WO2023286330A1 - Photo detection device and electronic apparatus - Google Patents

Photo detection device and electronic apparatus Download PDF

Info

Publication number
WO2023286330A1
WO2023286330A1 PCT/JP2022/009109 JP2022009109W WO2023286330A1 WO 2023286330 A1 WO2023286330 A1 WO 2023286330A1 JP 2022009109 W JP2022009109 W JP 2022009109W WO 2023286330 A1 WO2023286330 A1 WO 2023286330A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
semiconductor layer
diffusion
plan
region
Prior art date
Application number
PCT/JP2022/009109
Other languages
French (fr)
Japanese (ja)
Inventor
闊 包
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023286330A1 publication Critical patent/WO2023286330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present technology (technology according to the present disclosure) relates to a photodetection device and an electronic device, and more particularly to a technology effectively applied to a photodetection device having phase difference detection pixels and an electronic device having the same.
  • a solid-state imaging device is known as a photodetector.
  • a method of performing pupil division by embedding a plurality of photoelectric conversion elements in a semiconductor layer under one on-chip lens is known.
  • electronic devices such as single-lens reflex cameras and smartphones. used in solid-state imaging devices for built-in cameras.
  • a method of detecting a phase difference by reading, as independent signals, signal charges photoelectrically converted by a plurality of photoelectric conversion units arranged under one on-chip lens during phase difference detection for example, Patent Document 1).
  • the pixels of a solid-state imaging device that employs a phase detection autofocus method are, for example, first and second pixels arranged adjacent to each other via a diffusion isolation region made of a p-type semiconductor region. 2 photoelectric conversion units, a first transfer transistor that transfers signal charges from the first photoelectric conversion unit to a floating diffusion, and a second transfer transistor that transfers signal charges from the second photoelectric conversion unit to the floating diffusion and a photoelectric conversion cell including.
  • the first transfer transistor in the phase mode, when the signal charge on the first photoelectric conversion unit side is read, for example, the first transfer transistor is turned on to transfer the signal charge of the first photoelectric conversion unit to the floating diffusion.
  • the potential of the diffusion isolation region between the first photoelectric conversion section and the second photoelectric conversion section is modulated.
  • part of the signal charge on the side of the second photoelectric conversion unit that is not read out is read out as the signal of the first photoelectric conversion unit via this potential modulation region, which may degrade the phase difference detection performance. be.
  • This deterioration in phase difference detection performance may also occur when reading signal charges on the second photoelectric conversion unit side.
  • the purpose of this technology is to improve the accuracy of phase difference detection.
  • a photodetector includes a first surface and a second surface located on opposite sides of each other.
  • a semiconductor layer having a surface of and a photoelectric conversion cell provided in the semiconductor layer, The photoelectric conversion cell is first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer; a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer;
  • a gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the floating diffusion.
  • a transfer transistor A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and the second photoelectric conversion section transfers signal charges from the second photoelectric conversion section to the floating diffusion.
  • a transfer transistor provided in the first diffusion isolation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view and an insulating separator.
  • a photodetector according to another aspect of the present technology, a semiconductor layer having first and second surfaces opposite to each other; first and second photoelectric conversion units provided adjacent to each other via a diffusion separation region in the semiconductor layer; a floating diffusion provided in the diffusion isolation region on the first surface side of the semiconductor layer; A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and transfers signal charges photoelectrically converted by the first photoelectric conversion section to the floating diffusion.
  • a first transfer transistor to A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion section to the floating diffusion.
  • a second transfer transistor to an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in plan view.
  • An electronic device includes the photodetector according to (1) or (2) above.
  • FIG. 1 is a chip layout diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present technology
  • FIG. 1 is a block diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present technology
  • FIG. It is an equivalent circuit diagram of the pixel unit of the solid-state imaging device according to the first embodiment of the present technology.
  • 1 is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a first embodiment of the present technology
  • FIG. FIG. 5 is a schematic vertical cross-sectional view showing a cross-sectional structure along the a4-a4 cutting line in FIG. 4
  • FIG. 6 is a schematic longitudinal sectional view enlarging a part of FIG. 5;
  • FIG. 5 is a schematic vertical cross-sectional view showing a cross-sectional structure along the b4-b4 cutting line in FIG. 4;
  • FIG. 5 is a diagram showing a potential distribution of pixels in FIG. 4;
  • 4 is a graph showing the output of the photoelectric conversion unit of the solid-state imaging device according to the first embodiment of the present technology with respect to incident light; It is a figure which shows the change of the signal charge amount accumulate
  • FIG. 10B is a diagram showing a change subsequent to FIG. 10A;
  • FIG. 10B is a diagram showing a change subsequent to FIG. 10B;
  • FIG. 10B is a diagram showing a change subsequent to FIG.
  • FIG. 10C is a diagram showing changes in the amount of signal charge accumulated in a conventional photoelectric conversion unit;
  • FIG. 11B is a diagram showing a change subsequent to FIG. 11A;
  • It is a schematic plan view which shows the modification of 1st Embodiment.
  • It is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a second embodiment of the present technology.
  • FIG. 14 is a schematic vertical cross-sectional view showing a cross-sectional structure along the line a13-a13 of FIG. 13;
  • It is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a third embodiment of the present technology.
  • FIG. 10C is a diagram showing changes in the amount of signal charge accumulated in a conventional photoelectric conversion unit
  • FIG. 11B is a diagram showing a change subsequent to FIG. 11A
  • It is a schematic plan view which shows the modification of 1st Embodiment.
  • FIG. 16 is a schematic vertical cross-sectional view showing a cross-sectional structure taken along line a15-a15 of FIG. 15;
  • FIG. 11 is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a fourth embodiment of the present technology;
  • FIG. 18 is a schematic vertical cross-sectional view showing a cross-sectional structure taken along line a17-a17 of FIG. 17;
  • FIG. 19 is a schematic cross-sectional view showing a cross-sectional structure along the line a19-a19 of FIG. 18;
  • FIG. 11 is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a fifth embodiment of the present technology;
  • FIG. 21 is a schematic vertical cross-sectional view showing the cross-sectional structure taken along the line a20-a20 of FIG. 20; It is a figure showing a schematic structure of electronic equipment concerning a 6th embodiment of this art.
  • the first conductivity type is p-type and the second conductivity type is n-type will be exemplified.
  • the type and the second conductivity type may be p-type.
  • the first direction and the second direction which are orthogonal to each other in the same plane, are the X direction and the Y direction, respectively.
  • a third direction orthogonal to each of the second directions is the Z direction.
  • the thickness direction of the semiconductor layer 21, which will be described later, will be described as the Z direction.
  • CMOS Complementary Metal Oxide Semiconductor
  • a solid-state imaging device 1A mainly includes a semiconductor chip 2 having a square two-dimensional planar shape when viewed from above. That is, the solid-state imaging device 1A is mounted on the semiconductor chip 2.
  • FIG. 22 this solid-state imaging device 1A (101) takes in image light (incident light 106) from an object through an optical lens 102, and measures the light quantity of the incident light 106 imaged on the imaging surface. Each pixel is converted into an electric signal and output as a pixel signal.
  • a semiconductor chip 2 on which a solid-state imaging device 1A is mounted has a square-shaped pixel array section 2A provided in the center in a two-dimensional plane including X and Y directions orthogonal to each other, A peripheral portion 2B is provided outside the pixel array portion 2A so as to surround the pixel array portion 2A.
  • the pixel array section 2A is a light receiving surface that receives light condensed by an optical lens (optical system) 102 shown in FIG. 22, for example.
  • a plurality of pixels 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction.
  • the pixels 3 are repeatedly arranged in the X direction and the Y direction that are orthogonal to each other within the two-dimensional plane.
  • a plurality of bonding pads 14 are arranged in the peripheral portion 2B.
  • Each of the plurality of bonding pads 14 is arranged, for example, along each of four sides in the two-dimensional plane of the semiconductor chip 2 .
  • Each of the plurality of bonding pads 14 is an input/output terminal used when electrically connecting the semiconductor chip 2 to an external device.
  • the semiconductor chip 2 includes a logic circuit 13 including a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, a control circuit 8, and the like.
  • the logic circuit 13 is composed of a CMOS (Complementary MOS) circuit including, for example, an n-channel conductivity type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a p-channel conductivity type MOSFET as field effect transistors.
  • CMOS Complementary MOS
  • the vertical driving circuit 4 is composed of, for example, a shift register.
  • the vertical drive circuit 4 sequentially selects desired pixel drive lines 10, supplies pulses for driving the pixels 3 to the selected pixel drive lines 10, and drives the pixels 3 in row units. That is, the vertical driving circuit 4 sequentially selectively scans the pixels 3 of the pixel array section 2A in the vertical direction row by row, and outputs signals from the pixels 3 based on the signal charges generated by the photoelectric conversion elements of the pixels 3 according to the amount of received light. is supplied to the column signal processing circuit 5 through the vertical signal line 11 .
  • the column signal processing circuit 5 is arranged, for example, for each column of the pixels 3, and performs signal processing such as noise removal on the signals output from the pixels 3 of one row for each pixel column.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing pixel-specific fixed pattern noise.
  • the horizontal driving circuit 6 is composed of, for example, a shift register.
  • the horizontal driving circuit 6 sequentially outputs a horizontal scanning pulse to the column signal processing circuit 5 to select each of the column signal processing circuits 5 in order, and the pixels subjected to the signal processing from each of the column signal processing circuits 5 are selected.
  • a signal is output to the horizontal signal line 12 .
  • the output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the processed signal.
  • signal processing for example, buffering, black level adjustment, column variation correction, and various digital signal processing can be used.
  • the control circuit 8 generates a clock signal and a control signal that serve as references for the operation of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, etc. based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Generate. The control circuit 8 then outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • the semiconductor chip 2 has a pixel unit PU shown in FIG.
  • the pixel unit PU includes a pixel block 15 and a readout circuit 16, as shown in FIG.
  • the pixel block 15 includes, for example, two pixels 3 adjacent to each other in the Y direction, and one floating diffusion (charge holding portion) FD shared by the two pixels 3.
  • One readout circuit 16 is electrically connected to the floating diffusion FD of the pixel block 15 . That is, the pixel array section 2A of the solid-state imaging device 1A according to the first embodiment includes two pixels 3 adjacent to each other in the Y direction, a floating diffusion FD shared by the two pixels 3, and this floating diffusion FD.
  • Pixel units PU each including a readout circuit 16 connected to the FD are repeatedly arranged in each of the X and Y directions.
  • each pixel 3 of the plurality of pixels 3 has a photoelectric conversion cell 31 .
  • the photoelectric conversion cell 31 includes a first photoelectric conversion unit 32L including a first photoelectric conversion element PD1, a second photoelectric conversion unit 32R including a second photoelectric conversion element PD2, and the first and second photoelectric conversion units 32L and 32R. and a floating diffusion FD for accumulating signal charges photoelectrically converted by the (first and second photoelectric conversion elements PD1 and PD2).
  • the photoelectric conversion cell 31 includes a first transfer transistor TR1 that transfers signal charges photoelectrically converted by the first photoelectric conversion unit 32L (first photoelectric conversion element PD1) to the floating diffusion FD, and a second photoelectric conversion unit 32R ( and a second transfer transistor TR2 for transferring the signal charge photoelectrically converted by the second photoelectric conversion element PD2) to the floating diffusion FD.
  • Each of the two photoelectric conversion elements PD1 and PD2 generates signal charges according to the amount of light received. Each of the two photoelectric conversion elements PD1 and PD2 temporarily accumulates (holds) the generated signal charge.
  • the photoelectric conversion element PD1 has a cathode side electrically connected to the source region of the first transfer transistor TR1, and an anode side electrically connected to a reference potential line (for example, ground).
  • the photoelectric conversion element PD2 has a cathode side electrically connected to the source region of the transfer transistor TR2, and an anode side electrically connected to a reference potential line (for example, ground). Photodiodes, for example, are used as the photoelectric conversion elements PD1 and PD2.
  • the first transfer transistor TR1 has a source region electrically connected to the cathode side of the photoelectric conversion element PD1, and a drain region electrically connected to the floating diffusion FD.
  • a gate electrode of the first transfer transistor TR1 is electrically connected to a transfer transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the second transfer transistor TR2 has a source region electrically connected to the cathode side of the photoelectric conversion element PD2, and a drain region electrically connected to the floating diffusion FD.
  • a gate electrode of the second transfer transistor TR2 is electrically connected to a transfer transistor drive line among the pixel drive lines 10 .
  • the floating diffusion FD shared by the two photoelectric conversion cells 31 temporarily stores the signal charge transferred from the first photoelectric conversion element PD1 via the first transfer transistor TR1 in the first photoelectric conversion unit 32L.
  • the signal charges transferred from the second photoelectric conversion element FD2 via the second transfer transistor TR2 are temporarily accumulated and held.
  • the input stage side of the readout circuit 16 is connected to the floating diffusion FD.
  • the readout circuit 16 reads out the signal charge accumulated in the floating diffusion FD and outputs a pixel signal based on the signal charge.
  • the readout circuit 16 is shared by, but not limited to, two pixels 3, in other words, two photoelectric conversion cells 31, for example.
  • the readout circuit 16 includes an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST. These transistors (AMP, SEL, RST) are composed of MOSFETs having a gate insulating film made of a silicon oxide film (SiO2 film), a gate electrode, and a pair of main electrode regions functioning as a source region and a drain region. ing.
  • these transistors may be MISFETs (Metal Insulator Semiconductor FET) whose gate insulating film is a silicon nitride film (Si 3 N 4 film) or a laminated film of a silicon nitride film and a silicon oxide film.
  • MISFETs Metal Insulator Semiconductor FET
  • the amplification transistor AMP has a source region electrically connected to the drain region of the select transistor SEL, and a drain region electrically connected to the power supply line VDD.
  • a gate electrode of the amplification transistor AMP is electrically connected to the floating diffusion FD.
  • the selection transistor SEL has a source region electrically connected to the vertical signal line 11 (VSL) and a drain electrically connected to the source region of the amplification transistor AMP.
  • a gate electrode of the select transistor SEL is electrically connected to a select transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • the reset transistor RST has a source region electrically connected to the floating diffusion FD and a drain region electrically connected to the power supply line VDD.
  • a gate electrode of the reset transistor RST is electrically connected to a reset transistor drive line among the pixel drive lines 10 (see FIG. 2).
  • An electronic device equipped with the solid-state imaging device 1A reads signal charges from the first and second photoelectric conversion elements PD1 and PD2 (first and second photoelectric conversion units 32L and 32R), respectively, and detects the phase difference.
  • the focus is correct, there is no difference in the amount of signal charges accumulated in the first photoelectric conversion element PD1 and the second photoelectric conversion element PD2.
  • the focus is not correct, for example, as shown in FIG. A difference occurs between the amount Q2 of the signal charge accumulated in the second photoelectric conversion element PD2.
  • the electronic device performs an operation such as operating the objective lens so that the line of Q1 and the line of Q2 in the first range between 0 and L1 of the light amount are aligned. match. This is autofocus.
  • the electronic device when the focus adjustment is completed, the electronic device generates an image using the added signal charges Q3 accumulated in the light amount range from 0 to L3 in FIG. 9, for example.
  • FIG. 4 shows the illustration of a multilayer wiring layer, which will be described later, is omitted in FIGS. 4 is upside down with respect to FIG. 1 shows the light incident surface side of the semiconductor chip 2, but FIG. 4 shows the semiconductor chip 2 when viewed from the side opposite to the light incident surface side (multilayer wiring layer side) shown in FIG. is a plan view of the.
  • the semiconductor chip 2 includes a semiconductor layer 21 having a first surface S1 and a second surface S2 located opposite to each other in the thickness direction (Z direction), and the semiconductor layer 21 having a first surface S1 and a second surface S2. 21 is further provided with a color filter 45 and a microlens (on-chip lens) 46 which are sequentially laminated from the second surface S2 side.
  • the semiconductor chip 2 further includes a multilayer wiring layer including an insulating layer and a wiring layer provided on the first surface S1 side of the semiconductor layer 21 (not shown).
  • the semiconductor layer 21 is composed of, for example, a single crystal silicon substrate.
  • a color filter 45 and a microlens 46 are provided for each pixel 3 (photoelectric conversion cell 31).
  • the color filter 45 color-separates the incident light incident from the light incident surface side of the semiconductor chip 2 .
  • the microlenses 46 condense the irradiation light and allow the condensed light to enter the pixels 3 (photoelectric conversion cells 31) efficiently.
  • one color filter 45 and one microlens 46 are provided so as to cover both the first photoelectric conversion section 32L and the second photoelectric conversion section 32R.
  • the first surface S1 of the semiconductor layer 21 is sometimes called an element formation surface or main surface, and the second surface S2 side is sometimes called a light incident surface or back surface.
  • the solid-state imaging device 1A of the first embodiment converts light incident from the second surface (light incident surface, back surface) S2 side of the semiconductor layer 21 into the first and second photoelectric conversion cells 31 provided on the semiconductor layer 21 . Photoelectric conversion is performed by the second photoelectric conversion units 32L and 32R (first and second photoelectric conversion elements PD1 and PD2).
  • the semiconductor layer 21 has photoelectric conversion cells 31 partitioned by inter-cell diffusion isolation regions 22 as second diffusion isolation regions. This photoelectric conversion cell 31 is provided for each pixel 3 . Although two photoelectric conversion cells 31 are illustrated in FIG. 4, the number of photoelectric conversion cells 31 is not limited to two. Although not shown in detail, the photoelectric conversion cells 31 are repeatedly arranged for each pixel 3 via the inter-cell diffusion separation regions 22 in the X direction and the Y direction in plan view. The photoelectric conversion cell 31 has a rectangular planar pattern with four sides.
  • the photoelectric conversion cell 31 includes first and second photoelectric conversion cells provided adjacent to each other via an intra-cell diffusion isolation region 23 as a first diffusion isolation region in a semiconductor layer 21 in plan view. It has second photoelectric conversion units 32L and 32R, and a floating diffusion FD (see FIG. 4) provided in the intra-cell diffusion separation region 23 on the first surface S1 side of the semiconductor layer 21 .
  • the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 are diffusion isolation regions having the first conductivity type in which impurities are diffused.
  • the gate electrode 42L is provided on the first surface S1 side of the semiconductor layer 21 so as to overlap the first photoelectric conversion unit 32L in plan view, and the floating diffusion is provided from the first photoelectric conversion unit 32L. It further has a first transfer transistor TR1 for transferring signal charges to the FD.
  • the gate electrode 42R is provided on the first surface S1 side of the semiconductor layer 21 so as to overlap the second photoelectric conversion unit 32R in plan view, and the floating diffusion is provided from the second photoelectric conversion unit 32R. It further has a second transfer transistor TR2 for transferring signal charges to the FD.
  • the photoelectric conversion cell 31 is provided in the intra-cell diffusion isolation region 23 on the first surface S1 side of the semiconductor layer 21, separated from the floating diffusion FD, and is configured to have the first and second transfer transistors TR1 and TR2 in plan view. and an insulating separator 35 extending between and outside each of the gate electrodes 42L, 42R.
  • the photoelectric conversion cells 31 have a square planar pattern with four sides. Although not shown in detail, the photoelectric conversion cells 31 are repeatedly arranged for each pixel 3 in each of the X direction and the Y direction in a plan view via the inter-cell diffusion isolation region 22 .
  • the inter-cell diffusion separation region 22 extends across the first surface S1 and the second surface S2 of the semiconductor layer 21, and the photoelectric conversion cells 31 adjacent to each other in the two-dimensional plane. are electrically separated.
  • the intra-cell diffusion separation region 23 extends across the first surface S1 and the second surface S2 of the semiconductor layer 21 in the same manner as the inter-cell diffusion separation region 22, and is connected to the first photoelectric conversion section 32L of the photoelectric conversion cell 31. It is electrically isolated from the second photoelectric conversion unit 32R.
  • Each of the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 is composed of, for example, a p-type semiconductor region (first conductivity type first semiconductor region) 24 .
  • the inter-cell diffusion separation region 22 corresponding to one photoelectric conversion cell 31 has a square planar annular pattern (square ring planar pattern) in plan view. It has become.
  • the inter-cell diffusion separation regions 22 corresponding to the plurality of photoelectric conversion cells 31 (pixels 3) have a grid plane pattern.
  • the photoelectric conversion cell 31 is composed of two inter-cell diffusion separation regions 22 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween and two inter-cell diffusion separation regions 22 extending in the Y direction with the photoelectric conversion cell 31 interposed therebetween. being surrounded.
  • the intra-cell diffusion separation region 23 extends along the Y direction in a plan view, and extends between two inter-cell diffusion separation regions 22 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween. It is connected with the department and integrated.
  • Each of the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R photoelectrically converts light incident from the second surface (light incident surface, rear surface) S2 side of the semiconductor layer 21 to generate signal charges.
  • Each of the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R also functions as a floating diffusion that temporarily accumulates the generated signal charge.
  • the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R are arranged in the photoelectric conversion cell 31 along the first direction.
  • the first direction is described as being the X direction, but it may be any direction other than the X direction as long as it is perpendicular to the thickness direction.
  • each of the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R includes, for example, an n-type semiconductor region (second conductivity type second semiconductor region) 25, and constitutes the photoelectric conversion elements PD1 and PD2 described above. are doing.
  • the floating diffusion FD is provided in the inter-cell diffusion isolation region 22 on the first surface S1 side of the semiconductor layer 21 .
  • the floating diffusion FD is such that the inter-cell diffusion isolation region 22 between the two photoelectric conversion cells 31 and the intra-cell diffusion isolation region 23 of each of the two photoelectric conversion cells 31 intersect. It is located at the intersection of diffusion isolation regions including regions, ie inter-cell diffusion isolation regions 22 and intra-cell diffusion isolation regions 23 .
  • the floating diffusion FD is composed of, for example, an n-type semiconductor region and is an n-type floating diffusion region.
  • carriers as signal charges accumulated in the floating diffusion FD are electrons (e ⁇ ).
  • the first transfer transistor TR1 is provided on the first surface S1 side of the semiconductor layer 21 .
  • the first transfer transistor TR1 is, for example, an n-channel conductivity type MOSFET.
  • the first transfer transistor TR1 is provided so as to form a channel in the active region between the first photoelectric conversion unit 32L and the floating diffusion FD. It has an electrode 42L.
  • the signal charge is transferred from the first photoelectric conversion unit 32L functioning as the source region to the floating diffusion FD functioning as the drain region. and there are cases where it is not transferred.
  • the intra-cell diffusion separation region 23 p-type semiconductor region 24
  • a second potential barrier P2a higher than the first potential barrier P1 can be formed.
  • the modulation lowers the second potential barrier P2a, and signal charges flow from the first photoelectric conversion unit 32L to the floating diffusion FD.
  • the second transfer transistor TR2 is provided on the first surface S1 side of the semiconductor layer 21.
  • the second transfer transistor TR2 is, for example, an n-channel conductivity type MOSFET.
  • the second transfer transistor TR2 is provided so as to form a channel in the active region between the second photoelectric conversion unit 32R and the floating diffusion FD. It has an electrode 42R.
  • the signal charge is transferred from the second photoelectric conversion unit 32R functioning as the source region to the floating diffusion FD functioning as the drain region. and may not be transferred.
  • it is assumed that the signal charge is transferred when the second transfer transistor TR2 is on, and the signal charge is not transferred when it is off.
  • the second transfer transistor TR2 when the second transfer transistor TR2 is off, that is, when signal charges are not transferred from the second photoelectric conversion unit 32R to the floating diffusion FD, the intra-cell diffusion separation region 23 (p-type semiconductor region 24), a second potential barrier P2b higher than the first potential barrier P1 can be formed.
  • the second transfer transistor TR2 When the second transfer transistor TR2 is turned on, the second potential barrier P2b is lowered by modulation, and signal charges flow from the second photoelectric conversion unit 32R to the floating diffusion FD.
  • the gate insulating film 41 is composed of, for example, a silicon oxide film.
  • Each of the gate electrodes 42L and 42R is composed of, for example, a polycrystalline silicon film (doped polysilicon film) into which impurities for reducing resistance are introduced.
  • the insulating separator 35 extends in the Y direction between the gate electrode 42L of the first transfer transistor TR1 and the gate electrode 42R of the second transistor in plan view. It extends linearly from the floating diffusion FD side to the opposite side and protrudes outward from between the two gate electrodes 42L and 42T.
  • the insulating separator 35 is formed with a length exceeding half of the Y-direction length of the photoelectric conversion units (32L, 32R) from a position slightly away from the floating diffusion FD.
  • the insulating separator 35 includes a groove portion 36 extending from the first surface S1 side of the semiconductor layer 21 toward the second surface S2 side, and an insulating film 37 embedded in the groove portion 36. including.
  • the insulating separator 35 is covered with a gate insulating film 41 .
  • the photoelectric conversion cells 31 are provided on the surface layer portions of the first and second photoelectric conversion units 32L and 32R on the first surface S1 side of the semiconductor layer 21. It further has a p-type semiconductor region (first conductivity type third semiconductor region) 27 . Further, the photoelectric conversion cell 31 is an n-type semiconductor region (second It further has a conductivity type fourth semiconductor region) 26 .
  • the p-type semiconductor region 27 is provided on the surface layer of each of the first and second photoelectric conversion units 32L and 32R so as to be in contact with the side surfaces of the gate insulating film 41 and the insulating separator 35 .
  • the p-type semiconductor region 27 in contact with the side surfaces of the gate insulating film 41 and the insulating separator 35, pinning of the side surfaces of the insulating separator 35 can be ensured.
  • the n-type semiconductor region 26 is in contact with the bottom of the p-type semiconductor region 27 in the surface layer of each of the first and second photoelectric conversion units 32L and 32R, and forms the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region. 23 are provided in contact with each side surface.
  • the n-type semiconductor region 26 has a higher impurity concentration than the n-type semiconductor region 25 . In this way, by providing the n-type semiconductor region 26 in contact with the side surfaces of the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23, each of the first and second photoelectric conversion units 32L and 32R is parasitic Capacitance can be added, and the saturation signal quantity Qs can be improved.
  • the parasitic capacitance having the insulating separator 35 as a dielectric is added to each of the photoelectric conversion units 32L and 32R, so that the saturation signal amount Qs can be further improved. Moreover, since this parasitic capacitance increases in proportion to the length of the insulating separator 35, the parasitic capacitance added to the photoelectric conversion units 32L and 32R can be adjusted by adjusting the length of the insulating separator 35. can be done.
  • FIG. 9 is a graph showing the output of the photoelectric conversion unit of the solid-state imaging device with respect to the amount of incident light.
  • the horizontal axis of FIG. 9 is the amount of incident light, and the vertical axis is the output of the photoelectric conversion unit.
  • 10A to 10D are schematic diagrams showing changes in signal charges accumulated in the photoelectric conversion unit of the solid-state imaging device 1A.
  • the first range is a region where the light quantity is from 0 to L1
  • the second range is a region where the light quantity exceeds L1 and reaches L2
  • the third range is a region where the light quantity exceeds L2 and reaches L3, and the light quantity exceeds L3.
  • the region is called the fourth range.
  • FIG. 9 shows an example in which the first photoelectric conversion unit 32L is saturated before the second photoelectric conversion unit 32R.
  • phase difference detection for autofocus is performed in this first range. More specifically, phase difference detection is performed in a first range where both the output Q1 of the first photoelectric conversion section 32L and the output Q2 of the second photoelectric conversion section 32R maintain linearity with respect to the amount of light.
  • the first photoelectric conversion unit 32L is saturated earlier than the second photoelectric conversion unit 32R, and part of the signal charge of the first photoelectric conversion unit 32L is transferred to the intra-cell diffusion isolation region 23. crosses the first potential barrier P1 and flows to the second photoelectric conversion portion 32R. This is the overflow (Fig. 10B).
  • the second photoelectric conversion section 32R is also saturated. This is the state shown in FIG. 10C, in which signal charges are accumulated beyond the first potential barrier P1 of the intra-cell diffusion separation region 23 without distinguishing between the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R. be done. Then, the outputs of the first photoelectric conversion section 32L and the second photoelectric conversion section 32R increase until the charge overflows into the floating diffusion FD beyond the second potential barriers P2a and P2b.
  • the signal charge exceeds the second potential barrier P1a of the first transfer transistor TR1 and the second potential barrier P2b of the second transfer transistor TR2 and overflows into the floating diffusion FD (FIG. 10D). ).
  • the overflowed signal charges are erased by the reset transistor RST.
  • the image formation is performed using the addition signal Q3 from the first range to the third range. More specifically, the addition signal Q3 is performed within the first to third ranges where the linearity with respect to the amount of light is maintained.
  • FIG. 11A is a diagram showing changes in signal charge amount accumulated in a conventional photoelectric conversion unit.
  • FIG. 11B is a diagram showing changes subsequent to FIG. 11A.
  • the first transfer transistor TR1 when the signal charge of the first photoelectric conversion unit 32L is read out in the phase mode, for example, the first transfer transistor TR1 is turned on to transfer the signal charge of the first photoelectric conversion unit 32L to the floating diffusion ( FIG. 11A).
  • the potential of the intra-cell diffusion isolation region 23 between the first photoelectric conversion section 32L and the second photoelectric conversion section 32R is modulated.
  • the potential barrier of the intra-cell diffusion separation region 23 is lowered by the amount corresponding to this potential modulation region (FIG. 11B).
  • part of the signal charge on the side of the second photoelectric conversion unit 32R that is not read is read out via this modulation region, which may degrade the phase difference detection performance.
  • the photoelectric conversion cell 31 of this first embodiment has an insulating separator 35 . Therefore, during the period in which the first transfer transistor TR1 is turned on, the potential of the intra-cell diffusion isolation region 23 between the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R is modulated. , the blooming path in the modulation region can be physically closed by the insulating separator 35 even if the potential barrier of the intra-cell diffusion separation region 23 is lowered by an amount equivalent to Leakage of signal charges to the photoelectric conversion unit 32L side can be suppressed. This makes it possible to improve the phase difference detection performance.
  • the blooming path in the modulation region can be closed by the insulating separator 35, and the voltage from the first photoelectric conversion unit 32L side that is not read out to the second photoelectric conversion unit 32R side can be closed. signal charge leakage can be suppressed. This makes it possible to improve the phase difference detection performance.
  • the depth De (see FIG. 6) of the insulating separator 35 in the Z direction is such that the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32L and the second photoelectric conversion unit 32L during the period in which one of the first and second transfer transistors TR1 and TR2 is turned on. It is preferable to make it deeper than the thickness (height) of the modulation region in which the potential of the intra-cell diffusion separation region 23 between the conversion portion 32R is modulated.
  • the insulating separator 35 preferably extends between and outside the gate electrode 42L of the first transfer transistor TR1 and the gate electrode 42R of the second transfer transistor TR2 in plan view. Moreover, it is preferable that the insulating separator 35 is separated from the floating diffusion FD in plan view.
  • the solid-state imaging device 1A In the solid-state imaging device 1A according to the first embodiment, four photoelectric conversion units (31L, 31R, 31L, 31R) share one floating diffusion FD. In this case, compared to the case where the floating diffusion FD is provided for each of the four photoelectric conversion units (31L, 31R, 31L, 31R), the volume of the photoelectric conversion unit (Photo Diode) can be increased to increase the volume. It is possible to measure the saturation signal amount.
  • the insulating separator 35 is configured to have a length exceeding half the length of the photoelectric conversion units 32L and 32R in the Y direction from a position slightly away from the floating diffusion FD.
  • the present technology is not limited to the length of the first embodiment.
  • the Y-direction length of the insulating separator 35 may be less than half the Y-direction length of the photoelectric conversion units 32L and 32R.
  • the insulating separator 35 preferably has a length extending between and outside the gate electrode 42L of the first transfer transistor TR1 and the gate electrode 42R of the second transfer transistor TR2 in plan view.
  • a solid-state imaging device 1B according to the second embodiment of the present technology basically has the same configuration as that of the solid-state imaging device 1A according to the above-described first embodiment, except for the following configurations.
  • the solid-state imaging device 1B according to the second embodiment newly includes an n-type semiconductor region 28 (fifth semiconductor region).
  • n-type semiconductor region 28 finth semiconductor region
  • the n-type semiconductor region 28 crosses the intra-cell diffusion separation region 23 to control the potential barrier between the first photoelectric conversion section 32L and the second photoelectric conversion section 32R.
  • the n-type semiconductor region 28 is arranged at a position deeper than the insulating separator 35 and is separated from the insulating separator 35 .
  • the n-type semiconductor region 28 extends along the Y direction in plan view, and the width in the X direction is wider than the width of the insulating separator 35 in the X direction.
  • the n-type semiconductor region 28 crosses directly under the insulating separator 35 and partially overlaps the insulating separator 35 in a plan view.
  • the n-type semiconductor region 28 has an impurity concentration capable of canceling the impurities contained in the p-type semiconductor region 24 and inverting the conductivity type from p-type to n-type.
  • the n-type semiconductor region 28 has an impurity concentration higher than that of the p-type semiconductor region 24 and the n-type semiconductor region 25, for example.
  • the solid-state imaging device 1B according to the second embodiment also provides the same effects as the solid-state imaging device 1A according to the first embodiment.
  • the n-type semiconductor region 28 is provided directly below the insulating separator, so that a A desired potential can be formed, and the supernatant signal amount and the saturation signal amount Qs in the single photoelectric conversion cell 31 can be adjusted.
  • n-type semiconductor region 28 may be selectively formed in the intra-cell diffusion isolation region 23 with a width substantially equal to that of the intra-cell diffusion isolation region 23 .
  • a solid-state imaging device 1C according to the third embodiment of the present technology basically has the same configuration as that of the solid-state imaging device 1A according to the above-described first embodiment, except for the following configurations.
  • the inter-cell diffusion isolation region 22 between the two photoelectric conversion cells 31 arranged in the Y direction is also insulated and isolated.
  • a body 35 is provided.
  • Other configurations are the same as those of the above-described first embodiment.
  • the insulating separator 35 may be provided in the inter-cell diffusion separation region 22 between the photoelectric conversion cells 31 of the same color, or may be provided in the inter-cell diffusion separation region 22 between the photoelectric conversion cells 31 of different colors.
  • a solid-state imaging device 1D according to the fourth embodiment of the present technology basically has the same configuration as that of the solid-state imaging device 1A according to the above-described first embodiment, except for the following configurations.
  • an inter-cell diffusion separation region 22 (first diffusion an inter-cell isolation region 52 (first isolation region) provided so as to overlap with the isolation region), and an inter-cell isolation region 52 (first isolation region), which overlaps the intra-cell diffusion isolation region 23 in a plan view on the second surface S2 side of the semiconductor layer 21. and a provided intra-cell isolation region 53 .
  • the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 of the fourth embodiment are different in the Z direction than the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 of the above-described first embodiment. is thinner.
  • the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 of the fourth embodiment are thicker in the Z direction than the insulation separator 35 in the Z direction.
  • the inter-cell isolation region has a multi-stage structure including inter-cell diffusion isolation regions 22 and inter-cell insulating isolation regions 52 .
  • the intra-cell isolation region has a multi-stage structure including the intra-cell diffusion isolation region 23 and the intra-cell insulation isolation region 53 .
  • the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 are arranged on the first surface S1 side of the semiconductor layer 21 .
  • the inter-cell insulating isolation region 52 and the intra-cell insulating isolation region 53 include, for example, a trench provided in the semiconductor layer 21 and an insulating film 54 embedded in the trench. Membranes can be used.
  • the inter-cell insulating isolation region 52 has a planar pattern of the same shape as the inter-cell diffusion isolation region 22 .
  • the inter-cell insulating isolation region 52 corresponding to one photoelectric conversion cell 31 (pixel 3) has an annular planar pattern ( It is a square ring-shaped plane pattern).
  • the inter-cell insulating separation regions 52 corresponding to the plurality of photoelectric conversion cells 31 (pixels 3) have a grid plane pattern similar to the plane pattern of the inter-cell diffusion separation regions 22 .
  • the photoelectric conversion cell 31 of the fourth embodiment includes two inter-cell diffusion separation regions 22 and two inter-cell insulation separation regions 52 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween. It is surrounded by two inter-cell diffusion separation regions 22 and two inter-cell insulation separation regions 52 extending in the Y direction.
  • the planar pattern of the intra-cell insulating isolation region 53 is different from the planar pattern of the intra-cell diffusion isolation region 23 .
  • the intra-cell diffusion separation region 23 extends along the Y direction in a plan view, and extends between two inter-cell diffusion separation regions 22 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween. It is connected with the department and integrated.
  • the intra-cell insulating isolation region 53 extends inward from the intermediate portion of each of the two inter-cell insulating isolation regions 52 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween in plan view. They protrude toward (the photoelectric conversion cell 31 side) and are spaced apart from each other. A space between the two intra-cell insulating isolation regions 53 functions as an overflow path.
  • the continuous intra-cell diffusion isolation region 23 and the intermittent intra-cell insulation isolation are provided between the first photoelectric conversion portion 32L and the second photoelectric conversion portion 32R of the photoelectric conversion cell 31.
  • pixels photoelectric conversion cells including two photoelectric conversion units have been described.
  • a pixel photoelectric conversion section including one photoelectric conversion section and a transfer transistor will be described.
  • a solid-state imaging device 1E according to the fifth embodiment of the present technology includes a pixel block (cell block) 15A shown in FIG.
  • the pixel block 15A includes four pixels 3a arranged two by two in the X direction and the Y direction, and one floating diffusion shared by the four pixels 3a. FD.
  • the readout circuit 16 shown in FIG. 3 of the first embodiment is electrically connected to the floating diffusion FD.
  • the pixel block 15A includes a photoelectric conversion section 33 provided adjacent to each other via a diffusion separation region 22a for each pixel 3a of the four pixels 3a in the semiconductor layer 21, and a first photoelectric conversion section 33 of the semiconductor layer 21.
  • a transfer transistor TR On the surface S1 side, there is provided a transfer transistor TR in which the gate electrode 42 overlaps the photoelectric conversion unit 33 in plan view for each pixel 3a of the four pixels 3a.
  • the diffusion isolation region 22a and the transfer transistor TR correspond to the inter-cell diffusion isolation region 22 and the transfer transistors TR1 and TR2 shown in FIGS. 4 and 5 of the first embodiment, respectively.
  • the pixel block 15A has an insulating separator 35 .
  • the pixel block 15A of the fifth embodiment includes two photoelectric conversion units 33 arranged adjacent to each other in the Y direction with the diffusion isolation region 22a extending in the X direction interposed therebetween, and a diffusion isolation region extending in the Y direction. and two photoelectric conversion units 33 arranged in the X direction adjacent to each other via 22a. Therefore, in the two photoelectric conversion units 33 arranged adjacent to each other in the Y direction via the diffusion separation region 22a extending in the X direction, one photoelectric conversion unit 33 corresponds to the first photoelectric conversion unit of the present technology, The other photoelectric conversion unit 33 corresponds to the second photoelectric conversion unit of the present technology.
  • one photoelectric conversion unit 33 corresponds to the first photoelectric conversion unit of the present technology
  • the other photoelectric conversion unit 33 corresponds to the second photoelectric conversion unit of the present technology.
  • the transfer transistor TR in which one photoelectric conversion unit 33 and the gate electrode 42 of the two photoelectric conversion units 33 arranged adjacent to each other in the Y direction via the diffusion isolation region 22a extending in the X direction overlap in plan view. corresponds to the first transistor of the present technology
  • the transfer transistor TR in which the photoelectric conversion unit 33 and the gate electrode 42 overlap each other in plan view corresponds to the second transistor of the present technology
  • the transfer transistor TR in which one photoelectric conversion unit 33 and the gate electrode 42 of the two photoelectric conversion units 33 arranged adjacent to each other in the X direction via the diffusion isolation region 22a extending in the Y direction overlap in plan view corresponds to the first transistor of the present technology
  • the transfer transistor TR in which the photoelectric conversion unit 33 and the gate electrode 42 overlap each other in plan view corresponds to the second transistor of the present technology.
  • the photoelectric conversion section 33 of each of the four pixels 3a is partitioned by the diffusion isolation region 22a. That is, the two photoelectric conversion units 33 arranged in the Y direction are adjacent to each other via the diffusion isolation region 22a extending in the X direction. Also, the two photoelectric conversion units 33 arranged in the X direction are adjacent to each other with the diffusion isolation region 22a extending in the Y direction interposed therebetween.
  • the photoelectric conversion unit 33 photoelectrically converts light incident from the second surface (light incident surface, back surface) S2 of the semiconductor layer 21 to generate signal charges. Further, the photoelectric conversion unit 33 includes, for example, an n-type semiconductor region (second conductivity type second semiconductor region), similar to the first and second photoelectric conversion units 32L and 32R shown in FIG. ) 25, constituting a photoelectric conversion element PD. The photoelectric conversion unit 33 of this embodiment also functions as a floating diffusion that temporarily accumulates the generated signal charges.
  • the floating diffusion FD is provided at an intersection where the diffusion isolation region 22a extending in the X direction and the diffusion isolation region 22a extending in the Y direction intersect. That is, the floating diffusion FD is provided in the diffusion isolation region 22a on the first surface S1 side of the semiconductor layer 21, like the floating diffusion FD shown in FIG. 7 of the first embodiment.
  • a gate electrode 42 of each of the four transfer transistors TR included in each of the four pixels 3a is arranged around the floating diffusion FD.
  • the floating diffusion FD is an n-type floating diffusion region made of, for example, an n-type semiconductor region as in the first embodiment described above.
  • the transfer transistor TR has basically the same configuration as the transfer transistors TR1 and TR2 shown in FIGS. 3 and 4 of the first embodiment. transfer the signal charge photoelectrically converted to the floating diffusion FD.
  • the floating diffusion FD accumulates and holds signal charges transferred from the photoelectric conversion unit 33 via the transfer transistor TR.
  • the transfer transistor TR is provided so as to form a channel in the active region between the photoelectric conversion portion 33 and the floating diffusion FD, and has a gate insulating film 41 and a gate electrode 42 which are sequentially stacked on the first surface S1. .
  • the transfer transistor TR is turned on and off according to the voltage between the gate and the source, thereby transferring signal charges from the photoelectric conversion unit 33 functioning as a source region to the floating diffusion FD functioning as a drain region.
  • the insulating separator 35 is provided in the diffusion isolation region 22a between the two photoelectric conversion units 33 aligned in the Y direction, and is located between the two photoelectric conversion units 33 aligned in the X direction. is provided in the diffusion isolation region 22a between the .
  • two photoelectric conversion units 33 are arranged in each of the X direction and the Y direction along with the arrangement of the pixels 3a. and two on each side in the Y direction and separated from the floating diffusion FD.
  • the insulating separator 35 has a groove portion 36 extending from the first surface S1 side of the semiconductor layer 21 toward the second surface S2 side in the same manner as the insulating separator 35 shown in FIG. 6 of the first embodiment described above. , and an insulating film 37 embedded in the trench 36. As shown in FIG.
  • the Z-direction depth De (see FIG. 6) of the insulating separator 35 turns on one of the transfer transistors TR in two pixels 3a arranged in the X-direction or the Y-direction, as in the first embodiment described above. It is preferable to make it deeper than the thickness (height) of the modulation region in which the potential of the diffusion isolation region 22a between the two photoelectric conversion portions 33 is modulated during the period.
  • the insulating separator 35 is formed between the gate electrode 42 of one transfer transistor TR and the other transfer transistor TR in two pixels 3a arranged in the X direction or the Y direction in a plan view. It preferably extends between and outside the gate electrode 42 . Moreover, it is preferable that the insulating separator 35 is separated from the floating diffusion FD in plan view.
  • color filters 45 and microlenses 46 are sequentially laminated from the second surface S2 side. is provided.
  • each of the color filters 45 and the microlenses 46 is arranged for each pixel block 15A.
  • the transfer transistor TR of one pixel 3a when the transfer transistor TR of one pixel 3a is turned on, the transfer transistor TR of the other pixel 3a is unintentionally A phenomenon in which the signal charge of the photoelectric conversion unit 33 leaks into the floating diffusion FD can be suppressed.
  • FIG. 22 is a diagram showing a schematic configuration of an electronic device (for example, camera) according to the sixth embodiment of the present technology.
  • the electronic device 100 includes a solid-state imaging device 101, an optical lens 102, a shutter device 103, a driving circuit 104, and a signal processing circuit 105.
  • This electronic device 100 shows an embodiment in which the solid-state imaging devices according to the first to fifth embodiments of the present technology are used as the solid-state imaging device 101 in an electronic device (for example, a camera).
  • the optical lens 102 forms an image of image light (incident light 106) from the subject on the imaging surface of the solid-state imaging device 101.
  • image light incident light 106
  • a shutter device 103 controls a light irradiation period and a light shielding period for the solid-state imaging device 101 .
  • a drive circuit 104 supplies drive signals for controlling the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 103 .
  • Signal transfer of the solid-state imaging device 101 is performed by a driving signal (timing signal) supplied from the driving circuit 104 .
  • the signal processing circuit 105 performs various signal processing on signals (pixel signals) output from the solid-state imaging device 101 .
  • the video signal that has undergone signal processing is stored in a storage medium such as a memory, or output to a monitor.
  • the light reflection suppression unit in the solid-state imaging device 101 suppresses light reflection from the light shielding film and the insulating film in contact with the air layer. This can be suppressed, and the image quality can be improved.
  • the electronic device 100 to which the solid-state imaging device of the above-described embodiment can be applied is not limited to cameras, and can be applied to other electronic devices.
  • the present invention may be applied to imaging devices such as camera modules for mobile devices such as mobile phones and tablet terminals.
  • the present technology is also called a ToF (Time of Flight) sensor, and can be applied to light detection devices in general, including ranging sensors that measure distance.
  • a ranging sensor emits irradiation light toward an object, detects the reflected light that is reflected from the surface of the object, and detects the light that returns after the irradiation light is emitted.
  • the structure of the element isolation region of this distance measuring sensor the structure of the element isolation region described above can be adopted.
  • the present technology may be configured as follows. (1) a semiconductor layer having first and second surfaces opposite to each other; and a photoelectric conversion cell provided in the semiconductor layer,
  • the photoelectric conversion cell is first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer; a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer;
  • a gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the floating diffusion.
  • a transfer transistor A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and a second photoelectric conversion section for transferring signal charges from the second photoelectric conversion section to the floating diffusion.
  • a transfer transistor provided in the first diffusion separation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view an insulating separator that A photodetector having (2) The photodetector according to (1), wherein the insulating separator extends between and outside the gate electrodes of the first and second transfer transistors in plan view.
  • the depth of the insulating isolation is the thickness of the modulation region in which the potential of the first diffusion isolation region is modulated while one of the first and second transfer transistors is turned on in the phase difference mode.
  • the photodetector according to (1) or (2) above which is deeper than the depth.
  • the first diffusion isolation region is composed of a first conductivity type first semiconductor region, The photodetector according to any one of (1) to (3), wherein each of the first and second photoelectric conversion units includes a second conductivity type second semiconductor region.
  • the first and second transfer transistors each have a gate insulating film provided on the first surface side of the semiconductor layer, The photodetector according to any one of (1) to (4) above, wherein the insulating separator is covered with the gate insulating film.
  • the insulating separator includes a groove provided on the first surface side of the semiconductor layer and an insulating film embedded in the groove. detection device.
  • the photoelectric conversion cell further includes a third semiconductor region of a first conductivity type provided in each of the first and second photoelectric conversion units on the first surface side of the semiconductor layer The photodetector according to any one of (6).
  • the photoelectric conversion cell is provided in the first and second photoelectric conversion portions on the first surface side of the semiconductor layer so as to be in contact with the bottom portion of the third semiconductor region, and has an impurity concentration higher than that of the second semiconductor region.
  • the above The photodetector according to any one of 1) to (8).
  • the photoelectric conversion cells are arranged adjacent to each other with the second diffusion isolation region interposed therebetween in plan view;
  • a first transfer transistor to A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion unit to the floating diffusion.
  • a second transfer transistor to an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in a plan view. .
  • (13) The photodetector according to (12) above, wherein the insulating separator extends between and outside the gate electrodes of the first and second transfer transistors in plan view.
  • the diffusion isolation region extends in a first direction;
  • a photodetector, an optical lens that forms an image of image light from a subject on an imaging surface of the photodetector, and a signal processing circuit that performs signal processing on a signal output from the photodetector The photodetector is a semiconductor layer having first and second surfaces opposite to each other; and a photoelectric conversion cell provided in the semiconductor layer, The photoelectric conversion cell is first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer; a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer; A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the
  • a transfer transistor A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and a second photoelectric conversion section for transferring signal charges from the second photoelectric conversion section to the floating diffusion.
  • a transfer transistor provided in the first diffusion separation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view an insulating separator that electronic equipment.
  • the photodetector is a semiconductor layer having first and second surfaces opposite to each other; first and second photoelectric conversion units provided adjacent to each other via a diffusion isolation region in the semiconductor layer; a floating diffusion provided in the diffusion isolation region on the first surface side of the semiconductor layer; A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the first photoelectric conversion unit to the floating diffusion.
  • a first transfer transistor to A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion unit to the floating diffusion.
  • a second transfer transistor to and an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in a plan view.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

The present invention improves phase difference detection accuracy. This photo detection device comprises a photoelectric conversion cell provided in a semiconductor layer. The photoelectric conversion cell includes first and second photoelectric conversion parts provided adjacent to each other via a first diffusion isolation region in a plan view in the semiconductor layer; a charge storing part (floating diffusion) provided in the first diffusion isolation region on the first surface side of the semiconductor layer; a first transfer transistor having a gate electrode provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion part in a plan view, and transferring signal charges from the first photoelectric conversion part to the charge storing part; a second transfer transistor having a gate electrode provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion part in a plan view, and transferring signal charges from the second photoelectric conversion part to the charge storing part; and an insulating separator provided in the first diffusion isolation region on the first surface side of the semiconductor layer, separated from the charge storing part, and extending between the gate electrodes of the first and second transfer transistors in a plan view.

Description

光検出装置及び電子機器Photodetector and electronic equipment
 本技術(本開示に係る技術)は、光検出装置及び電子機器に関し、特に、位相差検出画素を有する光検出装置及びそれを備えた電子機器に適用して有効な技術に関するものである。 The present technology (technology according to the present disclosure) relates to a photodetection device and an electronic device, and more particularly to a technology effectively applied to a photodetection device having phase difference detection pixels and an electronic device having the same.
 光検出装置として、固体撮像装置が知られている。この固体撮像装置に関する技術として、1つのオンチップレンズの下側の半導体層に光電変換素子を複数個埋め込むことで瞳分割を行う方式が知られており、例えば一眼レフカメラやスマートフォンなどの電子機器の内蔵カメラ向けの固体撮像装置に採用されている。また、位相差検出時に、1つのオンチップレンズの下に配置された複数の光電変換部で光電変換された信号電荷を、それぞれ独立の信号として読み出すことによって位相差検出を行う方式も知られている(例えば特許文献1)。 A solid-state imaging device is known as a photodetector. As a technology related to this solid-state imaging device, a method of performing pupil division by embedding a plurality of photoelectric conversion elements in a semiconductor layer under one on-chip lens is known. For example, electronic devices such as single-lens reflex cameras and smartphones. used in solid-state imaging devices for built-in cameras. There is also known a method of detecting a phase difference by reading, as independent signals, signal charges photoelectrically converted by a plurality of photoelectric conversion units arranged under one on-chip lens during phase difference detection. (For example, Patent Document 1).
特開2019-140251号公報JP 2019-140251 A
 ところで、位相差検出オートフォーカス(Phase Detection Auto Focus)方式を採用する固体撮像装置の画素は、例えば、p型の半導体領域からなる拡散分離領域を介して互いに隣り合って配置された第1及び第2光電変換部と、この第1光電変換部からフローティングディフュージョン(Floating Diffusion)に信号電荷を転送する第1転送トランジスタと、この第2光電変換部からフローティングディフュージョンに信号電荷を転送する第2転送トランジスタと、を含む光電変換セルを備えている。 By the way, the pixels of a solid-state imaging device that employs a phase detection autofocus method are, for example, first and second pixels arranged adjacent to each other via a diffusion isolation region made of a p-type semiconductor region. 2 photoelectric conversion units, a first transfer transistor that transfers signal charges from the first photoelectric conversion unit to a floating diffusion, and a second transfer transistor that transfers signal charges from the second photoelectric conversion unit to the floating diffusion and a photoelectric conversion cell including.
 この種の光電変換セルでは、位相モードにおいて、例えば第1光電変換部側の信号電荷を読み出す場合、第1転送トランジスタをオンにして第1光電変換部の信号電荷をフローティングディフュージョンに転送する。この第1転送トランジスタをオンにする期間中に、第1光電変換部と第2光電変換部との間の拡散分離領域のポテンシャルが変調される。そして、このポテンシャルの変調領域を経由して、読み出さない第2光電変換部側の信号電荷の一部が第1光電変換部の信号として読み出されてしまい、位相差検出性能が低下することがある。この位相差検出性能の低下は、第2光電変換部側の信号電荷を読み出す場合においても生じることがある。 In this type of photoelectric conversion cell, in the phase mode, when the signal charge on the first photoelectric conversion unit side is read, for example, the first transfer transistor is turned on to transfer the signal charge of the first photoelectric conversion unit to the floating diffusion. During the period in which the first transfer transistor is turned on, the potential of the diffusion isolation region between the first photoelectric conversion section and the second photoelectric conversion section is modulated. Then, part of the signal charge on the side of the second photoelectric conversion unit that is not read out is read out as the signal of the first photoelectric conversion unit via this potential modulation region, which may degrade the phase difference detection performance. be. This deterioration in phase difference detection performance may also occur when reading signal charges on the second photoelectric conversion unit side.
 本技術の目的は、位相差検出精度の向上を図ることにある。 The purpose of this technology is to improve the accuracy of phase difference detection.
 (1)本技術の一態様に係る光検出装置は、互いに反対側に位置する第1の面及び第2
の面を有する半導体層と、上記半導体層に設けられた光電変換セルと、を備え、
 上記光電変換セルは、
 上記半導体層に平面視で第1拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
 上記半導体層の上記第1の面側で上記第1拡散分離領域に設けられたフローティングディフュージョンと、
 上記半導体層の上記第1の面側に、ゲート電極が平面視で上記第1光電変換部と重畳して設けられ、かつ上記第1光電変換部から上記フローティングディフュージョンに信号電荷を転送する第1転送トランジスタと、
 上記半導体層の上記第1の面側に、ゲート電極が平面視で上記第2光電変換部と重畳して設けられ、かつ上記第2光電変換部から上記フローティングディフュージョンに信号電荷を転送する第2転送トランジスタと、
 上記半導体層の上記第1の面側で上記第1拡散分離領域に上記フローティングディフュージョンから離間して設けられ、かつ平面視で上記第1及び第2転送トランジスタの各々の上記ゲート電極の間を延伸する絶縁分離体と、有する。
(1) A photodetector according to an aspect of the present technology includes a first surface and a second surface located on opposite sides of each other.
A semiconductor layer having a surface of and a photoelectric conversion cell provided in the semiconductor layer,
The photoelectric conversion cell is
first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer;
a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the floating diffusion. a transfer transistor;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and the second photoelectric conversion section transfers signal charges from the second photoelectric conversion section to the floating diffusion. a transfer transistor;
provided in the first diffusion isolation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view and an insulating separator.
 (2)本技術の他の態様に係る光検出装置は、
 互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
 上記半導体層に拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
 上記半導体層の上記第1の面側で上記拡散分離領域に設けられたフローティングディフュージョンと、
 上記半導体層の上記第1の面側にゲート電極が平面視で上記第1光電変換部と重畳して設けられ、かつ上記第1光電変換部で光電変換された信号電荷を上記フローティングディフュージョンに転送する第1転送トランジスタと、
 上記半導体層の上記第1の面側にゲート電極が平面視で上記第2光電変換部と重畳して設けられ、かつ上記第2光電変換部で光電変換された信号電荷を上記フローティングディフュージョンに転送する第2転送トランジスタと、
 上記拡散分離領域に上記電荷保持部から離間して設けられ、かつ平面視で上記第1及び第2転送トランジスタの各々の上記ゲート電極の間を延伸する絶縁分離体と、を有する。
(2) A photodetector according to another aspect of the present technology,
a semiconductor layer having first and second surfaces opposite to each other;
first and second photoelectric conversion units provided adjacent to each other via a diffusion separation region in the semiconductor layer;
a floating diffusion provided in the diffusion isolation region on the first surface side of the semiconductor layer;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and transfers signal charges photoelectrically converted by the first photoelectric conversion section to the floating diffusion. a first transfer transistor to
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion section to the floating diffusion. a second transfer transistor to
an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in plan view.
 (3)本技術の他の態様に係る電子機器は、上記(1)又は(2)に記載の光検出装置を備えている。 (3) An electronic device according to another aspect of the present technology includes the photodetector according to (1) or (2) above.
本技術の第1実施形態に係る固体撮像装置の一構成例を示すチップレイアウト図である。1 is a chip layout diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present technology; FIG. 本技術の第1実施形態に係る固体撮像装置の一構成例を示すブロック図である。1 is a block diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present technology; FIG. 本技術の第1実施形態に係る固体撮像装置の画素ユニットの等価回路図である。It is an equivalent circuit diagram of the pixel unit of the solid-state imaging device according to the first embodiment of the present technology. 本技術の第1実施形態に係る固体撮像装置の画素の一構成例を示す模式的平面図である。1 is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a first embodiment of the present technology; FIG. 図4のa4-a4切断線に沿った断面構造を示す模式的縦断面図である。FIG. 5 is a schematic vertical cross-sectional view showing a cross-sectional structure along the a4-a4 cutting line in FIG. 4; 図5の一部を拡大した模式的縦断面図である。FIG. 6 is a schematic longitudinal sectional view enlarging a part of FIG. 5; 図4のb4-b4切断線に沿った断面構造を示す模式的縦断面図である。FIG. 5 is a schematic vertical cross-sectional view showing a cross-sectional structure along the b4-b4 cutting line in FIG. 4; 図4の画素のポテンシャル分布を示す図である。FIG. 5 is a diagram showing a potential distribution of pixels in FIG. 4; 本技術の第1実施形態に係る固体撮像装置の光電変換部の入射光に対する出力を表すグラフである。4 is a graph showing the output of the photoelectric conversion unit of the solid-state imaging device according to the first embodiment of the present technology with respect to incident light; 本技術の第1実施形態に係る固体撮像装置の光電変換部に蓄積された信号電荷量の変化を示す図である。It is a figure which shows the change of the signal charge amount accumulate|stored in the photoelectric conversion part of the solid-state imaging device which concerns on 1st Embodiment of this technique. 図10Aに引き続く変化を示す図である。FIG. 10B is a diagram showing a change subsequent to FIG. 10A; 図10Bに引き続く変化を示す図である。FIG. 10B is a diagram showing a change subsequent to FIG. 10B; 図10Cに引き続く変化を示す図である。FIG. 10B is a diagram showing a change subsequent to FIG. 10C; 従来の光電変換部に蓄積された信号電荷量の変化を示す図である。FIG. 10 is a diagram showing changes in the amount of signal charge accumulated in a conventional photoelectric conversion unit; 図11Aに引き続く変化を示す図である。FIG. 11B is a diagram showing a change subsequent to FIG. 11A; 第1実施形態の変形例を示す模式的平面図である。It is a schematic plan view which shows the modification of 1st Embodiment. 本技術の第2実施形態に係る固体撮像装置の画素の一構成例を示す模式的平面図である。It is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a second embodiment of the present technology. 図13のa13-a13切断線に沿った断面構造を示す模式的縦断面図である。FIG. 14 is a schematic vertical cross-sectional view showing a cross-sectional structure along the line a13-a13 of FIG. 13; 本技術の第3実施形態に係る固体撮像装置の画素の一構成例を示す模式的平面図である。It is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a third embodiment of the present technology. 図15のa15-a15切断線に沿った断面構造を示す模式的縦断面図である。FIG. 16 is a schematic vertical cross-sectional view showing a cross-sectional structure taken along line a15-a15 of FIG. 15; 本技術の第4実施形態に係る固体撮像装置の画素の一構成例を示す模式的平面図である。FIG. 11 is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a fourth embodiment of the present technology; 図17のa17-a17切断線に沿った断面構造を示す模式的縦断面図である。FIG. 18 is a schematic vertical cross-sectional view showing a cross-sectional structure taken along line a17-a17 of FIG. 17; 図18のa19-a19切断線に沿った断面構造を示す模式的横断面図である。FIG. 19 is a schematic cross-sectional view showing a cross-sectional structure along the line a19-a19 of FIG. 18; 本技術の第5実施形態に係る固体撮像装置の画素の一構成例を示す模式的平面図である。FIG. 11 is a schematic plan view showing one configuration example of a pixel of a solid-state imaging device according to a fifth embodiment of the present technology; 図20のa20-a20切断線に沿った断面構造を示す模式的縦断面図である。FIG. 21 is a schematic vertical cross-sectional view showing the cross-sectional structure taken along the line a20-a20 of FIG. 20; 本技術の第6実施形態に係る電子機器の概略構成を示す図である。It is a figure showing a schematic structure of electronic equipment concerning a 6th embodiment of this art.
 以下、図面を参照して本技術の実施形態を詳細に説明する。
 以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。
Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings.
In the description of the drawings referred to in the following description, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between thickness and planar dimension, the ratio of thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined with reference to the following description.
 また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。また、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 In addition, it goes without saying that there are parts with different dimensional relationships and ratios between the drawings. Moreover, the effects described in this specification are only examples and are not limited, and other effects may be obtained.
 また、以下の実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものではない。即ち、本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 In addition, the following embodiments exemplify devices and methods for embodying the technical idea of the present technology, and do not specify the configurations as those below. That is, the technical idea of the present technology can be modified in various ways within the technical scope described in the claims.
 また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本技術の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。 Also, the definitions of directions such as up and down in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present technology. For example, if an object is observed after being rotated by 90°, it will be read with its top and bottom converted to left and right, and if it is observed after being rotated by 180°, it will of course be read with its top and bottom reversed.
 また、以下の実施形態では、第1導電型がp型、第2導電型がn型の場合について例示的に説明するが、導電型を逆の関係に選択して、第1導電型をn型、第2導電型をp型としても構わない。 Further, in the following embodiments, a case where the first conductivity type is p-type and the second conductivity type is n-type will be exemplified. The type and the second conductivity type may be p-type.
 また、以下の実施形態では、空間内で互に直交する三方向において、同一平面内で互に直交する第1の方向及び第2の方向をそれぞれX方向、Y方向とし、第1の方向及び第2の方向のそれぞれと直交する第3の方向をZ方向とする。そして、以下の実施形態では、後述する半導体層21の厚さ方向をZ方向として説明する。 Further, in the following embodiments, among the three mutually orthogonal directions in space, the first direction and the second direction, which are orthogonal to each other in the same plane, are the X direction and the Y direction, respectively. A third direction orthogonal to each of the second directions is the Z direction. In the following embodiments, the thickness direction of the semiconductor layer 21, which will be described later, will be described as the Z direction.
 〔第1実施形態〕
 この第1実施形態では、光検出装置として、裏面照射型CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである固体撮像装置に本技術を適用した一例について説明する。
[First embodiment]
In the first embodiment, an example in which the present technology is applied to a solid-state imaging device, which is a backside illuminated CMOS (Complementary Metal Oxide Semiconductor) image sensor, will be described as a photodetector.
 ≪固体撮像装置の全体構成≫
 まず、固体撮像装置1Aの全体構成について説明する。
<<Overall Configuration of Solid-State Imaging Device>>
First, the overall configuration of the solid-state imaging device 1A will be described.
 図1に示すように、本技術の第1実施形態に係る固体撮像装置1Aは、平面視したときの二次元平面形状が方形状の半導体チップ2を主体に構成されている。即ち、固体撮像装置1Aは、半導体チップ2に搭載されている。この固体撮像装置1A(101)は、図22に示すように、光学レンズ102を介して被写体からの像光(入射光106)を取り込み、撮像面上に結像された入射光106の光量を画素単位で電気信号に変換して画素信号として出力する。 As shown in FIG. 1, a solid-state imaging device 1A according to the first embodiment of the present technology mainly includes a semiconductor chip 2 having a square two-dimensional planar shape when viewed from above. That is, the solid-state imaging device 1A is mounted on the semiconductor chip 2. FIG. As shown in FIG. 22, this solid-state imaging device 1A (101) takes in image light (incident light 106) from an object through an optical lens 102, and measures the light quantity of the incident light 106 imaged on the imaging surface. Each pixel is converted into an electric signal and output as a pixel signal.
 図1に示すように、固体撮像装置1Aが搭載された半導体チップ2は、互いに直交するX方向及びY方向を含む二次元平面において、中央部に設けられた方形状の画素アレイ部2Aと、この画素アレイ部2Aの外側に画素アレイ部2Aを囲むようにして設けられた周辺部2Bとを備えている。 As shown in FIG. 1, a semiconductor chip 2 on which a solid-state imaging device 1A is mounted has a square-shaped pixel array section 2A provided in the center in a two-dimensional plane including X and Y directions orthogonal to each other, A peripheral portion 2B is provided outside the pixel array portion 2A so as to surround the pixel array portion 2A.
 画素アレイ部2Aは、例えば図22に示す光学レンズ(光学系)102により集光される光を受光する受光面である。そして、画素アレイ部2Aには、X方向及びY方向を含む二次元平面において複数の画素3が行列状に配置されている。換言すれば、画素3は、二次元平面内で互いに直交するX方向及びY方向のそれぞれの方向に繰り返し配置されている。 The pixel array section 2A is a light receiving surface that receives light condensed by an optical lens (optical system) 102 shown in FIG. 22, for example. In the pixel array section 2A, a plurality of pixels 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction. In other words, the pixels 3 are repeatedly arranged in the X direction and the Y direction that are orthogonal to each other within the two-dimensional plane.
 図1に示すように、周辺部2Bには、複数のボンディングパッド14が配置されている。複数のボンディングパッド14の各々は、例えば、半導体チップ2の二次元平面における4つの辺の各々の辺に沿って配列されている。複数のボンディングパッド14の各々は、半導体チップ2を外部装置と電気的に接続する際に用いられる入出力端子である。 As shown in FIG. 1, a plurality of bonding pads 14 are arranged in the peripheral portion 2B. Each of the plurality of bonding pads 14 is arranged, for example, along each of four sides in the two-dimensional plane of the semiconductor chip 2 . Each of the plurality of bonding pads 14 is an input/output terminal used when electrically connecting the semiconductor chip 2 to an external device.
 <ロジック回路>
 図2に示すように、半導体チップ2は、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7及び制御回路8などを含むロジック回路13を備えている。ロジック回路13は、電界効果トランジスタとして、例えば、nチャネル導電型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)及びpチャネル導電型のMOSFETを含むCMOS(Complementary MOS)回路で構成されている。
<Logic circuit>
As shown in FIG. 2, the semiconductor chip 2 includes a logic circuit 13 including a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, a control circuit 8, and the like. The logic circuit 13 is composed of a CMOS (Complementary MOS) circuit including, for example, an n-channel conductivity type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a p-channel conductivity type MOSFET as field effect transistors.
 垂直駆動回路4は、例えばシフトレジスタによって構成されている。垂直駆動回路4は、所望の画素駆動線10を順次選択し、選択した画素駆動線10に画素3を駆動するためのパルスを供給し、各画素3を行単位で駆動する。即ち、垂直駆動回路4は、画素アレイ部2Aの各画素3を行単位で順次垂直方向に選択走査し、各画素3の光電変換素子が受光量に応じて生成した信号電荷に基づく画素3からの画素信号を、垂直信号線11を通してカラム信号処理回路5に供給する。 The vertical driving circuit 4 is composed of, for example, a shift register. The vertical drive circuit 4 sequentially selects desired pixel drive lines 10, supplies pulses for driving the pixels 3 to the selected pixel drive lines 10, and drives the pixels 3 in row units. That is, the vertical driving circuit 4 sequentially selectively scans the pixels 3 of the pixel array section 2A in the vertical direction row by row, and outputs signals from the pixels 3 based on the signal charges generated by the photoelectric conversion elements of the pixels 3 according to the amount of received light. is supplied to the column signal processing circuit 5 through the vertical signal line 11 .
 カラム信号処理回路5は、例えば画素3の列毎に配置されており、1行分の画素3から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。 The column signal processing circuit 5 is arranged, for example, for each column of the pixels 3, and performs signal processing such as noise removal on the signals output from the pixels 3 of one row for each pixel column. For example, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog Digital) conversion for removing pixel-specific fixed pattern noise.
 水平駆動回路6は、例えばシフトレジスタによって構成されている。水平駆動回路6は、水平走査パルスをカラム信号処理回路5に順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から信号処理が行われた画素信号を水平信号線12に出力させる。 The horizontal driving circuit 6 is composed of, for example, a shift register. The horizontal driving circuit 6 sequentially outputs a horizontal scanning pulse to the column signal processing circuit 5 to select each of the column signal processing circuits 5 in order, and the pixels subjected to the signal processing from each of the column signal processing circuits 5 are selected. A signal is output to the horizontal signal line 12 .
 出力回路7は、カラム信号処理回路5の各々から水平信号線12を通して順次に供給される画素信号に対し、信号処理を行って出力する。信号処理としては、例えば、バッファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。 The output circuit 7 performs signal processing on pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12 and outputs the processed signal. As signal processing, for example, buffering, black level adjustment, column variation correction, and various digital signal processing can be used.
 制御回路8は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等に出力する。 The control circuit 8 generates a clock signal and a control signal that serve as references for the operation of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, etc. based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock signal. Generate. The control circuit 8 then outputs the generated clock signal and control signal to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
 <画素ユニット>
 半導体チップ2は、図3に示す画素ユニットPUを備えている。画素ユニットPUは、図3に示すように、画素ブロック15及び読出し回路16を備えている。画素ブロック15は、図4に示すように、例えばY方向において互いに隣り合う2つの画素3と、この2つの画素3で共有された1つのフローティングディフュージョン:Floating Diffusion(電荷保持部)FDと、を備えている。この画素ブロック15のフローティングディフュージョンFDには、1つの読出し回路16が電気的に接続されている。即ち、この第1実施形態に係る固体撮像装置1Aの画素アレイ部2Aには、Y方向において互いに隣り合う2つの画素3と、この2つの画素3で共有されたフローティングディフュージョンFDと、このフローティングディフュージョンFDに接続された読出し回路16とを含む画素ユニットPUがX方向及びY方向の各々の方向に繰り返し配置されている。
<Pixel unit>
The semiconductor chip 2 has a pixel unit PU shown in FIG. The pixel unit PU includes a pixel block 15 and a readout circuit 16, as shown in FIG. As shown in FIG. 4, the pixel block 15 includes, for example, two pixels 3 adjacent to each other in the Y direction, and one floating diffusion (charge holding portion) FD shared by the two pixels 3. I have. One readout circuit 16 is electrically connected to the floating diffusion FD of the pixel block 15 . That is, the pixel array section 2A of the solid-state imaging device 1A according to the first embodiment includes two pixels 3 adjacent to each other in the Y direction, a floating diffusion FD shared by the two pixels 3, and this floating diffusion FD. Pixel units PU each including a readout circuit 16 connected to the FD are repeatedly arranged in each of the X and Y directions.
 <画 素>
 図3に示すように、複数の画素3の各々の画素3は、光電変換セル31を備えている。光電変換セル31は、第1光電変換素子PD1を含む第1光電変換部32Lと、第2光電変換素子PD2を含む第2光電変換部32Rと、この第1及び第2光電変換部32L,32R(第1及び第2光電変換素子PD1,PD2)で光電変換された信号電荷を蓄積するフローティングディフュージョンFDと、を備えている。また、光電変換セル31は、第1光電変換部32L(第1光電変換素子PD1)で光電変換された信号電荷をフローティングディフュージョンFDに転送する第1転送トランジスタTR1と、第2光電変換部32R(第2光電変換素子PD2)で光電変換された信号電荷をフローティングディフュージョンFDに転送する第2転送トランジスタTR2と、を更に備えている。
<Pixel>
As shown in FIG. 3 , each pixel 3 of the plurality of pixels 3 has a photoelectric conversion cell 31 . The photoelectric conversion cell 31 includes a first photoelectric conversion unit 32L including a first photoelectric conversion element PD1, a second photoelectric conversion unit 32R including a second photoelectric conversion element PD2, and the first and second photoelectric conversion units 32L and 32R. and a floating diffusion FD for accumulating signal charges photoelectrically converted by the (first and second photoelectric conversion elements PD1 and PD2). Further, the photoelectric conversion cell 31 includes a first transfer transistor TR1 that transfers signal charges photoelectrically converted by the first photoelectric conversion unit 32L (first photoelectric conversion element PD1) to the floating diffusion FD, and a second photoelectric conversion unit 32R ( and a second transfer transistor TR2 for transferring the signal charge photoelectrically converted by the second photoelectric conversion element PD2) to the floating diffusion FD.
 2つの光電変換素子PD1,PD2の各々は、受光量に応じた信号電荷を生成する。また、2つの光電変換素子PD1,PD2の各々は、生成した信号電荷を一時的に蓄積(保持)する。光電変換素子PD1は、カソード側が第1転送トランジスタTR1のソース領域と電気的に接続され、アノード側が基準電位線(例えばグランド)と電気的に接続されている。光電変換素子PD2は、カソード側が転送トランジスタTR2のソース領域と電気的に接続され、アノード側が基準電位線(例えばグランド)と電気的に接続されている。光電変換素子PD1,PD2としては、例えばフォトダイオードが用いられている。 Each of the two photoelectric conversion elements PD1 and PD2 generates signal charges according to the amount of light received. Each of the two photoelectric conversion elements PD1 and PD2 temporarily accumulates (holds) the generated signal charge. The photoelectric conversion element PD1 has a cathode side electrically connected to the source region of the first transfer transistor TR1, and an anode side electrically connected to a reference potential line (for example, ground). The photoelectric conversion element PD2 has a cathode side electrically connected to the source region of the transfer transistor TR2, and an anode side electrically connected to a reference potential line (for example, ground). Photodiodes, for example, are used as the photoelectric conversion elements PD1 and PD2.
 2つの転送トランジスタTR1及びTR2において、第1転送トランジスタTR1は、ソース領域が光電変換素子PD1のカソード側と電気的に接続され、ドレイン領域がフローティングディフュージョンFDと電気的に接続されている。そして、第1転送トランジスタTR1のゲート電極は、画素駆動線10(図2参照)のうちの転送トランジスタ駆動線と電気的に接続されている。第2転送トランジスタTR2は、ソース領域が光電変換素子PD2のカソード側と電気的に接続され、ドレイン領域がフローティングディフュージョンFDと電気的に接続されている。そして、第2転送トランジスタTR2のゲート電極は、画素駆動線10のうちの転送トランジスタ駆動線と電気的に接続されている。 Among the two transfer transistors TR1 and TR2, the first transfer transistor TR1 has a source region electrically connected to the cathode side of the photoelectric conversion element PD1, and a drain region electrically connected to the floating diffusion FD. A gate electrode of the first transfer transistor TR1 is electrically connected to a transfer transistor drive line among the pixel drive lines 10 (see FIG. 2). The second transfer transistor TR2 has a source region electrically connected to the cathode side of the photoelectric conversion element PD2, and a drain region electrically connected to the floating diffusion FD. A gate electrode of the second transfer transistor TR2 is electrically connected to a transfer transistor drive line among the pixel drive lines 10 .
 フローティングディフュージョンFDは、1つの光電変換セル31の2つの光電変換部32L及び32Rで共有されている。また、フローティングディフュージョンFDは、これに限定されないが、例えば2つの画素3、換言すれば2つの光電変換セル31で共有されている。即ち、この第1実施形態のフローティングディフュージョンFDは、2つの画素3毎(2つの光電変換セル31毎)に1つ設けられ、2つの光電変換セル31の4つの光電変換部(32L×2+32R×2=4)で共有されている。 The floating diffusion FD is shared by the two photoelectric conversion units 32L and 32R of one photoelectric conversion cell 31. Also, the floating diffusion FD is shared by, for example, two pixels 3, in other words, two photoelectric conversion cells 31, although not limited to this. That is, one floating diffusion FD of the first embodiment is provided for every two pixels 3 (every two photoelectric conversion cells 31), and four photoelectric conversion units (32L×2+32R× 2=4).
 2つの光電変換セル31(2つの画素3)が共有するフローティングディフュージョンFDは、第1光電変換部32Lにおいて、第1光電変換素子PD1から第1転送トランジスタTR1を介して転送された信号電荷を一時的に蓄積して保持すると共に、第2光電変換部32Rにおいて、第2光電変換素子FD2から第2転送トランジスタTR2を介して転送された信号電荷を一時的に蓄積して保持する。 The floating diffusion FD shared by the two photoelectric conversion cells 31 (two pixels 3) temporarily stores the signal charge transferred from the first photoelectric conversion element PD1 via the first transfer transistor TR1 in the first photoelectric conversion unit 32L. In the second photoelectric conversion unit 32R, the signal charges transferred from the second photoelectric conversion element FD2 via the second transfer transistor TR2 are temporarily accumulated and held.
 図3に示すように、フローティングディフュージョンFDには、読出し回路16の入力段側が接続されている。読出し回路16は、フローティングディフュージョンFDに蓄積された信号電荷を読出し、信号電荷に基づく画素信号を出力する。読出し回路16は、これに限定されないが、例えば2つの画素3、換言すれば2つの光電変換セル31で共有されている。そして、読出し回路16は、増幅トランジスタAMP、選択トランジスタSEL及びリセットトランジスタRSTを備えている。これらのトランジスタ(AMP,SEL,RST)は、酸化シリコン膜(SiO2膜)からなるゲート絶縁膜と、ゲート電極と、ソース領域及びドレイン領域として機能する一対の主電極領域とを有するMOSFETで構成されている。また、これらのトランジスタとしては、ゲート絶縁膜が窒化シリコン膜(Si膜)、或いは窒化シリコン膜及び酸化シリコン膜などの積層膜からなるMISFET(Metal Insulator Semiconductor FET)でも構わない。 As shown in FIG. 3, the input stage side of the readout circuit 16 is connected to the floating diffusion FD. The readout circuit 16 reads out the signal charge accumulated in the floating diffusion FD and outputs a pixel signal based on the signal charge. The readout circuit 16 is shared by, but not limited to, two pixels 3, in other words, two photoelectric conversion cells 31, for example. The readout circuit 16 includes an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST. These transistors (AMP, SEL, RST) are composed of MOSFETs having a gate insulating film made of a silicon oxide film (SiO2 film), a gate electrode, and a pair of main electrode regions functioning as a source region and a drain region. ing. Further, these transistors may be MISFETs (Metal Insulator Semiconductor FET) whose gate insulating film is a silicon nitride film (Si 3 N 4 film) or a laminated film of a silicon nitride film and a silicon oxide film.
 増幅トランジスタAMPは、ソース領域が選択トランジスタSELのドレイン領域と電気的に接続され、ドレイン領域が電源線VDDと電気的に接続されている。そして、増幅トランジスタAMPのゲート電極は、フローティングディフュージョンFDと電気的に接続されている。 The amplification transistor AMP has a source region electrically connected to the drain region of the select transistor SEL, and a drain region electrically connected to the power supply line VDD. A gate electrode of the amplification transistor AMP is electrically connected to the floating diffusion FD.
 選択トランジスタSELは、ソース領域が垂直信号線11(VSL)と電気的に接続され、ドレインが増幅トランジスタAMPのソース領域と電気的に接続されている。そして、選択トランジスタSELのゲート電極は、画素駆動線10(図2参照)のうちの選択トランジスタ駆動線と電気的に接続されている。 The selection transistor SEL has a source region electrically connected to the vertical signal line 11 (VSL) and a drain electrically connected to the source region of the amplification transistor AMP. A gate electrode of the select transistor SEL is electrically connected to a select transistor drive line among the pixel drive lines 10 (see FIG. 2).
 リセットトランジスタRSTは、ソース領域がフローティングディフュージョンFDと電気的に接続され、ドレイン領域が電源線VDDと電気的に接続されている。リセットトランジスタRSTのゲート電極は、画素駆動線10(図2参照)のうちのリセットトランジスタ駆動線と電気的に接続されている。 The reset transistor RST has a source region electrically connected to the floating diffusion FD and a drain region electrically connected to the power supply line VDD. A gate electrode of the reset transistor RST is electrically connected to a reset transistor drive line among the pixel drive lines 10 (see FIG. 2).
 固体撮像装置1Aを備える電子機器は、第1及び第2光電変換素子PD1,PD2(第1及び第2光電変換部32L,32R)のそれぞれから信号電荷を読み出し、その位相差を検出する。フォーカスが合っている場合には、第1光電変換素子PD1と第2光電変換素子PD2とに溜まる信号電荷の量に差が生じない。これに対して、フォーカスが合っていない場合には、例えば図9に示すように、光量が0とL1との間の第1範囲において、第1光電変換素子PD1に溜まる信号電荷の量Q1と第2光電変換素子PD2に溜まる信号電荷の量Q2との間に差が生じる。フォーカスが合っていない場合、電子機器は、光量が0とL1との間の第1範囲におけるQ1の線とQ2の線とを一致させるように対物レンズを操作する等の操作を行い、両直線を一致させる。これがオートフォーカスである。 An electronic device equipped with the solid-state imaging device 1A reads signal charges from the first and second photoelectric conversion elements PD1 and PD2 (first and second photoelectric conversion units 32L and 32R), respectively, and detects the phase difference. When the focus is correct, there is no difference in the amount of signal charges accumulated in the first photoelectric conversion element PD1 and the second photoelectric conversion element PD2. On the other hand, when the focus is not correct, for example, as shown in FIG. A difference occurs between the amount Q2 of the signal charge accumulated in the second photoelectric conversion element PD2. If the focus is out of focus, the electronic device performs an operation such as operating the objective lens so that the line of Q1 and the line of Q2 in the first range between 0 and L1 of the light amount are aligned. match. This is autofocus.
 そして、フォーカス調整が終わると、電子機器は、例えば図9の光量が0からL3までの範囲において蓄積された加算信号電荷Q3を用いて、画像を生成する。ここで、加算信号電荷Q3とは、Q1とQ2との和(Q3=Q1+Q2)である。 Then, when the focus adjustment is completed, the electronic device generates an image using the added signal charges Q3 accumulated in the light amount range from 0 to L3 in FIG. 9, for example. Here, the added signal charge Q3 is the sum of Q1 and Q2 (Q3=Q1+Q2).
 ≪固体撮像装置の具体的な構成≫
 次に、半導体チップ2(固体撮像装置1A)の具体的な構成について、図4から図7を用いて説明する。なお、図面を見易くするため、図4から図7においては、後述する多層配線層の図示を省略している。また、図4は図1に対して上下が反転している。即ち、図1は、半導体チップ2の光入射面側が描かれているが、図4は、図1に示す半導体チップ2の光入射面側とは反対側(多層配線層側)から見たときの平面図である。
<<Specific Configuration of Solid-State Imaging Device>>
Next, a specific configuration of the semiconductor chip 2 (solid-state imaging device 1A) will be described with reference to FIGS. 4 to 7. FIG. In order to make the drawings easier to see, the illustration of a multilayer wiring layer, which will be described later, is omitted in FIGS. 4 is upside down with respect to FIG. 1 shows the light incident surface side of the semiconductor chip 2, but FIG. 4 shows the semiconductor chip 2 when viewed from the side opposite to the light incident surface side (multilayer wiring layer side) shown in FIG. is a plan view of the.
 <半導体チップ>
 図4から図7に示すように、半導体チップ2は、厚さ方向(Z方向)において互いに反対側に位置する第1の面S1及び第2の面S2を有する半導体層21と、この半導体層21の第2の面S2側に、この第2の面S2側から順次積層されたカラーフィルタ45及びマイクロレンズ(オンチップレンズ)46を更に備えている。また、半導体チップ2は、図示していないが、半導体層21の第1の面S1側に設けられた絶縁層及び配線層を含む多層配線層を更に備えている。半導体層21は、例えば単結晶シリコン基板で構成されている。
<Semiconductor chip>
As shown in FIGS. 4 to 7, the semiconductor chip 2 includes a semiconductor layer 21 having a first surface S1 and a second surface S2 located opposite to each other in the thickness direction (Z direction), and the semiconductor layer 21 having a first surface S1 and a second surface S2. 21 is further provided with a color filter 45 and a microlens (on-chip lens) 46 which are sequentially laminated from the second surface S2 side. The semiconductor chip 2 further includes a multilayer wiring layer including an insulating layer and a wiring layer provided on the first surface S1 side of the semiconductor layer 21 (not shown). The semiconductor layer 21 is composed of, for example, a single crystal silicon substrate.
 カラーフィルタ45及びマイクロレンズ46は、それぞれ画素3(光電変換セル31)毎に設けられている。カラーフィルタ45は、半導体チップ2の光入射面側から入射した入射光を色分離する。マイクロレンズ46は、照射光を集光し、集光した光を画素3(光電変換セル31)に効率良く入射させる。また、1つのカラーフィルタ45及びマイクロレンズ46は、第1光電変換部32L及び第2光電変換部32Rの両方を覆うように設けられている。 A color filter 45 and a microlens 46 are provided for each pixel 3 (photoelectric conversion cell 31). The color filter 45 color-separates the incident light incident from the light incident surface side of the semiconductor chip 2 . The microlenses 46 condense the irradiation light and allow the condensed light to enter the pixels 3 (photoelectric conversion cells 31) efficiently. Also, one color filter 45 and one microlens 46 are provided so as to cover both the first photoelectric conversion section 32L and the second photoelectric conversion section 32R.
 ここで、半導体層21の第1の面S1を素子形成面又は主面、第2の面S2側を光入射面又は裏面と呼ぶこともある。この第1実施形態の固体撮像装置1Aは、半導体層21の第2の面(光入射面,裏面)S2側から入射した光を、半導体層21に設けられた光電変換セル31の第1及び第2光電変換部32L,32R(第1及び第2光電変換素子PD1,PD2)で光電変換する。 Here, the first surface S1 of the semiconductor layer 21 is sometimes called an element formation surface or main surface, and the second surface S2 side is sometimes called a light incident surface or back surface. The solid-state imaging device 1A of the first embodiment converts light incident from the second surface (light incident surface, back surface) S2 side of the semiconductor layer 21 into the first and second photoelectric conversion cells 31 provided on the semiconductor layer 21 . Photoelectric conversion is performed by the second photoelectric conversion units 32L and 32R (first and second photoelectric conversion elements PD1 and PD2).
 <光電変換セル>
 図4から図7に示すように、半導体層21は、第2拡散分離領域としてのセル間拡散分離領域22で区画された光電変換セル31を有している。この光電変換セル31は画素3毎に設けられている。図4では、2つの光電変換セル31を例示しているが、光電変換セル31の数は2つに限定されない。光電変換セル31は、詳細に図示していないが、平面視でX方向及びY方向のそれぞれの方向にセル間拡散分離領域22を介して画素3毎に繰り返し配置されている。光電変換セル31は、4つの辺を有する方形状の平面パターンになっている。
<Photoelectric conversion cell>
As shown in FIGS. 4 to 7, the semiconductor layer 21 has photoelectric conversion cells 31 partitioned by inter-cell diffusion isolation regions 22 as second diffusion isolation regions. This photoelectric conversion cell 31 is provided for each pixel 3 . Although two photoelectric conversion cells 31 are illustrated in FIG. 4, the number of photoelectric conversion cells 31 is not limited to two. Although not shown in detail, the photoelectric conversion cells 31 are repeatedly arranged for each pixel 3 via the inter-cell diffusion separation regions 22 in the X direction and the Y direction in plan view. The photoelectric conversion cell 31 has a rectangular planar pattern with four sides.
 図4から図7に示すように、光電変換セル31は、平面視で半導体層21に、第1拡散分離領域としてのセル内拡散分離領域23を介して互いに隣り合って設けられた第1及び第2光電変換部32L,32Rと、半導体層21の第1の面S1側でセル内拡散分離領域23に設けられたフローティングディフュージョンFD(図4参照)と、を有する。セル間拡散分離領域22及びセル内拡散分離領域23は、不純物が拡散した第1導電型を有する拡散分離領域である。 As shown in FIGS. 4 to 7, the photoelectric conversion cell 31 includes first and second photoelectric conversion cells provided adjacent to each other via an intra-cell diffusion isolation region 23 as a first diffusion isolation region in a semiconductor layer 21 in plan view. It has second photoelectric conversion units 32L and 32R, and a floating diffusion FD (see FIG. 4) provided in the intra-cell diffusion separation region 23 on the first surface S1 side of the semiconductor layer 21 . The inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 are diffusion isolation regions having the first conductivity type in which impurities are diffused.
 また、光電変換セル31は、半導体層21の第1の面S1側に、ゲート電極42Lが平面視で第1光電変換部32Lと重畳して設けられ、かつ第1光電変換部32LからフローティングディフュージョンFDに信号電荷を転送する第1転送トランジスタTR1を更に有する。 In the photoelectric conversion cell 31, the gate electrode 42L is provided on the first surface S1 side of the semiconductor layer 21 so as to overlap the first photoelectric conversion unit 32L in plan view, and the floating diffusion is provided from the first photoelectric conversion unit 32L. It further has a first transfer transistor TR1 for transferring signal charges to the FD.
 また、光電変換セル31は、半導体層21の第1の面S1側に、ゲート電極42Rが平面視で第2光電変換部32Rと重畳して設けられ、かつ第2光電変換部32RからフローティングディフュージョンFDに信号電荷を転送する第2転送トランジスタTR2を更に有する。 In the photoelectric conversion cell 31, the gate electrode 42R is provided on the first surface S1 side of the semiconductor layer 21 so as to overlap the second photoelectric conversion unit 32R in plan view, and the floating diffusion is provided from the second photoelectric conversion unit 32R. It further has a second transfer transistor TR2 for transferring signal charges to the FD.
 そして、光電変換セル31は、半導体層21の第1の面S1側でセル内拡散分離領域23にフローティングディフュージョンFDから離間して設けられ、かつ平面視で第1及び第2転送トランジスタTR1,TR2の各々のゲート電極42L,42Rの間及び外側に亘って延伸する絶縁分離体35を更に有する。 The photoelectric conversion cell 31 is provided in the intra-cell diffusion isolation region 23 on the first surface S1 side of the semiconductor layer 21, separated from the floating diffusion FD, and is configured to have the first and second transfer transistors TR1 and TR2 in plan view. and an insulating separator 35 extending between and outside each of the gate electrodes 42L, 42R.
 図4に示すように、光電変換セル31は、4つの辺を有する方形状の平面パターンになっている。そして、光電変換セル31は、詳細に図示していないが、平面視でX方向及びY方向のそれぞれの方向にセル間拡散分離領域22を介して画素3毎に繰り返し配置されている。 As shown in FIG. 4, the photoelectric conversion cells 31 have a square planar pattern with four sides. Although not shown in detail, the photoelectric conversion cells 31 are repeatedly arranged for each pixel 3 in each of the X direction and the Y direction in a plan view via the inter-cell diffusion isolation region 22 .
 <拡散分離領域>
 図4から図7に示すように、セル間拡散分離領域22は、半導体層21の第1の面S1及び第2の面S2に亘って延伸し、二次元平面において互いに隣り合う光電変換セル31間を電気的に分離している。セル内拡散分離領域23は、セル間拡散分離領域22と同様に半導体層21の第1の面S1及び第2の面S2に亘って延伸し、光電変換セル31の第1光電変換部32Lと第2光電変換部32Rとを電気的に分離している。セル間拡散分離領域22及びセル内拡散分離領域23の各々は、例えばp型の半導体領域(第1導電型の第1半導体領域)24で構成されている。
<Diffusion Separation Region>
As shown in FIGS. 4 to 7, the inter-cell diffusion separation region 22 extends across the first surface S1 and the second surface S2 of the semiconductor layer 21, and the photoelectric conversion cells 31 adjacent to each other in the two-dimensional plane. are electrically separated. The intra-cell diffusion separation region 23 extends across the first surface S1 and the second surface S2 of the semiconductor layer 21 in the same manner as the inter-cell diffusion separation region 22, and is connected to the first photoelectric conversion section 32L of the photoelectric conversion cell 31. It is electrically isolated from the second photoelectric conversion unit 32R. Each of the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 is composed of, for example, a p-type semiconductor region (first conductivity type first semiconductor region) 24 .
 図4に示すように、1つの光電変換セル31(画素3)に対応するセル間拡散分離領域22は、平面視での平面形状が方形状の環状平面パターン(四角形状のリング状平面パターン)になっている。そして、複数の光電変換セル31(画素3)に対応するセル間拡散分離領域22は、格子状平面パターンになっている。光電変換セル31は、光電変換セル31を挟んでX方向に延伸する2つのセル間拡散分離領域22と、光電変換セル31を挟んでY方向に延伸する2つのセル間拡散分離領域22とで囲まれている。 As shown in FIG. 4, the inter-cell diffusion separation region 22 corresponding to one photoelectric conversion cell 31 (pixel 3) has a square planar annular pattern (square ring planar pattern) in plan view. It has become. The inter-cell diffusion separation regions 22 corresponding to the plurality of photoelectric conversion cells 31 (pixels 3) have a grid plane pattern. The photoelectric conversion cell 31 is composed of two inter-cell diffusion separation regions 22 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween and two inter-cell diffusion separation regions 22 extending in the Y direction with the photoelectric conversion cell 31 interposed therebetween. being surrounded.
 図4に示すように、セル内拡散分離領域23は、平面視でY方向に沿って延伸し、光電変換セル31を挟んでX方向に延伸する2つのセル間拡散分離領域22の各々の中間部と連結され、一体化されている。 As shown in FIG. 4, the intra-cell diffusion separation region 23 extends along the Y direction in a plan view, and extends between two inter-cell diffusion separation regions 22 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween. It is connected with the department and integrated.
 <光電変換部>
 第1光電変換部32L及び第2光電変換部32Rの各々は、半導体層21の第2の面(光入射面,裏面)S2側から入射した光を光電変換して信号電荷を生成する。また、第1光電変換部32L及び第2光電変換部32Rの各々は、生成された信号電荷を一時的に蓄積するフローティングディフュージョンとしても機能する。これら第1光電変換部32Lと第2光電変換部32Rとは、光電変換セル31内において第1方向に沿って配列されている。ここでは第1方向はX方向であるとして説明するが、厚み方向に垂直な方向であればX方向以外の方向であっても良い。また、第1光電変換部32L及び第2光電変換部32Rの各々は、例えばn型の半導体領域(第2導電型の第2半導体領域)25を含み、上述の光電変換素子PD1,PD2を構成している。
<Photoelectric converter>
Each of the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R photoelectrically converts light incident from the second surface (light incident surface, rear surface) S2 side of the semiconductor layer 21 to generate signal charges. Each of the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R also functions as a floating diffusion that temporarily accumulates the generated signal charge. The first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R are arranged in the photoelectric conversion cell 31 along the first direction. Here, the first direction is described as being the X direction, but it may be any direction other than the X direction as long as it is perpendicular to the thickness direction. Further, each of the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R includes, for example, an n-type semiconductor region (second conductivity type second semiconductor region) 25, and constitutes the photoelectric conversion elements PD1 and PD2 described above. are doing.
 <フローティングディフュージョン>
 図4及び図7に示すように、フローティングディフュージョンFDは、半導体層21の第1の面S1側でセル間拡散分離領域22に設けられている。具体的には、フローティングディフュージョンFDは、画素ブロック15において、2つの光電変換セル31の間のセル間拡散分離領域22と、2つの光電変換セル31の各々のセル内拡散分離領域23とが交わる領域、即ちセル間拡散分離領域22及びセル内拡散分離領域23を含む拡散分離領域の交差部に配置されている。そして、フローティングディフュージョンFDの周囲には、画素ブロック15の2つの光電変換セル31において、一方の光電変換セル31に含まれる2つの転送トランジスタTR1,TR2の各々のゲート電極42L,42Rと、他方の光電変換セル31に含まれる2つの転送トランジスタTR1,TR2の各々のゲート電極42L,42Rと、が配置されている。フローティングディフュージョンFDは、例えばn型の半導体領域で構成され、n型の浮遊拡散領域である。この第1実施形態では、フローティングディフュージョンFDに蓄積される信号電荷としてのキャリアは電子(e)である。
<Floating Diffusion>
As shown in FIGS. 4 and 7, the floating diffusion FD is provided in the inter-cell diffusion isolation region 22 on the first surface S1 side of the semiconductor layer 21 . Specifically, in the pixel block 15, the floating diffusion FD is such that the inter-cell diffusion isolation region 22 between the two photoelectric conversion cells 31 and the intra-cell diffusion isolation region 23 of each of the two photoelectric conversion cells 31 intersect. It is located at the intersection of diffusion isolation regions including regions, ie inter-cell diffusion isolation regions 22 and intra-cell diffusion isolation regions 23 . Around the floating diffusion FD, in the two photoelectric conversion cells 31 of the pixel block 15, gate electrodes 42L and 42R of the two transfer transistors TR1 and TR2 included in one photoelectric conversion cell 31 and Gate electrodes 42L and 42R of two transfer transistors TR1 and TR2 included in the photoelectric conversion cell 31 are arranged. The floating diffusion FD is composed of, for example, an n-type semiconductor region and is an n-type floating diffusion region. In the first embodiment, carriers as signal charges accumulated in the floating diffusion FD are electrons (e ).
 <転送トランジスタ>
 図5から図7に示すように、第1転送トランジスタTR1は、半導体層21の第1の面S1側に設けられている。第1転送トランジスタTR1は、例えばnチャネル導電型のMOSFETである。第1転送トランジスタTR1は、第1光電変換部32LとフローティングディフュージョンFDとの間の活性領域にチャネルを形成するように設けられ、第1の面S1上に順次積層されたゲート絶縁膜41及びゲート電極42Lを有する。第1転送トランジスタTR1は、ゲート―ソース間の電圧に応じてオン、オフすることにより、ソース領域として機能する第1光電変換部32Lからドレイン領域として機能するフローティングディフュージョンFDへ信号電荷を転送する場合と、転送しない場合とがある。ここでは、第1転送トランジスタTR1がオンの時に信号電荷を転送し、オフの時に信号電荷を転送しないとして、説明する。
<Transfer transistor>
As shown in FIGS. 5 to 7, the first transfer transistor TR1 is provided on the first surface S1 side of the semiconductor layer 21 . The first transfer transistor TR1 is, for example, an n-channel conductivity type MOSFET. The first transfer transistor TR1 is provided so as to form a channel in the active region between the first photoelectric conversion unit 32L and the floating diffusion FD. It has an electrode 42L. When the first transfer transistor TR1 is turned on and off according to the voltage between the gate and the source, the signal charge is transferred from the first photoelectric conversion unit 32L functioning as the source region to the floating diffusion FD functioning as the drain region. and there are cases where it is not transferred. Here, it is assumed that the signal charge is transferred when the first transfer transistor TR1 is on, and the signal charge is not transferred when it is off.
 図8に示すように、第1転送トランジスタTR1は、オフの時、すなわち第1光電変換部32LからフローティングディフュージョンFDへ信号電荷を転送しない時は、セル内拡散分離領域23(p型の半導体領域24)の第1ポテンシャル障壁P1より高い第2ポテンシャル障壁P2aを形成可能である。第1転送トランジスタTR1がオンされると、変調により第2ポテンシャル障壁P2aが下がり、信号電荷は第1光電変換部32LからフローティングディフュージョンFDへ流れる。 As shown in FIG. 8, when the first transfer transistor TR1 is off, that is, when signal charges are not transferred from the first photoelectric conversion unit 32L to the floating diffusion FD, the intra-cell diffusion separation region 23 (p-type semiconductor region 24), a second potential barrier P2a higher than the first potential barrier P1 can be formed. When the first transfer transistor TR1 is turned on, the modulation lowers the second potential barrier P2a, and signal charges flow from the first photoelectric conversion unit 32L to the floating diffusion FD.
 図5から図7に示すように、第2転送トランジスタTR2は、半導体層21の第1の面S1側に設けられている。第2転送トランジスタTR2は、例えばnチャネル導電型のMOSFETである。第2転送トランジスタTR2は、第2光電変換部32RとフローティングディフュージョンFDとの間の活性領域にチャネルを形成するように設けられ、第1の面S1上に順次積層されたゲート絶縁膜41及びゲート電極42Rを有する。第2転送トランジスタTR2は、ゲート―ソース間の電圧に応じてオン、オフすることにより、ソース領域として機能する第2光電変換部32Rからドレイン領域として機能するフローティングディフュージョンFDへ信号電荷を転送する場合と、転送しない場合がある。ここでは、第2転送トランジスタTR2がオンの時に信号電荷を転送し、オフの時に信号電荷を転送しないとして、説明する。 As shown in FIGS. 5 to 7, the second transfer transistor TR2 is provided on the first surface S1 side of the semiconductor layer 21. As shown in FIGS. The second transfer transistor TR2 is, for example, an n-channel conductivity type MOSFET. The second transfer transistor TR2 is provided so as to form a channel in the active region between the second photoelectric conversion unit 32R and the floating diffusion FD. It has an electrode 42R. When the second transfer transistor TR2 is turned on and off according to the voltage between the gate and the source, the signal charge is transferred from the second photoelectric conversion unit 32R functioning as the source region to the floating diffusion FD functioning as the drain region. and may not be transferred. Here, it is assumed that the signal charge is transferred when the second transfer transistor TR2 is on, and the signal charge is not transferred when it is off.
 図8に示すように、第2転送トランジスタTR2は、オフの時、即ち第2光電変換部32RからフローティングディフュージョンFDへ信号電荷を転送しない時は、セル内拡散分離領域23(p型の半導体領域24)の第1ポテンシャル障壁P1より高い第2ポテンシャル障壁P2bを形成可能である。第2転送トランジスタTR2がオンされると、変調により第2ポテンシャル障壁P2bが下がり、信号電荷は第2光電変換部32RからフローティングディフュージョンFDへ流れる。 As shown in FIG. 8, when the second transfer transistor TR2 is off, that is, when signal charges are not transferred from the second photoelectric conversion unit 32R to the floating diffusion FD, the intra-cell diffusion separation region 23 (p-type semiconductor region 24), a second potential barrier P2b higher than the first potential barrier P1 can be formed. When the second transfer transistor TR2 is turned on, the second potential barrier P2b is lowered by modulation, and signal charges flow from the second photoelectric conversion unit 32R to the floating diffusion FD.
 ゲート絶縁膜41は、例えば酸化シリコン膜で構成されている。ゲート電極42L及び42Rの各々は、例えば抵抗値を低減する不純物が導入された多結晶シリコン膜(ドープドポリシリコン膜)で構成されている。
 図4に示すように、絶縁分離体35は、1つの光電変換セル31において、平面視で第1転送トランジスタTR1のゲート電極42Lと第2トランジスタのゲート電極42Rとの間をY方向に沿ってフローティングディフュージョンFD側から反対側に向かって直線的に延伸し、2つのゲート電極42Lと42Tとの間から外側に突出している。この第1実施形態において、絶縁分離体35は、フローティングディフュージョンFDから若干離れた位置から光電変換部(32L,32R)のY方向の長さの半分を超える長さで構成されている。
The gate insulating film 41 is composed of, for example, a silicon oxide film. Each of the gate electrodes 42L and 42R is composed of, for example, a polycrystalline silicon film (doped polysilicon film) into which impurities for reducing resistance are introduced.
As shown in FIG. 4, in one photoelectric conversion cell 31, the insulating separator 35 extends in the Y direction between the gate electrode 42L of the first transfer transistor TR1 and the gate electrode 42R of the second transistor in plan view. It extends linearly from the floating diffusion FD side to the opposite side and protrudes outward from between the two gate electrodes 42L and 42T. In the first embodiment, the insulating separator 35 is formed with a length exceeding half of the Y-direction length of the photoelectric conversion units (32L, 32R) from a position slightly away from the floating diffusion FD.
 図6に示すように、絶縁分離体35は、半導体層21の第1の面S1側から第2の面S2側に向かって延伸する溝部36と、この溝部36に埋め込まれた絶縁膜37とを含む。そして、絶縁分離体35は、ゲート絶縁膜41で覆われている。 As shown in FIG. 6, the insulating separator 35 includes a groove portion 36 extending from the first surface S1 side of the semiconductor layer 21 toward the second surface S2 side, and an insulating film 37 embedded in the groove portion 36. including. The insulating separator 35 is covered with a gate insulating film 41 .
 <その他の構成>
 図5から図7に示すように、光電変換セル31は、半導体層21の第1の面S1側であって、第1及び第2光電変換部32L,32Rの各々の表層部に設けられたp型の半導体領域(第1導電型の第3半導体領域)27を更に有する。また、光電変換セル31は、半導体層21の第1の面S1側であって、第1及び第2光電変換部32L,32Rの各々の表層部に設けられたn型の半導体領域(第2導電型の第4半導体領域)26を更に有する。
<Other configurations>
As shown in FIGS. 5 to 7, the photoelectric conversion cells 31 are provided on the surface layer portions of the first and second photoelectric conversion units 32L and 32R on the first surface S1 side of the semiconductor layer 21. It further has a p-type semiconductor region (first conductivity type third semiconductor region) 27 . Further, the photoelectric conversion cell 31 is an n-type semiconductor region (second It further has a conductivity type fourth semiconductor region) 26 .
 p型の半導体領域27は、第1及び第2光電変換部32L,32Rの各々の表層部にゲート絶縁膜41及び絶縁分離体35の側面と接して設けられている。このように、p型の半導体領域27をゲート絶縁膜41及び絶縁分離体35の側面と接して設けることにより、絶縁分離体35の側面のピニングを確保することができる。 The p-type semiconductor region 27 is provided on the surface layer of each of the first and second photoelectric conversion units 32L and 32R so as to be in contact with the side surfaces of the gate insulating film 41 and the insulating separator 35 . Thus, by providing the p-type semiconductor region 27 in contact with the side surfaces of the gate insulating film 41 and the insulating separator 35, pinning of the side surfaces of the insulating separator 35 can be ensured.
 n型の半導体領域26は、第1及び第2光電変換部32L,32Rの各々の表層部に、p型の半導体領域27の底部と接し、かつセル間拡散分離領域22及びセル内拡散分離領域23の各々の側面と接して設けられている。そして、n型の半導体領域26は、n型の半導体領域25よりも不純物濃度が高い。このように、n型の半導体領域26をセル間拡散分離領域22及びセル内拡散分離領域23の各々の側面と接して設けることにより、第1及び第2光電変換部32L,32Rの各々に寄生容量を付加することができ、飽和信号量Qsを改善することが可能となる。 The n-type semiconductor region 26 is in contact with the bottom of the p-type semiconductor region 27 in the surface layer of each of the first and second photoelectric conversion units 32L and 32R, and forms the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region. 23 are provided in contact with each side surface. The n-type semiconductor region 26 has a higher impurity concentration than the n-type semiconductor region 25 . In this way, by providing the n-type semiconductor region 26 in contact with the side surfaces of the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23, each of the first and second photoelectric conversion units 32L and 32R is parasitic Capacitance can be added, and the saturation signal quantity Qs can be improved.
 また、光電変換セル31では、絶縁分離体35を誘電体とする寄生容量が光電変換部32L,32Rの各々に付加されるので、飽和信号量Qsを更に改善することが可能となる。また、この寄生容量は絶縁分離体35の長さに比例して大きくなるので、絶縁分離体35の長さを調整することにより、光電変換部32L,32Rに付加される寄生容量を調整することができる。 Also, in the photoelectric conversion cell 31, the parasitic capacitance having the insulating separator 35 as a dielectric is added to each of the photoelectric conversion units 32L and 32R, so that the saturation signal amount Qs can be further improved. Moreover, since this parasitic capacitance increases in proportion to the length of the insulating separator 35, the parasitic capacitance added to the photoelectric conversion units 32L and 32R can be adjusted by adjusting the length of the insulating separator 35. can be done.
 ≪固体撮像装置の動作≫
 次に、この第1実施形態に係る固体撮像装置1Aの動作について、図9、及び図10Aから図10Dを参照して説明する。図9は、固体撮像装置の光電変換部の入射光量に対する出力を表すグラフである。図9の横軸は入射光量であり、縦軸は光電変換部の出力である。図10Aから図10Dは、固体撮像装置1Aの光電変換部に蓄積された信号電荷の変化を示す模式図である。
<<Operation of solid-state imaging device>>
Next, operation of the solid-state imaging device 1A according to the first embodiment will be described with reference to FIGS. 9 and 10A to 10D. FIG. 9 is a graph showing the output of the photoelectric conversion unit of the solid-state imaging device with respect to the amount of incident light. The horizontal axis of FIG. 9 is the amount of incident light, and the vertical axis is the output of the photoelectric conversion unit. 10A to 10D are schematic diagrams showing changes in signal charges accumulated in the photoelectric conversion unit of the solid-state imaging device 1A.
 固体撮像装置1Aに光が入射すると、光は、マイクロレンズ46及びカラーフィルタ45等を通過して第1光電変換部32Lと第2光電変換部32Rとに入射する。そして、入射した光量に応じて、第1光電変換部32Lから出力Q1、第2光電変換部32Rから出力Q2を得る。そして、出力Q1,Q2に基づいてオートフォーカスが行われ、Q1とQ2との和である加算信号Q3(Q3=Q1+Q2)に基づいて画像が生成される。図9には、第1光電変換部32Lの出力Q1と、第2光電変換部32Rの出力Q2と、Q1とQ2との和である加算信号Q3(Q3=Q1+Q2)が示されている。また、光量が0からL1までの領域を第1範囲、光量がL1を超えてL2までの領域を第2範囲、光量がL2を超えてL3までの領域を第3範囲、光量がL3を超える領域を第4範囲と呼ぶ。また、図9は、第1光電変換部32Lが第2光電変換部32Rより先に飽和する例を示している。 When light enters the solid-state imaging device 1A, the light passes through the microlenses 46, the color filters 45, etc., and enters the first photoelectric conversion section 32L and the second photoelectric conversion section 32R. An output Q1 is obtained from the first photoelectric conversion section 32L and an output Q2 is obtained from the second photoelectric conversion section 32R according to the amount of incident light. Autofocusing is performed based on the outputs Q1 and Q2, and an image is generated based on the addition signal Q3 (Q3=Q1+Q2) which is the sum of Q1 and Q2. FIG. 9 shows the output Q1 of the first photoelectric conversion section 32L, the output Q2 of the second photoelectric conversion section 32R, and the addition signal Q3 (Q3=Q1+Q2) which is the sum of Q1 and Q2. Also, the first range is a region where the light quantity is from 0 to L1, the second range is a region where the light quantity exceeds L1 and reaches L2, the third range is a region where the light quantity exceeds L2 and reaches L3, and the light quantity exceeds L3. The region is called the fourth range. Also, FIG. 9 shows an example in which the first photoelectric conversion unit 32L is saturated before the second photoelectric conversion unit 32R.
 図9に示す第1範囲では、第1光電変換部32Lと第2光電変換部32Rとの間でオーバーフローが生じていない。これは、図10Aに示すような状態であり、第1光電変換部32Lにより生成された信号電荷と第2光電変換部32Rより生成された信号電荷は混ざり合うことはない。オートフォーカスのための位相差検出は、この第1範囲で行われる。より具体的には、位相差検出は、第1光電変換部32Lの出力Q1と第2光電変換部32Rの出力Q2の両方が、光量に対する線形性を保っている第1範囲で行われる。 In the first range shown in FIG. 9, no overflow occurs between the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R. This is the state shown in FIG. 10A, in which the signal charges generated by the first photoelectric conversion unit 32L and the signal charges generated by the second photoelectric conversion unit 32R are not mixed. Phase difference detection for autofocus is performed in this first range. More specifically, phase difference detection is performed in a first range where both the output Q1 of the first photoelectric conversion section 32L and the output Q2 of the second photoelectric conversion section 32R maintain linearity with respect to the amount of light.
 図9に示す第2範囲では、第1光電変換部32Lの方が第2光電変換部32Rより先に飽和し、第1光電変換部32Lの信号電荷の一部が、セル内拡散分離領域23の第1ポテンシャル障壁P1を超えて第2光電変換部32Rへ流れている。これがオーバーフローである(図10B)。 In the second range shown in FIG. 9, the first photoelectric conversion unit 32L is saturated earlier than the second photoelectric conversion unit 32R, and part of the signal charge of the first photoelectric conversion unit 32L is transferred to the intra-cell diffusion isolation region 23. crosses the first potential barrier P1 and flows to the second photoelectric conversion portion 32R. This is the overflow (Fig. 10B).
 図9に示す第3範囲では、第2光電変換部32Rも飽和している。これは、図10Cに示すような状態であり、第1光電変換部32Lと第2光電変換部32Rとの区別なく、セル内拡散分離領域23の第1ポテンシャル障壁P1を超えて信号電荷が蓄積される。そして、第2ポテンシャル障壁P2a,P2bを超えてフローティングディフュージョンFDへと電荷がオーバーフローするまで、第1光電変換部32L及び第2光電変換部32Rの出力は上昇する。 In the third range shown in FIG. 9, the second photoelectric conversion section 32R is also saturated. This is the state shown in FIG. 10C, in which signal charges are accumulated beyond the first potential barrier P1 of the intra-cell diffusion separation region 23 without distinguishing between the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R. be done. Then, the outputs of the first photoelectric conversion section 32L and the second photoelectric conversion section 32R increase until the charge overflows into the floating diffusion FD beyond the second potential barriers P2a and P2b.
 図9に示す第4範囲では、信号電荷は、第1転送トランジスタTR1の第2ポテンシャル障壁P1a及び第2転送トランジスタTR2の第2ポテンシャル障壁P2bを超えてフローティングディフュージョンFDへオーバーフローしている(図10D)。オーバーフローした信号電荷は、リセットトランジスタRSTにより消去される。 In the fourth range shown in FIG. 9, the signal charge exceeds the second potential barrier P1a of the first transfer transistor TR1 and the second potential barrier P2b of the second transfer transistor TR2 and overflows into the floating diffusion FD (FIG. 10D). ). The overflowed signal charges are erased by the reset transistor RST.
 画像形成は、第1範囲から第3範囲までの加算信号Q3を用いて行われる。より具体的には、加算信号Q3が光量に対する線形性を保っている第1範囲から第3範囲までで行われる。 The image formation is performed using the addition signal Q3 from the first range to the third range. More specifically, the addition signal Q3 is performed within the first to third ranges where the linearity with respect to the amount of light is maintained.
 ≪第1実施形態の主な効果≫
 次に、この第1実施形態の主な効果について、図11A及び図11Bに示す従来の光電変換セル(画素)を参照しながら説明する。図11Aは、従来の光電変換部に蓄積された信号電荷量の変化を示す図である。図11Bは、図11Aに引き続く変化を示す図である。
<<Main effects of the first embodiment>>
Next, main effects of the first embodiment will be described with reference to conventional photoelectric conversion cells (pixels) shown in FIGS. 11A and 11B. FIG. 11A is a diagram showing changes in signal charge amount accumulated in a conventional photoelectric conversion unit. FIG. 11B is a diagram showing changes subsequent to FIG. 11A.
 従来の光電変換セルは、位相モードにおいて、例えば第1光電変換部32Lの信号電荷を読み出す場合、第1転送トランジスタTR1をオンにして第1光電変換部32Lの信号電荷をフローティングディフュージョンに転送する(図11A)。この第1転送トランジスタTR1をオンにする期間中に、第1光電変換部32Lと第2光電変換部32Rとの間のセル内拡散分離領域23のポテンシャルが変調される。そして、このポテンシャルの変調領域に相当する分、セル内拡散分離領域23のポテンシャル障壁が下がる(図11B)。そして、従来の光電変換セルでは、この変調領域を経由して、読み出さない第2光電変換部32R側の信号電荷の一部が読み出されてしまい、位相差検出性能が低下することがある。 In the conventional photoelectric conversion cell, when the signal charge of the first photoelectric conversion unit 32L is read out in the phase mode, for example, the first transfer transistor TR1 is turned on to transfer the signal charge of the first photoelectric conversion unit 32L to the floating diffusion ( FIG. 11A). During the period in which the first transfer transistor TR1 is turned on, the potential of the intra-cell diffusion isolation region 23 between the first photoelectric conversion section 32L and the second photoelectric conversion section 32R is modulated. Then, the potential barrier of the intra-cell diffusion separation region 23 is lowered by the amount corresponding to this potential modulation region (FIG. 11B). In the conventional photoelectric conversion cell, part of the signal charge on the side of the second photoelectric conversion unit 32R that is not read is read out via this modulation region, which may degrade the phase difference detection performance.
 これに対し、この第1実施形態の光電変換セル31は、絶縁分離体35を備えている。このため、第1転送トランジスタTR1をオンにする期間中に、第1光電変換部32Lと第2光電変換部32Rとの間のセル内拡散分離領域23のポテンシャルが変調され、このポテンシャルの変調領域に相当する分、セル内拡散分離領域23のポテンシャル障壁が下がっても、変調領域におけるブルーミングパスを絶縁分離体35で物理的に閉じることができ、読み出さない第2光電変換部32R側から第1光電変換部32L側への信号電荷の漏れを抑制することができる。これにより、位相差検出性能の向上を図ることが可能となる。また、第2転送トランジスタTR2をオンにする期間中においても、変調領域におけるブルーミングパスを絶縁分離体35で閉じることができ、読み出さない第1光電変換部32L側から第2光電変換部32R側への信号電荷の漏れを抑制することができる。これにより、位相差検出性能の向上を図ることが可能となる。 On the other hand, the photoelectric conversion cell 31 of this first embodiment has an insulating separator 35 . Therefore, during the period in which the first transfer transistor TR1 is turned on, the potential of the intra-cell diffusion isolation region 23 between the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32R is modulated. , the blooming path in the modulation region can be physically closed by the insulating separator 35 even if the potential barrier of the intra-cell diffusion separation region 23 is lowered by an amount equivalent to Leakage of signal charges to the photoelectric conversion unit 32L side can be suppressed. This makes it possible to improve the phase difference detection performance. In addition, even during the period in which the second transfer transistor TR2 is turned on, the blooming path in the modulation region can be closed by the insulating separator 35, and the voltage from the first photoelectric conversion unit 32L side that is not read out to the second photoelectric conversion unit 32R side can be closed. signal charge leakage can be suppressed. This makes it possible to improve the phase difference detection performance.
 絶縁分離体35のZ方向の深さDe(図6参照)は、第1及び第2転送トランジスタTR1,TR2の何れか一方をオンにする期間中に、第1光電変換部32Lと第2光電変換部32Rとの間のセル内拡散分離領域23のポテンシャルが変調される変調領域の厚さ(高さ)よりも深くすることが好ましい。 The depth De (see FIG. 6) of the insulating separator 35 in the Z direction is such that the first photoelectric conversion unit 32L and the second photoelectric conversion unit 32L and the second photoelectric conversion unit 32L during the period in which one of the first and second transfer transistors TR1 and TR2 is turned on. It is preferable to make it deeper than the thickness (height) of the modulation region in which the potential of the intra-cell diffusion separation region 23 between the conversion portion 32R is modulated.
 また、絶縁分離体35は、平面視で第1転送トランジスタTR1のゲート電極42Lと第2転送トランジスタTR2のゲート電極42Rとの間及び外側に亘って延伸していることが好ましい。また、絶縁分離体35は、平面視でフローティングディフュージョンFDから離間していることが好ましい。 Further, the insulating separator 35 preferably extends between and outside the gate electrode 42L of the first transfer transistor TR1 and the gate electrode 42R of the second transfer transistor TR2 in plan view. Moreover, it is preferable that the insulating separator 35 is separated from the floating diffusion FD in plan view.
 この第1実施形態に係る固体撮像装置1Aは、4つの光電変換部(31L,31R,31L,31R)で1つのフローティングディフュージョンFDを共有している。この場合、4つの光電変換部(31L,31R,31L,31R)の各々の光電変換部毎にフローティングディフュージョンFDを設ける場合と比較して、光電変換部(Photo Diode)の体積を稼ぐことで高飽和信号量を図ることが可能となる。 In the solid-state imaging device 1A according to the first embodiment, four photoelectric conversion units (31L, 31R, 31L, 31R) share one floating diffusion FD. In this case, compared to the case where the floating diffusion FD is provided for each of the four photoelectric conversion units (31L, 31R, 31L, 31R), the volume of the photoelectric conversion unit (Photo Diode) can be increased to increase the volume. It is possible to measure the saturation signal amount.
 ≪第1実施形態の変形例≫
 上述の第1実施形態では、絶縁分離体35を、フローティングディフュージョンFDより若干離れた位置から光電変換部32L,32RのY方向の長さの半分を超える長さで構成した場合について説明した。しかしながら、本技術は、第1実施形態の長さに限定されるものではない。例えば、図12に示すように、絶縁分離体35のY方向の長さは、光電変換部32L,32RのY方向の長さの半分以下でもよい。但し、絶縁分離体35は、平面視で第1転送トランジスタTR1のゲート電極42Lと第2転送トランジスタTR2のゲート電極42Rとの間及び外側に亘って延伸する長さとすることが好ましい。
<<Modification of First Embodiment>>
In the above-described first embodiment, the case where the insulating separator 35 is configured to have a length exceeding half the length of the photoelectric conversion units 32L and 32R in the Y direction from a position slightly away from the floating diffusion FD has been described. However, the present technology is not limited to the length of the first embodiment. For example, as shown in FIG. 12, the Y-direction length of the insulating separator 35 may be less than half the Y-direction length of the photoelectric conversion units 32L and 32R. However, the insulating separator 35 preferably has a length extending between and outside the gate electrode 42L of the first transfer transistor TR1 and the gate electrode 42R of the second transfer transistor TR2 in plan view.
 〔第2実施形態〕
 本技術の第2実施形態に係る固体撮像装置1Bは、基本的に上述の第1実施形態に係る固体撮像装置1Aと同様の構成になっており、以下の構成が異なっている。
[Second embodiment]
A solid-state imaging device 1B according to the second embodiment of the present technology basically has the same configuration as that of the solid-state imaging device 1A according to the above-described first embodiment, except for the following configurations.
 即ち、図13及び図14に示すように、この第2実施形態に係る固体撮像装置1Bは、新たにn型の半導体領域28(第5半導体領域)を備えている。その他の構成は、上述の第1実施形態と同様である。 That is, as shown in FIGS. 13 and 14, the solid-state imaging device 1B according to the second embodiment newly includes an n-type semiconductor region 28 (fifth semiconductor region). Other configurations are the same as those of the above-described first embodiment.
 図13及び図14に示すように、n型の半導体領域28は、セル内拡散分離領域23を横切って第1光電変換部32Lと第2光電変換部32Rとの間のポテンシャル障壁をコントロールしている。n型の半導体領域28は、絶縁分離体35よりも深い位置に配置され、絶縁分離体35から離間している。n型の半導体領域28は、平面視でY方向に沿って延伸し、X方向の幅が絶縁分離体35のX方向の幅よりも幅広となっている。n型の半導体領域28は、絶縁分離体35の直下を横切り、平面視で一部が絶縁分離体35と重畳している。 As shown in FIGS. 13 and 14, the n-type semiconductor region 28 crosses the intra-cell diffusion separation region 23 to control the potential barrier between the first photoelectric conversion section 32L and the second photoelectric conversion section 32R. there is The n-type semiconductor region 28 is arranged at a position deeper than the insulating separator 35 and is separated from the insulating separator 35 . The n-type semiconductor region 28 extends along the Y direction in plan view, and the width in the X direction is wider than the width of the insulating separator 35 in the X direction. The n-type semiconductor region 28 crosses directly under the insulating separator 35 and partially overlaps the insulating separator 35 in a plan view.
 n型の半導体領域28は、p型の半導体領域24に含まれる不純物を相殺して導電型をp型からn型に反転させることが可能な不純物濃度で構成されている。この第2実施形態では、n型の半導体領域28は、例えばp型の半導体領域24及びn型の半導体領域25の不純物濃度よりも高不純物濃度で構成されている。 The n-type semiconductor region 28 has an impurity concentration capable of canceling the impurities contained in the p-type semiconductor region 24 and inverting the conductivity type from p-type to n-type. In the second embodiment, the n-type semiconductor region 28 has an impurity concentration higher than that of the p-type semiconductor region 24 and the n-type semiconductor region 25, for example.
 この第2実施形態に係る固体撮像装置1Bにおいても、上述の第1実施形態の固体撮像装置1Aと同様の効果が得られる。 The solid-state imaging device 1B according to the second embodiment also provides the same effects as the solid-state imaging device 1A according to the first embodiment.
 また、この第2実施形態に係る固体撮像装置1Bは、絶縁分離体の直下にn型の半導体領域28を設けているので、第1光電変換部32Lと第2光電変換部32Rとの間に所望のポテンシャルを形成でき、上澄み信号量と単一の光電変換セル31での飽和信号量Qsを調整することが可能となる。 Further, in the solid-state imaging device 1B according to the second embodiment, the n-type semiconductor region 28 is provided directly below the insulating separator, so that a A desired potential can be formed, and the supernatant signal amount and the saturation signal amount Qs in the single photoelectric conversion cell 31 can be adjusted.
 なお、n型の半導体領域28は、セル内拡散分離領域23の幅とほぼ同一の幅でセル内拡散分離領域23に選択的に形成してもよい。 Note that the n-type semiconductor region 28 may be selectively formed in the intra-cell diffusion isolation region 23 with a width substantially equal to that of the intra-cell diffusion isolation region 23 .
 〔第3実施形態〕
 本技術の第3実施形態に係る固体撮像装置1Cは、基本的に上述の第1実施形態に係る固体撮像装置1Aと同様の構成になっており、以下の構成が異なっている。
[Third embodiment]
A solid-state imaging device 1C according to the third embodiment of the present technology basically has the same configuration as that of the solid-state imaging device 1A according to the above-described first embodiment, except for the following configurations.
 即ち、図15及び図16に示すように、この第3実施形態に係る固体撮像装置1Cは、Y方向に配列された2つの光電変換セル31の間のセル間拡散分離領域22にも絶縁分離体35を設けている。その他の構成は、上述の第1実施形態と同様である。絶縁分離体35は、同色の光電変換セル31の間のセル間拡散分離領域22に設けてもよく、また、異色の光電変換セル31の間のセル間拡散分離領域22に設けてもよい。 That is, as shown in FIGS. 15 and 16, in the solid-state imaging device 1C according to the third embodiment, the inter-cell diffusion isolation region 22 between the two photoelectric conversion cells 31 arranged in the Y direction is also insulated and isolated. A body 35 is provided. Other configurations are the same as those of the above-described first embodiment. The insulating separator 35 may be provided in the inter-cell diffusion separation region 22 between the photoelectric conversion cells 31 of the same color, or may be provided in the inter-cell diffusion separation region 22 between the photoelectric conversion cells 31 of different colors.
 この第3実施形態に係る固体撮像装置1Cにおいても、上述の第1実施形態に係る固体撮像装置1Aと同様の効果が得られる。 Also in the solid-state imaging device 1C according to the third embodiment, effects similar to those of the solid-state imaging device 1A according to the above-described first embodiment can be obtained.
 〔第4実施形態〕
 本技術の第4実施形態に係る固体撮像装置1Dは、基本的に上述の第1実施形態に係る固体撮像装置1Aと同様の構成になっており、以下の構成が異なっている。
[Fourth embodiment]
A solid-state imaging device 1D according to the fourth embodiment of the present technology basically has the same configuration as that of the solid-state imaging device 1A according to the above-described first embodiment, except for the following configurations.
 即ち、図17から図19に示すように、この第4実施形態に係る固体撮像装置1Dは、半導体層21の第2の面S2側に、平面視でセル間拡散分離領域22(第1拡散分離領域)と重畳して設けられたセル間絶縁分離領域52(第1絶縁分離領域)と、半導体層21の第2の面S2側に、平面視でセル内拡散分離領域23と重畳して設けられたセル内絶縁分離領域53と、を更に備えている。そして、この第4実施形態のセル間拡散分離領域22及びセル内拡散分離領域23は、上述の第1の実施形態のセル間拡散分離領域22及びセル内拡散分離領域23と比較してZ方向の厚さが薄くなっている。そして、この第4実施形態のセル間拡散分離領域22及びセル内拡散分離領域23は、Z方向の厚さが絶縁分離体35のZ方向の厚さよりも厚くなっている。この第4実施形態では、セル間分離領域がセル間拡散分離領域22及びセル間絶縁分離領域52を含む複数段構成になっている。また、この第4実施形態では、セル内分離領域がセル内拡散分離領域23及びセル内絶縁分離領域53を含む複数段構成になっている。セル間拡散分離領域22及びセル内拡散分離領域23は、半導体層21の第1の面S1側に配置されている。セル間絶縁分離領域52及びセル内絶縁分離領域53は、例えば、半導体層21に設けられた溝部と、この溝部内に埋められた絶縁膜54とを含む、絶縁膜54としては、例えば酸化シリコン膜を用いることができる。 That is, as shown in FIGS. 17 to 19, in the solid-state imaging device 1D according to the fourth embodiment, an inter-cell diffusion separation region 22 (first diffusion an inter-cell isolation region 52 (first isolation region) provided so as to overlap with the isolation region), and an inter-cell isolation region 52 (first isolation region), which overlaps the intra-cell diffusion isolation region 23 in a plan view on the second surface S2 side of the semiconductor layer 21. and a provided intra-cell isolation region 53 . Further, the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 of the fourth embodiment are different in the Z direction than the inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 of the above-described first embodiment. is thinner. The inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 of the fourth embodiment are thicker in the Z direction than the insulation separator 35 in the Z direction. In the fourth embodiment, the inter-cell isolation region has a multi-stage structure including inter-cell diffusion isolation regions 22 and inter-cell insulating isolation regions 52 . Further, in the fourth embodiment, the intra-cell isolation region has a multi-stage structure including the intra-cell diffusion isolation region 23 and the intra-cell insulation isolation region 53 . The inter-cell diffusion isolation region 22 and the intra-cell diffusion isolation region 23 are arranged on the first surface S1 side of the semiconductor layer 21 . The inter-cell insulating isolation region 52 and the intra-cell insulating isolation region 53 include, for example, a trench provided in the semiconductor layer 21 and an insulating film 54 embedded in the trench. Membranes can be used.
 図17及び図19に示すように、セル間絶縁分離領域52は、セル間拡散分離領域22と同一形状の平面パターンになっている。そして、1つの光電変換セル31(画素3)に対応するセル間絶縁分離領域52は、セル間拡散分離領域22の平面パターンと同様に、平面視での平面形状が方形状の環状平面パターン(四角形状のリング状平面パターン)になっている。そして、複数の光電変換セル31(画素3)に対応するセル間絶縁分離領域52は、セル間拡散分離領域22の平面パターンと同様に、格子状平面パターンになっている。この第4実施形態の光電変換セル31は、光電変換セル31を挟んでX方向に延伸する2つのセル間拡散分離領域22及び2つのセル間絶縁分離領域52と、光電変換セル31を挟んでY方向に延伸する2つのセル間拡散分離領域22と2つのセル間絶縁分離領域52とで囲まれている。 As shown in FIGS. 17 and 19, the inter-cell insulating isolation region 52 has a planar pattern of the same shape as the inter-cell diffusion isolation region 22 . The inter-cell insulating isolation region 52 corresponding to one photoelectric conversion cell 31 (pixel 3) has an annular planar pattern ( It is a square ring-shaped plane pattern). The inter-cell insulating separation regions 52 corresponding to the plurality of photoelectric conversion cells 31 (pixels 3) have a grid plane pattern similar to the plane pattern of the inter-cell diffusion separation regions 22 . The photoelectric conversion cell 31 of the fourth embodiment includes two inter-cell diffusion separation regions 22 and two inter-cell insulation separation regions 52 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween. It is surrounded by two inter-cell diffusion separation regions 22 and two inter-cell insulation separation regions 52 extending in the Y direction.
 図17及び図19に示すように、セル内絶縁分離領域53の平面パターンはセル内拡散分離領域23の平面パターンと異なっている。 As shown in FIGS. 17 and 19, the planar pattern of the intra-cell insulating isolation region 53 is different from the planar pattern of the intra-cell diffusion isolation region 23 .
 図17に示すように、セル内拡散分離領域23は、平面視でY方向に沿って延伸し、光電変換セル31を挟んでX方向に延伸する2つのセル間拡散分離領域22の各々の中間部と連結され、一体化されている。 As shown in FIG. 17, the intra-cell diffusion separation region 23 extends along the Y direction in a plan view, and extends between two inter-cell diffusion separation regions 22 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween. It is connected with the department and integrated.
 これに対し、図19に示すように、セル内絶縁分離領域53は、平面視で光電変換セル31を挟んでX方向に延伸する2つのセル間絶縁分離領域52の各々の中間部から内方(光電変換セル31側)に向かって突出し、互いに離間している。そして、2つのセル内絶縁分離領域53の間がオーバーフローパスとして機能する。 On the other hand, as shown in FIG. 19, the intra-cell insulating isolation region 53 extends inward from the intermediate portion of each of the two inter-cell insulating isolation regions 52 extending in the X direction with the photoelectric conversion cell 31 interposed therebetween in plan view. They protrude toward (the photoelectric conversion cell 31 side) and are spaced apart from each other. A space between the two intra-cell insulating isolation regions 53 functions as an overflow path.
 この第4実施形態に係る固体撮像装置1Dにおいても、上述の第1実施形態に係る固体撮像装置1Aと同様の効果が得られる。 In the solid-state imaging device 1D according to the fourth embodiment as well, the same effects as those of the solid-state imaging device 1A according to the first embodiment can be obtained.
 また、この第4実施形態のように、光電変換セル31の第1光電変換部32Lと第2光電変換部32Rとの間に連続形状のセル内拡散分離領域23及び断続形状のセル内絶縁分離領域53を配置することにより、光電変換セル31内の2つの光電変換部32L,32Rが同色か異色かを問わず、ポテンシャルに起因する分離破綻と光学性能などを改善することが可能となる。 Further, as in the fourth embodiment, the continuous intra-cell diffusion isolation region 23 and the intermittent intra-cell insulation isolation are provided between the first photoelectric conversion portion 32L and the second photoelectric conversion portion 32R of the photoelectric conversion cell 31. By arranging the region 53, regardless of whether the two photoelectric conversion units 32L and 32R in the photoelectric conversion cell 31 have the same color or different colors, it is possible to improve potential-induced separation breakdown and optical performance.
 〔第5実施形態〕
 上述の第1から第4実施形態では、2つの光電変換部を含む画素(光電変換セル)について説明した。この第5実施形態では、1つの光電変換部及び転送トランジスタを含む画素(光電変換部)について説明する。
[Fifth Embodiment]
In the first to fourth embodiments described above, pixels (photoelectric conversion cells) including two photoelectric conversion units have been described. In this fifth embodiment, a pixel (photoelectric conversion section) including one photoelectric conversion section and a transfer transistor will be described.
 本技術の第5実施形態に係る固体撮像装置1Eは、図20に示す画素ブロック(セルブロック)15Aを備えている。 A solid-state imaging device 1E according to the fifth embodiment of the present technology includes a pixel block (cell block) 15A shown in FIG.
 図20及び図21に示すように、画素ブロック15Aは、X方向及びY方向のそれぞれの方向に2つずつ配列された4つの画素3aと、この4つの画素3aで共有された1つのフローティングディフュージョンFDとを有する。このフローティングディフュージョンFDには、例えば、上述の第1実施形態の図3に示す読出し回路16が電気的に接続される。 As shown in FIGS. 20 and 21, the pixel block 15A includes four pixels 3a arranged two by two in the X direction and the Y direction, and one floating diffusion shared by the four pixels 3a. FD. For example, the readout circuit 16 shown in FIG. 3 of the first embodiment is electrically connected to the floating diffusion FD.
 また、画素ブロック15Aは、半導体層21に、4つの画素3aの各々の画素3a毎に拡散分離領域22aを介して互いに隣り合って設けられた光電変換部33と、半導体層21の第1の面S1側に、4つの画素3aの各々の画素3a毎にゲート電極42が平面視で光電変換部33と重畳して設けられた転送トランジスタTRと、を有する。拡散分離領域22a及び転送トランジスタTRは、上述の第1の実施形態の図4及び図5に示すセル間拡散分離領域22及び転送トランジスタTR1,TR2にそれぞれ対応する。
 また、画素ブロック15Aは、絶縁分離体35を有する。
Further, the pixel block 15A includes a photoelectric conversion section 33 provided adjacent to each other via a diffusion separation region 22a for each pixel 3a of the four pixels 3a in the semiconductor layer 21, and a first photoelectric conversion section 33 of the semiconductor layer 21. On the surface S1 side, there is provided a transfer transistor TR in which the gate electrode 42 overlaps the photoelectric conversion unit 33 in plan view for each pixel 3a of the four pixels 3a. The diffusion isolation region 22a and the transfer transistor TR correspond to the inter-cell diffusion isolation region 22 and the transfer transistors TR1 and TR2 shown in FIGS. 4 and 5 of the first embodiment, respectively.
Also, the pixel block 15A has an insulating separator 35 .
 ここで、この第5実施形態の画素ブロック15Aは、X方向に延伸する拡散分離領域22aを介して互いに隣り合ってY方向に並ぶ2つの光電変換部33と、Y方向に延伸する拡散分離領域22aを介して互いに隣り合ってX方向に並ぶ2つ光電変換部33と、を含む。したがって、X方向に延伸する拡散分離領域22aを介してY方向に互いに隣り合って並ぶ2つの光電変換部33においては、一方の光電変換部33が本技術の第1光電変換部に対応し、他方の光電変換部33が本技術の第2光電変換部に対応する。また、Y方向に延伸する拡散分離領域22aを介してX方向に互いに隣り合って並ぶ2つの光電変換部33においては、一方の光電変換部33が本技術の第1光電変換部に対応し、他方の光電変換部33が本技術の第2光電変換部に対応する。 Here, the pixel block 15A of the fifth embodiment includes two photoelectric conversion units 33 arranged adjacent to each other in the Y direction with the diffusion isolation region 22a extending in the X direction interposed therebetween, and a diffusion isolation region extending in the Y direction. and two photoelectric conversion units 33 arranged in the X direction adjacent to each other via 22a. Therefore, in the two photoelectric conversion units 33 arranged adjacent to each other in the Y direction via the diffusion separation region 22a extending in the X direction, one photoelectric conversion unit 33 corresponds to the first photoelectric conversion unit of the present technology, The other photoelectric conversion unit 33 corresponds to the second photoelectric conversion unit of the present technology. In addition, in the two photoelectric conversion units 33 arranged adjacent to each other in the X direction via the diffusion isolation region 22a extending in the Y direction, one photoelectric conversion unit 33 corresponds to the first photoelectric conversion unit of the present technology, The other photoelectric conversion unit 33 corresponds to the second photoelectric conversion unit of the present technology.
 また、X方向に延伸する拡散分離領域22aを介してY方向に互いに隣り合って並ぶ2つの光電変換部33のうち、一方の光電変換部33とゲート電極42が平面視で重畳する転送トランジスタTRが本技術の第1トランジスタに対応し、他方の光電変換部33とゲート電極42が平面視で重畳する転送トランジスタTRが本技術の第2トランジスタに対応する。また、Y方向に延伸する拡散分離領域22aを介してX方向に互いに隣り合って並ぶ2つの光電変換部33のうち、一方の光電変換部33とゲート電極42が平面視で重畳する転送トランジスタTRが本技術の第1トランジスタに対応し、他方の光電変換部33とゲート電極42が平面視で重畳する転送トランジスタTRが本技術の第2トランジスタに対応する。 In addition, the transfer transistor TR in which one photoelectric conversion unit 33 and the gate electrode 42 of the two photoelectric conversion units 33 arranged adjacent to each other in the Y direction via the diffusion isolation region 22a extending in the X direction overlap in plan view. corresponds to the first transistor of the present technology, and the transfer transistor TR in which the photoelectric conversion unit 33 and the gate electrode 42 overlap each other in plan view corresponds to the second transistor of the present technology. In addition, the transfer transistor TR in which one photoelectric conversion unit 33 and the gate electrode 42 of the two photoelectric conversion units 33 arranged adjacent to each other in the X direction via the diffusion isolation region 22a extending in the Y direction overlap in plan view. corresponds to the first transistor of the present technology, and the transfer transistor TR in which the photoelectric conversion unit 33 and the gate electrode 42 overlap each other in plan view corresponds to the second transistor of the present technology.
 図20及び図21に示すように、4つの画素3aの各々の光電変換部33は、拡散分離領域22aで区画されている。即ち、Y方向に並ぶ2つの光電変換部33は、X方向に延伸する拡散分離領域22aを介して互いに隣り合っている。また、X方向に並ぶ2つの光電変換部33は、Y方向に延伸する拡散分離領域22aを介して互いに隣り合っている。 As shown in FIGS. 20 and 21, the photoelectric conversion section 33 of each of the four pixels 3a is partitioned by the diffusion isolation region 22a. That is, the two photoelectric conversion units 33 arranged in the Y direction are adjacent to each other via the diffusion isolation region 22a extending in the X direction. Also, the two photoelectric conversion units 33 arranged in the X direction are adjacent to each other with the diffusion isolation region 22a extending in the Y direction interposed therebetween.
 光電変換部33は、半導体層21の第2の面(光入射面,裏面)S2側から入射した光を光電変換して信号電荷を生成する。また、光電変換部33は、上述の第1実施形態の図5に示す第1及び第2光電変換部32L,32Rと同様に、例えばn型の半導体領域(第2導電型の第2半導体領域)25を含み、光電変換素子PDを構成している。この実施形態の光電変換部33においても、生成された信号電荷を一時的に蓄積するフローティングディフュージョンとしても機能する。 The photoelectric conversion unit 33 photoelectrically converts light incident from the second surface (light incident surface, back surface) S2 of the semiconductor layer 21 to generate signal charges. Further, the photoelectric conversion unit 33 includes, for example, an n-type semiconductor region (second conductivity type second semiconductor region), similar to the first and second photoelectric conversion units 32L and 32R shown in FIG. ) 25, constituting a photoelectric conversion element PD. The photoelectric conversion unit 33 of this embodiment also functions as a floating diffusion that temporarily accumulates the generated signal charges.
 図20に示すように、フローティングディフュージョンFDは、X方向に延伸する拡散分離領域22aと、Y方向に延伸する拡散分離領域22aと、が交差する交差部に設けられている。即ち、フローティングディフュージョンFDは、上述の第1実施形態の図7に示すフローティングディフュージョンFDと同様に、半導体層21の第1の面S1側において、拡散分離領域22aに設けられている。 As shown in FIG. 20, the floating diffusion FD is provided at an intersection where the diffusion isolation region 22a extending in the X direction and the diffusion isolation region 22a extending in the Y direction intersect. That is, the floating diffusion FD is provided in the diffusion isolation region 22a on the first surface S1 side of the semiconductor layer 21, like the floating diffusion FD shown in FIG. 7 of the first embodiment.
 フローティングディフュージョンFDの周囲には、4つの画素3aの各々に含まれる4つの転送トランジスタTRの各々のゲート電極42が配置されている。フローティングディフュージョンFDは、上述の第1実施形態と同様に例えばn型の半導体領域で構成され、n型の浮遊拡散領域である。 A gate electrode 42 of each of the four transfer transistors TR included in each of the four pixels 3a is arranged around the floating diffusion FD. The floating diffusion FD is an n-type floating diffusion region made of, for example, an n-type semiconductor region as in the first embodiment described above.
 図20及び図21に示すように、転送トランジスタTRは、基本的に上述の第1実施形態の図3及び図4に示す転送トランジスタTR1,TR2と同様の構成になっており、光電変換部33で光電変換された信号電荷をフローティングディフュージョンFDに転送する。フローティングディフュージョンFDは、光電変換部33から転送トランジスタTRを介して転送された信号電荷を蓄積して保持する。転送トランジスタTRは、光電変換部33とフローティングディフュージョンFDとの間の活性領域にチャネルを形成するように設けられ、第1の面S1上に順次積層されたゲート絶縁膜41及びゲート電極42を有する。転送トランジスタTRは、ゲート―ソース間の電圧に応じてオン、オフすることにより、ソース領域として機能する光電変換部33からドレイン領域として機能するフローティングディフュージョンFDへ信号電荷を転送する。 As shown in FIGS. 20 and 21, the transfer transistor TR has basically the same configuration as the transfer transistors TR1 and TR2 shown in FIGS. 3 and 4 of the first embodiment. transfer the signal charge photoelectrically converted to the floating diffusion FD. The floating diffusion FD accumulates and holds signal charges transferred from the photoelectric conversion unit 33 via the transfer transistor TR. The transfer transistor TR is provided so as to form a channel in the active region between the photoelectric conversion portion 33 and the floating diffusion FD, and has a gate insulating film 41 and a gate electrode 42 which are sequentially stacked on the first surface S1. . The transfer transistor TR is turned on and off according to the voltage between the gate and the source, thereby transferring signal charges from the photoelectric conversion unit 33 functioning as a source region to the floating diffusion FD functioning as a drain region.
 図20及び図21に示すように、絶縁分離体35は、Y方向に並ぶ2つの光電変換部33の間の拡散分離領域22aに設けられていると共に、X方向に並ぶ2つの光電変換部33の間の拡散分離領域22aに設けられている。この第5実施形態では、光電変換部33が画素3aの配列に伴ってX方向及びY方向のそれぞれの方向に2つずつ配置されているので、絶縁分離体35は、フローティングディフュージョンFDのX方向及びY方向のそれぞれの両側にフローティングディフュージョンFDから離間して2つずつ設けられている。 As shown in FIGS. 20 and 21, the insulating separator 35 is provided in the diffusion isolation region 22a between the two photoelectric conversion units 33 aligned in the Y direction, and is located between the two photoelectric conversion units 33 aligned in the X direction. is provided in the diffusion isolation region 22a between the . In the fifth embodiment, two photoelectric conversion units 33 are arranged in each of the X direction and the Y direction along with the arrangement of the pixels 3a. and two on each side in the Y direction and separated from the floating diffusion FD.
 絶縁分離体35は、上述の第1実施形態の図6に示す絶縁分離体35と同様に、半導体層21の第1の面S1側から第2の面S2側に向かって延伸する溝部36と、この溝部36内に埋め込まれた絶縁膜37とを含む。 The insulating separator 35 has a groove portion 36 extending from the first surface S1 side of the semiconductor layer 21 toward the second surface S2 side in the same manner as the insulating separator 35 shown in FIG. 6 of the first embodiment described above. , and an insulating film 37 embedded in the trench 36. As shown in FIG.
 絶縁分離体35のZ方向の深さDe(図6参照)は、上述の第1実施形態と同様に、X方向又はY方向に並ぶ2つの画素3aにおいて、一方の転送トランジスタTRをオンにする期間中に、2つの光電変換部33の間の拡散分離領域22aのポテンシャルが変調される変調領域の厚さ(高さ)よりも深くすることが好ましい。 The Z-direction depth De (see FIG. 6) of the insulating separator 35 turns on one of the transfer transistors TR in two pixels 3a arranged in the X-direction or the Y-direction, as in the first embodiment described above. It is preferable to make it deeper than the thickness (height) of the modulation region in which the potential of the diffusion isolation region 22a between the two photoelectric conversion portions 33 is modulated during the period.
 また、絶縁分離体35は、上述の第1実施形態と同様に、X方向又はY方向に並ぶ2つの画素3aにおいて、平面視で一方の転送トランジスタTRのゲート電極42と他方の転送トランジスタTRのゲート電極42との間及び外側に亘って延伸していることが好ましい。また、絶縁分離体35は、平面視でフローティングディフュージョンFDから離間していることが好ましい。 As in the first embodiment described above, the insulating separator 35 is formed between the gate electrode 42 of one transfer transistor TR and the other transfer transistor TR in two pixels 3a arranged in the X direction or the Y direction in a plan view. It preferably extends between and outside the gate electrode 42 . Moreover, it is preferable that the insulating separator 35 is separated from the floating diffusion FD in plan view.
 図21に示すように、半導体層21の第2の面S2側には、上述の第1実施形態と同様に、この第2の面S2側から順次積層されたカラーフィルタ45及びマイクロレンズ46が設けられている。この第5実施形態では、カラーフィルタ45及びマイクロレンズ46の各々は、画素ブロック15A毎に配置されている。 As shown in FIG. 21, on the second surface S2 side of the semiconductor layer 21, similarly to the first embodiment described above, color filters 45 and microlenses 46 are sequentially laminated from the second surface S2 side. is provided. In this fifth embodiment, each of the color filters 45 and the microlenses 46 is arranged for each pixel block 15A.
 この第5実施形態に係る固体撮像装置1Eによれば、X方向又はY方向に並ぶ2つの画素3aにおいて、一方の画素3aの転送トランジスタTRがオンのときに、意図しない、他方の画素3aの光電変換部33の信号電荷がフローティングディフュージョンFDに漏れ込む現象を抑制することができる。 According to the solid-state imaging device 1E according to the fifth embodiment, in the two pixels 3a arranged in the X direction or the Y direction, when the transfer transistor TR of one pixel 3a is turned on, the transfer transistor TR of the other pixel 3a is unintentionally A phenomenon in which the signal charge of the photoelectric conversion unit 33 leaks into the floating diffusion FD can be suppressed.
 〔第6実施形態〕
 ≪電子機器への応用例≫
 本技術(本開示に係る技術)は、例えば、デジタルスチルカメラ、デジタルビデオカメラ等の撮像装置、撮像機能を備えた携帯電話機、又は、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
[Sixth Embodiment]
≪Example of application to electronic equipment≫
The present technology (technology according to the present disclosure) is applied to various electronic devices such as imaging devices such as digital still cameras and digital video cameras, mobile phones with imaging functions, and other devices with imaging functions. can do.
 図22は、本技術の第6実施形態に係る電子機器(例えば、カメラ)の概略構成を示す図である。 FIG. 22 is a diagram showing a schematic configuration of an electronic device (for example, camera) according to the sixth embodiment of the present technology.
 図22に示すように、電子機器100は、固体撮像装置101と、光学レンズ102と、シャッタ装置103と、駆動回路104と、信号処理回路105とを備えている。この電子機器100は、固体撮像装置101として、本技術の第1実形態から第5実施形態に係る固体撮像装置を電子機器(例えばカメラ)に用いた場合の実施形態を示す。 As shown in FIG. 22, the electronic device 100 includes a solid-state imaging device 101, an optical lens 102, a shutter device 103, a driving circuit 104, and a signal processing circuit 105. This electronic device 100 shows an embodiment in which the solid-state imaging devices according to the first to fifth embodiments of the present technology are used as the solid-state imaging device 101 in an electronic device (for example, a camera).
 光学レンズ102は、被写体からの像光(入射光106)を固体撮像装置101の撮像面上に結像させる。これにより、固体撮像装置101内に一定期間にわたって信号電荷が蓄積される。シャッタ装置103は、固体撮像装置101への光照射期間及び遮光期間を制御する。駆動回路104は、固体撮像装置101の転送動作及びシャッタ装置103のシャッタ動作を制御する駆動信号を供給する。駆動回路104から供給される駆動信号(タイミング信号)により、固体撮像装置101の信号転送を行なう。信号処理回路105は、固体撮像装置101から出力される信号(画素信号)に各種信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、或いはモニタに出力される。 The optical lens 102 forms an image of image light (incident light 106) from the subject on the imaging surface of the solid-state imaging device 101. As a result, signal charges are accumulated in the solid-state imaging device 101 for a certain period of time. A shutter device 103 controls a light irradiation period and a light shielding period for the solid-state imaging device 101 . A drive circuit 104 supplies drive signals for controlling the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 103 . Signal transfer of the solid-state imaging device 101 is performed by a driving signal (timing signal) supplied from the driving circuit 104 . The signal processing circuit 105 performs various signal processing on signals (pixel signals) output from the solid-state imaging device 101 . The video signal that has undergone signal processing is stored in a storage medium such as a memory, or output to a monitor.
 このような構成により、第6実施形態の電子機器100では、固体撮像装置101において光反射抑制部により、遮光膜や、空気層と接する絶縁膜での光反射が抑制させているため、フレを抑制することができ、画質の向上を図ることができる。 With such a configuration, in the electronic device 100 of the sixth embodiment, the light reflection suppression unit in the solid-state imaging device 101 suppresses light reflection from the light shielding film and the insulating film in contact with the air layer. This can be suppressed, and the image quality can be improved.
 なお、上述の実施形態の固体撮像装置を適用できる電子機器100としては、カメラに限られるものではなく、他の電子機器にも適用することができる。例えば、携帯電話機やタブレット端末等のモバイル機器向けカメラモジュール等の撮像装置に適用してもよい。 Note that the electronic device 100 to which the solid-state imaging device of the above-described embodiment can be applied is not limited to cameras, and can be applied to other electronic devices. For example, the present invention may be applied to imaging devices such as camera modules for mobile devices such as mobile phones and tablet terminals.
 また、本技術は、上述したイメージセンサとしての固体撮像装置の他、ToF(Time of Flight)センサと呼称され、距離を測定する測定する測距センサなども含む光検出装置全般に適用することができる。測距センサは、物体に向かって照射光を発光し、その照射光が物体の表面で反射されて返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出するセンサである。この測距センサの素子分離領域の構造として、上述した素子分離領域の構造を採用することができる。 In addition to the above-described solid-state imaging device as an image sensor, the present technology is also called a ToF (Time of Flight) sensor, and can be applied to light detection devices in general, including ranging sensors that measure distance. can. A ranging sensor emits irradiation light toward an object, detects the reflected light that is reflected from the surface of the object, and detects the light that returns after the irradiation light is emitted. A sensor that calculates the distance to an object based on flight time. As the structure of the element isolation region of this distance measuring sensor, the structure of the element isolation region described above can be adopted.
 なお、本技術は、以下のような構成としてもよい。
(1)
 互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
 前記半導体層に設けられた光電変換セルと、を備え、
 前記光電変換セルは、
 前記半導体層に平面視で第1拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
 前記半導体層の前記第1の面側で前記第1拡散分離領域に設けられたフローティングディフュージョンと、
 前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部から前記フローティングディフュージョンに信号電荷を転送する第1転送トランジスタと、
 前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部から前記フローティングディフュージョンに信号電荷を転送する第2転送トランジスタと、
 前記半導体層の前記第1の面側で前記第1拡散分離領域に前記フローティングディフュージョンから離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、
 を有する光検出装置。
(2)
 前記絶縁分離体は、平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間及び外側に亘って延伸している、上記(1)に記載の光検出装置。
(3)
 前記絶縁分離体の深さは、位相差モードにおいて、前記第1及び第2転送トランジスタの何れか一方をオンにする期間中に、前記第1拡散分離領域のポテンシャルが変調される変調領域の厚さよりも深い、上記(1)又は(2)に記載の光検出装置。
(4)
 前記第1拡散分離領域は、第1導電型の第1半導体領域で構成され、
 前記第1及び第2光電変換部の各々は、第2導電型の第2半導体領域を含む、上記(1)から(3)の何れかに記載の光検出装置。
(5)
 前記第1及び第2転送トランジスタは、前記半導体層の前記第1の面側に設けられたゲート絶縁膜を有し、
 前記絶縁分離体は、前記ゲート絶縁膜で覆われている、上記(1)から(4)の何れかに記載の光検出装置。
(6)
 前記絶縁分離体は、前記半導体層の前記第1の面側に設けられた溝部と、前記溝部に埋め込まれた絶縁膜とを含む、上記(1)から(5)の何れかに記載の光検出装置。
(7)
 前記光電変換セルは、前記半導体層の前記第1の面側で前記第1及び第2光電変換部の各々に設けられた第1導電型の第3半導体領域を更に含む、上記(1)から(6)の何れかに記載の光検出装置。
(8)
 前記光電変換セルは、前記半導体層の前記第1の面側で前記第1及び第2光電変換部に前記第3半導体領域の底部と接して設けられ、かつ前記第2半導体領域よりも不純物濃度が高い第2導電型の第4半導体領域を更に有する、上記(1)から(7)の何れかに記載の光検出装置。
(9)
 前記光電変換セルは、前記第1拡散分離領域を横切って前記第1光電変換部と前記第2光電電変換とを電気的に連結する第2導電型の第5半導体領域を更に有する、上記(1)から(8)の何れかに記載の光検出装置。
(10)
 前記光電変換セルが前記平面視で第2拡散分離領域を介して互いに隣り合って配置され、
 前記絶縁分離体は、前記第2拡散分離領域にも設けられている、上記(1)から(9)の何れかに記載の光検出装置。
(11)
 前記半導体層の前記第2の面側に平面視で前記第1拡散分離領域と重畳して設けられた第1絶縁分離領域と、
 前記半導体層の前記第2の面側に平面視で前記第2拡散分離領域と重畳して設けられた第2絶縁分離領域と、を更に有する上記(1)から(10)の何れかに記載の光検出装置。
(12)
 互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
 前記半導体層に拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
 前記半導体層の前記第1の面側で前記拡散分離領域に設けられたフローティングディフュージョンと、
 前記半導体層の前記第1の面側にゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第1転送トランジスタと、
 前記半導体層の前記第1の面側にゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第2転送トランジスタと、
 前記拡散分離領域に前記電荷保持部から離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、を有する、光検出装置。
(13)
 前記絶縁分離体は、平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間及び外側に亘って延伸している、上記(12)に記載の光検出装置。
(14)
 前記拡散分離領域は、第1の方向に延伸し、
 前記第1及び第2光電変換部は、同一平面内で前記第1の方向と直交する第2の方向に並んでいる、上記(12)又は(13)に記載の光検出装置。
(15)
 光検出装置と、被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、前記光検出装置から出力される信号に信号処理を行う信号処理回路と、を備え、
 前記光検出装置は、
 互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
 前記半導体層に設けられた光電変換セルと、を備え、
 前記光電変換セルは、
 前記半導体層に平面視で第1拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
 前記半導体層の前記第1の面側で前記第1拡散分離領域に設けられたフローティングディフュージョンと、
 前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部から前記フローティングディフュージョンに信号電荷を転送する第1転送トランジスタと、
 前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部から前記フローティングディフュージョンに信号電荷を転送する第2転送トランジスタと、
 前記半導体層の前記第1の面側で前記第1拡散分離領域に前記フローティングディフュージョンから離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、
 を有する電子機器。
(16)
 光検出装置と、被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、前記光検出装置から出力される信号に信号処理を行う信号処理回路と、を備え、
 前記光検出装置は、
 互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
 前記半導体層に拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
 前記半導体層の前記第1の面側で前記拡散分離領域に設けられたフローティングディフュージョンと、
 前記半導体層の前記第1の面側にゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第1転送トランジスタと、
 前記半導体層の前記第1の面側にゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第2転送トランジスタと、
 前記拡散分離領域に前記電荷保持部から離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、を有する、電子機器。
Note that the present technology may be configured as follows.
(1)
a semiconductor layer having first and second surfaces opposite to each other;
and a photoelectric conversion cell provided in the semiconductor layer,
The photoelectric conversion cell is
first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer;
a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the floating diffusion. a transfer transistor;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and a second photoelectric conversion section for transferring signal charges from the second photoelectric conversion section to the floating diffusion. a transfer transistor;
provided in the first diffusion separation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view an insulating separator that
A photodetector having
(2)
The photodetector according to (1), wherein the insulating separator extends between and outside the gate electrodes of the first and second transfer transistors in plan view.
(3)
The depth of the insulating isolation is the thickness of the modulation region in which the potential of the first diffusion isolation region is modulated while one of the first and second transfer transistors is turned on in the phase difference mode. The photodetector according to (1) or (2) above, which is deeper than the depth.
(4)
the first diffusion isolation region is composed of a first conductivity type first semiconductor region,
The photodetector according to any one of (1) to (3), wherein each of the first and second photoelectric conversion units includes a second conductivity type second semiconductor region.
(5)
The first and second transfer transistors each have a gate insulating film provided on the first surface side of the semiconductor layer,
The photodetector according to any one of (1) to (4) above, wherein the insulating separator is covered with the gate insulating film.
(6)
The light according to any one of (1) to (5) above, wherein the insulating separator includes a groove provided on the first surface side of the semiconductor layer and an insulating film embedded in the groove. detection device.
(7)
From (1) above, wherein the photoelectric conversion cell further includes a third semiconductor region of a first conductivity type provided in each of the first and second photoelectric conversion units on the first surface side of the semiconductor layer The photodetector according to any one of (6).
(8)
The photoelectric conversion cell is provided in the first and second photoelectric conversion portions on the first surface side of the semiconductor layer so as to be in contact with the bottom portion of the third semiconductor region, and has an impurity concentration higher than that of the second semiconductor region. The photodetector according to any one of (1) to (7) above, further comprising a fourth semiconductor region of the second conductivity type with a high .
(9)
The above ( The photodetector according to any one of 1) to (8).
(10)
the photoelectric conversion cells are arranged adjacent to each other with the second diffusion isolation region interposed therebetween in plan view;
The photodetector according to any one of (1) to (9) above, wherein the insulating separator is also provided in the second diffusion separation region.
(11)
a first isolation region provided on the second surface side of the semiconductor layer so as to overlap with the first diffusion isolation region in plan view;
Any one of (1) to (10) above, further comprising a second isolation region provided on the second surface side of the semiconductor layer so as to overlap with the second diffusion isolation region in a plan view. photodetector.
(12)
a semiconductor layer having first and second surfaces opposite to each other;
first and second photoelectric conversion units provided adjacent to each other via a diffusion isolation region in the semiconductor layer;
a floating diffusion provided in the diffusion isolation region on the first surface side of the semiconductor layer;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the first photoelectric conversion unit to the floating diffusion. a first transfer transistor to
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion unit to the floating diffusion. a second transfer transistor to
an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in a plan view. .
(13)
The photodetector according to (12) above, wherein the insulating separator extends between and outside the gate electrodes of the first and second transfer transistors in plan view.
(14)
the diffusion isolation region extends in a first direction;
The photodetector according to (12) or (13) above, wherein the first and second photoelectric conversion units are arranged on the same plane in a second direction orthogonal to the first direction.
(15)
a photodetector, an optical lens that forms an image of image light from a subject on an imaging surface of the photodetector, and a signal processing circuit that performs signal processing on a signal output from the photodetector,
The photodetector is
a semiconductor layer having first and second surfaces opposite to each other;
and a photoelectric conversion cell provided in the semiconductor layer,
The photoelectric conversion cell is
first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer;
a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the floating diffusion. a transfer transistor;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and a second photoelectric conversion section for transferring signal charges from the second photoelectric conversion section to the floating diffusion. a transfer transistor;
provided in the first diffusion separation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view an insulating separator that
electronic equipment.
(16)
a photodetector, an optical lens that forms an image of image light from a subject on an imaging surface of the photodetector, and a signal processing circuit that performs signal processing on a signal output from the photodetector,
The photodetector is
a semiconductor layer having first and second surfaces opposite to each other;
first and second photoelectric conversion units provided adjacent to each other via a diffusion isolation region in the semiconductor layer;
a floating diffusion provided in the diffusion isolation region on the first surface side of the semiconductor layer;
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the first photoelectric conversion unit to the floating diffusion. a first transfer transistor to
A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion unit to the floating diffusion. a second transfer transistor to
and an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in a plan view.
 本技術の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本技術が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本技術の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。 The scope of the present technology is not limited to the illustrated and described exemplary embodiments, but also includes all embodiments that achieve effects equivalent to those intended by the present technology. Furthermore, the scope of the technology is not limited to the combination of inventive features defined by the claims, but may be defined by any desired combination of the particular features of each and every disclosed feature.
 1 固体撮像装置
 2 半導体チップ
 2A 画素アレイ部
 2B 周辺部
 3 画素
 4 垂直駆動回路
 5 カラム信号処理回路
 6 水平駆動回路
 7 出力回路
 8 制御回路
 10 画素駆動線
 12 水平信号線
 13 ロジック回路
 14 ボンディングパッド
 15,15A 画素ブロック
 16 読出し回路
 21 半導体層
 22 セル間拡散分離領域
 22a 拡散分離領域
 23 セル内拡散分離領域
 24 p型の半導体領域(第1半導体領域)
 25 n型の半導体領域(第2半導体領域)
 26 n型の半導体領域(第4半導体領域)
 27 p型の半導体領域(第3半導体領域)
 28 n型の半導体領域(第5半導体領域)
 31 光電変換セル(Photo Diode)
 32L 第1光電変換部
 32R 第2光電変換部
 33 光電変換部
 35 絶縁分離体
 36 溝部
 37 絶縁膜
 41 ゲート絶縁膜
 42,42L,42R ゲート電極
 45 カラーフィルタ
 46 マイクロレンズ
 52 セル間絶縁分離領域
 53 セル内絶縁分離領域
 54 絶縁膜
 FD フローティングディフュージョン
 PD 光電変換素子
 PD1 第1光電変換素子
 PD2 第2光電変換素子
 RST リセットトランジスタ
 SEL 選択トランジスタ
 TR 転送トランジスタ
 TR1 第1転送トランジスタ
 TR2 第2転送トランジスタ
1 solid-state imaging device 2 semiconductor chip 2A pixel array section 2B peripheral section 3 pixel 4 vertical drive circuit 5 column signal processing circuit 6 horizontal drive circuit 7 output circuit 8 control circuit 10 pixel drive line 12 horizontal signal line 13 logic circuit 14 bonding pad 15 , 15A pixel block 16 readout circuit 21 semiconductor layer 22 inter-cell diffusion isolation region 22a diffusion isolation region 23 intra-cell diffusion isolation region 24 p-type semiconductor region (first semiconductor region)
25 n-type semiconductor region (second semiconductor region)
26 n-type semiconductor region (fourth semiconductor region)
27 p-type semiconductor region (third semiconductor region)
28 n-type semiconductor region (fifth semiconductor region)
31 Photo Diode
32L first photoelectric conversion unit 32R second photoelectric conversion unit 33 photoelectric conversion unit 35 insulating separator 36 groove 37 insulating film 41 gate insulating film 42, 42L, 42R gate electrode 45 color filter 46 microlens 52 inter-cell insulating separation region 53 cell Inner isolation region 54 Insulating film FD Floating diffusion PD Photoelectric conversion element PD1 First photoelectric conversion element PD2 Second photoelectric conversion element RST Reset transistor SEL Selection transistor TR Transfer transistor TR1 First transfer transistor TR2 Second transfer transistor

Claims (16)

  1.  互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
     前記半導体層に設けられた光電変換セルと、を備え、
     前記光電変換セルは、
     前記半導体層に平面視で第1拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
     前記半導体層の前記第1の面側で前記第1拡散分離領域に設けられたフローティングディフュージョンと、
     前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部から前記フローティングディフュージョンに信号電荷を転送する第1転送トランジスタと、
     前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部から前記フローティングディフュージョンに信号電荷を転送する第2転送トランジスタと、
     前記半導体層の前記第1の面側で前記第1拡散分離領域に前記フローティングディフュージョンから離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、
     を有する光検出装置。
    a semiconductor layer having first and second surfaces opposite to each other;
    and a photoelectric conversion cell provided in the semiconductor layer,
    The photoelectric conversion cell is
    first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer;
    a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer;
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the floating diffusion. a transfer transistor;
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and a second photoelectric conversion section for transferring signal charges from the second photoelectric conversion section to the floating diffusion. a transfer transistor;
    provided in the first diffusion separation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view an insulating separator that
    A photodetector having
  2.  前記絶縁分離体は、平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間及び外側に亘って延伸している、請求項1に記載の光検出装置。 2. The photodetector according to claim 1, wherein said insulating separator extends between and outside said gate electrodes of said first and second transfer transistors in plan view.
  3.  前記絶縁分離体の深さは、位相差モードにおいて、前記第1及び第2転送トランジスタの何れか一方をオンにする期間中に、前記第1拡散分離領域のポテンシャルが変調される変調領域の厚さよりも深い、請求項1に記載の光検出装置。 The depth of the insulating isolation is the thickness of the modulation region in which the potential of the first diffusion isolation region is modulated while one of the first and second transfer transistors is turned on in the phase difference mode. 2. The photodetector of claim 1, deeper than the depth.
  4.  前記第1拡散分離領域は、第1導電型の第1半導体領域で構成され、
     前記第1及び第2光電変換部の各々は、第2導電型の第2半導体領域を含む、請求項1に記載の光検出装置。
    the first diffusion isolation region is composed of a first conductivity type first semiconductor region,
    2. The photodetector according to claim 1, wherein each of said first and second photoelectric conversion units includes a second conductivity type second semiconductor region.
  5.  前記第1及び第2転送トランジスタは、前記半導体層の前記第1の面側に設けられたゲート絶縁膜を有し、
     前記絶縁分離体は、前記ゲート絶縁膜で覆われている、請求項1に記載の光検出装置。
    The first and second transfer transistors each have a gate insulating film provided on the first surface side of the semiconductor layer,
    2. The photodetector according to claim 1, wherein said insulating separator is covered with said gate insulating film.
  6.  前記絶縁分離体は、前記半導体層の前記第1の面側に設けられた溝部と、前記溝部に埋め込まれた絶縁膜とを含む、請求項1に記載の光検出装置。 The photodetector according to claim 1, wherein the insulating separator includes a groove provided on the first surface side of the semiconductor layer, and an insulating film embedded in the groove.
  7.  前記光電変換セルは、前記半導体層の前記第1の面側で前記第1及び第2光電変換部の各々に設けられた第1導電型の第3半導体領域を更に含む、請求項1に記載の光検出装置。 2. The photoelectric conversion cell according to claim 1, further comprising a third semiconductor region of a first conductivity type provided in each of said first and second photoelectric conversion parts on said first surface side of said semiconductor layer. photodetector.
  8.  前記光電変換セルは、前記半導体層の前記第1の面側で前記第1及び第2光電変換部に前記第3半導体領域の底部と接して設けられ、かつ前記第2半導体領域よりも不純物濃度が高い第2導電型の第4半導体領域を更に有する、請求項7に記載の光検出装置。 The photoelectric conversion cell is provided in the first and second photoelectric conversion portions on the first surface side of the semiconductor layer so as to be in contact with the bottom portion of the third semiconductor region, and has an impurity concentration higher than that of the second semiconductor region. 8. The photodetector of claim 7, further comprising a fourth semiconductor region of the second conductivity type with a high .
  9.  前記光電変換セルは、前記第1拡散分離領域を横切って前記第1光電変換部と前記第2光電電変換とを電気的に連結する第2導電型の第5半導体領域を更に有する、請求項1に記載の光検出装置。 3. The photoelectric conversion cell further includes a second conductivity type fifth semiconductor region that crosses the first diffusion separation region and electrically connects the first photoelectric conversion unit and the second photoelectric conversion. 2. The photodetector according to 1.
  10.  前記光電変換セルが前記平面視で第2拡散分離領域を介して互いに隣り合って配置され、
     前記絶縁分離体は、前記第2拡散分離領域にも設けられている、請求項1に記載の光検出装置。
    the photoelectric conversion cells are arranged adjacent to each other with the second diffusion isolation region interposed therebetween in plan view;
    2. The photodetector according to claim 1, wherein said insulating separator is also provided in said second diffusion separation region.
  11.  前記半導体層の前記第2の面側に平面視で前記第1拡散分離領域と重畳して設けられた第1絶縁分離領域と、
     前記半導体層の前記第2の面側に平面視で前記第2拡散分離領域と重畳して設けられた第2絶縁分離領域と、を更に有する請求項10に記載の光検出装置。
    a first isolation region provided on the second surface side of the semiconductor layer so as to overlap with the first diffusion isolation region in plan view;
    11. The photodetector according to claim 10, further comprising a second isolation region provided on the second surface side of the semiconductor layer so as to overlap with the second diffusion isolation region in plan view.
  12.  互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
     前記半導体層に拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
     前記半導体層の前記第1の面側で前記拡散分離領域に設けられたフローティングディフュージョンと、
     前記半導体層の前記第1の面側にゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第1転送トランジスタと、
     前記半導体層の前記第1の面側にゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第2転送トランジスタと、
     前記拡散分離領域に前記電荷保持部から離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、
     を有する、光検出装置。
    a semiconductor layer having first and second surfaces opposite to each other;
    first and second photoelectric conversion units provided adjacent to each other via a diffusion isolation region in the semiconductor layer;
    a floating diffusion provided in the diffusion isolation region on the first surface side of the semiconductor layer;
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the first photoelectric conversion unit to the floating diffusion. a first transfer transistor to
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion unit to the floating diffusion. a second transfer transistor to
    an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in plan view;
    A photodetector, comprising:
  13.  前記絶縁分離体は、平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間及び外側に亘って延伸している、請求項12に記載の光検出装置。 13. The photodetector according to claim 12, wherein the insulating separator extends between and outside the gate electrodes of each of the first and second transfer transistors in plan view.
  14.  前記拡散分離領域は、第1の方向に延伸し、
     前記第1及び第2光電変換部は、同一平面内で前記第1の方向と直交する第2の方向に並んでいる、請求項12に記載の光検出装置。
    the diffusion separation region extends in a first direction;
    13. The photodetector according to claim 12, wherein said first and second photoelectric conversion units are arranged in a second direction orthogonal to said first direction within the same plane.
  15.  光検出装置と、被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、前記光検出装置から出力される信号に信号処理を行う信号処理回路と、を備え、
     前記光検出装置は、
     互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
     前記半導体層に設けられた光電変換セルと、を備え、
     前記光電変換セルは、
     前記半導体層に平面視で第1拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
     前記半導体層の前記第1の面側で前記第1拡散分離領域に設けられたフローティングディフュージョンと、
     前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部から前記フローティングディフュージョンに信号電荷を転送する第1転送トランジスタと、
     前記半導体層の前記第1の面側に、ゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部から前記フローティングディフュージョンに信号電荷を転送する第2転送トランジスタと、
     前記半導体層の前記第1の面側で前記第1拡散分離領域に前記フローティングディフュージョンから離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、
     を有する電子機器。
    a photodetector, an optical lens that forms an image of image light from a subject on an imaging surface of the photodetector, and a signal processing circuit that performs signal processing on a signal output from the photodetector,
    The photodetector is
    a semiconductor layer having first and second surfaces opposite to each other;
    and a photoelectric conversion cell provided in the semiconductor layer,
    The photoelectric conversion cell is
    first and second photoelectric conversion units provided adjacent to each other via a first diffusion isolation region in plan view in the semiconductor layer;
    a floating diffusion provided in the first diffusion isolation region on the first surface side of the semiconductor layer;
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion section in plan view, and the first photoelectric conversion section transfers signal charges from the first photoelectric conversion section to the floating diffusion. a transfer transistor;
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion section in a plan view, and a second photoelectric conversion section for transferring signal charges from the second photoelectric conversion section to the floating diffusion. a transfer transistor;
    provided in the first diffusion separation region on the first surface side of the semiconductor layer, separated from the floating diffusion, and extending between the gate electrodes of the first and second transfer transistors in plan view an insulating separator that
    electronic equipment.
  16.  光検出装置と、被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、前記光検出装置から出力される信号に信号処理を行う信号処理回路と、を備え、
     前記光検出装置は、
     互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
     前記半導体層に拡散分離領域を介して互いに隣り合って設けられた第1及び第2光電変換部と、
     前記半導体層の前記第1の面側で前記拡散分離領域に設けられたフローティングディフュージョンと、
     前記半導体層の前記第1の面側にゲート電極が平面視で前記第1光電変換部と重畳して設けられ、かつ前記第1光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第1転送トランジスタと、
     前記半導体層の前記第1の面側にゲート電極が平面視で前記第2光電変換部と重畳して設けられ、かつ前記第2光電変換部で光電変換された信号電荷を前記フローティングディフュージョンに転送する第2転送トランジスタと、
     前記拡散分離領域に前記電荷保持部から離間して設けられ、かつ平面視で前記第1及び第2転送トランジスタの各々の前記ゲート電極の間を延伸する絶縁分離体と、
     を有する電子機器。
    a photodetector, an optical lens that forms an image of image light from a subject on an imaging surface of the photodetector, and a signal processing circuit that performs signal processing on a signal output from the photodetector,
    The photodetector is
    a semiconductor layer having first and second surfaces opposite to each other;
    first and second photoelectric conversion units provided adjacent to each other via a diffusion isolation region in the semiconductor layer;
    a floating diffusion provided in the diffusion isolation region on the first surface side of the semiconductor layer;
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the first photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the first photoelectric conversion unit to the floating diffusion. a first transfer transistor to
    A gate electrode is provided on the first surface side of the semiconductor layer so as to overlap with the second photoelectric conversion unit in plan view, and transfers signal charges photoelectrically converted by the second photoelectric conversion unit to the floating diffusion. a second transfer transistor to
    an insulating separator provided in the diffusion isolation region apart from the charge holding portion and extending between the gate electrodes of the first and second transfer transistors in plan view;
    electronic equipment.
PCT/JP2022/009109 2021-07-14 2022-03-03 Photo detection device and electronic apparatus WO2023286330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-116628 2021-07-14
JP2021116628A JP2023012890A (en) 2021-07-14 2021-07-14 Photo detection device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2023286330A1 true WO2023286330A1 (en) 2023-01-19

Family

ID=84919779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009109 WO2023286330A1 (en) 2021-07-14 2022-03-03 Photo detection device and electronic apparatus

Country Status (3)

Country Link
JP (1) JP2023012890A (en)
TW (1) TW202312471A (en)
WO (1) WO2023286330A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084742A (en) * 2011-10-07 2013-05-09 Canon Inc Photoelectric conversion device and imaging system
JP2013175494A (en) * 2011-03-02 2013-09-05 Sony Corp Solid state imaging device, method of fabricating solid state imaging device, and electronic instrument
JP2019165136A (en) * 2018-03-20 2019-09-26 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device, manufacturing method therefor, and electronic apparatus
JP2021097241A (en) * 2021-03-04 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175494A (en) * 2011-03-02 2013-09-05 Sony Corp Solid state imaging device, method of fabricating solid state imaging device, and electronic instrument
JP2013084742A (en) * 2011-10-07 2013-05-09 Canon Inc Photoelectric conversion device and imaging system
JP2019165136A (en) * 2018-03-20 2019-09-26 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device, manufacturing method therefor, and electronic apparatus
JP2021097241A (en) * 2021-03-04 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic apparatus

Also Published As

Publication number Publication date
TW202312471A (en) 2023-03-16
JP2023012890A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US11817473B2 (en) Solid-state imaging device, drive method thereof and electronic apparatus
US11088187B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device, and electronic device
JP5471174B2 (en) SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
KR101683307B1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
US8792035B2 (en) Solid-state imaging device and manufacturing method thereof, driving method of solid-state imaging device, and electronic equipment
JP5564909B2 (en) SOLID-STATE IMAGING DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2014045219A (en) Solid state image pickup device
JP2015053411A (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic equipment
KR100757654B1 (en) Cmos image sensor and method for manufacturing the same
US20240213286A1 (en) Light detecting device and electronic device
JP2010114275A (en) Solid-state imaging device, drive method of solid-state imaging device, and electronic apparatus
US20230299140A1 (en) Semiconductor device and electronic apparatus
WO2023286330A1 (en) Photo detection device and electronic apparatus
WO2023084989A1 (en) Photodetection device and electronic apparatus
KR20240095209A (en) Light detection devices and electronics
JP2011009466A (en) Solid-state image pickup device, and electronic apparatus
KR20090056458A (en) Cmos image sensor and electronic apparatus including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE