構造として、筐体壁部の外表面と内表面との間に細長い冷媒通路が形成される場合がある。熱源で発生した熱は、冷媒通路内を流れる冷媒を介して外部に放熱される。細長い冷媒通路とは、冷媒流れ方向を横断する横断面における冷媒通路の最大幅が冷媒通路の冷媒流れ方向の長さよりも短くなるように形成された冷媒通路である。例えば、特許文献1および特許文献2の電動車両に搭載され、モータ(熱源)を収容する筐体は、細長い冷媒通路が形成された筐体壁部を有する。特許文献1および特許文献2の筐体壁部は、モータのステータを保持する内筒と外筒を含む。冷媒通路は、内筒と外筒との間に形成される。特許文献1および特許文献2では、冷却効率を高くするための工夫が冷媒通路に施されている。具体的には、特許文献1および特許文献2では、冷媒通路の横断面積が部分的に小さくなるように複数の絞り部(凹部)が設けられている。また、特許文献1の冷媒通路の内部には、少なくとも内筒に連結された複数のフィンが設けられている。特許文献2の冷媒通路には、内筒と外筒を連結する複数の円柱が設けられている。特許文献1では、絞り部によって冷媒流に乱流を発生させ、絞り部の下流に設けたフィンに乱流化した冷媒流を接触させることで熱交換の効率の向上を図っている。特許文献2では、絞り部と円柱によって冷媒流に乱流を発生させ、冷媒の淀みをなくすことで熱交換の効率の向上を図っている。 As a housing cooling structure, an elongated coolant passage may be formed between the outer surface and the inner surface of the housing wall. The heat generated by the heat source is radiated to the outside through the refrigerant flowing through the refrigerant passage. An elongated refrigerant passage is a refrigerant passage formed so that the maximum width of the refrigerant passage in a cross section across the refrigerant flow direction is shorter than the length of the refrigerant passage in the refrigerant flow direction. For example, a housing that is mounted on the electric vehicle disclosed in Patent Documents 1 and 2 and houses a motor (heat source) has a housing wall portion in which an elongated refrigerant passage is formed. The housing wall portion of Patent Documents 1 and 2 includes an inner cylinder and an outer cylinder that hold the stator of the motor. A coolant passage is formed between the inner cylinder and the outer cylinder. In Patent Documents 1 and 2, the refrigerant passage is devised to improve the cooling efficiency. Specifically, in Patent Documents 1 and 2, a plurality of narrowed portions (concave portions) are provided so that the cross-sectional area of the refrigerant passage is partially reduced. In addition, a plurality of fins connected to at least the inner cylinder are provided inside the refrigerant passage of Patent Document 1. The refrigerant passage of Patent Document 2 is provided with a plurality of cylinders that connect the inner cylinder and the outer cylinder. In Patent Literature 1, the efficiency of heat exchange is improved by generating turbulence in the refrigerant flow by the restrictor and bringing the turbulent coolant flow into contact with fins provided downstream of the restrictor. In Patent Literature 2, the efficiency of heat exchange is improved by generating turbulence in the refrigerant flow by means of the throttle portion and the cylinder to eliminate the stagnation of the refrigerant.
 また、筐体の冷却構造として、例えば特許文献3および特許文献4のように、筐体壁部の表面に複数の放熱フィンを有する場合がある。熱源で発生した熱は、放熱フィンから筐体の外部に放熱される。特許文献3および特許文献4の筐体は、無人飛行体に搭載され、モータ(熱源)を収容する。特許文献3では、中実構造の放熱フィンが設けられている。特許文献4では、ラティス構造の放熱フィンを設けることで、中実構造の放熱フィンを設ける場合よりも放熱フィンの表面積を増大させて、冷却性能の向上を図っている。 In addition, as a cooling structure of the housing, there are cases where a plurality of heat radiation fins are provided on the surface of the housing wall portion, as in Patent Documents 3 and 4, for example. The heat generated by the heat source is radiated to the outside of the housing through the radiation fins. The housings of Patent Documents 3 and 4 are mounted on an unmanned air vehicle and accommodate a motor (heat source). In Patent Document 3, heat radiation fins having a solid structure are provided. In Patent Document 4, by providing the heat radiation fins with a lattice structure, the surface area of the heat radiation fins is increased compared to the case where the heat radiation fins with a solid structure are provided, thereby improving the cooling performance.
特開平08-19218号公報JP-A-08-19218 特開2010-041835号公報JP 2010-041835 A 国際公開第2016/192022号WO2016/192022 国際公開第2020/195004号WO2020/195004
 熱源を含む内容物を収容し冷却構造を有する筐体を備えた筐体具備装置は、筐体具備装置の大型化を抑制しつつ筐体の冷却性能を向上させることが求められる。また、熱源を含む内容物を収容し冷却構造を有する筐体を備えた筐体具備装置は、筐体の冷却性能を確保しつつ、筐体具備装置の形状の設計自由度を高めることが求められる。 A case-equipped device that accommodates contents including a heat source and has a case that has a cooling structure is required to improve the cooling performance of the case while suppressing an increase in the size of the case-equipped device. In addition, a case-equipped device that accommodates contents including a heat source and has a case that has a cooling structure is required to increase the degree of freedom in designing the shape of the case-equipped device while ensuring the cooling performance of the case. be done.
 本発明は、筐体具備装置の大型化を抑制しつつ筐体の冷却性能を向上することができる、または、筐体の冷却性能を確保しつつ筐体具備装置の形状の設計自由度を向上させることができる、筐体具備装置を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention can improve the cooling performance of a housing while suppressing an increase in the size of a device equipped with a housing, or improve the degree of freedom in designing the shape of a device equipped with a housing while ensuring the cooling performance of the housing. It is an object of the present invention to provide a housing-equipped device that can
 熱源を含む内容物を収容する筐体は、以下の2つの理由により筐体の外面および内面の形状が制約を受けるという課題を有する。第1の理由は、内容物の形状および筐体を搭載する際の周囲の部品との干渉を考慮する必要があるためである。第2の理由は、内容物の支持および筐体自身の支持に必要な剛性および強度を確保する必要があるためである。
 また、筐体が冷却構造を有する場合、さらに以下の課題が存在する。筐体の外面および内面の形状の制約を受ける筐体は、筐体の大型化を抑制しつつ冷却性能を向上させる、または、冷却性能を確保しつつ筐体の形状の設計自由度を向上させることが求められる。
 冷却構造として筐体壁部の外表面と内表面との間に細長い冷媒通路が形成される場合には、さらに以下の課題が存在する。筐体の外面および内面の形状が制約を受けることにより、筐体壁部の内部に形成される冷媒通路の形状が制約を受ける。
 発明者らは、筐体の大型化を抑制しつつ筐体の冷却性能を向上させるか、もしくは、筐体の冷却性能を確保しつつ筐体の形状の設計自由度を向上させるために、特許文献1および特許文献2の筐体および筐体壁部についてより詳細に研究した。特許文献1および特許文献2では、細長い冷媒通路の横断面積を絞り部によって部分的に変更することで、乱流を発生させて冷却性能の向上を図っている。しかし、冷媒は横断面積が小さくなった箇所を通過した後に流速が低下するため、絞り部による乱流の発生範囲は限定的である。しかも、特許文献1および特許文献2の絞り部は、単純な絞り形状であるため乱流を構成する渦が大きくなりやすい。
 また、特許文献2では、冷媒通路の内部に形成した複数の円柱が、円柱の周囲に冷媒の乱流を発生させる。この乱流による攪拌作用が冷媒の淀みを低減し、それにより熱交換の効率を高めて冷却性能を高めている。しかし、円柱によって生じる乱流の発生範囲は限定的である。しかも、円柱によって生じる乱流を構成する渦は大きくなりやすい。また、円柱によって乱流を生じさせるには高い流速が必要である。流速が低い場合、カルマン渦列しか生じないので、攪拌作用が小さい。
 また、筐体の外面および内面の形状が制約を受けるため、冷媒通路の形状、絞り部の位置、ならびに、円柱の向きおよび位置は制約を受ける。そのため、より詳細に観察すると、特許文献1および特許文献2では、冷媒通路の横断面における冷媒の流れる位置および/または冷媒の流速に関して偏りが発生しており、冷却効率を向上できる余地が存在する。
 また、冷却構造として、筐体壁部の表面にフィンを設ける場合、以下の課題が存在する。筐体壁部にフィンを設けるための大きな領域を確保する必要があるため、筐体の形状の制約が高くなる。
 発明者らは、筐体の大型化を抑制しつつ冷却性能を向上させる、または、冷却性能を確保しつつ筐体の形状の設計自由度を向上させるために、特許文献3および特許文献4のように、筐体壁部の表面に複数のフィンが設けられた筐体についてより詳細に研究した。特許文献3のように中実構造の複数のフィンを設けた場合、フィンの周囲の空気は、フィンの表面に沿って流れることしかできず、流れ方向に制約を受ける。そのため、冷却性能を向上させる余地が存在する。特許文献4のようにラティス構造の複数のフィンを設けた場合、フィンの内部も空気が流れることができるので、中実構造のフィンを設ける場合よりも冷却性能を向上できる場合がある。しかし、フィンは薄板状のものであるので、筐体壁部の表面にラティス構造の複数のフィンを設けても筐体自体の剛性および強度の向上にあまり寄与しない。また、中実構造およびラティス構造のフィンは、筐体に衝撃が加えられたときに変形することで衝撃を吸収できる。しかし、中実構造およびラティス構造のフィンは、衝撃が加えられる方向の違いによる衝撃吸収性の差が大きい。そのため、筐体壁部の表面に設ける冷却構造の衝撃吸収性の異方性を抑制しつつ冷却構造の剛性および強度を高めることで、ラティス構造の複数のフィンを設けた場合に比べて、冷却性能を確保しつつ筐体の形状の設計自由度を向上できる余地が存在する。
A housing that houses contents including a heat source has a problem that the shape of the outer surface and inner surface of the housing is restricted for the following two reasons. The first reason is that it is necessary to consider the shape of the contents and the interference with surrounding parts when mounting the housing. The second reason is that it is necessary to secure the rigidity and strength necessary to support the contents and the housing itself.
Moreover, when the housing has a cooling structure, the following problems still exist. Enclosures that are restricted by the shape of the outer and inner surfaces of the enclosure can improve cooling performance while suppressing the enlargement of the enclosure, or improve the design freedom of the enclosure shape while ensuring cooling performance. is required.
When a long and narrow coolant passage is formed between the outer surface and the inner surface of the housing wall as the cooling structure, the following problems still exist. Restrictions on the shape of the outer and inner surfaces of the housing impose restrictions on the shape of the coolant passage formed inside the wall of the housing.
In order to improve the cooling performance of the housing while suppressing the increase in the size of the housing, or to improve the design freedom of the shape of the housing while ensuring the cooling performance of the housing, the patent The enclosures and enclosure walls of Document 1 and Patent Document 2 were studied in more detail. In Patent Literatures 1 and 2, by partially changing the cross-sectional area of the elongated refrigerant passage with a constricted portion, turbulent flow is generated to improve cooling performance. However, since the flow velocity of the refrigerant decreases after passing through the portion where the cross-sectional area is small, the range of turbulent flow generated by the constricted portion is limited. Moreover, since the constricted portions of Patent Documents 1 and 2 have a simple constricted shape, vortices forming turbulence tend to become large.
Further, in Patent Document 2, a plurality of cylinders formed inside the coolant passage generate a turbulent flow of the coolant around the cylinders. The stirring action of this turbulent flow reduces the stagnation of the refrigerant, thereby increasing the efficiency of heat exchange and enhancing the cooling performance. However, the range of turbulence generated by the cylinder is limited. Moreover, the eddy that constitutes the turbulent flow generated by the cylinder tends to grow large. Also, high flow velocities are required to create turbulence with a cylinder. When the flow velocity is low, only the Karman vortex street occurs, so the stirring action is small.
In addition, since the shape of the outer and inner surfaces of the housing is restricted, the shape of the refrigerant passage, the position of the restrictor, and the orientation and position of the cylinder are also restricted. Therefore, when observed in more detail, in Patent Documents 1 and 2, there is an imbalance in the position where the coolant flows and/or the flow velocity of the coolant in the cross section of the coolant passage, and there is room for improving the cooling efficiency. .
Moreover, when fins are provided on the surface of the housing wall portion as a cooling structure, the following problems exist. Since it is necessary to secure a large area for providing the fins on the housing wall, the shape of the housing is highly restricted.
In order to improve the cooling performance while suppressing an increase in the size of the housing, or to improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance, the inventors of Patent Documents 3 and 4 have been proposed. Thus, a more detailed study was conducted on a housing having a plurality of fins on the surface of the housing wall. When a plurality of fins having a solid structure are provided as in Patent Document 3, the air around the fins can only flow along the surfaces of the fins and is restricted in the direction of flow. Therefore, there is room for improving the cooling performance. When a plurality of fins with a lattice structure are provided as in Patent Document 4, air can also flow through the inside of the fins, so the cooling performance may be improved compared to the case where fins with a solid structure are provided. However, since the fins are in the form of a thin plate, providing a plurality of lattice-structured fins on the surface of the housing wall does not contribute much to improving the rigidity and strength of the housing itself. In addition, the fins of solid structure and lattice structure can absorb impact by deforming when impact is applied to the housing. However, fins with a solid structure and a fin with a lattice structure have a large difference in impact absorption depending on the direction in which the impact is applied. Therefore, by increasing the rigidity and strength of the cooling structure while suppressing the anisotropy of the shock absorption of the cooling structure provided on the surface of the housing wall, compared to the case where multiple fins with a lattice structure are provided, cooling There is room for improving the degree of freedom in designing the shape of the housing while ensuring performance.
 本発明の一実施形態の筐体具備装置は、以下の構成を有する。
 熱源を含む内容物を収容する収容空間を形成する筐体壁部を有する筐体を備える筐体具備装置であって、前記筐体は、前記熱源で発生した熱が前記筐体の外部に放熱される冷却構造を有し、前記冷却構造は、前記筐体壁部の外表面または内表面と連続するように形成されるか、もしくは、前記筐体壁部の外表面および内表面のいずれとも連続せず、冷媒が流れる冷媒通路を形成する前記筐体壁部と連続するように形成されるラティス構造部を含み、前記冷媒通路は、前記筐体壁部の前記外表面と前記内表面との間に形成され、且つ、前記冷媒流れ方向を横断する横断面における前記冷媒通路の最大幅が前記冷媒通路の冷媒流れ方向の長さよりも短くなるように形成され、前記筐体壁部の前記外表面または前記内表面と連続するように形成される前記ラティス構造部の前記筐体壁部の厚み方向における最大幅を第1幅とした場合に、前記筐体壁部の前記外表面または前記内表面の前記ラティス構造部が設けられる領域に直交する方向に前記ラティス構造部を見て、前記ラティス構造部に収まる最長の線分に直交する、前記ラティス構造部に収まるいずれかの線分の長さが、前記第1幅よりも長く、前記ラティス構造部は、複数の棒状部からなり、前記ラティス構造部は、3次元にランダムに分布する複数のドロネー点に基づく3次元のドロネー図における複数のドロネー辺を形成する複数の第1棒状部からなるドロネーラティス構造部、または、3次元にランダムに分布する複数の仮想点を母点とする3次元のボロノイ図におけるボロノイ境界面のみで形成される複数のボロノイ多面体の辺を形成する複数の第1棒状部からなるボロノイラティス構造部を含み、前記ドロネーラティス構造部は、互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、前記ボロノイラティス構造部は、互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成される。
A housing-equipped device according to one embodiment of the present invention has the following configuration.
A housing-equipped device comprising a housing having a housing wall forming a housing space for housing content including a heat source, wherein the housing dissipates heat generated by the heat source to the outside of the housing. The cooling structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall, or the cooling structure is formed to be continuous with either the outer surface or the inner surface of the housing wall a lattice structure formed so as to be discontinuous and continuous with the housing wall forming a coolant passage through which a coolant flows, wherein the coolant passage extends between the outer surface and the inner surface of the housing wall; and the maximum width of the refrigerant passage in a cross section crossing the refrigerant flow direction is shorter than the length of the refrigerant passage in the refrigerant flow direction, and the housing wall portion of the When the maximum width in the thickness direction of the housing wall of the lattice structure formed so as to be continuous with the outer surface or the inner surface is defined as a first width, the outer surface of the housing wall or the When the lattice structure is viewed in a direction perpendicular to the region of the inner surface where the lattice structure is provided, any line segment that fits in the lattice structure and that is perpendicular to the longest line segment that fits in the lattice structure The length is longer than the first width, the lattice structure consists of a plurality of rod-shaped parts, and the lattice structure is based on a plurality of randomly distributed Delaunay points in a three-dimensional Delaunay diagram Delaunay lattice structure composed of a plurality of first rod-shaped parts forming a plurality of Delaunay edges, or formed only by a Voronoi boundary surface in a three-dimensional Voronoi diagram with a plurality of virtual points randomly distributed in three dimensions as generating points a Voronoi lattice structure composed of a plurality of first rod-shaped portions forming sides of a plurality of Voronoi polyhedrons, wherein the Delaunay lattice structure has three mutually orthogonal line segments each of which is the first rod-shaped portion The Voronoi lattice structure is formed so as to pass through two or more Delaunay triangular pyramids each having four Delaunay points formed by connecting points, and the Voronoi lattice structure has three mutually orthogonal line segments each connected to the first rod-shaped part It is formed through two or more Voronoi polyhedra with only vertices formed by their connection points.
 この構成によると、筐体具備装置の筐体は、冷媒が流れる冷媒通路を形成する筐体壁部と連続するように形成されるラティス構造部を有する場合がある。ラティス構造部は、複数の棒状部からなる。ラティス構造部は、ドロネーラティス構造部またはボロノイラティス構造部を含む。ドロネーラティス構造部は、3次元にランダムに分布する複数のドロネー点に基づく3次元のドロネー図における複数のドロネー辺を形成する複数の第1棒状部からなる。さらに、ドロネーラティス構造部は、互いに直交する3つの線分がそれぞれ、第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成される。ドロネー図の特性上、ドロネー三角錐は構成面ができるだけ正三角形に近くなるように形成される。そのため、ドロネーラティス構造部において、第1棒状部同士の連結角度は極端に大きいまたは小さい角度になりにくい。また、ドロネーラティス構造部において、複数の第1棒状部の方向が特定の方向に偏りにくい。ボロノイラティス構造部は、3次元にランダムに分布する複数の仮想点を母点とする3次元のボロノイ図におけるボロノイ境界面のみで形成される複数のボロノイ多面体の辺を形成する複数の第1棒状部からなる。さらに、ボロノイラティス構造部は、互いに直交する3つの線分がそれぞれ、第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成される。ボロノイ図はドロネー図と双対関係にある。ボロノイ図におけるボロノイ境界面の両側の2つ母点を結ぶことでドロネー辺が形成される。そのため、ボロノイラティス構造部においても、第1棒状部同士の連結角度は極端に大きいまたは小さい角度になりにくい。また、ボロノイラティス構造部においても、複数の第1棒状部の方向が特定の方向に偏りにくい。冷媒がこのような構成のラティス構造部の内部を流れることにより、乱流場に大きな渦が生じることを抑えつつ、冷媒通路を流れる冷媒流を分流させるとともに冷媒流に小さな渦を加えることができる。しかも、冷媒通路の内部に円柱を設ける場合と冷媒の流速が同じ場合、より攪拌作用の高い乱流を発生させることができる。そのため、筐体の外面および内面の形状の制約、ならびに、これによる冷媒通路の位置等の制約があっても、これらの制約の影響を受けずに、冷媒通路のラティス構造部を通る横断面における冷媒の流れる位置および/または冷媒の流速に関する偏りおよび/または流速を調整しやすい。仮に、ラティス構造部が規則的な構造である場合、ある流量では冷媒の流れる位置の偏りを抑制できても流量が変化すると冷媒の流れる位置に偏りが生じる場合がある。一方、ドロネーラティス構造部およびボロノイラティス構造部を構成する複数の棒状部の方向がランダムである。そのため、冷媒の流量が変化しても冷媒の流れる位置の偏りを抑制できる。したがって、筐体の大型化を抑制しつつ筐体の冷却性能を向上させることができる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。さらに、冷媒通路に円柱を設ける場合に比べて、筐体の剛性および強度を局所的ではなくより広範囲に高めることができるとともに、より多くの方向の筐体の剛性および強度を高めることができる。そして、剛性および強度が高いことで筐体の形状の設計の自由度を向上できる、もしくは、ラティス構造部によって剛性および強度を確保できる分、冷却性能をより向上させても筐体の大型化を抑制できる。
 筐体は、筐体壁部の外表面または内表面と連続するように形成されるラティス構造部を有する場合がある。ラティス構造部の構成は、冷媒通路を形成する筐体壁部と連続するように形成されるラティス構造部の構成と同じである。このような構成のラティス構造部内を流体が流れるため、例えば筐体壁部の表面に沿った複数の方向に流体が流れることもできる。したがって、ラティス構造部を設ける構成では、筐体壁部の表面に中実構造の複数のフィンを設ける構成よりも冷却性能を高くすることができる。
 また、ラティス構造部の筐体壁部の厚み方向における最大幅を第1幅とした場合に、筐体壁部の外表面または内表面のラティス構造部が設けられる領域に直交する方向にラティス構造部を見て、ラティス構造部に収まる最長の線分に直交する、ラティス構造部に収まるいずれかの線分の長さは、第1幅よりも長い。したがって、ラティス構造部は、フィンのような薄板状ではない。フィンは、冷却性能を得るために薄板状に構成され、フィン同士は間隔をあけて配置され、互いに連結されていない。そのため、ラティス構造のフィンは、剛性および強度が高くない。これに対して、ラティス構造部はフィンのような薄板状ではないため、筐体壁部の表面にラティス構造部が設けられる場合、筐体壁部の表面にラティス構造の複数のフィンが設けられる場合に比べて、筐体壁部の厚みが同程度であっても、筐体の剛性および強度能を確保しつつ筐体の形状の設計自由度を向上できる。また、中実構造およびラティス構造のフィンは、力が加えられる方向によって変形のしやすさおよび変形の仕方の差が大きい。つまり、中実構造およびラティス構造のフィンは、衝撃が加えられる方向の違いによる衝撃吸収性の差が大きい。フィンによる衝撃吸収性が低い方向の衝撃が筐体に加わった場合に内容物への影響を小さくするためには、筐体の形状に制約を加える必要がある。これに対して、ラティス構造部は、衝撃が加えられる方向の違いによる衝撃吸収性の差が小さい。そのため、筐体壁部の表面にラティス構造の複数のフィンが設けられる場合に比べて、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。
 筐体の大型化を抑制することで筐体具備装置の大型化を抑制できる。また、筐体の形状の設計の自由度を向上することで、筐体具備装置の形状の設計の自由度を向上できる。以上により、本発明の筐体具備装置は、筐体具備装置の大型化を抑制しつつ筐体の冷却性能を向上させることができる、または、筐体の冷却性能を確保しつつ筐体具備装置の形状の設計自由度を向上させることができる。
According to this configuration, the housing of the housing-equipped device may have a lattice structure formed so as to be continuous with the housing wall forming the refrigerant passage through which the refrigerant flows. The lattice structure consists of a plurality of rod-shaped parts. The lattice structure includes a Delaunay lattice structure or a Voronoi lattice structure. The Delaunay lattice structure consists of a plurality of first rod-shaped portions forming a plurality of Delaunay edges in a three-dimensional Delaunay diagram based on a plurality of Delaunay points randomly distributed in three dimensions. Further, the Delaunay lattice structure is formed so that each of the three line segments perpendicular to each other passes through two or more Delaunay triangular pyramids each having the four Delaunay points formed by the connecting points of the first rod-shaped portions. be done. Due to the characteristics of the Delaunay diagram, the Delaunay triangular pyramid is formed so that the constituent surfaces are as close to equilateral triangles as possible. Therefore, in the Delaunay lattice structure, the connection angle between the first rod-like portions is unlikely to be extremely large or small. Further, in the Delaunay lattice structure, the directions of the plurality of first rod-shaped portions are less likely to deviate in a specific direction. The Voronoi lattice structure part is a plurality of first rod-like structures forming sides of a plurality of Voronoi polyhedrons formed only by Voronoi boundary surfaces in a three-dimensional Voronoi diagram having a plurality of virtual points randomly distributed in three dimensions as a base point. consists of Further, the Voronoi lattice structure is formed such that each of the three line segments orthogonal to each other passes through two or more Voronoi polyhedrons having only vertices formed by connecting points between the first rod-shaped portions. The Voronoi diagram is dual to the Delaunay diagram. A Delaunay edge is formed by connecting two generating points on both sides of the Voronoi boundary surface in the Voronoi diagram. Therefore, even in the Voronoi lattice structure, the connection angle between the first rod-shaped portions is unlikely to be extremely large or small. Also in the Voronoi lattice structure, the directions of the plurality of first rod-shaped portions are less likely to deviate in a specific direction. By flowing the refrigerant inside the lattice structure having such a configuration, it is possible to prevent the occurrence of large eddies in the turbulent flow field, divide the refrigerant flow flowing through the refrigerant passage, and add small eddies to the refrigerant flow. . Moreover, when the flow velocity of the coolant is the same as when the column is provided inside the coolant passage, a turbulent flow with a higher agitating action can be generated. Therefore, even if there are restrictions on the shape of the outer surface and the inner surface of the housing and the resulting restrictions on the position of the coolant passage, etc., the cross section passing through the lattice structure of the coolant passage is not affected by these restrictions. It is easy to adjust the position where the coolant flows and/or the bias and/or the flow velocity of the coolant. If the lattice structure has a regular structure, even if the positional deviation of the coolant flow can be suppressed at a certain flow rate, the positional deviation of the coolant flow may occur when the flow rate changes. On the other hand, the directions of the plurality of rod-shaped portions that constitute the Delaunay lattice structure and the Voronoi lattice structure are random. Therefore, even if the flow rate of the coolant changes, it is possible to suppress the deviation of the position where the coolant flows. Therefore, it is possible to improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing. Furthermore, compared to the case of providing a cylinder in the coolant passage, the rigidity and strength of the housing can be increased over a wide range rather than locally, and the rigidity and strength of the housing can be increased in more directions. Moreover, the rigidity and strength are high, so the degree of freedom in designing the shape of the housing can be improved, or the rigidity and strength can be secured by the lattice structure, so even if the cooling performance is further improved, the size of the housing can be increased. can be suppressed.
The housing may have a lattice structure formed contiguously with the outer surface or the inner surface of the housing wall. The configuration of the lattice structure is the same as that of the lattice structure formed so as to be continuous with the housing wall forming the coolant passage. Since the fluid flows in the lattice structure having such a configuration, the fluid can also flow in multiple directions along the surface of the housing wall, for example. Therefore, in the configuration in which the lattice structure is provided, the cooling performance can be made higher than in the configuration in which a plurality of solid-structured fins are provided on the surface of the housing wall.
Further, when the maximum width of the lattice structure in the thickness direction of the housing wall is defined as the first width, the lattice structure extends in a direction perpendicular to the region where the lattice structure is provided on the outer surface or the inner surface of the housing wall. Looking at the section, the length of any line segment within the lattice structure that is orthogonal to the longest line segment within the lattice structure is greater than the first width. Therefore, the lattice structure is not a thin plate like a fin. The fins are laminated for cooling performance, the fins are spaced apart and are not connected to each other. Therefore, the lattice structure fins are not very rigid and strong. On the other hand, since the lattice structure is not in the form of a thin plate like fins, when the lattice structure is provided on the surface of the housing wall, a plurality of fins of the lattice structure are provided on the surface of the housing wall. Compared to the case, even if the thickness of the housing wall portion is about the same, the degree of freedom in designing the shape of the housing can be improved while ensuring the rigidity and strength of the housing. In addition, the fins of solid structure and lattice structure have a large difference in the ease of deformation and the manner of deformation depending on the direction in which force is applied. In other words, the fins with a solid structure and a fin with a lattice structure have a large difference in shock absorption depending on the direction in which the shock is applied. In order to reduce the impact on the contents when an impact is applied to the housing in a direction in which the fins have low impact absorption, it is necessary to add restrictions to the shape of the housing. On the other hand, the lattice structure part has a small difference in shock absorption due to the difference in the direction in which the shock is applied. Therefore, compared to the case where a plurality of fins having a lattice structure are provided on the surface of the housing wall portion, the degree of freedom in designing the shape of the housing can be further improved while ensuring the cooling performance of the housing.
By suppressing an increase in the size of the housing, it is possible to suppress an increase in the size of the apparatus provided with the housing. In addition, by improving the degree of freedom in designing the shape of the housing, it is possible to improve the degree of freedom in designing the shape of the device provided with the housing. As described above, the housing-equipped device of the present invention can improve the cooling performance of the housing while suppressing an increase in the size of the housing-equipped device, or can ensure the cooling performance of the housing. The degree of freedom in designing the shape of the can be improved.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ドロネーラティス構造部または前記ボロノイラティス構造部において、前記複数の第1棒状部のうちの一部の複数の第1棒状部が前記筐体壁部と連続するように形成される。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
In the Delaunay lattice structure or the Voronoi lattice structure, some of the plurality of first rods are formed so as to be continuous with the housing wall.
 この構成によると、ラティス構造部を構成する複数の棒状部を全て第1棒状部で構成することが可能である。この場合、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, it is possible to configure all of the plurality of rod-shaped portions that constitute the lattice structure from the first rod-shaped portion. In this case, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部を構成する複数の棒状部は、前記ドロネーラティス構造部または前記ボロノイラティス構造部を構成する複数の第1棒状部に加えて、複数の第2棒状部を含み、前記複数の第2棒状部は、1つの前記ドロネー点または前記ボロノイ多面体の1つの頂点を形成する前記第1棒状部の端と少なくとも1つの前記第2棒状部と前記筐体壁部とが連続して形成されるように設けられる。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The plurality of rod-shaped portions constituting the lattice structure include, in addition to the plurality of first rod-shaped portions constituting the Delaunay lattice structure or the Voronoi lattice structure, a plurality of second rod-shaped portions. The two rod-shaped portions are formed such that an end of the first rod-shaped portion forming one Delaunay point or one vertex of the Voronoi polyhedron, at least one of the second rod-shaped portions, and the housing wall are continuously formed. is provided as follows.
