WO2023286466A1 - Package-type rotary pump unit - Google Patents
Package-type rotary pump unit Download PDFInfo
- Publication number
- WO2023286466A1 WO2023286466A1 PCT/JP2022/021492 JP2022021492W WO2023286466A1 WO 2023286466 A1 WO2023286466 A1 WO 2023286466A1 JP 2022021492 W JP2022021492 W JP 2022021492W WO 2023286466 A1 WO2023286466 A1 WO 2023286466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotary pump
- sealed housing
- air
- heat exchanger
- pump
- Prior art date
Links
- 238000001816 cooling Methods 0.000 claims abstract description 130
- 239000007788 liquid Substances 0.000 claims abstract description 62
- 239000002826 coolant Substances 0.000 claims abstract description 38
- 238000007599 discharging Methods 0.000 claims abstract description 10
- 239000000110 cooling liquid Substances 0.000 claims description 168
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000007664 blowing Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 51
- 230000009467 reduction Effects 0.000 description 21
- 230000002829 reductive effect Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 210000000078 claw Anatomy 0.000 description 13
- 238000013021 overheating Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000010687 lubricating oil Substances 0.000 description 9
- 238000013016 damping Methods 0.000 description 8
- 230000013011 mating Effects 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000001743 silencing effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- -1 antifreeze Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/06—Cooling; Heating; Prevention of freezing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/126—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/14—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
- F04C18/18—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
- F04C29/124—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
Definitions
- the present invention relates to a package-type rotary pump unit comprising a rotary pump for sucking and discharging gas, an electric rotary pump comprising an electric motor for driving the rotary pump, and a sealed housing enclosing the electric rotary pump.
- a conventional package-type rotary pump unit includes a pneumatic device such as a vacuum pump or blower that generates negative or positive air pressure, and a storage box that can accommodate a plurality of such pneumatic devices and can be soundproofed by housing them in a closed space.
- a blowing device for generating and exhausting a cooling airflow that flows substantially from bottom to top within the storage box so as to cool the interior of the storage box heated by the pneumatic device by taking in outside air;
- a water-cooled cooler provided for cooling by passing a cooling airflow therethrough, a cooler unit supplying cold water to the cooler, and controlling the temperature of the water to adjust the temperature of the cold water supplied to the cooler.
- At least one shelf-like support on which the device is placed is provided, and the shelf-like support has an opening to allow the flow of the cooling airflow.
- a rotary pump incorporated in a package-type rotary pump unit as shown in FIG. a cylinder portion 10a, one end wall portion 10b provided on one end surface of the cylinder portion 10a, and the other end wall portion 10c provided on the other end surface of the cylinder portion 10a;
- Two rotary shafts 20A and 20B are arranged in parallel in the pump chamber 10 and rotate in opposite directions at the same speed, and the two rotary shafts 20A and 20B are respectively provided in the pump chamber 10 and mutually Two rotors 30A and 30B, which are rotated in a non-contact state and have hook-shaped claw portions so that the sucked gas can be compressed and discharged, the one end wall portion 10b and the other end wall portion 10c and a rotary pump (claw pump) provided with an exhaust-side opening 50 provided at a position facing a portion where the gas is compressed in the pump chamber 10.
- the exhaust-side opening 50 is a front-stage vent port 51 that communicates with the outside of the pump chamber 10 at the front stage where the gas compression ratio is maximized by the claw portions of the two rotors 30A and 30B.
- a rear stage exhaust port (exhaust port 55)
- the front vent port 51 is closed by the rotor 30A.
- a pump chamber body portion provided by a cylinder portion 10a so as to form the pump chamber 10 and end wall portions 10b and 10c provided on both end surfaces of the cylinder portion; and the two rotors.
- a claw pump has been proposed in which a pump body is provided in a divided structure so that a cooling gap is formed between the parts (see Patent Document 2).
- the exhaust-side opening 50 is composed of the front-stage vent 51 and the rear-stage exhaust port (exhaust port 55) which are separately opened. For this reason, for example, when the vacuum pump is used at a high degree of vacuum, unsuperheated outside air is sucked into the pump chamber 10 through the front-stage vent port 51, causing the exhaust gas to flow back through the rear-stage exhaust port (exhaust port 55). It is possible to prevent the pump chamber 10 from being overheated, thereby improving the pump performance.
- Japanese Patent No. 5041849 (Claim 1, Fig. 1)
- Japanese Patent No. 6749714 (Claim 1, Fig. 3)
- the problem to be solved with the package-type rotary pump unit is that in the conventional package-type rotary pump unit, cooling air is introduced from the outside and the air heated by the rotary pump is discharged to the outside of the housing.
- the rotary pump is built in the sealed housing and the air heated by the rotary pump is not discharged outside the sealed housing, the inside of the sealed housing is effectively prevented from being overheated. It is that the means have not been considered. That is, when the inside of the closed housing is overheated by the operation of the rotary pump and the temperature of the internal air rises, it adversely affects the electric motor, electrical components, and the like, so appropriate temperature countermeasures are required.
- a package-type rotary pump unit capable of maintaining high pump performance and prolonging the life of the device by preventing it.
- an electric rotary pump including a rotary pump for sucking and discharging gas and an electric motor for driving the rotary pump, and a sealed housing enclosing the electric rotary pump.
- a package-type rotary pump unit comprising Then, the air inside the sealed housing, which is arranged inside the sealed housing and contains heated air generated by heating the air around the rotary pump due to the operation of the rotary pump, is transferred to the liquid cooling heat exchanger.
- the rotary pump is a two-shaft rotary pump
- one rotor rotary shaft is connected in series to the rotary shaft of the electric motor and rotated
- the other rotor rotary shaft is connected to the rotary shaft of the electric motor.
- the liquid-cooling heat exchanger and the blower are arranged in a space adjacent to a portion where the one rotor rotating shaft is connected to the liquid-cooling heat exchanger.
- the internal air circulating inside the sealed housing is disposed inside the sealed housing so as to cover the rotary pump. and a circulating air outlet through which the internal air containing the heated air is discharged.
- the pump cover part is provided so as to cover the periphery of the rotary pump excluding the electric motor of the electric rotary pump, and the circulating air inlet part surrounds the periphery of the rotary pump and is open in a strip shape.
- the rotary pump includes a bearing body portion, a pump chamber body portion, and a first muffler portion, and the pump cover portion surrounds the bearing body portion and the pump chamber body portion. It can be characterized by being provided.
- the liquid cooling heat exchanger is connected to the circulating air outlet side, and the blower sucks the internal air to cause the circulating air. It can be characterized in that the air is connected to the liquid cooling heat exchanger so as to flow from the air inlet to the circulating air outlet and pass through the liquid cooling heat exchanger. Further, according to one aspect of the packaged rotary pump unit according to the present invention, the rotary pump may be connected to the coolant supply source so as to be liquid-cooled.
- an electric rotary pump including a rotary pump for sucking and discharging a gas and an electric motor for driving the rotary pump, and a closed housing enclosing the electric rotary pump.
- a package-type rotary pump unit comprising a body, which is arranged inside the sealed housing and is cooled by receiving a cooling liquid supplied from a cooling liquid supply source arranged outside the sealed housing. and an exchanger arranged inside the sealed housing, wherein the internal air in the sealed housing containing heated air generated by heating the air around the rotary pump due to the operation of the rotary pump is exchanged with the liquid cooling heat exchange.
- a blower for directing cooling liquid from the cooling liquid supply to the vessel, such that the rotary pump is also cooled by the cooling liquid from the cooling liquid supply that has cooled the liquid cooling heat exchanger.
- a cold flow path is connected in series through the liquid cooling heat exchanger and the rotary pump.
- the rotary pump includes a bearing body portion, a pump chamber body portion, and a first muffler portion, and pumps coolant from the coolant supply source. is connected in series so that the liquid cooling flow path from the cooling liquid supply source flows in the order of the liquid cooling heat exchanger, the bearing body portion, the pump chamber body portion and the first muffler portion.
- the electric motor is provided with a blower fan for cooling the electric motor, which blows air so as to cool the electric motor. It can be characterized in that it is disposed on the side opposite to the side connected to one of the rotor rotating shafts and is provided so as to blow air toward the motor body.
- the package-type rotary pump unit when it is operated in a high-temperature environment, or when the rotary pump contained in the sealed housing is used as a vacuum pump in a high degree of vacuum and generates a large amount of heat.
- the rotary pump contained in the sealed housing is used as a vacuum pump in a high degree of vacuum and generates a large amount of heat.
- it is possible to maintain high pump performance, thereby achieving a particularly advantageous effect of prolonging the life of the device.
- FIG. 3 is a block diagram schematically showing a liquid cooling flow and a circulating gas (air) flow inside the sealed housing of the package-type rotary pump unit according to the present invention
- FIG. 2 is a block diagram schematically showing a liquid cooling flow and an exhaust flow of a form example of a package-type rotary pump unit according to the present invention
- 1 is a perspective view showing the inside of a sealed housing, which is an example of the form of a package-type rotary pump unit according to the present invention
- FIG. FIG. 4 is a perspective view showing a state in which the pump cover portion of the embodiment shown in FIG. 3 is removed
- FIG. 4 is a plan view of an electric rotary pump mounted in the embodiment of FIG.
- FIG. 3 is a plan view showing a state in which the pump cover portion of the embodiment shown in FIG. 5 is removed;
- FIG. 4 is a rear view of the embodiment of FIG. 3;
- FIG. 1 is a perspective view showing an appearance of a form example in which two electric rotary pumps of a package-type rotary pump unit according to the present invention are housed in two upper and lower stages;
- FIG. 9 is a perspective view showing the internal structure of the sealed housing of the form example of FIG. 8;
- FIG. 9 is a side view showing the internal structure of the sealed housing of the form example of FIG. 8;
- FIG. 9 is a perspective view showing the internal structure of the sealed housing of the form example of FIG. 8 with the switchboard removed;
- FIG. 9 is a front view showing the internal structure of the sealed housing of the form example of FIG. 8 with the switchboard removed;
- FIG. 2 is a cross-sectional perspective view showing a stepwise broken state to show the internal structure of a rotary pump (claw pump) mounted in a package-type rotary pump unit according to the present invention.
- 14 is a front perspective view of the embodiment of FIG. 13;
- FIG. FIG. 14 is a rear perspective view of the embodiment of FIG. 13;
- FIG. 14 is a front view of the embodiment of FIG. 13;
- 14 is a rear view of the embodiment of FIG. 13;
- FIG. FIG. 14 is a plan view of the embodiment of FIG. 13;
- FIG. 14 is a cross-sectional perspective view showing a bearing cooling liquid flow path in the embodiment of FIG. 13;
- FIG. 14 is a cross-sectional perspective view showing a bearing cooling liquid flow path in the embodiment of FIG. 13;
- FIG. 14 is a cross-sectional perspective view showing a bearing
- FIG. 14 is an exploded view showing a coolant flow path forming surface, which is an inner surface of the first flow path forming portion in the embodiment of FIG. 13;
- FIG. 2 is an exploded view showing an exhaust flow path forming surface, which is an outer surface of a first flow path forming portion in the embodiment of FIG. 1;
- 1 is an exploded view showing a conventional rotary pump;
- An embodiment of a package-type rotary pump unit according to the present invention in which a claw pump is mounted as an example of a rotary pump, will be described in detail below with reference to the accompanying drawings (Figs. 1 to 21).
- An example of the form of the rotary pump according to the present invention is a vacuum pump, which is a water-cooled biaxial rotary pump (claw pump).
- the rotary pump according to the present invention is not limited to this form example, and includes a pump that can be used as a blower that uses the discharged gas as a product gas, and a uniaxial rotary pump such as a vane pump. It also includes those that use other liquids as cooling liquids.
- the package-type rotary pump unit according to the present invention includes, as a basic configuration, an electric rotary pump 200 having a rotary pump 2 for sucking and discharging gas and an electric motor 3 for driving the rotary pump 2, and the electric rotary pump 200.
- a sealed housing 1 is provided.
- the sealed housing 1 according to the present invention does not have to be strictly airtightly sealed, and gas (air in this embodiment) can flow sufficiently between the inside of the housing and the outside world.
- Any enclosure may be used as long as it forms a closed space limited to All you have to do is That is, in the sealed housing 1 according to the present invention, a slight gap is allowed, and structural members such as steel plates constituting the housing are brought into contact with each other without using a sealing material as in the present embodiment.
- the degree of hermeticity may be such that air circulation is sufficiently restricted.
- the sealed housing 1 of the present embodiment has a rectangular box shape, and includes a housing frame portion 1a (see FIGS. 3, 9, etc.), a base portion 1b (see FIGS. 3, 9, etc.), and a housing cover. A portion 1c (see FIG. 8) is provided.
- the sealed housing 1 has a frame structure in which a housing frame portion 1a made of a square steel pipe, an angle steel, or the like is covered with a housing cover portion 1c made of a steel plate or the like.
- an electric rotary pump 200 having a rotary pump 2 and an electric motor 3, a liquid cooling heat exchanger 5, an air blower 6, a pump cover portion 25, a switchboard 8, a first muffler portion 31, a first 2 muffler portion 32, blower 9 for cooling electrical components, drain pan 91, various types of piping, various types of electrical wiring, and accessories for these are arranged.
- Reference numeral 5 denotes a liquid-cooling heat exchanger, which is arranged inside the sealed housing 1 as shown in FIGS. It is provided to be supplied and cooled. That is, the cooling liquid supply source 4 is connected to the liquid cooling heat exchanger 5 via the cooling liquid supply connection port 4a and the cooling liquid supply pipe 4b. In FIG. 1, the flow of the coolant is schematically indicated by double-line arrows.
- the liquid-cooling heat exchanger 5 of this embodiment is a so-called fin and tube housing in a rectangular box-shaped heat exchange chamber in which a heat exchange pipe 5a through which a cooling liquid passes is routed back and forth (zigzag).
- a heat exchange pipe 5a through which a cooling liquid passes is routed back and forth (zigzag).
- the rectangular inlet which is the side into which the internal air (circulating air) is introduced, is connected to the circulating air outlet 25b of the pump cover 25, which will be described later.
- a rectangular outlet from which the internal air (circulating air) is discharged is connected to a blower device 6, which will be described later.
- liquid-cooling heat exchanger 5 Note that the detailed illustration of the liquid-cooling heat exchanger 5 is omitted because it is a general form. Further, in the liquid cooling heat exchanger 5, it is of course possible to appropriately and selectively set the form of the cooling liquid flow path and the form of the circulating air passage cooled by heat exchange.
- the cooling liquid supply source 4 can be a liquid cooling device that uses a refrigeration cycle to cool the liquid.
- other cooling sources such as air (outside air), fresh water, seawater, ice, groundwater, etc. may be used, and more than one cooling source may be used in combination as appropriate.
- the cooling liquid in this embodiment is cooling water, which is supplied from the same cooling liquid supply source 4 that cools the exhaust gas discharged from the exhaust port 55, as will be described later.
- a blower 6 is arranged inside the sealed housing 1 and contains heated air generated when the air around the rotary pump 2 is heated by the operation of the rotary pump 2. Means are provided for directing internal air to the liquid-cooled heat exchanger 5 for cooling. In addition, in FIG. 1, the flow of the internal air is schematically shown by a thick arrow.
- the blower device 6 of this embodiment is an axial fan, and is arranged along the longitudinal direction of the electric rotary pump 200 so as to suck and discharge internal air.
- the air blowing device 6 is not limited to an axial fan, and other air blowing means such as a centrifugal fan (for example, a sirocco fan) may be used as appropriate.
- the package-type rotary pump unit when it is operated in a high-temperature environment, or when the rotary pump 2 contained in the sealed housing 1 is used as a vacuum pump in a high degree of vacuum, the amount of heat generated is reduced. Even in the case of a large air gap, it is possible to prevent overheating of the air inside the sealed housing 1, thereby maintaining high pump performance and prolonging the life of the apparatus, which is particularly advantageous. That is, the internal air in the sealed housing 1 is caused to flow by the air blower 6 and pass through the liquid cooling heat exchanger 5, thereby preventing the overheated air from stagnation around the rotary pump 2, and the internal air is efficiently discharged. It can be well circulated and cooled.
- the heat exhausted to the outside of the sealed housing 1 is mediated by the cooling liquid (cooling water) for heat exchange, so the heat radiation to the surroundings can be minimized, and the installation environment can be improved.
- the influence given is extremely small. For example, it is possible to reduce the burden of air conditioning in the room where the packaged rotary pump unit according to the present invention is installed.
- the sealed housing 1 enables a closed structure, there is an advantage that the operation noise reduction effect is large.
- the noise can be reduced to 73 dB.
- the inflow and outflow of gas between the inside of the housing and the outside world is sufficiently restricted, so even in a high-humidity environment, the dew condensation inside the housing generated less. That is, if the cooling liquid can be supplied, the internal temperature of the closed housing 1 is less likely to be affected by the product installation environment (temperature and humidity), so it can be used in a wide environmental temperature and humidity range.
- the first muffler section 31 and the second muffler section 32 are housed in the sealed housing 1. Including the heat emitted from these muffler sections, It is configured to be able to cool the internal air of the sealed housing 1 .
- a circulating air inlet 25a is arranged inside the sealed housing 1 so as to cover the rotary pump 2, and into which the internal air circulating inside the sealed housing 1 is introduced;
- a pump cover portion 25 is provided so as to be provided with a circulating air outlet portion 25b through which the internal air containing the heated air is discharged.
- the installation position of the blower device 6 with respect to the pump cover portion 25 is limited to this embodiment as long as the internal air can flow so as to be introduced from the circulating air inlet portion 25a and discharged from the circulating air outlet portion 25b. It is also possible to appropriately and selectively set the positional relationship including the positional relationship with the liquid-cooling heat exchanger 5 .
- the heat generated by the rotary pump 2 can be kept inside the pump cover portion 25, and the heat is radiated to the outside of the pump cover portion 25, so that the entire inside of the sealed housing 1 is cooled. Spatial dispersion can be suppressed.
- high-temperature air heat generated air
- the heated air can be efficiently cooled. That is, the temperature difference between the heated air and the liquid-cooling heat exchanger 5 can be increased, heat exchange can be performed efficiently, and temperature rise in the sealed housing 1 can be suppressed efficiently.
- the circulating air outlet 25b has a narrowed flow path, so that the size of the liquid-cooling heat exchanger 5 can be reduced and the product cost can be reduced. also be reduced.
- the pump cover portion 25 of this embodiment is designed to exhaust the rotary pump 2 so that the internal air can flow to effectively contact the entire outer surface of the rotary pump 2 to efficiently cool the outer surface.
- a circulating air inlet portion 25a is formed so as to surround the periphery of the rotary pump 2 and open in a strip shape on the side (the side opposite to the side to which the electric motor 3 is connected).
- the circulating air outlet 25b through which the internal air containing the heated air heated by the rotary pump 2 is discharged, collects the internal air and guides it to the liquid-cooling heat exchanger 5. It's becoming Furthermore, in this embodiment, the circulating air outlet portion 25b is connected to the internal air inlet of the heat exchange chamber of the liquid cooling heat exchanger 5 in an airtight seal. According to this, the internal air flow can be appropriately generated, the internal air can be appropriately circulated, the heat exchange can be efficiently performed, and the temperature rise in the sealed housing 1 can be efficiently suppressed.
- the introduction port of the liquid cooling heat exchanger 5 is connected to the circulating air outlet 25b side, and the blower 6 sucks the internal air from the circulating air inlet 25a to the circulating air outlet. 25 b and is connected to the liquid cooling heat exchanger 5 so as to pass through the liquid cooling heat exchanger 5 .
- the internal air suction port of the blower 6 is connected to the internal air discharge port of the heat exchange chamber of the liquid-cooling heat exchanger 5 in an airtight seal.
- the blower 6 since the blower 6 is arranged in the liquid-cooled heat exchanger 5 as in this embodiment, the blower 6 itself sucks the air cooled by the liquid-cooled heat exchanger 5, resulting in overheating. It is possible to prevent this from happening and prolong the life of the device.
- the pump cover portion 25 (see FIGS. 3 to 6, etc.) is provided so as to cover the range of the pump chamber body portion 110 and the bearing body portion 120 (see FIGS. 13 to 18, etc.) of the rotary pump 2.
- the size of the gap (width of the air passage) provided between the inner surface of the pump cover portion 25 and the outer surface of the rotary pump 2 is adjusted so that the circulating air inlet portion 25a is appropriately formed. It suffices that the airflow resistance during the flow does not increase as much as possible, and the internal air (heated air) heated by the heat generated by the rotary pump 2 is not dispersed to the outside of the pump cover portion 25 as much as possible.
- the rotary pump 2 is a two-shaft rotary pump, and one rotor rotating shaft (rotating shaft 20A) is connected in series to the rotating shaft 3a of the electric motor 3 and rotated, and the other rotor rotates.
- a shaft (rotating shaft 20B) is provided so as to rotate synchronously in a direction opposite to one rotor rotating shaft (rotating shaft 20A) through a gear, and the other rotor rotating shaft (rotating shaft 20B) is arranged.
- the liquid cooling heat exchanger 5 and the air blower are installed in a space on the extension of the axial center of the rotating shaft 20B and adjacent to the portion where the electric motor 3 and one rotor rotating shaft (rotating shaft 20A) are connected. 6 are placed.
- the internal space of the sealed housing 1 can be preferably used, and the internal air can be preferably circulated.
- One of the rotor rotating shafts (rotating shaft 20A) of this embodiment and the rotating shaft 3a of the electric motor 3 are connected in series via a coupling 3b, as shown in FIG.
- 3c is a safety cover, which covers the connecting portion of the rotary shaft (3a, 20A) including the rotationally driven coupling 3b for safety.
- the coupling 3b may be configured to blow air by attaching blower blades coaxially to the rotating shafts (3a, 20A). According to this blower blade, the cooling performance can be improved.
- the electric motor 3 is provided with a blower fan 7 for cooling the electric motor 3, which blows air to cool the electric motor 3. ) is arranged on the rotating shaft on the side opposite to the side connected to the motor body so as to blow air toward the motor main body.
- Temperature rise can be efficiently suppressed. That is, as shown in FIG. 1 , the internal air is first sucked by the blower 6, heated through the inside of the pump cover portion 25, and then cooled through the liquid cooling heat exchanger 5. . Next, the internal air sucked from the liquid-cooling heat exchanger 5 is discharged by the air blower 6 in the direction away from the rotary pump 2 (leftward from the air blower 6 in FIG. 5), to the side of the electric motor 3 ( above the electric motor 3 in FIG. 5).
- the internal air cooled by the liquid-cooling heat exchanger 5 and discharged from the blower 6 hits the inner surface of the sealed housing 1, and a part of the internal air is sucked by the blower fan 7 of the electric motor 3. After flowing to cool the motor body of the electric motor 3 , it flows toward the body of the rotary pump 2 . Then, the internal air that has flowed around the pump cover portion 25 is reversed and drawn into the pump cover portion 25 by the suction force of the air blower 6 from the circulating air inlet portion 25a. As described above, by generating an air flow, it is possible to appropriately circulate the internal air, efficiently perform heat exchange, and efficiently suppress the temperature rise in the sealed housing 1 .
- the switchboard 8 formed on the front side of the sealed housing 1 is provided with air flowing inside the switchboard 8 formed in a small chamber, as shown in FIGS.
- a blower 9 for cooling electrical components is attached to the lower portion of the switchboard 8 as an air cooling means for cooling.
- the electric component cooling blower 9 of this embodiment part of the internal air (cooling gas) inside the sealed housing 1 is sucked into the switchboard 8, and inside the switchboard 8, the air is blown from the bottom to the top. It can be flowed and ventilated to be discharged from an upper opening (not shown) in the switchboard 8 . As a result, it is possible to efficiently cool the electrical component 82 and the inverter device 83 that are installed in the switchboard 8 and have high heat generation. Further, the internal air discharged from the switchboard 8 is sucked into the pump cover portion 25 from the circulating air inlet portion 25 a of the pump cover portion 25 .
- reference numeral 81 denotes an operation unit, which is not provided with an individual air cooling means in the present embodiment because of its low heat generation, and is located away from the switchboard 8.
- the rotary pump 2 is connected to the coolant supply source 4 so as to be liquid-cooled.
- the coolant flowing from the coolant supply source 4 first passes through the liquid cooling heat exchanger 5, and then cools the exhaust discharged from the exhaust port 55 (see FIG. 13, etc.).
- the pipes are connected in series.
- the cooling liquid supply source 4 is connected to a cooling liquid supply connection port 4a provided on the rear surface of the sealed housing 1, and the cooling liquid is supplied from the cooling liquid supply connection port 4a by a liquid flow pump (not shown).
- a liquid flow pump not shown
- the cooling liquid supply pipe 4b is branched into two, and the cooling liquid is supplied to each of the two-stage electric rotary pumps 200.
- the two cooling liquid discharge pipes 4c are joined to discharge the cooling liquid.
- the cooling liquid that has cooled the internal air through the liquid cooling heat exchanger 5 passes through the cooling liquid connection pipe 5b (see FIGS. 1, 7, etc.) to cool the rotary pump 2, the cooling liquid inlet connection. It is supplied to the portion 71a (see FIGS. 7, 15, etc.). 13 to 21, the cooling liquid passes through the bearing section cooling liquid flow path 71, thereby cooling the bearing section 40 and the gear box 45 of the rotary pump 2. Accordingly, the gear box Lubricating oil in 45 is cooled.
- the cooling liquid that has passed through the bearing cooling liquid flow path 71 is introduced into the exhaust cooling liquid flow path 72 to cool the exhaust of the rotary pump 2, as will be described later with reference to FIGS.
- the coolant flows further through the extension cooling liquid flow path 73, cools the exhaust section of the rotary pump 2 and the first muffler section 31, and is discharged from the extension cooling liquid outlet connection section 73b.
- a cooling liquid discharge pipe 4c is connected to the extension cooling liquid outlet connection portion 73b, and the outlet end of the cooling liquid discharge piping 4c serves as a cooling liquid discharge connection port 4d connected to the cooling liquid supply source 4.
- the liquid cooling heat exchanger 5 and the rotary pump 2 can be cooled.
- the coolant is returned to the coolant supply source 4 and circulated.
- the liquid cooling heat exchanger 5, the bearing portion 40 of the rotary pump 2, the gear box 45, Three portions of the first muffler portion 31, which is the exhaust portion of the rotary pump 2, can be rationally cooled in order. That is, regarding the temperature of each part, the permissible temperature of the oil stored in the gearbox is higher than the permissible temperature of the air inside the sealed housing 1, and the permissible temperature of the oil stored in the gearbox is lower than the permissible temperature. Since there is a temperature relationship in which the permissible temperature of the exhaust air of the rotary pump is higher than that of the rotary pump, it is rational to flow the cooling liquid in the order described above.
- liquid cooling pipes connected in series have the advantage of simplifying the structure of the pipes and reducing the cost.
- the liquid cooling pipes are not limited to this embodiment, and may be provided in parallel. Parallel piping has the advantage that it is possible to individually adjust the flow rates, enabling precise cooling control.
- the intake pipe of the rotary pump 2 is provided so that the intake introduction pipe connection port 16 can be connected to an external intake pipe, and is configured to take in outside air through the external intake pipe.
- a check valve 17 is connected between the suction introduction pipe connection port 16 and the suction port 15 of the rotary pump 2 so as to regulate the flow of gas from the pump 2 to the suction introduction pipe connection port 16.
- 90 is a drain discharge connection port, which is a discharge port through which the drain can be discharged to the outside.
- a drain pan 91 arranged under the rotary pump 2 and a heat exchanger drain pan 93 arranged in the liquid cooling heat exchanger 5 are connected to the drain discharge connection port 90 by a drain pipe 92 and a heat exchanger drain pipe 94 . It is possible to receive the generated drainage and discharge it appropriately.
- the package-type rotary pump unit according to the present invention comprises, as a basic configuration, an electric rotary pump 200 having a rotary pump 2 for sucking and discharging gas and an electric motor 3 for driving the rotary pump 2; and a sealed housing 1 containing a pump 200 .
- the rotary pump 2 mounted on the package-type rotary pump unit according to the present invention has an exhaust cooling section in which the exhaust is cooled by the cooling liquid supplied from the cooling liquid supply source 4 disposed outside the sealed housing 1.
- a first muffler portion 31 is provided which also serves as a silencing effect.
- a second muffler portion 32 that introduces the exhaust that has passed through the first muffler portion 31 to muffle the noise is arranged above the electric rotary pump 200 inside the sealed housing 1 .
- the noise generated by the operation of the rotary pump 2 can be reduced more rationally and effectively. It has the special advantage of being able to That is, by providing a first muffler portion 31 for cooling the exhaust of the rotary pump 2 with coolant and disposing a second muffler portion 32 above the electric rotary pump 200, the electric rotary pump 200 and the muffler ( The entirety of the first muffler section 31 and the second muffler section 32) can be effectively covered with the above-described sealed housing (sealed housing 1).
- the second muffler portion 32 itself arranged above the electric rotary pump 200 also has the effect of shielding the noise generated from the electric rotary pump 200 .
- noise can be reduced to 73 dB, and high quietness can be achieved.
- the foot space can be reduced. In order to improve the sound absorbing performance, it is of course possible to attach a sound absorbing material to the inner surface of the members constituting the sealed housing 1 .
- the second muffler section 32 is composed of a plurality of sound reduction chambers, and the plurality of sound reduction chambers are arranged in the same direction as the connection direction of the rotary pump 2 and the electric motor 3 and are enclosed in a sealed housing. They are arranged in series in the longitudinal direction of the body 1 .
- a plurality of sound reduction chambers can be suitably arranged in a limited space, and a sufficient sound reduction effect can be obtained. That is, since the electric rotary pump 200 of this embodiment has a form in which the rotary pump 2 and the electric motor 3 are connected in series, it has a horizontally long shape, and the sealed housing 1 is also horizontally long as in this embodiment. formed.
- the second muffler part 32 can be appropriately arranged inside the horizontally long sealed housing 1 so as to conform to the form of the electric rotary pump 200, and the overall structure can be provided compactly. .
- the second muffler portion 32 As for the internal structure of the second muffler portion 32, it is possible to appropriately and selectively design a form that enhances the sound reduction (silencing) effect by means of expansion, shielding, sound absorption, or the like. For example, by providing three sound reduction chambers and arranging the three chambers in series, a compact structure with high sound reduction performance can be achieved. More specifically, for example, in this embodiment, the second muffler portion 32 has a cylindrical outer shape elongated in the axial direction, and the longitudinal direction includes a sound reduction chamber at one end and an intermediate portion.
- the second muffler section 32 is installed in a suspended state inside the sealed housing 1 . That is, as shown in FIGS. 3 and 9, the second muffler portion 32 formed in a cylindrical shape according to this embodiment is a suspension member fixed to the upper portion of the housing frame portion 1a and extending downward. 37 and installed in a state of being suspended from the top of the sealed housing 1 to the inside.
- the muffler (second muffler portion 32) has an appropriate volume with a high noise reduction effect due to expansion and is lighter than other constituent devices. can be appropriately and conveniently arranged. It goes without saying that a sound absorbing effect can be obtained by appropriately attaching a sound absorbing material to the inner surface of each of the sound reducing chambers of the second muffler portion 32 .
- the electric rotary pump 200 is installed in the sealed housing 1 via the damping member 300, and the first The muffler portion 31 and the second muffler portion 32 are connected via a vibration damping pipe 33 . That is, in this embodiment, the electric rotary pump 200 is installed on the base portion 1b in the sealed housing 1 via the vibration damping member 300 provided with anti-vibration rubber, and the exhaust port 57 of the first muffler portion and the second muffler portion.
- a vibration damping pipe 33 is connected between the muffler portion and an exhaust introduction port 34 of the muffler portion so that the exhaust gas flows from the first muffler portion 31 to the second muffler portion 32 .
- the electric rotary pump 200 is installed by the vibration damping member 300, and is connected to the second muffler portion 32 by the vibration damping pipe 33, so that the vibration of the electric rotary pump 200 is sealed.
- the transmission to the housing 1 side can be reduced, and the effect of vibration isolation and sound isolation can be preferably obtained.
- the second muffler portion 32 can be appropriately and easily installed in the sealed housing 1 .
- the power distribution board 8 is arranged on the front side inside the sealed housing 1, and is arranged on the rear side. According to this, it is possible to further reduce the noise transmitted to the front side as the switchboard 8 serves as a shield. This can further improve the working environment.
- FIG. 13 In this claw pump, as shown in FIG. 13, reference numeral 110 denotes a pump chamber body portion, and the cylinders are arranged so as to form a pump chamber 10 (see FIG. 22) having a cross-sectional shape in which parts of two circles overlap each other. It has a portion 10a, one end wall portion 10b provided on one end surface of the cylinder portion 10a, and the other end wall portion 10c provided on the other end surface of the cylinder portion 10a.
- two rotating shafts 20A and 20B are arranged in parallel within the pump chamber 10 and are provided so as to be rotated in opposite directions at the same speed by a pair of gears 21A and 21B.
- gears 21A (driving side gear) and 21B (driven side gear) are integrally fixed to the two rotating shafts 20A and 20B, respectively.
- the pair of gears 21A and 21B are meshed within a gear box 45 constituted by a bearing body portion 120. As shown in FIG.
- Two rotors 30A and 30B are provided corresponding to the two rotating shafts 20A and 20B and arranged in the pump chamber 10, and are rotated in a non-contact state to compress and exhaust the sucked gas.
- a hook-shaped claw portion (see FIG. 22) is formed and provided.
- One end wall portion 10b of the pump chamber body portion 110 is located on the side of the gear box 45 containing the pair of gears 21A and 21B, and gas is discharged to at least the other end wall portion 10c of the pump chamber body portion 110.
- An exhaust port 55 is provided. This constitutes a package-type rotary pump unit, which is a kind of biaxial rotary pump.
- two rotating shafts 20A and 30B are arranged so as to correspond to one end (one tip end) of each of the two rotating shafts 20A and 20B and are supported in a cantilevered state.
- 20B is supported by the bearing portion 40
- one end wall portion 10b of the pump chamber body portion 110 is positioned on the bearing portion 40 side
- the other end wall portion 10c of the pump chamber body portion 110 is an exhaust port for discharging gas.
- Reference numeral 15 denotes an intake port, which is opened at a position facing a portion in the pump chamber 10 where the gas is not compressed.
- the intake port 15 of the present embodiment is a corner portion of the upper portion of the pump chamber body portion 110, and is provided in a notched form extending over the upper wall portion of the cylinder portion 10a and the upper portion of the one end wall portion 10b.
- Reference numeral 14 denotes an intake connection port, which is provided so that its lower end is connected to the intake port 15 and its upper end is connected to a pneumatic device (not shown) via a pipeline.
- the other end wall portion 10c side of the pump chamber body portion 110 is provided with an exhaust port for passing cooling liquid so as to cool the exhaust gas discharged from the exhaust port 55.
- An internal coolant flow path 72 is provided.
- Cooling liquid is typically cooling water, but it goes without saying that liquids other than water can also be used, including mixtures (aqueous solutions) with water, such as antifreeze, and oil. be.
- the packaged rotary pump unit According to the packaged rotary pump unit according to the present invention, even when the vacuum pump is used in a high vacuum range in which the ultimate vacuum is closer to the absolute vacuum, the overheating of the pump chamber 10 can be avoided. This can be prevented more positively and effectively, and the pump performance can be significantly improved.
- the cooling liquid can effectively cool the exhaust immediately after being discharged from the exhaust port 55. can. According to this, even if the vacuum pump is used in a high vacuum range above a certain level and the pump chamber 10 is heated due to the reverse flow of the exhaust gas, it is possible to suppress the increase in the internal temperature of the pump chamber 10 . For this reason, it is possible to set a small clearance for non-contact between the inner wall surface of the pump chamber 10 and the two rotors 30A and 30B. can improve.
- the clearance can be set small as described above, so that the degree of ultimate vacuum can be further increased, and overheating can be prevented even if there is a reverse flow of the exhaust gas. Since the opening area of the port 55 can be set wider, a vacuum pump with a larger processing air volume can be constructed.
- the other end wall portion 10c provided with the most heated exhaust port 55 is actively and locally cooled.
- the other wall portion of the pump chamber body portion 110 centered on the exhaust port 55 is adjusted so as to reduce the temperature difference with respect to the pump chamber body portion 110 in which the temperature gradient (temperature difference) is large.
- the exhaust gas is cooled by preferentially cooling the 10c side.
- the ultimate vacuum is up to about 90 kPa in order to avoid contact (internal interference) between the inner wall surface of the pump chamber 10 and the two rotors 30A and 30B. was only able to drive In contrast, according to the present invention, it is possible to continuously perform shut-off operation with a higher ultimate vacuum.
- the compressibility of the gas is high and the gas is heated and discharged.
- the portion 10c becomes hotter than the other portions.
- the other portion of the pump chamber body portion 110 has a lower temperature. Therefore, if the entire pump chamber body portion 110 including the cylinder portion 10a and the like is cooled in the same manner, the temperature difference between the exhaust port 55 of the other end wall portion 10c and the other portions is maintained. Therefore, the problem that the rotors 30A and 30B, which are moving parts, interfere with each other due to thermal expansion cannot be solved.
- a cooling liquid introduction port 72b for introducing the cooling liquid into the exhaust cooling liquid flow path 72 is provided near the exhaust port 55, and the exhaust cooling liquid flow path 72
- a cooling liquid flow regulating portion 61b is provided at the formed portion to regulate the flow of the introduced cooling liquid so that the cooling liquid circulates in the vicinity of the exhaust port 55 first.
- the coolant flow regulating portion 61b of this embodiment is provided at a plurality of locations (two locations in this embodiment) on the coolant flow path forming surface 61a of the first flow path forming portion 61, which will be described later. It is provided in a form protruding like a rib.
- the exhaust immediately after the exhaust port can be effectively cooled.
- the temperature of the periphery of the exhaust port 55 and the temperature of the exhaust gas it is possible to prevent the periphery of the exhaust port 55 from being excessively heated and unevenly deformed due to thermal expansion in a well-balanced manner. In this manner, the thermal expansion of the pump chamber body portion 110 and the two rotors 30A and 30B can be suppressed in a well-balanced manner, so the mutual clearance therebetween can be reduced and the pump efficiency can be improved.
- the exhaust port 55 is generally provided at a portion corresponding to the lower portion of the pump chamber 10 (in this embodiment, the lower portion of the other end wall portion 10c) in terms of driving stability. become.
- the cooling liquid inlet 72b is provided as described above, and the portion of the exhaust cooling liquid flow path 72 near the exhaust port 55 located below the other end wall portion 10c is further expanded.
- the cooling liquid having a lower temperature is first cooled, and the cooling liquid that has cooled the other end wall portion 10c in this manner is discharged upward through the exhaust cooling liquid outlet connection portion 72d. At this time, the cooling liquid is heat-exchanged and its temperature rises, so that the specific gravity of the cooling liquid becomes smaller and an upward flow vector is generated.
- the portion of the lower exhaust port 55 can be effectively cooled, and the directionality of the flow due to the temperature rise of the cooling liquid and the directionality of the flow for discharging the cooling liquid upward can be changed. can be aligned. Therefore, the cooling liquid can pass through smoothly, and the cooling efficiency can be effectively improved.
- the exhaust cooling liquid flow path 72 is arranged in the other end wall portion 10c of the pump chamber body portion 110 so as to cover the outer surface side of the other end wall portion 10c.
- a first flow path forming portion 61 having a cooling liquid flow path forming surface 61a provided to form the exhaust cooling liquid flow path 72 with the outer surface of the other end wall portion 10c. is provided by placing According to this, the exhaust cooling liquid flow path 72 can be configured effectively and rationally.
- the first flow path forming portion 61 of this embodiment is provided by a board-like member having irregularities formed on both sides so that flow paths are formed. It is fixed to the outer surface of the other end wall portion 10c by bolts, and is provided so that the mating portion is water-tightly sealed by a seal member 65 to form an exhaust portion coolant flow path 72.
- the joining portion of this embodiment includes an inner loop joining portion 61c formed in a rectangular loop frame shape surrounding the exhaust port 55 so as to extend the exhaust path of the exhaust port 55, and a peripheral portion of the other end wall portion 10c. and an outer loop joint portion 61d formed so as to abut against the loop frame shape.
- an exhaust cooling liquid flow path 72 is formed and is filled with cooling liquid.
- the outer wall surface of the other end wall portion 10c is brought into contact with the cooling liquid over the entire surface to enable efficient cooling.
- this structure has a form in which the layered exhaust cooling liquid flow path 72 is planarly stacked on the outside of the outer end surface of the pump chamber body 110, and has a compact configuration.
- one portion of the exhaust portion cooling liquid flow path 72 is provided on the cooling liquid flow path forming surface 61a that faces (faces) the outer surface of the other end wall portion 10c.
- a passage forming wall constituting the cooling liquid flow restricting portion 61b is provided in a protruded form so that an exhaust port surrounding passage portion 72c, which is a groove-shaped passage, is formed. That is, in this embodiment, the outer surface of the other end wall portion 10c is a flat surface, and as shown in FIGS. , a passage forming wall (coolant flow restricting portion 61b) for appropriately bending and guiding the exhaust portion coolant flow path 72 is provided.
- the present invention is not limited to this, and it is also possible to appropriately provide a passage forming wall on the side of the outer surface of the other end wall portion 10c.
- the surface opposite to the cooling liquid flow path forming surface 61 a of the first flow path forming section 61 is arranged so that the exhaust gas is cooled by the first flow path forming section 61 .
- An exhaust flow path 56 through which exhaust gas passes is provided on the side of the exhaust flow path forming surface 61 e that is the outer surface of the first flow path forming portion 61 . That is, the exhaust channel 56 is a channel connected to the exhaust port 55 and a channel through which the exhaust discharged from the exhaust port 55 passes.
- the overheated exhaust gas can be effectively cooled, and the temperature in the pump chamber 10 is lowered by lowering the temperature of the exhaust gas. Overheating and thermal expansion of the two rotors 30A and 30B can be suppressed in a well-balanced manner.
- the exhaust flow path 56 can appropriately regulate the direction of the flow of the exhaust gas, and has a form for promoting the cooling of the exhaust gas, and also serves as a muffler structure for reducing exhaust noise. It has become. That is, the first muffler portion 31 is configured by the structure in which the exhaust flow path 56 is formed.
- reference numeral 57 denotes an exhaust port of the first muffler portion, which is opened in the upper wall portion of the first flow path forming portion 61 and serves as an exhaust port of the exhaust flow path 56. It is exhausted to the outside through an exhaust port 57 in the muffler portion.
- the exhaust port 57 of the first muffler portion of this embodiment is provided in a shape in which the flow path is constricted on the inner side, and is formed so as to enhance the silencing effect.
- the exhaust flow path 56 is a portion arranged in the first flow path forming portion 61 so as to cover the outer surface side of the first flow path forming portion 61, and By arranging the second flow path forming portion 62 having the exhaust flow path forming surface 62a provided to form the exhaust flow path 56 with the outer surface of the first flow path forming section 61, is provided. According to this, the exhaust flow path 56 can be effectively and rationally configured, and the exhaust immediately after the exhaust port can be effectively cooled on both the exhaust flow path forming surface 61e and the exhaust flow path forming surface 62a. . In addition, this structure has a form in which the layered exhaust passages 56 are planarly stacked on the outside of the outer end surface of the pump chamber body portion 110, and thus has a compact structure.
- the second flow path forming portion 62 of this embodiment has an exhaust flow path forming surface that is an inner surface (a surface that contacts the outer surface side of the first flow path forming portion 61).
- a plate-like member 62a is formed flat, and is fixed to the outer surface (exhaust flow path forming surface 61e) side of the first flow path forming portion 61 by bolts. Further, on the side of the outer surface (exhaust flow path forming surface 61e) of the first flow path forming portion 61 with respect to the exhaust flow path forming surface 62a (flat surface), a groove-like groove that becomes the exhaust flow path 56 is provided.
- the exhaust passage forming wall 61f is provided in a projecting form so as to form a passage.
- the loop frame-shaped mating portion 61g and the exhaust passage forming wall 61f of the outer peripheral portion, which is the outer surface side of the first flow path forming portion 61, and the inner surface of the second flow path forming portion 62 are substantially fixed by close contact. It can be naturally airtight, or it can be airtight by placing a sealing member.
- the present invention is not limited to this, and it is also possible to provide an exhaust passage forming wall on the side of the exhaust passage forming surface 62a.
- the exhaust flow path 56 is formed in a complicatedly curved flow path, so that the cooling of the exhaust gas can be further promoted, and the muffler chamber functions properly to further reduce the exhaust noise. can be reduced.
- the extension cooling liquid flow path 73 that is continuous with the exhaust cooling liquid flow path 72 is formed in the second flow path forming section 62 on the outer surface of the second flow path forming section 62 ( It is a part arranged so as to cover the side of the extension flow path forming surface 62b), and the extension part cooling liquid flow path is formed between the outer surface (extension flow path forming surface 62b) of the second flow path forming part 62 and It is provided by disposing a third flow path forming portion 63 having an extended flow path forming surface 63 a provided to form 73 .
- the extension cooling liquid flow path 73 can be configured effectively and rationally.
- this structure has a form in which the layered extension cooling liquid flow paths 73 are stacked on the outside of the outer end face of the pump chamber body 110 in a planar manner, resulting in a compact configuration.
- the layered extension coolant flow path 73 and the structural walls that form it can reduce noise. That is, the structure forming the extension cooling liquid flow path 73 and the exhaust cooling liquid flow path 72 described above has a structure for shielding sound and reducing noise. It is also
- the third flow path forming portion 63 of this embodiment is provided by a flat plate-like member (plate member), and the second flow path forming portion 62 is secured by bolts. , and is watertightly sealed by a sealing member 65 to the peripheral edge joint portion 62c provided in the shape of a loop frame on the outer surface of the second flow path forming portion 62, so that the extension portion coolant flow path 73 is formed.
- the cooling liquid is retained in the flat layered space of the extension cooling liquid flow path 73.
- the present invention is not limited to this, and any suitable configuration can be used. Needless to say, the flow path may be set at .
- the extension cooling liquid flow path 73 similarly to the exhaust cooling liquid flow path 72, the upper portion of the second connection pipe 72e is arranged so that the cooling liquid flows from the bottom to the top. From the exhaust cooling liquid outlet connection 72d provided and connected to the exhaust cooling liquid flow path 72, the second connection is provided to the extension cooling liquid inlet connection 73a provided in the lower part of the second connecting pipe 72e. An extension cooling liquid outlet connection portion 73b is provided at the upper portion so that the cooling liquid flowing through the extension cooling liquid flow path 73 is discharged to the outside.
- the pump chamber 10 includes the cylinder case 11 integrally provided with the cylinder portion 10a, one end wall portion 10b, and one structural wall portion 121a provided with the first bearing portion 40a. , and the side plate 12 provided as the other end wall portion 10c are fixed in a sealed state.
- the pump chamber 10 is formed by two divided members, but is not limited to this. Of course, it may be formed by mainly three divided members.
- the biaxial rotary pump of this embodiment is a package type rotary pump unit, but the present invention is not limited to this, and other biaxial rotary pumps such as roots pumps and screw pumps can be used. It can also be applied to pumps.
- the two rotors 30A and 30B are not limited to the form in which the two rotors 30A and 30B are supported in a cantilevered state, and the rotary shafts 20A and 20B are rotated at both ends. It has a configuration that can be applied to a biaxial rotary pump that is freely supported.
- the structural wall portion 121 provided with the bearing portion 40 for bearing the two rotating shafts 20A and 20B is configured, and the two rotating shafts 20A and 20B It comprises a bearing body portion 120 forming a structural wall portion 121 as a gearbox 45 enclosing a pair of correspondingly provided gears 21A, 21B in mesh.
- the two rotors 30A (drive-side rotor) and 30B (driven-side rotor) are connected to the two rotation shafts 20A (drive-side rotation shaft) and 20B (driven-side rotation shaft).
- Bearing portions 40 for bearing the rotating shafts 20A and 20B are provided so as to be respectively arranged at one end and supported in a cantilevered state.
- the bearing body portion 120 and the pump chamber body portion 110 constitute the pump main body 100 of the biaxial rotary pump.
- the pump main body 100 is arranged between the pump chamber body portion 110 and the bearing body portion 120 so that a cooling gap 60 capable of suppressing heat conduction is formed between the pump chamber body portion 110 and the bearing body portion 120 .
- the structural wall portion 121 (one structural wall portion 121a in this embodiment) located on the side of the pump chamber body portion 110 of the bearing body portion 120 is provided so as to be partitioned into the bearing portion cooling for passing the cooling liquid.
- a liquid flow path 71 is provided.
- the coolant passing through the bearing portion coolant flow path 71 is reduced.
- This cooling effect provides a particularly advantageous effect of prolonging the life of the functional parts constituting the bearing portion 40 and the like. That is, according to the present invention, by providing the gap 60 for cooling by partitioning the pump chamber body portion 110 and the bearing body portion 120, heat conduction can be suppressed so as to minimize the amount of heat transfer, and the bearing portion Since the bearing body portion 120 can be cooled more positively by the coolant flowing through the coolant flow path 71, the reliability of the device can be improved.
- the temperature rise of the lubricating oil can be reduced by about 40°C.
- the functional parts are components including the bearing 41 and the oil seal 42, and are treated as consumable parts. Running costs can be reduced by prolonging the life of these functional parts.
- the bearing portion 40 of the present embodiment has the pump chamber body portion 110 in the bearing body portion 120 so as to support the two rotating shafts 20A and 20B between the two gears 21A and 21B and the two rotors 30A and 30B.
- a first bearing portion 40a provided in the side structural wall portion (one structural wall portion 121a) and a structural wall portion opposite to the first bearing portion 40a, which is a drive motor (electric motor 3 (Fig. 3 etc.)) is arranged on the side to which the two rotating shafts 20A and 20B are connected. ing.
- the rotating shaft 3a of the electric motor 3 is connected to the rotating shaft 20A (driving side rotating shaft) via a coupling 3b (see FIG. 4, etc.).
- the two rotating shafts 20A and 20B are provided in a horizontal type installed by arranging them horizontally, and the bearing cooling liquid flow path 71 is a lubricating oil stored in the gear box 45. is provided in the lower portion of the structural wall portion 121 of the bearing body portion 120 so as to pass below the liquid surface of the lubricating oil in the stored state at rest so as to cool the oil.
- the liquid level of the lubricating oil when it is stationary is set to be between the inner bottom surface of the gear box 45 (oil chamber) and the rotating shafts 20A and 20B arranged horizontally.
- the lubricating oil can be effectively cooled, and the lubricating oil is scooped up by the two rotating gears 21A, 21B to lubricate the gears 21A, 21B and the bearing 41, and to lubricate the inside of the gear box 45. can be cooled.
- the bearing cooling liquid flow path 71 is provided in the bearing body 120 under the first bearing 40a (below the bearing 41 of the first bearing 40a). It is provided in the shape of a through hole, and is locally arranged. According to this, it is possible to positively cool the portion of the bearing body portion 120 to which heat is easily conducted from the pump chamber body portion 110 side, and to effectively cool the lubricating oil.
- the exhaust port 55 of the pump chamber 10 is provided in the lower portion of the pump chamber body portion 110 . According to this, when the bearing cooling liquid flow path 71 is provided in the lower portion of the structural wall portion 121 of the bearing body portion 120 as described above, heat conduction is effectively suppressed, and the bearing portion 40 is Overheating can be suppressed.
- the cooling gap 60 is provided from the bottom to the top.
- a blowing means for blowing air may be provided.
- the pump chamber body portion 110 and the bearing body portion 120 can be effectively air-cooled, and the reliability of the biaxial rotary pump can be further improved. That is, since the cooling air can flow appropriately between the pump chamber body portion 110 and the bearing body portion 120, heat transfer can be suppressed more effectively, and cooling by heat radiation can be promoted. As a result, the temperature rise of the bearing body portion 120 can be suppressed, and the life of the functional parts can be extended.
- the bearing cooling liquid flow path 71 is provided in the pump chamber body section 110 so that the cooling liquid that has cooled the bearing body section 120 cools the pump chamber body section 110 . It can be characterized in that it is connected to a cooling liquid flow path. According to this, in order to prevent the lubricating oil from boiling and overheating, the temperature of the cooling liquid flowing through the bearing section cooling liquid flow path 71 is higher than that of the cooling liquid flow path provided in the pump chamber body section 110. The temperature can be lower than the temperature of the flowing coolant, and the coolant can be effectively utilized.
- the exhaust cooling liquid flow path 72 is connected to the bearing cooling liquid flow path 71 so that the cooling liquid flows in order from the bearing cooling liquid flow path 71 to the exhaust cooling liquid flow path 72.
- the structural wall portion 121 one structural wall portion constituting the bearing portion 40 (first bearing portion 40a) of the bearing body portion 120 is supplied by one coolant supply source 4 (FIGS. 1 and 2).
- 121a) and the other end wall portion 10c side of the pump chamber body portion 110 can be directly and sequentially cooled effectively.
- the cooling liquid of this embodiment is supplied from the cooling liquid supply source 4 (FIGS. 1 and 2), and is supplied to the cooling liquid inlet connecting portion 71a (FIGS.
- the bearing portion cooling liquid flow path 71 (FIGS. 13 and 19), the cooling liquid outlet connection portion 71b (FIGS. 14, 16, 18 and 19), and then the first connecting pipe 71c (FIGS. 14, 16 and 18). , FIG. 19), the exhaust cooling liquid inlet connecting portion 72a (FIGS. 14, 16, 18), the cooling liquid inlet 72b (FIG. 20), and the exhaust cooling liquid flow path 72 (FIGS. 13, 20). ), flows through the extension cooling liquid flow path 73 , and is discharged to the outside of the pump 2 .
- the cooling liquid may be supplied separately without connecting the bearing cooling liquid flow path 71 and the exhaust cooling liquid flow path 72, and the cooling liquid supply may be individually adjusted. It may be optimized by
- the exhaust cooling liquid flow path 71 is located above the bearing cooling liquid flow path 71.
- the cooling liquid flow path 72 is provided, and the cooling liquid flows from the bottom to the top in the exhaust cooling liquid flow path 72 and the extension cooling liquid flow path 73.
- the cooling structure of the biaxial rotary pump described above it is possible to rationally correspond to the package type rotary pump unit and improve the cooling performance, thereby improving the pump performance.
- the lower side of the pump chamber 10 is easily overheated, and a structure capable of cooling from the lower side can be appropriately formed as described above.
- the pump chamber 10 can be efficiently cooled, the performance of the pump can be improved, and a particularly advantageous effect can be obtained in that the service life of the functional parts can be extended as described above.
- the cooling gap 60 between the pump chamber body portion 110 and the bearing body portion 120 includes one end wall portion 10b and one end wall portion 10b.
- a plurality of columnar portions 115 are provided to integrate with one structural wall portion 121a provided with the first bearing portion 40a facing the portion 10b. It is provided so that the gap 60 for cooling is formed in the portion where it does not exist.
- the cooling gap 60 may be formed by a core.
- the members on the bearing body portion 120 side that constitute the structural wall portion 121 of the portion 40 are composed of separate members and are connected by columnar connection portions 111 and 122 formed on both sides, thereby forming a cooling gap 60. Of course you can.
- At least one of the one end wall portion 10b and the other end wall portion 10c has the pump chamber 10.
- the exhaust-side opening 50 which is open at a position facing a portion inside the pump chamber 10 where the gas is compressed, is provided in the pump chamber 10 at the front stage where the gas compression ratio is maximized by the claw portions of the two rotors 30A and 30B. and the claw portions of the two rotors 30A and 30B to maximize the gas compression ratio compared to the previous stage, and communicate to the outside of the pump chamber 10.
- the latter exhaust port is an exhaust port 55 provided in the other end wall portion 10c, and the exhaust port 55 is communicated with the outside of the pump chamber 10 to reduce the compression ratio of the gas. It is also possible to provide the front vent 51 to be closed by the rotor when the is maximized.
- the two rotors 30A and 30B are supported in a cantilevered state, but the present invention is not limited to this.
- 30B are supported from both sides via two rotary shafts 20A and 20B.
- it can also be effectively applied to a package-type rotary pump unit having exhaust ports on both one end wall portion and the other end wall portion of the pump chamber body portion as disclosed in Patent Document 1.
- the exhaust cooling liquid flow path may also be provided on the one end wall side.
- the present invention for example, by adjusting and managing the temperature of the cooling liquid, it is possible to expand the range of use of the present invention in response to use in cold regions, and heat exchange is performed by circulating the cooling liquid.
- additional control methods and configurations used for liquid cooling can be selectively adopted as appropriate, such as a configuration in which the cooling liquid is cooled using a device.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Provided is a package-type rotary pump unit that enables high pump performance to be maintained and prolongs the service life of a device by making it possible to prevent the internal air within a sealed housing from becoming overheated even when a rotary pump enclosed in the sealed housing is used in a range in which the vacuum degree as a vacuum pump is high. The package-type rotary pump unit comprises an electric rotary pump 200 equipped with an electric motor 3 and a rotary pump 2 for taking in and discharging a gas, and a sealed housing 1 in which the electric rotary pump 200 is enclosed. The package-type rotary pump unit additionally comprises: a liquid cooling heat exchanger 5 that is arranged in the interior of the sealed housing 1 and is cooled by receiving a supply of coolant from a coolant supply source 4 arranged outside of the sealed housing 1; and a blowing device 6 that is arranged in the interior of the sealed housing 1 and blows internal air within the sealed housing 1 toward the liquid cooling heat exchanger 5 so as to cool the internal air, said internal air including heated air generated as a result of the air around the rotary pump 2 being heated by operation of the rotary pump 2.
Description
本発明は、気体を吸排気する回転ポンプ及び該回転ポンプを駆動させる電動モータを備える電動回転ポンプと、該電動回転ポンプを内包する密閉筐体とを備えるパッケージ型回転ポンプユニットに関する。
The present invention relates to a package-type rotary pump unit comprising a rotary pump for sucking and discharging gas, an electric rotary pump comprising an electric motor for driving the rotary pump, and a sealed housing enclosing the electric rotary pump.
従来のパッケージ型回転ポンプユニットとしては、真空ポンプやブロア等の負圧や正圧の空気圧を生じさせる空気圧装置と、該空気圧装置を複数収納できると共に閉鎖空間に収納することで防音できる収納ボックスと、前記空気圧装置によって加熱された前記収納ボックス内を、外気を取り入れて冷却すべく、該収納ボックス内で実質的に下方から上方へ流れる冷却用空気流を発生させて排気する送風装置と、前記冷却用空気流を通過させて冷却すべく設けられた水冷式の冷却器と、該冷却器へ冷水を供給するクーラーユニットと、前記冷却器へ供給する冷水の温度を調整するように水温を制御する水温制御手段と、前記冷却器へ供給する冷水の流量を調整するように流量を制御する流量制御手段との少なくとも一方が設けられ、前記収納ボックス内には高さ方向の中途部に前記空気圧装置が載置される棚状支持部が少なくとも一段設けられ、該棚状支持部は前記冷却用空気流の流れを許容するように開放部を有することを特徴とする空気圧装置ステーションの排気温調整システム(特許文献1参照)が、本出願人によって提案されている。
A conventional package-type rotary pump unit includes a pneumatic device such as a vacuum pump or blower that generates negative or positive air pressure, and a storage box that can accommodate a plurality of such pneumatic devices and can be soundproofed by housing them in a closed space. a blowing device for generating and exhausting a cooling airflow that flows substantially from bottom to top within the storage box so as to cool the interior of the storage box heated by the pneumatic device by taking in outside air; A water-cooled cooler provided for cooling by passing a cooling airflow therethrough, a cooler unit supplying cold water to the cooler, and controlling the temperature of the water to adjust the temperature of the cold water supplied to the cooler. and at least one of a water temperature control means for controlling the flow rate of cold water supplied to the cooler and a flow rate control means for controlling the flow rate so as to adjust the flow rate of the cold water supplied to the cooler. At least one shelf-like support on which the device is placed is provided, and the shelf-like support has an opening to allow the flow of the cooling airflow. A system (see Patent Document 1) has been proposed by the present applicant.
また、パッケージ型回転ポンプユニットに内蔵される回転ポンプの例としては、図22に示すように、本出願人によって、二つの円の一部を重ね合わせた断面形状のポンプ室10を形成するように、シリンダ部10a、該シリンダ部10aの一方の端面に設けられた一方の端壁部10b、及び該シリンダ部10aの他方の端面に設けられた他方の端壁部10cを備え、前記ポンプ室10内で平行に配されて反対方向に同一速度で回転される二つの回転軸20A、20Bと、該二つの回転軸20A、20Bのそれぞれに設けられて前記ポンプ室10内に配され、相互に非接触状態で回転されて吸入した気体を圧縮して排気できるように鉤形の爪部が形成された二つのロータ30A、30Bと、前記一方の端壁部10bと前記他方の端壁部10cとの少なくともどちらかの部位であって、前記ポンプ室10内における気体が圧縮される部位に面する位置に、開口されて設けられた排気側開口部50とを備える回転ポンプ(クローポンプ)であって、前記排気側開口部50が、前記二つのロータ30A、30Bの前記爪部同士によって気体の圧縮比が最大化する前段で前記ポンプ室10の外部に連通される前段通気口51と、前記二つのロータ30A、30Bの前記爪部同士によって前記前段よりも気体の圧縮比が最大化する段階を含んで前記ポンプ室10の外部へ排気するように連通される後段排気口(排気口55)とによって設けられ、前記後段排気口(排気口55)が前記ポンプ室10の外部に連通されて気体の圧縮比が最大化する段階で、前記前段通気口51が前記ロータ30Aによって閉じられるように設けられ、前記ポンプ室10を形成するようにシリンダ部10a及び該シリンダ部の両端面のそれぞれに設けられた端壁部10b、10cによって設けられたポンプ室ボディ部と、前記二つのロータ30A、30Bが前記二つの回転軸20A、20Bの一方の端にそれぞれ配されて片持ち状態に支持されるように該二つの回転軸20A、20Bを軸受けする軸受部40が設けられた軸受ボディ部との間に、冷却用の隙間が形成されるように、ポンプ本体が分割された構造に設けられている(特許文献2参照)クローポンプが、提案されている。
As an example of a rotary pump incorporated in a package-type rotary pump unit, as shown in FIG. a cylinder portion 10a, one end wall portion 10b provided on one end surface of the cylinder portion 10a, and the other end wall portion 10c provided on the other end surface of the cylinder portion 10a; Two rotary shafts 20A and 20B are arranged in parallel in the pump chamber 10 and rotate in opposite directions at the same speed, and the two rotary shafts 20A and 20B are respectively provided in the pump chamber 10 and mutually Two rotors 30A and 30B, which are rotated in a non-contact state and have hook-shaped claw portions so that the sucked gas can be compressed and discharged, the one end wall portion 10b and the other end wall portion 10c and a rotary pump (claw pump) provided with an exhaust-side opening 50 provided at a position facing a portion where the gas is compressed in the pump chamber 10. The exhaust-side opening 50 is a front-stage vent port 51 that communicates with the outside of the pump chamber 10 at the front stage where the gas compression ratio is maximized by the claw portions of the two rotors 30A and 30B. , a rear stage exhaust port (exhaust port 55), and when the rear exhaust port (exhaust port 55) is communicated with the outside of the pump chamber 10 to maximize the gas compression ratio, the front vent port 51 is closed by the rotor 30A. a pump chamber body portion provided by a cylinder portion 10a so as to form the pump chamber 10 and end wall portions 10b and 10c provided on both end surfaces of the cylinder portion; and the two rotors. A bearing body provided with a bearing portion 40 for bearing the two rotating shafts 20A and 20B so that the two rotating shafts 20A and 20B are supported in a cantilever manner by being arranged at one end of the two rotating shafts 20A and 20B, respectively. A claw pump has been proposed in which a pump body is provided in a divided structure so that a cooling gap is formed between the parts (see Patent Document 2).
この本出願人によって提案されたクローポンプによれば、排気側開口部50が、別々に開口されて設けられた前段通気口51と後段排気口(排気口55)とによって構成されている。このため、例えば真空ポンプとして高い真空度で使用される場合、前段通気口51において過熱されていない外気がポンプ室10内に吸入されることによって、後段排気口(排気口55)において排気が逆流することを抑制し、ポンプ室10が過熱されることを防止できることにより、ポンプ性能を向上できる。
According to the claw pump proposed by the present applicant, the exhaust-side opening 50 is composed of the front-stage vent 51 and the rear-stage exhaust port (exhaust port 55) which are separately opened. For this reason, for example, when the vacuum pump is used at a high degree of vacuum, unsuperheated outside air is sucked into the pump chamber 10 through the front-stage vent port 51, causing the exhaust gas to flow back through the rear-stage exhaust port (exhaust port 55). It is possible to prevent the pump chamber 10 from being overheated, thereby improving the pump performance.
パッケージ型回転ポンプユニットに関して解決しようとする問題点は、従来のパッケージ型回転ポンプユニットでは冷却用空気が外部から導入されて回転ポンプによって加熱された空気を筐体の外部へ排出するものが提案されているが、回転ポンプが密閉筐体内に内蔵され、その回転ポンプによって加熱された空気がその密閉筐体の外に排出されない場合に、その密閉筐体内が過熱されることを効果的に防止する手段については検討されていないことにある。すなわち、回転ポンプの稼働によって密閉筐体内が過熱されて内部空気の温度が上昇すると、電動モータや電装品などに悪影響を及ぼすため、適切な温度対策が必要である。
The problem to be solved with the package-type rotary pump unit is that in the conventional package-type rotary pump unit, cooling air is introduced from the outside and the air heated by the rotary pump is discharged to the outside of the housing. However, when the rotary pump is built in the sealed housing and the air heated by the rotary pump is not discharged outside the sealed housing, the inside of the sealed housing is effectively prevented from being overheated. It is that the means have not been considered. That is, when the inside of the closed housing is overheated by the operation of the rotary pump and the temperature of the internal air rises, it adversely affects the electric motor, electrical components, and the like, so appropriate temperature countermeasures are required.
そこで本発明の目的は、密閉筐体に内包された回転ポンプが、例えば真空ポンプとして真空度が高い範囲で使用されて発熱量が大きな場合でも、密閉筐体の内部空気が過熱されることを防止できることで、高いポンプ性能を維持でき、装置寿命を長期化できるパッケージ型回転ポンプユニットを提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to prevent overheating of the internal air of a sealed housing even when a rotary pump enclosed in a sealed housing is used, for example, as a vacuum pump in a high degree of vacuum and generates a large amount of heat. To provide a package-type rotary pump unit capable of maintaining high pump performance and prolonging the life of the device by preventing it.
本発明は、上記目的を達成するために次の構成を備える。
本発明に係るパッケージ型回転ポンプユニットの一形態によれば、気体を吸排気する回転ポンプ及び該回転ポンプを駆動させる電動モータを備える電動回転ポンプと、該電動回転ポンプを内包する密閉筐体とを備えるパッケージ型回転ポンプユニットであって、前記密閉筐体の内部に配され、前記密閉筐体の外部に配された冷却液供給源から冷却液の供給を受けて冷却される液冷熱交換器と、前記密閉筐体の内部に配され、前記回転ポンプの稼働によって該回転ポンプの周囲の空気が加熱されることで生じる加熱空気を含む密閉筐体内の内部空気を、前記液冷熱交換器へ、冷却させるように送る送風装置とを備え、前記回転ポンプが二軸回転ポンプであって、一方のロータ回転軸が前記電動モータの回転軸に直列に接続されて回転され、他方のロータ回転軸がギヤを介して前記一方のロータ回転軸とは反対方向へ同期して回転されるように設けられ、前記他方のロータ回転軸が配された軸心の延長上のスペースであって前記電動モータと前記一方のロータ回転軸とが接続される部位に隣接するスペースに、前記液冷熱交換器及び前記送風装置が配置されている。 The present invention has the following configurations in order to achieve the above object.
According to one embodiment of the package-type rotary pump unit according to the present invention, an electric rotary pump including a rotary pump for sucking and discharging gas and an electric motor for driving the rotary pump, and a sealed housing enclosing the electric rotary pump. A package-type rotary pump unit comprising Then, the air inside the sealed housing, which is arranged inside the sealed housing and contains heated air generated by heating the air around the rotary pump due to the operation of the rotary pump, is transferred to the liquid cooling heat exchanger. , and an air blower for cooling, wherein the rotary pump is a two-shaft rotary pump, one rotor rotary shaft is connected in series to the rotary shaft of the electric motor and rotated, and the other rotor rotary shaft is connected to the rotary shaft of the electric motor. is provided so as to rotate synchronously in the direction opposite to the one rotor rotating shaft through a gear, and is a space on the extension of the axial center where the other rotor rotating shaft is arranged, and the electric motor The liquid-cooling heat exchanger and the blower are arranged in a space adjacent to a portion where the one rotor rotating shaft is connected to the liquid-cooling heat exchanger.
本発明に係るパッケージ型回転ポンプユニットの一形態によれば、気体を吸排気する回転ポンプ及び該回転ポンプを駆動させる電動モータを備える電動回転ポンプと、該電動回転ポンプを内包する密閉筐体とを備えるパッケージ型回転ポンプユニットであって、前記密閉筐体の内部に配され、前記密閉筐体の外部に配された冷却液供給源から冷却液の供給を受けて冷却される液冷熱交換器と、前記密閉筐体の内部に配され、前記回転ポンプの稼働によって該回転ポンプの周囲の空気が加熱されることで生じる加熱空気を含む密閉筐体内の内部空気を、前記液冷熱交換器へ、冷却させるように送る送風装置とを備え、前記回転ポンプが二軸回転ポンプであって、一方のロータ回転軸が前記電動モータの回転軸に直列に接続されて回転され、他方のロータ回転軸がギヤを介して前記一方のロータ回転軸とは反対方向へ同期して回転されるように設けられ、前記他方のロータ回転軸が配された軸心の延長上のスペースであって前記電動モータと前記一方のロータ回転軸とが接続される部位に隣接するスペースに、前記液冷熱交換器及び前記送風装置が配置されている。 The present invention has the following configurations in order to achieve the above object.
According to one embodiment of the package-type rotary pump unit according to the present invention, an electric rotary pump including a rotary pump for sucking and discharging gas and an electric motor for driving the rotary pump, and a sealed housing enclosing the electric rotary pump. A package-type rotary pump unit comprising Then, the air inside the sealed housing, which is arranged inside the sealed housing and contains heated air generated by heating the air around the rotary pump due to the operation of the rotary pump, is transferred to the liquid cooling heat exchanger. , and an air blower for cooling, wherein the rotary pump is a two-shaft rotary pump, one rotor rotary shaft is connected in series to the rotary shaft of the electric motor and rotated, and the other rotor rotary shaft is connected to the rotary shaft of the electric motor. is provided so as to rotate synchronously in the direction opposite to the one rotor rotating shaft through a gear, and is a space on the extension of the axial center where the other rotor rotating shaft is arranged, and the electric motor The liquid-cooling heat exchanger and the blower are arranged in a space adjacent to a portion where the one rotor rotating shaft is connected to the liquid-cooling heat exchanger.
また、本発明に係るパッケージ型回転ポンプユニットの一形態によれば、前記密閉筐体の内部に配されて前記回転ポンプを覆うように設けられ、前記密閉筐体の内部で循環する前記内部空気が導入される循環空気入口部と、前記加熱空気を含む前記内部空気が排出される循環空気出口部とが設けられるように形成されたポンプカバー部を備えることを特徴とすることができる。また、前記ポンプカバー部は、前記電動回転ポンプのうちの前記電動モータを除く前記回転ポンプの周囲を覆うように設けられ、前記循環空気入口部が、前記回転ポンプの周囲を取り巻いて帯状に開放した形態に設けられていることを特徴とすることができる。さらに具体的に、前記回転ポンプが、軸受ボディ部とポンプ室ボディ部と第1のマフラー部とを備え、前記ポンプカバー部が、前記軸受ボディ部と前記ポンプ室ボディ部の周囲を覆うように設けられていることを特徴とすることができる。
Further, according to one aspect of the package-type rotary pump unit according to the present invention, the internal air circulating inside the sealed housing is disposed inside the sealed housing so as to cover the rotary pump. and a circulating air outlet through which the internal air containing the heated air is discharged. The pump cover part is provided so as to cover the periphery of the rotary pump excluding the electric motor of the electric rotary pump, and the circulating air inlet part surrounds the periphery of the rotary pump and is open in a strip shape. It can be characterized in that it is provided in the form of More specifically, the rotary pump includes a bearing body portion, a pump chamber body portion, and a first muffler portion, and the pump cover portion surrounds the bearing body portion and the pump chamber body portion. It can be characterized by being provided.
また、本発明に係るパッケージ型回転ポンプユニットの一形態によれば、前記液冷熱交換器が、前記循環空気出口部の側に接続され、前記送風装置が、前記内部空気を吸引して前記循環空気入口部から前記循環空気出口部へ流して前記液冷熱交換器を通すように、該液冷熱交換器に接続されていることを特徴とすることができる。
また、本発明に係るパッケージ型回転ポンプユニットの一形態によれば、前記回転ポンプが、液冷されるように前記冷却液供給源に接続されていることを特徴とすることができる。 Further, according to one aspect of the package-type rotary pump unit according to the present invention, the liquid cooling heat exchanger is connected to the circulating air outlet side, and the blower sucks the internal air to cause the circulating air. It can be characterized in that the air is connected to the liquid cooling heat exchanger so as to flow from the air inlet to the circulating air outlet and pass through the liquid cooling heat exchanger.
Further, according to one aspect of the packaged rotary pump unit according to the present invention, the rotary pump may be connected to the coolant supply source so as to be liquid-cooled.
また、本発明に係るパッケージ型回転ポンプユニットの一形態によれば、前記回転ポンプが、液冷されるように前記冷却液供給源に接続されていることを特徴とすることができる。 Further, according to one aspect of the package-type rotary pump unit according to the present invention, the liquid cooling heat exchanger is connected to the circulating air outlet side, and the blower sucks the internal air to cause the circulating air. It can be characterized in that the air is connected to the liquid cooling heat exchanger so as to flow from the air inlet to the circulating air outlet and pass through the liquid cooling heat exchanger.
Further, according to one aspect of the packaged rotary pump unit according to the present invention, the rotary pump may be connected to the coolant supply source so as to be liquid-cooled.
また、本発明に係るパッケージ型回転ポンプユニットの一形態によれば、気体を吸排気する回転ポンプ及び該回転ポンプを駆動させる電動モータを備える電動回転ポンプと、該電動回転ポンプを内包する密閉筐体とを備えるパッケージ型回転ポンプユニットであって、前記密閉筐体の内部に配され、前記密閉筐体の外部に配された冷却液供給源から冷却液の供給を受けて冷却される液冷熱交換器と、前記密閉筐体の内部に配され、前記回転ポンプの稼働によって該回転ポンプの周囲の空気が加熱されることで生じる加熱空気を含む密閉筐体内の内部空気を、前記液冷熱交換器へ、冷却させるように送る送風装置とを備え、前記液冷熱交換器を冷却した前記冷却液供給源からの冷却液によって前記回転ポンプも冷却されるように、前記冷却液供給源からの液冷流路が、前記液冷熱交換器と前記回転ポンプとに亘って直列に接続されている。
Further, according to one embodiment of the package-type rotary pump unit according to the present invention, an electric rotary pump including a rotary pump for sucking and discharging a gas and an electric motor for driving the rotary pump, and a closed housing enclosing the electric rotary pump. A package-type rotary pump unit comprising a body, which is arranged inside the sealed housing and is cooled by receiving a cooling liquid supplied from a cooling liquid supply source arranged outside the sealed housing. and an exchanger arranged inside the sealed housing, wherein the internal air in the sealed housing containing heated air generated by heating the air around the rotary pump due to the operation of the rotary pump is exchanged with the liquid cooling heat exchange. a blower for directing cooling liquid from the cooling liquid supply to the vessel, such that the rotary pump is also cooled by the cooling liquid from the cooling liquid supply that has cooled the liquid cooling heat exchanger. A cold flow path is connected in series through the liquid cooling heat exchanger and the rotary pump.
また、本発明に係るパッケージ型回転ポンプユニットの一形態によれば、前記回転ポンプが、軸受ボディ部とポンプ室ボディ部と第1のマフラー部とを備え、前記冷却液供給源からの冷却液が、前記液冷熱交換器、前記軸受ボディ部、ポンプ室ボディ部及び第1のマフラー部の順に流れるように、前記冷却液供給源からの液冷流路が直列に接続されていることを特徴とすることができる。
Further, according to one aspect of the package-type rotary pump unit according to the present invention, the rotary pump includes a bearing body portion, a pump chamber body portion, and a first muffler portion, and pumps coolant from the coolant supply source. is connected in series so that the liquid cooling flow path from the cooling liquid supply source flows in the order of the liquid cooling heat exchanger, the bearing body portion, the pump chamber body portion and the first muffler portion. can be
また、本発明に係るパッケージ型回転ポンプユニットの一形態によれば、前記電動モータに、該電動モータを冷却するように送風する電動モータ冷却用の送風ファンが設けられ、該送風ファンは、前記一方のロータ回転軸に接続される側とは反対側に配されてモータ本体へ向けて送風するように設けられていることを特徴とすることができる。
Further, according to one aspect of the package-type rotary pump unit according to the present invention, the electric motor is provided with a blower fan for cooling the electric motor, which blows air so as to cool the electric motor. It can be characterized in that it is disposed on the side opposite to the side connected to one of the rotor rotating shafts and is provided so as to blow air toward the motor body.
本発明に係るパッケージ型回転ポンプユニットによれば、高温環境下で稼働した場合や、密閉筐体に内包された回転ポンプが例えば真空ポンプとして真空度が高い範囲で使用されて発熱量が大きな場合でも、密閉筐体の内部空気が過熱されることを防止できることで、高いポンプ性能を維持でき、装置寿命を長期化できるという特別有利な効果を奏する。
According to the package-type rotary pump unit according to the present invention, when it is operated in a high-temperature environment, or when the rotary pump contained in the sealed housing is used as a vacuum pump in a high degree of vacuum and generates a large amount of heat. However, by preventing overheating of the internal air of the sealed housing, it is possible to maintain high pump performance, thereby achieving a particularly advantageous effect of prolonging the life of the device.
以下、本発明に係るパッケージ型回転ポンプユニットの形態例であって、回転ポンプの一例としてクローポンプが搭載されたものを、添付図面(図1~21)に基づいて詳細に説明する。なお、この本発明に係る回転ポンプの形態例は、真空ポンプであって、水冷式の二軸回転ポンプ(クローポンプ)となっている。但し、本発明に係る回転ポンプとは、この形態例に限定されず、排出される気体を製品気体とするブロアなどとしても利用できるものや、ベーンポンプなどの一軸の回転ポンプを含むもので、水以外を冷却液として利用するものも含む。
An embodiment of a package-type rotary pump unit according to the present invention, in which a claw pump is mounted as an example of a rotary pump, will be described in detail below with reference to the accompanying drawings (Figs. 1 to 21). An example of the form of the rotary pump according to the present invention is a vacuum pump, which is a water-cooled biaxial rotary pump (claw pump). However, the rotary pump according to the present invention is not limited to this form example, and includes a pump that can be used as a blower that uses the discharged gas as a product gas, and a uniaxial rotary pump such as a vane pump. It also includes those that use other liquids as cooling liquids.
本発明に係るパッケージ型回転ポンプユニットは、基本構成として、気体を吸排気する回転ポンプ2及びその回転ポンプ2を駆動させる電動モータ3を備える電動回転ポンプ200と、その電動回転ポンプ200を内包する密閉筐体1とを備えるものである。
The package-type rotary pump unit according to the present invention includes, as a basic configuration, an electric rotary pump 200 having a rotary pump 2 for sucking and discharging gas and an electric motor 3 for driving the rotary pump 2, and the electric rotary pump 200. A sealed housing 1 is provided.
なお、本発明に係る密閉筐体1とは、厳密に気密シールがなされて密封されている必要はなく、筐体内部と外界との間の気体(本形態例では空気)の流出入が十分に制限されている閉鎖空間を形成する筐体であればよく、密閉筐体1内の内部空気の循環に外気(外部空気)の影響が実質的に存在しない程度以上の密閉度を有していればよい。すなわち、本発明に係る密閉筐体1では、僅かな隙間は許容され、本形態例のように、シール材を用いることなく、筐体を構成する鋼板材などの構造部材同士を当接させて空気の流通を十分に制限する程度の密閉度でもよい。
It should be noted that the sealed housing 1 according to the present invention does not have to be strictly airtightly sealed, and gas (air in this embodiment) can flow sufficiently between the inside of the housing and the outside world. Any enclosure may be used as long as it forms a closed space limited to All you have to do is That is, in the sealed housing 1 according to the present invention, a slight gap is allowed, and structural members such as steel plates constituting the housing are brought into contact with each other without using a sealing material as in the present embodiment. The degree of hermeticity may be such that air circulation is sufficiently restricted.
また、本形態例の密閉筐体1は、矩形のボックス状であり、筐体フレーム部1a(図3、図9など参照)、ベース部1b(図3、図9など参照)、筐体カバー部1c(図8参照)を備える。そして、この密閉筐体1は、骨格構造として角鋼管やアングル鋼などで形成された筐体フレーム部1aを、鋼板などで形成された筐体カバー部1cによって覆う形態によって構成されている。
この密閉筐体1の内部には、回転ポンプ2及び電動モータ3を備える電動回転ポンプ200、液冷熱交換器5、送風装置6,ポンプカバー部25、配電盤8、第1のマフラー部31、第2のマフラー部32、電装品冷却用の送風機9、ドレンパン91、各種の配管、各種の電気配線、及びこれらの付随品が配置されている。 In addition, the sealedhousing 1 of the present embodiment has a rectangular box shape, and includes a housing frame portion 1a (see FIGS. 3, 9, etc.), a base portion 1b (see FIGS. 3, 9, etc.), and a housing cover. A portion 1c (see FIG. 8) is provided. The sealed housing 1 has a frame structure in which a housing frame portion 1a made of a square steel pipe, an angle steel, or the like is covered with a housing cover portion 1c made of a steel plate or the like.
Inside the sealedhousing 1 are an electric rotary pump 200 having a rotary pump 2 and an electric motor 3, a liquid cooling heat exchanger 5, an air blower 6, a pump cover portion 25, a switchboard 8, a first muffler portion 31, a first 2 muffler portion 32, blower 9 for cooling electrical components, drain pan 91, various types of piping, various types of electrical wiring, and accessories for these are arranged.
この密閉筐体1の内部には、回転ポンプ2及び電動モータ3を備える電動回転ポンプ200、液冷熱交換器5、送風装置6,ポンプカバー部25、配電盤8、第1のマフラー部31、第2のマフラー部32、電装品冷却用の送風機9、ドレンパン91、各種の配管、各種の電気配線、及びこれらの付随品が配置されている。 In addition, the sealed
Inside the sealed
5は液冷熱交換器であり、図1、図3~7に示すように、密閉筐体1の内部に配され、密閉筐体1の外部に配された冷却液供給源4から冷却液の供給を受けて冷却されるように設けられている。すなわち、液冷熱交換器5に冷却液供給接続口4a及び冷却液供給配管4bを介して冷却液供給源4が接続されている。なお、図1において、冷却液の流れを、二重線の矢印によって、模式的に示している。
Reference numeral 5 denotes a liquid-cooling heat exchanger, which is arranged inside the sealed housing 1 as shown in FIGS. It is provided to be supplied and cooled. That is, the cooling liquid supply source 4 is connected to the liquid cooling heat exchanger 5 via the cooling liquid supply connection port 4a and the cooling liquid supply pipe 4b. In FIG. 1, the flow of the coolant is schematically indicated by double-line arrows.
本形態例の液冷熱交換器5は、矩形ボックス状の熱交換室に、冷却液が通る熱交換用の管路5aが往復に引き回された状態(ジグザグ)に収納されたいわゆるフィン&チューブの形態に設けられている。そして、本形態例の前記矩形ボックス状の熱交換室では、内部空気(循環空気)が導入される側である矩形の導入口が、後述するポンプカバー部25の循環空気出口部25bに接続され、内部空気(循環空気)が排出される側である矩形の排出口が、後述する送風装置6に接続されている。これにより、液冷式熱交換器5を有したファンクーラを構成している。なお、液冷熱交換器5は、一般的な態様のため詳細な図示を省略する。また、この液冷熱交換器5としては、冷却液の流路の形態や、熱交換によって冷却される循環空気の通路の形態を、適宜選択的に設定できるのは勿論である。
The liquid-cooling heat exchanger 5 of this embodiment is a so-called fin and tube housing in a rectangular box-shaped heat exchange chamber in which a heat exchange pipe 5a through which a cooling liquid passes is routed back and forth (zigzag). is provided in the form of In the rectangular box-shaped heat exchange chamber of the present embodiment, the rectangular inlet, which is the side into which the internal air (circulating air) is introduced, is connected to the circulating air outlet 25b of the pump cover 25, which will be described later. , and a rectangular outlet from which the internal air (circulating air) is discharged is connected to a blower device 6, which will be described later. This constitutes a fan cooler having the liquid-cooled heat exchanger 5 . Note that the detailed illustration of the liquid-cooling heat exchanger 5 is omitted because it is a general form. Further, in the liquid cooling heat exchanger 5, it is of course possible to appropriately and selectively set the form of the cooling liquid flow path and the form of the circulating air passage cooled by heat exchange.
ここで、冷却液供給源4とは、冷凍サイクルを利用して液体を冷却する液冷装置を用いることができる。なお、立地条件などによっては、空気(外気)、淡水、海水、氷、地下水などの他の冷却源を用いてもよく、さらには複数の冷却源を適宜に組み合せて用いてもよいのは勿論である。なお、本形態例の冷却液は、冷却水であり、後述するように、排気口55から排出される排気を冷却するものと同じ冷却液供給源4から供給されている。
Here, the cooling liquid supply source 4 can be a liquid cooling device that uses a refrigeration cycle to cool the liquid. Depending on the location conditions, other cooling sources such as air (outside air), fresh water, seawater, ice, groundwater, etc. may be used, and more than one cooling source may be used in combination as appropriate. is. The cooling liquid in this embodiment is cooling water, which is supplied from the same cooling liquid supply source 4 that cools the exhaust gas discharged from the exhaust port 55, as will be described later.
そして、6は送風装置であり、密閉筐体1の内部に配され、回転ポンプ2の稼働によってその回転ポンプ2の周囲の空気が加熱されることで生じる加熱空気を含む密閉筐体1内の内部空気を、液冷熱交換器5へ、冷却させるように送る手段として設けられている。なお、図1において、内部空気の流れを、太線の矢印によって、模式的に示している。
本形態例の送風装置6は、軸流ファンであり、電動回転ポンプ200の長手方向に沿って、内部空気を吸引して排出するように、配置されている。なお、この送風装置6としては、軸流ファンに限定されるものではなく、遠心ファン(例えばシロッコファン)などの他の送風手段を適宜選択的に用いてもよいのは勿論である。 Ablower 6 is arranged inside the sealed housing 1 and contains heated air generated when the air around the rotary pump 2 is heated by the operation of the rotary pump 2. Means are provided for directing internal air to the liquid-cooled heat exchanger 5 for cooling. In addition, in FIG. 1, the flow of the internal air is schematically shown by a thick arrow.
Theblower device 6 of this embodiment is an axial fan, and is arranged along the longitudinal direction of the electric rotary pump 200 so as to suck and discharge internal air. The air blowing device 6 is not limited to an axial fan, and other air blowing means such as a centrifugal fan (for example, a sirocco fan) may be used as appropriate.
本形態例の送風装置6は、軸流ファンであり、電動回転ポンプ200の長手方向に沿って、内部空気を吸引して排出するように、配置されている。なお、この送風装置6としては、軸流ファンに限定されるものではなく、遠心ファン(例えばシロッコファン)などの他の送風手段を適宜選択的に用いてもよいのは勿論である。 A
The
この本発明に係るパッケージ型回転ポンプユニットによれば、高温環境下で稼働した場合や、密閉筐体1に内包された回転ポンプ2が例えば真空ポンプとして真空度が高い範囲で使用されて発熱量が大きな場合でも、密閉筐体1の内部空気が過熱されることを防止できることで、高いポンプ性能を維持でき、装置寿命を長期化できるという特別有利な効果を奏する。すなわち、密閉筐体1内の内部空気を、送風装置6よって流動させて液冷熱交換器5を通過させることで、回転ポンプ2の周囲に過熱空気が淀むことを防止し、その内部空気を効率よく循環させて冷却できる。このため、回転ポンプ2などの発熱による密閉筐体1内の温度上昇を適切に抑制でき、電動モータ3や電装品等へ悪影響を及ぼすことを防止できるため、高いポンプ性能を維持でき、装置寿命を長期化できる。
According to the package-type rotary pump unit according to the present invention, when it is operated in a high-temperature environment, or when the rotary pump 2 contained in the sealed housing 1 is used as a vacuum pump in a high degree of vacuum, the amount of heat generated is reduced. Even in the case of a large air gap, it is possible to prevent overheating of the air inside the sealed housing 1, thereby maintaining high pump performance and prolonging the life of the apparatus, which is particularly advantageous. That is, the internal air in the sealed housing 1 is caused to flow by the air blower 6 and pass through the liquid cooling heat exchanger 5, thereby preventing the overheated air from stagnation around the rotary pump 2, and the internal air is efficiently discharged. It can be well circulated and cooled. Therefore, it is possible to appropriately suppress the temperature rise in the sealed housing 1 due to the heat generated by the rotary pump 2, etc., and prevent adverse effects on the electric motor 3, electrical components, etc., so that high pump performance can be maintained and the life of the device can be improved. can be prolonged.
また、密閉筐体1外への排熱は、全て又は殆どが熱交換用の冷却液(冷却水)を媒介にしているため、周囲への放熱を最小限にすることができ、設置環境へ与える影響が極めて小さいという利点がある。例えば、本発明に係るパッケージ型回転ポンプユニットが設置される部屋の空調負担を低減できる。
さらに、密閉筐体1によって密閉構造にできるため、運転音低減効果が大きいといる利点もある。なお、本形態例に係る密閉筐体1による密閉構造の実施例によれば、騒音を73dBまで低減できている。
そして、このように密閉筐体1によって密閉構造にすることで、筐体内部と外界との間の気体の流出入が十分に制限されているため、高湿環境においても筐体内部の結露水の発生量が少ない。すなわち、冷却液を供給できれば、密閉筐体1の内部温度は、製品設置環境(温度・湿度)の影響を受けづらいため、広範囲の環境温湿度域で使用できるようになる。
なお、後述するように本形態例は、第1のマフラー部31及び第2のマフラー部32を密閉筐体1内に収容するものであり、これらのマフラー部から発散される熱も含めて、密閉筐体1の内部空気を冷却できるように構成されている。 In addition, all or most of the heat exhausted to the outside of the sealedhousing 1 is mediated by the cooling liquid (cooling water) for heat exchange, so the heat radiation to the surroundings can be minimized, and the installation environment can be improved. There is an advantage that the influence given is extremely small. For example, it is possible to reduce the burden of air conditioning in the room where the packaged rotary pump unit according to the present invention is installed.
Furthermore, since the sealedhousing 1 enables a closed structure, there is an advantage that the operation noise reduction effect is large. In addition, according to the example of the sealed structure using the sealed housing 1 according to the present embodiment, the noise can be reduced to 73 dB.
By forming a sealed structure with the sealedhousing 1 in this way, the inflow and outflow of gas between the inside of the housing and the outside world is sufficiently restricted, so even in a high-humidity environment, the dew condensation inside the housing generated less. That is, if the cooling liquid can be supplied, the internal temperature of the closed housing 1 is less likely to be affected by the product installation environment (temperature and humidity), so it can be used in a wide environmental temperature and humidity range.
As will be described later, in this embodiment, thefirst muffler section 31 and the second muffler section 32 are housed in the sealed housing 1. Including the heat emitted from these muffler sections, It is configured to be able to cool the internal air of the sealed housing 1 .
さらに、密閉筐体1によって密閉構造にできるため、運転音低減効果が大きいといる利点もある。なお、本形態例に係る密閉筐体1による密閉構造の実施例によれば、騒音を73dBまで低減できている。
そして、このように密閉筐体1によって密閉構造にすることで、筐体内部と外界との間の気体の流出入が十分に制限されているため、高湿環境においても筐体内部の結露水の発生量が少ない。すなわち、冷却液を供給できれば、密閉筐体1の内部温度は、製品設置環境(温度・湿度)の影響を受けづらいため、広範囲の環境温湿度域で使用できるようになる。
なお、後述するように本形態例は、第1のマフラー部31及び第2のマフラー部32を密閉筐体1内に収容するものであり、これらのマフラー部から発散される熱も含めて、密閉筐体1の内部空気を冷却できるように構成されている。 In addition, all or most of the heat exhausted to the outside of the sealed
Furthermore, since the sealed
By forming a sealed structure with the sealed
As will be described later, in this embodiment, the
また、本形態例では、密閉筐体1の内部に配されて回転ポンプ2を覆うように設けられ、密閉筐体1の内部で循環する前記内部空気が導入される循環空気入口部25aと、前記加熱空気を含む前記内部空気が排出される循環空気出口部25bとが設けられるように形成されたポンプカバー部25を備えている。なお、このポンプカバー部25に対する送風装置6の設置位置は、内部空気が循環空気入口部25aから導入されて循環空気出口部25bから排出されるように流れることができれば、本形態例に限定されるものではなく、液冷熱交換器5との位置関係と含めて適宜選択的に設定することも可能である。
In addition, in this embodiment, a circulating air inlet 25a is arranged inside the sealed housing 1 so as to cover the rotary pump 2, and into which the internal air circulating inside the sealed housing 1 is introduced; A pump cover portion 25 is provided so as to be provided with a circulating air outlet portion 25b through which the internal air containing the heated air is discharged. The installation position of the blower device 6 with respect to the pump cover portion 25 is limited to this embodiment as long as the internal air can flow so as to be introduced from the circulating air inlet portion 25a and discharged from the circulating air outlet portion 25b. It is also possible to appropriately and selectively set the positional relationship including the positional relationship with the liquid-cooling heat exchanger 5 .
このポンプカバー部25によれば、回転ポンプ2による発熱を、そのポンプカバー部25の内側に留めることができ、その熱が、ポンプカバー部25の外側へ放熱されて密閉筐体1内の全体空間へ分散されることを抑制できる。これによれば、回転ポンプ2による熱を分散させないことで、高温空気(加熱空気)を集めた状態で液冷熱交換器5へ送ることができ、効率的に加熱空気を冷却できる。すなわち、その加熱空気と液冷熱交換器5の温度差をより大きくとることができ、熱交換が効率良くなされ、密閉筐体1内の温度上昇を効率よく抑制できる。また、高温空気を集めた状態で液冷熱交換器5へ送るため、循環空気出口部25bは流路が絞られた形態となり、液冷熱交換器5の小型化を図ることもでき、製品コストの低減にもなる。
According to this pump cover portion 25, the heat generated by the rotary pump 2 can be kept inside the pump cover portion 25, and the heat is radiated to the outside of the pump cover portion 25, so that the entire inside of the sealed housing 1 is cooled. Spatial dispersion can be suppressed. According to this, by not dispersing the heat generated by the rotary pump 2, high-temperature air (heated air) can be collected and sent to the liquid-cooling heat exchanger 5, and the heated air can be efficiently cooled. That is, the temperature difference between the heated air and the liquid-cooling heat exchanger 5 can be increased, heat exchange can be performed efficiently, and temperature rise in the sealed housing 1 can be suppressed efficiently. In addition, since the high-temperature air is sent to the liquid-cooling heat exchanger 5 in a collected state, the circulating air outlet 25b has a narrowed flow path, so that the size of the liquid-cooling heat exchanger 5 can be reduced and the product cost can be reduced. also be reduced.
本形態例のポンプカバー部25は、内部空気が回転ポンプ2の外表面の全体に効果的に接触するように流れることで、その外表面を効率的に冷却できるように、回転ポンプ2の排気側(電動モータ3が接続されている側とは反対側)で、回転ポンプ2の周囲を取り巻いて帯状に開放した循環空気入口部25aが形成されるように設けられている。そして、回転ポンプ2によって加熱された加熱空気を含む内部空気が排出される循環空気出口部25bが、内部空気を集めて液冷熱交換器5へ導くように、その流路が絞られた形態になっている。さらに、本形態例では、循環空気出口部25bは、液冷熱交換器5の前記熱交換室における内部空気の導入口に気密シール状態に接続されている。これによれば、内部空気の流れを適切に発生させ、内部空気を適切に循環させることができ、熱交換が効率良くなされ、密閉筐体1内の温度上昇を効率よく抑制できる。
The pump cover portion 25 of this embodiment is designed to exhaust the rotary pump 2 so that the internal air can flow to effectively contact the entire outer surface of the rotary pump 2 to efficiently cool the outer surface. A circulating air inlet portion 25a is formed so as to surround the periphery of the rotary pump 2 and open in a strip shape on the side (the side opposite to the side to which the electric motor 3 is connected). The circulating air outlet 25b, through which the internal air containing the heated air heated by the rotary pump 2 is discharged, collects the internal air and guides it to the liquid-cooling heat exchanger 5. It's becoming Furthermore, in this embodiment, the circulating air outlet portion 25b is connected to the internal air inlet of the heat exchange chamber of the liquid cooling heat exchanger 5 in an airtight seal. According to this, the internal air flow can be appropriately generated, the internal air can be appropriately circulated, the heat exchange can be efficiently performed, and the temperature rise in the sealed housing 1 can be efficiently suppressed.
また、本形態例では、液冷熱交換器5の導入口が、循環空気出口部25bの側に接続され、送風装置6が、前記内部空気を吸引して循環空気入口部25aから循環空気出口部25bへ流して液冷熱交換器5を通すように、その液冷熱交換器5に接続されている。なお、本形態例では、この送風装置6の内部空気の吸引口が、液冷熱交換器5の前記熱交換室における内部空気の排出口に気密シール状態に接続されている。
Further, in this embodiment, the introduction port of the liquid cooling heat exchanger 5 is connected to the circulating air outlet 25b side, and the blower 6 sucks the internal air from the circulating air inlet 25a to the circulating air outlet. 25 b and is connected to the liquid cooling heat exchanger 5 so as to pass through the liquid cooling heat exchanger 5 . In this embodiment, the internal air suction port of the blower 6 is connected to the internal air discharge port of the heat exchange chamber of the liquid-cooling heat exchanger 5 in an airtight seal.
これによれば、内部空気のスムースな流れを合理的且つ効果的に生じさせることができ、内部空気を効率的に循環させることができ、熱交換が効率良くなされ、密閉筐体1内の温度上昇を効率よく抑制できる。また、本形態例のように送風装置6が液冷熱交換器5に配されていることで、この送風装置6自体が、液冷熱交換器5によって冷却された空気を吸引することになって過熱されることが防止され、その装置寿命を長期化できる。
なお、本形態例では、ポンプカバー部25(図3~6など参照)が、回転ポンプ2のポンプ室ボディ部110や軸受ボディ部120(図13~18など参照)の範囲を覆うように設けられている。すなわち、後述するように液冷がされている第1のマフラー部31を除いた表面温度が高い部位を効果的に覆っている。また、循環空気入口部25aが適性に形成されるように、ポンプカバー部25の内面と回転ポンプ2の外表面との間に設けられる隙間の大きさ(通気路の幅)は、内部空気が流動する際の通気抵抗がなるべく上昇しないと共に、回転ポンプ2の発熱によって加熱された内部空気(加熱空気)がなるべくポンプカバー部25の外側へ分散しない範囲に設けられていればよい。 According to this, a smooth flow of the internal air can be generated rationally and effectively, the internal air can be efficiently circulated, heat exchange can be efficiently performed, and the temperature inside the sealedhousing 1 can be reduced. It is possible to efficiently suppress the rise. In addition, since the blower 6 is arranged in the liquid-cooled heat exchanger 5 as in this embodiment, the blower 6 itself sucks the air cooled by the liquid-cooled heat exchanger 5, resulting in overheating. It is possible to prevent this from happening and prolong the life of the device.
In this embodiment, the pump cover portion 25 (see FIGS. 3 to 6, etc.) is provided so as to cover the range of the pumpchamber body portion 110 and the bearing body portion 120 (see FIGS. 13 to 18, etc.) of the rotary pump 2. It is In other words, it effectively covers a portion with a high surface temperature, excluding the first muffler portion 31 which is liquid-cooled as will be described later. In addition, the size of the gap (width of the air passage) provided between the inner surface of the pump cover portion 25 and the outer surface of the rotary pump 2 is adjusted so that the circulating air inlet portion 25a is appropriately formed. It suffices that the airflow resistance during the flow does not increase as much as possible, and the internal air (heated air) heated by the heat generated by the rotary pump 2 is not dispersed to the outside of the pump cover portion 25 as much as possible.
なお、本形態例では、ポンプカバー部25(図3~6など参照)が、回転ポンプ2のポンプ室ボディ部110や軸受ボディ部120(図13~18など参照)の範囲を覆うように設けられている。すなわち、後述するように液冷がされている第1のマフラー部31を除いた表面温度が高い部位を効果的に覆っている。また、循環空気入口部25aが適性に形成されるように、ポンプカバー部25の内面と回転ポンプ2の外表面との間に設けられる隙間の大きさ(通気路の幅)は、内部空気が流動する際の通気抵抗がなるべく上昇しないと共に、回転ポンプ2の発熱によって加熱された内部空気(加熱空気)がなるべくポンプカバー部25の外側へ分散しない範囲に設けられていればよい。 According to this, a smooth flow of the internal air can be generated rationally and effectively, the internal air can be efficiently circulated, heat exchange can be efficiently performed, and the temperature inside the sealed
In this embodiment, the pump cover portion 25 (see FIGS. 3 to 6, etc.) is provided so as to cover the range of the pump
また、本形態例では、回転ポンプ2が二軸回転ポンプであって、一方のロータ回転軸(回転軸20A)が電動モータ3の回転軸3aに直列に接続されて回転され、他方のロータ回転軸(回転軸20B)がギヤを介して一方のロータ回転軸(回転軸20A)とは反対方向へ同期して回転されるように設けられ、他方のロータ回転軸(回転軸20B)が配されたその回転軸20Bの軸心の延長上のスペースであって電動モータ3と一方のロータ回転軸(回転軸20A)とが接続される部位に隣接するスペースに、液冷熱交換器5及び送風装置6が配置されている。
Further, in this embodiment, the rotary pump 2 is a two-shaft rotary pump, and one rotor rotating shaft (rotating shaft 20A) is connected in series to the rotating shaft 3a of the electric motor 3 and rotated, and the other rotor rotates. A shaft (rotating shaft 20B) is provided so as to rotate synchronously in a direction opposite to one rotor rotating shaft (rotating shaft 20A) through a gear, and the other rotor rotating shaft (rotating shaft 20B) is arranged. In addition, the liquid cooling heat exchanger 5 and the air blower are installed in a space on the extension of the axial center of the rotating shaft 20B and adjacent to the portion where the electric motor 3 and one rotor rotating shaft (rotating shaft 20A) are connected. 6 are placed.
これによれば、密閉筐体1の内部スペースを好適に利用して、内部空気を好適に循環させることができる。
なお、本形態例の一方のロータ回転軸(回転軸20A)と電動モータ3の回転軸3aとは、図4などに示すように、カップリング3bを介して直列に接続されている。また、図3などに示すように、3cは安全カバーであり、回転駆動するカップリング3bを含む回転軸(3a、20A)の接続部を、安全のために覆っている。さらに、このカップリング3bには、送風羽根を回転軸(3a、20A)と同軸に取り付けて、送風を行うように構成することもできる。この送風羽根によれば、冷却性能を向上させることができる。 According to this, the internal space of the sealedhousing 1 can be preferably used, and the internal air can be preferably circulated.
One of the rotor rotating shafts (rotating shaft 20A) of this embodiment and the rotating shaft 3a of the electric motor 3 are connected in series via a coupling 3b, as shown in FIG. Further, as shown in FIG. 3 and the like, 3c is a safety cover, which covers the connecting portion of the rotary shaft (3a, 20A) including the rotationally driven coupling 3b for safety. Further, the coupling 3b may be configured to blow air by attaching blower blades coaxially to the rotating shafts (3a, 20A). According to this blower blade, the cooling performance can be improved.
なお、本形態例の一方のロータ回転軸(回転軸20A)と電動モータ3の回転軸3aとは、図4などに示すように、カップリング3bを介して直列に接続されている。また、図3などに示すように、3cは安全カバーであり、回転駆動するカップリング3bを含む回転軸(3a、20A)の接続部を、安全のために覆っている。さらに、このカップリング3bには、送風羽根を回転軸(3a、20A)と同軸に取り付けて、送風を行うように構成することもできる。この送風羽根によれば、冷却性能を向上させることができる。 According to this, the internal space of the sealed
One of the rotor rotating shafts (
また、本形態例では、電動モータ3に、その電動モータ3を冷却するように送風する電動モータ冷却用の送風ファン7が設けられ、その送風ファン7は、一方のロータ回転軸(回転軸20A)に接続される側とは反対側の回転軸に配されてモータ本体へ向けて送風するように設けられている。
Further, in this embodiment, the electric motor 3 is provided with a blower fan 7 for cooling the electric motor 3, which blows air to cool the electric motor 3. ) is arranged on the rotating shaft on the side opposite to the side connected to the motor body so as to blow air toward the motor main body.
これによれば、図1に太線の矢印で示したように、内部空気のスムースな循環流を合理的且つ効果的に生じさせることができ、熱交換が効率良くなされ、密閉筐体1内の温度上昇を効率よく抑制できる。すなわち、図1に示すように、先ず、送風装置6によって吸引されることで、内部空気が、ポンプカバー部25の内側を通って加熱された後に、液冷熱交換器5を通って冷却される。次に、その液冷熱交換器5から吸引された内部空気は、その送風装置6によって回転ポンプ2から離れる方向(図5における送風装置6から左方向)へ排出され、電動モータ3の側方(図5における電動モータ3の上側)を流れることになる。次に、その液冷熱交換器5によって冷却されて送風装置6から排出された内部空気は密閉筐体1の内側面にあたり、その一部の内部空気は、電動モータ3の送風ファン7に吸引されて反転し、その電動モータ3のモータ本体を冷却するように流れた後、回転ポンプ2の本体の側へ流れることになる。そして、ポンプカバー部25の周囲に流れてきた内部空気は、反転して循環空気入口部25aから、送風装置6の吸引力によって、そのポンプカバー部25の内側へ引き込まれることになる。以上のように、空気流が発生することで、内部空気を適切に循環させることができ、熱交換が効率良くなされ、密閉筐体1内の温度上昇を効率よく抑制できる。
According to this, as indicated by the thick arrow in FIG. Temperature rise can be efficiently suppressed. That is, as shown in FIG. 1 , the internal air is first sucked by the blower 6, heated through the inside of the pump cover portion 25, and then cooled through the liquid cooling heat exchanger 5. . Next, the internal air sucked from the liquid-cooling heat exchanger 5 is discharged by the air blower 6 in the direction away from the rotary pump 2 (leftward from the air blower 6 in FIG. 5), to the side of the electric motor 3 ( above the electric motor 3 in FIG. 5). Next, the internal air cooled by the liquid-cooling heat exchanger 5 and discharged from the blower 6 hits the inner surface of the sealed housing 1, and a part of the internal air is sucked by the blower fan 7 of the electric motor 3. After flowing to cool the motor body of the electric motor 3 , it flows toward the body of the rotary pump 2 . Then, the internal air that has flowed around the pump cover portion 25 is reversed and drawn into the pump cover portion 25 by the suction force of the air blower 6 from the circulating air inlet portion 25a. As described above, by generating an air flow, it is possible to appropriately circulate the internal air, efficiently perform heat exchange, and efficiently suppress the temperature rise in the sealed housing 1 .
さらに、本形態例において、密閉筐体1の前面部側に形成された配電盤8には、図1や図9及び図10に示すように、小室状に形成された配電盤8内の空気を流動させる空冷手段として、その配電盤8の下部に、電装品冷却用の送風機9が装着されている。
Further, in the present embodiment, the switchboard 8 formed on the front side of the sealed housing 1 is provided with air flowing inside the switchboard 8 formed in a small chamber, as shown in FIGS. A blower 9 for cooling electrical components is attached to the lower portion of the switchboard 8 as an air cooling means for cooling.
この本形態例の電装品冷却用の送風機9によれば、密閉筐体1内の内部空気(冷却用気体)の一部を、配電盤8内へ吸引し、その配電盤8内で下から上へ流動させ、その配電盤8内の図示しない上部の開口から排出するように送風できる。これによって、その配電盤8内に設置された発熱性の高い電装部品82やインバータ装置83などを効率的に冷却することができる。また、配電盤8から排出された内部空気は、ポンプカバー部25の循環空気入口部25aからポンプカバー部25の内部に吸引される。なお、図9及び図10に示すように、81は操作部であり、発熱性が低いため、本形態例では個別に空冷手段を設けず、配電盤8と離れた位置に配されている。
According to the electric component cooling blower 9 of this embodiment, part of the internal air (cooling gas) inside the sealed housing 1 is sucked into the switchboard 8, and inside the switchboard 8, the air is blown from the bottom to the top. It can be flowed and ventilated to be discharged from an upper opening (not shown) in the switchboard 8 . As a result, it is possible to efficiently cool the electrical component 82 and the inverter device 83 that are installed in the switchboard 8 and have high heat generation. Further, the internal air discharged from the switchboard 8 is sucked into the pump cover portion 25 from the circulating air inlet portion 25 a of the pump cover portion 25 . As shown in FIGS. 9 and 10, reference numeral 81 denotes an operation unit, which is not provided with an individual air cooling means in the present embodiment because of its low heat generation, and is located away from the switchboard 8. FIG.
また、本形態例では、図13~21に基づいて詳しく説明するように、回転ポンプ2が、液冷されるように冷却液供給源4に接続されている。なお、本形態例では、冷却液供給源4から流れる冷却液は、先ず、液冷熱交換器5を通り、次に排気口55(図13など参照)から排出される排気を冷却するように、その配管が直列に接続されている。このように、液冷熱交換器5及び回転ポンプ2の両方が液冷されることで、密閉筐体1内の温度上昇を効果的に抑制できる。
Also, in this embodiment, as will be described in detail with reference to FIGS. 13 to 21, the rotary pump 2 is connected to the coolant supply source 4 so as to be liquid-cooled. In this embodiment, the coolant flowing from the coolant supply source 4 first passes through the liquid cooling heat exchanger 5, and then cools the exhaust discharged from the exhaust port 55 (see FIG. 13, etc.). The pipes are connected in series. By cooling both the liquid-cooling heat exchanger 5 and the rotary pump 2 in this way, it is possible to effectively suppress the temperature rise in the sealed housing 1 .
次に、冷却液供給源4から供給される冷却液に係る流路について、その具体例を図面(図1、図3、図7、図9~15など)に基づいて説明する。
冷却液供給源4は、密閉筐体1の背面に設けられた冷却液供給接続口4aに接続され、冷却液は、液流ポンプ(図示せず)によって、冷却液供給接続口4aから冷却液供給配管4bを通って、先ず、液冷熱交換器5に供給されて、その液冷熱交換器5を冷却する。なお、図9~12に示す二段に電動回転ポンプ200が配された形態例では、冷却液供給配管4bが二本に分岐されて、その二段の電動回転ポンプ200の夫々について冷却液が供給され、二本の冷却液排出配管4cが合流されて冷却液が排出されるように構成されている。 Next, specific examples of flow paths for the cooling liquid supplied from the coolingliquid supply source 4 will be described with reference to the drawings (FIGS. 1, 3, 7, 9 to 15, etc.).
The coolingliquid supply source 4 is connected to a cooling liquid supply connection port 4a provided on the rear surface of the sealed housing 1, and the cooling liquid is supplied from the cooling liquid supply connection port 4a by a liquid flow pump (not shown). First, it is supplied to the liquid-cooling heat exchanger 5 through the supply pipe 4b, and the liquid-cooling heat exchanger 5 is cooled. 9 to 12, in which the electric rotary pump 200 is arranged in two stages, the cooling liquid supply pipe 4b is branched into two, and the cooling liquid is supplied to each of the two-stage electric rotary pumps 200. The two cooling liquid discharge pipes 4c are joined to discharge the cooling liquid.
冷却液供給源4は、密閉筐体1の背面に設けられた冷却液供給接続口4aに接続され、冷却液は、液流ポンプ(図示せず)によって、冷却液供給接続口4aから冷却液供給配管4bを通って、先ず、液冷熱交換器5に供給されて、その液冷熱交換器5を冷却する。なお、図9~12に示す二段に電動回転ポンプ200が配された形態例では、冷却液供給配管4bが二本に分岐されて、その二段の電動回転ポンプ200の夫々について冷却液が供給され、二本の冷却液排出配管4cが合流されて冷却液が排出されるように構成されている。 Next, specific examples of flow paths for the cooling liquid supplied from the cooling
The cooling
次に、液冷熱交換器5を介して内部空気を冷却した冷却液は、冷却液接続管5b(図1、図7など参照)を通って回転ポンプ2を冷却するために、冷却液入口接続部71a(図7、図15など参照)に供給される。そして、その冷却液が、図13~21に基づいて後述するように軸受部冷却液流路71を通ることで、回転ポンプ2の軸受部40及びギヤボックス45が冷却され、それに伴ってギヤボックス45内の潤滑オイルが冷却される。
Next, the cooling liquid that has cooled the internal air through the liquid cooling heat exchanger 5 passes through the cooling liquid connection pipe 5b (see FIGS. 1, 7, etc.) to cool the rotary pump 2, the cooling liquid inlet connection. It is supplied to the portion 71a (see FIGS. 7, 15, etc.). 13 to 21, the cooling liquid passes through the bearing section cooling liquid flow path 71, thereby cooling the bearing section 40 and the gear box 45 of the rotary pump 2. Accordingly, the gear box Lubricating oil in 45 is cooled.
次に、軸受部冷却液流路71を通った冷却液は、図13~21に基づいて後述するように、排気部冷却液流路72に導入されて回転ポンプ2の排気を冷却するように流れ、さらに延長部冷却液流路73を通って、回転ポンプ2の排気部であって第1のマフラー部31を構成する部分を冷却して延長部冷却液出口接続部73bから排出される。この延長部冷却液出口接続部73bには、冷却液排出配管4cが接続され、その冷却液排出配管4cの出口端が、冷却液供給源4へ接続される冷却液排出接続口4dになっている。
Next, the cooling liquid that has passed through the bearing cooling liquid flow path 71 is introduced into the exhaust cooling liquid flow path 72 to cool the exhaust of the rotary pump 2, as will be described later with reference to FIGS. The coolant flows further through the extension cooling liquid flow path 73, cools the exhaust section of the rotary pump 2 and the first muffler section 31, and is discharged from the extension cooling liquid outlet connection section 73b. A cooling liquid discharge pipe 4c is connected to the extension cooling liquid outlet connection portion 73b, and the outlet end of the cooling liquid discharge piping 4c serves as a cooling liquid discharge connection port 4d connected to the cooling liquid supply source 4. there is
以上の流路を通って流れることで、液冷熱交換器5と回転ポンプ2を冷却することができ、密閉筐体1の内部空気と回転ポンプ2の潤滑オイルや排気とを冷却した冷却液は、本形態例では冷却液供給源4に戻されて循環されることになる。なお、地下水などを利用する際には、循環しないで一方向へ流してもよいのは勿論である。
By flowing through the flow paths described above, the liquid cooling heat exchanger 5 and the rotary pump 2 can be cooled. , in this embodiment, the coolant is returned to the coolant supply source 4 and circulated. When using underground water, it is of course possible to flow the water in one direction without circulating it.
これによれば、液冷熱交換器5と回転ポンプ2とに亘って直列に接続した液冷流路を流れる冷却液によって、液冷熱交換器5、回転ポンプ2の軸受部40及びギヤボックス45、回転ポンプ2の排気部である第1のマフラー部31の3箇所を順番に合理的に冷却することができる。つまり、各部の温度について、密閉筐体1の内部空気の許容温度に比較してギヤボックス内に貯留されるオイルの許容温度が高く、そのギヤボックス内に貯留されるオイルの許容温度に比較して回転ポンプの排気の許容温度がさらに高いという温度関係になっているため、上述の順で冷却液を流すことに合理性がある。すなわち、前述の3箇所を順次冷却する際に、その冷却液は徐々に加熱されていくが、それぞれの部分では、十分に冷却できる温度差(冷却液温度と被冷却部温度との温度差)を維持することができる。そして、このような直列に繋ぐ液冷配管は、配管の構成を簡素化してコスト低減ができる利点がある。
なお、その液冷配管は、本形態例に限定されるものではなく、並列に設けられてもよい。並列に配管することによれば、その流量を個々に調整することが可能になり、精密な冷却制御ができるという利点がある。 According to this, the liquidcooling heat exchanger 5, the bearing portion 40 of the rotary pump 2, the gear box 45, Three portions of the first muffler portion 31, which is the exhaust portion of the rotary pump 2, can be rationally cooled in order. That is, regarding the temperature of each part, the permissible temperature of the oil stored in the gearbox is higher than the permissible temperature of the air inside the sealed housing 1, and the permissible temperature of the oil stored in the gearbox is lower than the permissible temperature. Since there is a temperature relationship in which the permissible temperature of the exhaust air of the rotary pump is higher than that of the rotary pump, it is rational to flow the cooling liquid in the order described above. That is, when cooling the above-mentioned three places sequentially, the coolant is gradually heated, but there is a temperature difference (temperature difference between the coolant temperature and the temperature of the part to be cooled) that can sufficiently cool each part. can be maintained. Such liquid cooling pipes connected in series have the advantage of simplifying the structure of the pipes and reducing the cost.
In addition, the liquid cooling pipes are not limited to this embodiment, and may be provided in parallel. Parallel piping has the advantage that it is possible to individually adjust the flow rates, enabling precise cooling control.
なお、その液冷配管は、本形態例に限定されるものではなく、並列に設けられてもよい。並列に配管することによれば、その流量を個々に調整することが可能になり、精密な冷却制御ができるという利点がある。 According to this, the liquid
In addition, the liquid cooling pipes are not limited to this embodiment, and may be provided in parallel. Parallel piping has the advantage that it is possible to individually adjust the flow rates, enabling precise cooling control.
次に、図1~7に示した形態例の密閉筐体1内の冷却効果について、具体的な測定データ(検証値)について説明する。
冷却液(冷却水)の温度を、最も高い想定温度の条件の例として32℃と設定し、各部の温度を測定することで、データを得た。
比較データとして、液冷熱交換器5が設置されなかった場合であって、回転ポンプ2を図13~21に示す形態例のように設けて水冷した場合は、密閉筐体1の内部空気が、80℃まで上昇した。
これに対して、本形態例のように、回転ポンプ2を上記のように水冷すると共に液冷熱交換器5を設置して内部空気を水冷した場合は、ポンプカバー部25の循環空気出口部25bにおける内部空気の温度が55℃となり、液冷熱交換器5を通過して送風装置6から排出されて電動モータ3及び配電盤8に循環される内部空気の温度が45℃になった。これによって、電動モータ3や電装部品82などの耐熱温度を、十分にクリアすることができた。また、冷却液供給源4に戻される冷却水の温度が40~45℃になった。 Next, specific measurement data (verification values) for the cooling effect in the sealedhousing 1 of the embodiment shown in FIGS. 1 to 7 will be described.
Data was obtained by setting the temperature of the coolant (cooling water) to 32° C. as an example of the condition of the highest assumed temperature, and measuring the temperature of each part.
As comparison data, when the liquid-cooling heat exchanger 5 is not installed and the rotary pump 2 is installed as shown in FIGS. It rose to 80°C.
On the other hand, when therotary pump 2 is water-cooled as described above and the internal air is water-cooled by installing the liquid cooling heat exchanger 5 as in the present embodiment, the circulating air outlet portion 25b of the pump cover portion 25 The temperature of the internal air reached 55.degree. As a result, the heat-resistant temperature of the electric motor 3, the electrical component 82, etc. was sufficiently cleared. Also, the temperature of the cooling water returned to the cooling liquid supply source 4 became 40 to 45°C.
冷却液(冷却水)の温度を、最も高い想定温度の条件の例として32℃と設定し、各部の温度を測定することで、データを得た。
比較データとして、液冷熱交換器5が設置されなかった場合であって、回転ポンプ2を図13~21に示す形態例のように設けて水冷した場合は、密閉筐体1の内部空気が、80℃まで上昇した。
これに対して、本形態例のように、回転ポンプ2を上記のように水冷すると共に液冷熱交換器5を設置して内部空気を水冷した場合は、ポンプカバー部25の循環空気出口部25bにおける内部空気の温度が55℃となり、液冷熱交換器5を通過して送風装置6から排出されて電動モータ3及び配電盤8に循環される内部空気の温度が45℃になった。これによって、電動モータ3や電装部品82などの耐熱温度を、十分にクリアすることができた。また、冷却液供給源4に戻される冷却水の温度が40~45℃になった。 Next, specific measurement data (verification values) for the cooling effect in the sealed
Data was obtained by setting the temperature of the coolant (cooling water) to 32° C. as an example of the condition of the highest assumed temperature, and measuring the temperature of each part.
As comparison data, when the liquid-
On the other hand, when the
ところで、回転ポンプ2の吸気配管は、吸気導入管接続口16が外部の吸気用の配管に接続できるように設けられ、その外部の吸気用の配管を介して外気を取り入れることができるように構成されている。また、逆流防止弁17が、吸気導入管接続口16と回転ポンプ2の吸気口15との間に接続されており、ポンプ2から吸気導入管接続口16への気体の流れを規制できるように設けられている。
また、90はドレン排出接続口であり、ドレンを外部に排出できる排出口になっている。このドレン排出接続口90へは、回転ポンプ2の下に配されたドレンパン91や、液冷熱交換器5に配された熱交換器用ドレンパン93が、ドレン配管92や熱交換器用ドレン配管94によって接続されており、発生したドレンを受けて適切に排出することができる。 By the way, the intake pipe of therotary pump 2 is provided so that the intake introduction pipe connection port 16 can be connected to an external intake pipe, and is configured to take in outside air through the external intake pipe. It is A check valve 17 is connected between the suction introduction pipe connection port 16 and the suction port 15 of the rotary pump 2 so as to regulate the flow of gas from the pump 2 to the suction introduction pipe connection port 16. is provided.
Further, 90 is a drain discharge connection port, which is a discharge port through which the drain can be discharged to the outside. Adrain pan 91 arranged under the rotary pump 2 and a heat exchanger drain pan 93 arranged in the liquid cooling heat exchanger 5 are connected to the drain discharge connection port 90 by a drain pipe 92 and a heat exchanger drain pipe 94 . It is possible to receive the generated drainage and discharge it appropriately.
また、90はドレン排出接続口であり、ドレンを外部に排出できる排出口になっている。このドレン排出接続口90へは、回転ポンプ2の下に配されたドレンパン91や、液冷熱交換器5に配された熱交換器用ドレンパン93が、ドレン配管92や熱交換器用ドレン配管94によって接続されており、発生したドレンを受けて適切に排出することができる。 By the way, the intake pipe of the
Further, 90 is a drain discharge connection port, which is a discharge port through which the drain can be discharged to the outside. A
次に、本発明に係るパッケージ型回転ポンプユニットの消音構造について、添付図面(図1~21)に基づいて詳細に説明する。本発明に係るパッケージ型回転ポンプユニットは、前述したように、基本構成として、気体を吸排気する回転ポンプ2及び該回転ポンプ2を駆動させる電動モータ3を備える電動回転ポンプ200と、その電動回転ポンプ200を内包する密閉筐体1とを備えるものである。
Next, the noise reduction structure of the package type rotary pump unit according to the present invention will be described in detail based on the attached drawings (Figs. 1 to 21). As described above, the package-type rotary pump unit according to the present invention comprises, as a basic configuration, an electric rotary pump 200 having a rotary pump 2 for sucking and discharging gas and an electric motor 3 for driving the rotary pump 2; and a sealed housing 1 containing a pump 200 .
この本発明に係るパッケージ型回転ポンプユニットに搭載される回転ポンプ2には、密閉筐体1の外部に配された冷却液供給源4から供給される冷却液によって排気が冷却される排気冷却部を兼ねて消音効果を生じる第1のマフラー部31が設けられている。そして、その第1のマフラー部31を通過した排気を導入して消音する第2のマフラー部32が、密閉筐体1の内部で電動回転ポンプ200の上方に配されている。
The rotary pump 2 mounted on the package-type rotary pump unit according to the present invention has an exhaust cooling section in which the exhaust is cooled by the cooling liquid supplied from the cooling liquid supply source 4 disposed outside the sealed housing 1. A first muffler portion 31 is provided which also serves as a silencing effect. A second muffler portion 32 that introduces the exhaust that has passed through the first muffler portion 31 to muffle the noise is arranged above the electric rotary pump 200 inside the sealed housing 1 .
この本発明に係るパッケージ型回転ポンプユニットによれば、回転ポンプ2が密閉筐体1内に内蔵される場合において、その回転ポンプ2の稼働によって発生する騒音をより合理的且つ効果的に減音できるという特別有利な効果を奏する。すなわち、冷却液によって回転ポンプ2の排気が冷却される第1のマフラー部31を備えると共に、電動回転ポンプ200の上部に第2のマフラー部32を配置することで、電動回転ポンプ200及びマフラー(第1のマフラー部31及び第2のマフラー部32)全体を、前述した密閉型の筐体(密閉筐体1)で効果的に覆うことができる。このため、その騒音を、マフラーや途中の配管等から漏れ出す音を含めて、遮蔽及び吸音でき、消音効果を効果的に高めることができる。そして、電動回転ポンプ200上方に配された第2のマフラー部32自体が、電動回転ポンプ200から発生する騒音を遮蔽する効果もある。本形態例に係るパッケージ型回転ポンプユニットの実施例によれば、騒音を73dBまで低減できており、高い静音性を実現できている。また、電動回転ポンプ200の上部に第2のマフラー部32を配置することで、フットスペースを抑えることができる。なお、吸音性能を向上させるためには、密閉筐体1を構成する部材の内面に吸音材を貼り付けた形態にすればよいのは勿論である。
According to the package-type rotary pump unit according to the present invention, when the rotary pump 2 is housed in the sealed housing 1, the noise generated by the operation of the rotary pump 2 can be reduced more rationally and effectively. It has the special advantage of being able to That is, by providing a first muffler portion 31 for cooling the exhaust of the rotary pump 2 with coolant and disposing a second muffler portion 32 above the electric rotary pump 200, the electric rotary pump 200 and the muffler ( The entirety of the first muffler section 31 and the second muffler section 32) can be effectively covered with the above-described sealed housing (sealed housing 1). Therefore, the noise, including the sound leaking from the muffler and pipes in the middle, can be shielded and absorbed, and the silencing effect can be effectively enhanced. The second muffler portion 32 itself arranged above the electric rotary pump 200 also has the effect of shielding the noise generated from the electric rotary pump 200 . According to the example of the package-type rotary pump unit according to this embodiment, noise can be reduced to 73 dB, and high quietness can be achieved. Also, by disposing the second muffler portion 32 above the electric rotary pump 200, the foot space can be reduced. In order to improve the sound absorbing performance, it is of course possible to attach a sound absorbing material to the inner surface of the members constituting the sealed housing 1 .
また、本形態例では、第2のマフラー部32が、複数の減音室によって構成され、該複数の減音室が、回転ポンプ2及び電動モータ3の接続方向と同方向であって密閉筐体1の長手方向に、直列的に配されて設けられている。
Further, in this embodiment, the second muffler section 32 is composed of a plurality of sound reduction chambers, and the plurality of sound reduction chambers are arranged in the same direction as the connection direction of the rotary pump 2 and the electric motor 3 and are enclosed in a sealed housing. They are arranged in series in the longitudinal direction of the body 1 .
これによれば、複数の減音室を、限られたスペースに好適に配置することができ、十分な減音効果を得ることができる。すなわち、本形態例の電動回転ポンプ200は、回転ポンプ2と電動モータ3を直列に接続した形態であるため、横長の形状になっており、本形態例のように密閉筐体1も横長に形成されている。そして、第2のマフラー部32は、電動回転ポンプ200の形態に沿うように、横長に設けられた密閉筐体1の内部に適切に配置することができ、全体構成をコンパクトに設けることができる。
According to this, a plurality of sound reduction chambers can be suitably arranged in a limited space, and a sufficient sound reduction effect can be obtained. That is, since the electric rotary pump 200 of this embodiment has a form in which the rotary pump 2 and the electric motor 3 are connected in series, it has a horizontally long shape, and the sealed housing 1 is also horizontally long as in this embodiment. formed. The second muffler part 32 can be appropriately arranged inside the horizontally long sealed housing 1 so as to conform to the form of the electric rotary pump 200, and the overall structure can be provided compactly. .
なお、第2のマフラー部32の内部構造としては、膨張、遮蔽、吸音などによる減音(消音)効果を高める形態を、適宜選択的に設計することができる。例えば、減音室を3室とし、その3室を直列に配した形態とすることで、コンパクトで減音性能が高い構造とすることができる。
さらに具体的には、例えば本形態例では、第2のマフラー部32が、軸方向に長尺な筒体状の外形を備えるもので、その長手方向に、一端側の減音室、中間部の減音室及び他端側の減音室を備えており、前記一端側の減音室では、第1のマフラー部の排気口57から延長された排気管によって導入された排気を、その排気管の先端側の穴開き管となっている部分から膨張されるように排出させることで減音させる。そして、前記一端側の減音室から前記他端側の減音室へ排気が送られるように管路が連通され、排気を前記他端側の減音室へ排出させることで膨張によって減音させる。さらに、前記他端側の減音室に導入された排気を反転させるように、前記他端側の減音室と前記中間部の減音室との隔壁に設けられた通気孔を介して前記中間部の減音室へ排気を排出させることで膨張によって減音させ、その排気を前記中間部の減音室から第2のマフラー部の排気排出口35を介して外部へ排出できるように設けられている。 As for the internal structure of thesecond muffler portion 32, it is possible to appropriately and selectively design a form that enhances the sound reduction (silencing) effect by means of expansion, shielding, sound absorption, or the like. For example, by providing three sound reduction chambers and arranging the three chambers in series, a compact structure with high sound reduction performance can be achieved.
More specifically, for example, in this embodiment, thesecond muffler portion 32 has a cylindrical outer shape elongated in the axial direction, and the longitudinal direction includes a sound reduction chamber at one end and an intermediate portion. and a sound reduction chamber on the other end side, and in the sound reduction chamber on the one end side, exhaust introduced by an exhaust pipe extended from the exhaust port 57 of the first muffler part is The sound is reduced by expelling it from the perforated tube on the tip side of the tube. Then, the pipe line is communicated so that the exhaust gas is sent from the sound reduction chamber on the one end side to the sound reduction chamber on the other end side, and the exhaust gas is discharged to the sound reduction chamber on the other end side, thereby reducing sound by expansion. Let Further, the exhaust air introduced into the sound reduction chamber on the other end side is reversed through the ventilation hole provided in the partition wall between the sound reduction chamber on the other end side and the sound reduction chamber on the intermediate portion. Exhaust gas is discharged to the sound reduction chamber in the middle portion to reduce noise by expansion, and the exhaust is provided to be discharged to the outside from the sound reduction chamber in the middle portion through the exhaust outlet 35 of the second muffler portion. It is
さらに具体的には、例えば本形態例では、第2のマフラー部32が、軸方向に長尺な筒体状の外形を備えるもので、その長手方向に、一端側の減音室、中間部の減音室及び他端側の減音室を備えており、前記一端側の減音室では、第1のマフラー部の排気口57から延長された排気管によって導入された排気を、その排気管の先端側の穴開き管となっている部分から膨張されるように排出させることで減音させる。そして、前記一端側の減音室から前記他端側の減音室へ排気が送られるように管路が連通され、排気を前記他端側の減音室へ排出させることで膨張によって減音させる。さらに、前記他端側の減音室に導入された排気を反転させるように、前記他端側の減音室と前記中間部の減音室との隔壁に設けられた通気孔を介して前記中間部の減音室へ排気を排出させることで膨張によって減音させ、その排気を前記中間部の減音室から第2のマフラー部の排気排出口35を介して外部へ排出できるように設けられている。 As for the internal structure of the
More specifically, for example, in this embodiment, the
また、本形態例では、第2のマフラー部32が、密閉筐体1の内部に吊持された状態に設置されている。すなわち、図3や図9などに示すように、本形態例の円筒型に形成された第2のマフラー部32が、筐体フレーム部1aの上部に固定されて下方へ延出された吊り部材37に固定され、密閉筐体1の上部から内側に吊り下げられた状態に設置されている。
In addition, in this embodiment, the second muffler section 32 is installed in a suspended state inside the sealed housing 1 . That is, as shown in FIGS. 3 and 9, the second muffler portion 32 formed in a cylindrical shape according to this embodiment is a suspension member fixed to the upper portion of the housing frame portion 1a and extending downward. 37 and installed in a state of being suspended from the top of the sealed housing 1 to the inside.
これによれば、電動回転ポンプ200の上方の空間を利用することで、膨張による消音効果の高い適正な容積を有すると共に、他の構成装置に比べて軽量なマフラー(第2のマフラー部32)を、適切且つ簡便に配置することができる。なお、第2のマフラー部32の前述の各減音室の内面に適宜に吸音材を貼り付けることで、吸音による消音効果を得ることができるのは勿論である。
According to this, by using the space above the electric rotary pump 200, the muffler (second muffler portion 32) has an appropriate volume with a high noise reduction effect due to expansion and is lighter than other constituent devices. can be appropriately and conveniently arranged. It goes without saying that a sound absorbing effect can be obtained by appropriately attaching a sound absorbing material to the inner surface of each of the sound reducing chambers of the second muffler portion 32 .
また、本形態例では、図3、図4、図7、図9~12に示すように、電動回転ポンプ200が、密閉筐体1内に制振部材300を介して設置され、第1のマフラー部31と第2のマフラー部32とが振動緩衝配管33を介して接続されている。すなわち、本形態例では、電動回転ポンプ200が、耐振ゴムを備える制振部材300を介して密閉筐体1内のベース部1b上に設置され、第1のマフラー部の排気口57と第2のマフラー部の排気導入口34との間に振動緩衝配管33が接続され、排気が第1のマフラー部31から第2のマフラー部32へ流れるように設けられている。
Further, in this embodiment, as shown in FIGS. 3, 4, 7, and 9 to 12, the electric rotary pump 200 is installed in the sealed housing 1 via the damping member 300, and the first The muffler portion 31 and the second muffler portion 32 are connected via a vibration damping pipe 33 . That is, in this embodiment, the electric rotary pump 200 is installed on the base portion 1b in the sealed housing 1 via the vibration damping member 300 provided with anti-vibration rubber, and the exhaust port 57 of the first muffler portion and the second muffler portion. A vibration damping pipe 33 is connected between the muffler portion and an exhaust introduction port 34 of the muffler portion so that the exhaust gas flows from the first muffler portion 31 to the second muffler portion 32 .
これによれば、電動回転ポンプ200が、制振部材300によって設置され、第2のマフラー部32との間については振動緩衝配管33によって接続されているため、電動回転ポンプ200の振動が、密閉筐体1の側へ伝達することを低減でき、防振及び防音の効果を好適に得ることができる。また、電動回転ポンプ200の振動が、第2のマフラー部32に伝達することを低減できるため、その第2のマフラー部32を適切且つより簡便に密閉筐体1内に設置できる。
According to this, the electric rotary pump 200 is installed by the vibration damping member 300, and is connected to the second muffler portion 32 by the vibration damping pipe 33, so that the vibration of the electric rotary pump 200 is sealed. The transmission to the housing 1 side can be reduced, and the effect of vibration isolation and sound isolation can be preferably obtained. In addition, since the transmission of the vibration of the electric rotary pump 200 to the second muffler portion 32 can be reduced, the second muffler portion 32 can be appropriately and easily installed in the sealed housing 1 .
また、本形態例では、図8~12に記載した複数段(本形態例では2段)に電動回転ポンプ200が搭載されたパッケージ型回転ポンプユニットで示すように、第2のマフラー部32が密閉筐体1の内部の背面部側に配され、配電盤8が前面部側に配されている。これによれば、配電盤8が遮蔽部になって前面側へ透過する騒音をさらに低減できる。これによって、作業環境をより改善できる。
Further, in this embodiment, as shown in the package-type rotary pump unit in which the electric rotary pump 200 is mounted in a plurality of stages (two stages in this embodiment) shown in FIGS. The power distribution board 8 is arranged on the front side inside the sealed housing 1, and is arranged on the rear side. According to this, it is possible to further reduce the noise transmitted to the front side as the switchboard 8 serves as a shield. This can further improve the working environment.
次に、本発明に係るパッケージ型回転ポンプユニットに用いられる回転ポンプの一例として、図13~21に基づいて、クローポンプの形態例について説明する。
このクローポンプでは、図13などに示すように、110はポンプ室ボディ部であり、二つの円の一部を重ね合わせた断面形状のポンプ室10(図22参照)を形成するように、シリンダ部10a、そのシリンダ部10aの一方の端面に設けられた一方の端壁部10b、及びそのシリンダ部10aの他方の端面に設けられた他方の端壁部10cを備えている。 Next, as an example of a rotary pump used in the package-type rotary pump unit according to the present invention, an example of a claw pump will be described with reference to FIGS. 13 to 21. FIG.
In this claw pump, as shown in FIG. 13,reference numeral 110 denotes a pump chamber body portion, and the cylinders are arranged so as to form a pump chamber 10 (see FIG. 22) having a cross-sectional shape in which parts of two circles overlap each other. It has a portion 10a, one end wall portion 10b provided on one end surface of the cylinder portion 10a, and the other end wall portion 10c provided on the other end surface of the cylinder portion 10a.
このクローポンプでは、図13などに示すように、110はポンプ室ボディ部であり、二つの円の一部を重ね合わせた断面形状のポンプ室10(図22参照)を形成するように、シリンダ部10a、そのシリンダ部10aの一方の端面に設けられた一方の端壁部10b、及びそのシリンダ部10aの他方の端面に設けられた他方の端壁部10cを備えている。 Next, as an example of a rotary pump used in the package-type rotary pump unit according to the present invention, an example of a claw pump will be described with reference to FIGS. 13 to 21. FIG.
In this claw pump, as shown in FIG. 13,
また、二つの回転軸20A、20Bが、ポンプ室10内で平行に配されて一対の歯車21A、21Bによって反対方向に同一速度で回転されるように設けられている。本形態例では、この二つの回転軸20A、20Bには、それぞれに、歯車21A(駆動側歯車)、21B(従動側歯車)が一体的に固定されて設けられている。その一対の歯車21A、21Bは、軸受ボディ部120によって構成されているギヤボックス45内で噛合されている。
Also, two rotating shafts 20A and 20B are arranged in parallel within the pump chamber 10 and are provided so as to be rotated in opposite directions at the same speed by a pair of gears 21A and 21B. In this embodiment, gears 21A (driving side gear) and 21B (driven side gear) are integrally fixed to the two rotating shafts 20A and 20B, respectively. The pair of gears 21A and 21B are meshed within a gear box 45 constituted by a bearing body portion 120. As shown in FIG.
また、二つのロータ30A、30Bが、二つの回転軸20A、20Bに対応して設けられてポンプ室10内に配され、相互に非接触状態で回転されて吸入した気体を圧縮して排気できるように鉤形の爪部(図22参照)が形成され設けられている。そして、ポンプ室ボディ部110の一方の端壁部10bが一対の歯車21A、21Bを内包するギヤボックス45の側に位置し、ポンプ室ボディ部110の少なくとも他方の端壁部10cに気体を排出する排気口55が設けられている。これによって、二軸回転ポンプの一種であるパッケージ型回転ポンプユニットが、構成されている。
Two rotors 30A and 30B are provided corresponding to the two rotating shafts 20A and 20B and arranged in the pump chamber 10, and are rotated in a non-contact state to compress and exhaust the sucked gas. A hook-shaped claw portion (see FIG. 22) is formed and provided. One end wall portion 10b of the pump chamber body portion 110 is located on the side of the gear box 45 containing the pair of gears 21A and 21B, and gas is discharged to at least the other end wall portion 10c of the pump chamber body portion 110. An exhaust port 55 is provided. This constitutes a package-type rotary pump unit, which is a kind of biaxial rotary pump.
本形態例では、二つのロータ30A、30Bが二つの回転軸20A、20Bのそれぞれの一端(一方の先端)に対応して配されて片持ち状態に支持されるように二つの回転軸20A、20Bが軸受部40によって軸受けされ、ポンプ室ボディ部110の一方の端壁部10bが軸受部40の側に位置し、ポンプ室ボディ部110の他方の端壁部10cに気体を排出する排気口55が設けられている。なお、15は吸気口であり、ポンプ室10内における気体が圧縮されない部位に面する位置に、開口されて設けられている。本形態例の吸気口15は、ポンプ室ボディ部110の上部の角部であって、シリンダ部10aの上壁部と一方の端壁部10bの上部とに亘って切り欠かれた形態に設けられている。また、14は吸気接続口であり、下端が吸気口15に接続され、上端が空圧機器(図示せず)に管路を介して接続されるように設けられている。
In this embodiment, two rotating shafts 20A and 30B are arranged so as to correspond to one end (one tip end) of each of the two rotating shafts 20A and 20B and are supported in a cantilevered state. 20B is supported by the bearing portion 40, one end wall portion 10b of the pump chamber body portion 110 is positioned on the bearing portion 40 side, and the other end wall portion 10c of the pump chamber body portion 110 is an exhaust port for discharging gas. 55 is provided. Reference numeral 15 denotes an intake port, which is opened at a position facing a portion in the pump chamber 10 where the gas is not compressed. The intake port 15 of the present embodiment is a corner portion of the upper portion of the pump chamber body portion 110, and is provided in a notched form extending over the upper wall portion of the cylinder portion 10a and the upper portion of the one end wall portion 10b. It is Reference numeral 14 denotes an intake connection port, which is provided so that its lower end is connected to the intake port 15 and its upper end is connected to a pneumatic device (not shown) via a pipeline.
そして、本発明に係るパッケージ型回転ポンプユニットでは、ポンプ室ボディ部110の他方の端壁部10cの側に、排気口55から排出される排気を冷却するように、冷却液を通すための排気部冷却液流路72が設けられている。なお、本形態例(真空ポンプとして利用される場合の例)において、排気口55から排気が排出される状態とは、ポンプ室10が外気である大気(空気)に連通して開放されている状態であり、その排気が大気(空気)中に放出されることになる。また、冷却液の液体とは、冷却水が代表的であるが、不凍液のような水との混合液(水溶液)や、油などを含み、水以外の他の液体を利用できるのは勿論である。
In the package-type rotary pump unit according to the present invention, the other end wall portion 10c side of the pump chamber body portion 110 is provided with an exhaust port for passing cooling liquid so as to cool the exhaust gas discharged from the exhaust port 55. An internal coolant flow path 72 is provided. It should be noted that, in this embodiment (an example of use as a vacuum pump), the state in which the exhaust is discharged from the exhaust port 55 means that the pump chamber 10 is open and communicated with the atmosphere (air), which is the outside air. state, and the exhaust will be released into the atmosphere (air). Cooling liquid is typically cooling water, but it goes without saying that liquids other than water can also be used, including mixtures (aqueous solutions) with water, such as antifreeze, and oil. be.
この本発明に係るパッケージ型回転ポンプユニットによれば、真空ポンプとして到達真空度が絶対真空により近い値となる真空度が高い範囲で使用される場合でも、ポンプ室10が過熱されることを、より積極的且つ効果的に防止でき、ポンプ性能を格段に向上させることができる。
According to the packaged rotary pump unit according to the present invention, even when the vacuum pump is used in a high vacuum range in which the ultimate vacuum is closer to the absolute vacuum, the overheating of the pump chamber 10 can be avoided. This can be prevented more positively and effectively, and the pump performance can be significantly improved.
すなわち、ポンプ室ボディ部110の他方の端壁部10cの側に排気部冷却液流路72を設けることで、冷却液によって排気口55から排出される直後の排気を効果的に冷却することができる。これによれば、真空度が一定以上の高い範囲で使用される真空ポンプであって、排気が逆流することで加熱される場合であっても、ポンプ室10の内部温度の上昇を抑制できる。このため、ポンプ室10の壁内面と二つのロータ30A、30Bとを非接触とするクリアランスを小さく設定することが可能になり、そのクリアランスによる気体の洩れを少なくすることができるため、ポンプ効率を向上できる。
That is, by providing the exhaust cooling liquid flow path 72 on the side of the other end wall section 10c of the pump chamber body section 110, the cooling liquid can effectively cool the exhaust immediately after being discharged from the exhaust port 55. can. According to this, even if the vacuum pump is used in a high vacuum range above a certain level and the pump chamber 10 is heated due to the reverse flow of the exhaust gas, it is possible to suppress the increase in the internal temperature of the pump chamber 10 . For this reason, it is possible to set a small clearance for non-contact between the inner wall surface of the pump chamber 10 and the two rotors 30A and 30B. can improve.
また、本発明に係るパッケージ型回転ポンプユニットよれば、前述のようにクリアランスを小さく設定できることで、より到達真空度を高めることができると共に、排気の逆流があっても過熱を防止できることで、排気口55の開口面積をより広く設定できることになり、より処理風量が大きい真空ポンプを構成することができる。
Further, according to the package-type rotary pump unit according to the present invention, the clearance can be set small as described above, so that the degree of ultimate vacuum can be further increased, and overheating can be prevented even if there is a reverse flow of the exhaust gas. Since the opening area of the port 55 can be set wider, a vacuum pump with a larger processing air volume can be constructed.
そして、本形態例のパッケージ型回転ポンプユニットによれば、最も加熱される排気口55が設けられた他方の端壁部10cの側を、局所的に積極的に冷却している形態となっている。すなわち、温度勾配(温度差)が大きく生じるポンプ室ボディ部110に対してその温度差を低減するように、ポンプ室ボディ部110の壁部のうちの排気口55を中心とした他方の壁部10cの側を優先させて冷却することで排気を冷却する構成になっている。このように排気を冷却してポンプ室10の過熱を防止できることで、実施例において内部温度差が約140℃も低減されることが確認されていると共に、到達真空度を97kPaまで高めることが確認されており、ポンプ性能を格段に向上できる。なお、従来は、到達連続運転を行う限界として、ポンプ室10の壁内面及び二つのロータ30A、30Bの相互間の接触(内部干渉)が生じることを回避するため、到達真空度が90kPa程度までの運転しかできなかった。これに対して、本発明によれば、より到達真空度の高い締め切り運転を連続的に行うことができるようになっている。
According to the package-type rotary pump unit of this embodiment, the other end wall portion 10c provided with the most heated exhaust port 55 is actively and locally cooled. there is That is, the other wall portion of the pump chamber body portion 110 centered on the exhaust port 55 is adjusted so as to reduce the temperature difference with respect to the pump chamber body portion 110 in which the temperature gradient (temperature difference) is large. The exhaust gas is cooled by preferentially cooling the 10c side. By cooling the exhaust gas in this way to prevent overheating of the pump chamber 10, it has been confirmed that the internal temperature difference can be reduced by about 140° C., and the ultimate vacuum can be increased to 97 kPa. It is possible to significantly improve the pump performance. Conventionally, as the limit for the continuous operation, the ultimate vacuum is up to about 90 kPa in order to avoid contact (internal interference) between the inner wall surface of the pump chamber 10 and the two rotors 30A and 30B. was only able to drive In contrast, according to the present invention, it is possible to continuously perform shut-off operation with a higher ultimate vacuum.
ところで、パッケージ型回転ポンプユニットでは、気体の圧縮率が高く、気体が加熱されて排気されるため、排気口55の部分が最も過熱され易く、その排気口55が形成された他方の端壁部10cの部分が他の部分よりも高温になる。そして、その他方の端壁部10cと比較すれば、ポンプ室ボディ部110の他の部分は低温となる。このため、もしも、シリンダ部10aなどを含めてポンプ室ボディ部110を全体的に同じように冷却すると、他方の端壁部10cの排気口55と他の部位との温度差が維持されてしまい、熱膨張によって動作部であるロータ30A、30Bに係る干渉が生じるという問題を解消できないことになる。
By the way, in the package type rotary pump unit, the compressibility of the gas is high and the gas is heated and discharged. The portion 10c becomes hotter than the other portions. Then, compared with the other end wall portion 10c, the other portion of the pump chamber body portion 110 has a lower temperature. Therefore, if the entire pump chamber body portion 110 including the cylinder portion 10a and the like is cooled in the same manner, the temperature difference between the exhaust port 55 of the other end wall portion 10c and the other portions is maintained. Therefore, the problem that the rotors 30A and 30B, which are moving parts, interfere with each other due to thermal expansion cannot be solved.
また、本形態例によれば、排気部冷却液流路72へ冷却液を導入する冷却液導入口72b(図20参照)が排気口55の近傍に設けられ、排気部冷却液流路72が形成される部位には、排気口55の近傍に冷却液が先行して巡るように、導入された冷却液の流れを規制する冷却液流規制部61bが設けられている。なお、本形態例の冷却液流規制部61bは、図20に示すように、後述する第1の流路形成部61の冷却液流路形成面61aの複数箇所(本形態例では2箇所)にリブ状に突起した形態に設けられている。
Further, according to this embodiment, a cooling liquid introduction port 72b (see FIG. 20) for introducing the cooling liquid into the exhaust cooling liquid flow path 72 is provided near the exhaust port 55, and the exhaust cooling liquid flow path 72 A cooling liquid flow regulating portion 61b is provided at the formed portion to regulate the flow of the introduced cooling liquid so that the cooling liquid circulates in the vicinity of the exhaust port 55 first. As shown in FIG. 20, the coolant flow regulating portion 61b of this embodiment is provided at a plurality of locations (two locations in this embodiment) on the coolant flow path forming surface 61a of the first flow path forming portion 61, which will be described later. It is provided in a form protruding like a rib.
これによれば、ポンプ室ボディ部110の最も加熱される部分である排気口55を中心にした部位(排気口55の周囲)を冷却することで排気口直後の排気を効果的に冷却でき、その排気口55の周囲と排気の温度を下げることで、その排気口55の周囲が過度に加熱されて熱膨張によって偏って変形することをバランス良く抑制できる。このように、ポンプ室ボディ部110及び二つのロータ30A、30Bの熱膨張をバランス良く抑制できるため、それらの相互のクリアランスを小さくすることができ、ポンプ効率を向上できる。
According to this, by cooling the portion around the exhaust port 55, which is the most heated portion of the pump chamber body portion 110 (surrounding the exhaust port 55), the exhaust immediately after the exhaust port can be effectively cooled. By lowering the temperature of the periphery of the exhaust port 55 and the temperature of the exhaust gas, it is possible to prevent the periphery of the exhaust port 55 from being excessively heated and unevenly deformed due to thermal expansion in a well-balanced manner. In this manner, the thermal expansion of the pump chamber body portion 110 and the two rotors 30A and 30B can be suppressed in a well-balanced manner, so the mutual clearance therebetween can be reduced and the pump efficiency can be improved.
なお、パッケージ型回転ポンプユニットでは、駆動安定性の面から一般的に、排気口55がポンプ室10の下部に対応する部位(本形態例では他方の端壁部10cの下部)に設けられることになる。そして、本形態例では、前述のように冷却液導入口72bが配され、排気部冷却液流路72のうちの他方の端壁部10cの下部に位置する排気口55の近傍の部分をより温度の低い冷却液で先行して冷却し、そのように他方の端壁部10cを冷却した冷却液が排気部冷却液出口接続部72dを通るように上方へ排出される形態になっている。このとき、冷却液は、熱交換されて温度が上昇することで比重が小さくなって上方へ向かう流れのベクトルを生じる。この冷却液の流れによれば、下部の排気口55の部分を効果的に冷却できると共に、冷却液の温度上昇による流れの方向性と、冷却液を上方へ排出させるための流れの方向性を揃えることができる。このため、冷却液をスムースに通過させることができ、その冷却効率を効果的に高めることができる。
In the package-type rotary pump unit, the exhaust port 55 is generally provided at a portion corresponding to the lower portion of the pump chamber 10 (in this embodiment, the lower portion of the other end wall portion 10c) in terms of driving stability. become. In this embodiment, the cooling liquid inlet 72b is provided as described above, and the portion of the exhaust cooling liquid flow path 72 near the exhaust port 55 located below the other end wall portion 10c is further expanded. The cooling liquid having a lower temperature is first cooled, and the cooling liquid that has cooled the other end wall portion 10c in this manner is discharged upward through the exhaust cooling liquid outlet connection portion 72d. At this time, the cooling liquid is heat-exchanged and its temperature rises, so that the specific gravity of the cooling liquid becomes smaller and an upward flow vector is generated. According to this flow of the cooling liquid, the portion of the lower exhaust port 55 can be effectively cooled, and the directionality of the flow due to the temperature rise of the cooling liquid and the directionality of the flow for discharging the cooling liquid upward can be changed. can be aligned. Therefore, the cooling liquid can pass through smoothly, and the cooling efficiency can be effectively improved.
また、本形態例によれば、排気部冷却液流路72が、ポンプ室ボディ部110の他方の端壁部10cに、その他方の端壁部10cの外面の側を覆うように配される部位であってその他方の端壁部10cの外面との間で前記排気部冷却液流路72を形成するように設けられた冷却液流路形成面61aを備える第1の流路形成部61が配されることによって、設けられている。これによれば、排気部冷却液流路72を、効果的且つ合理的に構成することができる。
Further, according to this embodiment, the exhaust cooling liquid flow path 72 is arranged in the other end wall portion 10c of the pump chamber body portion 110 so as to cover the outer surface side of the other end wall portion 10c. A first flow path forming portion 61 having a cooling liquid flow path forming surface 61a provided to form the exhaust cooling liquid flow path 72 with the outer surface of the other end wall portion 10c. is provided by placing According to this, the exhaust cooling liquid flow path 72 can be configured effectively and rationally.
なお、本形態例の第1の流路形成部61は、図13、20、21に示すように、両面に流路が形成されるように凹凸が形成された盤状の部材によって設けられており、ボルトによって他方の端壁部10cの外面に固定され、シール部材65によって合せ部が水密シールされて排気部冷却液流路72が形成されるように設けられている。本形態例の合せ部は、排気口55の排気路を延長するようにその排気口55を囲う矩形のループ枠状に形成された内ループ合せ部61cと、他方の端壁部10cの周縁部にループ枠状に当接するように形成された外ループ合せ部61dとによって構成されている。そして、この内ループ合せ部61cと外ループ合せ部61dとの間に、排気部冷却液流路72が形成されて冷却液が満たされる形態となっている。これによれば、他方の端壁部10cの外側の壁面に対し、全面的に冷却液を接触させて効率的に冷却できる形態になっている。また、この構造は、層状の排気部冷却液流路72をポンプ室ボディ部110の外端面外側へ平面的に積み重ねる形態であり、コンパクトな構成になっている。
As shown in FIGS. 13, 20, and 21, the first flow path forming portion 61 of this embodiment is provided by a board-like member having irregularities formed on both sides so that flow paths are formed. It is fixed to the outer surface of the other end wall portion 10c by bolts, and is provided so that the mating portion is water-tightly sealed by a seal member 65 to form an exhaust portion coolant flow path 72. As shown in FIG. The joining portion of this embodiment includes an inner loop joining portion 61c formed in a rectangular loop frame shape surrounding the exhaust port 55 so as to extend the exhaust path of the exhaust port 55, and a peripheral portion of the other end wall portion 10c. and an outer loop joint portion 61d formed so as to abut against the loop frame shape. Between the inner loop mating portion 61c and the outer loop mating portion 61d, an exhaust cooling liquid flow path 72 is formed and is filled with cooling liquid. According to this configuration, the outer wall surface of the other end wall portion 10c is brought into contact with the cooling liquid over the entire surface to enable efficient cooling. In addition, this structure has a form in which the layered exhaust cooling liquid flow path 72 is planarly stacked on the outside of the outer end surface of the pump chamber body 110, and has a compact configuration.
また、本形態例の第1の流路形成部61では、他方の端壁部10cの外面と向き合う面(対面)である冷却液流路形成面61aに、排気部冷却液流路72の一部であって溝状の通路である排気口周囲流路部72cが形成されるように、冷却液流規制部61bを構成する通路形成壁が突起した形態に設けられている。すなわち、本形態例では、他方の端壁部10cの外面がフラットな面であり、図13及び20に示すように、第1の流路形成部61の冷却液流路形成面61aの側に、排気部冷却液流路72を適切に曲げて誘導するための通路形成壁(冷却液流規制部61b)が設けられている。なお、本発明はこれに限らず、他方の端壁部10cの外面の側に、通路形成壁を適宜に設けることも可能である。
In addition, in the first flow path forming portion 61 of the present embodiment, one portion of the exhaust portion cooling liquid flow path 72 is provided on the cooling liquid flow path forming surface 61a that faces (faces) the outer surface of the other end wall portion 10c. A passage forming wall constituting the cooling liquid flow restricting portion 61b is provided in a protruded form so that an exhaust port surrounding passage portion 72c, which is a groove-shaped passage, is formed. That is, in this embodiment, the outer surface of the other end wall portion 10c is a flat surface, and as shown in FIGS. , a passage forming wall (coolant flow restricting portion 61b) for appropriately bending and guiding the exhaust portion coolant flow path 72 is provided. In addition, the present invention is not limited to this, and it is also possible to appropriately provide a passage forming wall on the side of the outer surface of the other end wall portion 10c.
また、本形態例によれば、排気が第1の流路形成部61によって冷却されるように、第1の流路形成部61の冷却液流路形成面61aとは反対の面であって第1の流路形成部61の外面である排気流路形成面61eの側に排気が通る排気流路56が設けられている。すなわち、排気流路56は、排気口55に接続された流路となっており、排気口55から排出された排気を通す流路になっている。
Further, according to this embodiment, the surface opposite to the cooling liquid flow path forming surface 61 a of the first flow path forming section 61 is arranged so that the exhaust gas is cooled by the first flow path forming section 61 . An exhaust flow path 56 through which exhaust gas passes is provided on the side of the exhaust flow path forming surface 61 e that is the outer surface of the first flow path forming portion 61 . That is, the exhaust channel 56 is a channel connected to the exhaust port 55 and a channel through which the exhaust discharged from the exhaust port 55 passes.
この排気流路56によれば、過熱された排気を効果的に冷却でき、その排気の温度を下げることでポンプ室10内の温度を下げ、そのポンプ室10を形成するポンプ室ボディ部110や二つのロータ30A、30Bという構成部材が過熱されて熱膨張することをバランス良く抑制できる。
また、この排気流路56は、排気の流れの方向を適宜に規制できるものであり、排気の冷却を促進するための形態になっていると共に、排気音を低減させるマフラーの構造を兼用するものになっている。すなわち、この排気流路56が形成される構造によって、第1のマフラー部31が構成されている。なお、57は第1のマフラー部の排気口であり、第1の流路形成部61の上壁部に開口されて設けられ、排気流路56の排気口になっており、この第1のマフラー部の排気口57により外部に排気される。本形態例の第1のマフラー部の排気口57は、図21に示すように、内部の側で流路が絞られた形状に設けられており、消音効果を高めるように形成されている。 According to thisexhaust flow path 56, the overheated exhaust gas can be effectively cooled, and the temperature in the pump chamber 10 is lowered by lowering the temperature of the exhaust gas. Overheating and thermal expansion of the two rotors 30A and 30B can be suppressed in a well-balanced manner.
In addition, theexhaust flow path 56 can appropriately regulate the direction of the flow of the exhaust gas, and has a form for promoting the cooling of the exhaust gas, and also serves as a muffler structure for reducing exhaust noise. It has become. That is, the first muffler portion 31 is configured by the structure in which the exhaust flow path 56 is formed. Incidentally, reference numeral 57 denotes an exhaust port of the first muffler portion, which is opened in the upper wall portion of the first flow path forming portion 61 and serves as an exhaust port of the exhaust flow path 56. It is exhausted to the outside through an exhaust port 57 in the muffler portion. As shown in FIG. 21, the exhaust port 57 of the first muffler portion of this embodiment is provided in a shape in which the flow path is constricted on the inner side, and is formed so as to enhance the silencing effect.
また、この排気流路56は、排気の流れの方向を適宜に規制できるものであり、排気の冷却を促進するための形態になっていると共に、排気音を低減させるマフラーの構造を兼用するものになっている。すなわち、この排気流路56が形成される構造によって、第1のマフラー部31が構成されている。なお、57は第1のマフラー部の排気口であり、第1の流路形成部61の上壁部に開口されて設けられ、排気流路56の排気口になっており、この第1のマフラー部の排気口57により外部に排気される。本形態例の第1のマフラー部の排気口57は、図21に示すように、内部の側で流路が絞られた形状に設けられており、消音効果を高めるように形成されている。 According to this
In addition, the
また、本形態例によれば、排気流路56が、第1の流路形成部61に、その第1の流路形成部61の外面の側を覆うように配される部位であってその第1の流路形成部61の外面との間で前記排気流路56を形成するように設けられた排気流路形成面62aを備える第2の流路形成部62が配されることによって、設けられている。これによれば、排気流路56を、効果的且つ合理的に構成することができ、排気口直後の排気を排気流路形成面61e及び排気流路形成面62aの両面で効果的に冷却できる。また、この構造は、層状の排気流路56をポンプ室ボディ部110の外端面外側へ平面的に積み重ねる形態になっており、コンパクトな構成になっている。
Further, according to the present embodiment, the exhaust flow path 56 is a portion arranged in the first flow path forming portion 61 so as to cover the outer surface side of the first flow path forming portion 61, and By arranging the second flow path forming portion 62 having the exhaust flow path forming surface 62a provided to form the exhaust flow path 56 with the outer surface of the first flow path forming section 61, is provided. According to this, the exhaust flow path 56 can be effectively and rationally configured, and the exhaust immediately after the exhaust port can be effectively cooled on both the exhaust flow path forming surface 61e and the exhaust flow path forming surface 62a. . In addition, this structure has a form in which the layered exhaust passages 56 are planarly stacked on the outside of the outer end surface of the pump chamber body portion 110, and thus has a compact structure.
なお、本形態例の第2の流路形成部62は、図13などに示すように、内面(第1の流路形成部61の外面の側に当接する面)である排気流路形成面62aがフラットに形成された盤状の部材によって設けられおり、ボルトによって第1の流路形成部61の外面(排気流路形成面61e)の側に固定されている。また、この排気流路形成面62a(フラットな面)に対して、第1の流路形成部61の外面(排気流路形成面61e)の側には、排気流路56となる溝状の通路が形成されるように、排気通路形成壁61fが突起した形態に設けられている。そして、第1の流路形成部61の外面の側である外周部のループ枠状合せ部61gや排気通路形成壁61fと、第2の流路形成部62の内面とは、密着固定によって実質的に気密状態にされるか、シール部材を配置して気密状態にすることができる。なお、本発明はこれに限定されず、排気流路形成面62aの側に排気通路形成壁を設けることも可能である。そして、図21に示すように、排気流路56が複雑に曲げられた流路に形成されていることで、排気の冷却をより促進できると共に、マフラー室として適切に機能して排気音をより低減させることができる。
As shown in FIG. 13 and the like, the second flow path forming portion 62 of this embodiment has an exhaust flow path forming surface that is an inner surface (a surface that contacts the outer surface side of the first flow path forming portion 61). A plate-like member 62a is formed flat, and is fixed to the outer surface (exhaust flow path forming surface 61e) side of the first flow path forming portion 61 by bolts. Further, on the side of the outer surface (exhaust flow path forming surface 61e) of the first flow path forming portion 61 with respect to the exhaust flow path forming surface 62a (flat surface), a groove-like groove that becomes the exhaust flow path 56 is provided. The exhaust passage forming wall 61f is provided in a projecting form so as to form a passage. Then, the loop frame-shaped mating portion 61g and the exhaust passage forming wall 61f of the outer peripheral portion, which is the outer surface side of the first flow path forming portion 61, and the inner surface of the second flow path forming portion 62 are substantially fixed by close contact. It can be naturally airtight, or it can be airtight by placing a sealing member. The present invention is not limited to this, and it is also possible to provide an exhaust passage forming wall on the side of the exhaust passage forming surface 62a. As shown in FIG. 21, the exhaust flow path 56 is formed in a complicatedly curved flow path, so that the cooling of the exhaust gas can be further promoted, and the muffler chamber functions properly to further reduce the exhaust noise. can be reduced.
さらに、本形態例によれば、排気部冷却液流路72に連続する延長部冷却液流路73が、第2の流路形成部62に、その第2の流路形成部62の外面(延長流路形成面62b)の側を覆うように配される部位であってその第2の流路形成部62の外面(延長流路形成面62b)との間で前記延長部冷却液流路73を形成するように設けられた延長流路形成面63aを備える第3の流路形成部63が配されることによって、設けられている。これによれば、延長部冷却液流路73を、効果的且つ合理的に構成することができる。また、この構造は、層状の延長部冷却液流路73をポンプ室ボディ部110の外端面外側へ平面的に積み重ねる形態になっており、コンパクトな構成になっている。さらに、この層状の延長部冷却液流路73とこれを構成する構造壁とによれば、騒音を低減できる。すなわち、この延長部冷却液流路73や前述の排気部冷却液流路72を形成する構成が、音を遮蔽して騒音を低減する構造となっており、第1のマフラー部31の構成要素にもなっている。
Furthermore, according to this embodiment, the extension cooling liquid flow path 73 that is continuous with the exhaust cooling liquid flow path 72 is formed in the second flow path forming section 62 on the outer surface of the second flow path forming section 62 ( It is a part arranged so as to cover the side of the extension flow path forming surface 62b), and the extension part cooling liquid flow path is formed between the outer surface (extension flow path forming surface 62b) of the second flow path forming part 62 and It is provided by disposing a third flow path forming portion 63 having an extended flow path forming surface 63 a provided to form 73 . According to this, the extension cooling liquid flow path 73 can be configured effectively and rationally. In addition, this structure has a form in which the layered extension cooling liquid flow paths 73 are stacked on the outside of the outer end face of the pump chamber body 110 in a planar manner, resulting in a compact configuration. In addition, the layered extension coolant flow path 73 and the structural walls that form it can reduce noise. That is, the structure forming the extension cooling liquid flow path 73 and the exhaust cooling liquid flow path 72 described above has a structure for shielding sound and reducing noise. It is also
なお、本形態例の第3の流路形成部63は、図13などに示すように、フラットな平板状の部材(プレート部材)によって設けられており、ボルトによって第2の流路形成部62の外面側に固定され、第2の流路形成部62の外面にループ枠状に設けられた周縁合せ部62cにシール部材65によって水密シールされて延長部冷却液流路73が形成されるように設けられている。また、本形態例では、延長部冷却液流路73が扁平に形成された層状のスペースに冷却液を滞留させるような形態になっているが、これに限定されるものではなく、適宜な形態に流路を設定してもよいのは勿論である。さらに、延長部冷却液流路73を多層化して冷却性能を高めることも可能である。また、この延長部冷却液流路73においても、排気部冷却液流路72と同様に、冷却液が下部から上部へ流れが発生するように流れるように、第2の接続配管72eの上部に設けられて排気部冷却液流路72に接続された排気部冷却液出口接続部72dから、第2の接続配管72eの下部に設けられた延長部冷却液入口接続部73aへ当該第2の接続配管72eを介して連通され、延長部冷却液流路73を流れた冷却液が外部に排出されるように、延長部冷却液出口接続部73bが上部に設けられている。
In addition, as shown in FIG. 13 and the like, the third flow path forming portion 63 of this embodiment is provided by a flat plate-like member (plate member), and the second flow path forming portion 62 is secured by bolts. , and is watertightly sealed by a sealing member 65 to the peripheral edge joint portion 62c provided in the shape of a loop frame on the outer surface of the second flow path forming portion 62, so that the extension portion coolant flow path 73 is formed. is provided in In addition, in this embodiment, the cooling liquid is retained in the flat layered space of the extension cooling liquid flow path 73. However, the present invention is not limited to this, and any suitable configuration can be used. Needless to say, the flow path may be set at . Furthermore, it is also possible to increase the cooling performance by multilayering the extension cooling liquid flow path 73 . Also, in the extension cooling liquid flow path 73, similarly to the exhaust cooling liquid flow path 72, the upper portion of the second connection pipe 72e is arranged so that the cooling liquid flows from the bottom to the top. From the exhaust cooling liquid outlet connection 72d provided and connected to the exhaust cooling liquid flow path 72, the second connection is provided to the extension cooling liquid inlet connection 73a provided in the lower part of the second connecting pipe 72e. An extension cooling liquid outlet connection portion 73b is provided at the upper portion so that the cooling liquid flowing through the extension cooling liquid flow path 73 is discharged to the outside.
ところで、本形態例では、ポンプ室10が、シリンダ部10a及び一方の端壁部10bと第1の軸受部40aが設けられた一方の構造壁部121aが一体的に設けられたシリンダケース11と、他方の端壁部10cとして設けられたサイドプレート12とがシール状態に固定されることよって形成されている。このように本形態例では、ポンプ室10が、二つに分割した部材によって形成されているが、これに限定されず、例えばシリンダ部10aと一方の端壁部10bと他方の端壁部10cとの主に三つに分割した部材によって形成されても良いのは勿論である。
By the way, in this embodiment, the pump chamber 10 includes the cylinder case 11 integrally provided with the cylinder portion 10a, one end wall portion 10b, and one structural wall portion 121a provided with the first bearing portion 40a. , and the side plate 12 provided as the other end wall portion 10c are fixed in a sealed state. As described above, in this embodiment, the pump chamber 10 is formed by two divided members, but is not limited to this. Of course, it may be formed by mainly three divided members.
次に、本発明に係る二軸回転ポンプであって、二つの回転軸20A、20Bを軸受けする軸受部40を冷却する構成の形態例を添付図面(図13~21)に基づいて詳細に説明する。なお、本形態例の二軸回転ポンプは、以上に説明したようにパッケージ型回転ポンプユニットであるが、本発明はこれに限定されるものではなく、ルーツポンプやスクリューポンプといった他の二軸回転ポンプについても適用できる。また、本発明に係る二軸回転ポンプでは、本形態例のような二つのロータ30A、30Bが片持ち状態に軸受・支持されている形態に限定されず、回転軸20A、20Bを両端で回転自在に軸受けする形態の二軸回転ポンプにも、適用できる構成になっている。
Next, in the biaxial rotary pump according to the present invention, an example of a configuration for cooling the bearing portion 40 that supports the two rotary shafts 20A and 20B will be described in detail with reference to the accompanying drawings (FIGS. 13 to 21). do. As described above, the biaxial rotary pump of this embodiment is a package type rotary pump unit, but the present invention is not limited to this, and other biaxial rotary pumps such as roots pumps and screw pumps can be used. It can also be applied to pumps. Further, in the biaxial rotary pump according to the present invention, the two rotors 30A and 30B are not limited to the form in which the two rotors 30A and 30B are supported in a cantilevered state, and the rotary shafts 20A and 20B are rotated at both ends. It has a configuration that can be applied to a biaxial rotary pump that is freely supported.
本発明に係る二軸回転ポンプでは、図13に示すように、二つの回転軸20A、20Bを軸受けする軸受部40が設けられる構造壁部121を構成すると共に、二つの回転軸20A、20Bに対応して設けられて噛合する一対の歯車21A、21Bを内包するギヤボックス45としての構造壁部121を構成する軸受ボディ部120を備える。なお、本形態例の軸受ボディ部120では、二つのロータ30A(駆動側ロータ)、30B(従動側ロータ)が、二つの回転軸20A(駆動側回転軸)、20B(従動側回転軸)の一端にそれぞれ配されて片持ち状態に支持されるように、回転軸20A、20Bを軸受けする軸受部40が設けられている。この軸受ボディ部120とポンプ室ボディ部110とによって、二軸回転ポンプのポンプ本体100が構成されている。
In the biaxial rotary pump according to the present invention, as shown in FIG. 13, the structural wall portion 121 provided with the bearing portion 40 for bearing the two rotating shafts 20A and 20B is configured, and the two rotating shafts 20A and 20B It comprises a bearing body portion 120 forming a structural wall portion 121 as a gearbox 45 enclosing a pair of correspondingly provided gears 21A, 21B in mesh. In the bearing body portion 120 of this embodiment, the two rotors 30A (drive-side rotor) and 30B (driven-side rotor) are connected to the two rotation shafts 20A (drive-side rotation shaft) and 20B (driven-side rotation shaft). Bearing portions 40 for bearing the rotating shafts 20A and 20B are provided so as to be respectively arranged at one end and supported in a cantilevered state. The bearing body portion 120 and the pump chamber body portion 110 constitute the pump main body 100 of the biaxial rotary pump.
そして、ポンプ室ボディ部110と軸受ボディ部120との間に、熱伝導を抑制できる冷却用の隙間60が形成されるように、ポンプ本体100が、ポンプ室ボディ部110と軸受ボディ部120とに区画されて設けられ、軸受ボディ部120のポンプ室ボディ部110の側に位置する構造壁部121(本形態例では、一方の構造壁部121a)に、冷却液を通すための軸受部冷却液流路71が設けられている。
The pump main body 100 is arranged between the pump chamber body portion 110 and the bearing body portion 120 so that a cooling gap 60 capable of suppressing heat conduction is formed between the pump chamber body portion 110 and the bearing body portion 120 . The structural wall portion 121 (one structural wall portion 121a in this embodiment) located on the side of the pump chamber body portion 110 of the bearing body portion 120 is provided so as to be partitioned into the bearing portion cooling for passing the cooling liquid. A liquid flow path 71 is provided.
これによれば、二つのロータ30A、30Bの駆動によって生じる圧縮気体(排気)の熱が軸受ボディ部120に伝わることを低減する伝熱防止効果と共に、軸受部冷却液流路71を通る冷却液の冷却効果によって、軸受部40などを構成する機能部品を長寿命化することができるという特別有利な効果を奏する。すなわち、本発明によれば、ポンプ室ボディ部110と軸受ボディ部120とに区画して冷却用の隙間60を設けることによって伝熱量が最小限となるように熱伝導を抑制できると共に、軸受部冷却液流路71を通る冷却液によって軸受ボディ部120をより積極的に冷却できるため、装置の信頼性を向上できる。この実施例においては、潤滑オイルの温度上昇を、約40℃も低減できることが確認されている。
なお、機能部品とは、ベアリング41やオイルシール42を含む構成部材のことであり、消耗部品として扱われるものである。これらの機能部品の長寿命化を図ることで、ランニングコストを低減できる。 According to this, along with the heat transfer prevention effect of reducing the transfer of the heat of the compressed gas (exhaust gas) generated by the driving of the two rotors 30A and 30B to the bearing body portion 120, the coolant passing through the bearing portion coolant flow path 71 is reduced. This cooling effect provides a particularly advantageous effect of prolonging the life of the functional parts constituting the bearing portion 40 and the like. That is, according to the present invention, by providing the gap 60 for cooling by partitioning the pump chamber body portion 110 and the bearing body portion 120, heat conduction can be suppressed so as to minimize the amount of heat transfer, and the bearing portion Since the bearing body portion 120 can be cooled more positively by the coolant flowing through the coolant flow path 71, the reliability of the device can be improved. In this example, it has been confirmed that the temperature rise of the lubricating oil can be reduced by about 40°C.
The functional parts are components including thebearing 41 and the oil seal 42, and are treated as consumable parts. Running costs can be reduced by prolonging the life of these functional parts.
なお、機能部品とは、ベアリング41やオイルシール42を含む構成部材のことであり、消耗部品として扱われるものである。これらの機能部品の長寿命化を図ることで、ランニングコストを低減できる。 According to this, along with the heat transfer prevention effect of reducing the transfer of the heat of the compressed gas (exhaust gas) generated by the driving of the two
The functional parts are components including the
ところで、本形態例の軸受部40は、二つの歯車21A、21Bと二つのロータ30A、30Bの間で二つの回転軸20A、20Bを軸受けするように、軸受ボディ部120におけるポンプ室ボディ部110側の構造壁部(一方の構造壁部121a)に設けられた第1の軸受部40aと、該第1の軸受部40aと反対の構造壁部であって駆動モータ(電動モータ3(図3など参照))が連結される側に配された構造壁部(他方の構造壁部121b)で二つの回転軸20A、20Bを軸受けするように設けられた第2の軸受部40bとによって構成されている。なお、電動モータ3の回転軸3aは、回転軸20A(駆動側回転軸)とカップリング3b(図4など参照)を介して連結される。
By the way, the bearing portion 40 of the present embodiment has the pump chamber body portion 110 in the bearing body portion 120 so as to support the two rotating shafts 20A and 20B between the two gears 21A and 21B and the two rotors 30A and 30B. A first bearing portion 40a provided in the side structural wall portion (one structural wall portion 121a) and a structural wall portion opposite to the first bearing portion 40a, which is a drive motor (electric motor 3 (Fig. 3 etc.)) is arranged on the side to which the two rotating shafts 20A and 20B are connected. ing. The rotating shaft 3a of the electric motor 3 is connected to the rotating shaft 20A (driving side rotating shaft) via a coupling 3b (see FIG. 4, etc.).
また、本形態例では、二つの回転軸20A、20Bを水平に配することで設置される横置き型に設けられ、軸受部冷却液流路71が、ギヤボックス45内に貯留される潤滑オイルを冷却するように、静止時の貯留状態の前記潤滑オイルの液面よりも下側を通るように、軸受ボディ部120の構造壁部121の下部に設けられている。なお、潤滑オイルの静止時の液面は、ギヤボックス45(オイル室)の内底面と水平に配される前記回転軸20A、20Bとの間に位置するように設定されている。これによれば、潤滑オイルを効果的に冷却でき、その潤滑オイルが、回転する二つの歯車21A、21Bによって掻き上げられることによって、歯車21A、21B及びベアリング41を潤滑すると共に、ギヤボックス45内を冷却できるようになっている。
Further, in this embodiment, the two rotating shafts 20A and 20B are provided in a horizontal type installed by arranging them horizontally, and the bearing cooling liquid flow path 71 is a lubricating oil stored in the gear box 45. is provided in the lower portion of the structural wall portion 121 of the bearing body portion 120 so as to pass below the liquid surface of the lubricating oil in the stored state at rest so as to cool the oil. The liquid level of the lubricating oil when it is stationary is set to be between the inner bottom surface of the gear box 45 (oil chamber) and the rotating shafts 20A and 20B arranged horizontally. According to this, the lubricating oil can be effectively cooled, and the lubricating oil is scooped up by the two rotating gears 21A, 21B to lubricate the gears 21A, 21B and the bearing 41, and to lubricate the inside of the gear box 45. can be cooled.
なお、本形態例では、軸受部冷却液流路71が、軸受ボディ部120における第1の軸受部40aの下部(第1の軸受部40aのベアリング41の下側)に、一本の直線的な貫通孔の形状に設けられており、局所的に配された形態となっている。これによれば、ポンプ室ボディ部110側からの熱伝導がされ易い軸受ボディ部120の部分を積極的に冷やすと共に、潤滑オイルを効果的に冷却できるという効果がある。
In this embodiment, the bearing cooling liquid flow path 71 is provided in the bearing body 120 under the first bearing 40a (below the bearing 41 of the first bearing 40a). It is provided in the shape of a through hole, and is locally arranged. According to this, it is possible to positively cool the portion of the bearing body portion 120 to which heat is easily conducted from the pump chamber body portion 110 side, and to effectively cool the lubricating oil.
さらに、本形態例では、ポンプ室10の排気口55が、ポンプ室ボディ部110の下部に設けられている。これによれば、軸受部冷却液流路71が、前記のように軸受ボディ部120の構造壁部121の下部に設けられている際に、熱伝導が効果的に抑制され、軸受部40が過熱されることを抑制することができる。
Furthermore, in this embodiment, the exhaust port 55 of the pump chamber 10 is provided in the lower portion of the pump chamber body portion 110 . According to this, when the bearing cooling liquid flow path 71 is provided in the lower portion of the structural wall portion 121 of the bearing body portion 120 as described above, heat conduction is effectively suppressed, and the bearing portion 40 is Overheating can be suppressed.
また、本形態例のように二つの回転軸20A、20Bを水平に配することで設置される横置き型に設けられた構成に加えて、冷却用の隙間60に、下側から上側へ抜けるように空気を流す送風手段を設けても良い。これによれば、ポンプ室ボディ部110と軸受ボディ部120とを効果的に空冷することができ、二軸回転ポンプの信頼性をより向上させることができる。すなわち、ポンプ室ボディ部110と軸受ボディ部120との間に、冷却風を適切に流すことができるため熱伝達をより効果的に抑制でき、放熱による冷却を促進できる。これによって、軸受ボディ部120の温度上昇を抑制することができ、機能部品の長寿命化を実現できる。
Further, in addition to the configuration provided in the horizontal type installed by arranging the two rotating shafts 20A and 20B horizontally as in this embodiment, the cooling gap 60 is provided from the bottom to the top. A blowing means for blowing air may be provided. According to this, the pump chamber body portion 110 and the bearing body portion 120 can be effectively air-cooled, and the reliability of the biaxial rotary pump can be further improved. That is, since the cooling air can flow appropriately between the pump chamber body portion 110 and the bearing body portion 120, heat transfer can be suppressed more effectively, and cooling by heat radiation can be promoted. As a result, the temperature rise of the bearing body portion 120 can be suppressed, and the life of the functional parts can be extended.
そして、本発明の二軸回転ポンプによれば、軸受ボディ部120を冷却した冷却液がポンプ室ボディ部110を冷却するように、軸受部冷却液流路71がポンプ室ボディ部110に設けられた冷却液流路に接続されていることを特徴とすることができる。これによれば、潤滑オイルが沸騰してオーバーヒートすることがないように、軸受部冷却液流路71を流れる冷却液の温度の方が、ポンプ室ボディ部110に設けられた冷却液流路を流れる冷却液の温度よりも低くすることができ、冷却液を効果的に利用できる。
According to the biaxial rotary pump of the present invention, the bearing cooling liquid flow path 71 is provided in the pump chamber body section 110 so that the cooling liquid that has cooled the bearing body section 120 cools the pump chamber body section 110 . It can be characterized in that it is connected to a cooling liquid flow path. According to this, in order to prevent the lubricating oil from boiling and overheating, the temperature of the cooling liquid flowing through the bearing section cooling liquid flow path 71 is higher than that of the cooling liquid flow path provided in the pump chamber body section 110. The temperature can be lower than the temperature of the flowing coolant, and the coolant can be effectively utilized.
また、本形態例では、冷却液が、軸受部冷却液流路71から排気部冷却液流路72の順で流れるように、軸受部冷却液流路71に排気部冷却液流路72が接続されている。これによれば、一つの冷却液供給源4(図1、図2)によって、軸受ボディ部120の軸受部40(第1の軸受部40a)を構成する構造壁部121(一方の構造壁部121a)と、ポンプ室ボディ部110の他方の端壁部10cの側とを直接的に順次効果的に冷却することができる。なお、本形態例の冷却液は、冷却液供給源4(図1、図2)から供給され、冷却液入口接続部71a(図15、図17、図19)、軸受部冷却液流路71(図13、図19)、軸受部冷却液出口接続部71b(図14、図16、図18、図19)の順に流れ、そして、第1の接続配管71c(図14、図16、図18、図19)、排気部冷却液入口接続部72a(図14、図16、図18)、冷却液導入口72b(図20)の順に流れ、排気部冷却液流路72(図13、図20)へ供給され、延長部冷却液流路73を流れて、ポンプ2の外部に排出されるようになっている。これに限らず、軸受部冷却液流路71と排気部冷却液流路72とを接続しないで、冷却液を別々に供給して良いのは勿論であり、個別に冷却液の供給を調整することで最適化するようにしても良い。
Further, in this embodiment, the exhaust cooling liquid flow path 72 is connected to the bearing cooling liquid flow path 71 so that the cooling liquid flows in order from the bearing cooling liquid flow path 71 to the exhaust cooling liquid flow path 72. It is According to this, the structural wall portion 121 (one structural wall portion) constituting the bearing portion 40 (first bearing portion 40a) of the bearing body portion 120 is supplied by one coolant supply source 4 (FIGS. 1 and 2). 121a) and the other end wall portion 10c side of the pump chamber body portion 110 can be directly and sequentially cooled effectively. In addition, the cooling liquid of this embodiment is supplied from the cooling liquid supply source 4 (FIGS. 1 and 2), and is supplied to the cooling liquid inlet connecting portion 71a (FIGS. 15, 17, and 19) and the bearing portion cooling liquid flow path 71. (FIGS. 13 and 19), the cooling liquid outlet connection portion 71b (FIGS. 14, 16, 18 and 19), and then the first connecting pipe 71c (FIGS. 14, 16 and 18). , FIG. 19), the exhaust cooling liquid inlet connecting portion 72a (FIGS. 14, 16, 18), the cooling liquid inlet 72b (FIG. 20), and the exhaust cooling liquid flow path 72 (FIGS. 13, 20). ), flows through the extension cooling liquid flow path 73 , and is discharged to the outside of the pump 2 . Without being limited to this, the cooling liquid may be supplied separately without connecting the bearing cooling liquid flow path 71 and the exhaust cooling liquid flow path 72, and the cooling liquid supply may be individually adjusted. It may be optimized by
また、本形態例の軸受部冷却液流路71、排気部冷却液流路72及び延長部冷却液流路73によって構成される流路では、軸受部冷却液流路71よりも上側に排気部冷却液流路72が配され、排気部冷却液流路72及び延長部冷却液流路73においては冷却液が下から上へ流れるように構成されており、冷却液の温度上昇による流れの方向性と、冷却液の流れの方向性を揃えることで冷却液をスムースに流すことができ、効果的に軸受部40及び排気を冷却することができる。
In addition, in the flow path constituted by the bearing cooling liquid flow path 71, the exhaust cooling liquid flow path 72, and the extension cooling liquid flow path 73, the exhaust cooling liquid flow path 71 is located above the bearing cooling liquid flow path 71. The cooling liquid flow path 72 is provided, and the cooling liquid flows from the bottom to the top in the exhaust cooling liquid flow path 72 and the extension cooling liquid flow path 73. By aligning the properties and the directionality of the flow of the cooling liquid, the cooling liquid can flow smoothly, and the bearing portion 40 and the exhaust gas can be cooled effectively.
以上に説明した二軸回転ポンプの冷却構造によれば、パッケージ型回転ポンプユニットに合理的に対応して冷却性能を高めることができ、ポンプ性能を向上できる。また、本発明に係るパッケージ型回転ポンプユニットでは、ポンプ室10の下側が過熱し易く、その下側から冷却できる構造を前述のように適切に形成できる。このため、ポンプ室10を効率よく冷却することができ、ポンプ性能を高めることができると共に、前述のように機能部品の長寿命化を実現できるという特別有利な効果を奏することができる。
According to the cooling structure of the biaxial rotary pump described above, it is possible to rationally correspond to the package type rotary pump unit and improve the cooling performance, thereby improving the pump performance. Further, in the package-type rotary pump unit according to the present invention, the lower side of the pump chamber 10 is easily overheated, and a structure capable of cooling from the lower side can be appropriately formed as described above. As a result, the pump chamber 10 can be efficiently cooled, the performance of the pump can be improved, and a particularly advantageous effect can be obtained in that the service life of the functional parts can be extended as described above.
また、本形態例においては、図13~19に示すように、ポンプ室ボディ部110と軸受ボディ部120との間の冷却用の隙間60は、一方の端壁部10bとその一方の端壁部10bに対面する第1の軸受部40aが設けられた一方の構造壁部121aとの間を、複数の柱状部115で一体化している形態になっており、その柱状部115が設けられていない部分で、前記冷却用の隙間60が形成されるように設けられている。このような形状は、例えば、鋳物成型によって製造する場合は、中子によって、冷却用の隙間60が形成されるようにすればよい。また、本発明はこれに限定されるものではなく、図22に示すように、一方の端壁部10bを含むポンプ室ボディ部110側の部材と、その一方の端壁部10bに対面する軸受部40の構造壁部121を構成する軸受ボディ部120側の部材とが、別部材で構成され、双方に形成された柱状連結部111、122によって連結することで、冷却用の隙間60を形成することができるのは勿論である。
In this embodiment, as shown in FIGS. 13 to 19, the cooling gap 60 between the pump chamber body portion 110 and the bearing body portion 120 includes one end wall portion 10b and one end wall portion 10b. A plurality of columnar portions 115 are provided to integrate with one structural wall portion 121a provided with the first bearing portion 40a facing the portion 10b. It is provided so that the gap 60 for cooling is formed in the portion where it does not exist. For example, when such a shape is manufactured by casting, the cooling gap 60 may be formed by a core. Moreover, the present invention is not limited to this, and as shown in FIG. The members on the bearing body portion 120 side that constitute the structural wall portion 121 of the portion 40 are composed of separate members and are connected by columnar connection portions 111 and 122 formed on both sides, thereby forming a cooling gap 60. Of course you can.
また、本発明に係るパッケージ型回転ポンプユニットにおいては、以上に説明した構成に加えて、一方の端壁部10bと他方の端壁部10cとの少なくともどちらかの部位であって、ポンプ室10内における気体が圧縮される部位に面する位置に開口されて設けられた排気側開口部50が、二つのロータ30A、30Bの爪部同士によって気体の圧縮比が最大化する前段でポンプ室10の外部に連通される前段通気口51と、二つのロータ30A、30Bの爪部同士によって前記前段よりも気体の圧縮比が最大化する段階を含んでポンプ室10の外部へ排気するように連通される後段排気口とによって設けられ、その後段排気口が、他方の端壁部10cに設けられた排気口55であり、その排気口55がポンプ室10の外部に連通されて気体の圧縮比が最大化する段階で、前段通気口51が前記ロータによって閉じられるように設けることもできる。
Further, in the package-type rotary pump unit according to the present invention, in addition to the configuration described above, at least one of the one end wall portion 10b and the other end wall portion 10c has the pump chamber 10. The exhaust-side opening 50, which is open at a position facing a portion inside the pump chamber 10 where the gas is compressed, is provided in the pump chamber 10 at the front stage where the gas compression ratio is maximized by the claw portions of the two rotors 30A and 30B. and the claw portions of the two rotors 30A and 30B to maximize the gas compression ratio compared to the previous stage, and communicate to the outside of the pump chamber 10. The latter exhaust port is an exhaust port 55 provided in the other end wall portion 10c, and the exhaust port 55 is communicated with the outside of the pump chamber 10 to reduce the compression ratio of the gas. It is also possible to provide the front vent 51 to be closed by the rotor when the is maximized.
これによれば、排気が逆流することを防止してポンプ室10の過熱を抑制でき、ポンプ性能を向上できる。この排気の逆流防止効果と、前述の冷却液による冷却効果などとの相乗効果によって、ポンプ室10の過熱をより効果的に防止し、ポンプ性能を向上できる。
According to this, it is possible to prevent the exhaust gas from flowing backward, suppress overheating of the pump chamber 10, and improve the pump performance. Due to the synergistic effect of the backflow prevention effect of the exhaust gas and the cooling effect of the cooling liquid, overheating of the pump chamber 10 can be more effectively prevented, and pump performance can be improved.
ところで、本形態例では、二つのロータ30A、30Bが片持ち状態に支持されているが、本発明はこれに限定されるものではなく、特許文献1に開示されているような二つのロータ30A、30Bを二つの回転軸20A、20Bを介して両側から支持する構成のパッケージ型回転ポンプユニットにおいても効果的に適用できるものである。また、特許文献1に開示されているようなポンプ室ボディ部の一方の端壁部と他方の端壁部の両方に排気口を備えるパッケージ型回転ポンプユニットにおいても、効果的に適用できるものであり、他方の端壁部の側に設けられる排気部冷却液流路とのバランスを取った上で、一方の端壁部の側にも排気部冷却液流路を設ければよい。
By the way, in this embodiment, the two rotors 30A and 30B are supported in a cantilevered state, but the present invention is not limited to this. , 30B are supported from both sides via two rotary shafts 20A and 20B. Moreover, it can also be effectively applied to a package-type rotary pump unit having exhaust ports on both one end wall portion and the other end wall portion of the pump chamber body portion as disclosed in Patent Document 1. However, after balancing with the exhaust cooling liquid flow path provided on the other end wall side, the exhaust cooling liquid flow path may also be provided on the one end wall side.
また、本発明では、例えば、冷却液の温度を調整管理することで寒冷地での使用に対応して本発明の使用範囲を拡大することが可能であり、冷却液を循環させるように熱交換器を用いてその冷却液を冷却するように構成することも可能であるなど、液冷式に用いられる付属的な管理方法や構成を適宜選択的に採用できるのは勿論である。
Further, in the present invention, for example, by adjusting and managing the temperature of the cooling liquid, it is possible to expand the range of use of the present invention in response to use in cold regions, and heat exchange is performed by circulating the cooling liquid. Of course, additional control methods and configurations used for liquid cooling can be selectively adopted as appropriate, such as a configuration in which the cooling liquid is cooled using a device.
以上、本発明につき好適な形態例を挙げて種々説明してきたが、本発明はこの形態例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのは勿論のことである。
Although the present invention has been described in various ways with preferred embodiments, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. It's about.
1 密閉筐体
1a 筐体フレーム部
1b ベース部
1c 筐体カバー部
2 回転ポンプ
3 電動モータ
3a 回転軸
3b カップリング
3c 安全カバー
4 冷却液供給源
4a 冷却液供給接続口
4b 冷却液供給配管
4c 冷却液排出配管
4d 冷却液排出接続口
5 液冷熱交換器
5a 熱交換用の管路
5b 冷却液接続管
6 送風装置
7 送風ファン
8 配電盤
9 電装品冷却用の送風機
10 ポンプ室
10a シリンダ部
10b 一方の端壁部
10c 他方の端壁部
11 シリンダケース
12 サイドプレート
14 吸気接続口
15 吸気口
16 吸気導入管接続口
17 逆流防止弁
20A 回転軸(駆動側回転軸)
20B 回転軸(従動側回転軸)
21A 歯車(駆動側歯車)
21B 歯車(従動側歯車)
25 ポンプカバー部
25a 循環空気入口部
25b 循環空気出口部
30A ロータ(駆動側ロータ)
30B ロータ(従動側ロータ)
31 第1のマフラー部
32 第2のマフラー部
33 振動緩衝配管
34 第2のマフラー部の排気導入口
35 第2のマフラー部の排気排出口
37 吊り部材
40 軸受部
40a 第1の軸受部
40b 第2の軸受部
41 ベアリング
42 オイルシール
45 ギヤボックス
50 排気側開口部
51 前段通気口
55 排気口
56 排気流路
57 第1のマフラー部の排気口
60 冷却用の隙間
61 第1の流路形成部
61a 冷却液流路形成面
61b 冷却液流規制部
61c 内ループ合せ部
61d 外ループ合せ部
61e 排気流路形成面
61f 排気通路形成壁
61g ループ枠状合せ部
62 第2の流路形成部
62a 排気流路形成面
62b 延長流路形成面
62c 周縁合せ部
63 第3の流路形成部
63a 延長流路形成面
65 シール部材
71 軸受部冷却液流路
71a 冷却液入口接続部
71b 軸受部冷却液出口接続部
71c 第1の接続配管
72 排気部冷却液流路
72a 排気部冷却液入口接続部
72b 冷却液導入口
72c 排気口周囲流路部
72d 排気部冷却液出口接続部
72e 第2の接続配管
73 延長部冷却液流路
73a 延長部冷却液入口接続部
73b 延長部冷却液出口接続部
81 操作部
82 電装部品
83 インバータ装置
90 ドレン排出接続口
91 ドレンパン
92 ドレン配管
93 熱交換器用ドレンパン
94 熱交換器用ドレン配管
100 ポンプ本体
110 ポンプ室ボディ部
115 柱状部
120 軸受ボディ部
121 構造壁部
121a 一方の構造壁部
121b 他方の構造壁部
200 電動回転ポンプ
300 制振部材Reference Signs List 1 sealed housing 1a housing frame 1b base 1c housing cover 2 rotating pump 3 electric motor 3a rotating shaft 3b coupling 3c safety cover 4 cooling liquid supply source 4a cooling liquid supply connection port 4b cooling liquid supply pipe 4c cooling Liquid discharge pipe 4d Coolant discharge connection port 5 Liquid cooling heat exchanger 5a Pipe line for heat exchange 5b Coolant connection pipe 6 Air blower 7 Blower fan 8 Switchboard 9 Air blower for cooling electrical components 10 Pump chamber 10a Cylinder part 10b One side End wall portion 10c Other end wall portion 11 Cylinder case 12 Side plate 14 Intake connection port 15 Intake port 16 Intake introduction pipe connection port 17 Check valve 20A Rotating shaft (drive-side rotating shaft)
20B rotary shaft (driven side rotary shaft)
21A gear (drive side gear)
21B gear (driven side gear)
25pump cover portion 25a circulating air inlet portion 25b circulating air outlet portion 30A rotor (drive side rotor)
30B rotor (driven rotor)
31 First muffler portion 32 Second muffler portion 33 Vibration damping pipe 34 Exhaust gas introduction port of second muffler portion 35 Exhaust gas exhaust port of second muffler portion 37 Hanging member 40 Bearing portion 40a First bearing portion 40b 2 bearing portion 41 bearing 42 oil seal 45 gear box 50 exhaust side opening 51 front stage vent 55 exhaust port 56 exhaust flow path 57 first muffler exhaust port 60 cooling gap 61 first flow path forming portion 61a Coolant flow channel forming surface 61b Coolant flow restricting portion 61c Inner loop mating portion 61d Outer loop mating portion 61e Exhaust flow channel forming surface 61f Exhaust passage forming wall 61g Loop frame mating portion 62 Second flow channel forming portion 62a Exhaust Flow path forming surface 62b Extension flow path forming surface 62c Peripheral joint portion 63 Third flow path forming portion 63a Extension flow path forming surface 65 Sealing member 71 Bearing cooling liquid flow path 71a Cooling liquid inlet connecting section 71b Bearing cooling liquid outlet Connection portion 71c First connection pipe 72 Exhaust cooling liquid flow path 72a Exhaust cooling liquid inlet connection 72b Coolant inlet 72c Exhaust surrounding flow path 72d Exhaust cooling liquid outlet connection 72e Second connection pipe 73 Extension cooling liquid flow path 73a Extension cooling liquid inlet connection 73b Extension cooling liquid outlet connection 81 Operation part 82 Electrical component 83 Inverter device 90 Drain discharge connection port 91 Drain pan 92 Drain pipe 93 Drain pan for heat exchanger 94 For heat exchanger Drain pipe 100 Pump body 110 Pump chamber body 115 Column 120 Bearing body 121 Structural wall 121a One structural wall 121b Other structural wall 200 Electric rotary pump 300 Damping member
1a 筐体フレーム部
1b ベース部
1c 筐体カバー部
2 回転ポンプ
3 電動モータ
3a 回転軸
3b カップリング
3c 安全カバー
4 冷却液供給源
4a 冷却液供給接続口
4b 冷却液供給配管
4c 冷却液排出配管
4d 冷却液排出接続口
5 液冷熱交換器
5a 熱交換用の管路
5b 冷却液接続管
6 送風装置
7 送風ファン
8 配電盤
9 電装品冷却用の送風機
10 ポンプ室
10a シリンダ部
10b 一方の端壁部
10c 他方の端壁部
11 シリンダケース
12 サイドプレート
14 吸気接続口
15 吸気口
16 吸気導入管接続口
17 逆流防止弁
20A 回転軸(駆動側回転軸)
20B 回転軸(従動側回転軸)
21A 歯車(駆動側歯車)
21B 歯車(従動側歯車)
25 ポンプカバー部
25a 循環空気入口部
25b 循環空気出口部
30A ロータ(駆動側ロータ)
30B ロータ(従動側ロータ)
31 第1のマフラー部
32 第2のマフラー部
33 振動緩衝配管
34 第2のマフラー部の排気導入口
35 第2のマフラー部の排気排出口
37 吊り部材
40 軸受部
40a 第1の軸受部
40b 第2の軸受部
41 ベアリング
42 オイルシール
45 ギヤボックス
50 排気側開口部
51 前段通気口
55 排気口
56 排気流路
57 第1のマフラー部の排気口
60 冷却用の隙間
61 第1の流路形成部
61a 冷却液流路形成面
61b 冷却液流規制部
61c 内ループ合せ部
61d 外ループ合せ部
61e 排気流路形成面
61f 排気通路形成壁
61g ループ枠状合せ部
62 第2の流路形成部
62a 排気流路形成面
62b 延長流路形成面
62c 周縁合せ部
63 第3の流路形成部
63a 延長流路形成面
65 シール部材
71 軸受部冷却液流路
71a 冷却液入口接続部
71b 軸受部冷却液出口接続部
71c 第1の接続配管
72 排気部冷却液流路
72a 排気部冷却液入口接続部
72b 冷却液導入口
72c 排気口周囲流路部
72d 排気部冷却液出口接続部
72e 第2の接続配管
73 延長部冷却液流路
73a 延長部冷却液入口接続部
73b 延長部冷却液出口接続部
81 操作部
82 電装部品
83 インバータ装置
90 ドレン排出接続口
91 ドレンパン
92 ドレン配管
93 熱交換器用ドレンパン
94 熱交換器用ドレン配管
100 ポンプ本体
110 ポンプ室ボディ部
115 柱状部
120 軸受ボディ部
121 構造壁部
121a 一方の構造壁部
121b 他方の構造壁部
200 電動回転ポンプ
300 制振部材
20B rotary shaft (driven side rotary shaft)
21A gear (drive side gear)
21B gear (driven side gear)
25
30B rotor (driven rotor)
31 First muffler portion 32 Second muffler portion 33 Vibration damping pipe 34 Exhaust gas introduction port of second muffler portion 35 Exhaust gas exhaust port of second muffler portion 37 Hanging member 40 Bearing portion 40a First bearing portion 40b 2 bearing portion 41 bearing 42 oil seal 45 gear box 50 exhaust side opening 51 front stage vent 55 exhaust port 56 exhaust flow path 57 first muffler exhaust port 60 cooling gap 61 first flow path forming portion 61a Coolant flow channel forming surface 61b Coolant flow restricting portion 61c Inner loop mating portion 61d Outer loop mating portion 61e Exhaust flow channel forming surface 61f Exhaust passage forming wall 61g Loop frame mating portion 62 Second flow channel forming portion 62a Exhaust Flow path forming surface 62b Extension flow path forming surface 62c Peripheral joint portion 63 Third flow path forming portion 63a Extension flow path forming surface 65 Sealing member 71 Bearing cooling liquid flow path 71a Cooling liquid inlet connecting section 71b Bearing cooling liquid outlet Connection portion 71c First connection pipe 72 Exhaust cooling liquid flow path 72a Exhaust cooling liquid inlet connection 72b Coolant inlet 72c Exhaust surrounding flow path 72d Exhaust cooling liquid outlet connection 72e Second connection pipe 73 Extension cooling liquid flow path 73a Extension cooling liquid inlet connection 73b Extension cooling liquid outlet connection 81 Operation part 82 Electrical component 83 Inverter device 90 Drain discharge connection port 91 Drain pan 92 Drain pipe 93 Drain pan for heat exchanger 94 For heat exchanger Drain pipe 100 Pump body 110 Pump chamber body 115 Column 120 Bearing body 121 Structural wall 121a One structural wall 121b Other structural wall 200 Electric rotary pump 300 Damping member
Claims (17)
- 気体を吸排気する回転ポンプ及び該回転ポンプを駆動させる電動モータを備える電動回転ポンプと、該電動回転ポンプを内包する密閉筐体とを備えるパッケージ型回転ポンプユニットであって、
前記密閉筐体の内部に配され、前記密閉筐体の外部に配された冷却液供給源から冷却液の供給を受けて冷却される液冷熱交換器と、
前記密閉筐体の内部に配され、前記回転ポンプの稼働によって該回転ポンプの周囲の空気が加熱されることで生じる加熱空気を含む密閉筐体内の内部空気を、前記液冷熱交換器へ、冷却させるように送る送風装置とを備え、
前記回転ポンプが二軸回転ポンプであって、一方のロータ回転軸が前記電動モータの回転軸に直列に接続されて回転され、他方のロータ回転軸がギヤを介して前記一方のロータ回転軸とは反対方向へ同期して回転されるように設けられ、前記他方のロータ回転軸が配された軸心の延長上のスペースであって前記電動モータと前記一方のロータ回転軸とが接続される部位に隣接するスペースに、前記液冷熱交換器及び前記送風装置が配置されていることを特徴とするパッケージ型回転ポンプユニット。 A package-type rotary pump unit comprising a rotary pump for sucking and discharging gas, an electric rotary pump comprising an electric motor for driving the rotary pump, and a sealed housing enclosing the electric rotary pump,
a liquid-cooling heat exchanger arranged inside the sealed housing and cooled by being supplied with cooling liquid from a cooling liquid supply source arranged outside the sealed housing;
The air inside the sealed housing, which is arranged inside the sealed housing and includes heated air generated by heating the air around the rotary pump due to the operation of the rotary pump, is cooled to the liquid cooling heat exchanger. and a blower that sends the
The rotary pump is a two-shaft rotary pump, one rotor rotary shaft is connected in series with the rotary shaft of the electric motor and rotated, and the other rotor rotary shaft is connected to the one rotor rotary shaft through a gear. is provided so as to rotate synchronously in opposite directions, and is an extension of the axial center where the other rotor rotating shaft is arranged, and the electric motor and the one rotor rotating shaft are connected. A package-type rotary pump unit, wherein the liquid-cooling heat exchanger and the air blower are arranged in a space adjacent to a part. - 前記密閉筐体の内部に配されて前記回転ポンプを覆うように設けられ、前記密閉筐体の内部で循環する前記内部空気が導入される循環空気入口部と、前記加熱空気を含む前記内部空気が排出される循環空気出口部とが設けられるように形成されたポンプカバー部を備えることを特徴とする請求項1記載のパッケージ型回転ポンプユニット。 a circulating air inlet portion disposed inside the sealed housing so as to cover the rotary pump and through which the internal air circulating inside the sealed housing is introduced; and the internal air containing the heated air. 2. The package type rotary pump unit according to claim 1, further comprising a pump cover portion formed so as to be provided with a circulating air outlet portion through which the air is discharged.
- 前記液冷熱交換器が、前記循環空気出口部の側に接続され、
前記送風装置が、前記内部空気を吸引して前記循環空気入口部から前記循環空気出口部へ流して前記液冷熱交換器を通すように、該液冷熱交換器に接続されていることを特徴とする請求項2記載のパッケージ型回転ポンプユニット。 The liquid cooling heat exchanger is connected to the circulating air outlet side,
The air blower is connected to the liquid cooling heat exchanger so as to suck the internal air and flow it from the circulating air inlet to the circulating air outlet through the liquid cooling heat exchanger. The package type rotary pump unit according to claim 2. - 前記電動モータに、該電動モータを冷却するように送風する電動モータ冷却用の送風ファンが設けられ、該送風ファンは、前記一方のロータ回転軸に接続される側とは反対側に配されてモータ本体へ向けて送風するように設けられていることを特徴とする請求項1記載のパッケージ型回転ポンプユニット。 The electric motor is provided with a blower fan for cooling the electric motor that blows air so as to cool the electric motor, and the blower fan is disposed on the side opposite to the side connected to the one rotor rotating shaft. 2. The package type rotary pump unit according to claim 1, wherein the package type rotary pump unit is provided so as to blow air toward the motor body.
- 前記回転ポンプが、液冷されるように前記冷却液供給源に接続されていることを特徴とする請求項1記載のパッケージ型回転ポンプユニット。 The package-type rotary pump unit according to claim 1, wherein the rotary pump is connected to the coolant supply source so as to be liquid-cooled.
- 前記密閉筐体の内部に配され、前記電動回転ポンプのうちの前記電動モータを除く前記回転ポンプの周囲を覆うように設けられ、前記密閉筐体の内部で循環する前記内部空気が導入される循環空気入口部と、前記加熱空気を含む前記内部空気が排出される循環空気出口部とが設けられるように形成されたポンプカバー部を備え、
前記循環空気入口部が、前記回転ポンプの周囲を取り巻いて帯状に開放した形態に設けられていることを特徴とする請求項1記載のパッケージ型回転ポンプユニット。 is arranged inside the sealed housing, is provided so as to cover the periphery of the rotary pump of the electric rotary pump excluding the electric motor, and introduces the internal air circulating inside the sealed housing A pump cover portion formed so as to be provided with a circulating air inlet portion and a circulating air outlet portion through which the internal air containing the heated air is discharged,
2. A package-type rotary pump unit according to claim 1, wherein said circulating air inlet portion is provided in a band-like open form surrounding said rotary pump. - 前記回転ポンプが、軸受ボディ部とポンプ室ボディ部と第1のマフラー部とを備え、前記ポンプカバー部が、前記軸受ボディ部と前記ポンプ室ボディ部の周囲を覆うように設けられていることを特徴とする請求項6記載のパッケージ型回転ポンプユニット。 The rotary pump includes a bearing body portion, a pump chamber body portion, and a first muffler portion, and the pump cover portion is provided so as to cover the bearing body portion and the pump chamber body portion. The package-type rotary pump unit according to claim 6, characterized in that:
- 前記液冷熱交換器が、前記循環空気出口部の側に接続され、
前記送風装置が、前記内部空気を吸引して前記循環空気入口部から前記循環空気出口部へ流して前記液冷熱交換器を通すように、該液冷熱交換器に接続されていることを特徴とする請求項7記載のパッケージ型回転ポンプユニット。 The liquid cooling heat exchanger is connected to the circulating air outlet side,
The air blower is connected to the liquid cooling heat exchanger so as to suck the internal air and flow it from the circulating air inlet to the circulating air outlet through the liquid cooling heat exchanger. The package type rotary pump unit according to claim 7. - 気体を吸排気する回転ポンプ及び該回転ポンプを駆動させる電動モータを備える電動回転ポンプと、該電動回転ポンプを内包する密閉筐体とを備えるパッケージ型回転ポンプユニットであって、
前記密閉筐体の内部に配され、前記密閉筐体の外部に配された冷却液供給源から冷却液の供給を受けて冷却される液冷熱交換器と、
前記密閉筐体の内部に配され、前記回転ポンプの稼働によって該回転ポンプの周囲の空気が加熱されることで生じる加熱空気を含む密閉筐体内の内部空気を、前記液冷熱交換器へ、冷却させるように送る送風装置とを備え、
前記液冷熱交換器を冷却した前記冷却液供給源からの冷却液によって前記回転ポンプも冷却されるように、前記冷却液供給源からの液冷流路が、前記液冷熱交換器と前記回転ポンプとに亘って直列に接続されていることを特徴とするパッケージ型回転ポンプユニット。 A package-type rotary pump unit comprising a rotary pump for sucking and discharging gas, an electric rotary pump comprising an electric motor for driving the rotary pump, and a sealed housing enclosing the electric rotary pump,
a liquid-cooling heat exchanger arranged inside the sealed housing and cooled by being supplied with cooling liquid from a cooling liquid supply source arranged outside the sealed housing;
The air inside the sealed housing, which is arranged inside the sealed housing and includes heated air generated by heating the air around the rotary pump due to the operation of the rotary pump, is cooled to the liquid cooling heat exchanger. and a blower that sends the
A liquid cooling flow path from the cooling liquid supply is arranged between the liquid cooling heat exchanger and the rotary pump so that the rotary pump is also cooled by the cooling liquid from the cooling liquid supply that has cooled the liquid cooling heat exchanger. A package-type rotary pump unit, characterized in that it is connected in series over and through. - 前記回転ポンプが、軸受ボディ部とポンプ室ボディ部と第1のマフラー部とを備え、
前記冷却液供給源からの冷却液が、前記液冷熱交換器、前記軸受ボディ部、ポンプ室ボディ部及び第1のマフラー部の順に流れるように、前記冷却液供給源からの液冷流路が直列に接続されていることを特徴とする請求項9記載のパッケージ型回転ポンプユニット。 The rotary pump comprises a bearing body portion, a pump chamber body portion and a first muffler portion,
A liquid cooling flow path from the cooling liquid supply source is provided such that the cooling liquid from the cooling liquid supply source flows through the liquid cooling heat exchanger, the bearing body portion, the pump chamber body portion, and the first muffler portion in this order. 10. The package type rotary pump unit according to claim 9, wherein the units are connected in series. - 前記密閉筐体の内部に配されて前記回転ポンプを覆うように設けられ、前記密閉筐体の内部で循環する前記内部空気が導入される循環空気入口部と、前記加熱空気を含む前記内部空気が排出される循環空気出口部とが設けられるように形成されたポンプカバー部を備えることを特徴とする請求項9記載のパッケージ型回転ポンプユニット。 a circulating air inlet portion disposed inside the sealed housing so as to cover the rotary pump and through which the internal air circulating inside the sealed housing is introduced; and the internal air containing the heated air. 10. The package type rotary pump unit according to claim 9, further comprising a pump cover portion formed so as to be provided with a circulating air outlet portion through which the air is discharged.
- 前記液冷熱交換器が、前記循環空気出口部の側に接続され、
前記送風装置が、前記内部空気を吸引して前記循環空気入口部から前記循環空気出口部へ流して前記液冷熱交換器を通すように、該液冷熱交換器に接続されていることを特徴とする請求項11記載のパッケージ型回転ポンプユニット。 The liquid cooling heat exchanger is connected to the circulating air outlet side,
The air blower is connected to the liquid cooling heat exchanger so as to suck the internal air and flow it from the circulating air inlet to the circulating air outlet through the liquid cooling heat exchanger. The package type rotary pump unit according to claim 11. - 前記回転ポンプが二軸回転ポンプであって、一方のロータ回転軸が前記電動モータの回転軸に直列に接続されて回転され、他方のロータ回転軸がギヤを介して前記一方のロータ回転軸とは反対方向へ同期して回転されるように設けられ、前記他方のロータ回転軸が配された軸心の延長上のスペースであって前記電動モータと前記一方のロータ回転軸とが接続される部位に隣接するスペースに、前記液冷熱交換器及び前記送風装置が配置されていることを特徴とする請求項9記載のパッケージ型回転ポンプユニット。 The rotary pump is a two-shaft rotary pump, one rotor rotary shaft is connected in series with the rotary shaft of the electric motor and rotated, and the other rotor rotary shaft is connected to the one rotor rotary shaft through a gear. is provided so as to rotate synchronously in opposite directions, and is an extension of the axial center where the other rotor rotating shaft is arranged, and the electric motor and the one rotor rotating shaft are connected. 10. The package type rotary pump unit according to claim 9, wherein said liquid cooling heat exchanger and said blower are arranged in a space adjacent to said part.
- 前記電動モータに、該電動モータを冷却するように送風する電動モータ冷却用の送風ファンが設けられ、該送風ファンは、前記一方のロータ回転軸に接続される側とは反対側に配されてモータ本体へ向けて送風するように設けられていることを特徴とする請求項13記載のパッケージ型回転ポンプユニット。 The electric motor is provided with a blower fan for cooling the electric motor that blows air so as to cool the electric motor, and the blower fan is disposed on the side opposite to the side connected to the one rotor rotating shaft. 14. The package-type rotary pump unit according to claim 13, which is provided so as to blow air toward the motor body.
- 前記密閉筐体の内部に配され、前記電動回転ポンプのうちの前記電動モータを除く前記回転ポンプの周囲を覆うように設けられ、前記密閉筐体の内部で循環する前記内部空気が導入される循環空気入口部と、前記加熱空気を含む前記内部空気が排出される循環空気出口部とが設けられるように形成されたポンプカバー部を備え、
前記循環空気入口部が、前記回転ポンプの周囲を取り巻いて帯状に開放した形態に設けられていることを特徴とする請求項9記載のパッケージ型回転ポンプユニット。 is arranged inside the sealed housing, is provided so as to cover the periphery of the rotary pump of the electric rotary pump excluding the electric motor, and introduces the internal air circulating inside the sealed housing A pump cover portion formed so as to be provided with a circulating air inlet portion and a circulating air outlet portion through which the internal air containing the heated air is discharged,
10. The package-type rotary pump unit according to claim 9, wherein the circulating air inlet portion is provided in a band-like open form surrounding the periphery of the rotary pump. - 前記回転ポンプが、軸受ボディ部とポンプ室ボディ部と第1のマフラー部とを備え、前記ポンプカバー部が、前記軸受ボディ部と前記ポンプ室ボディ部の周囲を覆うように設けられていることを特徴とする請求項15記載のパッケージ型回転ポンプユニット。 The rotary pump includes a bearing body portion, a pump chamber body portion, and a first muffler portion, and the pump cover portion is provided so as to cover the bearing body portion and the pump chamber body portion. 16. The package type rotary pump unit according to claim 15, characterized by:
- 前記液冷熱交換器が、前記循環空気出口部の側に接続され、
前記送風装置が、前記内部空気を吸引して前記循環空気入口部から前記循環空気出口部へ流して前記液冷熱交換器を通すように、該液冷熱交換器に接続されていることを特徴とする請求項16記載のパッケージ型回転ポンプユニット。 The liquid cooling heat exchanger is connected to the circulating air outlet side,
The air blower is connected to the liquid cooling heat exchanger so as to suck the internal air and flow it from the circulating air inlet to the circulating air outlet through the liquid cooling heat exchanger. 17. The packaged rotary pump unit of claim 16.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280003975.2A CN115768984A (en) | 2021-07-16 | 2022-05-26 | Packaged rotary pump unit |
CN202310978619.9A CN116971993A (en) | 2021-07-16 | 2022-05-26 | Encapsulated rotary pump unit |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-117524 | 2021-07-16 | ||
JP2021117524A JP7008955B1 (en) | 2021-07-16 | 2021-07-16 | Claw pump |
JP2021170618A JP7019135B1 (en) | 2021-10-19 | 2021-10-19 | Package type rotary pump unit |
JP2021-170618 | 2021-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023286466A1 true WO2023286466A1 (en) | 2023-01-19 |
Family
ID=84919958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/021492 WO2023286466A1 (en) | 2021-07-16 | 2022-05-26 | Package-type rotary pump unit |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN116971993A (en) |
WO (1) | WO2023286466A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52118604A (en) * | 1976-03-31 | 1977-10-05 | Hitachi Ltd | Screw fluid machine |
JPH04203388A (en) * | 1990-11-30 | 1992-07-23 | Hitachi Ltd | Dryer integral type air-cooled compressor |
JPH0612784U (en) * | 1992-02-25 | 1994-02-18 | ジェーピーイー株式会社 | Rotary pump for gas |
JP2005509786A (en) * | 2001-11-15 | 2005-04-14 | ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング | Temperature adjustment method for screw vacuum pump |
JP2008255810A (en) * | 2007-04-02 | 2008-10-23 | Orion Mach Co Ltd | Exhaust gas temperature control system of pneumatic device station |
JP2016067108A (en) * | 2014-09-24 | 2016-04-28 | 株式会社神戸製鋼所 | Package type fluid machinery |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950007378B1 (en) * | 1990-04-06 | 1995-07-10 | 가부시끼 가이샤 히다찌 세이사꾸쇼 | Vacuum pump |
CN101610660A (en) * | 2008-06-20 | 2009-12-23 | 沈国忠 | Compressor cooling type fully sealed high-efficiency radiating electronic cabinet |
CN202300923U (en) * | 2011-11-08 | 2012-07-04 | 南京金龙客车制造有限公司 | Noise reduction device for air compressor of passenger car |
CN208918772U (en) * | 2018-10-31 | 2019-05-31 | 苏州沧海真空机械有限公司 | A kind of totally enclosed type vacuum pump system |
CN209820238U (en) * | 2018-11-26 | 2019-12-20 | 河南英开电气股份有限公司 | Heat dissipation system |
-
2022
- 2022-05-26 CN CN202310978619.9A patent/CN116971993A/en active Pending
- 2022-05-26 WO PCT/JP2022/021492 patent/WO2023286466A1/en active Application Filing
- 2022-05-26 CN CN202280003975.2A patent/CN115768984A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52118604A (en) * | 1976-03-31 | 1977-10-05 | Hitachi Ltd | Screw fluid machine |
JPH04203388A (en) * | 1990-11-30 | 1992-07-23 | Hitachi Ltd | Dryer integral type air-cooled compressor |
JPH0612784U (en) * | 1992-02-25 | 1994-02-18 | ジェーピーイー株式会社 | Rotary pump for gas |
JP2005509786A (en) * | 2001-11-15 | 2005-04-14 | ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング | Temperature adjustment method for screw vacuum pump |
JP2008255810A (en) * | 2007-04-02 | 2008-10-23 | Orion Mach Co Ltd | Exhaust gas temperature control system of pneumatic device station |
JP2016067108A (en) * | 2014-09-24 | 2016-04-28 | 株式会社神戸製鋼所 | Package type fluid machinery |
Also Published As
Publication number | Publication date |
---|---|
CN115768984A (en) | 2023-03-07 |
CN116971993A (en) | 2023-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008088852A (en) | Package type compressor | |
JP5205041B2 (en) | air compressor | |
JP3488825B2 (en) | Package type scroll compressor | |
JP2012012984A (en) | Compressor | |
JP2015117863A (en) | Transportation refrigeration unit | |
JP4912703B2 (en) | Package type compressor | |
JPH11200951A (en) | Co-generation device | |
JP4255765B2 (en) | Package type compressor | |
JP2005069163A (en) | Air cooled dry vacuum pump | |
WO2023286466A1 (en) | Package-type rotary pump unit | |
JP2007270665A (en) | Package type compressor | |
JP7399495B2 (en) | Packaged rotary pump unit | |
JP2017026187A (en) | Air conditioning device | |
JP7057609B1 (en) | Package type rotary pump unit | |
JP2007064120A (en) | Packaged compressor | |
JP7019135B1 (en) | Package type rotary pump unit | |
JP7057608B1 (en) | Package type rotary pump unit | |
JP5433611B2 (en) | Package type compressor | |
JP2015117676A (en) | Air compressor | |
JP4515880B2 (en) | Package type compressor | |
JP5953583B2 (en) | Packaged rotary pump unit | |
JP6078805B2 (en) | Cooling structure for package type rotary pump unit | |
JP4437434B2 (en) | Scroll air compressor | |
JP7008955B1 (en) | Claw pump | |
JP7394470B2 (en) | Two-shaft rotary pump and claw pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22841813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22841813 Country of ref document: EP Kind code of ref document: A1 |