 この構成によると、複数の第2棒状部はドロネーラティス構造部およびボロノイラティス構造部のどちらにも含まれない。複数の第2棒状部は、1つのドロネー点またはボロノイ多面体の1つの頂点を形成する第1棒状部の端と少なくとも1つの第2棒状部と筐体壁部とが連続して形成されるように設けられる。第2棒状部は、ドロネー辺もしくはボロノイ多面体の辺を形成しないことが明らかな棒状部であるか、または、ドロネー辺もしくはボロノイ多面体の辺を形成するかどうかをラティス構造部から特定できない棒状部である。例えば、全てのドロネー辺が棒状部で形成された構造体を作成した後、この構造体を特定の形状に切断した場合、この特定の形状の構造体の端部に、ドロネー辺を形成するかどうかを構造体からは特定できない棒状部が存在する場合がある。ラティス構造部が、ドロネーラティス構造部またはボロノイラティス構造部に加えてこのような複数の第2棒状部を有することで、ラティス構造体の形状の自由度が向上する。そのため、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the plurality of second rod-shaped parts are not included in either the Delaunay lattice structure part or the Voronoi lattice structure part. The plurality of second rod-shaped portions are formed such that the end of the first rod-shaped portion forming one Delaunay point or one vertex of the Voronoi polyhedron, at least one second rod-shaped portion, and the housing wall are continuously formed. provided in The second rod-shaped portion is a rod-shaped portion that is clearly not forming a Delaunay edge or a side of the Voronoi polyhedron, or a rod-shaped portion that cannot be determined from the lattice structure whether it forms a Delaunay edge or a side of the Voronoi polyhedron. be. For example, when a structure in which all Delaunay sides are formed of rod-shaped portions is created and then this structure is cut into a specific shape, the Delaunay sides are formed at the ends of the structure of this specific shape. There may be a rod-shaped portion that cannot be identified from the structure. Since the lattice structure has a plurality of such second rod-shaped portions in addition to the Delaunay lattice structure or the Voronoi lattice structure, the degree of freedom in the shape of the lattice structure is improved. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が前記ドロネーラティス構造部を含む場合、前記第2棒状部が連結される前記第1棒状部の端と前記筐体壁部との間の最短距離が、前記複数の第1棒状部の長さの最大値以下であるよりも短く、前記ラティス構造部が前記ボロノイラティス構造部を含む場合、前記第2棒状部が連結される前記第1棒状部の端と前記筐体壁部との間の最短距離が、前記ボロノイ境界面のみで形成される前記複数のボロノイ多面体の対角線の長さの最大値よりも短い。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
When the lattice structure includes the Delaunay lattice structure, the shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is the plurality of first rod-shaped portions. When the lattice structure is less than or equal to the maximum length of the portion and the lattice structure includes the Voronoi lattice structure, the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is shorter than the maximum length of the diagonals of the plurality of Voronoi polyhedrons formed only by the Voronoi boundary surfaces.
 この構成によると、第2棒状部が連結される第1棒状部の端と筐体壁部との間の最短距離は、ドロネー辺またはボロノイ多面体よりも短い。つまり、第1棒状部の端と筐体壁部との間をつなげる少なくとも1つの第2棒状部が配置されるスペースは、ドロネー辺またはボロノイ多面体よりも狭い。したがって、第2棒状部は、本来はドロネー辺もしくはボロノイ多面体の辺を形成するがドロネー辺もしくはボロノイ多面体の辺を形成するかどうかをラティス構造部から特定できない棒状部である可能性が高い。第2棒状部が、本来はドロネー辺もしくはボロノイ多面体の辺を形成する棒状部である場合、ラティス構造部において、棒状部同士の連結角度の偏りおよび棒状部の方向の偏りをより抑制できる。そのため、ラティス構造部が冷媒通路に設けられる場合、冷媒通路のラティス構造部を通る横断面における冷媒の流れる位置および/または冷媒の流速に関する偏りおよび/または流速をより調整しやすい。また、棒状部同士の連結角度の偏りおよび棒状部の方向の偏りが抑制されることにより、ラティス構造部によって筐体の剛性および強度を高めつつ、筐体の剛性および強度の方向の偏りをより抑制できる。したがって、ラティス構造部がどちらに設けられる場合でも、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is shorter than the Delaunay side or the Voronoi polyhedron. That is, the space in which at least one second rod-shaped portion connecting between the end of the first rod-shaped portion and the housing wall portion is arranged is narrower than the Delaunay side or the Voronoi polyhedron. Therefore, there is a high possibility that the second rod-shaped portion is a rod-shaped portion that originally forms a Delaunay edge or a side of the Voronoi polyhedron, but cannot be identified from the lattice structure as to whether it forms a Delaunay edge or a side of the Voronoi polyhedron. When the second rod-shaped portion is originally a rod-shaped portion forming a Delaunay side or a side of a Voronoi polyhedron, in the lattice structure, it is possible to further suppress unevenness in connection angles between the rod-shaped portions and unevenness in the direction of the rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity. In addition, by suppressing the uneven connection angle between the rod-shaped portions and the unevenness in the direction of the rod-shaped portions, the rigidity and strength of the housing are increased by the lattice structure, and the unevenness in the direction of the rigidity and strength of the housing is further reduced. can be suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ドロネーラティス構造部において、前記複数の第1棒状部の長さの最大値が、前記複数の第1棒状部の長さの平均値の4倍よりも小さい。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
In the Delaunay lattice structure, the maximum length of the plurality of first rod-shaped portions is smaller than four times the average length of the plurality of first rod-shaped portions.
 この構成によると、ドロネーラティス構造部を構成する複数の第1棒状部は、極端に長い第1棒状部を含まない。そのため、ラティス構造部において、第1棒状部同士の連結角度の偏りおよび第1棒状部の方向の偏りをより抑制できる。そのため、ラティス構造部が冷媒通路に設けられる場合、冷媒通路のラティス構造部を通る横断面における冷媒の流れる位置および/または冷媒の流速に関する偏りおよび/または流速をより調整しやすい。また、第1棒状部同士の連結角度の偏りおよび第1棒状部の方向の偏りが抑制されることにより、ラティス構造部によって筐体の剛性および強度を高めつつ、筐体の剛性および強度の方向の偏りをより抑制できる。したがって、ラティス構造部がどちらに設けられる場合でも、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the plurality of first rod-shaped portions forming the Delaunay lattice structure do not include extremely long first rod-shaped portions. Therefore, in the lattice structure portion, it is possible to further suppress unevenness in connection angles between the first rod-shaped portions and unevenness in the direction of the first rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity. In addition, by suppressing the deviation of the connection angle between the first rod-shaped parts and the deviation of the direction of the first rod-shaped parts, the rigidity and strength of the housing are increased by the lattice structure, and the rigidity and strength of the housing are improved. bias can be further suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ボロノイラティス構造部において、複数の前記第1棒状部で囲まれたボロノイ境界面の両側に位置する2つの前記母点の距離の最大値が、複数の前記第1棒状部で囲まれたボロノイ境界面の両側に位置する2つの前記母点の距離の平均値の4倍よりも小さい。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
In the Voronoi lattice structure portion, the maximum value of the distance between the two generating points located on both sides of the Voronoi boundary surface surrounded by the plurality of first rod-shaped portions is the Voronoi surrounded by the plurality of first rod-shaped portions. It is smaller than four times the average value of the distances of the two generating points located on both sides of the boundary surface.
 この構成によると、複数の母点は、ボロノイ境界面の両側に位置する2つの母点の距離が極端に長くなるような母点を含まない。よって、ボロノイラティス構造部を構成する複数の第1棒状部は、極端に長い第1棒状部を含まない。そのため、ラティス構造部において、第1棒状部同士の連結角度の偏りおよび第1棒状部の方向の偏りをより抑制できる。そのため、ラティス構造部が冷媒通路に設けられる場合、冷媒通路のラティス構造部を通る横断面における冷媒の流れる位置および/または冷媒の流速に関する偏りおよび/または流速をより調整しやすい。また、第1棒状部同士の連結角度の偏りおよび第1棒状部の方向の偏りが抑制されることにより、ラティス構造部によって筐体の剛性および強度を高めつつ、筐体の剛性および強度の方向の偏りをより抑制できる。したがって、ラティス構造部がどちらに設けられる場合でも、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the plurality of generating points do not include generating points where the distance between two generating points located on both sides of the Voronoi boundary surface is extremely long. Therefore, the plurality of first rod-shaped portions forming the Voronoi lattice structure do not include extremely long first rod-shaped portions. Therefore, in the lattice structure portion, it is possible to further suppress unevenness in connection angles between the first rod-shaped portions and unevenness in the direction of the first rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity. In addition, by suppressing the deviation of the connection angle between the first rod-shaped parts and the deviation of the direction of the first rod-shaped parts, the rigidity and strength of the housing are increased by the lattice structure, and the rigidity and strength of the housing are improved. bias can be further suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ボロノイラティス構造部において、前記複数の第1棒状部の長さの最大値が、前記複数の第1棒状部の長さの平均値の5倍よりも小さい。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
In the Voronoi lattice structure, the maximum length of the plurality of first rod-shaped portions is less than five times the average length of the plurality of first rod-shaped portions.
 この構成によると、ボロノイラティス構造部を構成する複数の第1棒状部は、極端に長い第1棒状部を含まない。そのため、ラティス構造部において、第1棒状部同士の連結角度の偏りおよび第1棒状部の方向の偏りをより抑制できる。そのため、ラティス構造部が冷媒通路に設けられる場合、冷媒通路のラティス構造部を通る横断面における冷媒の流れる位置および/または冷媒の流速に関する偏りおよび/または流速をより調整しやすい。また、第1棒状部同士の連結角度の偏りおよび第1棒状部の方向の偏りが抑制されることにより、ラティス構造部によって筐体の剛性および強度を高めつつ、筐体の剛性および強度の方向の偏りをより抑制できる。したがって、ラティス構造部がどちらに設けられる場合でも、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the plurality of first rod-shaped portions that constitute the Voronoi lattice structure do not include extremely long first rod-shaped portions. Therefore, in the lattice structure portion, it is possible to further suppress unevenness in connection angles between the first rod-shaped portions and unevenness in the direction of the first rod-shaped portions. Therefore, when the lattice structure is provided in the coolant passage, it is easier to adjust the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow velocity and/or the flow velocity. In addition, by suppressing the deviation of the connection angle between the first rod-shaped parts and the deviation of the direction of the first rod-shaped parts, the rigidity and strength of the housing are increased by the lattice structure, and the rigidity and strength of the housing are improved. bias can be further suppressed. Therefore, even if the lattice structure is provided on either side, the cooling performance of the housing can be further improved while suppressing an increase in the size of the housing, or the housing can be designed freely in shape while ensuring the cooling performance of the housing. degree can be improved.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、前記筐体具備装置は、前記筐体具備装置の周囲の気体または液体を前記冷媒として前記冷媒通路に導入し、且つ、前記冷媒通路を通過した後の冷媒を前記筐体具備装置の周囲に放出するように構成され、前記筐体具備装置は、前記冷媒通路を通過した後の前記冷媒を冷却するためのラジエータを有さない。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The lattice structure portion is formed so as to be continuous with the housing wall portion forming the coolant passage without being continuous with either the outer surface or the inner surface of the housing wall portion, and the housing-equipped device. introduces the gas or liquid around the housing-equipped device as the refrigerant into the refrigerant passage, and discharges the refrigerant after passing through the refrigerant passage to the surroundings of the housing-equipped device. , the housing-equipped device does not have a radiator for cooling the coolant after passing through the coolant passage.
 この構成によると、筐体具備装置がラジエータを有し、筐体具備装置が冷媒を循環させるように構成される場合に比べて、筐体具備装置の大型化を抑制できる。 According to this configuration, it is possible to suppress an increase in the size of the housing-equipped device, compared to the case where the housing-equipped device has a radiator and is configured to circulate a coolant.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、前記ラティス構造部の前記冷媒流れ方向の長さが、前記ラティス構造部を通る前記横断面における前記冷媒通路の最大幅よりも長い。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The lattice structure is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall and is continuous with the housing wall forming the coolant passage, The length in the coolant flow direction is longer than the maximum width of the coolant passage in the cross section passing through the lattice structure.
 この構成によると、筐体の外面および内面の形状の制約の影響を受けずに、冷媒通路のラティス構造部を通る横断面における冷媒の流れる位置および/または冷媒の流速に関する偏りおよび/または流速を調整しやすい。したがって、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow speed and/or the flow speed can be adjusted without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing. Easy to adjust. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、前記ラティス構造部の前記冷媒流れ方向の長さが、前記ラティス構造部を通る前記横断面における前記冷媒通路の周長よりも長い。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The lattice structure is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall and is continuous with the housing wall forming the coolant passage, The length in the coolant flow direction is longer than the circumferential length of the coolant passage in the cross section passing through the lattice structure.
 この構成によると、筐体の外面および内面の形状の制約の影響を受けずに、冷媒通路のラティス構造部を通る横断面における冷媒の流れる位置および/または冷媒の流速に関する偏りおよび/または流速を調整しやすい。したがって、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the position of the coolant flowing in the cross section passing through the lattice structure of the coolant passage and/or the deviation of the coolant flow speed and/or the flow speed can be adjusted without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing. Easy to adjust. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、前記ラティス構造部が前記ドロネーラティス構造部を含む場合、前記ラティス構造部は、前記冷媒流れ方向を横断する第1横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通り、且つ、前記2つの線分の方向の各々において前記筐体壁部の一部分と前記ラティス構造部と前記筐体壁部とが連続するように形成され、前記ラティス構造部が前記ボロノイラティス構造部を含む場合、前記ラティス構造部は、前記冷媒流れ方向を横断する第1横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通り、且つ、前記2つの線分の方向の各々において前記筐体壁部の一部分と前記ラティス構造部と前記筐体壁部の他の一部分とが連続するように形成される。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The lattice structure portion is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall portion and is continuous with the housing wall portion forming the refrigerant passage, and the lattice structure portion is When the Delaunay lattice structure portion is included, the lattice structure portion has two mutually orthogonal line segments included in the first cross section that traverses the coolant flow direction, each formed by a connecting point between the first rod-shaped portions. a portion of the housing wall, the lattice structure and the housing wall in each of the directions of the two line segments passing through two or more Delaunay triangular pyramids having the four Delaunay points, respectively. When the lattice structure portion includes the Voronoi lattice structure portion, the lattice structure portion includes two line segments perpendicular to each other included in the first cross section crossing the coolant flow direction. each passes through two or more Voronoi polyhedra having only vertices formed by the connecting points of the first rods, and in each of the directions of the two line segments, a portion of the housing wall and the The lattice structure and another part of the housing wall are formed so as to be continuous.
 この構成によると、冷媒の流れを犠牲にすることなく、筐体壁部の冷媒通路がラティス構造部で埋まるようにラティス構造部を配置できる。そのため、筐体の剛性、強度および冷却性能をより高いレベルに向上できる。具体的には、ラティス構造部によって上記の偏りおよび/または流速をより調整しやすいため、筐体の冷却性能をより向上できる。それに加えて、筐体の剛性および強度を向上させつつ、熱源と冷媒との距離および冷媒の流れの状態を調整して筐体の冷却性能をさらに向上できる。したがって、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the lattice structure can be arranged so that the coolant passage in the housing wall is filled with the lattice structure without sacrificing the flow of the coolant. Therefore, the rigidity, strength and cooling performance of the housing can be improved to a higher level. Specifically, the lattice structure makes it easier to adjust the bias and/or the flow velocity, so that the cooling performance of the housing can be further improved. In addition, while improving the rigidity and strength of the housing, the cooling performance of the housing can be further improved by adjusting the distance between the heat source and the coolant and the state of the flow of the coolant. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、前記冷媒通路の前記冷媒流れ方向の少なくとも一部は、前記ラティス構造部の少なくとも一部が設けられた第1通路部分と、前記第1通路部分と冷媒流れ方向に交差する方向に並んだ、前記ラティス構造部が設けられていない第2通路部分とを有し、前記ラティス構造部が前記ドロネーラティス構造部を含む場合、前記ドロネーラティス構造部は、前記第1通路部分に含まれる互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、前記ラティス構造部が前記ボロノイラティス構造部を含む場合、前記ボロノイラティス構造部は、前記第1通路部分に含まれる互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成される。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The lattice structure portion is formed so as to be continuous with the housing wall portion forming the coolant passage without being continuous with either the outer surface or the inner surface of the housing wall portion, and is continuous with the housing wall portion forming the coolant passage. At least a portion of the coolant flow direction is provided with a first passage portion provided with at least a portion of the lattice structure portion, and the lattice structure portion aligned in a direction intersecting the first passage portion with the coolant flow direction. and a second passage portion that is not lined, and when the lattice structure includes the Delaunay lattice structure, the Delaunay lattice structure includes three mutually orthogonal line segments included in the first passage portion. , formed so as to pass through two or more Delaunay triangular pyramids each having four Delaunay points formed by connection points between the first rod-shaped portions, and the lattice structure includes the Voronoi lattice structure, In the Voronoi lattice structure, each of three mutually orthogonal line segments included in the first passage portion passes through two or more Voronoi polyhedrons each having only vertices formed by connection points between the first rod-shaped portions. is formed as
 この構成によると、冷媒通路は、ラティス構造部の少なくとも一部が設けられた第1通路部分とラティス構造部が設けられていない第2通路部分を有する。冷媒通路の横断面の面積が同じであれば、冷媒通路の横断面の一部分のみにラティス構造部が設けられている方が、冷媒通路の横断面全体にラティス構造が設けられている場合よりも流体抵抗が小さい。冷媒通路が第1通路部分と第2通路部分とを有することで、冷媒通路の抵抗という観点において、冷媒通路の横断面全体にラティス構造が設けられている場合に比べて、冷媒通路の周長をより小さくできる。冷媒通路の周長を小さくした場合、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, the coolant passage has a first passage portion provided with at least a portion of the lattice structure and a second passage portion not provided with the lattice structure. If the cross-sectional area of the coolant passage is the same, the lattice structure provided only in part of the cross-section of the coolant passage is better than the lattice structure provided over the entire cross-section of the coolant passage. Low fluid resistance. Since the refrigerant passage has the first passage portion and the second passage portion, in terms of the resistance of the refrigerant passage, the circumferential length of the refrigerant passage is reduced compared to the case where the entire cross section of the refrigerant passage is provided with a lattice structure. can be made smaller. When the circumference of the coolant passage is reduced, the cooling performance of the housing can be improved while suppressing the size of the housing, or the design freedom of the housing shape can be increased while maintaining the cooling performance of the housing. can improve.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、前記ラティス構造部の少なくとも一部は、前記冷媒通路における前記冷媒流れ方向が変化する流れ方向変化部、および、前記冷媒通路における前記横断面の面積が変化する断面変化部の少なくとも一方の少なくとも一部に設けられ、前記ラティス構造部の少なくとも一部が前記流れ方向変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ドロネーラティス構造部を含む場合、前記ドロネーラティス構造部は、前記流れ方向変化部を横断する第2横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、前記ラティス構造部の少なくとも一部が前記流れ方向変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ボロノイラティス構造部を含む場合、前記ボロノイラティス構造部は、前記流れ方向変化部を横断する第2横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成され、前記ラティス構造部の少なくとも一部が前記断面変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ドロネーラティス構造部を含む場合、前記ドロネーラティス構造部は、前記断面変化部を横断する第3横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つのドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、前記ラティス構造部の少なくとも一部が前記断面変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ボロノイラティス構造部を含む場合、前記ボロノイラティス構造部は、前記断面変化部を横断する第3横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成される。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The lattice structure is formed so as to be continuous with neither the outer surface nor the inner surface of the housing wall and is continuous with the housing wall forming the coolant passage, At least a portion is provided in at least one of at least one of a flow direction changing portion in the refrigerant passage where the direction of refrigerant flow changes and a cross section changing portion in the refrigerant passage where the area of the cross section changes, When at least a portion of a lattice structure is provided in at least a portion of the flow direction changing portion, and the lattice structure includes the Delaunay lattice structure, the Delaunay lattice structure has the flow direction changing portion. Two line segments orthogonal to each other included in the second cross section crossing each other pass through two or more Delaunay triangular pyramids each having four said Delaunay points formed by connecting points between said first rod-shaped parts. at least a portion of the lattice structure is provided in at least a portion of the flow direction changing portion, and the lattice structure includes the Voronoi lattice structure, the Voronoi lattice structure is the Two line segments orthogonal to each other included in the second cross section crossing the flow direction changing portion pass through two or more Voronoi polyhedrons having only vertices formed by connecting points of the first rod-shaped portions. at least part of the lattice structure is provided in at least part of the cross-section changing part, and when the lattice structure includes the Delaunay lattice structure, the Delaunay lattice structure has the cross section Two or more Delaunay triangular pyramids each having four Delaunay points formed by connection points between the first rod-shaped portions, each of which is included in a third cross section crossing the change portion and which is perpendicular to each other. When at least part of the lattice structure is provided in at least part of the cross-section changing part, and the lattice structure includes the Voronoi lattice structure, the Voronoi lattice structure is formed to pass through: Two line segments perpendicular to each other included in the third cross section crossing the cross-section changing portion pass through two or more Voronoi polyhedrons having only vertices formed by connecting points between the first rod-shaped portions. formed in
 この構成によると、ドロネーラティス構造部またはボロノイラティス構造部の少なくとも一部が、流れ方向変化部の少なくとも一部に設けられる場合がある。この場合、流れ方向変化部による大きな渦の発生をドロネーラティス構造部またはボロノイラティス構造部によって抑えつつ、ドロネーラティス構造部またはボロノイラティス構造部と流れ方向変化部との組み合わせによって冷媒流に小さい渦を加えることができる。そのため、筐体の外面および内面の形状の制約の影響を受けずに、上記の偏りおよび/または流速をより調整しやすい。また、ドロネーラティス構造部またはボロノイラティス構造部の少なくとも一部が、断面変化部の少なくとも一部に設けられる場合がある。この場合、断面変化部による大きな渦の発生をドロネーラティス構造部またはボロノイラティス構造部によって抑えつつ、ドロネーラティス構造部またはボロノイラティス構造部と断面変化部との組み合わせによって冷媒流に小さい渦を加えることができる。そのため、筐体の外面および内面の形状の制約の影響を受けずに、上記の偏りおよび/または流速をより調整しやすい。したがって、筐体の大型化を抑制しつつ筐体の冷却性能をより向上できる、または、筐体の冷却性能を確保しつつ筐体の形状の設計自由度をより向上できる。 According to this configuration, at least part of the Delaunay lattice structure or the Voronoi lattice structure may be provided in at least part of the flow direction changing part. In this case, the Delaunay lattice structure or the Voronoi lattice structure suppresses the generation of large vortices by the flow direction changing part, and the combination of the Delaunay lattice structure or the Voronoi lattice structure and the flow direction changing part creates a small vortex in the refrigerant flow. can be added. Therefore, it is easier to adjust the deviation and/or the flow velocity without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing. Also, at least part of the Delaunay lattice structure or the Voronoi lattice structure may be provided in at least part of the cross-section changing part. In this case, the Delaunay lattice structure or the Voronoi lattice structure suppresses the generation of large vortices by the cross-section changing portion, and the combination of the Delaunay lattice structure or the Voronoi lattice structure and the cross-section changing portion adds a small vortex to the refrigerant flow. can be done. Therefore, it is easier to adjust the deviation and/or the flow velocity without being affected by the restrictions of the shape of the outer surface and the inner surface of the housing. Therefore, it is possible to further improve the cooling performance of the housing while suppressing an increase in the size of the housing, or to further improve the degree of freedom in designing the shape of the housing while ensuring the cooling performance of the housing.
 本発明の一実施形態の筐体具備装置は、以下の構成を有してもよい。
 前記ラティス構造部が、前記筐体壁部の前記外表面または前記内表面と連続するように形成され、前記ラティス構造部が、前記筐体壁部の前記外表面または前記内表面と金属積層造形法によって一体成形されている。
A housing-equipped device according to an embodiment of the present invention may have the following configuration.
The lattice structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall, and the lattice structure is connected to the outer surface or the inner surface of the housing wall by metal additive manufacturing. It is integrally molded according to the law.
 この構成によると、ラティス構造部が筐体壁部の少なくとも一部と一体成形されているため、ラティス構造部から筐体壁部へまたは筐体壁部からラティス構造部に熱が伝わりやすい。そのため、筐体の冷却性能をより向上できる。 According to this configuration, since the lattice structure is integrally formed with at least a part of the housing wall, heat is easily conducted from the lattice structure to the housing wall or from the housing wall to the lattice structure. Therefore, the cooling performance of the housing can be further improved.
 <筐体具備装置>
 なお、本発明および実施の形態において、筐体具備装置は、熱源を含む内容物を収容する筐体とこの内容物とを備える装置である。装置の種類は特に限定されない。本発明および実施の形態において、筐体具備装置は、例えば、電動車椅子、電動の鞍乗型車両、または電動小型四輪車などの電動小型ビークル、無人飛行体(いわゆるドローン)、電動船外機、および産業用ロボットなどを含んでもよい。鞍乗型車両とは、例えば、自動二輪車、自動三輪車(motor tricycle)、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、スノーモービル、水上オートバイ(パーソナルウォータークラフト)等を含む。自動二輪車は、スクータ、原動機付き自転車、モペット等を含む。産業用ロボットは自走してもしなくてもよい。船外機は、水中に配置される部分と、水面より高い位置にある部分とを有する。水面より高い位置にある部分が船に取り付けられる。熱源を収容する筐体は、水中に配置される部分に含まれてもよく、水面より高い位置にある部分に含まれてもよい。ラティス構造部が筐体壁部の外表面または内表面と連続するように形成される場合、ラティス構造部は筐体具備装置の外部に露出してもよく露出しなくてもよい。ラティス構造部が筐体具備装置の外部に露出しない場合、筐体具備装置の周囲の流体(気体または液体)が、筐体具備装置の内部に入ってラティス構造部を通過する。
<Device equipped with housing>
In addition, in the present invention and the embodiments, a device provided with a housing is a device provided with a housing for housing contents including a heat source and the contents. The type of device is not particularly limited. In the present invention and the embodiments, the housing-equipped device is, for example, an electric small vehicle such as an electric wheelchair, an electric saddle-ride type vehicle, or an electric small four-wheeled vehicle, an unmanned flying object (so-called drone), an electric outboard motor. , and industrial robots. Straddle-type vehicles include, for example, motorcycles, motor tricycles, four-wheeled buggies (ATVs: All Terrain Vehicles), snowmobiles, personal water crafts, and the like. Motorcycles include scooters, motorized bicycles, mopeds, and the like. Industrial robots may or may not be self-propelled. An outboard motor has a portion that is placed underwater and a portion that is positioned above the surface of the water. The part above the water level is attached to the ship. The housing that houses the heat source may be included in the part that is placed underwater or in the part that is above the water surface. When the lattice structure is formed to be continuous with the outer surface or the inner surface of the housing wall, the lattice structure may or may not be exposed to the outside of the housing-equipped device. If the lattice structure is not exposed to the exterior of the housing device, the fluid (gas or liquid) surrounding the housing device will enter the interior of the housing device and pass through the lattice structure.
 <熱源>
 本発明および実施の形態において、熱源とは、熱を自ら発生させる物を意味する。熱源は、熱エネルギーを受けて熱を発生させる物は含まない。熱源は、装置であってもなくてもよい。熱源は、複数回にわたって熱を発生させることが可能な物を含む。熱源は、複数回にわたって熱を発生させることが可能な物と、一回だけ熱を発生させる物とを含んでもよい。熱源は、一回だけ熱を発生させる物を含まなくてもよい。熱源は、電気エネルギーから熱を発生させる物を含む。熱源は、例えば、電気エネルギーから熱を発生させる物でもよい。熱源は、電気エネルギーから熱を発生させる物と、運動エネルギーから熱を発生させる物とを含んでもよい。熱源は、電気エネルギーから熱を発生させる物を含まなくてもよい。運動エネルギーから生じる熱とは例えば摩擦熱である。熱源は、電気エネルギーから熱を発生させる物と、化学反応によって熱を発生させる物とを含んでもよい。熱源は、電気エネルギーから熱を発生させる物と、運動エネルギーから熱を発生させる物と、化学反応によって熱を発生させる物とを含んでもよい。熱源は、化学反応によって熱を発生させる物を含まなくてもよい。
<Heat source>
In the present invention and embodiments, a heat source means an object that generates heat by itself. A heat source does not include anything that receives thermal energy and generates heat. The heat source may or may not be a device. Heat sources include objects that are capable of generating heat multiple times. Heat sources may include objects that are capable of generating heat multiple times and objects that generate heat only once. A heat source need not include a one-time heat generating object. Heat sources include objects that generate heat from electrical energy. A heat source may be, for example, anything that generates heat from electrical energy. Heat sources may include those that generate heat from electrical energy and those that generate heat from kinetic energy. A heat source need not include anything that generates heat from electrical energy. Heat resulting from kinetic energy is, for example, frictional heat. Heat sources may include those that generate heat from electrical energy and those that generate heat through chemical reactions. Heat sources may include those that generate heat from electrical energy, those that generate heat from kinetic energy, and those that generate heat through chemical reactions. The heat source may be free of substances that generate heat through chemical reactions.
 <筐体>
 本発明および実施の形態において、筐体は、熱源を収容する収容空間が密閉状態となるように構成されていてもよい。筐体は、収容空間を密閉状態とするためのシール部品を有してもよく、有さなくてもよい。
<Case>
In the present invention and embodiments, the housing may be configured such that the housing space for housing the heat source is in a sealed state. The housing may or may not have a sealing component for sealing the housing space.
 <筐体壁部>
 本発明および実施の形態において、筐体壁部の内表面とは、筐体壁部の収容空間を形成する面を意味する。筐体壁部の内表面は、収容空間内の気体に晒される。もしくは、筐体壁部の内表面は、収容空間内の液体に晒される。筐体壁部の外表面は、筐体壁部の内表面と逆の面を意味する。筐体壁部の外表面は、筐体壁部の内表面と平行でもよく平行でなくてもよい。筐体壁部の外表面は、筐体の外面を構成してもよく構成しなくてもよい。
 本発明および実施の形態において、筐体壁部は、独立した1つの部品で構成されてもよく、複数の部品で構成されてもよい。例えば、筐体壁部は、冷媒流れ方向に連結された複数の部品で構成されてもよい。また、例えば、筐体壁部の外表面と内表面が互いに異なる部品で形成されてもよい。筐体壁部の内表面から冷媒通路まで一体成形されていてもよい。筐体壁部の外表面から冷媒通路まで一体成形されていてもよい。筐体壁部の材質は特に限定されない。筐体壁部は例えば金属で形成されてもよく合成樹脂で形成されてもよい。
<Case wall>
In the present invention and embodiments, the inner surface of the housing wall means the surface forming the accommodation space of the housing wall. The inner surface of the housing wall is exposed to the gas within the housing space. Alternatively, the inner surface of the housing wall is exposed to the liquid in the accommodation space. The outer surface of the housing wall means the side opposite to the inner surface of the housing wall. The outer surface of the housing wall may or may not be parallel to the inner surface of the housing wall. The outer surface of the housing wall may or may not form the outer surface of the housing.
In the present invention and embodiments, the housing wall may be composed of one independent component or may be composed of a plurality of components. For example, the housing wall may be composed of a plurality of parts that are connected in the refrigerant flow direction. Further, for example, the outer surface and the inner surface of the housing wall may be formed of different components. The inner surface of the housing wall portion to the coolant passage may be integrally molded. The outer surface of the housing wall portion to the coolant passage may be integrally molded. The material of the housing wall is not particularly limited. The housing wall may be made of, for example, metal or synthetic resin.
 <冷媒通路>
 本発明および実施の形態において、冷媒通路は、冷媒が流れる空間を意味する。本発明および実施の形態において、冷媒通路は、冷媒の入口から出口まで一筆書きできる形状でもよく、冷媒の流れが分岐する分岐点および/または冷媒の流れが合流する合流点を有する形状でもよい。冷媒通路は、筒状であって、筐体壁部の筒状の内表面と筒状の外周面との間に形成されてもよい。この場合、冷媒は筒軸方向に流れる。本発明および実施の形態において、筐体壁部は、複数の冷媒通路を有してもよく、単一の冷媒通路を有してもよい。つまり、筐体壁部は、少なくとも1つの冷媒通路を有してもよい。
<Refrigerant passage>
In the present invention and embodiments, a refrigerant passage means a space through which a refrigerant flows. In the present invention and embodiments, the refrigerant passage may have a shape that allows a single stroke from the inlet to the outlet of the refrigerant, or may have a branch point where the refrigerant flow branches and/or a confluence point where the refrigerant flows join. The coolant passage may be tubular and formed between the tubular inner surface and the tubular outer peripheral surface of the housing wall portion. In this case, the refrigerant flows in the cylinder axis direction. In the present invention and embodiments, the housing wall may have multiple coolant passages or may have a single coolant passage. That is, the housing wall may have at least one coolant passage.
 本発明および実施の形態において、冷媒は、液体でも気体でもよい。液体の冷媒は、水でもよく水以外でもよい。気体の冷媒は、空気でもよく空気以外でもよい。本発明および実施の形態において、筐体具備装置が、筐体具備装置の周囲の気体または液体を冷媒として冷媒通路に導入し、且つ、冷媒通路を通過した後の冷媒を筐体具備装置の周囲に放出するように構成されるとは、筐体具備装置において冷媒が循環されていないことを意味する。本発明および実施の形態において、冷媒が空気の場合、冷媒通路への冷媒の導入に、筐体具備装置の移動によって生じる空気流、筐体具備装置が有する飛行用プロペラによって生じる空気流、および、筐体具備装置が有するファンによって生じる空気流の少なくとも1つが利用されてもよい。なお、ここでのファンは、いわゆるコンプレッサよりも静圧の小さい送風装置である。ファンは、筐体に設けられてもよく、筐体に設けられなくてもよい。ファンは、冷媒の導入専用のファンでもよく、冷媒の導入以外の用途にも使用されるファンでもよい。冷媒が空気の場合、筐体具備装置は、冷媒の導入に使用されるファンを有さなくてもよい。本発明および実施の形態において、冷媒が液体の場合、冷媒通路への冷媒の導入に、筐体具備装置の移動によって生じる液体の流れ、および、筐体具備装置が有するポンプによって生じる液体の流れの少なくとも一方が利用されてもよい。冷媒が液体の場合、筐体具備装置は、冷媒通路への冷媒の導入に使用されるポンプを有さなくてもよい。本発明および実施の形態において、冷媒通路を通過した後の冷媒を冷却するためのラジエータを有さないとは、冷媒通路を通過した後の冷媒を熱交換によって冷却する装置を有さないことを意味する。筐体具備装置が、飛行体、地面を走行するビークル、または産業用ロボットの場合、冷媒は空気である。筐体具備装置が、水上を走行するビークルまたは船外機の場合、冷媒は空気でもよく水でもよい。筐体具備装置が飛行体の場合、冷媒通路への冷媒の導入に、上述した3つの空気流の少なくとも1つが利用される。筐体具備装置がビークル、産業用ロボットまたは船外機であって冷媒が空気の場合、冷媒通路への冷媒の導入に、筐体具備装置の移動によって生じる空気流、および、筐体具備装置が有するファンによって生じる空気流の少なくとも一方が利用される。筐体具備装置が例えば電動車椅子のように非常に低速のビークルの場合、冷媒通路への冷媒の導入に、筐体具備装置が有するファンによって生じる空気流が利用される。筐体具備装置が水上を走行するビークルまたは船外機であって冷媒が水の場合、冷媒通路への冷媒の導入は、上述した2つの液体の流れの少なくとも一方が利用される。 In the present invention and embodiments, the refrigerant may be either liquid or gas. The liquid refrigerant may be water or may be other than water. The gas refrigerant may be air or may be other than air. In the present invention and the embodiments, the housing-equipped device introduces the gas or liquid around the housing-equipped device as a refrigerant into the refrigerant passage, and the refrigerant after passing through the refrigerant passage is introduced into the surroundings of the housing-equipped device. By configured to discharge to, it is meant that the coolant is not circulated in the enclosed device. In the present invention and the embodiments, when the refrigerant is air, introduction of the refrigerant into the refrigerant passage includes airflow generated by the movement of the housing-equipped device, airflow generated by the flight propeller of the housing-equipped device, and At least one airflow generated by a fan included in the enclosure may be utilized. It should be noted that the fan here is a blower having a smaller static pressure than a so-called compressor. The fan may or may not be provided in the housing. The fan may be a fan dedicated to introducing the refrigerant, or a fan used for purposes other than introducing the refrigerant. If the coolant is air, the enclosed device may not have a fan used to introduce the coolant. In the present invention and the embodiments, when the refrigerant is a liquid, the introduction of the refrigerant into the refrigerant passage is caused by the liquid flow caused by the movement of the housing-equipped device and the liquid flow caused by the pump of the housing-equipped device. At least one may be used. If the refrigerant is a liquid, the enclosure-equipped device may not have a pump used to introduce the refrigerant into the refrigerant passages. In the present invention and the embodiments, having no radiator for cooling the refrigerant after passing through the refrigerant passage means not having a device for cooling the refrigerant by heat exchange after passing through the refrigerant passage. means. If the enclosure-equipped device is an air vehicle, ground-driving vehicle, or industrial robot, the coolant is air. If the housing-equipped device is a vehicle or an outboard motor that travels on water, the coolant may be air or water. When the enclosure-equipped device is an aircraft, at least one of the three air flows described above is used to introduce the coolant into the coolant passage. When the housing-equipped device is a vehicle, an industrial robot, or an outboard motor, and the coolant is air, the introduction of the coolant into the coolant passage includes the airflow generated by the movement of the housing-equipped device and the housing-equipped device. At least one of the airflows generated by the fan with the airflow is utilized. If the encased device is a very low speed vehicle, such as a power wheelchair for example, the introduction of coolant into the coolant path will utilize the airflow generated by the fan included in the encased device. When the housing-equipped device is a vehicle or an outboard motor that travels on water and the coolant is water, at least one of the two liquid flows described above is used to introduce the coolant into the coolant passage.
 本発明および実施の形態において、冷媒流れ方向とは、冷媒が流れる方向である。本発明および実施の形態において、冷媒流れ方向を横断する横断面は、冷媒通路を横断する横断面でもある。横断面は冷媒通路の断面である。横断面において冷媒通路は筐体壁部で囲まれている。冷媒流れ方向を横断する横断面は、冷媒流れ方向に直交または略直交する面でもよい。分岐点または合流点の近傍でない限り、冷媒流れ方向は、冷媒通路の1つの横断面に対して1つだけ定義される方向でよい。冷媒流れ方向は、冷媒通路の中心軸の方向でもよい。筐体の用途によっては、冷媒流れ方向が逆方向に切り換わってもよい。 In the present invention and embodiments, the refrigerant flow direction is the direction in which the refrigerant flows. In the present invention and the embodiments, the cross section crossing the coolant flow direction is also the cross section crossing the coolant passage. The cross section is the cross section of the coolant passage. In cross section, the coolant passage is surrounded by the housing wall. The cross-section that traverses the coolant flow direction may be a plane orthogonal or substantially orthogonal to the coolant flow direction. As long as it is not near a branch point or a confluence point, there may be only one direction of refrigerant flow defined for one cross-section of the refrigerant passage. The coolant flow direction may be the direction of the central axis of the coolant passage. Depending on the use of the housing, the coolant flow direction may be switched to the opposite direction.
 本発明において、横断面における冷媒通路の最大幅が冷媒通路の冷媒流れ方向の長さよりも短いとは、ある1つの横断面における冷媒通路の最大幅が冷媒通路の冷媒流れ方向の長さよりも短いことを意味する。横断面の冷媒流れ方向の位置に関係なく、横断面における冷媒通路の最大幅が冷媒通路の冷媒流れ方向の長さよりも短くてもよい。
 本発明および実施の形態において、横断面における冷媒通路の最大幅とは、横断面において冷媒通路にのみ存在する線分の最大長さである。なお、冷媒通路にのみ存在する線分は、ラティス構造部と重なってもよい。
 冷媒通路が分岐点および/または合流点を有する場合、冷媒通路の冷媒流れ方向の長さが複数存在する場合がある。冷媒通路が分岐点および/または合流点を有する場合、横断面における冷媒通路の最大幅が冷媒通路の冷媒流れ方向の長さよりも短いとは、横断面における冷媒通路の最大幅が冷媒通路の冷媒流れ方向の最短長さよりも短いことを意味する。
In the present invention, that the maximum width of the refrigerant passage in a cross section is shorter than the length of the refrigerant passage in the direction of refrigerant flow means that the maximum width of the refrigerant passage in one cross section is shorter than the length of the refrigerant passage in the direction of refrigerant flow. means that The maximum width of the coolant passage in the cross section may be shorter than the length of the coolant passage in the coolant flow direction, regardless of the position of the cross section in the coolant flow direction.
In the present invention and embodiments, the maximum width of the coolant passage in the cross section is the maximum length of a line segment that exists only in the coolant passage in the cross section. A line segment existing only in the coolant passage may overlap with the lattice structure portion.
When the refrigerant passage has branch points and/or confluence points, the refrigerant passage may have a plurality of lengths in the refrigerant flow direction. When the refrigerant passage has a branch point and/or a confluence point, when the maximum width of the refrigerant passage in the cross section is shorter than the length of the refrigerant flow direction of the refrigerant passage, the maximum width of the refrigerant passage in the cross section is It means shorter than the shortest length in the machine direction.
 本発明および実施の形態において、冷媒通路は、冷媒流れ方向が変化する流れ方向変化部を有する場合がある。流れ方向変化部において冷媒流れ方向が変化するとは、流れ方向変化部における冷媒流れ方向が一直線状ではないことを意味する。流れ方向変化部における冷媒流れ方向の変化は、滑らかに曲がるような変化でもよく角張って曲がるような変化でもよい。例えば冷媒通路全体が円弧状の場合、冷媒通路全体が流れ方向変化部である。
 本発明および実施の形態において、冷媒通路は、横断面の面積が変化する断面変化部を有する場合がある。断面変化部において横断面の面積が変化するとは、断面変化部における横断面の面積が一定でないことを意味する。断面変化部において横断面の面積は、連続的に変化しても不連続に変化してもよい。断面変化部において横断面の面積は、冷媒流れ方向に拡大しても縮小してもよい。本発明および実施の形態において、冷媒通路は、流れ方向変化部と断面変化部とを有してもよい。この場合、流れ方向変化部の少なくとも一部が断面変化部の少なくとも一部を兼ねていてもよい。冷媒通路は、流れ方向変化部と断面変化部を別々に有してもよい。本発明および実施の形態において、冷媒通路は、流れ方向変化部と断面変化部のどちらも有さなくてもよい。
In the present invention and embodiments, the coolant passage may have a flow direction changing portion where the coolant flow direction changes. The fact that the direction of coolant flow changes at the flow direction changing portion means that the direction of coolant flow at the flow direction changing portion is not straight. The change in the flow direction of the refrigerant at the flow direction changing portion may be a change such as a smooth turn or a change such as an angular turn. For example, when the entire refrigerant passage is arc-shaped, the entire refrigerant passage is the flow direction changing portion.
In the present invention and embodiments, the coolant passage may have a cross-sectional change portion in which the cross-sectional area changes. The change in cross-sectional area in the cross-section changing portion means that the cross-sectional area in the cross-sectional changing portion is not constant. The cross-sectional area of the cross-sectional change portion may change continuously or discontinuously. The cross-sectional area of the cross-section changing portion may expand or contract in the coolant flow direction. In the present invention and embodiments, the coolant passage may have a flow direction change portion and a cross section change portion. In this case, at least a portion of the flow direction changing portion may also serve as at least a portion of the cross section changing portion. The coolant passage may have separate flow direction change portions and cross section change portions. In the present invention and the embodiments, the coolant passage may have neither the flow direction change portion nor the cross section change portion.
 <ラティス構造部>
 本発明のラティス構造部は、本発明の冷却構造に含まれる。冷却構造が、冷媒通路を形成する筐体壁部と連続するように形成されるラティス構部を含む場合、冷却構造は、熱源で発生した熱が冷媒通路内を流れる冷媒を介して筐体の外部に放熱させるように構成される。冷媒通路を形成する筐体壁部と連続するように形成されるラティス構造部は、筐体壁部の内表面から冷媒通路への熱移動を促進させるものであってもよい。筐体壁部の外表面と連続するように形成されるラティス構造部は、筐体壁部から筐体壁部の外部への放熱を促進させるものであってもよい。筐体壁部の内表面と連続するように形成されるラティス構造部は、収容空間から筐体壁部への熱移動を促進させるものであってもよい。ラティス構造部の材質は特に限定されない。ラティス構造部は一体成形されてもよい。ラティス構造部は例えば金属で形成されてもよく合成樹脂で形成されてもよい。ラティス構造部は、例えば積層造形法(アディティブ・マニュファクチャリング)によって作成されてもよい。ラティス構造部は、金属積層造形法によって作成されてもよい。金属積層造形法は、金属材料を用いた急速溶融急冷凝固プロセスを伴う積層造形法でもよい。具体的には、例えば、三次元積層造形法、溶射法、レーザーコーティング法、肉盛法等である。急速溶融急冷凝固プロセスを伴う積層造形法では、レーザービームや電子ビーム等で急速に金属粉末などの金属材料を溶融させる溶融工程と、急速に冷やして凝固させる凝固工程を繰り返し行うことにより、造形物が形成される。ラティス構造部と筐体壁部の少なくとも一部が、金属積層造形法によって一体成形されていてもよい。ラティス構造部が筐体壁部の外表面または内表面と連続するように形成される場合に、ラティス構造部と筐体壁部の外表面または内表面が金属積層造形法によって一体成形されてもよい。ラティス構造部が筐体壁部の外表面または内表面のいずれとも連続せず、冷媒通路を形成する筐体壁部と連続するように形成される場合に、ラティス構造部と筐体壁部の少なくとも一部が金属積層造形法によって一体成形されてもよい。
<Lattice structure>
The lattice structure of the present invention is included in the cooling structure of the present invention. In the case where the cooling structure includes a lattice structure formed so as to be continuous with the housing wall forming the coolant passage, the cooling structure allows the heat generated by the heat source to flow through the coolant flowing through the coolant passage to the housing. It is configured to dissipate heat to the outside. The lattice structure formed so as to be continuous with the housing wall forming the coolant passage may promote heat transfer from the inner surface of the housing wall to the coolant passage. The lattice structure formed so as to be continuous with the outer surface of the housing wall may promote heat dissipation from the housing wall to the outside of the housing wall. The lattice structure formed so as to be continuous with the inner surface of the housing wall may promote heat transfer from the housing space to the housing wall. The material of the lattice structure is not particularly limited. The lattice structure may be integrally molded. The lattice structure may be made of, for example, metal or synthetic resin. The lattice structure may be produced, for example, by additive manufacturing. The lattice structure may be made by metal additive manufacturing. The metal additive manufacturing method may be an additive manufacturing method involving a rapid melting, rapid cooling and solidification process using metallic materials. Specifically, for example, a three-dimensional layered manufacturing method, a thermal spraying method, a laser coating method, a build-up method, and the like. In the additive manufacturing method, which involves a rapid melting, rapid cooling and solidification process, the melting process of rapidly melting metallic materials such as metal powder with laser beams, electron beams, etc., and the solidification process of rapidly cooling and solidifying are repeatedly performed to create a modeled object. is formed. At least a part of the lattice structure and the housing wall may be integrally formed by metal additive manufacturing. When the lattice structure is formed so as to be continuous with the outer surface or inner surface of the housing wall, even if the lattice structure and the outer surface or inner surface of the housing wall are integrally molded by metal additive manufacturing. good. When the lattice structure is not continuous with either the outer surface or the inner surface of the housing wall but is formed so as to be continuous with the housing wall forming the coolant passage, the lattice structure and the housing wall At least a portion may be integrally formed by metal additive manufacturing.
 本発明および実施形態において、ラティス構造部は複数の棒状部からなる。そのため、ラティス構造部が冷媒通路を形成する筐体壁部と連続するように形成される場合、冷媒通路を流れる冷媒が、ラティス構造部の内部を流れる。ラティス構造部が筐体壁部の外表面または内表面と連続するように形成される場合、ラティス構造部に、筐体壁部のラティス構造が設けられる外表面または内表面と直交する方向の端から流体の出入りが可能である。流体は例えば空気でもよい。ラティス構造部を構成する棒状部は直線状でよい。本明細書において、「各棒状部」とは、ラティス構造部が有する全ての棒状部の各々を意味する。本発明の筐体は、複数のラティス構造部を有してもよい。1つの冷媒通路に複数のラティス構造部が設けられてもよい。例えば、1つの冷媒通路に、複数のラティス構造部が冷媒流れ方向に並んで配置されてもよい。冷媒流れ方向に交差する方向に隣接する2つのラティス構造部は、接触していてもよく、隙間を開けて配置されていてもよい。筐体壁部の外表面に複数のラティス構造部が設けられてもよい。筐体壁部の内表面に複数のラティス構造部が設けられてもよい。筐体壁部の外表面と内表面にそれぞれラティス構造部が設けられてもよい。但し、複数のラティス構造部は、フィンのように設けられない。つまり、多数のラティス構造部が、筐体壁部の同一平面上に等間隔に一直線上に配置されたり、筐体壁部の同一平面上に等間隔に放射状に配置されたり、筐体壁部の同一周面上にこの周面の周方向に等間隔に配置されたりすることはない。筐体は、冷媒通路に設けられるラティス構造部と、筐体壁部の外表面または内表面に設けられるラティス構造部を有してもよい。冷媒通路を形成する筐体壁部と連続するように形成されるラティス構造部は、筐体壁部から冷媒通路への熱移動を促進させるものであってもよい。筐体壁部の外表面と連続するように形成されるラティス構造部は、筐体壁部から筐体壁部の外部への放熱を促進させるものであってもよい。筐体壁部の内表面と連続するように形成されるラティス構造部は、収容空間から筐体壁部への熱移動を促進させるものであってもよい。本発明および実施の形態において、ラティス構造部の比表面積は、筐体の中で元も大きい比表面積であってもよい。 In the present invention and embodiments, the lattice structure consists of a plurality of bar-shaped parts. Therefore, when the lattice structure is formed so as to be continuous with the housing wall forming the coolant passage, the coolant flowing through the coolant passage flows inside the lattice structure. When the lattice structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall, the lattice structure has an edge in a direction orthogonal to the outer surface or the inner surface of the housing wall on which the lattice structure is provided. Fluid can enter and exit from the The fluid may be air, for example. The rod-shaped portion that constitutes the lattice structure may be linear. In the present specification, "each rod-shaped portion" means each of all the rod-shaped portions of the lattice structure. The housing of the present invention may have multiple lattice structures. A plurality of lattice structures may be provided in one coolant passage. For example, a plurality of lattice structures may be arranged side by side in the coolant flow direction in one coolant passage. Two lattice structure portions adjacent to each other in a direction crossing the coolant flow direction may be in contact with each other or may be arranged with a gap therebetween. A plurality of lattice structures may be provided on the outer surface of the housing wall. A plurality of lattice structures may be provided on the inner surface of the housing wall. A lattice structure may be provided on each of the outer surface and the inner surface of the housing wall. However, multiple lattice structures are not provided like fins. That is, a large number of lattice structures may be arranged on the same plane of the housing wall in a straight line at equal intervals, may be arranged radially on the same plane of the housing wall at equal intervals, or may be arranged on the same plane of the housing wall at equal intervals. are not arranged at equal intervals in the circumferential direction of this peripheral surface on the same peripheral surface. The housing may have a lattice structure provided in the coolant passage and a lattice structure provided on the outer surface or the inner surface of the housing wall. The lattice structure formed so as to be continuous with the housing wall forming the coolant passage may promote heat transfer from the housing wall to the coolant passage. The lattice structure formed so as to be continuous with the outer surface of the housing wall may promote heat dissipation from the housing wall to the outside of the housing wall. The lattice structure formed so as to be continuous with the inner surface of the housing wall may promote heat transfer from the housing space to the housing wall. In the present invention and embodiments, the specific surface area of the lattice structure may be the larger specific surface area in the housing.
 本発明および実施の形態において、冷媒通路を形成する筐体壁部とラティス構造部とが連続するように形成されるとは、冷媒通路を形成する筐体壁部の少なくとも一部とラティス構造部が一体成形されているか、もしくは、冷媒通路を形成する筐体壁部とラティス構造部が接触することを意味する。ラティス構造部は、筐体壁部の一部分と一体成形され、且つ、筐体壁部の他の一部分に接触していてもよい。例えば、ラティス構造部は、筐体壁部の内表面を形成する部品と接触し、筐体壁部の外表面を形成する部品と一体成形されてもよい。冷媒通路を形成する筐体壁部とラティス構造部が接触する場合、例えば、筐体壁部の内表面を形成する部品と、筐体壁部の外表面を形成する部品と、ラティス構造部とを形成した後、これらを組み合わせて筐体壁部とラティス構造部を接触させてもよい。また、例えば、筐体壁部とラティス構造部を形成した後、筐体壁部の冷媒通路にラティス構造部を挿入することで、冷媒通路を形成する筐体壁部とラティス構造部を接触させてもよい。冷媒通路を形成する筐体壁部とラティス構造部が接触する場合、冷媒通路を形成する筐体壁部に対するラティス構造部の相対位置が固定されるように筐体は構成されることが好ましい。例えば、冷媒通路の冷媒流れ方向の長さとラティス構造部の冷媒流れ方向の長さがほぼ同じであって、冷媒通路の入口と出口にラティス構造部の冷媒流れ方向の移動を規制する部材が配置されてもよい。また、例えば、ラティス構造部の冷媒流れ方向の移動を規制する段差が冷媒通路に形成されてもよい。また、例えば、筐体壁部とラティス構造部が、接着剤または熱溶着などによって接続されてもよい。 In the present invention and the embodiments, the expression that the housing wall forming the coolant passage and the lattice structure are formed so as to be continuous means that at least a portion of the housing wall forming the coolant passage and the lattice structure is integrally formed, or the housing wall portion forming the refrigerant passage and the lattice structure portion are in contact with each other. The lattice structure may be integrally molded with a portion of the housing wall and may be in contact with another portion of the housing wall. For example, the lattice structure may be in contact with the parts forming the inner surface of the housing wall and integrally molded with the parts forming the outer surface of the housing wall. When the housing wall forming the coolant passage and the lattice structure contact each other, for example, a part forming the inner surface of the housing wall, a part forming the outer surface of the housing wall, and the lattice structure. are formed, these may be combined to bring the housing wall portion and the lattice structure portion into contact with each other. Further, for example, after the housing wall and the lattice structure are formed, the lattice structure is inserted into the refrigerant passage of the housing wall, thereby bringing the housing wall forming the refrigerant passage into contact with the lattice structure. may When the housing wall forming the coolant passage and the lattice structure contact each other, the housing is preferably configured such that the relative position of the lattice structure with respect to the housing wall forming the coolant passage is fixed. For example, the length of the refrigerant passage in the refrigerant flow direction and the length of the lattice structure in the refrigerant flow direction are substantially the same, and members for restricting the movement of the lattice structure in the refrigerant flow direction are arranged at the inlet and outlet of the refrigerant passage. may be Further, for example, a step that restricts the movement of the lattice structure in the coolant flow direction may be formed in the coolant passage. Further, for example, the housing wall portion and the lattice structure portion may be connected by an adhesive, heat welding, or the like.
 本発明および実施の形態において、筐体壁部の外表面または内表面とラティス構造部とが連続するように形成されるとは、筐体壁部の外表面または内表面とラティス構造部が一体成形されているか、もしくは、筐体壁部の外表面または内表面とラティス構造部が接触することを意味する。
 筐体壁部の外表面または内表面とラティス構造部が一体成形されている場合、筐体壁部の外表面および内表面の両方とラティス構造部とが一体成形されていてもよく、されていなくてもよい。筐体壁部の外表面または内表面とラティス構造部が一体成形されている場合、筐体壁部全体とラティス構造部とが1つの部品によって形成されていてもよい。筐体壁部の外表面または内表面とラティス構造部が一体成形されている場合、筐体壁部の一部とラティス構造部とが1つの部品によって形成され、この部品と、筐体壁部を構成する別の部品とが接続されていてもよい。
 筐体壁部の外表面または内表面とラティス構造部とが接触する場合、筐体壁部の少なくとも一部分を形成する部品と、ラティス構造部とが接続されていてもよい。筐体壁部の外表面または内表面とラティス構造部が接触する場合、筐体壁部に対するラティス構造部の相対位置が固定されるように筐体は構成されることが好ましい。例えば、筐体壁部に、ラティス構造部が筐体壁部に対して移動するのを規制する部材が配置されてもよい。また、例えば、ラティス構造部が、接着剤または熱溶着などによって筐体壁部の外表面または内表面に接続されてもよい。
In the present invention and the embodiments, forming the outer surface or inner surface of the housing wall and the lattice structure so as to be continuous means that the outer surface or the inner surface of the housing wall and the lattice structure are integrally formed. Molded or otherwise means contact between the outer or inner surface of the housing wall and the lattice structure.
When the outer surface or the inner surface of the housing wall and the lattice structure are integrally molded, both the outer surface and the inner surface of the housing wall and the lattice structure may or may not be integrally molded. It doesn't have to be. When the outer surface or inner surface of the housing wall and the lattice structure are integrally formed, the entire housing wall and the lattice structure may be formed by one part. When the outer surface or the inner surface of the housing wall and the lattice structure are integrally formed, a part of the housing wall and the lattice structure are formed by one part, and this part and the housing wall are formed. may be connected to another component that constitutes the
A part forming at least a portion of the housing wall and the lattice structure may be connected when the outer surface or the inner surface of the housing wall and the lattice structure are in contact. The housing is preferably configured such that the relative position of the lattice structure with respect to the housing wall is fixed when the lattice structure contacts the outer or inner surface of the housing wall. For example, a member that restricts movement of the lattice structure with respect to the housing wall may be arranged on the housing wall. Also, for example, the lattice structure may be connected to the outer surface or the inner surface of the housing wall by adhesive, heat welding, or the like.
 本発明において、複数のドロネー点または複数の母点(仮想点)は3次元にランダムに分布する。複数の点がランダムに分布するとは、複数の点が周期的な規則性をもたずに分布することを意味する。例えば、ラティス構造部の一部に含まれる複数のドロネー点が等間隔に配置されている場合、複数のドロネー点はランダムに分布されていない。また、例えば、ラティス構造部をある方向に見て、ラティス構造部の一部に含まれる複数のドロネー点が全て平行な複数の直線上に配置される場合、複数のドロネー点はランダムに分布されていない。 In the present invention, multiple Delaunay points or multiple generating points (virtual points) are randomly distributed in three dimensions. Random distribution of a plurality of points means that the points are distributed without periodic regularity. For example, when a plurality of Delaunay points included in a portion of the lattice structure are arranged at regular intervals, the plurality of Delaunay points are not randomly distributed. Further, for example, when the lattice structure is viewed in a certain direction and all of the plurality of Delaunay points included in a portion of the lattice structure are arranged on a plurality of parallel straight lines, the plurality of Delaunay points are randomly distributed. not
 本発明および実施の形態において、3次元のドロネー図とは、3次元空間を複数のドロネー点に基づいてドロネー三角形分割することで得られる図である。ドロネー三角形分割により2つのドロネー点が線分で結ばれる。この線分をドロネー辺という。ドロネー三角錐は6つのドロネー辺によって形成される三角錐である。本発明では複数のドロネー点がランダムに分布しているため、ドロネー図における複数のドロネー三角錐の形状およびサイズは不揃いである。ドロネー図は、ドロネー三角錐の外接球の中にドロネー点を有さないという幾何学的特徴を有する。 In the present invention and embodiments, a three-dimensional Delaunay diagram is a diagram obtained by Delaunay triangulation of a three-dimensional space based on a plurality of Delaunay points. The Delaunay triangulation connects two Delaunay points with a line segment. This segment is called a Delaunay edge. A Delaunay pyramid is a pyramid formed by six Delaunay sides. Since the plurality of Delaunay points are randomly distributed in the present invention, the shape and size of the plurality of Delaunay pyramids in the Delaunay diagram are irregular. The Delaunay diagram has the geometric feature that it has no Delaunay points in the circumsphere of the Delaunay triangular pyramid.
 本発明および実施の形態において、3次元のボロノイ図とは、3次元空間を複数の母点に基づいてボロノイ分割することで得られる図である。ボロノイ多面体は、3次元のボロノイ分割によって形成される多面体である。本発明および実施の形態において、ボロノイ境界面は、ボロノイ多面体を形成する面であって、2つの母点を結ぶ線分の垂直二等分面である。3次元のボロノイ図は、ボロノイ境界面のみで形成されるボロノイ多面体と、ボロノイ境界面と分割対象となる3次元空間の端面で形成されるボロノイ多面体を含む。本発明では複数の母点がランダムに分布しているため、ボロノイ図における複数のボロノイ多面体の面数、形状、およびサイズは不揃いである。ボロノイ図は、ボロノイ境界面のみで構成されたボロノイ多面体が凸多面体であるという幾何学的特徴を有する。 In the present invention and embodiments, a three-dimensional Voronoi diagram is a diagram obtained by performing Voronoi division of a three-dimensional space based on a plurality of generating points. A Voronoi polyhedron is a polyhedron formed by a three-dimensional Voronoi tessellation. In the present invention and the embodiments, a Voronoi boundary surface is a surface forming a Voronoi polyhedron and is a perpendicular bisector of a line segment connecting two generating points. The three-dimensional Voronoi diagram includes a Voronoi polyhedron formed only by the Voronoi boundary surfaces and a Voronoi polyhedron formed by the Voronoi boundary surfaces and the end surfaces of the three-dimensional space to be divided. In the present invention, multiple generating points are randomly distributed, so the number of faces, shapes, and sizes of multiple Voronoi polyhedrons in the Voronoi diagram are irregular. A Voronoi diagram has a geometric feature that a Voronoi polyhedron composed only of Voronoi boundary surfaces is a convex polyhedron.
 ドロネーラティス構造は、複数のドロネー辺を形成する複数の第1棒状部からなる。本発明および実施の形態において、複数のドロネー辺を形成する複数の第1棒状部とは、複数の第1棒状部の各々がドロネー辺の少なくとも一部を形成することを意味する。各第1棒状部の少なくとも一端は、ドロネー点において、他の第1棒状部と連結される。
 ボロノイラティス構造は、ボロノイ境界面のみで形成される複数のボロノイ多面体の辺を形成する複数の第1棒状部からなる。本発明および実施の形態において、ボロノイ境界面のみで形成される複数のボロノイ多面体とは、複数のボロノイ境界面によってそれぞれ形成される複数のボロノイ多面体を意味する。本発明および実施の形態において、ボロノイ境界面のみで形成される複数のボロノイ多面体の辺を形成する複数の第1棒状部とは、複数の第1棒状部の各々が、複数のボロノイ境界面のみで形成される1つのボロノイ多面体の1つの辺の少なくとも一部を形成することを意味する。各第1棒状部の少なくとも一端は、他の第1棒状部と連結される。1つの第1棒状部の端に連結される他の第1棒状部の最大数は3本である。ボロノイ図における母点は、第1棒状部上に存在しない。そのため、ボロノイ図における母点は、物理的に存在しない仮想点である。
 なお、本明細書において、「各第1棒状部」とは、ドロネーラティス構造部またはボロノイラティス構造部が有する全ての第1棒状部の各々を意味する。
The Delaunay lattice structure consists of a plurality of first rods forming a plurality of Delaunay sides. In the present invention and embodiments, a plurality of first rod-shaped portions forming a plurality of Delaunay sides means that each of the plurality of first rod-shaped portions forms at least part of a Delaunay side. At least one end of each first rod-shaped portion is connected to another first rod-shaped portion at the Delaunay point.
The Voronoi lattice structure consists of a plurality of first rod-shaped portions forming sides of a plurality of Voronoi polyhedra formed only by Voronoi interfaces. In the present invention and embodiments, a plurality of Voronoi polyhedrons formed only by Voronoi interfaces means a plurality of Voronoi polyhedrons respectively formed by a plurality of Voronoi interfaces. In the present invention and the embodiments, the plurality of first rod-shaped portions forming the sides of the plurality of Voronoi polyhedrons formed only by Voronoi boundary surfaces means that each of the plurality of first rod-shaped portions is formed only by a plurality of Voronoi boundary surfaces. forming at least part of one side of one Voronoi polyhedron formed by At least one end of each first rod-shaped portion is connected to another first rod-shaped portion. The maximum number of other first rod-shaped parts connected to the end of one first rod-shaped part is three. No generatrix in the Voronoi diagram exists on the first bar. Therefore, generating points in the Voronoi diagram are virtual points that do not physically exist.
In this specification, "each first rod-shaped part" means each of all the first rod-shaped parts of the Delaunay lattice structure or the Voronoi lattice structure.
 本発明および実施の形態において、ドロネーラティス構造部は、互いに直交する3つの線分がそれぞれ、第1棒状部同士の連結点によって形成された4つのドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成される。本発明および実施の形態において、ボロノイラティス構造部は、互いに直交する3つの線分がそれぞれ、第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成される。第1棒状部同士の連結点によって形成された頂点のみを有するボロノイ多面体は、ボロノイ境界面のみで形成されるボロノイ多面体である。互いに直交する3つの線分は、任意の線分である。互いに直交する3つの線分は、仮想の線分である。冷却構造が冷媒通路を形成する筐体壁部と連続するように形成されるラティス構造部を含む場合、例えば、互いに直交する3つの線分のうち2つの線分が1つの横断面に含まれてもよい。なお、横断面に含まれる線分とは、横断面と交差せず横断面に含まれる線分である。横断面に含まれる線分とは、全体が冷媒通路内に存在する線分である。冷却構造が筐体壁部の外表面または内表面と連続するように形成されるラティス構造部を含む場合、例えば、互いに直交する3つの線分のうちのいずれか1つまたは2つの線分がラティス構造部と連続する筐体壁部の外表面または内表面と平行でもよい。 In the present invention and embodiments, the Delaunay lattice structure comprises two or more Delaunay triangular pyramids each having four Delaunay points, each of which has four Delaunay points formed by the connecting points of the first rod-shaped parts. formed to pass through In the present invention and embodiments, the Voronoi lattice structure is such that three mutually orthogonal line segments each pass through two or more Voronoi polyhedrons having only vertices formed by connecting points between the first rod-shaped portions. It is formed. A Voronoi polyhedron having only vertices formed by connecting points between the first rod-shaped portions is a Voronoi polyhedron formed only by Voronoi boundary surfaces. Three line segments orthogonal to each other are arbitrary line segments. Three line segments orthogonal to each other are virtual line segments. When the cooling structure includes a lattice structure formed so as to be continuous with the housing wall forming the coolant passage, for example, two of the three line segments orthogonal to each other are included in one cross section. may A line segment included in the cross section is a line segment included in the cross section without intersecting the cross section. A line segment included in the cross section is a line segment that exists entirely within the refrigerant passage. When the cooling structure includes a lattice structure formed so as to be continuous with the outer surface or the inner surface of the housing wall, for example, any one or two of the three line segments orthogonal to each other It may be parallel to the outer surface or the inner surface of the housing wall that is continuous with the lattice structure.
 本発明および実施の形態において、第1棒状部が筐体壁部と連続するように形成されるとは、第1棒状部と筐体壁部の少なくとも一部とが一体成形されているか、もしくは、第1棒状部と筐体壁部が接触することを意味する。 In the present invention and the embodiments, the first rod-shaped portion formed so as to be continuous with the housing wall portion means that the first rod-shaped portion and at least a portion of the housing wall portion are integrally molded, or , means that the first rod portion and the housing wall portion are in contact with each other.
 本発明および実施の形態において、ラティス構造部が複数の第2棒状部を有する場合、複数の第2棒状部は、筐体壁部と連続するように形成される第2棒状部を含む。複数の第2棒状部の全てが筐体壁部と連続するように形成されていてもよい。第2棒状部が筐体壁部と連続するように形成されるとは、第2棒状部と筐体壁部の少なくとも一部とが一体成形されているか、もしくは、第2棒状部と筐体壁部が接触することを意味する。ラティス構造部が複数の第2棒状部を有する場合、複数の第2棒状部は、1つのドロネー点またはボロノイ多面体の1つの頂点を形成する第1棒状部の端に直接的に連結される第2棒状部を含む。複数の第2棒状部の全てが複数の第1棒状部の端に直接的に連結されてもよい。1つのドロネー点またはボロノイ多面体の1つの頂点は、複数の第1棒状部の連結点で形成される。そのため、第2棒状部が第1棒状部の端に直接的に連結される場合、この第2棒状部は複数の第1棒状部の端に直接的に連結される。複数の第2棒状部の長さの最大値は、複数の第1棒状部の長さの最大値以下であってもよい。 In the present invention and the embodiment, when the lattice structure has a plurality of second rod-shaped portions, the plurality of second rod-shaped portions include second rod-shaped portions formed so as to be continuous with the housing wall portion. All of the plurality of second rod-shaped portions may be formed so as to be continuous with the housing wall portion. The second rod-shaped portion formed so as to be continuous with the housing wall portion means that the second rod-shaped portion and at least a part of the housing wall portion are integrally molded, or that the second rod-shaped portion and the housing It means that the walls touch. When the lattice structure has a plurality of second rods, the plurality of second rods are directly connected to the ends of the first rods forming one Delaunay point or one vertex of the Voronoi polyhedron. Includes 2 rods. All of the plurality of second rod-shaped portions may be directly connected to ends of the plurality of first rod-shaped portions. One Delaunay point or one vertex of the Voronoi polyhedron is formed by connecting points of a plurality of first rod-shaped parts. Therefore, when the second rod-shaped portion is directly connected to the ends of the first rod-shaped portions, the second rod-shaped portion is directly connected to the ends of the plurality of first rod-shaped portions. The maximum length of the plurality of second rod-shaped portions may be less than or equal to the maximum length of the plurality of first rod-shaped portions.
 本発明および実施の形態において、第2棒状部が連結される第1棒状部の端と筐体壁部との間の最短距離とは、複数の第1棒状部のうち第2棒状部が連結される第1棒状部の数が複数の場合、第2棒状部が連結される複数の第1棒状部の端と筐体壁部との間の最短距離のうち最も短い距離を意味する。なお、本発明および実施の形態において、複数の第1棒状部のうち第2棒状部が連結される第1棒状部の数は1つでもよい。 In the present invention and the embodiments, the shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion means that the second rod-shaped portion among the plurality of first rod-shaped portions is connected. When the number of the first rod-shaped portions connected is plural, it means the shortest distance among the shortest distances between the ends of the plurality of first rod-shaped portions to which the second rod-shaped portions are connected and the housing wall portion. In addition, in the present invention and the embodiment, the number of the first rod-shaped portion to which the second rod-shaped portion is connected among the plurality of first rod-shaped portions may be one.
 本発明および実施の形態において、複数の第1棒状部で囲まれたボロノイ境界面とは、1つのボロノイ境界面を形成する複数の辺が全て第1棒状部で形成されていることを意味する。本発明および実施の形態において、ボロノイ境界面の両側に位置する2つの母点とは、この2つの母点を結ぶ線分の垂直二等分面がこのボロノイ境界面となるような2つの母点を意味する。 In the present invention and embodiments, a Voronoi boundary surface surrounded by a plurality of first rod-shaped portions means that a plurality of sides forming one Voronoi boundary surface are all formed of the first rod-shaped portions. . In the present invention and the embodiments, the two generating points positioned on both sides of the Voronoi boundary surface are two generating points such that the perpendicular bisector of the line segment connecting the two generating points is the Voronoi boundary surface. means a point.
 本発明において、ラティス構造部の冷媒流れ方向の長さが、ラティス構造部を通る横断面における冷媒通路の最大幅よりも長いとは、ある1つの横断面における冷媒通路の最大幅が、ラティス構造部の冷媒流れ方向の長さよりも短いことを意味する。横断面の冷媒流れ方向の位置に関係なく、横断面における冷媒通路の最大幅がラティス構造部の冷媒流れ方向の長さよりも短くてもよい。
 本発明において、ラティス構造部の冷媒流れ方向の長さが、ラティス構造部を通る横断面における冷媒通路の周長よりも長いとは、ある1つの横断面における冷媒通路の周長が、ラティス構造部の冷媒流れ方向の長さよりも短いことを意味する。横断面の冷媒流れ方向の位置に関係なく、横断面における冷媒通路の周長がラティス構造部の冷媒流れ方向の長さよりも短くてもよい。
 本発明および実施の形態において、横断面における冷媒通路の周長とは、冷媒通路が外周面と内周面を有する場合冷媒通路の外周面の周長を意味する。
 冷媒通路が分岐点および/または合流点を有する場合、ラティス構造部も分岐点および/または合流点を有する場合がある。ラティス構造部が分岐点および/または合流点を有する場合、ラティス構造部の冷媒流れ方向の長さが複数存在する場合がある。ラティス構造部が分岐点または合流点を有する場合、ラティス構造部を通る横断面における冷媒通路の最大幅または周長よりもラティス構造部の冷媒流れ方向の長さが長いとは、ラティス構造部を通る横断面における冷媒通路の最大幅または周長よりもラティス構造部の冷媒流れ方向の最大長さが長いことを意味する。
 本発明において、ラティス構造部を通る横断面における冷媒通路の最大幅または周長よりもラティス構造部の冷媒流れ方向の長さが長くなるように複数のユニットセルが連結されるとは、ラティス構造部を通る横断面における冷媒通路の最大幅または周長よりもラティス構造部の冷媒流れ方向の長さが長くなるように、ラティス構造部よりも冷媒流れ方向の長さが短い複数のユニットセルが連結されることを意味する。ラティス構造部を通る横断面における冷媒通路の最大幅または周長よりもラティス構造部の冷媒流れ方向の長さが長くなるように、冷媒流れ方向に複数のユニットセルが連結されてもよい。
In the present invention, the expression that the length of the lattice structure in the coolant flow direction is longer than the maximum width of the coolant passage in a cross section passing through the lattice structure means that the maximum width of the coolant passage in one cross section is equal to that of the lattice structure. It means that it is shorter than the length of the part in the refrigerant flow direction. Regardless of the position of the cross section in the coolant flow direction, the maximum width of the coolant passage in the cross section may be shorter than the length of the lattice structure in the coolant flow direction.
In the present invention, the phrase that the length of the lattice structure in the refrigerant flow direction is longer than the circumferential length of the refrigerant passage in a cross section passing through the lattice structure means that the circumferential length of the refrigerant passage in a certain cross section is equal to that of the lattice structure. It means that it is shorter than the length of the part in the refrigerant flow direction. The circumferential length of the coolant passage in the cross section may be shorter than the length of the lattice structure in the coolant flow direction regardless of the position of the cross section in the coolant flow direction.
In the present invention and embodiments, the circumferential length of the coolant passage in the cross section means the circumferential length of the outer circumferential surface of the refrigerant passage when the refrigerant passage has an outer circumferential surface and an inner circumferential surface.
If the coolant passages have branch points and/or junctions, the lattice structure may also have branch points and/or junctions. If the lattice structure has branch points and/or confluences, the lattice structure may have a plurality of lengths in the coolant flow direction. When the lattice structure has branch points or confluences, the fact that the length of the lattice structure in the coolant flow direction is longer than the maximum width or the circumferential length of the coolant passage in the cross section passing through the lattice structure means that the lattice structure is It means that the maximum length of the lattice structure in the coolant flow direction is longer than the maximum width or circumference of the coolant passage in the cross section passing through.
In the present invention, the term "lattice structure" means that a plurality of unit cells are connected so that the length of the lattice structure in the coolant flow direction is longer than the maximum width or circumferential length of the coolant passage in the cross section passing through the lattice structure. A plurality of unit cells having a length in the refrigerant flow direction shorter than that of the lattice structure is arranged so that the length of the lattice structure in the refrigerant flow direction is longer than the maximum width or circumference of the refrigerant passage in a cross section passing through the lattice structure. means connected. A plurality of unit cells may be connected in the coolant flow direction such that the length of the lattice structure in the coolant flow direction is longer than the maximum width or circumference of the coolant passage in the cross section passing through the lattice structure.
 本発明のラティス構造部は、冷媒流れ方向を横断する第1横断面に含まれる互いに直交する2つの線分の方向の各々において、筐体壁部の一部分とラティス構造部と筐体壁部の他の一部分とが連続するように形成される場合がある。第1横断面に含まれる線分の方向とは、第1横断面に含まれる線分と平行なだけでなく、この線分と同軸の方向である。第1横断面に含まれる線分の方向とは、第1横断面と交差せず第1横断面に含まれる直線状の方向である。冷媒流れ方向を横断する第1横断面の定義は、上述した横断面の定義と同じである。第1横断面に含まれる互いに直交する2つの線分の方向の各々において筐体壁部の一部分とラティス構造部と筐体壁部の他の一部分とが連続するように形成されるとは、ある1つの第1横断面に含まれる互いに直交する2つの線分の方向の各々において筐体壁部の一部分とラティス構造部と筐体壁部の他の一部分とが連続するように形成されることを意味する。複数の第1横断面の各々に含まれる互いに直交する2つの線分の方向の各々において筐体壁部の一部分とラティス構造部と筐体壁部の他の一部分とが連続するように形成されてもよい。
 第1横断面に含まれる互いに直交する2つの線分の方向の各々において筐体壁部の一部分とラティス構造部と筐体壁部の他の一部分とが連続するように形成されることの意味の理解を助けるため、第1横断面に含まれる第1線分の方向において筐体壁部の一部分とラティス構造部と筐体壁部の他の一部分とが連続するように形成される場合について説明する。第1横断面において第1線分を含む第1直線上に、筐体壁部の一部分とラティス構造部と筐体壁部の他の一部分が並ぶ。第1直線に平行な第2直線上において、筐体壁部の一部分とラティス構造部の棒状部が連続するように形成される。筐体壁部の一部分とラティス構造部の棒状部が連続するように形成されるとは、筐体壁部の一部分とラティス構造部の棒状部が一体成形されているか、もしくは、筐体壁部の一部分とラティス構造部の棒状部が接触することを意味する。第2直線は第1横断面に含まれても含まれなくてもよい。つまり、筐体壁部の一部分とラティス構造部の棒状部とが連続する箇所は、第1横断面に含まれても含まれなくてもよい。第1直線に平行な第3直線上において、筐体壁部の他の一部分とラティス構造部の棒状部が連続するように形成される。筐体壁部の他の一部分とラティス構造部の棒状部が連続するように形成されることの意味は、上記と同様である。第3直線は第1横断面に含まれても含まれなくてもよい。つまり、筐体壁部の他の一部分とラティス構造部の棒状部が連続する箇所は、第1横断面に含まれても含まれなくてもよい。筐体壁部の一部分とラティス構造部の棒状部とが連続する箇所と、筐体壁部の他の一部分とラティス構造部の棒状部が連続する箇所の両方が、第1横断面に含まれてもよい。第2直線は第1直線と同じでも異なってもよい。第3直線は第1直線と同じでも異なってもよい。第3直線は第2直線と同じでも異なってもよい。
The lattice structure of the present invention has a portion of the housing wall, the lattice structure, and the housing wall in each direction of two mutually orthogonal line segments included in a first cross section that traverses the coolant flow direction. It may be formed so as to be continuous with another part. The direction of the line segment included in the first cross section is not only parallel to the line segment included in the first cross section, but also the direction coaxial with this line segment. The direction of a line segment included in the first cross-section is a linear direction included in the first cross-section without crossing the first cross-section. The definition of the first cross section across the refrigerant flow direction is the same as the definition of the cross section described above. A portion of the housing wall portion, the lattice structure portion, and another portion of the housing wall portion are formed so as to be continuous in each of the directions of two mutually orthogonal line segments included in the first cross section, A portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are formed so as to be continuous in each of directions of two line segments that are included in one first cross section and are orthogonal to each other. means that A portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are formed so as to be continuous in each of directions of two mutually orthogonal line segments included in each of the plurality of first cross sections. may
Meaning that a portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are formed so as to be continuous in each of the directions of the two line segments that are included in the first cross section and are orthogonal to each other. In order to facilitate understanding of the above, the case where a portion of the housing wall portion, the lattice structure portion, and another portion of the housing wall portion are formed so as to be continuous in the direction of the first line segment included in the first cross section explain. A portion of the housing wall portion, the lattice structure portion, and the other portion of the housing wall portion are aligned on a first straight line including the first line segment in the first cross section. On a second straight line parallel to the first straight line, a portion of the housing wall and the rod-shaped portion of the lattice structure are formed so as to be continuous. A portion of the housing wall portion and the rod-shaped portion of the lattice structure are formed so as to be continuous means that a portion of the housing wall portion and the rod-shaped portion of the lattice structure are formed integrally, or the housing wall portion is in contact with the rod-like portion of the lattice structure. The second straight line may or may not be included in the first cross-section. In other words, the portion where the portion of the housing wall and the rod-like portion of the lattice structure are continuous may or may not be included in the first cross section. On a third straight line parallel to the first straight line, another part of the housing wall and the rod-shaped portion of the lattice structure are formed so as to be continuous. The meaning of the fact that the other portion of the housing wall and the rod-like portion of the lattice structure are formed to be continuous is the same as described above. The third straight line may or may not be included in the first cross-section. In other words, the portion where the other portion of the housing wall and the rod-like portion of the lattice structure are continuous may or may not be included in the first cross section. Both the portion where the portion of the housing wall and the rod-shaped portion of the lattice structure are continuous and the portion where the other portion of the housing wall and the rod-shaped portion of the lattice structure are continuous are included in the first cross section. may The second straight line may be the same as or different from the first straight line. The third straight line may be the same as or different from the first straight line. The third straight line may be the same as or different from the second straight line.
 本発明において、冷媒通路を形成する筐体壁部とラティス構造部とが連続するように形成される場合、筐体壁部の厚み方向におけるラティス構造部または冷媒通路の最小幅または最大幅は、以下のような寸法でもよい。筐体壁部の厚み方向における筐体壁部の内表面から冷媒通路までの最短距離と筐体壁部の厚み方向における筐体壁部の外表面から冷媒通路までの最長距離の少なくとも一方が、筐体壁部の厚み方向におけるラティス構造部または冷媒通路の最小幅よりも小さくてもよい。筐体壁部の厚み方向における筐体壁部の内表面から冷媒通路までの最短距離は、筐体壁部の厚み方向におけるラティス構造部または冷媒通路の最小幅よりも小さくてもよい。筐体壁部の厚み方向における筐体壁部の外表面から冷媒通路までの最短距離は、筐体壁部の厚み方向におけるラティス構造部または冷媒通路の最小幅よりも小さくてもよい。筐体壁部の厚み方向における筐体壁部の内表面から冷媒通路までの最短距離と筐体壁部の厚み方向における筐体壁部の外表面から冷媒通路までの最長距離の両方が、筐体壁部の厚み方向におけるラティス構造部または冷媒通路の最小幅よりも小さくてもよい。筐体壁部の厚み方向における筐体壁部の内表面から冷媒通路までの最長距離は、筐体壁部の厚み方向におけるラティス構造部または冷媒通路の最大幅よりも小さくてもよく、それより大きくてもよく、同じでもよい。筐体壁部の厚み方向における筐体壁部の外表面から冷媒通路までの最長距離は、筐体壁部の厚み方向におけるラティス構造部または冷媒通路の最大幅よりも小さくてもよく、それより大きくてもよく、同じでもよい。なお、筐体壁部の厚み方向とは、筐体壁部の外表面と内表面が並ぶ方向である。言い換えると、筐体壁部の厚み方向とは、筐体壁部の内表面から外表面に向かう方向である。 In the present invention, when the housing wall portion forming the coolant passage and the lattice structure portion are formed so as to be continuous, the minimum or maximum width of the lattice structure portion or the coolant passage in the thickness direction of the housing wall portion is The dimensions may be as follows. At least one of the shortest distance from the inner surface of the housing wall to the coolant passage in the thickness direction of the housing wall and the longest distance from the outer surface of the housing wall to the coolant passage in the thickness direction of the housing wall is It may be smaller than the minimum width of the lattice structure or coolant passage in the thickness direction of the housing wall. The shortest distance from the inner surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the minimum width of the lattice structure or the coolant passage in the thickness direction of the housing wall. The shortest distance from the outer surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the minimum width of the lattice structure or the coolant passage in the thickness direction of the housing wall. Both the shortest distance from the inner surface of the housing wall to the refrigerant passage in the thickness direction of the housing wall and the longest distance from the outer surface of the housing wall to the refrigerant passage in the thickness direction of the housing wall are It may be smaller than the minimum width of the lattice structure or coolant passage in the thickness direction of the body wall. The longest distance from the inner surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the maximum width of the lattice structure or the coolant passage in the thickness direction of the housing wall. It can be bigger or the same. The longest distance from the outer surface of the housing wall to the coolant passage in the thickness direction of the housing wall may be smaller than the maximum width of the lattice structure or the coolant passage in the thickness direction of the housing wall. It can be bigger or the same. The thickness direction of the housing wall is the direction in which the outer surface and the inner surface of the housing wall are aligned. In other words, the thickness direction of the housing wall is the direction from the inner surface to the outer surface of the housing wall.
 冷媒通路の冷媒流れ方向の少なくとも一部は、ラティス構造部の少なくとも一部が設けられた第1通路部分と、第1通路部分と冷媒流れ方向に交差する方向に並んだ、ラティス構造部が設けられていない第2通路部分とを有する場合がある。第2通路部分は、第1通路部分と冷媒流れ方向に直交する方向に並んでいてもよい。冷媒通路が第1通路部分と第2通路部分を有する場合、冷媒は、ラティス構造部から冷媒通路の第2通路部分へ移動可能であり、冷媒通路の第2通路部分からラティス構造部に移動可能である。本発明および実施の形態において、第1通路部分に含まれる線分とは、全体が第1通路部分に存在する線分である。 At least a portion of the refrigerant passage in the refrigerant flow direction is provided with a first passage portion provided with at least a portion of the lattice structure portion, and a lattice structure portion aligned in a direction intersecting the first passage portion with the refrigerant flow direction. and a second passage portion that is not closed. The second passage portion and the first passage portion may be arranged in a direction orthogonal to the coolant flow direction. If the coolant passage has a first passage portion and a second passage portion, coolant is movable from the lattice structure to the second passage portion of the coolant passage and from the second passage portion of the coolant passage to the lattice structure. is. In the present invention and the embodiments, a line segment included in the first passage portion is a line segment that exists wholly in the first passage portion.
 本発明のドロネーラティス構造部は、流れ方向変化部を横断する第2横断面に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された4つのドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成される場合がある。本発明のボロノイラティス構造部は、流れ方向変化部を横断する第2横断面に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成される場合がある。流れ方向変化部の定義は上述した通りである。第2横断面の定義は、上述した横断面の定義と同じである。第2横断面に含まれる互いに直交する2つの線分がそれぞれ、2つ以上のドロネー三角錐またはボロノイ多面体を通るとは、ある1つの第2横断面に含まれる互いに直交する2つの線分が、2つ以上のドロネー三角錐またはボロノイ多面体を通ることを意味する。ドロネーラティス構造部は、複数の第2横断面の各々に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された4つのドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成されてもよい。ボロノイラティス構造部は、複数の第2横断面の各々に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成されてもよい。 In the Delaunay lattice structure part of the present invention, two mutually orthogonal line segments included in the second cross section crossing the flow direction changing part each define four Delaunay points formed by connection points between the first rod-shaped parts. It may be formed through two or more Delaunay pyramids each having one. In the Voronoi lattice structure part of the present invention, each of two mutually orthogonal line segments included in the second cross section crossing the flow direction changing part has only vertexes formed by connecting points between the first rod-shaped parts. It may be formed through one or more Voronoi polyhedra. The definition of the flow direction change section is as described above. The definition of the second cross-section is the same as the definition of the cross-section described above. Two mutually orthogonal line segments included in the second cross section passing through two or more Delaunay triangular pyramids or Voronoi polyhedrons means that two mutually orthogonal line segments included in one second cross section are , means passing through two or more Delaunay pyramids or Voronoi polyhedra. The Delaunay lattice structure has two or more two or more Delaunay points, each of which is included in each of the plurality of second cross sections and has four Delaunay points formed by connection points between the first rod-shaped portions. It may be formed so as to pass through the Delaunay triangular pyramid. The Voronoi lattice structure has two or more Voronoi polyhedrons, each of which includes two mutually orthogonal line segments included in each of the plurality of second cross sections and has only vertices formed by connecting points between the first rod-shaped portions. may be formed to pass through.
 本発明のドロネーラティス構造部は、断面変化部を横断する第3横断面に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された4つのドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成される場合がある。本発明のボロノイラティス構造部は、断面変化部を通り冷媒流れ方向を横断する第3横断面に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成される場合がある。断面変化部の定義は上述した通りである。第3横断面の定義は、上述した横断面の定義と同じである。第3横断面に含まれる互いに直交する2つの線分がそれぞれ、2つ以上のドロネー三角錐またはボロノイ多面体を通るとは、ある1つの第3横断面に含まれる互いに直交する2つの線分が、2つ以上のドロネー三角錐またはボロノイ多面体を通ることを意味する。ドロネーラティス構造部は、複数の第3横断面の各々に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された4つのドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成されてもよい。ボロノイラティス構造部は、複数の第3横断面の各々に含まれる互いに直交する2つの線分がそれぞれ、第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成されてもよい。 In the Delaunay lattice structure of the present invention, two mutually orthogonal line segments included in the third cross section crossing the cross-section changing portion each define four Delaunay points formed by connection points between the first rod-shaped portions. It may be formed through two or more Delaunay triangular pyramids. In the Voronoi lattice structure part of the present invention, two mutually orthogonal line segments included in a third cross section that passes through the cross-section changing part and traverses the coolant flow direction are vertexes formed by connecting points between the first rod-shaped parts. may be formed through more than one Voronoi polyhedron with only The definition of the cross-section changing portion is as described above. The definition of the third cross-section is the same as the definition of the cross-section described above. Two mutually orthogonal line segments included in the third cross section passing through two or more Delaunay triangular pyramids or Voronoi polyhedrons means that two mutually orthogonal line segments included in one third cross section are , means passing through two or more Delaunay pyramids or Voronoi polyhedra. The Delaunay lattice structure has two or more two or more Delaunay points in which two mutually orthogonal line segments included in each of the plurality of third cross sections each have four Delaunay points formed by connection points between the first rod-shaped portions. It may be formed so as to pass through the Delaunay triangular pyramid. The Voronoi lattice structure has two or more Voronoi polyhedrons, each of which includes two mutually orthogonal line segments included in each of the plurality of third cross sections and has only vertices formed by connecting points between the first rod-shaped portions. may be formed to pass through.
 本発明の筐体の冷却構造が、筐体壁部の外表面または内表面と連続するように形成されるラティス構造部を有する場合、筐体壁部の外表面または内表面のラティス構造部が設けられる領域に直交する方向にラティス構造部を見て、ラティス構造部に収まる最長の線分に直交する、ラティス構造部に収まるいずれかの線分の長さが、第1幅よりも長い。第1幅は、ラティス構造部の筐体壁部の厚み方向における最大幅である。ラティス構造部の筐体壁部の厚み方向における最大幅とは、筐体壁部の厚み方向に沿った直線上にあり、ラティス構造部に収まる線分の最大長さである。なお、筐体壁部の厚み方向の定義は上述した通りである。筐体壁部の外表面または内表面のラティス構造部が設けられる領域に直交する方向にラティス構造部を見て、ラティス構造部に収まる最長の線分に直交する、ラティス構造部に収まるいずれかの線分の長さは、第1幅の2倍以上でもよい。 When the housing cooling structure of the present invention has a lattice structure formed so as to be continuous with the outer surface or the inner surface of the housing wall, the lattice structure on the outer surface or the inner surface of the housing wall is Looking at the lattice structure in a direction orthogonal to the provided area, the length of any line segment within the lattice structure that is orthogonal to the longest line segment within the lattice structure is greater than the first width. The first width is the maximum width in the thickness direction of the housing wall of the lattice structure. The maximum width of the lattice structure in the thickness direction of the housing wall is the maximum length of a line segment that is on a straight line along the thickness direction of the housing wall and fits in the lattice structure. The definition of the thickness direction of the housing wall portion is as described above. Viewing the lattice structure in a direction perpendicular to the area where the lattice structure is provided on the outer surface or inner surface of the housing wall, whichever fits in the lattice structure that is perpendicular to the longest line segment that fits in the lattice structure The length of the line segment may be at least twice the first width.
 本発明において、筐体壁部の外表面または内表面とラティス構造部とが連続するように形成される場合、筐体壁部の厚み方向におけるラティス構造部の幅は、以下のような寸法でもよい。筐体壁部の厚み方向におけるラティス構造部の最大幅が、筐体壁部の最小厚さよりも大きくてもよい。筐体壁部の厚み方向におけるラティス構造部の最小幅が、筐体壁部の最小厚さよりも大きくてもよい。なお、筐体壁部の厚み方向の定義は上述した通りである。筐体壁部の厚さとは、筐体壁部の外表面と内表面との最短距離である。筐体壁部の最小厚さは、筐体壁部においてラティス構造部が設けられている箇所の厚さでもよく、筐体壁部においてラティス構造部が設けられていない箇所の厚さでもよい。 In the present invention, when the outer surface or inner surface of the housing wall and the lattice structure are formed so as to be continuous, the width of the lattice structure in the thickness direction of the housing wall may be as follows. good. The maximum width of the lattice structure in the thickness direction of the housing wall may be greater than the minimum thickness of the housing wall. The minimum width of the lattice structure in the thickness direction of the housing wall may be greater than the minimum thickness of the housing wall. The definition of the thickness direction of the housing wall portion is as described above. The thickness of the housing wall is the shortest distance between the outer surface and the inner surface of the housing wall. The minimum thickness of the housing wall may be the thickness of the portion of the housing wall where the lattice structure is provided, or the thickness of the portion of the housing wall where the lattice structure is not provided.
 本発明および本明細書において、複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢のいずれか1つであってもよく、複数の選択肢の全てであってもよい。例えば、AとBとCの少なくとも1つとは、Aのみであってもよく、Bのみであってもよく、Cのみであってもよく、AとBであってもよく、AとCであってもよく、BとCであってもよく、AとBとCであってもよい。
 本発明および本明細書において、Aおよび/またはBとは、Aでもよく、Bでもよく、AおよびBの両方でもよいことを意味する。
In the present invention and this specification, at least one (one) of a plurality of options includes all conceivable combinations of the plurality of options. At least one (one) of the multiple options may be any one of the multiple options, or may be all of the multiple options. For example, at least one of A, B and C may be A only, B only, C only, A and B, A and C There may be, it may be B and C, or it may be A, B and C.
In the present invention and herein, A and/or B means that it can be A, it can be B, and it can be both A and B.
 特許請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合にこの構成要素が単数で表示される場合、本発明はこの構成要素を複数有してもよい。また、本発明はこの構成要素を1つだけ有してもよい。 If a claim does not explicitly specify the number of an element and that element appears in the singular when translated into English, the invention may include a plurality of that element. good. Also, the invention may have only one of this component.
 なお、本発明および実施の形態において、含む(including)、有する(having)、備える(comprising)およびこれらの派生語は、列挙されたアイテムおよびその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。 It should be noted that, as used in the present invention and embodiments, the terms including, having, comprising and derivatives thereof are intended to encompass additional items in addition to the recited items and their equivalents. is intended and used.
 他に定義されない限り、本明細書および請求範囲で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。 Unless defined otherwise, all terms (including technical and scientific terms) used in the specification and claims have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant technology and this disclosure, and are not idealized or overly formal. not be interpreted in any meaningful way.
 本明細書において、「してもよい(でもよい)」という用語は非排他的なものである。「してもよい(でもよい)」は、「してもよい(でもよい)がこれに限定されるものではない」という意味である。本明細書において、「してもよい(でもよい)」は、「しない(ではない)」場合があることを暗黙的に含む。本明細書において、「してもよい(でもよい)」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。 In this specification, the term "may (can be)" is non-exclusive. "May be (may be)" means "may be (may be) but is not limited to". In this specification, "may (may)" implicitly includes "may not (may not)". In this specification, the configuration described as "may be (may be)" has at least the above effect obtained by the configuration of claim 1.
 本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。 Before describing embodiments of the present invention in detail, it should be understood that the present invention is not limited to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. The present invention is also possible in embodiments other than those described below. The present invention is also possible in embodiments in which various modifications are made to the embodiments described later.
 本発明の筐体具備装置によると、筐体具備装置の大型化を抑制しつつ筐体の冷却性能を向上させることができる、または、筐体の冷却性能を確保しつつ筐体具備装置の形状の設計自由度を向上させることができる。 According to the housing-equipped device of the present invention, it is possible to improve the cooling performance of the housing while suppressing an increase in the size of the housing-equipped device, or to improve the shape of the housing-equipped device while ensuring the cooling performance of the housing. design freedom can be improved.
図1(a)~図1(h)は本発明の第1実施形態の筐体具備装置を説明する図である。FIGS. 1(a) to 1(h) are diagrams for explaining the housing provided apparatus according to the first embodiment of the present invention. 図2は、2次元のドロネー図であり、2次元のボロノイ図でもある。FIG. 2 is a two-dimensional Delaunay diagram and also a two-dimensional Voronoi diagram. 図3(a)~図3(c)は、本発明の第2実施形態の筐体が有するラティス構造部の一部分を模式的に示す図である。3(a) to 3(c) are diagrams schematically showing a part of the lattice structure part of the housing of the second embodiment of the present invention. 図4(a)~図4(e)は、本発明の第3実施形態の筐体が有するラティス構造部の一部分を模式的に示す図である。4(a) to 4(e) are diagrams schematically showing a portion of the lattice structure of the housing of the third embodiment of the present invention. 図5は、本発明の第5実施形態の筐体の一部分の断面図である。FIG. 5 is a cross-sectional view of part of the housing of the fifth embodiment of the present invention. 図6(a)および図6(c)は、本発明の第6実施形態の筐体の一部分の断面図である。図6(b)は図6(a)のA-A線の断面図であり、図6(d)は図6(c)のA-A線の断面図である。6(a) and 6(c) are cross-sectional views of a portion of the housing of the sixth embodiment of the present invention. 6(b) is a cross-sectional view taken along line AA in FIG. 6(a), and FIG. 6(d) is a cross-sectional view taken along line AA in FIG. 6(c). 図7(a)は、本発明の第7実施形態の筐体の一部分の断面図であり、図7(b)は図7(a)のB-B線の断面図である。図7(c)は、本発明の第8実施形態の筐体の一部分の断面図であり、図7(d)は図7(c)のC-C線の断面図である。FIG. 7(a) is a cross-sectional view of a portion of a housing according to a seventh embodiment of the present invention, and FIG. 7(b) is a cross-sectional view taken along line BB of FIG. 7(a). FIG. 7(c) is a cross-sectional view of a portion of the housing of the eighth embodiment of the present invention, and FIG. 7(d) is a cross-sectional view taken along line CC of FIG. 7(c). 図8(a)~図8(c)は、本発明の第9実施形態の筐体の断面図である。8(a) to 8(c) are sectional views of a housing according to a ninth embodiment of the present invention. 図9(a)は、図8(a)~図8(c)の筐体の一部分の斜視図であり、図9(b)は、図8(a)~図8(c)の筐体を図8(a)~図8(c)の紙面上下方向に見た図である。9(a) is a perspective view of a part of the housing of FIGS. 8(a) to 8(c), and FIG. 9(b) is a housing of FIGS. 8(a) to 8(c). 8(a) to 8(c) as viewed in the vertical direction of the paper surface. 図10(a)は、第9実施形態の変更例1の筐体の断面図であり、図10(b)は、第9実施形態の変更例2の筐体の断面図であり、図10(c)は、第9実施形態の変更例3の筐体の断面図である。10A is a cross-sectional view of the housing of Modification 1 of the ninth embodiment, FIG. 10B is a cross-sectional view of the housing of Modification 2 of the ninth embodiment, and FIG. (c) is a cross-sectional view of a housing of Modification 3 of the ninth embodiment. 図11(a)は、本発明の第10実施形態の筐体の断面図であり、図11(b)は図11(a)のD-D線の断面図であり、図11(c)は図11(a)のE-E線の断面図である。FIG. 11(a) is a cross-sectional view of a housing according to a tenth embodiment of the present invention, FIG. 11(b) is a cross-sectional view taken along line DD of FIG. 11(a), and FIG. 11(c). 11(a) is a cross-sectional view taken along line EE of FIG. 11(a). 図12(a)は、本発明の第11実施形態の筐体の断面図であり、図12(b)は本発明の第11実施形態の筐体の斜視図である。FIG. 12(a) is a cross-sectional view of the housing of the eleventh embodiment of the present invention, and FIG. 12(b) is a perspective view of the housing of the eleventh embodiment of the present invention.
 <第1実施形態>
 本発明の第1実施形態の筐体具備装置100について、図1(a)~図1(h)を用いて説明する。図1(a)~図1(c)は、第1実施形態の筐体1の3つの例を示す。筐体1は、熱源3を含む内容物2を収容する。図1(a)~図1(c)は、筐体1および内容物2の断面を示す。なお、図1(a)~図1(c)では、筐体1は筐体具備装置100の内部に配置されているが、筐体1の外表面の少なくとも一部が筐体具備装置100の外部に露出していてもよい。筐体1および内容物2は図1(a)~図1(c)に示すものに限らない。筐体1は、熱源3を含む内容物2を収容する収容空間4を形成する筐体壁部5を有する。筐体1は、熱源3で発生した熱が筐体1の外部に放熱される冷却構造を有する。冷却構造は、筐体壁部5の外表面6または内表面7と連続するように形成されるか、もしくは、筐体壁部5の外表面6および内表面7のいずれとも連続せず、冷媒が流れる冷媒通路10を形成する筐体壁部5と連続するように形成されるラティス構造部20を含む。
<First embodiment>
A housing providing device 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1(a) to 1(h). 1(a) to 1(c) show three examples of the housing 1 of the first embodiment. A housing 1 houses contents 2 including a heat source 3 . 1(a) to 1(c) show cross sections of the housing 1 and the contents 2. FIG. 1(a) to 1(c), the housing 1 is arranged inside the housing-equipped device 100, but at least a part of the outer surface of the housing 1 is located inside the housing-equipped device 100. It may be exposed to the outside. The housing 1 and the contents 2 are not limited to those shown in FIGS. 1(a) to 1(c). The housing 1 has a housing wall portion 5 forming a housing space 4 for housing a content 2 including a heat source 3 . The housing 1 has a cooling structure in which heat generated by the heat source 3 is radiated to the outside of the housing 1 . The cooling structure is formed to be continuous with the outer surface 6 or the inner surface 7 of the housing wall 5, or is not continuous with either the outer surface 6 or the inner surface 7 of the housing wall 5, and the coolant It includes a lattice structure portion 20 formed so as to be continuous with the housing wall portion 5 forming the coolant passage 10 through which the refrigerant flows.
 図1(a)は、ラティス構造部20が、筐体壁部5の外表面6および内表面7のいずれとも連続せず、冷媒が流れる冷媒通路10を形成する筐体壁部5と連続するように形成された例を示す。冷媒通路10は、筐体壁部5の外表面6と内表面7との間に形成される。冷媒通路10は、冷媒流れ方向Fを横断する横断面における冷媒通路10の最大幅Wが冷媒通路10の冷媒流れ方向Fの長さLよりも短くなるように形成される。図1(a)では冷媒通路10の一端から他端まで冷媒流れ方向Fが一直線状である。但し、冷媒通路10はこのような形状に限らない。 In FIG. 1(a), the lattice structure 20 is not continuous with either the outer surface 6 or the inner surface 7 of the housing wall portion 5, but is continuous with the housing wall portion 5 forming the coolant passage 10 through which the coolant flows. Here is an example formed as follows: A coolant passage 10 is formed between an outer surface 6 and an inner surface 7 of the housing wall portion 5 . The refrigerant passage 10 is formed such that the maximum width WP of the refrigerant passage 10 in a cross section across the refrigerant flow direction F is shorter than the length LP of the refrigerant passage 10 in the refrigerant flow direction F. In FIG. 1A, the coolant flow direction F is straight from one end to the other end of the coolant passage 10 . However, the refrigerant passage 10 is not limited to such a shape.
 図1(b)は、ラティス構造部20が、筐体壁部5の外表面6と連続するように形成された例を示す。図1(c)は、ラティス構造部20が、筐体壁部5の内表面7と連続するように形成された例を示す。図1(b)の例では、ラティス構造部20は、平坦状の外表面6に設けられているが、円周状の外表面6に設けられてもよい。図1(c)の例では、ラティス構造部20は、半円筒状であって、円周状の内表面7に設けられているが、平坦状の内表面7に設けられてもよい。筐体壁部5の外表面6または内表面7と連続するように形成されたラティス構造部20の筐体壁部5の厚み方向における最大幅を幅Wとする。筐体壁部5の外表面6または内表面7のラティス構造部20が設けられる領域に直交するX方向にラティス構造部20を見て、ラティス構造部20に収まる複数の線分のうち最長の線分を線分SLとする。なお、X方向は、筐体壁部5の外表面6または内表面7のラティス構造部が設けられる領域に直交する任意の1つの方向である。図1(d)は、図1(c)のラティス構造部20を図1(c)に示すX方向に見た図である。筐体壁部5の外表面6または内表面7のラティス構造部20が設けられる領域に直交するX方向にラティス構造部20を見て、ラティス構造部20に収まる複数の線分のうち、線分SLxに直交するいずれかの線分を線分SL1とする。筐体壁部5の外表面6または内表面7と連続するように形成されるラティス構造部20は、線分SL1の長さL1が幅Wよりも長くなるように形成されている。なお、図1(b)のラティス構造部20をX方向に見た図は省略しているが、図1(b)のラティス構造部20も、線分SL1の長さL1が幅Wよりも長くなるように形成されている。 FIG. 1(b) shows an example in which the lattice structure 20 is formed so as to be continuous with the outer surface 6 of the housing wall 5. As shown in FIG. FIG. 1(c) shows an example in which the lattice structure portion 20 is formed so as to be continuous with the inner surface 7 of the housing wall portion 5. As shown in FIG. Although the lattice structure 20 is provided on the flat outer surface 6 in the example of FIG. 1B, it may be provided on the circular outer surface 6 . In the example of FIG. 1(c), the lattice structure 20 has a semi-cylindrical shape and is provided on the circumferential inner surface 7, but it may be provided on the flat inner surface 7 as well. The maximum width in the thickness direction of the housing wall portion 5 of the lattice structure portion 20 formed so as to be continuous with the outer surface 6 or the inner surface 7 of the housing wall portion 5 is defined as the width WL . When the lattice structure 20 is viewed in the X direction perpendicular to the region where the lattice structure 20 is provided on the outer surface 6 or the inner surface 7 of the housing wall 5, the longest of the plurality of line segments that fit in the lattice structure 20 Let the line segment be a line segment SL X. The X direction is an arbitrary direction perpendicular to the region of the outer surface 6 or the inner surface 7 of the housing wall 5 where the lattice structure is provided. FIG. 1(d) is a view of the lattice structure 20 of FIG. 1(c) viewed in the X direction shown in FIG. 1(c). When the lattice structure 20 is viewed in the X direction orthogonal to the region where the lattice structure 20 is provided on the outer surface 6 or the inner surface 7 of the housing wall 5, among the plurality of line segments that fit in the lattice structure 20, the line Let any line segment perpendicular to the segment SLx be a line segment SL1. The lattice structure portion 20 formed so as to be continuous with the outer surface 6 or the inner surface 7 of the housing wall portion 5 is formed such that the length L1 of the line segment SL1 is longer than the width WL. Although the view of the lattice structure portion 20 in FIG. 1(b) in the X direction is omitted, the length L1 of the line segment SL1 is also greater than the width WL in the lattice structure portion 20 of FIG. 1(b). is designed to be longer.
 ラティス構造部20は、ドロネーラティス構造部30またはボロノイラティス構造部40を含む。図1(e)は、ドロネーラティス構造部30の一例の一部分を示し、図1(f)は、ボロノイラティス構造部40の一例の一部分を示す。ドロネーラティス構造部30およびボロノイラティス構造部40は、図1(e)および図1(f)に示すものに限らない。ラティス構造部20は、複数の棒状部21からなる。 The lattice structure 20 includes a Delaunay lattice structure 30 or a Voronoi lattice structure 40 . FIG. 1( e ) shows a portion of an example of the Delaunay lattice structure 30 , and FIG. 1( f ) shows a portion of an example of the Voronoi lattice structure 40 . The Delaunay lattice structure 30 and the Voronoi lattice structure 40 are not limited to those shown in FIGS. 1(e) and 1(f). The lattice structure portion 20 is composed of a plurality of rod-shaped portions 21 .
 ドロネーラティス構造部30は、複数の第1棒状部22からなる。ドロネーラティス構造部30を構成する複数の第1棒状部22は、3次元にランダムに分布する複数のドロネー点31に基づく3次元のドロネー図における複数のドロネー辺32を形成する。図1(e)は、直方体状の空間T1内に存在するドロネーラティス構造部30の一部分を示す。図1(g)は、図1(e)と同じ空間T1内に存在する全てのドロネー点31と、空間T1内に存在する複数のドロネー三角錐33のうちの1つのドロネー三角錐33を示す。ドロネー三角錐33は、6つのドロネー辺32によって形成される三角錐である。ドロネーラティス構造部30は、互いに直交する3つの線分S1、S2、S3がそれぞれ、第1棒状部22同士の連結点によって形成された4つのドロネー点31をそれぞれ有する2つ以上のドロネー三角錐33を通るように形成される。線分S1、S2、S3は、図1(g)に示すものに限らない。 The Delaunay lattice structure 30 consists of a plurality of first rod-shaped parts 22 . The plurality of first rod-shaped portions 22 forming the Delaunay lattice structure 30 form a plurality of Delaunay sides 32 in a three-dimensional Delaunay diagram based on a plurality of Delaunay points 31 randomly distributed in three dimensions. FIG. 1(e) shows a part of the Delaunay lattice structure 30 existing in the rectangular parallelepiped space T1. FIG. 1(g) shows all the Delaunay points 31 existing in the same space T1 as in FIG. . The Delaunay triangular pyramid 33 is a triangular pyramid formed by six Delaunay sides 32 . The Delaunay lattice structures 30 are two or more Delaunay triangular pyramids each having four Delaunay points 31 formed by connecting points between the first rod-shaped portions 22 at three line segments S1, S2, and S3 orthogonal to each other. 33 is formed. Line segments S1, S2, and S3 are not limited to those shown in FIG.
 ボロノイラティス構造部40は、複数の第1棒状部22からなる。ボロノイラティス構造部40を構成する複数の第1棒状部22は、3次元にランダムに分布する複数の仮想点41を母点とする3次元のボロノイ図におけるボロノイ境界面42のみで形成される複数のボロノイ多面体43の辺を形成する。図1(f)は、直方体状の空間T2内に存在するボロノイラティス構造部40の一部分を示す。図1(h)は、図1(f)と同じ空間T2内に存在する全ての母点41と、空間T2内に存在する複数のボロノイ多面体43のうちの1つのボロノイ多面体43を示す。図1(h)に示すボロノイ多面体43はボロノイ境界面42のみで形成される。図1(h)では、ボロノイ多面体43を形成する複数のボロノイ境界面42のうちの1つにハッチングを付けている。ボロノイラティス構造部40は、互いに直交する3つの線分S1、S2、S3がそれぞれ、第1棒状部22同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体43を通るように形成される。線分S1、S2、S3は、図1(h)に示すものに限らない。 The Voronoi lattice structure part 40 consists of a plurality of first rod-shaped parts 22 . The plurality of first rod-shaped portions 22 constituting the Voronoi lattice structure portion 40 are formed only by the Voronoi boundary surfaces 42 in a three-dimensional Voronoi diagram with a plurality of virtual points 41 randomly distributed in three dimensions as generating points. form the edges of the Voronoi polyhedron 43 of . FIG. 1(f) shows a portion of the Voronoi lattice structure 40 existing in the rectangular parallelepiped space T2. FIG. 1(h) shows all generating points 41 existing in the same space T2 as in FIG. 1(f) and one Voronoi polyhedron 43 among a plurality of Voronoi polyhedrons 43 existing in the space T2. A Voronoi polyhedron 43 shown in FIG. In FIG. 1(h), one of the plurality of Voronoi interfaces 42 forming the Voronoi polyhedron 43 is hatched. The Voronoi lattice structure part 40 is arranged such that three line segments S1, S2, and S3 perpendicular to each other pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped parts 22, respectively. It is formed. The line segments S1, S2, and S3 are not limited to those shown in FIG. 1(h).
 第1実施形態の筐体1がこのようなラティス構造部20を有することにより、筐体具備装置100は、筐体具備装置100の大型化を抑制しつつ筐体1の冷却性能を向上させることができる、または、筐体1の冷却性能を確保しつつ筐体具備装置100の形状の設計自由度を向上させることができる。 Since the housing 1 of the first embodiment has such a lattice structure 20, the housing-equipped device 100 can improve the cooling performance of the housing 1 while suppressing the enlargement of the housing-equipped device 100. Alternatively, the degree of freedom in designing the shape of the housing-equipped device 100 can be improved while ensuring the cooling performance of the housing 1 .
 なお、図1(a)では、ラティス構造部20の冷媒流れ方向Fの長さが、冷媒通路10の冷媒流れ方向Fの長さLと同じであるが、ラティス構造部20の冷媒流れ方向Fの長さは、冷媒通路10の冷媒流れ方向Fの長さLよりも短くてもよい。ラティス構造部20の冷媒流れ方向Fの長さは、ラティス構造部20を通る横断面における冷媒通路10の最大幅Wよりも長くてもよい。ラティス構造部20の冷媒流れ方向Fの長さは、ラティス構造部20を通る横断面における冷媒通路10の最大幅W以下でもよい。ラティス構造部20の冷媒流れ方向Fの長さは、ラティス構造部20を通る横断面における冷媒通路10の周長よりも長くてもよい。ラティス構造部20の冷媒流れ方向Fの長さは、ラティス構造部20を通る横断面における冷媒通路10の周長以下でもよい。 In FIG. 1A, the length of the lattice structure portion 20 in the refrigerant flow direction F is the same as the length LP of the refrigerant passage 10 in the refrigerant flow direction F, but the lattice structure portion 20 in the refrigerant flow direction The length F may be shorter than the length LP in the coolant flow direction F of the coolant passage 10 . The length of the lattice structure portion 20 in the coolant flow direction F may be longer than the maximum width WP of the coolant passage 10 in the cross section passing through the lattice structure portion 20 . The length of the lattice structure portion 20 in the coolant flow direction F may be equal to or less than the maximum width WP of the coolant passage 10 in the cross section passing through the lattice structure portion 20 . The length of the lattice structure portion 20 in the coolant flow direction F may be longer than the circumferential length of the coolant passage 10 in the cross section passing through the lattice structure portion 20 . The length of the lattice structure portion 20 in the coolant flow direction F may be less than or equal to the circumferential length of the coolant passage 10 in the cross section passing through the lattice structure portion 20 .
 ラティス構造部20が冷媒通路10に設けられる場合、筐体具備装置100は、筐体具備装置100の周囲の気体または液体を冷媒として冷媒通路10に導入し、且つ、冷媒通路10を通過した後の冷媒を筐体具備装置100の周囲に放出するように構成されてもよい。筐体具備装置100は、冷媒通路10を通過した後の冷媒を冷却するためのラジエータを有さない。ラティス構造部20が冷媒通路10に設けられる場合、ラティス構造部20は筐体壁部5の少なくとも一部と金属積層造形法によって一体成形されていてもよい。ラティス構造部20が筐体壁部5の外表面6または内周面7と連続するように形成される場合、ラティス構造部20は筐体壁部5の外表面6または内表面7と金属積層造形法によって一体成形されていてもよい。 When the lattice structure 20 is provided in the coolant passage 10 , the housing-equipped device 100 introduces the gas or liquid around the housing-equipped device 100 as a coolant into the coolant passage 10 , and after passing through the coolant passage 10 . of refrigerant to the surroundings of the enclosure-equipped device 100 . The housing-equipped device 100 does not have a radiator for cooling the coolant after passing through the coolant passage 10 . When the lattice structure portion 20 is provided in the coolant passage 10, the lattice structure portion 20 may be integrally formed with at least a portion of the housing wall portion 5 by metal additive manufacturing. When the lattice structure 20 is formed so as to be continuous with the outer surface 6 or the inner peripheral surface 7 of the housing wall 5 , the lattice structure 20 is metal-laminated with the outer surface 6 or the inner surface 7 of the housing wall 5 . It may be integrally formed by a molding method.
 3次元のドロネー図および3次元のボロノイ図の理解のため、図2に、2次元のドロネー図DDと2次元のボロノイ図VDを示す。ドロネー図DDとボロノイ図VDは双対関係にあり、ボロノイ図VDの母点Pがドロネー図DDのドロネー点Pとなる。2次元のボロノイ図VDにおいて、2次元空間Rは複数のボロノイ領域VRに分割される。複数のボロノイ領域VRは、2つの母点Pを結ぶ線分の垂直二等分線だけで囲まれたボロノイ領域VRと、2つの母点Pを結ぶ線分の垂直二等分線と2次元空間Rの縁で囲まれたボロノイ領域VRとを含む。ボロノイ領域VRを形成する垂直二等分線は、ボロノイ境界VEと呼ばれる。第1実施形態の3次元のボロノイ図において、3次元空間は複数のボロノイ多面体に分割される。複数のボロノイ多面体は、2つの母点41を結ぶ線分の垂直二等分面だけで囲まれたボロノイ多面体43と、2つの母点41を結ぶ線分の垂直二等分面と3次元空間の端面で囲まれたボロノイ多面体とを含む。ボロノイ境界面42は、2つの母点41を結ぶ線分の垂直二等分面である。2次元のドロネー図DDにおけるドロネー辺DEは、1つのボロノイ領域VRを介して隣り合う2つのボロノイ領域VRの中の2つの母点Pを結ぶ線分である。第1実施形態の3次元のドロネー図におけるドロネー辺32は、ドロネー図と双対関係にあるボロノイ図において1つのボロノイ境界面を介して隣り合う2つのボロノイ多面体の中の2つの母点を結ぶ線分である。 For understanding of the 3D Delaunay diagram and the 3D Voronoi diagram, Fig. 2 shows a 2D Delaunay diagram DD and a 2D Voronoi diagram VD. The Delaunay diagram DD and the Voronoi diagram VD have a dual relationship, and the generating point P of the Voronoi diagram VD becomes the Delaunay point P of the Delaunay diagram DD. In a two-dimensional Voronoi diagram VD, a two-dimensional space R is divided into a plurality of Voronoi regions VR. The plurality of Voronoi regions VR are divided into two dimensions: a Voronoi region VR surrounded only by the perpendicular bisector of a line segment connecting two generating points P, a perpendicular bisector of a line segment connecting two generating points P, and two-dimensional and a Voronoi region VR surrounded by the edge of the space R. The perpendicular bisectors forming the Voronoi region VR are called Voronoi boundaries VE. In the three-dimensional Voronoi diagram of the first embodiment, the three-dimensional space is divided into a plurality of Voronoi polyhedra. The plurality of Voronoi polyhedrons are a Voronoi polyhedron 43 surrounded only by perpendicular bisectors of lines connecting two generating points 41, and a perpendicular bisector of lines connecting two generating points 41 and a three-dimensional space. and a Voronoi polyhedron bounded by the end faces of . The Voronoi boundary surface 42 is a perpendicular bisector of a line segment connecting two generating points 41 . A Delaunay edge DE in the two-dimensional Delaunay diagram DD is a line segment connecting two generating points P in two Voronoi regions VR adjacent to each other via one Voronoi region VR. A Delaunay edge 32 in the three-dimensional Delaunay diagram of the first embodiment is a line connecting two generating points in two Voronoi polyhedrons adjacent to each other via one Voronoi boundary surface in a Voronoi diagram dual to the Delaunay diagram. minutes.
 <第2実施形態>
 本発明の第2実施形態の筐体具備装置100が備える筐体1について、図3(a)~図3(c)を用いて説明する。第2実施形態は、第1実施形態の構成を有する。図3(a)~図3(c)は、第2実施形態の例示に過ぎない。図3(a)~図3(c)は、それぞれ、ドロネーラティス構造部30の一部分を模式的に示す。第2実施形態のボロノイラティス構造部40の図示は省略する。ドロネーラティス構造部30またはボロノイラティス構造部40において、複数の第1棒状部22のうちの一部の複数の第1棒状部22は筐体壁部5と連続するように形成される。ドロネー辺32の一部またはボロノイ多面体43の辺の一部を形成する第1棒状部22の端が、筐体壁部5と連続するように形成されてもよい(例えば図3(a)参照)。また、第1棒状部22同士の連結点が筐体壁部5と連続するように形成されてもよい(例えば図3(b)および図3(c)参照)。また、第1棒状部22は、第1棒状部22の長手方向に沿って筐体壁部5と連続するように形成されてもよい(例えば図3(c)参照)。
<Second embodiment>
The housing 1 provided in the housing providing apparatus 100 according to the second embodiment of the present invention will be described with reference to FIGS. 3(a) to 3(c). The second embodiment has the configuration of the first embodiment. FIGS. 3(a)-3(c) are merely examples of the second embodiment. 3(a) to 3(c) each schematically show a portion of the Delaunay lattice structure 30. FIG. Illustration of the Voronoi lattice structure 40 of the second embodiment is omitted. In the Delaunay lattice structure 30 or the Voronoi lattice structure 40 , some of the plurality of first rod-shaped portions 22 are formed so as to be continuous with the housing wall portion 5 . The end of the first rod-shaped portion 22 forming part of the Delaunay side 32 or part of the side of the Voronoi polyhedron 43 may be formed so as to be continuous with the housing wall portion 5 (see, for example, FIG. 3A). ). Also, the connection point between the first rod-shaped portions 22 may be formed so as to be continuous with the housing wall portion 5 (see, for example, FIGS. 3(b) and 3(c)). Also, the first rod-shaped portion 22 may be formed so as to be continuous with the housing wall portion 5 along the longitudinal direction of the first rod-shaped portion 22 (see, for example, FIG. 3(c)).
 <第3実施形態>
 本発明の第3実施形態の筐体具備装置100が備える筐体1について、図4(a)~図4(e)を用いて説明する。第3実施形態は、第1実施形態の構成を有する。第3実施形態は、第2実施形態の構成を有してもよく有さなくてもよい。図4(a)~図4(e)は、第3実施形態の例示に過ぎない。図4(a)および図4(b)は、それぞれ、ドロネーラティス構造部30を含むラティス構造部20の一部分を模式的に示す。図4(c)~図4(e)は、それぞれ、ボロノイラティス構造部40を含むラティス構造部20の一部分を模式的に示す。ラティス構造部20を構成する複数の棒状部21は、ドロネーラティス構造部30またはボロノイラティス構造部40を構成する複数の第1棒状部22に加えて、複数の第2棒状部23を含む。複数の第2棒状部23は、1つのドロネー点31またはボロノイ多面体43の1つの頂点を形成する第1棒状部22の端と少なくとも1つの第2棒状部23と筐体壁部5とが連続して形成されるように設けられる。第2棒状部23は、本来はドロネー辺32もしくはボロノイ多面体43の辺を形成するがドロネー辺32もしくはボロノイ多面体43の辺を形成するかどうかをラティス構造部20から特定できない棒状部21であってもよい。
<Third Embodiment>
The housing 1 included in the housing providing device 100 of the third embodiment of the present invention will be described with reference to FIGS. 4(a) to 4(e). The third embodiment has the configuration of the first embodiment. The third embodiment may or may not have the configuration of the second embodiment. FIGS. 4(a)-4(e) are merely examples of the third embodiment. 4(a) and 4(b) each schematically show a portion of the lattice structure 20 including the Delaunay lattice structure 30. FIG. 4(c) to 4(e) each schematically show a portion of the lattice structure 20 including the Voronoi lattice structure 40. FIG. The plurality of rod-shaped portions 21 forming the lattice structure portion 20 includes a plurality of second rod-shaped portions 23 in addition to the plurality of first rod-shaped portions 22 forming the Delaunay lattice structure portion 30 or the Voronoi lattice structure portion 40 . The plurality of second rod-shaped portions 23 are connected to the end of the first rod-shaped portion 22 forming one Delaunay point 31 or one vertex of the Voronoi polyhedron 43, at least one second rod-shaped portion 23, and the housing wall portion 5. provided to be formed as The second rod-shaped portion 23 is the rod-shaped portion 21 that originally forms the Delaunay side 32 or the side of the Voronoi polyhedron 43, but cannot be specified from the lattice structure portion 20 whether it forms the Delaunay side 32 or the side of the Voronoi polyhedron 43. good too.
 ラティス構造部20は、1つのドロネー点31またはボロノイ多面体43の1つの頂点を形成する第1棒状部22の端と1つの第2棒状部23と筐体壁部5とが連続して形成された第1部分24を有してもよい(例えば図4(a)および図4(c)参照)。ラティス構造部20は、1つのドロネー点31またはボロノイ多面体43の1つの頂点を形成する第1棒状部22の端と複数の第2棒状部23と筐体壁部5とが連続して形成された第2部分25を有してもよい(例えば図4(b)、図4(d)、および図4(e)参照)。ラティス構造部20は、第1部分24と第2部分25の両方を有してもよい。ラティス構造部20は、第1部分24と第2部分25のうち第1部分24だけを有してもよく第2部分25だけを有してもよい。ラティス構造部20がドロネーラティス構造部30を含む場合、第2部分25において、1つのドロネー点31を形成する第1棒状部22の端に直接的に連結された1つの第2棒状部23が、筐体壁部5と連続して形成される少なくとも1つの第2棒状部23に直接的に連結される(例えば図4(b)参照)。ラティス構造部20がボロノイラティス構造部40を含む場合、第2部分25において、ボロノイ多面体43の1つの頂点を形成する第1棒状部22の端に直接的に連結された1つの第2棒状部23が、筐体壁部5と連続して形成される少なくとも1つの第2棒状部23に直接的に連結されてもよい(例えば図4(d)参照)。ラティス構造部20がボロノイラティス構造部40を含む場合、第2部分25において、ボロノイ多面体43の1つの頂点を形成する第1棒状部22の端が複数の第2棒状部23に直接的に連結されてもよい(例えば図4(e)参照)。 The lattice structure 20 is formed by continuously forming the end of the first rod-shaped portion 22 forming one Delaunay point 31 or one vertex of the Voronoi polyhedron 43, one second rod-shaped portion 23, and the housing wall portion 5. It may also have a first portion 24 (see, eg, FIGS. 4(a) and 4(c)). The lattice structure portion 20 is formed by connecting the end of the first rod-shaped portion 22 forming one Delaunay point 31 or one vertex of the Voronoi polyhedron 43, the plurality of second rod-shaped portions 23, and the housing wall portion 5. second portion 25 (see, eg, FIGS. 4(b), 4(d), and 4(e)). Lattice structure 20 may have both first portion 24 and second portion 25 . The lattice structure 20 may have only the first portion 24 or only the second portion 25 out of the first portion 24 and the second portion 25 . When the lattice structure 20 includes the Delaunay lattice structure 30, the second portion 25 includes one second rod-shaped portion 23 directly connected to the end of the first rod-shaped portion 22 forming one Delaunay point 31. , is directly connected to at least one second rod-like portion 23 formed continuously with the housing wall portion 5 (see, for example, FIG. 4(b)). When the lattice structure portion 20 includes the Voronoi lattice structure portion 40, in the second portion 25, one second rod-shaped portion directly connected to the end of the first rod-shaped portion 22 forming one vertex of the Voronoi polyhedron 43. 23 may be directly connected to at least one second rod-like portion 23 formed continuously with the housing wall portion 5 (see, for example, FIG. 4(d)). When the lattice structure portion 20 includes the Voronoi lattice structure portion 40 , in the second portion 25 , the ends of the first rod-shaped portions 22 forming one vertex of the Voronoi polyhedron 43 are directly connected to the plurality of second rod-shaped portions 23 . (see, for example, FIG. 4(e)).
 ラティス構造部20がドロネーラティス構造部30を含む場合、第2棒状部23が連結される第1棒状部22の端と筐体壁部5との間の最短距離は、複数の第1棒状部22の長さの最大値よりも短い。ラティス構造部20がボロノイラティス構造部40を含む場合、第2棒状部23が連結される第1棒状部22の端と筐体壁部5との間の最短距離は、ボロノイ境界面42のみで形成される複数のボロノイ多面体43の対角線の長さの最大値よりも短い。 When the lattice structure 20 includes the Delaunay lattice structure 30, the shortest distance between the end of the first rod-shaped portion 22 to which the second rod-shaped portion 23 is connected and the housing wall portion 5 is less than the maximum length of 22. When the lattice structure portion 20 includes the Voronoi lattice structure portion 40, the shortest distance between the end of the first rod-shaped portion 22 to which the second rod-shaped portion 23 is connected and the housing wall portion 5 is only the Voronoi boundary surface 42. It is shorter than the maximum diagonal length of the plurality of Voronoi polyhedrons 43 to be formed.
 <第4実施形態>
 本発明の第4実施形態の筐体具備装置100が備える筐体1について説明する。第4実施形態は、第2実施形態~第3実施形態の構成をそれぞれ有してもよく有さなくてもよい。第4実施形態は、第1実施形態の構成に加えて以下の構成を有する。
 ラティス構造部20がドロネーラティス構造部30を含む場合、複数の第1棒状部22の長さの最大値が、複数の第1棒状部22の長さの平均値の4倍よりも小さい。複数の第1棒状部22の長さの最大値が、複数の第1棒状部22の長さの平均値の3倍よりも小さくてもよい。
 ラティス構造部20がボロノイラティス構造部40を含む場合、複数の第1棒状部22で囲まれたボロノイ境界面42の両側に位置する2つの母点41の距離の最大値が、複数の第1棒状部22で囲まれたボロノイ境界面42の両側に位置する2つの母点41の距離の平均値の4倍よりも小さい。複数の第1棒状部22で囲まれたボロノイ境界面42の両側に位置する2つの母点41の距離の最大値は、複数の第1棒状部22で囲まれたボロノイ境界面42の両側に位置する2つの母点41の距離の平均値の3倍よりも小さくてもよい。
 ボロノイラティス構造部40において、複数の第1棒状部22の長さの最大値は、複数の第1棒状部22の長さの平均値の5倍よりも小さい。
<Fourth Embodiment>
The housing 1 included in the housing providing device 100 according to the fourth embodiment of the present invention will be described. The fourth embodiment may or may not have the configurations of the second to third embodiments. The fourth embodiment has the following configuration in addition to the configuration of the first embodiment.
When the lattice structure 20 includes the Delaunay lattice structure 30 , the maximum length of the plurality of first rod-shaped portions 22 is less than four times the average length of the plurality of first rod-shaped portions 22 . The maximum length of the plurality of first rod-shaped portions 22 may be smaller than three times the average length of the plurality of first rod-shaped portions 22 .
When the lattice structure portion 20 includes the Voronoi lattice structure portion 40, the maximum value of the distance between the two generating points 41 located on both sides of the Voronoi boundary surface 42 surrounded by the plurality of first rod-shaped portions 22 is the same as the plurality of first It is smaller than four times the average value of the distances between the two generating points 41 positioned on both sides of the Voronoi boundary surface 42 surrounded by the bar-shaped portion 22 . The maximum value of the distance between the two generating points 41 positioned on both sides of the Voronoi boundary surface 42 surrounded by the plurality of first rod-shaped portions 22 is on both sides of the Voronoi boundary surface 42 surrounded by the plurality of first rod-shaped portions 22 It may be smaller than three times the average value of the distances between the two generating points 41 located.
In the Voronoi lattice structure 40 , the maximum length of the plurality of first rod-shaped portions 22 is less than five times the average length of the plurality of first rod-shaped portions 22 .
 <第5実施形態>
 本発明の第5実施形態の筐体具備装置100が備える筐体1について、図5を用いて説明する。第5実施形態は、第1実施形態の構成を有する。第5実施形態は、第2実施形態~第4実施形態の構成をそれぞれ有してもよく有さなくてもよい。図5は、第5実施形態の例示に過ぎない。第5実施形態の筐体1は冷媒通路10に設けられるラティス構造部20を有する。冷媒流れ方向Fを横断する第1横断面に含まれ、且つ、互いに直交する2つの線分を、線分S4、S5とする。第1横断面は、ドロネーラティス構造部30またはボロノイラティス構造部40を通る。図5は第1横断面を示す。ドロネーラティス構造部30は、2つの線分S4、S5がそれぞれ、第1棒状部22同士の連結点によって形成された4つのドロネー点31をそれぞれ有する2つ以上のドロネー三角錐33を通るように形成される。ボロノイラティス構造部40は、2つの線分S4、S5がそれぞれ、第1棒状部22同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体43を通るように形成される。ラティス構造部20がドロネーラティス構造部30とボロノイラティス構造部40のどちらを含む場合でも、ラティス構造部20は、2つの線分S4、S5の方向の各々において筐体壁部5の一部分とラティス構造部20と筐体壁部5の他の一部分とが連続するように形成される。なお、図5では、2つの線分S4、S5はそれぞれ冷媒通路10の縁と平行である。しかし、第1横断面における冷媒通路10の形状、および、2つの線分S4、S5の方向と位置は、図5に示すものに限らない。線分S4、S5は、第1実施形態の3つの線分S1、S2、S3のうちのいずれか2つの線分と同じであってもよく異なってもよい。
<Fifth Embodiment>
The housing 1 included in the housing providing device 100 according to the fifth embodiment of the present invention will be described with reference to FIG. The fifth embodiment has the configuration of the first embodiment. The fifth embodiment may or may not have the configurations of the second to fourth embodiments. FIG. 5 is merely an example of the fifth embodiment. The housing 1 of the fifth embodiment has a lattice structure 20 provided in the coolant passage 10 . Two line segments that are included in the first cross section that crosses the coolant flow direction F and that are perpendicular to each other are set to line segments S4 and S5. A first transverse plane passes through the Delaunay lattice structure 30 or the Voronoi lattice structure 40 . FIG. 5 shows the first cross-section. The Delaunay lattice structure 30 is formed so that two line segments S4 and S5 each pass through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rods 22. It is formed. The Voronoi lattice structure part 40 is formed such that two line segments S4 and S5 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped parts 22 . Regardless of whether the lattice structure 20 includes the Delaunay lattice structure 30 or the Voronoi lattice structure 40, the lattice structure 20 forms a portion of the housing wall 5 and the lattice in each of the directions of the two line segments S4 and S5. The structural portion 20 and another part of the housing wall portion 5 are formed so as to be continuous. Note that in FIG. 5 , the two line segments S4 and S5 are parallel to the edge of the coolant passage 10, respectively. However, the shape of the coolant passage 10 in the first cross section and the directions and positions of the two line segments S4 and S5 are not limited to those shown in FIG. The line segments S4 and S5 may be the same as or different from any two of the three line segments S1, S2 and S3 in the first embodiment.
 <第6実施形態>
 本発明の第6実施形態の筐体具備装置100が備える筐体1について、図6(a)~図6(d)を用いて説明する。第6実施形態は、第1実施形態の構成を有する。第6実施形態は、第2実施形態~第5実施形態の構成をそれぞれ有してもよく有さなくてもよい。図6(a)および図6(b)は、第6実施形態の1つの例を示し、図6(c)および図6(d)は、第6実施形態の他の例を示す。第6実施形態の筐体1は冷媒通路10に設けられるラティス構造部20を有する。図6(a)および図6(c)は、それぞれ、冷媒流れ方向Fに沿った断面を示す。図6(b)および図6(d)はそれぞれ、図6(a)および図6(c)に示すA-A線で切断した場合の断面を示す。冷媒通路10の冷媒流れ方向Fの少なくとも一部は、ラティス構造部20の少なくとも一部が設けられた第1通路部分11と、ラティス構造部20が設けられていない第2通路部分12とを有する。第2通路部分12は、第1通路部分11と冷媒流れ方向Fに交差する方向に並んでいる。第1通路部分11には、ドロネーラティス構造部30またはボロノイラティス構造部40の少なくとも一部が設けられる。第1通路部分11に含まれ、互いに直交する3つの線分を、線分S6、S7、S8とする。ドロネーラティス構造部30は、3つの線分S6、S7、S8がそれぞれ、第1棒状部22同士の連結点によって形成された4つのドロネー点31をそれぞれ有する2つ以上のドロネー三角錐33を通るように形成される。ボロノイラティス構造部40は、3つの線分S6、S7、S8がそれぞれ、第1棒状部22同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体43を通るように形成される。なお、図6(a)~図6(d)では、3つの線分S6、S7、S8はそれぞれ冷媒通路10の縁と平行である。しかし、冷媒通路10の形状、および、3つの線分S6、S7、S8の方向と位置は、図6(a)~図6(d)に示すものに限らない。
<Sixth embodiment>
The housing 1 provided in the housing providing device 100 of the sixth embodiment of the present invention will be described with reference to FIGS. 6(a) to 6(d). The sixth embodiment has the configuration of the first embodiment. The sixth embodiment may or may not have the configurations of the second to fifth embodiments. 6(a) and 6(b) show one example of the sixth embodiment, and FIGS. 6(c) and 6(d) show another example of the sixth embodiment. The housing 1 of the sixth embodiment has a lattice structure 20 provided in the refrigerant passage 10 . 6(a) and 6(c) show cross sections along the coolant flow direction F, respectively. FIGS. 6(b) and 6(d) show cross sections taken along line AA shown in FIGS. 6(a) and 6(c), respectively. At least part of the refrigerant passage 10 in the refrigerant flow direction F has a first passage portion 11 provided with at least a portion of the lattice structure 20 and a second passage portion 12 not provided with the lattice structure 20. . The second passage portion 12 and the first passage portion 11 are arranged in a direction crossing the refrigerant flow direction F. As shown in FIG. At least part of the Delaunay lattice structure 30 or the Voronoi lattice structure 40 is provided in the first passage portion 11 . Three line segments included in the first passage portion 11 and orthogonal to each other are set to line segments S6, S7, and S8. The Delaunay lattice structure 30 has three line segments S6, S7, and S8 each passing through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rods 22. is formed as The Voronoi lattice structure portion 40 is formed such that three line segments S6, S7, and S8 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped portions 22. . 6(a) to 6(d), the three line segments S6, S7, and S8 are parallel to the edge of the coolant passage 10, respectively. However, the shape of the refrigerant passage 10 and the directions and positions of the three line segments S6, S7 and S8 are not limited to those shown in FIGS. 6(a) to 6(d).
 <第7実施形態>
 本発明の第7実施形態の筐体具備装置100が備える筐体1について、図7(a)および図7(b)を用いて説明する。第7実施形態は、第1実施形態の構成を有する。第7実施形態は、第2実施形態~第6実施形態の構成をそれぞれ有してもよく有さなくてもよい。図7(a)および図7(b)は、第7実施形態の例示に過ぎない。第7実施形態の筐体1は冷媒通路10に設けられるラティス構造部20を有する。冷媒通路10は、冷媒流れ方向Fが変化する流れ方向変化部13を有する。ラティス構造部20の少なくとも一部は、流れ方向変化部13の少なくとも一部に設けられる。流れ方向変化部13を横断する第2横断面に含まれ、互いに直交する2つの線分を、線分S9、S10とする。第2横断面は、ドロネーラティス構造部30またはボロノイラティス構造部40を通る。図7(a)は、冷媒流れ方向Fに沿った断面を示し、図7(b)は図7(a)に示すB-B線で切断した場合の断面を示す。図7(b)は第2横断面を示す。ドロネーラティス構造部30は、2つの線分S9、S10がそれぞれ、第1棒状部22同士の連結点によって形成された4つのドロネー点31をそれぞれ有する2つ以上のドロネー三角錐33を通るように形成される。ボロノイラティス構造部40は、2つの線分S9、S10がそれぞれ、第1棒状部22同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体43を通るように形成される。なお、流れ方向変化部13の形状は、図7(a)および図7(b)に示す形状に限らない。また、図7(a)では、2つの線分S9、S10はそれぞれ冷媒通路10の縁と平行である。しかし、第2横断面における冷媒通路10の形状、および、2つの線分S9、S10の方向と位置は、図7(a)に示すものに限らない。
<Seventh embodiment>
The housing 1 included in the housing providing device 100 of the seventh embodiment of the present invention will be described with reference to FIGS. 7(a) and 7(b). The seventh embodiment has the configuration of the first embodiment. The seventh embodiment may or may not have the configurations of the second to sixth embodiments. FIGS. 7(a) and 7(b) are merely examples of the seventh embodiment. The housing 1 of the seventh embodiment has a lattice structure 20 provided in the coolant passage 10 . The refrigerant passage 10 has a flow direction changing portion 13 in which the refrigerant flow direction F changes. At least a portion of the lattice structure portion 20 is provided on at least a portion of the flow direction changing portion 13 . Two line segments included in the second cross section crossing the flow direction changing portion 13 and orthogonal to each other are set to line segments S9 and S10. A second transverse plane passes through the Delaunay lattice structure 30 or the Voronoi lattice structure 40 . FIG. 7(a) shows a cross section along the coolant flow direction F, and FIG. 7(b) shows a cross section taken along line BB shown in FIG. 7(a). FIG. 7(b) shows the second cross section. The Delaunay lattice structure 30 is formed so that two line segments S9 and S10 each pass through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rod-shaped portions 22. It is formed. The Voronoi lattice structure portion 40 is formed such that two line segments S9 and S10 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped portions 22 . The shape of the flow direction changing portion 13 is not limited to the shape shown in FIGS. 7(a) and 7(b). Also, in FIG. 7A, the two line segments S9 and S10 are parallel to the edge of the coolant passage 10, respectively. However, the shape of the refrigerant passage 10 in the second cross section and the directions and positions of the two line segments S9 and S10 are not limited to those shown in FIG. 7(a).
 <第8実施形態>
 本発明の第8実施形態の筐体具備装置100が備える筐体1について、図7(c)および図7(d)を用いて説明する。第8実施形態は、第1実施形態の構成を有する。第8実施形態は、第2実施形態~第7実施形態の構成をそれぞれ有してもよく有さなくてもよい。図7(c)および図7(d)は、第8実施形態の例示に過ぎない。第8実施形態の筐体1は冷媒通路10に設けられるラティス構造部20を有する。冷媒通路10は、冷媒通路10における横断面の面積が変化する断面変化部14を有する。ラティス構造部20の少なくとも一部は、断面変化部14の少なくとも一部に設けられる。断面変化部14を横断する第3横断面に含まれ、互いに直交する2つの線分を、線分S11、S12とする。第3横断面は、ドロネーラティス構造部30またはボロノイラティス構造部40を通る。図7(c)は、冷媒流れ方向Fに沿った断面を示し、図7(d)は図7(c)に示すC-C線で切断した場合の断面を示す。図7(d)は第3横断面を示す。ドロネーラティス構造部30は、2つの線分S11、S12がそれぞれ、第1棒状部22同士の連結点によって形成された4つのドロネー点31をそれぞれ有する2つ以上のドロネー三角錐33を通るように形成される。ボロノイラティス構造部40は、2つの線分S11、S12がそれぞれ、第1棒状部22同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体43を通るように形成される。なお、断面変化部14の形状は、図7(c)および図7(d)に示す形状に限らない。また、図7(c)では、2つの線分S11、S12はそれぞれ冷媒通路10の縁と平行である。しかし、第3横断面における冷媒通路10の形状、および、2つの線分S11、S12の方向と位置は、図7(c)に示すものに限らない。
<Eighth Embodiment>
The housing 1 included in the housing providing device 100 of the eighth embodiment of the present invention will be described with reference to FIGS. 7(c) and 7(d). The eighth embodiment has the configuration of the first embodiment. The eighth embodiment may or may not have the configurations of the second to seventh embodiments. FIGS. 7(c) and 7(d) are merely examples of the eighth embodiment. The housing 1 of the eighth embodiment has a lattice structure 20 provided in the coolant passage 10 . The coolant passage 10 has a cross-sectional change portion 14 in which the cross-sectional area of the coolant passage 10 changes. At least a portion of the lattice structure portion 20 is provided on at least a portion of the cross-section changing portion 14 . Two line segments that are included in the third cross section that crosses the cross section changing portion 14 and that are perpendicular to each other are set to be line segments S11 and S12. A third transverse plane passes through the Delaunay lattice structure 30 or the Voronoi lattice structure 40 . FIG. 7(c) shows a cross section along the coolant flow direction F, and FIG. 7(d) shows a cross section taken along line CC shown in FIG. 7(c). FIG. 7(d) shows a third cross section. The Delaunay lattice structure 30 has two line segments S11 and S12 each passing through two or more Delaunay triangular pyramids 33 each having four Delaunay points 31 formed by connecting points between the first rod-shaped portions 22. It is formed. The Voronoi lattice structure part 40 is formed such that two line segments S11 and S12 each pass through two or more Voronoi polyhedrons 43 having only vertices formed by connecting points between the first rod-shaped parts 22 . Note that the shape of the cross-section changing portion 14 is not limited to the shapes shown in FIGS. 7(c) and 7(d). Also, in FIG. 7C, the two line segments S11 and S12 are parallel to the edge of the coolant passage 10, respectively. However, the shape of the coolant passage 10 in the third cross section and the directions and positions of the two line segments S11 and S12 are not limited to those shown in FIG. 7(c).
 <第9実施形態>
 本発明の第9実施形態の筐体具備装置100が備える筐体101について、図8(a)~図8(c)、図9(a)、および図9(b)を用いて説明する。第9実施形態の筐体101は、第1実施形態の筐体1の構成を有する。第9実施形態の筐体101は、第2実施形態~第8実施形態のいずれかの筐体1の構成を有してもよい。第9実施形態の筐体101は、回転電機190を収容する。回転電機190は、モータでもよく、発電機でもよく、モータと発電機の両方の機能を有してもよい。回転電機190は、図8(a)に示すようなアキシャルギャップ型の回転電機190でもよく、図8(b)に示すようなインナーロータ型のラジアルギャップ型の回転電機190でもよく、図8(c)に示すようなアウターロータ型のラジアルギャップ型の回転電機190でもよい。回転電機190は、シャフト191と、ロータ192と、ステータ193とを有する。シャフト191は、軸受を介して筐体101に回転自在に支持される。ロータ192は、シャフト191に固定されてシャフト191と一体的に回転する。ロータ192は、磁石192aを有する。ステータ193は、ステータヨーク193aと、巻き線部193bとを有する。図8(a)に示すように、アキシャルギャップ型の回転電機190において、ロータ192とステータ193は、シャフト191の中心軸線と平行な方向に向かい合う。図8(b)に示すように、インナーロータ型のラジアルギャップ型の回転電機190において、ロータ192は、ステータ193の径方向内側に配置される。図8(c)に示すように、アウターロータ型のラジアルギャップ型の回転電機190において、ロータ192の磁石192aは、ステータ193の径方向外側に配置される。回転電機190がモータまたは発電機として機能するとき、巻き線部193bに電流が流れることにより巻き線部193bに熱が生じる。回転電機190がモータまたは発電機として機能するとき、磁界の変化により渦電流が発生し、ステータヨーク193aおよびロータ192に電流が流れる。それにより、ステータヨーク193aおよびロータ192に熱が生じる。ロータ192およびステータ193は本発明の熱源に相当する。
<Ninth Embodiment>
The housing 101 included in the housing providing apparatus 100 of the ninth embodiment of the present invention will be described with reference to FIGS. 8(a) to 8(c), 9(a), and 9(b). A housing 101 of the ninth embodiment has the configuration of the housing 1 of the first embodiment. The housing 101 of the ninth embodiment may have the configuration of the housing 1 of any one of the second to eighth embodiments. A housing 101 of the ninth embodiment accommodates a rotating electric machine 190 . The rotating electric machine 190 may be a motor, a generator, or may have the functions of both a motor and a generator. The rotating electrical machine 190 may be an axial gap type rotating electrical machine 190 as shown in FIG. 8A, an inner rotor type radial gap type rotating electrical machine 190 as shown in FIG. The rotary electric machine 190 may be an outer rotor type radial gap type rotary electric machine 190 as shown in c). The rotating electric machine 190 has a shaft 191 , a rotor 192 and a stator 193 . The shaft 191 is rotatably supported by the housing 101 via bearings. Rotor 192 is fixed to shaft 191 and rotates integrally with shaft 191 . The rotor 192 has magnets 192a. The stator 193 has a stator yoke 193a and a winding portion 193b. As shown in FIG. 8A , in an axial gap type rotating electric machine 190 , a rotor 192 and a stator 193 face each other in a direction parallel to the central axis of the shaft 191 . As shown in FIG. 8B , in an inner rotor type radial gap type rotating electric machine 190 , a rotor 192 is arranged radially inside a stator 193 . As shown in FIG. 8( c ), in an outer rotor type radial gap type rotary electric machine 190 , the magnets 192 a of the rotor 192 are arranged radially outward of the stator 193 . When the rotating electric machine 190 functions as a motor or a generator, heat is generated in the winding portion 193b due to current flowing through the winding portion 193b. When the rotating electric machine 190 functions as a motor or a generator, eddy currents are generated due to changes in the magnetic field, and current flows through the stator yoke 193 a and the rotor 192 . Heat is thereby generated in the stator yoke 193 a and the rotor 192 . Rotor 192 and stator 193 correspond to the heat source of the present invention.
 図8(a)~図8(c)において、筐体101は、回転電機190を収容する収容空間104を形成する筐体壁部105を有する。筐体壁部105は、略板状の下壁部151と、円筒状の側壁部152と、略板状の上壁部153と有する。側壁部152は、上壁部153と下壁部151とを接続する。側壁部152は、上壁部153と一体成形されている。側壁部152は、下壁部151と一体成形されてもよい。なお、下壁部151は、紙面の上下方向において上壁部153より下方にあるが、筐体101を使用する状況において上壁部153より下方にあるとは限らない。筐体101を使用する状況において、下壁部151は上壁部153より上方に位置してもよく、下壁部151と上壁部153が水平方向に並んでもよい。側壁部152は、回転電機190の径方向外側に位置する。図8(a)において、ステータ193は、下壁部151に固定され、下壁部151に接触しているか、下壁部151に接触する部材(図示せず)に接触している。図8(b)において、ステータ193は、側壁部152に固定され、側壁部152に接触しているか、側壁部152に接触する部材(図示せず)に接触している。図8(c)において、筐体壁部105は、下壁部151に接続されてステータ193の径方向内側に位置する内筒部154を有する。ステータ193は、内筒部154に固定され、内筒部154に接触しているか、内筒部154に接触する部材(図示せず)に接触している。 8(a) to 8(c), the housing 101 has a housing wall portion 105 that forms a housing space 104 that houses the rotating electrical machine 190. In FIG. The housing wall portion 105 has a substantially plate-shaped lower wall portion 151 , a cylindrical side wall portion 152 , and a substantially plate-shaped upper wall portion 153 . Side wall portion 152 connects upper wall portion 153 and lower wall portion 151 . The side wall portion 152 is formed integrally with the upper wall portion 153 . The side wall portion 152 may be integrally molded with the lower wall portion 151 . In addition, although the lower wall portion 151 is located below the upper wall portion 153 in the vertical direction of the paper surface, it is not always located below the upper wall portion 153 when the housing 101 is used. In a situation where the housing 101 is used, the lower wall portion 151 may be positioned above the upper wall portion 153, and the lower wall portion 151 and the upper wall portion 153 may be horizontally aligned. Side wall portion 152 is positioned radially outward of rotating electric machine 190 . In FIG. 8A , the stator 193 is fixed to the lower wall portion 151 and is in contact with the lower wall portion 151 or in contact with a member (not shown) that contacts the lower wall portion 151 . In FIG. 8B, the stator 193 is fixed to the side wall portion 152 and is in contact with the side wall portion 152 or in contact with a member (not shown) that contacts the side wall portion 152 . In FIG. 8C, the housing wall portion 105 has an inner cylindrical portion 154 connected to the lower wall portion 151 and positioned radially inside the stator 193 . The stator 193 is fixed to the inner tubular portion 154 and is in contact with the inner tubular portion 154 or in contact with a member (not shown) that contacts the inner tubular portion 154 .
 筐体壁部105は、複数の冷媒通路110を形成する。各冷媒通路110を流れる冷媒は、気体(例えば空気)でもよく、液体でもよい。第9実施形態において、冷媒が空気の場合、筐体101の外部の空気を冷媒通路110の入口に送るためのファン(図示せず)がシャフト191に設けられてもよい。各冷媒通路110の入口と出口は、筐体壁部105の外表面106に形成される。複数の冷媒通路110は、シャフト191の中心軸線を中心とした周方向に間隔を空けて形成される。各冷媒通路110は、上壁部153と側壁部152と下壁部151に形成される。各冷媒通路110は、冷媒通路下部110aと冷媒通路中間部110bと冷媒通路上部110cからなる。冷媒通路下部110aは、冷媒通路110のうち下壁部151に形成される部分である。冷媒通路中間部110bは、冷媒通路110のうち側壁部152に形成される部分である。冷媒通路上部110cは、冷媒通路110のうち上壁部153に形成される部分である。各冷媒通路110には、2つのラティス構造部20が設けられる。この2つのラティス構造部20のうちの一方は下壁部151に設けられ、他方のラティス構造部20は側壁部152および上壁部153に設けられる。2つのラティス構造部20は、冷媒通路110の冷媒流れ方向Fの全域に設けられる。2つのラティス構造部20は、冷媒通路110の冷媒流れ方向Fの一部にのみ設けられてもよい。各ラティス構造部20は一体成形されている。 The housing wall portion 105 forms a plurality of refrigerant passages 110 . The refrigerant flowing through each refrigerant passage 110 may be gas (for example, air) or liquid. In the ninth embodiment, when the coolant is air, a fan (not shown) may be provided on the shaft 191 for sending the air outside the housing 101 to the inlet of the coolant passage 110 . The inlet and outlet of each coolant passage 110 are formed on the outer surface 106 of the housing wall portion 105 . A plurality of coolant passages 110 are formed at intervals in the circumferential direction around the central axis of shaft 191 . Each coolant passage 110 is formed in an upper wall portion 153 , a side wall portion 152 and a lower wall portion 151 . Each refrigerant passage 110 is composed of a refrigerant passage lower portion 110a, a refrigerant passage intermediate portion 110b, and a refrigerant passage upper portion 110c. The refrigerant passage lower portion 110 a is a portion of the refrigerant passage 110 formed in the lower wall portion 151 . The refrigerant passage intermediate portion 110 b is a portion of the refrigerant passage 110 formed in the side wall portion 152 . The coolant passage upper portion 110 c is a portion of the coolant passage 110 formed in the upper wall portion 153 . Each coolant passage 110 is provided with two lattice structure portions 20 . One of the two lattice structure portions 20 is provided on the lower wall portion 151 and the other lattice structure portion 20 is provided on the side wall portion 152 and the upper wall portion 153 . The two lattice structure portions 20 are provided throughout the coolant flow direction F of the coolant passage 110 . The two lattice structure portions 20 may be provided only in a portion of the coolant passage 110 in the coolant flow direction F. Each lattice structure 20 is integrally molded.
 冷媒通路110は、筐体101の角部などに、冷媒流れ方向Fが屈曲する屈曲部を有する。屈曲部は、流れ方向変化部13に含まれる。冷媒通路110は、冷媒通路下部110aの両端部および冷媒通路上部110cの両端部に、屈曲部を有する。また、冷媒通路110は、入口を含む部分に、冷媒流れ方向Fの下流に向かうほど横断面の面積が連続的に縮小するテーパ部を有する。これにより、冷媒通路110の入口から冷媒通路110に冷媒が流れ込みやすくなっている。テーパ部は、第8実施形態の断面変化部14に含まれる。図9(a)は、側壁部152の斜視図である。図9(a)に示すように、冷媒通路中間部110bの冷媒流れ方向Fは螺旋状である。つまり、冷媒通路中間部110bの冷媒流れ方向Fはシャフト191の中心軸線の方向に対して周方向に傾斜している。冷媒通路中間部110bの冷媒流れ方向Fがシャフト191の中心軸線と平行な場合に比べて、冷媒通路中間部110bの冷媒流れ方向Fの長さが長くなるため、冷却性能を向上できる。冷媒通路中間部110bは円筒状の側壁部152に螺旋状に形成されるため、冷媒通路中間部110bの冷媒流れ方向Fは、側壁部152に沿って緩やかに湾曲している。冷媒通路中間部110bは、流れ方向変化部13に含まれる。図9(b)は、上壁部153をシャフト191の中心軸線の方向に見た図であり、下壁部151をシャフト191の中心軸線の方向に見た図でもある。図9(b)に示すように、冷媒通路上部110cおよび冷媒通路下部110aは、冷媒流れ方向Fが略径方向で且つ湾曲している部分を有する。これらの部分の冷媒流れ方向Fが径方向と平行な場合や径方向と交差する直線状の場合に比べて、冷媒通路上部110cおよび冷媒通路下部110aの冷媒流れ方向Fの長さが長くなるため、冷却性能を向上できる。シャフト191の中心軸線の方向に見て冷媒流れ方向Fが略径方向で且つ湾曲している部分は、流れ方向変化部13に含まれる。 The coolant passage 110 has a bent portion at a corner of the housing 101 or the like, where the coolant flow direction F is bent. The bent portion is included in the flow direction change portion 13 . The coolant passage 110 has bent portions at both ends of the coolant passage lower portion 110a and both ends of the coolant passage upper portion 110c. In addition, the coolant passage 110 has a tapered portion in a portion including the inlet in which the area of the cross section continuously decreases toward the downstream in the coolant flow direction F. As shown in FIG. This makes it easier for the coolant to flow into the coolant passage 110 from the inlet of the coolant passage 110 . The tapered portion is included in the cross-section changing portion 14 of the eighth embodiment. 9A is a perspective view of the side wall portion 152. FIG. As shown in FIG. 9A, the coolant flow direction F of the coolant passage intermediate portion 110b is spiral. That is, the coolant flow direction F of the coolant passage intermediate portion 110b is inclined in the circumferential direction with respect to the direction of the central axis of the shaft 191 . Since the length of the refrigerant passage middle portion 110b in the refrigerant flow direction F is longer than when the refrigerant passage middle portion 110b is parallel to the central axis of the shaft 191, the cooling performance can be improved. Since the refrigerant passage intermediate portion 110 b is formed in a spiral shape on the cylindrical side wall portion 152 , the refrigerant flow direction F of the refrigerant passage intermediate portion 110 b gently curves along the side wall portion 152 . The refrigerant passage intermediate portion 110 b is included in the flow direction changing portion 13 . 9B is a view of the upper wall portion 153 viewed in the direction of the central axis of the shaft 191, and a view of the lower wall portion 151 viewed in the direction of the central axis of the shaft 191. FIG. As shown in FIG. 9(b), the refrigerant passage upper portion 110c and the refrigerant passage lower portion 110a have curved portions in which the refrigerant flow direction F is substantially radial. Compared to the case where the refrigerant flow direction F of these portions is parallel to the radial direction or the straight line crossing the radial direction, the refrigerant passage upper portion 110c and the refrigerant passage lower portion 110a are longer in the refrigerant flow direction F. , can improve the cooling performance. A curved portion in which the refrigerant flow direction F is substantially radial when viewed in the direction of the central axis of the shaft 191 is included in the flow direction changing portion 13 .
 図8(a)の冷媒通路下部110aは、筐体壁部105においてステータ193が接触している箇所、ステータ193に接触する部材(図示せず)が接触している箇所、または微小な隙間を空けてステータ193と向かい合っている箇所に近い位置を通るように形成される。図8(b)の冷媒通路上部110cは、筐体壁部105においてステータ193が接触している箇所、ステータ193に接触する部材(図示せず)が接触している箇所、または微小な隙間を空けてステータ193と向かい合っている箇所に近い位置を通るように形成される。図8(c)の回転電機190において、冷媒通路下部110a、冷媒通路中間部110b、および冷媒通路上部110cのうち冷媒通路下部110aが、筐体壁部105においてステータ193が接触している箇所またはステータ193に接触する部材(図示せず)が接触している箇所に最も近い。そのため、図8(a)~図8(c)の冷媒通路110を流れる冷媒は、ステータ193およびロータ192で発生した熱を受け取りやすい。このように冷却性能の高い冷媒通路110にラティス構造部20が設けられるため、筐体101の冷却性能をより向上できる。 The coolant passage lower portion 110a in FIG. 8A is a portion of the housing wall portion 105 in contact with the stator 193, a portion in contact with a member (not shown) in contact with the stator 193, or a minute gap. It is formed so as to pass through a position close to the part facing the stator 193 with an opening. The upper part 110c of the coolant passage in FIG. 8(b) is a portion of the housing wall portion 105 in contact with the stator 193, a portion in contact with a member (not shown) in contact with the stator 193, or a minute gap. It is formed so as to pass through a position close to the part facing the stator 193 with an opening. In the rotary electric machine 190 of FIG. 8(c), the refrigerant passage lower portion 110a among the refrigerant passage lower portion 110a, the refrigerant passage intermediate portion 110b, and the refrigerant passage upper portion 110c is in contact with the stator 193 in the housing wall portion 105 or It is closest to the point where a member (not shown) that contacts the stator 193 is in contact. Therefore, the coolant flowing through the coolant passage 110 in FIGS. 8A to 8C easily receives heat generated by the stator 193 and the rotor 192 . Since the lattice structure 20 is provided in the coolant passage 110 having high cooling performance in this manner, the cooling performance of the housing 101 can be further improved.
 なお、冷媒通路下部110aは屈曲部を有さなくてもよい。つまり、冷媒通路下部110aの全体の冷媒流れ方向Fが冷媒通路中間部110bの冷媒流れ方向Fと同じでもよい。冷媒通路上部110cは屈曲部を有さなくてもよい。つまり、冷媒通路上部110cの全体の冷媒流れ方向Fが冷媒通路中間部110bの冷媒流れ方向Fと同じでもよい。冷媒通路中間部110bの冷媒流れ方向Fは、シャフト191の中心軸線の方向と平行な直線状でもよい。側壁部152は四角筒状でもよい。この場合、冷媒通路中間部110bの冷媒流れ方向Fは、冷媒流れ方向Fはシャフト191の中心軸線の方向に対して傾斜する直線状でもよい。 The refrigerant passage lower portion 110a does not have to have a bent portion. That is, the refrigerant flow direction F of the entire refrigerant passage lower portion 110a may be the same as the refrigerant flow direction F of the refrigerant passage intermediate portion 110b. The coolant passage upper portion 110c may not have a bent portion. That is, the refrigerant flow direction F of the entire refrigerant passage upper portion 110c may be the same as the refrigerant flow direction F of the refrigerant passage intermediate portion 110b. The refrigerant flow direction F of the refrigerant passage intermediate portion 110b may be linear parallel to the direction of the center axis of the shaft 191 . The side wall portion 152 may have a square tubular shape. In this case, the coolant flow direction F of the coolant passage intermediate portion 110 b may be a straight line that is inclined with respect to the direction of the central axis of the shaft 191 .
 <第9実施形態の変更例1>
 第9実施形態の変更例1として、例えば図10(a)に示すように、筐体101が複数種類の冷媒通路110Aを有してもよい。図10(a)は、図8(a)の筐体101を変更した例を示すが、図8(b)および図8(c)の筐体101を変更してもよい。以下、図10(a)の筐体101について説明する。筐体101の筐体壁部105は、複数の第1冷媒通路110A1と、複数の第2冷媒通路110A2を形成する。冷媒通路110Aは、第1冷媒通路110A1と第2冷媒通路110A2の総称である。各冷媒通路110Aの入口と出口は、筐体壁部105の外表面106に形成される。第1冷媒通路110A1は、冷媒通路下部110aの形状が第9実施形態の冷媒通路110と相違し、それ以外は第9実施形態の冷媒通路110と同じ構成を有する。第2冷媒通路110A2は、下壁部151にのみ形成される。第2冷媒通路110A2は、第9実施形態の冷媒通路110の冷媒通路下部110aの大部分と同じ形状であって、出口付近の形状が冷媒通路下部110aと異なる。第1冷媒通路110A1と第2冷媒通路110A2は、シャフト191の中心軸線を中心とした周方向に交互に並ぶ。各第1冷媒通路110A1には、2つのラティス構造部20が設けられる。この2つのラティス構造部20のうちの一方は下壁部151に設けられ、他方のラティス構造部20は側壁部152および上壁部153に設けられる。2つのラティス構造部20は、第1冷媒通路110A1の冷媒流れ方向Fの全域に設けられる。2つのラティス構造部20は、第1冷媒通路110A1の冷媒流れ方向Fの一部にのみ設けられてもよい。各ラティス構造部20は、一体成形されている。各第2冷媒通路110A2には、1つのラティス構造部20が設けられる。このラティス構造部20は、第2冷媒通路110A2の冷媒流れ方向Fの全域に設けられる。ラティス構造部20は、第2冷媒通路110A2の冷媒流れ方向Fの一部にのみ設けられてもよい。このラティス構造部20は一体成形されている。第9実施形態の変更例1は、冷媒通路が形成される箇所は第9実施形態とほぼ同じでありながら、各冷媒通路の冷媒流れ方向Fの長さを第9実施形態よりも短くできるため、冷却性能を向上できる。このように冷却性能の高い冷媒通路110Aにラティス構造部20が設けられるため、筐体101の冷却性能をより向上できる。
<Modification 1 of the Ninth Embodiment>
As modification 1 of the ninth embodiment, for example, as shown in FIG. Although FIG. 10(a) shows an example in which the housing 101 of FIG. 8(a) is changed, the housing 101 of FIGS. 8(b) and 8(c) may be changed. The housing 101 shown in FIG. 10A will be described below. A housing wall portion 105 of the housing 101 forms a plurality of first refrigerant passages 110A1 and a plurality of second refrigerant passages 110A2. The refrigerant passage 110A is a general term for the first refrigerant passage 110A1 and the second refrigerant passage 110A2. An inlet and an outlet of each coolant passage 110A are formed on the outer surface 106 of the housing wall portion 105 . The first refrigerant passage 110A1 differs from the refrigerant passage 110 of the ninth embodiment in the shape of the refrigerant passage lower portion 110a, and otherwise has the same configuration as the refrigerant passage 110 of the ninth embodiment. The second coolant passage 110A2 is formed only in the lower wall portion 151. As shown in FIG. The second refrigerant passage 110A2 has the same shape as most of the refrigerant passage lower portion 110a of the refrigerant passage 110 of the ninth embodiment, and differs from the refrigerant passage lower portion 110a in the shape near the outlet. The first coolant passages 110A1 and the second coolant passages 110A2 are alternately arranged in the circumferential direction around the central axis of the shaft 191. As shown in FIG. Two lattice structure portions 20 are provided in each first coolant passage 110A1. One of the two lattice structure portions 20 is provided on the lower wall portion 151 and the other lattice structure portion 20 is provided on the side wall portion 152 and the upper wall portion 153 . The two lattice structure portions 20 are provided over the entire area of the first coolant passage 110A1 in the coolant flow direction F. As shown in FIG. The two lattice structure portions 20 may be provided only partially in the coolant flow direction F of the first coolant passage 110A1. Each lattice structure 20 is integrally molded. One lattice structure portion 20 is provided in each second coolant passage 110A2. The lattice structure portion 20 is provided over the entire area of the second refrigerant passage 110A2 in the refrigerant flow direction F. As shown in FIG. The lattice structure portion 20 may be provided only in a portion of the second coolant passage 110A2 in the coolant flow direction F. The lattice structure 20 is integrally molded. In Modification 1 of the ninth embodiment, although the locations where the refrigerant passages are formed are substantially the same as in the ninth embodiment, the length of each refrigerant passage in the refrigerant flow direction F can be made shorter than in the ninth embodiment. , can improve the cooling performance. Since the lattice structure 20 is provided in the coolant passage 110A having high cooling performance in this manner, the cooling performance of the housing 101 can be further improved.
 <第9実施形態の変更例2>
 第9実施形態の変更例2として、例えば図10(b)に示すように、筐体101が収容空間104内の空気を循環させる内部循環冷媒通路110Bを有してもよい。図10(b)は、図8(a)の筐体101を変更した例を示すが、図8(b)および図8(c)の筐体101を変更してもよい。第9実施形態の変更例2において、収容空間104内の空気(冷媒)を内部循環冷媒通路110Bに送るためのファン(図示せず)がシャフト191またはロータ192に設けられてもよい。以下、図10(b)の筐体101について説明する。筐体101の筐体壁部105は、第9実施形態の変更例1の複数の第1冷媒通路110A1および複数の第2冷媒通路110A2に加えて、複数の内部循環冷媒通路110Bを有する。内部循環冷媒通路110Bは、本発明の冷媒通路に含まれない。各内部循環冷媒通路110Bの入口と出口は、筐体壁部105の内表面107に形成される。複数の内部循環冷媒通路110Bは、シャフト191の中心軸線を中心とした周方向に間隔を空けて形成される。各内部循環冷媒通路110Bは、上壁部153および側壁部152に形成される。内部循環冷媒通路110Bと第1冷媒通路110A1は、シャフト191の中心軸線を中心とした周方向に交互に並ぶ。各内部循環冷媒通路110Bには、1つのラティス構造部20が設けられる。このラティス構造部20は、内部循環冷媒通路110Bの冷媒流れ方向Fの全域に設けられる。このラティス構造部20は、内部循環冷媒通路110Bの冷媒流れ方向Fの一部にのみ設けられてもよい。このラティス構造部20は一体成形されている。第9実施形態の変更例2の筐体101は、収容空間104内の空気を循環させる内部循環冷媒通路110Bを有するため、冷却性能を向上できる。このように冷却性能の高い内部循環冷媒通路110Bにラティス構造部20が設けられるため、筐体101の冷却性能をより向上できる。なお、内部循環冷媒通路110Bと組み合わされる冷媒通路は、第1冷媒通路110A1および第2冷媒通路110A2に限らない。例えば、第1冷媒通路110A1の代わりに第9実施形態の冷媒通路110が設けられてもよい。第2冷媒通路110A2の代わりに、第9実施形態の冷媒通路110が設けられてもよい。第1冷媒通路110A1および第2冷媒通路110A2の代わりに、第9実施形態の冷媒通路110が設けられてもよい。
<Modification 2 of the Ninth Embodiment>
As a modification 2 of the ninth embodiment, for example, as shown in FIG. 10B, the housing 101 may have an internal circulation refrigerant passage 110B for circulating the air in the housing space 104. FIG. FIG. 10(b) shows an example in which the housing 101 of FIG. 8(a) is changed, but the housing 101 of FIGS. 8(b) and 8(c) may be changed. In Modification 2 of the ninth embodiment, a fan (not shown) may be provided on shaft 191 or rotor 192 for sending the air (refrigerant) in housing space 104 to internal circulation refrigerant passage 110B. The housing 101 shown in FIG. 10B will be described below. The housing wall portion 105 of the housing 101 has a plurality of internal circulation refrigerant passages 110B in addition to the plurality of first refrigerant passages 110A1 and the plurality of second refrigerant passages 110A2 of Modification 1 of the ninth embodiment. The internal circulation refrigerant passage 110B is not included in the refrigerant passage of the present invention. The inlet and outlet of each internal circulation coolant passage 110B are formed on the inner surface 107 of the housing wall portion 105 . The plurality of internal circulation refrigerant passages 110B are formed at intervals in the circumferential direction around the central axis of the shaft 191 . Each internal circulation refrigerant passage 110B is formed in the upper wall portion 153 and the side wall portion 152 . The internal circulation refrigerant passages 110B and the first refrigerant passages 110A1 are alternately arranged in the circumferential direction around the central axis of the shaft 191. As shown in FIG. One lattice structure portion 20 is provided in each internal circulation refrigerant passage 110B. The lattice structure 20 is provided over the entire area in the refrigerant flow direction F of the internal circulation refrigerant passage 110B. The lattice structure portion 20 may be provided only in a portion of the internal circulation refrigerant passage 110B in the refrigerant flow direction F. The lattice structure 20 is integrally molded. Since the housing 101 of Modification 2 of the ninth embodiment has the internal circulation refrigerant passage 110B for circulating the air in the housing space 104, the cooling performance can be improved. Since the lattice structure 20 is provided in the internal circulation coolant passage 110B having high cooling performance in this way, the cooling performance of the housing 101 can be further improved. In addition, the refrigerant passage combined with the internal circulation refrigerant passage 110B is not limited to the first refrigerant passage 110A1 and the second refrigerant passage 110A2. For example, the coolant passage 110 of the ninth embodiment may be provided instead of the first coolant passage 110A1. The refrigerant passage 110 of the ninth embodiment may be provided instead of the second refrigerant passage 110A2. The refrigerant passage 110 of the ninth embodiment may be provided instead of the first refrigerant passage 110A1 and the second refrigerant passage 110A2.
 <第9実施形態の変更例3>
 第9実施形態の変更例3として、例えば図10(c)に示すように、筐体101は、筐体壁部105の外表面106に連続するよう形成されたラティス構造部20を有してもよい。図10(c)は、図8(a)の筐体101を変更した例を示すが、図8(b)および図8(c)の筐体101を変更してもよい。図10(c)において、ラティス構造部20は下壁部151にのみ設けられているが、ラティス構造部20の少なくとも一部が側壁部152および/または上壁部153に設けられてもよい。図10(c)において、筐体101は冷媒通路110を有さないが、冷媒通路110を有してもよい。
<Modification 3 of the Ninth Embodiment>
As a modification 3 of the ninth embodiment, for example, as shown in FIG. good too. FIG. 10(c) shows an example in which the housing 101 of FIG. 8(a) is changed, but the housing 101 of FIGS. 8(b) and 8(c) may be changed. Although the lattice structure 20 is provided only on the lower wall 151 in FIG. Although the housing 101 does not have the coolant passage 110 in FIG. 10C, it may have the coolant passage 110 .
 <第10実施形態>
 本発明の第10実施形態の筐体具備装置100が備える筐体201について、図11(a)~図11(c)を用いて説明する。図11(b)は、図11(a)に示すD-D線で切断した場合の断面図である。図11(c)は、図11(a)に示すE-E線で切断した場合の断面図である。第10実施形態の筐体201は、第1実施形態の筐体1の構成を有する。第10実施形態の筐体201は、第2実施形態~第8実施形態のいずれかの筐体1の構成を有してもよい。図11(a)および図11(b)に示すように、第10実施形態の筐体201は、再充電可能な複数の蓄電装置291を含む内容物290を収容する。蓄電装置291は、単電池でもよく、複数の単電池からなる組電池でもよい。単電池は、円筒型でもよく、角型でもよく、ラミネート型でもよい。蓄電装置291が放電するまたは充電されるとき、蓄電装置291に熱が生じる。蓄電装置291は、本発明の熱源に相当する。内容物290は、熱伝導性の高い放熱部材292を含む。放熱部材292は、蓄電装置291に接するように配置される。蓄電装置291と放熱部材292の両方が、本発明の熱源に相当すると解釈されてもよい。内容物290は、蓄電装置291の充電と放電を管理するバッテリー管理装置(BMS:バッテリマネジメントシステム)を含んでもよい。
<Tenth Embodiment>
The housing 201 included in the housing providing apparatus 100 according to the tenth embodiment of the present invention will be described with reference to FIGS. 11(a) to 11(c). FIG. 11(b) is a cross-sectional view taken along line DD shown in FIG. 11(a). FIG. 11(c) is a cross-sectional view taken along line EE shown in FIG. 11(a). A housing 201 of the tenth embodiment has the configuration of the housing 1 of the first embodiment. The housing 201 of the tenth embodiment may have the configuration of the housing 1 of any one of the second to eighth embodiments. As shown in FIGS. 11( a ) and 11 ( b ), the housing 201 of the tenth embodiment accommodates a content 290 including a plurality of rechargeable power storage devices 291 . The power storage device 291 may be a cell or an assembled battery composed of a plurality of cells. The cells may be cylindrical, rectangular, or laminated. Heat is generated in the power storage device 291 when the power storage device 291 is discharged or charged. The power storage device 291 corresponds to the heat source of the present invention. The content 290 includes a heat dissipation member 292 with high thermal conductivity. Heat dissipation member 292 is arranged so as to be in contact with power storage device 291 . Both the power storage device 291 and the heat dissipation member 292 may be interpreted as corresponding to the heat source of the present invention. Contents 290 may include a battery management system (BMS: battery management system) that manages charging and discharging of power storage device 291 .
 筐体201は、複数の蓄電装置291を含む内容物290を収容する収容空間204を形成する筐体壁部205を有する。筐体201は、略直方体状である。筐体壁部205は、略板状の下壁部251と、四角筒状の側壁部252と、略板状の上壁部253と、複数の仕切り壁部254とを有する。側壁部252は、上壁部253と下壁部251とを接続する。側壁部252は、下壁部251と一体成形されている。側壁部252は、上壁部253と一体成形されてもよい。なお、下壁部251は、図11(a)の紙面の上下方向において上壁部253より下方にあるが、筐体201を使用する状況において上壁部253より下方にあるとは限らない。筐体201を使用する状況において、下壁部251は上壁部253より上方に位置してもよく、下壁部251と上壁部253が水平方向に並んでもよい。複数の仕切り壁部254は、下壁部251に接続される。複数の仕切り壁部254は、下壁部251に接続されず、上壁部253に接続されてもよい。複数の仕切り壁部254は、下壁部251と上壁部253の両方に接続されてもよい。各仕切り壁部254は、蓄電装置291と隣接する蓄電装置291との間に配置される。複数の放熱部材292は、筐体壁部205に接触している。各放熱部材292は、下壁部251に接触する。さらに、各放熱部材292は、仕切り壁部254および側壁部252の少なくとも一方に接触する。なお、放熱部材292の筐体壁部205に接触する箇所はこれに限らない。放熱部材292が弾性を有する場合、放熱部材292は衝撃吸収材として機能してもよい。 The housing 201 has a housing wall portion 205 that forms a housing space 204 that houses a content 290 including a plurality of power storage devices 291 . The housing 201 has a substantially rectangular parallelepiped shape. The housing wall portion 205 has a substantially plate-shaped lower wall portion 251 , a rectangular tubular side wall portion 252 , a substantially plate-shaped upper wall portion 253 , and a plurality of partition wall portions 254 . Side wall portion 252 connects upper wall portion 253 and lower wall portion 251 . The side wall portion 252 is formed integrally with the lower wall portion 251 . The side wall portion 252 may be integrally formed with the upper wall portion 253 . Although the lower wall portion 251 is located below the upper wall portion 253 in the vertical direction of the paper surface of FIG. In a situation where the housing 201 is used, the lower wall portion 251 may be positioned above the upper wall portion 253, and the lower wall portion 251 and the upper wall portion 253 may be horizontally aligned. A plurality of partition wall portions 254 are connected to the lower wall portion 251 . The plurality of partition wall portions 254 may be connected to the upper wall portion 253 without being connected to the lower wall portion 251 . A plurality of partition wall portions 254 may be connected to both the lower wall portion 251 and the upper wall portion 253 . Each partition wall portion 254 is arranged between a power storage device 291 and an adjacent power storage device 291 . A plurality of heat dissipation members 292 are in contact with the housing wall portion 205 . Each heat radiating member 292 contacts the lower wall portion 251 . Furthermore, each heat dissipation member 292 contacts at least one of the partition wall portion 254 and the side wall portion 252 . Note that the portion of the heat radiating member 292 that contacts the housing wall portion 205 is not limited to this. When the heat dissipation member 292 has elasticity, the heat dissipation member 292 may function as a shock absorber.
 筐体壁部205は、複数の冷媒通路210を形成する。各冷媒通路210を流れる冷媒は、気体(例えば空気)でもよく、液体でもよい。各冷媒通路210の入口と出口は、筐体壁部205の外表面206に形成される。複数の冷媒通路210は、図11(a)の紙面の上下方向に間隔を空けて形成される。複数の冷媒通路210は、複数の第1冷媒通路210Aと、第2冷媒通路210Bとを含む。各第1冷媒通路210Aは、側壁部252と複数の仕切り壁部254に形成される。第2冷媒通路210Bは、下壁部251に形成される。各冷媒通路210には、1つのラティス構造部20が設けられる。ラティス構造部20は、冷媒通路210の冷媒流れ方向Fの全域に設けられる。ラティス構造部20は、冷媒通路210の冷媒流れ方向Fの一部にのみ設けられてもよい。ラティス構造部20は一体成形されている。 The housing wall portion 205 forms a plurality of refrigerant passages 210 . The refrigerant flowing through each refrigerant passage 210 may be gas (for example, air) or liquid. The inlet and outlet of each coolant passage 210 are formed in the outer surface 206 of the housing wall portion 205 . The plurality of coolant passages 210 are formed at intervals in the vertical direction of the paper surface of FIG. 11(a). The plurality of refrigerant passages 210 includes a plurality of first refrigerant passages 210A and second refrigerant passages 210B. Each first coolant passage 210</b>A is formed in a side wall portion 252 and a plurality of partition wall portions 254 . The second coolant passage 210B is formed in the lower wall portion 251 . Each coolant passage 210 is provided with one lattice structure 20 . The lattice structure portion 20 is provided over the entire area of the refrigerant passage 210 in the refrigerant flow direction F. As shown in FIG. The lattice structure portion 20 may be provided only in a portion of the coolant passage 210 in the coolant flow direction F. The lattice structure 20 is integrally molded.
 第1冷媒通路210Aおよび第2冷媒通路210Bは、筐体201の角部などに、冷媒流れ方向Fが屈曲する屈曲部を有する。第1冷媒通路210Aおよび第2冷媒通路210Bの屈曲部は、流れ方向変化部13に含まれる。図11(c)に示すように、第2冷媒通路210Bは、入口から出口まで一筆書きできる形状である。図11(b)に示すように、第1冷媒通路210Aは、冷媒の流れが分岐する分岐点と、冷媒の流れが合流する合流点を有する。第1冷媒通路210Aの分岐点を含む分岐部および合流点を含む分岐部は、流れ方向変化部13と断面変化部14とを兼ねる。また、第1冷媒通路210Aおよび第2冷媒通路210Bは、入口を含む部分に、冷媒流れ方向Fの下流に向かうほど横断面の面積が連続的に縮小するテーパ部を有する。テーパ部は、断面変化部14に含まれる。複数の第1冷媒通路210Aは、複数の蓄電装置291を取り囲むように形成される。そのため、第1冷媒通路210Aを流れる冷媒は、蓄電装置291で発生した熱を受け取りやすい。第2冷媒通路210Bの大部分は、図11(a)の紙面の上下方向において蓄電装置291の真下に位置する。そのため、第2冷媒通路210Bを流れる冷媒は、蓄電装置291で発生した熱を受け取りやすい。このように冷却性能の高い冷媒通路210A、210Bにラティス構造部20が設けられるため、筐体201の冷却性能をより向上できる。なお、第2冷媒通路210Bを有する筐体壁部205は、複数の第1冷媒通路210Aを有さなくもよい。複数の第1冷媒通路210Aを有する筐体壁部205は、第2冷媒通路210Bを有さなくもよい。 The first refrigerant passage 210A and the second refrigerant passage 210B have bent portions at the corners of the housing 201 or the like where the refrigerant flow direction F bends. The bent portions of the first refrigerant passage 210A and the second refrigerant passage 210B are included in the flow direction changing portion 13 . As shown in FIG. 11(c), the second refrigerant passage 210B has a shape that can be drawn with a single stroke from the inlet to the outlet. As shown in FIG. 11B, the first refrigerant passage 210A has a branch point where the refrigerant flow branches and a confluence point where the refrigerant flow joins. The branching portion including the branching point and the branching portion including the merging point of the first refrigerant passage 210A serve as both the flow direction changing portion 13 and the cross section changing portion 14 . In addition, the first refrigerant passage 210A and the second refrigerant passage 210B have tapered portions in which the area of the cross section continuously decreases toward the downstream in the refrigerant flow direction F in the portions including the inlets. The tapered portion is included in the cross-section changing portion 14 . A plurality of first coolant passages 210A are formed to surround a plurality of power storage devices 291 . Therefore, the coolant flowing through the first coolant passage 210A easily receives the heat generated in the power storage device 291 . Most of the second refrigerant passage 210B is positioned directly below the power storage device 291 in the vertical direction of the paper surface of FIG. 11(a). Therefore, the coolant flowing through the second coolant passage 210</b>B easily receives the heat generated in the power storage device 291 . Since the lattice structure portion 20 is provided in the coolant passages 210A and 210B having high cooling performance in this manner, the cooling performance of the housing 201 can be further improved. Note that the housing wall portion 205 having the second refrigerant passage 210B may not have the plurality of first refrigerant passages 210A. The housing wall portion 205 having the plurality of first coolant passages 210A may not have the second coolant passages 210B.
 <第11実施形態>
 本発明の第11実施形態の筐体具備装置100が備える筐体301について、図12(a)および図12(b)を用いて説明する。第11実施形態の筐体301は、第1実施形態の筐体1の構成を有する。第11実施形態の筐体301は、第2実施形態~第8実施形態のいずれかの筐体1の構成を有してもよい。第11実施形態の筐体301は、電子機器390を収容する。電子機器390は、回路基板391と、回路基板391の表面に実装された電子部品392と、熱伝導性の高い放熱部材393とを有する。回路基板391および電子部品392は、本発明の熱源に相当する。放熱部材393は、回路基板391の裏面に接触している。
<Eleventh Embodiment>
The housing 301 included in the housing providing apparatus 100 according to the eleventh embodiment of the present invention will be described with reference to FIGS. 12(a) and 12(b). A housing 301 of the eleventh embodiment has the configuration of the housing 1 of the first embodiment. The housing 301 of the eleventh embodiment may have the configuration of the housing 1 of any one of the second to eighth embodiments. A housing 301 of the eleventh embodiment accommodates an electronic device 390 . The electronic device 390 has a circuit board 391, electronic components 392 mounted on the surface of the circuit board 391, and a heat dissipation member 393 with high thermal conductivity. Circuit board 391 and electronic component 392 correspond to the heat source of the present invention. The heat dissipation member 393 is in contact with the back surface of the circuit board 391 .
 筐体301は、電子機器390を収容する収容空間304を形成する筐体壁部305を有する。筐体301は、略直方体状である。筐体壁部305は、略板状の下壁部351と、四角筒状の側壁部352と、略板状の上壁部353とを有する。側壁部352は、上壁部353と下壁部351とを接続する。側壁部352は、上壁部353と一体成形されている。側壁部352は、下壁部351と一体成形されてもよい。なお、下壁部351は、図12(a)の紙面の上下方向において上壁部353より下方にあるが、筐体301を使用する状況において上壁部353より下方にあるとは限らない。筐体301を使用する状況において、下壁部351は上壁部353より上方に位置してもよく、下壁部351と上壁部353が水平方向に並んでもよい。回路基板391は、下壁部351に固定される。回路基板391と下壁部351との間には、放熱部材393が配置される。放熱部材393は、下壁部351に接触している。 The housing 301 has a housing wall portion 305 that forms a housing space 304 that houses the electronic device 390 . The housing 301 has a substantially rectangular parallelepiped shape. The housing wall portion 305 has a substantially plate-shaped lower wall portion 351 , a rectangular tubular side wall portion 352 , and a substantially plate-shaped upper wall portion 353 . The side wall portion 352 connects the upper wall portion 353 and the lower wall portion 351 . The side wall portion 352 is formed integrally with the upper wall portion 353 . The side wall portion 352 may be integrally formed with the lower wall portion 351 . Although the lower wall portion 351 is located below the upper wall portion 353 in the vertical direction of the paper surface of FIG. In a situation where the housing 301 is used, the lower wall portion 351 may be positioned above the upper wall portion 353, and the lower wall portion 351 and the upper wall portion 353 may be horizontally aligned. The circuit board 391 is fixed to the lower wall portion 351 . A heat dissipation member 393 is arranged between the circuit board 391 and the lower wall portion 351 . The heat dissipation member 393 is in contact with the lower wall portion 351 .
 図12(a)および図12(b)に示すように、筐体壁部305は、冷媒通路310を形成する。冷媒通路310を流れる冷媒は、気体(例えば空気)でもよく、液体でもよい。冷媒通路310の入口と出口は、筐体壁部305の外表面306に形成される。冷媒通路310は、下壁部351と側壁部352と上壁部353に形成される。冷媒通路310には、2つのラティス構造部20が設けられる。この2つのラティス構造部20のうちの一方は下壁部351に設けられ、他方のラティス構造部20は側壁部352および上壁部353に設けられる。2つのラティス構造部20は、冷媒通路310の冷媒流れ方向Fの全域に設けられる。2つのラティス構造部20は、冷媒通路310の冷媒流れ方向Fの一部にのみ設けられてもよい。各ラティス構造部20は一体成形されている。
 冷媒通路310は、筐体301の角部などに、冷媒流れ方向Fが屈曲する屈曲部を有する。屈曲部は、流れ方向変化部13に含まれる。図12(b)に示すように、冷媒通路310は、冷媒の流れが分岐する分岐点と、冷媒の流れが合流する合流点を有する。冷媒通路310の分岐点を含む分岐部および合流点を含む合流部は、流れ方向変化部13と断面変化部14とを兼ねる。また、冷媒通路310は、入口を含む部分に、冷媒流れ方向Fの下流に向かうほど横断面の面積が連続的に縮小するテーパ部を有する。テーパ部は、断面変化部14に含まれる。冷媒通路310の一部分は、筐体壁部305の下壁部351に形成される。つまり、冷媒通路310の一部分は、筐体壁部305において電子機器390からの熱を最も受けやすい箇所を通る。そのため、冷媒通路310を流れる冷媒は、回路基板391および電子部品392で発生した熱を受け取りやすい。このように冷却性能の高い冷媒通路310にラティス構造部20が設けられるため、筐体301の冷却性能をより向上できる。なお、冷媒通路310は、下壁部351にのみ形成されてもよい。
As shown in FIGS. 12( a ) and 12 ( b ), housing wall portion 305 forms refrigerant passage 310 . The refrigerant flowing through the refrigerant passage 310 may be gas (for example, air) or liquid. The inlet and outlet of the coolant passage 310 are formed on the outer surface 306 of the housing wall portion 305 . The coolant passage 310 is formed in the lower wall portion 351 , the side wall portion 352 and the upper wall portion 353 . Two lattice structure portions 20 are provided in the coolant passage 310 . One of the two lattice structure portions 20 is provided on the lower wall portion 351 and the other lattice structure portion 20 is provided on the side wall portion 352 and the upper wall portion 353 . The two lattice structure portions 20 are provided over the entire area of the coolant passage 310 in the coolant flow direction F. As shown in FIG. The two lattice structure portions 20 may be provided only in a portion of the coolant passage 310 in the coolant flow direction F. Each lattice structure 20 is integrally molded.
The coolant passage 310 has a bent portion where the coolant flow direction F is bent, such as at a corner of the housing 301 . The bent portion is included in the flow direction change portion 13 . As shown in FIG. 12(b), the refrigerant passage 310 has a branch point where the refrigerant flow branches and a confluence point where the refrigerant flow joins. The branching portion including the branching point and the merging portion including the merging point of the refrigerant passage 310 serve as both the flow direction changing portion 13 and the cross section changing portion 14 . In addition, the coolant passage 310 has a tapered portion in a portion including the inlet in which the area of the cross section continuously decreases toward the downstream in the coolant flow direction F. As shown in FIG. The tapered portion is included in the cross-section changing portion 14 . A portion of the coolant passage 310 is formed in the lower wall portion 351 of the housing wall portion 305 . In other words, part of the coolant passage 310 passes through a portion of the housing wall portion 305 that is most likely to receive heat from the electronic device 390 . Therefore, the coolant flowing through coolant passage 310 easily receives heat generated by circuit board 391 and electronic component 392 . Since the lattice structure 20 is provided in the coolant passage 310 having high cooling performance in this manner, the cooling performance of the housing 301 can be further improved. Note that the coolant passage 310 may be formed only in the lower wall portion 351 .
 なお、第9実施形態およびその変更例1、2は、回転電機を収容する筐体に本発明を適用した一例に過ぎない。本発明を適用した回転電機を収容する筐体の構成は、第9実施形態およびその変更例1、2の構成に限らない。例えば、特許文献1に記載の冷媒通路のように、冷媒通路が、シャフトの中心軸線を中心とした周方向に沿って形成されてもよい。また、例えば、回転電機を収容する筐体は、筐体壁部の内表面に連続するよう形成されたラティス構造部を有してもよい。第10実施形態は、蓄電装置を収容する筐体に本発明を適用した一例に過ぎない。本発明を適用した蓄電装置を収容する筐体の構成は、第10実施形態の構成に限らない。例えば、蓄電装置を収容する筐体は、筐体壁部の外表面または内表面に連続するよう形成されたラティス構造部を有してもよい。第11実施形態は、電子機器を収容する筐体に本発明を適用した一例に過ぎない。本発明を適用した電子機器を収容する筐体の構成は、第11実施形態の構成に限らない。例えば、電子機器を収容する筐体は、筐体壁部の外表面または内表面に連続するよう形成されたラティス構造部を有してもよい。 It should be noted that the ninth embodiment and modifications 1 and 2 thereof are merely examples in which the present invention is applied to a housing that accommodates a rotating electric machine. The configuration of the housing that accommodates the rotating electric machine to which the present invention is applied is not limited to the configuration of the ninth embodiment and its modification examples 1 and 2. For example, like the coolant passage described in Patent Literature 1, the coolant passage may be formed along the circumferential direction around the central axis of the shaft. Further, for example, the housing that accommodates the rotating electrical machine may have a lattice structure formed so as to be continuous with the inner surface of the housing wall. The tenth embodiment is merely an example in which the present invention is applied to a housing that accommodates a power storage device. The configuration of the housing that accommodates the power storage device to which the present invention is applied is not limited to the configuration of the tenth embodiment. For example, the housing that houses the power storage device may have a lattice structure that is continuous with the outer surface or the inner surface of the housing wall. The eleventh embodiment is merely an example in which the present invention is applied to a housing that accommodates electronic equipment. The configuration of the housing that accommodates the electronic device to which the present invention is applied is not limited to the configuration of the eleventh embodiment. For example, a housing that houses an electronic device may have a lattice structure that is continuous with the outer surface or the inner surface of the housing wall.
 100:筐体具備装置
 1、101、201、301:筐体
 2、290:内容物
 3:熱源
 4、104、204、304:収容空間
 5、105、205、305:筐体壁部
 6、106、206、306:外表面
 7、107:内表面
 10、110、110A、110A1、110A2、210、210A、210B、310:冷媒通路
 20:ラティス構造部
 21、21P、21Q、21R、21S:ユニットセル
 22:セル空間
 191:回転電機(内容物)
 192:ロータ(熱源)
 193:ステータ(熱源)
 291:蓄電装置(熱源)
 390:電子機器(内容物)
 391:回路基板(熱源)
 392:電子部品(熱源)
 F:冷媒流れ方向
100: housing equipment 1, 101, 201, 301: housing 2, 290: content 3: heat source 4, 104, 204, 304: housing space 5, 105, 205, 305: housing wall 6, 106 , 206, 306: outer surface 7, 107: inner surface 10, 110, 110A, 110A1, 110A2, 210, 210A, 210B, 310: refrigerant passage 20: lattice structure 21, 21P, 21Q, 21R, 21S: unit cell 22: Cell space 191: Rotating electric machine (contents)
192: Rotor (heat source)
193: Stator (heat source)
291: Power storage device (heat source)
390: Electronic equipment (contents)
391: Circuit board (heat source)
392: Electronic components (heat sources)
F: Refrigerant flow direction

Claims (14)

  1.  熱源を含む内容物を収容する収容空間を形成する筐体壁部を有する筐体を備える筐体具備装置であって、
     前記筐体は、前記熱源で発生した熱が前記筐体の外部に放熱される冷却構造を有し、
     前記冷却構造は、前記筐体壁部の外表面または内表面と連続するように形成されるか、もしくは、前記筐体壁部の外表面および内表面のいずれとも連続せず、冷媒が流れる冷媒通路を形成する前記筐体壁部と連続するように形成されるラティス構造部を含み、
     前記冷媒通路は、前記筐体壁部の前記外表面と前記内表面との間に形成され、且つ、前記冷媒流れ方向を横断する横断面における前記冷媒通路の最大幅が前記冷媒通路の冷媒流れ方向の長さよりも短くなるように形成され、
     前記筐体壁部の前記外表面または前記内表面と連続するように形成される前記ラティス構造部の前記筐体壁部の厚み方向における最大幅を第1幅とした場合に、前記筐体壁部の前記外表面または前記内表面の前記ラティス構造部が設けられる領域に直交する方向に前記ラティス構造部を見て、前記ラティス構造部に収まる最長の線分に直交する、前記ラティス構造部に収まるいずれかの線分の長さが、前記第1幅よりも長く、
     前記ラティス構造部は、複数の棒状部からなり、
     前記ラティス構造部は、
     3次元にランダムに分布する複数のドロネー点に基づく3次元のドロネー図における複数のドロネー辺を形成する複数の第1棒状部からなるドロネーラティス構造部、または、
     3次元にランダムに分布する複数の仮想点を母点とする3次元のボロノイ図におけるボロノイ境界面のみで形成される複数のボロノイ多面体の辺を形成する複数の第1棒状部からなるボロノイラティス構造部を含み、
     前記ドロネーラティス構造部は、互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、
     前記ボロノイラティス構造部は、互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成されることを特徴とする筐体具備装置。
    A housing-equipped device comprising a housing having a housing wall forming a housing space for housing contents including a heat source,
    The housing has a cooling structure in which heat generated by the heat source is dissipated to the outside of the housing,
    The cooling structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall portion, or is not continuous with either the outer surface or the inner surface of the housing wall portion, and the coolant flows through the cooling structure. including a lattice structure formed so as to be continuous with the housing wall forming a passage;
    The refrigerant passage is formed between the outer surface and the inner surface of the housing wall portion, and the maximum width of the refrigerant passage in a cross section transverse to the refrigerant flow direction is the same as the refrigerant flow of the refrigerant passage. formed to be shorter than the length of the direction,
    When the maximum width of the lattice structure formed so as to be continuous with the outer surface or the inner surface of the housing wall in the thickness direction of the housing wall is defined as a first width, the housing wall looking at the lattice structure in a direction perpendicular to the region of the outer surface or the inner surface of the part where the lattice structure is provided, the lattice structure is perpendicular to the longest line segment that fits in the lattice structure. The length of any line segment that fits is longer than the first width,
    The lattice structure portion is composed of a plurality of rod-shaped portions,
    The lattice structure is
    a Delaunay lattice structure composed of a plurality of first rod-shaped portions forming a plurality of Delaunay edges in a three-dimensional Delaunay diagram based on a plurality of Delaunay points randomly distributed in three dimensions, or
    A Voronoi lattice structure consisting of a plurality of first rod-shaped portions forming sides of a plurality of Voronoi polyhedrons formed only by Voronoi boundary surfaces in a three-dimensional Voronoi diagram having a plurality of randomly distributed virtual points as the generating points. including the part
    The Delaunay lattice structure is formed such that three line segments orthogonal to each other pass through two or more Delaunay triangular pyramids each having four Delaunay points formed by connection points between the first rod-shaped portions. is,
    The Voronoi lattice structure part is formed so that each of three line segments perpendicular to each other passes through two or more Voronoi polyhedrons having only vertices formed by connecting points between the first rod-like parts. A device equipped with a housing.
  2.  前記ドロネーラティス構造部または前記ボロノイラティス構造部において、前記複数の第1棒状部のうちの一部の複数の第1棒状部が前記筐体壁部と連続するように形成されることを特徴とする請求項1に記載の筐体具備装置。 In the Delaunay lattice structure or the Voronoi lattice structure, a plurality of the plurality of first rod-shaped portions of the plurality of first rod-shaped portions are formed so as to be continuous with the housing wall portion. The housing provided device according to claim 1.
  3.  前記ラティス構造部を構成する複数の棒状部は、前記ドロネーラティス構造部または前記ボロノイラティス構造部を構成する複数の第1棒状部に加えて、複数の第2棒状部を含み、
     前記複数の第2棒状部は、1つの前記ドロネー点または前記ボロノイ多面体の1つの頂点を形成する前記第1棒状部の端と少なくとも1つの前記第2棒状部と前記筐体壁部とが連続して形成されるように設けられることを特徴とする請求項1または2に記載の筐体具備装置。
    The plurality of rod-shaped portions constituting the lattice structure includes, in addition to the plurality of first rod-shaped portions constituting the Delaunay lattice structure or the Voronoi lattice structure, a plurality of second rod-shaped portions,
    In the plurality of second rod-shaped portions, an end of the first rod-shaped portion forming one of the Delaunay points or one vertex of the Voronoi polyhedron, at least one of the second rod-shaped portions, and the housing wall are continuous. 3. A housing-equipped device according to claim 1 or 2, characterized in that it is provided so as to be formed as a.
  4.  前記ラティス構造部が前記ドロネーラティス構造部を含む場合、
     前記第2棒状部が連結される前記第1棒状部の端と前記筐体壁部との間の最短距離が、前記複数の第1棒状部の長さの最大値よりも短く、
     前記ラティス構造部が前記ボロノイラティス構造部を含む場合、
     前記第2棒状部が連結される前記第1棒状部の端と前記筐体壁部との間の最短距離が、前記ボロノイ境界面のみで形成される前記複数のボロノイ多面体の対角線の長さの最大値よりも短いことを特徴とする請求項3に記載の筐体具備装置。
    When the lattice structure includes the Delaunay lattice structure,
    the shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is shorter than the maximum length of the plurality of first rod-shaped portions;
    When the lattice structure includes the Voronoi lattice structure,
    The shortest distance between the end of the first rod-shaped portion to which the second rod-shaped portion is connected and the housing wall portion is the length of the diagonal of the plurality of Voronoi polyhedrons formed only by the Voronoi boundary surfaces. 4. The enclosure-equipped device according to claim 3, wherein the length is shorter than the maximum value.
  5.  前記ドロネーラティス構造部において、前記複数の第1棒状部の長さの最大値が、前記複数の第1棒状部の長さの平均値の4倍よりも小さいことを特徴とする請求項1~4のいずれか1項に記載の筐体具備装置。 1-, wherein the maximum length of the plurality of first rod-shaped portions in the Delaunay lattice structure is smaller than four times the average length of the plurality of first rod-shaped portions. 5. The housing-equipped device according to any one of 4.
  6.  前記ボロノイラティス構造部において、複数の前記第1棒状部で囲まれたボロノイ境界面の両側に位置する2つの前記母点の距離の最大値が、複数の前記第1棒状部で囲まれたボロノイ境界面の両側に位置する2つの前記母点の距離の平均値の4倍よりも小さいことを特徴とする請求項1~4のいずれか1項に記載の筐体具備装置。 In the Voronoi lattice structure portion, the maximum value of the distance between the two generating points located on both sides of the Voronoi boundary surface surrounded by the plurality of first rod-shaped portions is the Voronoi surrounded by the plurality of first rod-shaped portions. 5. The housing-equipped device according to any one of claims 1 to 4, wherein the distance is smaller than four times the average value of the distances between the two generating points located on both sides of the boundary surface.
  7.  前記ボロノイラティス構造部において、前記複数の第1棒状部の長さの最大値が、前記複数の第1棒状部の長さの平均値の5倍よりも小さいことを特徴とする請求項1~4、6のいずれか1項に記載の筐体具備装置。 1 to 1, wherein in the Voronoi lattice structure, the maximum length of the plurality of first rod-shaped portions is smaller than five times the average length of the plurality of first rod-shaped portions. 7. The housing provided apparatus according to any one of 4 and 6.
  8.  前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、
     前記筐体具備装置は、前記筐体具備装置の周囲の気体または液体を前記冷媒として前記冷媒通路に導入し、且つ、前記冷媒通路を通過した後の冷媒を前記筐体具備装置の周囲に放出するように構成され、
     前記筐体具備装置は、前記冷媒通路を通過した後の前記冷媒を冷却するためのラジエータを有さないことを特徴とする請求項1~7のいずれか1項に記載の筐体具備装置。
    The lattice structure is formed so as to be continuous with the housing wall forming the coolant passage without being continuous with either the outer surface or the internal surface of the housing wall,
    The housing-equipped device introduces the gas or liquid around the housing-equipped device as the refrigerant into the refrigerant passage, and releases the refrigerant after passing through the refrigerant passage to the surroundings of the housing-equipped device. is configured to
    The enclosure-equipped device according to any one of claims 1 to 7, wherein the enclosure-equipped device does not have a radiator for cooling the coolant after passing through the coolant passage.
  9.  前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、
     前記ラティス構造部の前記冷媒流れ方向の長さが、前記ラティス構造部を通る前記横断面における前記冷媒通路の最大幅よりも長いことを特徴とする請求項1~8のいずれか1項に記載の筐体具備装置。
    The lattice structure is formed so as to be continuous with the housing wall forming the coolant passage without being continuous with either the outer surface or the internal surface of the housing wall,
    The length of the lattice structure in the coolant flow direction is longer than the maximum width of the coolant passage in the cross section passing through the lattice structure. housing equipped device.
  10.  前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、
     前記ラティス構造部の前記冷媒流れ方向の長さが、前記ラティス構造部を通る前記横断面における前記冷媒通路の周長よりも長いことを特徴とする請求項9に記載の筐体具備装置。
    The lattice structure is formed so as to be continuous with the housing wall forming the coolant passage without being continuous with either the outer surface or the internal surface of the housing wall,
    10. The housing-equipped device according to claim 9, wherein the length of the lattice structure in the coolant flow direction is longer than the circumferential length of the coolant passage in the cross section passing through the lattice structure.
  11.  前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、
     前記ラティス構造部が前記ドロネーラティス構造部を含む場合、
     前記ラティス構造部は、前記冷媒流れ方向を横断する第1横断面に含まれる互いに直交する2つの線分がそれぞれ、全ての前記ドロネー点が前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通り、且つ、前記2つの線分の方向の各々において前記筐体壁部の一部分と前記ラティス構造部と前記筐体壁部の他の一部分とが連続するように形成され、
     前記ラティス構造部が前記ボロノイラティス構造部を含む場合、
     前記ラティス構造部は、前記冷媒流れ方向を横断する第1横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通り、且つ、前記2つの線分の方向の各々において前記筐体壁部の一部分と前記ラティス構造部と前記筐体壁部の他の一部分とが連続するように形成されることを特徴とする請求項1~10のいずれか1項に記載の筐体具備装置。
    The lattice structure is formed so as to be continuous with the housing wall forming the coolant passage without being continuous with either the outer surface or the internal surface of the housing wall,
    When the lattice structure includes the Delaunay lattice structure,
    In the lattice structure portion, two line segments orthogonal to each other included in a first cross section that traverses the coolant flow direction are formed by connection points between the first rod-shaped portions, and all of the Delaunay points are formed 4 passing through two or more Delaunay triangular pyramids each having one said Delaunay point, and in each of said two line segment directions, a portion of said housing wall, said lattice structure and the other of said housing wall formed so as to be continuous with a part,
    When the lattice structure includes the Voronoi lattice structure,
    The lattice structure has two or more mutually orthogonal line segments included in a first cross section that traverses the coolant flow direction, each of which has only vertexes formed by connection points between the first rod-shaped portions. through the Voronoi polyhedron of and in each of the directions of the two line segments, the part of the housing wall, the lattice structure, and the other part of the housing wall are continuous. The housing-equipped device according to any one of claims 1 to 10, characterized by:
  12.  前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、
     前記冷媒通路の前記冷媒流れ方向の少なくとも一部は、前記ラティス構造部の少なくとも一部が設けられた第1通路部分と、前記第1通路部分と冷媒流れ方向に交差する方向に並んだ、前記ラティス構造部が設けられていない第2通路部分とを有し、
     前記ラティス構造部が前記ドロネーラティス構造部を含む場合、
     前記ドロネーラティス構造部は、前記第1通路部分に含まれる互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、
     前記ラティス構造部が前記ボロノイラティス構造部を含む場合、
     前記ボロノイラティス構造部は、前記第1通路部分に含まれる互いに直交する3つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成されることを特徴とする請求項1~11のいずれか1項に記載の筐体具備装置。
    The lattice structure is formed so as to be continuous with the housing wall forming the coolant passage without being continuous with either the outer surface or the internal surface of the housing wall,
    At least a portion of the refrigerant passage in the refrigerant flow direction is aligned with a first passage portion provided with at least a portion of the lattice structure in a direction intersecting the first passage portion in the refrigerant flow direction. a second passage portion not provided with a lattice structure;
    When the lattice structure includes the Delaunay lattice structure,
    The Delaunay lattice structure has two or more Delaunay points, each of which is included in the first passage portion and has four Delaunay points formed by connection points between the first rod-shaped portions. Formed to pass through the Delaunay triangular pyramid,
    When the lattice structure includes the Voronoi lattice structure,
    In the Voronoi lattice structure, each of three mutually orthogonal line segments included in the first passage portion passes through two or more Voronoi polyhedrons each having only vertices formed by connection points between the first rod-shaped portions. The enclosure-equipped device according to any one of claims 1 to 11, characterized in that it is formed as follows.
  13.  前記ラティス構造部が、前記筐体壁部の前記外表面および前記内表面のいずれとも連続せず、前記冷媒通路を形成する前記筐体壁部と連続するように形成され、
     前記ラティス構造部の少なくとも一部は、前記冷媒通路における前記冷媒流れ方向が変化する流れ方向変化部、および、前記冷媒通路における前記横断面の面積が変化する断面変化部の少なくとも一方の少なくとも一部に設けられ、
     前記ラティス構造部の少なくとも一部が前記流れ方向変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ドロネーラティス構造部を含む場合、
     前記ドロネーラティス構造部は、前記流れ方向変化部を横断する第2横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、
     前記ラティス構造部の少なくとも一部が前記流れ方向変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ボロノイラティス構造部を含む場合、
     前記ボロノイラティス構造部は、前記流れ方向変化部を横断する第2横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成され、
     前記ラティス構造部の少なくとも一部が前記断面変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ドロネーラティス構造部を含む場合、
     前記ドロネーラティス構造部は、前記断面変化部を横断する第3横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された4つの前記ドロネー点をそれぞれ有する2つ以上のドロネー三角錐を通るように形成され、
     前記ラティス構造部の少なくとも一部が前記断面変化部の少なくとも一部に設けられ、且つ、前記ラティス構造部が前記ボロノイラティス構造部を含む場合、
     前記ボロノイラティス構造部は、前記断面変化部を横断する第3横断面に含まれる互いに直交する2つの線分がそれぞれ、前記第1棒状部同士の連結点によって形成された頂点のみを有する2つ以上のボロノイ多面体を通るように形成されることを特徴とする請求項1~12のいずれか1項に記載の筐体具備装置。
    The lattice structure is formed so as to be continuous with the housing wall forming the coolant passage without being continuous with either the outer surface or the internal surface of the housing wall,
    At least a portion of the lattice structure is at least a portion of at least one of a flow direction changing portion in the refrigerant passage where the refrigerant flow direction changes, and a cross section changing portion in the refrigerant passage where the area of the cross section changes. provided in
    When at least a portion of the lattice structure is provided in at least a portion of the flow direction changing portion, and the lattice structure includes the Delaunay lattice structure,
    The Delaunay lattice structure has four Delaunay points in which two mutually orthogonal line segments included in a second cross section crossing the flow direction changing portion are respectively formed by connection points between the first rod-shaped portions. formed through two or more Delaunay triangular pyramids each having
    When at least a portion of the lattice structure is provided in at least a portion of the flow direction changing portion, and the lattice structure includes the Voronoi lattice structure,
    In the Voronoi lattice structure, each of two mutually orthogonal line segments included in a second cross section crossing the flow direction changing portion has only vertices formed by connection points between the first rod-shaped portions. formed through one or more Voronoi polyhedra,
    When at least a portion of the lattice structure is provided in at least a portion of the cross-section changing portion, and the lattice structure includes the Delaunay lattice structure,
    In the Delaunay lattice structure, two mutually orthogonal line segments included in a third cross-section crossing the cross-section changing portion each define four Delaunay points formed by connection points between the first rod-shaped portions. formed to pass through two or more Delaunay triangular pyramids each having
    When at least part of the lattice structure is provided in at least part of the cross-section changing part, and the lattice structure includes the Voronoi lattice structure,
    In the Voronoi lattice structure, each of two mutually orthogonal line segments included in a third cross section that crosses the cross-section changing portion has two vertices formed by connecting points between the first rod-shaped portions. 13. The housing-equipped device according to any one of claims 1 to 12, which is formed so as to pass through the Voronoi polyhedron.
  14.  前記ラティス構造部が、前記筐体壁部の前記外表面または前記内表面と連続するように形成され、
     前記ラティス構造部が、前記筐体壁部の前記外表面または前記内表面と金属積層造形法によって一体成形されていることを特徴とする請求項1~7のいずれか1項に記載の筐体具備装置。
    The lattice structure is formed so as to be continuous with the outer surface or the inner surface of the housing wall,
    The housing according to any one of claims 1 to 7, wherein the lattice structure is formed integrally with the outer surface or the inner surface of the housing wall by metal additive manufacturing. equipment.
PCT/JP2022/026289 2021-07-14 2022-06-30 Housing-inclusive device WO2023286631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111126226A TW202309470A (en) 2021-07-14 2022-07-13 Housing-inclusive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026471 WO2023286206A1 (en) 2021-07-14 2021-07-14 Enclosure
JPPCT/JP2021/026471 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286631A1 true WO2023286631A1 (en) 2023-01-19

Family

ID=84919162

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/026471 WO2023286206A1 (en) 2021-07-14 2021-07-14 Enclosure
PCT/JP2022/026289 WO2023286631A1 (en) 2021-07-14 2022-06-30 Housing-inclusive device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026471 WO2023286206A1 (en) 2021-07-14 2021-07-14 Enclosure

Country Status (2)

Country Link
TW (1) TW202309470A (en)
WO (2) WO2023286206A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064002A (en) * 2006-09-06 2008-03-21 Ihi Corp Cooling structure
JP2010041835A (en) * 2008-08-06 2010-02-18 Mitsubishi Motors Corp Rotary electric machine
JP2017207035A (en) * 2016-05-20 2017-11-24 株式会社Ihi Lattice structure
WO2020195004A1 (en) * 2019-03-28 2020-10-01 日本電産株式会社 Motor, rotary wing device, and unmanned flying body
JP2020179044A (en) * 2019-04-26 2020-11-05 国立大学法人 筑波大学 Buffer material, pillow, mattress, chair, and protector
JP2021050688A (en) * 2019-09-26 2021-04-01 川崎重工業株式会社 Turbine blade

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064002A (en) * 2006-09-06 2008-03-21 Ihi Corp Cooling structure
JP2010041835A (en) * 2008-08-06 2010-02-18 Mitsubishi Motors Corp Rotary electric machine
JP2017207035A (en) * 2016-05-20 2017-11-24 株式会社Ihi Lattice structure
WO2020195004A1 (en) * 2019-03-28 2020-10-01 日本電産株式会社 Motor, rotary wing device, and unmanned flying body
JP2020179044A (en) * 2019-04-26 2020-11-05 国立大学法人 筑波大学 Buffer material, pillow, mattress, chair, and protector
JP2021050688A (en) * 2019-09-26 2021-04-01 川崎重工業株式会社 Turbine blade

Also Published As

Publication number Publication date
TW202309470A (en) 2023-03-01
WO2023286206A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP4884221B2 (en) Linear or curved moving motor
US7987898B2 (en) Heat dissipation device
JP7201601B2 (en) Enclosed rotating electrical machine with an internal air cooling system for the magnets in the rotor
US20130126143A1 (en) Cooling jacket
US8502425B2 (en) Totally enclosed motor
US20150214810A1 (en) Cooling jacket
JP6085792B2 (en) Axial flux electrical equipment
JP6044848B2 (en) Rotating electric machine
EP1948940A1 (en) A cooling device
JP2007247495A (en) Centrifugal fan device and electronics provided therewith
EP2050672A2 (en) System, method, and apparatus for pulsed-jet-enhanced heat exchanger
US20230363120A1 (en) Apparatus for Electronic Cooling on an Autonomous Device
US20230038386A1 (en) Axial flux motor with cooling jacket
WO2023286631A1 (en) Housing-inclusive device
WO2014089070A1 (en) Kinetic-heat-sink-cooled server
WO2023286624A1 (en) Housing-equipped device
WO2023286623A1 (en) Housing-inclusive device
US10566858B2 (en) Stator frame, stator and rotary electrical machine
WO2021111791A1 (en) Heat sink and heat sink manufacturing method
WO2023286628A1 (en) Case
EP3192693A1 (en) Hub motor and personal transportation vehicle comprising said motor
WO2023286203A1 (en) Housing
JP2007027319A (en) Mesh material and electronic apparatus
US20200195084A1 (en) Meandering coolant channels with varying widths in a multi-section motor housing
JP5857208B2 (en) Thermal storage unit and thermal storage module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE