WO2023286208A1 - Indoor unit and air conditioner - Google Patents

Indoor unit and air conditioner Download PDF

Info

Publication number
WO2023286208A1
WO2023286208A1 PCT/JP2021/026475 JP2021026475W WO2023286208A1 WO 2023286208 A1 WO2023286208 A1 WO 2023286208A1 JP 2021026475 W JP2021026475 W JP 2021026475W WO 2023286208 A1 WO2023286208 A1 WO 2023286208A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
wall surface
indoor unit
rotation axis
rotation angle
Prior art date
Application number
PCT/JP2021/026475
Other languages
French (fr)
Japanese (ja)
Inventor
美優 中野
健一 迫田
皓亮 宮脇
翔太 森川
誠 谷島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/026475 priority Critical patent/WO2023286208A1/en
Priority to JP2023534518A priority patent/JP7357827B2/en
Publication of WO2023286208A1 publication Critical patent/WO2023286208A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers

Definitions

  • the present disclosure relates to indoor units and air conditioners.
  • a flat plate-shaped heat exchanger is installed on the suction port side of the body casing so as to face the suction port of the body casing, and a notch is formed on the opposite side of the air outlet of the spiral casing.
  • Patent Document 1 Patent Document 1
  • Patent Literature 1 refers to miniaturization of the indoor unit, the size of the heat exchanger is limited, and sufficient heat exchange capacity is not taken into consideration.
  • the present disclosure has been made in order to solve the above-described problems, and an indoor unit and an air conditioner that improve ventilation efficiency while ensuring heat exchange capacity even when the indoor unit is downsized.
  • the purpose is to provide a harmonizing machine.
  • An indoor unit includes a housing having a main body inlet and a main body outlet, a main plate provided inside the housing and rotating around a rotation axis, and a plurality of blades arranged on the main plate.
  • a centrifugal blower having a wheel, a spiral casing having a wall surface spirally surrounding the periphery of the impeller and a side surface formed with a suction port for the impeller to suck in air; and a heat exchanger that surrounds the periphery of the wall surface by having a curved shape as, the angle around the rotation axis is the rotation angle ⁇ , the distance between the wall surface and the heat exchanger is the radial distance LH, and the wall surface
  • the heat exchanger is arranged so that the radial distance LH varies depending on the rotation angle ⁇ .
  • an air conditioner according to the present disclosure includes the indoor unit and the outdoor unit.
  • the present disclosure it is possible to provide an indoor unit and an air conditioner that improve air blowing efficiency while ensuring heat exchange capacity even when the indoor unit is downsized.
  • FIG. 1 is a perspective view showing an indoor unit according to Embodiment 1;
  • FIG. Fig. 2 is a perspective view of the interior of the indoor unit according to the first embodiment;
  • Fig. 3 is a cross-sectional view of the main part inside the indoor unit according to the first embodiment;
  • 1 is a perspective view of a centrifugal fan according to Embodiment 1;
  • FIG. Fig. 2 is a plan view of the spiral casing according to the first embodiment, viewed from the suction port side;
  • FIG. 5 is a diagram showing the relationship between the radial distance with respect to the rotation angle ⁇ and the length of the wall surface in the rotation axis direction according to the first embodiment;
  • FIG. 3 is a schematic diagram showing the flow of air taken in by the indoor unit according to the first embodiment;
  • FIG. 4 is a perspective view of the interior of an indoor unit according to a modification of the first embodiment
  • FIG. 8 is a perspective view of the interior of the indoor unit according to the second embodiment
  • FIG. 10 is a plan view of the spiral casing according to the second embodiment, viewed from the suction port side
  • FIG. 8 is a plan view of the interior of the indoor unit according to the second embodiment, viewed from the rear side
  • FIG. 9 is a schematic diagram showing the flow of air drawn into the indoor unit when viewed from the side of the spiral casing according to the second embodiment
  • FIG. 8 is a schematic diagram showing the flow of air taken in by the indoor unit when the interior of the indoor unit according to the second embodiment is viewed from the back side
  • FIG. 11 is a perspective view of the inside of an indoor unit according to Embodiment 3;
  • FIG. 11 is a plan view of the spiral casing according to the third embodiment, viewed from the suction port side;
  • FIG. 15 is a cross-sectional view taken along line AA of FIG. 14;
  • FIG. 16 is a schematic diagram showing the flow of air sucked into the indoor unit in the cross section of FIG. 15;
  • FIG. 11 is a perspective view of the inside of an indoor unit according to Embodiment 4;
  • FIG. 11 is a plan view of the spiral casing according to the fourth embodiment, viewed from the suction port side;
  • FIG. 12 is a schematic diagram showing the flow of air taken in by the indoor unit when viewed from the side of the spiral casing according to the fourth embodiment;
  • FIG. 11 is a circuit diagram showing an air conditioner according to Embodiment 5;
  • FIG. 1 is a perspective view showing an indoor unit according to Embodiment 1.
  • the indoor unit 1 has a housing 2 and a heat exchanger 3 and a centrifugal fan 4 inside the housing 2 .
  • a main body suction port 2a is provided in the upper part of the housing 2, and a main body outlet 2b is provided in the lower part of the housing 2.
  • the body suction port 2a is an opening for taking in air from the outside of the housing to the inside of the housing.
  • the body outlet 2b is an opening for blowing out the air heat-exchanged in the housing to the outside of the housing.
  • FIG. 2 is a perspective view of the interior of the indoor unit with the housing 2 removed from FIG.
  • the centrifugal blower 4 draws air into the housing and creates an air flow that blows out the heat-exchanged air to the outside of the housing.
  • Centrifugal blower 4 has impeller 5 and spiral casing 6 .
  • two or more centrifugal blowers 4 are arranged at predetermined intervals along a rotating shaft 8 connected to a drive motor 7 .
  • the impeller 5 is rotated by the drive motor 7, and the centrifugal force generated by the rotation blows air in the radial direction of the impeller 5.
  • FIG. 1 is a perspective view of the interior of the indoor unit with the housing 2 removed from FIG.
  • the centrifugal blower 4 draws air into the housing and creates an air flow that blows out the heat-exchanged air to the outside of the housing.
  • Centrifugal blower 4 has impeller 5 and spiral casing 6 .
  • two or more centrifugal blowers 4 are
  • Fig. 3 is a cross-sectional view of the main part inside the indoor unit.
  • the impeller 5 has a main plate 9 and a plurality of blades 10 attached to both sides of the main plate 9 .
  • the main plate 9 is a disc rotatably mounted around the rotation axis 8 .
  • a plurality of blades 10 are arranged on the circumference of the main plate 9 at predetermined intervals from each other. One end of the blade 10 is fixed to the main plate 9 so that the height direction of the blade 10 is aligned with the rotation axis direction.
  • Fig. 4 is a perspective view of the centrifugal blower.
  • the spiral casing 6 is, for example, a hollow cylinder forming a space inside which air flows.
  • the impeller 5 sucks air into the spiral casing 6 from the casing suction port 6a and blows the air radially outward.
  • the spiral casing 6 rectifies the air blown radially outward by the impeller 5 and blows it out from the casing outlet 6b, which is the outlet of the spiral casing 6 .
  • the spiral casing 6 includes a wall surface 12 spirally surrounding the periphery of the impeller 5 in the rotational direction of the impeller 5, a side surface 13 formed with a casing suction port 6a through which the impeller 5 sucks air, and the spiral casing 6.
  • the spiral casing 6 also has a bell mouth 11 for smoothing the airflow at the casing inlet 6a.
  • the bellmouth 11 is, for example, an annular plate.
  • the spiral casing 6 also includes tongues 14 that direct the airflow generated by the rotation of the impeller 5 toward the casing outlet 6b.
  • the side surfaces 13 are two end surfaces that connect with the bell mouth 11 and cover the impeller 5 .
  • the side surface 13 forms a plane in a direction perpendicular to the rotation axis 8 .
  • the wall surface 12 is provided so that the distance from the rotating shaft 8 increases as the angle of rotation about the rotating shaft increases toward the casing outlet 6b from the tongue portion 14 as a starting point.
  • the wall surface 12 forms a plane parallel to the rotation axis 8 .
  • a connection portion 15 is a portion where the wall surface 12 and the side surface 13 of the spiral casing 6 are connected.
  • the connecting portion 15 is a curved surface chamfered so as to cut off the corners, and connects the wall surface 12 and the side surface 13 in a chamfered manner.
  • FIG. 4 shows the connecting portion 15 chamfered into a half-moon shape, the chamfered shape of the connecting portion 15 is not limited to this.
  • the connection part 15 is provided so that the connection part 15 and the wall surface 12 may continue.
  • the distance between adjacent spiral casings is defined as Lc
  • the length of the wall surface 12 of the spiral casing in the direction of the rotation axis is defined as the length of the wall surface in the direction of the rotation axis Hc.
  • the distance Lc between adjacent casings refers to the distance between the side surfaces of the spiral casings of two centrifugal fans 4 adjacent in the rotation axis direction.
  • the length Hc of the wall surface 12 in the rotation axis direction varies depending on the size of the connection portion 15, if the connection portion 15 is chamfered larger, the length Hc of the wall surface in the rotation axis direction becomes shorter. If the wall surface 12 is formed small, the length Hc of the wall surface 12 in the rotation axis direction becomes long.
  • a plurality of centrifugal blowers 4 arranged along the rotation axis direction at a predetermined interval maintains the distance between the connecting portions between adjacent spiral casings by adjusting the length Hc of the wall surface 12 in the rotation axis direction. spreads.
  • FIG. 5 is a plan view seen from the side of the casing suction port 6a.
  • the heat exchanger 3 is arranged close to the centrifugal blower 4 inside the housing. As shown in FIG. 5 , the heat exchanger 3 is located upstream of the centrifugal blower 4 inside the housing, and has a curved shape as a whole to surround the wall surface 12 and to separate the wall surface 12 from the heat exchanger 3 . They are arranged so that the distance changes.
  • the radial distance between the heat exchanger 3 and the wall surface 12 in the radial direction of the rotating shaft 8 is defined as the radial distance LH
  • the angle around the rotating shaft 8 is defined as the rotation angle ⁇
  • the radial distance LH refers to the distance from the outer peripheral surface of the wall surface 12 to the heat exchanger 3 facing the outer peripheral surface in a cross section of the indoor unit 1 perpendicular to the rotation axis.
  • Arranging the heat exchanger 3 so that it has a curved shape as a whole, surrounds the periphery of the wall surface, and changes the radial distance LH means, for example, a spiral casing having a curved outer peripheral surface as shown in FIG. is to arrange two flat plate-shaped heat exchangers 3 against the wall surface 12 of the .
  • the radial distance between the heat exchanger 3 and the wall surface 12 varies depending on the rotation angle around the rotation axis. LH changes greatly. Moreover, the distance between the center of the rotation shaft of the centrifugal fan 4 and the heat exchanger 3 also changes greatly.
  • Arranging the heat exchanger 3 close to the centrifugal fan 4 means that the radial distance LH between the heat exchanger 3 and the wall surface 12 is smaller than the distance from the center of the rotation shaft to the wall surface 12. is arranged so as to have For example, the radial distance LH between the heat exchanger 3 and the wall surface 12 is less than half the distance from the center of the rotating shaft to the wall surface 12 .
  • one heat exchanger is provided on the casing suction port side instead of the centrifugal fan side so as to face the casing suction port, and the distance between the heat exchanger and the casing is the centrifugal fan. Longer than the distance from the center of the rotation shaft of the fan to the casing. In such a case, the heat exchange capacity cannot be secured in response to the demand for miniaturization of the housing.
  • the heat exchanger 3 has a curved shape as a whole, surrounds the periphery of the wall surface, and is arranged so that the radial distance LH changes. Therefore, a sufficient heat exchange capacity can be secured even in response to the demand for downsizing of the housing.
  • the length Hc in the rotation axis direction of the wall surface 12 at a rotation angle with a short radial distance LH is equal to the rotation of the wall surface 12 at a rotation angle with a long radial distance LH . shorter than the axial length Hc. That is, the connecting portion 15 is provided such that the shorter the radial distance LH in the rotation angle, the shorter the length Hc of the wall surface 12 in the axial direction of rotation. For example, at a rotation angle at which the heat exchanger 3 is arranged close to the spiral casing 6, the connection is made so that the length Hc of the wall surface 12 of the spiral casing in the direction of the rotation axis is shorter than at other rotation angles.
  • the chamfer of portion 15 is sized.
  • the heat exchanger 3 according to Embodiment 1 is arranged so that the heat exchanger 3 has two portions close to the wall surface 12 of the spiral casing.
  • the heat exchangers 3 are arranged in the ranges of angles ⁇ 0 ⁇ ⁇ ⁇ ⁇ 1 and ⁇ 2 ⁇ ⁇ ⁇ ⁇ 3 around the rotating shaft 8 so that the two heat exchangers 3 form an inverted V shape.
  • the two heat exchangers 3 are arranged such that, in a cross section taken along a plane perpendicular to the rotation shaft 8, one end of each of the first heat exchanger 3a and the second heat exchanger 3b approaches each other.
  • the A centrifugal blower 4 is arranged between the other ends of the first heat exchanger 3a and the second heat exchanger 3b.
  • the radial distance LH can be changed between the location where the heat exchanger 3 is close to the spiral casing and the location where it is not.
  • the heat exchanger as a whole is curved around the rotating shaft 8, and the heat exchanger 3 surrounds the outside of the centrifugal blower 4. As shown in FIG. If the total angles ⁇ 0 ⁇ ⁇ ⁇ ⁇ 1 and ⁇ 2 ⁇ ⁇ ⁇ 3 that each heat exchanger 3 occupies around the rotating shaft 8 are 120° or more, preferably 150° or more. good. By arranging the heat exchangers in this way, it is possible to reduce the size of the housing while ensuring the heat exchange capacity.
  • the relationship in which the radial distance LH changes with respect to the rotation angle ⁇ is defined as a function LH ( ⁇ ).
  • the adjacent portion means the rotation angle at which the function LH ( ⁇ ) becomes a minimum value in the rotation angle ranges ⁇ 0 ⁇ ⁇ ⁇ ⁇ 1 and ⁇ 2 ⁇ ⁇ ⁇ ⁇ 3 where the heat exchanger 3 and the wall surface 12 face each other. It points to the point corresponding to ⁇ .
  • the rotation angle ⁇ at which the function L H ( ⁇ ) has a minimum value includes an angle of about 20° before and after ⁇ .
  • FIG. 6 is a graph showing the relationship between the radial distance LH with respect to the rotation angle .theta. and the wall surface length Hc in the rotation axis direction, using FIG.
  • the rotation angle ⁇ is 0° in the direction of the tongue from the rotation axis
  • two downwardly convex curves indicate LH of the two heat exchangers 3a and 3b.
  • a broken line indicates Hc.
  • LH a value obtained by subtracting the distance from the center of the rotation shaft to the wall surface 12 of the spiral casing from the distance from the center of the rotation shaft to the heat exchanger 3 at the angle ⁇ and dividing by the thickness of the heat exchanger 3 was used.
  • Hc indicates the axial length of the wall surface 12 based on the axial length of the spiral casing 6, that is, the distance between the side surfaces 13 at the rotation angle ⁇ where no chamfer is formed.
  • the solid line with a rotation angle of 70° to 155° indicates LH of the heat exchanger 3a located on the left side near the tongue in FIG.
  • the solid line of ° indicates LH of the heat exchanger 3b located on the right side near the outlet in FIG.
  • the two heat exchangers 3a, 3b are arranged to surround the casing over a total rotation angle of about 175°.
  • LH decreases as the rotation angle increases from 70°, reaches a minimum around 100°, and further increases as the rotation angle increases.
  • LH decreases as the rotation angle increases from 165°, reaches a minimum around 220°, and further increases as the rotation angle increases.
  • the ranges where the rotation angle is less than 70°, greater than 155° and less than 165°, and greater than 255° are ranges in which the heat exchanger 3 is not arranged. Note that the range of the rotation angle ⁇ can be changed arbitrarily.
  • the minimum value of LH is smaller than the thickness of the heat exchanger 3, and the heat exchanger 3 is very close to the wall surface 12 of the spiral casing, such as 0.5 or less of the thickness of the heat exchanger 3. It indicates that it is placed as On the other hand, when the plate-shaped heat exchanger 3 is used as shown in FIG. 5, the change in LH due to the rotation angle ⁇ is extremely large, and the ratio between the minimum value and the maximum value is five times or more.
  • Hc is 1 from 0° (tongue) to around 70°, decreases from around 70°, reaches a minimum around 115°, and then increases. and becomes 1 around 155°, decreases again around 165°, reaches a minimum around 220°, then increases and becomes 1 around 255°.
  • the change in LH and the change in Hc due to the rotation angle ⁇ are generally similar changes, and Hc becomes minimum at the rotation angle ⁇ at which LH is the minimum value.
  • the rotation angle ⁇ at which LH is the minimum value and the angle at which Hc is the minimum value may deviate by about 20°.
  • the change of LH and Hc with respect to the rotation angle ⁇ resembles a quadratic function. Since it is not greatly different from the value of Hc that becomes the minimum value at the deviated rotation angle, the effect of the present disclosure can be obtained. In addition, it is difficult to match them perfectly in terms of manufacturing.
  • the length Hc of the wall surface in the rotation axis direction at the rotation angle ⁇ at which the radial distance LH is short is shorter than the length Hc of the wall surface in the rotation axis direction at the rotation angle ⁇ at which the radial distance LH is long means that the chamfered portion reduces Hc to the minimum value at the rotation angle ⁇ at which the radial distance LH is the minimum value.
  • the difference between the rotation angle ⁇ at which LH is the minimum value and the rotation angle ⁇ at which Hc is the minimum value is 20° or less.
  • the heat exchanger 3 and the wall surface 12 of the spiral casing are arranged on the upstream side of the centrifugal blower 4 and in the range of rotation angles at which the heat exchanger 3 and the wall surface 12 face each other. is arranged so that the function L H ( ⁇ ) of the radial distance L H , which is the distance between , has two minimum values. Let ⁇ 1 and ⁇ 2 be the angles of the two minimum values, and Hc1 and Hc2 be the lengths of the wall surface 12 in the rotation axis direction at the respective angles.
  • the heat exchangers are arranged so that Hc1 and Hc2 at rotation angles at which ⁇ is ⁇ 1 and ⁇ 2 are shorter than each axial length Hc at ⁇ 3.
  • the connecting portion 15 is provided so that the length Hc of the wall surface 12 in the rotation axis direction is minimized at the rotation angle ⁇ at which the function L H ( ⁇ ) is minimized.
  • the minimum value of the function L H ( ⁇ ) indicates that the heat exchanger 3 and the wall surface 12 of the spiral casing are the closest, that is, the radial distance L H is the shortest. Therefore, the connecting portion 15 with a large chamfer is provided so that the length Hc of the wall surface 12 in the rotation axis direction is minimized at the angle at which the radial distance LH is minimized.
  • the width of the chamfer may be increased, and in the case of chamfering in a semicircular shape, the radius may be increased.
  • the angle formed by the wall surface 12 and the side surface 13 may be rounded so that the width of the chamfer is maximized at the rotation angle at which the radial distance LH is minimized.
  • the rotation angle ⁇ at which the function L H ( ⁇ ) is the minimum value includes an angle of about 20° before and after ⁇ .
  • the length Hc of the wall surface 12 in the direction of the rotation axis is shorter than the length Hb of the impeller 5 in the direction of the rotation axis in the range of rotation angles in which the connecting portion 15 is provided. is provided with a chamfered connecting portion 15 .
  • the connection portion 15 is provided that is shorter than the length Hb of the impeller 5 in the rotation axis direction.
  • the length Hb of the impeller 5 in the rotation axis direction is the height of the impeller 5, and is the length of the main plate and the blades attached to both surfaces of the main plate.
  • the width of the chamfer is increased so that the length Hc of the wall surface 12 in the direction of the rotation axis is shorter than the length Hb of the impeller 5 in the direction of the rotation axis at the location where the heat exchanger 3 is close to the spiral casing 6. It is preferable to provide a connecting portion 15 with a
  • the impeller 5 is rotated by the drive motor 7, and the air outside the housing is taken in from the main intake port 2a.
  • the air taken into the housing is heat-exchanged by the heat exchanger 3 arranged upstream of the centrifugal blower 4, passes through the connecting portion 15 of the spiral casing, and enters the inside of the spiral casing from the casing suction port 6a. sucked in.
  • the sucked air acquires air volume and static pressure by rotation of the impeller 5 inside the spiral casing, and is sent out from the casing outlet 6b.
  • the air sent out from the casing outlet 6b is sent to the outside of the housing of the indoor unit 1 from the body outlet 2b communicating with the casing outlet 6b.
  • the heat exchanger 3 When downsizing the indoor unit 1 , it is conceivable to dispose the heat exchanger 3 closer to the spiral casing 6 .
  • the heat exchanger 3 when the heat exchanger 3 is arranged as shown in FIG . Since the distance between the heat exchanger 3 and the wall surface 12 differs at each rotation angle, in the vicinity of the rotation angle ⁇ at which the heat exchanger 3 and the centrifugal fan 4 are close to each other, the casing inlet 6a slows down the flow of air toward That is, when looking around the rotation axis of the centrifugal blower 4, the air flow becomes slow where the radial distance LH is the shortest, so the air flow toward the casing suction port 6a as a whole has a velocity distribution. If the air flow is not uniform, pressure loss may occur in the flow path from the heat exchanger 3 to the casing suction port 6a, and the air blowing efficiency may decrease.
  • a notch is simply provided on the opposite side of the blowout hole of the spiral casing, and the heat exchanger 3 is placed around the wall near the spiral casing provided with such a notch. If they are arranged so as to surround the heat exchanger 3, the distance between the heat exchanger 3 and the spiral casing is not considered.
  • the indoor unit 1 includes a housing 2 having a main body suction port and a main body outlet 2b, and a main plate 9 provided inside the housing and rotating around a rotation shaft 8 and a main plate 9 and a spiral wall surface 12 surrounding the impeller 5 in the direction of rotation of the impeller 5, and the wall surface 12 for the impeller 5 to suck air.
  • a centrifugal fan 4 having a spiral casing 6 provided with a side surface 13 in which a suction port 6a is formed, and a heat exchange surrounding a wall surface 12 provided inside the housing and having a curved shape as a whole. and a vessel 3.
  • the angle around the rotation axis 8 is the rotation angle ⁇
  • the distance between the wall surface 12 and the heat exchanger 3 is L H
  • the length of the wall surface 12 in the direction of the rotation axis is Hc
  • the heat exchanger 3 is arranged so that the radial distance LH varies depending on the rotation angle ⁇
  • the spiral casing 6 has a connection portion 15 that connects the wall surface 12 and the side surface 13 in a chamfered manner, and the radial distance LH is short.
  • the length Hc of the wall surface in the rotation axis direction at the rotation angle ⁇ is configured to be shorter than the length Hc of the wall surface in the rotation axis direction at the rotation angle ⁇ at which the radial distance LH is long.
  • the chamfering of the connection portion 15 with a small radial distance LH at a rotation angle is greater than the chamfering of the connection portion 15 with a large radial distance LH between the heat exchanger 3 and the wall surface 12 of the spiral casing. form large.
  • the length Hc of the wall surface 12 in the rotation axis direction at the rotation angle where the radial distance LH is short becomes shorter than the length Hc of the wall surface 12 in the rotation axis direction at the rotation angle where the radial distance LH is long.
  • connection portion 15 in the spiral casing 6 according to the change in the radial distance LH , it is possible to appropriately secure the flow path from the heat exchanger 3 to the casing suction port 6a of the spiral casing. Even in the indoor unit 1 in which the heat exchanger 3 is arranged near the centrifugal fan 4 due to the miniaturization of the housing 2, the air blowing efficiency of the indoor unit 1 can be improved while securing the heat exchange capacity.
  • the distance between the connecting portions becomes longer than that between the side surfaces of the adjacent spiral casings, so that the same effect as the effect obtained by widening the distance between the adjacent casings can be obtained. be done.
  • the function LH ( ⁇ ) of the radial distance LH has two minimum values.
  • connection portion 15 of the spiral casing is formed only in the angle ranges ⁇ 0 ⁇ ⁇ ⁇ ⁇ 1 and ⁇ 2 ⁇ ⁇ ⁇ ⁇ 3 including ⁇ where the function L H ( ⁇ ) of the radial distance L H has a minimum value.
  • connection portion 15 so that the length Hc of the wall surface 12 in the direction of the rotational axis is minimized at ⁇ where the function LH ( ⁇ ) of the radial distance LH is the minimum value, the heat exchanger 3 to the casing suction port 6a. That is, at ⁇ where the function L H ( ⁇ ) of the radial distance L H is the minimum value, the chamfer is maximized, so that a sufficient flow path toward the casing suction port 6a can be secured and pressure loss can be reduced. Therefore, even if the heat exchanger 3 is arranged close to the centrifugal fan 4, the ventilation efficiency of the indoor unit 1 can be improved.
  • the chamfered connection portion 15 is provided so that the length Hc of the wall surface 12 in the direction of the rotation axis is shorter than the length Hb of the impeller 5 in the direction of the rotation axis in the range of the rotation angle in which the connection portion 15 is provided.
  • the pressure loss can be further reduced in the flow path from the heat exchanger 3 to the casing suction port 6a. Therefore, even if the heat exchanger 3 is arranged close to the centrifugal blower 4, the blowing efficiency of the indoor unit 1 can be further improved.
  • the heat exchanger 3 In the heat exchanger 3 according to the first embodiment, if the distance from the wall surface 12 of the spiral casing whose outer peripheral surface draws a curve changes in the rotation direction of the rotating shaft 8, the heat exchanger 3 surrounds the spiral casing. Therefore, as shown in FIG. 8, one heat exchanger 3 may be folded and arranged.
  • the number of adjacent positions is not limited to two, and may be two or more. That is, the function L H ( ⁇ ) may have two or more local minimum values.
  • one proximate point has a greater distance (diameter) between the heat exchanger 3 and the spiral casing 6 than the other proximate points.
  • the chamfer at the location where the radial distance L H is apart is small, that is, the length Hc of the wall surface in the direction of the rotation axis is longer than at other locations. You may do so.
  • the chamfer is not provided at that location and the other locations are chamfered. Only the chamfer may be provided.
  • the heat exchanger may be installed so that there is a position close to the rotation angle larger than 180°, which is the opposite, and the chamfer at that position may be the largest. .
  • the length Hc of the wall surface in the direction of rotation axis at the rotation angle smaller than 180° may be shorter than the length Hc of the wall surface in the direction of rotation axis at the rotation angle larger than 180°. . Since the radial distance between the blades 10 and the wall surface 12 is larger at positions with large rotation angles than at positions with small rotation angles, even if such a large chamfer is formed, the wind inside the spiral casing will not be affected. flow loss can be small.
  • the length Hc of the wall surface in the rotation axis direction according to Embodiment 1 is shortened by forming the chamfered portion of the connecting portion 15, but the portion where the chamfered portion is not formed by, for example, inclining the entire side surface 13 has the length Hc. may vary in length.
  • the angle range in which the chamfered portion is formed substantially matches the angle range in which the heat exchanger 3 is formed has been shown, the angle range in which the heat exchanger 3 is formed is slightly narrower or wider. A chamfer may be formed in the range.
  • Embodiment 2 The indoor unit 1 according to Embodiment 2 of the present disclosure will be described with reference to FIGS. 9 to 13.
  • FIG. The indoor unit 1 according to the second embodiment is obtained by further providing a guide plate 16 to the indoor unit 1 according to the first embodiment.
  • the description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
  • FIG. 9 is a perspective view of the interior of the indoor unit 1 according to Embodiment 2
  • FIG. 10 is a plan view of the casing according to Embodiment 2 as seen from the suction port side
  • FIG. 11 is this embodiment.
  • 2 is a plan view of the inside of the indoor unit 1 according to 2 as seen from the rear side.
  • the indoor unit 1 according to Embodiment 2 has a guide plate 16 provided to face the heat exchanger 3 .
  • the guide plate 16 has a V-shape when viewed from the side of the spiral casing, is downstream of the heat exchangers 3, and is downstream of each of the plurality of heat exchangers 3. is provided on the side surface 13 of the spiral casing so as to connect the ends of the spiral casing. Facing the heat exchanger 3 means that the heat exchanger 3 is installed across the casing suction port 6a from the rotation angle at which the heat exchanger 3 is arranged when viewed in a cross section perpendicular to the rotation axis.
  • the guide plate 16 is not limited to that shown in FIG. Each downstream end and the end of the guide plate 16 may be separated. Also, the guide plate 16 is not limited to the V-shape, and may be U-shaped or other shapes.
  • the guide plates 16 are provided between adjacent spiral casings and between the spiral casings 6 of the centrifugal fans 4 at both ends and the housing 2. .
  • the guide plate 16 arranged between adjacent spiral casings has a shape symmetrical about a plane parallel to the side surface 13 of the casing at the midpoint of the adjacent spiral casings. be.
  • the guide plates 16 are slanted from the midpoint between adjacent spiral casings towards the side surfaces 13 of the spiral casings.
  • the height of the guide plate 16 decreases from the middle point between the adjacent spiral casings toward the casing suction port 6a. That is, the height of the guide plate 16 is increased as the distance from the side surface 13 of the spiral casing in the direction in which the rotating shaft 8 extends (horizontal direction in FIG. 11) increases.
  • the side 13 of the spiral casing of the first centrifugal blower having no suction port and the side 13 of the first centrifugal blower between the adjacent spiral casings.
  • a guide plate 16 is provided so as to connect with the side surface 13 having the suction port among the side surfaces 13 of the spiral casing of the second centrifugal blower adjacent to the second centrifugal fan.
  • the guide plate 16 extends from the side 13 of the spiral casing of the first centrifugal fan that does not have a suction port toward the side 13 that has a suction port of the side 13 of the spiral casing of the second centrifugal fan. It has an inclined shape.
  • the guide plates 16 provided between the side surfaces 13 of the centrifugal fans 4 arranged at both ends and the housing 2 also have the same shape. That is, the guide plate 16 inclines from the housing 2 toward the side surface 13 of the spiral casing of the centrifugal fan 4 .
  • FIG. 12 is a schematic diagram showing the flow of air in the indoor unit 1 when viewed from the side of the spiral casing
  • FIG. 13 is the flow of air in the indoor unit 1 when viewed from the back side of the interior of the indoor unit 1. It is a schematic diagram showing.
  • the heat exchanger 3 When the air flow to the casing suction port 6a of the centrifugal blower 4 is only from the upstream side where the heat exchanger 3 is arranged and is perpendicular to the rotation direction of the impeller, the heat exchanger 3 is After passing through, part of the air does not go to the suction port, but to the bottom surface of the housing 2 on the opposite side where the heat exchanger 3 is arranged, forming vortices at the corners of the bottom surface and reducing pressure loss. and reduce air blow efficiency.
  • the suction It is possible to guide the flow to the mouth, suppress the vortex generated at the corner of the bottom surface of the housing on the opposite side where the heat exchanger 3 is arranged, and reduce the pressure loss in the flow path.
  • Embodiment 3 The indoor unit 1 according to Embodiment 3 of the present disclosure will be described with reference to FIGS. 14 to 17.
  • FIG. The indoor unit 1 according to the third embodiment is obtained by modifying the bell mouth 11 of the indoor unit 1 according to the first embodiment.
  • the description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
  • FIG. 14 is a perspective view of the interior of the indoor unit 1 according to Embodiment 3
  • FIG. 15 is a plan view of the spiral casing according to Embodiment 3 as seen from the intake port side
  • FIG. 17 is a schematic diagram showing the flow of air taken in by the indoor unit 1 in the cross section of FIG.
  • the indoor unit 1 has a bell mouth extending portion 17 extending from the bell mouth 11 of the casing suction port 6a on the side where the heat exchanger 3 is arranged.
  • the bell mouth extending portion 17 is formed so that the boundary line 18 between the bell mouth 11 and the side surface 13 of the spiral casing extends to the side surface 13 in the angle ranges ⁇ 0 ⁇ ⁇ ⁇ ⁇ 1 and ⁇ 2 ⁇ ⁇ ⁇ ⁇ 3 in which the connecting portion 15 is formed. It is formed extending to the side on which the heat exchanger 3 is arranged. That is, in FIG. 15 , the bell mouth 11 extends radially outward of the rotating shaft 8 in the angular ranges ⁇ 0 ⁇ ⁇ ⁇ ⁇ 1 and ⁇ 2 ⁇ ⁇ ⁇ ⁇ 3 where the connecting portion 15 is formed.
  • the diameter of the circular cross section 19 on the upstream side of the bell mouth 11 is larger than the diameter of the circular cross section 20 on the downstream side at the casing suction port 6a.
  • the circular section 19 on the upstream side and the circular section 20 on the downstream side are connected by a smooth curved surface 21 .
  • the diameter of the circular cross section 19 on the upstream side of the casing suction port 6a is increased so that the curved surface 21 becomes longer. That is, the bell mouth extending portion 17 is provided by extending the end portion of the bell mouth 11 on the upstream side of the casing suction port 6a toward the side where the heat exchanger 3 is arranged.
  • the air that has passed through the heat exchanger 3 passes through the connecting portion 15 and the bell mouth 11 and is sucked into the impeller 5.
  • the bell mouth 11 which is the connecting portion between the casing suction port 6a and the side surface 13, is radially outward of the rotating shaft 8 in the angle range where the connecting portion 15 is formed.
  • FIG. 15 illustrates an example in which the bell mouth extending portion 17 is divided into two parts, it is not limited to this, and various other shapes can be applied. As another example, a shape in which two bellmouth extending portions are connected may be used, and the same effect as the shape in which the bellmouth is divided into two portions can be obtained.
  • the bell mouth in order to lengthen the curved surface 21 of the bell mouth 11, the bell mouth is stretched outward in the radial direction of the rotating shaft 8 so as to increase the diameter of the circular cross section 19 on the upstream side.
  • the portion 17 is provided, a configuration in which a projecting portion is provided on the side surface 13 in a direction away from the impeller 5 in the rotation axis direction is also conceivable.
  • the suction air collides with the protruding portion protruding from the suction port, causing pressure loss and lowering the blowing efficiency. Therefore, in such a case, it is better to provide the bell mouth extending portion 17 shown in the fourth embodiment.
  • Embodiment 4 The indoor unit 1 according to Embodiment 4 of the present disclosure will be described with reference to FIGS. 18 to 20.
  • FIG. The indoor unit 1 according to Embodiment 4 further includes a partition plate 22 in addition to the indoor unit 1 according to Embodiment 1. As shown in FIG. The description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
  • FIG. 18 is a perspective view of the interior of the indoor unit 1 according to Embodiment 4
  • FIG. 19 is a plan view of the spiral casing according to Embodiment 4 as viewed from the suction port side
  • FIG. FIG. 11 is a schematic diagram showing the flow of air sucked into the indoor unit 1 when viewed from the side of the spiral casing in Mode 4;
  • the indoor unit 1 according to Embodiment 4 extends toward the spiral casing 6 from between one end where the first heat exchanger 3a and the second heat exchanger 3b approach each other. It has a partition plate. Since the partition plate 22 extends toward the spiral casing 6 from between the upper end of the first heat exchanger 3a and the upper end of the second heat exchanger 3b, the first heat exchanger and the second heat exchanger are separated from each other. The space between the two heat exchangers and the spiral casing 6 is partitioned. When a plurality of centrifugal blowers 4 are arranged, a partition plate 22 is provided along the rotating shaft 8 of the centrifugal blower 4 .
  • the partition plate 22 when viewed from the suction port side of the spiral casing, the partition plate 22 has a front side heat exchanger (first heat exchanger 3a) arranged upstream of the centrifugal fan 4 and a rear side heat exchanger (first heat exchanger 3a). It is a cross-sectional shape that partitions the flow path from the corner side (upper side of the paper surface) formed by the side heat exchanger (second heat exchanger 3b) toward the wall surface 12 of the spiral casing. 19, the partition plate 22 is arranged outside the angle range ⁇ 1 ⁇ 2 where the connecting portion 15 is formed. By providing the partition plate 22 outside the angle range where the connecting portion 15 is formed, it becomes possible to secure a flow path for flowing into the centrifugal fan 4 .
  • the heat exchanger on the front side (first heat exchanger 3a) and the heat exchanger on the back side (second heat exchanger 3b)
  • the partition plate 22 between it is possible to prevent the airflow flowing in from the front side and the airflow from the back side from merging, reducing the pressure loss caused by the merging of the flows and improving the ventilation efficiency. can be improved.
  • the flow after passing through the heat exchangers 3a and 3b is guided to the connection portion 15 of the spiral casing shown in the first embodiment, and the air blowing efficiency is further improved than that of the first embodiment. can be improved.
  • the indoor unit 1 according to Embodiment 4 includes the partition plate 22 extending toward the spiral casing 6 from between the approaching ends of the first heat exchanger 3a and the second heat exchanger 3b.
  • the heat exchanger 3 is divided into two sheets.
  • the number and shape of the heat exchangers 3 are not limited to those shown in the fourth embodiment.
  • Air conditioner 30 according to Embodiment 5 of the present disclosure will be described with reference to FIG. 21 .
  • An air conditioner 30 according to the fifth embodiment is an air conditioner including the indoor unit 1 according to the first to fourth embodiments. The description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
  • FIG. 21 is a circuit diagram showing the air conditioner 30 according to the fifth embodiment.
  • the air conditioner 30 is a device that adjusts indoor air, and includes an outdoor unit 31 and an indoor unit 1 as shown in FIG. 21 .
  • the outdoor unit 31 is provided with, for example, a compressor 32, a channel switching device 33, an outdoor heat exchanger 34, an outdoor fan 35, and an expansion section .
  • the indoor unit 1 is provided with, for example, an indoor heat exchanger 37 and an indoor fan 38 .
  • the heat exchanger 3 in Embodiments 1 to 4 corresponds to the indoor heat exchanger 37
  • the centrifugal fan 4 in Embodiments 1 to 4 corresponds to the indoor fan 38 .
  • the compressor 32, the flow switching device 33, the outdoor heat exchanger 34, the expansion section 36, and the indoor heat exchanger 37 are connected by refrigerant pipes 39 to form a refrigerant circuit.
  • the compressor 32 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, converts it into a high-temperature, high-pressure refrigerant, and discharges it.
  • the channel switching device 33 switches the direction in which the refrigerant flows in the refrigerant circuit, and is, for example, a four-way valve.
  • the outdoor heat exchanger 34 exchanges heat, for example, between outdoor air and refrigerant.
  • the outdoor heat exchanger 34 acts as a condenser during cooling operation and acts as an evaporator during heating operation.
  • the outdoor fan 35 is a device that sends outdoor air to the outdoor heat exchanger 34 .
  • the expansion part 36 is a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant to expand it.
  • the expansion part 36 is, for example, an electronic expansion valve whose opening is adjusted.
  • the indoor heat exchanger 37 exchanges heat, for example, between indoor air and refrigerant.
  • the indoor heat exchanger 37 acts as an evaporator during cooling operation and acts as a condenser during heating operation.
  • the indoor air blower 38 is a device that sends indoor air to the indoor heat exchanger 37 .
  • the coolant may be water or antifreeze.
  • the cooling operation will be explained.
  • the refrigerant sucked into the compressor 32 is compressed by the compressor 32 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 32 passes through the flow switching device 33 and flows into the outdoor heat exchanger 34 acting as a condenser. It is heat exchanged with outdoor air sent by 35 and condenses and liquefies.
  • the condensed liquid refrigerant flows into the expansion section 36, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 37 acting as an evaporator, where it exchanges heat with the indoor air sent by the indoor blower 38 to evaporate and become gas. do.
  • the indoor air is cooled, and cooling is performed in the room.
  • the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 33 and is sucked into the compressor 32 .
  • the refrigerant sucked into the compressor 32 is compressed by the compressor 32 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 32 passes through the flow path switching device 33 and flows into the indoor heat exchanger 37 acting as a condenser. It is heat exchanged with the room air sent by 38 and condenses and liquefies. At this time, the indoor air is warmed, and heating is performed in the room.
  • the condensed liquid refrigerant flows into the expansion section 36, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 34 acting as an evaporator, where it is heat-exchanged with the outdoor air sent by the outdoor fan 35 to evaporate and gasify. do.
  • the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 33 and is sucked into the compressor 32 .
  • the indoor unit 1 shown in any one of Embodiments 1 to 4 in the air conditioner 30 As described above, by arranging the indoor unit 1 shown in any one of Embodiments 1 to 4 in the air conditioner 30, as the size of the indoor unit 1 is reduced, when the heat exchanger is arranged close to the casing, Also, it is possible to provide an air conditioner capable of improving the air blowing efficiency while ensuring the capacity of the indoor heat exchanger 37 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention can provide an indoor unit and an air conditioner having improved blowing efficiency while ensuring a heat exchange capacity even when the indoor unit is reduced in size. An indoor unit (1) is provided with: a housing (2); a centrifugal blower (4) having an impeller (5), and a spiral casing (6) provided with a wall surface (12) and a side surface (13); and, a heat exchanger (3) for surrounding the periphery of the wall surface by having a curved shape as a whole. The spiral casing (6) has a connection section (15) for connecting the wall surface and the side surface in a chamfered shape. When the angle around the rotational axis is expressed as a rotation angle θ, the distance between the wall surface and the heat exchanger as a radial distance LH, and the length of the wall surface in the direction of the rotational axis as Hc, the heat exchanger (3) is disposed so that LH varies according to the rotation angle θ, and the length Hc of the wall surface in the direction of the rotational axis at a rotation angle θ at which LH is short is shorter than the length Hc of the wall surface in the direction of the rotational axis at a rotation angle θ at which LH is long. An air conditioner (30) is provided with the indoor unit (1) and an outdoor unit (31).

Description

室内機及び空気調和機Indoor unit and air conditioner
 本開示は、室内機及び空気調和機に関するものである。 The present disclosure relates to indoor units and air conditioners.
 室内機において、平板状の熱交換器が、本体ケーシングの吸込み口と対向するように、本体ケーシングの吸込み口側に設置され、当該渦巻ケーシングの吹出口とは反対側に切欠を形成した空気調和機が知られている(特許文献1)。 In an indoor unit, a flat plate-shaped heat exchanger is installed on the suction port side of the body casing so as to face the suction port of the body casing, and a notch is formed on the opposite side of the air outlet of the spiral casing. machine is known (Patent Document 1).
特開2004-347311号公報Japanese Patent Application Laid-Open No. 2004-347311
 室内機の小型化に伴い、熱交換容量の確保が問題となっている。特許文献1では、室内機の小型化に言及しつつも、熱交換器のサイズが制限されており、熱交換容量を十分確保することが考慮されていない。 Securing heat exchange capacity has become a problem as indoor units have become smaller. Although Patent Literature 1 refers to miniaturization of the indoor unit, the size of the heat exchanger is limited, and sufficient heat exchange capacity is not taken into consideration.
 本開示は、上記のような課題を解決するためになされたものであって、室内機が小型化した場合であっても、熱交換容量を確保しつつ、送風効率を向上させる室内機および空気調和機を提供することを目的とするものである。 The present disclosure has been made in order to solve the above-described problems, and an indoor unit and an air conditioner that improve ventilation efficiency while ensuring heat exchange capacity even when the indoor unit is downsized. The purpose is to provide a harmonizing machine.
 本開示にかかる室内機は、本体吸い込み口と本体吹き出し口とを有する筐体と、筐体内部に設けられ、回転軸を中心に回転する主板と主板に配置された複数の羽根とを有する羽根車と、羽根車の周囲を渦巻状に囲む壁面及び羽根車が空気を吸い込むための吸い込み口が形成された側面を備えた渦巻ケーシングとを、有する遠心送風機と、筐体内部に設けられ、全体として曲がった形状を有することで、壁面の周囲を取り巻く熱交換器と、を備え、回転軸まわりの角度を回転角度θ、壁面と前記熱交換器との間の距離を径方向距離LH、壁面の回転軸方向の長さをHcとすると、熱交換器は、回転角度θによって径方向距離LHが変化するように配置され、渦巻ケーシングは、壁面と側面とを面取り状に接続する接続部を有し、径方向距離LHが短い回転角度θにおける前記壁面の回転軸方向の長さHcは、径方向距離LHが長い回転角度θにおける壁面の回転軸方向の長さHcよりも短い。また、本開示かかる空気調和機は、上記室内機と、室外機とを備えたものである。 An indoor unit according to the present disclosure includes a housing having a main body inlet and a main body outlet, a main plate provided inside the housing and rotating around a rotation axis, and a plurality of blades arranged on the main plate. A centrifugal blower having a wheel, a spiral casing having a wall surface spirally surrounding the periphery of the impeller and a side surface formed with a suction port for the impeller to suck in air; and a heat exchanger that surrounds the periphery of the wall surface by having a curved shape as, the angle around the rotation axis is the rotation angle θ, the distance between the wall surface and the heat exchanger is the radial distance LH, and the wall surface The heat exchanger is arranged so that the radial distance LH varies depending on the rotation angle θ. and the length Hc of the wall surface in the rotation axis direction at the rotation angle θ at which the radial distance LH is short is shorter than the length Hc of the wall surface in the rotation axis direction at the rotation angle θ at which the radial distance LH is long. Further, an air conditioner according to the present disclosure includes the indoor unit and the outdoor unit.
 本開示によれば、室内機が小型化した場合であっても、熱交換容量を確保しつつ、送風効率が向上する室内機及び空気調和機を提供することができる。 According to the present disclosure, it is possible to provide an indoor unit and an air conditioner that improve air blowing efficiency while ensuring heat exchange capacity even when the indoor unit is downsized.
実施の形態1にかかる室内機を示す透視図である。1 is a perspective view showing an indoor unit according to Embodiment 1; FIG. 実施の形態1にかかる室内機内部の斜視図である。Fig. 2 is a perspective view of the interior of the indoor unit according to the first embodiment; 実施の形態1にかかる室内機内部の要部断面図である。Fig. 3 is a cross-sectional view of the main part inside the indoor unit according to the first embodiment; 実施の形態1にかかる遠心送風機の斜視図である。1 is a perspective view of a centrifugal fan according to Embodiment 1; FIG. 実施の形態1にかかる渦巻ケーシングの吸い込み口側から見た平面図である。Fig. 2 is a plan view of the spiral casing according to the first embodiment, viewed from the suction port side; 実施の形態1にかかる回転角度θに対する径方向距離と壁面の回転軸方向長さとの関係を示す図である。FIG. 5 is a diagram showing the relationship between the radial distance with respect to the rotation angle θ and the length of the wall surface in the rotation axis direction according to the first embodiment; 実施の形態1にかかる室内機の吸い込み空気の流れを示す模式図である。FIG. 3 is a schematic diagram showing the flow of air taken in by the indoor unit according to the first embodiment; 実施の形態1の変形例かかる室内機内部の斜視図である。FIG. 4 is a perspective view of the interior of an indoor unit according to a modification of the first embodiment; 実施の形態2にかかる室内機内部の斜視図である。FIG. 8 is a perspective view of the interior of the indoor unit according to the second embodiment; 実施の形態2にかかる渦巻ケーシングの吸い込み口側から見た平面図である。FIG. 10 is a plan view of the spiral casing according to the second embodiment, viewed from the suction port side; 実施の形態2にかかる室内機の内部を背面側から見た平面図である。FIG. 8 is a plan view of the interior of the indoor unit according to the second embodiment, viewed from the rear side; 実施の形態2にかかる渦巻ケーシングの側面側からみた場合における室内機の吸い込み空気の流れを示す模式図である。FIG. 9 is a schematic diagram showing the flow of air drawn into the indoor unit when viewed from the side of the spiral casing according to the second embodiment; 実施の形態2にかかる室内機の内部を背面側からみた場合における室内機の吸い込み空気の流れを示す模式図である。FIG. 8 is a schematic diagram showing the flow of air taken in by the indoor unit when the interior of the indoor unit according to the second embodiment is viewed from the back side; 実施の形態3にかかる室内機内部の斜視図である。FIG. 11 is a perspective view of the inside of an indoor unit according to Embodiment 3; 実施の形態3にかかる渦巻ケーシングの吸い込み口側から見た平面図である。FIG. 11 is a plan view of the spiral casing according to the third embodiment, viewed from the suction port side; 図14のA-A断面図である。FIG. 15 is a cross-sectional view taken along line AA of FIG. 14; 図15の断面における室内機の吸い込み空気の流れを示す模式図である。FIG. 16 is a schematic diagram showing the flow of air sucked into the indoor unit in the cross section of FIG. 15; 実施の形態4にかかる室内機内部の斜視図である。FIG. 11 is a perspective view of the inside of an indoor unit according to Embodiment 4; 実施の形態4にかかる渦巻ケーシングの吸い込み口側から見た平面図である。FIG. 11 is a plan view of the spiral casing according to the fourth embodiment, viewed from the suction port side; 実施の形態4に渦巻ケーシングの側面側からみた場合における室内機の吸い込み空気の流れを示す模式図である。FIG. 12 is a schematic diagram showing the flow of air taken in by the indoor unit when viewed from the side of the spiral casing according to the fourth embodiment; 実施の形態5に係る空気調和機を示す回路図である。FIG. 11 is a circuit diagram showing an air conditioner according to Embodiment 5;
 はじめに、本開示の実施の形態について図面を参照しながら説明する。各図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通する。なお、明細書の全文に示されている構成要素はあくまで例示であってこれらの記載に限定されるものではない。 First, an embodiment of the present disclosure will be described with reference to the drawings. In each drawing, the same reference numerals are the same or equivalent, and this is common throughout the specification. In addition, the constituent elements shown in the full text of the specification are merely examples, and the present invention is not limited to these descriptions.
実施の形態1.
 図1は本実施の形態1に係る室内機を示す透視図である。図1に示すように、室内機1は筐体2と、その筐体2の内部に、熱交換器3と遠心送風機4とを有する。筐体2の上部に本体吸い込み口2aと、筐体2の下部に本体吹き出し口2bとを備える。本体吸い込み口2aは筐体外部から筐体内部へと空気を取り込むための開口部である。本体吹き出し口2bは筐体内で熱交換された空気を筐体外部へ吹き出すための開口部である。
Embodiment 1.
FIG. 1 is a perspective view showing an indoor unit according to Embodiment 1. FIG. As shown in FIG. 1 , the indoor unit 1 has a housing 2 and a heat exchanger 3 and a centrifugal fan 4 inside the housing 2 . A main body suction port 2a is provided in the upper part of the housing 2, and a main body outlet 2b is provided in the lower part of the housing 2. - 特許庁The body suction port 2a is an opening for taking in air from the outside of the housing to the inside of the housing. The body outlet 2b is an opening for blowing out the air heat-exchanged in the housing to the outside of the housing.
 図2は図1から筐体2を取り除いた室内機内部の斜視図である。遠心送風機4は、筐体内部に空気を取り込み、熱交換した空気を筐体外部へ吹き出す空気の流れを作る。遠心送風機4は、羽根車5と渦巻ケーシング6とを有する。図2に示すように、遠心送風機4は、駆動モータ7に連結された回転軸8に沿って、互いに所定の間隔をもって、2台以上配置される。羽根車5は、駆動モータ7により回転し、回転により生じた遠心力で空気を羽根車5の半径方向へ送風する。 FIG. 2 is a perspective view of the interior of the indoor unit with the housing 2 removed from FIG. The centrifugal blower 4 draws air into the housing and creates an air flow that blows out the heat-exchanged air to the outside of the housing. Centrifugal blower 4 has impeller 5 and spiral casing 6 . As shown in FIG. 2, two or more centrifugal blowers 4 are arranged at predetermined intervals along a rotating shaft 8 connected to a drive motor 7 . The impeller 5 is rotated by the drive motor 7, and the centrifugal force generated by the rotation blows air in the radial direction of the impeller 5. As shown in FIG.
 図3は室内機内部の要部断面図である。図3に示すように、羽根車5は、主板9と、主板9の両面に取り付けられた複数の羽根10とを有する。主板9は回転軸8を中心とし、回転可能に取り付けられた円盤である。複数の羽根10は、主板9の円周上に、互いに所定の間隔をおいて配置される。羽根10の高さ方向が回転軸方向となるように、羽根10の一端を主板9に固定される。  Fig. 3 is a cross-sectional view of the main part inside the indoor unit. As shown in FIG. 3 , the impeller 5 has a main plate 9 and a plurality of blades 10 attached to both sides of the main plate 9 . The main plate 9 is a disc rotatably mounted around the rotation axis 8 . A plurality of blades 10 are arranged on the circumference of the main plate 9 at predetermined intervals from each other. One end of the blade 10 is fixed to the main plate 9 so that the height direction of the blade 10 is aligned with the rotation axis direction.
 図4は遠心送風機の斜視図である。渦巻ケーシング6は、内部を空気が流れる空間を形成する、たとえば中空の円筒である。羽根車5は、ケーシング吸い込み口6aから渦巻ケーシング6内部へ空気を吸込み、半径方向外側に空気を送風する。渦巻ケーシング6は、羽根車5が半径方向外側に送風した空気を整流し、渦巻ケーシング6の吹き出し口であるケーシング吹き出し口6bから吹き出す。渦巻ケーシング6は、羽根車5の回転方向に羽根車5の周囲を渦巻状に囲む壁面12と、羽根車5が空気を吸い込むためのケーシング吸い込み口6aが形成された側面13と、渦巻ケーシング6の外へ空気を吹き出すケーシング吹き出し口6bとを有する。また、渦巻ケーシング6は、ケーシング吸い込み口6aにおいて空気の流れを滑らかにするベルマウス11を有する。ベルマウス11は、たとえば、環状の板材である。また、渦巻ケーシング6は、羽根車5の回転によって生じた気流をケーシング吹き出し口6bに向かわせる舌部14を備える。 Fig. 4 is a perspective view of the centrifugal blower. The spiral casing 6 is, for example, a hollow cylinder forming a space inside which air flows. The impeller 5 sucks air into the spiral casing 6 from the casing suction port 6a and blows the air radially outward. The spiral casing 6 rectifies the air blown radially outward by the impeller 5 and blows it out from the casing outlet 6b, which is the outlet of the spiral casing 6 . The spiral casing 6 includes a wall surface 12 spirally surrounding the periphery of the impeller 5 in the rotational direction of the impeller 5, a side surface 13 formed with a casing suction port 6a through which the impeller 5 sucks air, and the spiral casing 6. and a casing outlet 6b for blowing air out of the housing. The spiral casing 6 also has a bell mouth 11 for smoothing the airflow at the casing inlet 6a. The bellmouth 11 is, for example, an annular plate. The spiral casing 6 also includes tongues 14 that direct the airflow generated by the rotation of the impeller 5 toward the casing outlet 6b.
 側面13は、ベルマウス11と接続して羽根車5を覆う、二つの端面である。側面13は、回転軸8に垂直となる方向に面を成す。壁面12は、舌部14を起点にケーシング吹き出し口6bに向かって、回転軸まわりの回転角度が大きくなるにつれて回転軸8との距離が大きくなるように設けられる。壁面12は回転軸8に対して平行な面を成す。 The side surfaces 13 are two end surfaces that connect with the bell mouth 11 and cover the impeller 5 . The side surface 13 forms a plane in a direction perpendicular to the rotation axis 8 . The wall surface 12 is provided so that the distance from the rotating shaft 8 increases as the angle of rotation about the rotating shaft increases toward the casing outlet 6b from the tongue portion 14 as a starting point. The wall surface 12 forms a plane parallel to the rotation axis 8 .
 図4に示すように、渦巻ケーシング6の壁面12と側面13とが接続する部分を接続部15とする。接続部15は、角を落とすように面取りされた曲面であり、壁面12と側面13とを面取り状に接続する。図4では、半月状に面取りされた接続部15を示したが、接続部15の面取り形状はこれに限定されるものではない。また、接続部15と壁面12とは連続するように接続部15が設けられる。連続するように接続部15を設けることで、熱交換器3を通過した空気は、接続部15の曲面に沿って滑らかにケーシング吸い込み口6aへと流れることができる。なお、渦巻ケーシングの壁面12と側面13との角部が面取りされることで、渦巻ケーシング内部の流路において、角部に形成される渦による空気の乱れを抑制することもでき、送風効率の向上と騒音の低減効果も得られる。 As shown in FIG. 4, a connection portion 15 is a portion where the wall surface 12 and the side surface 13 of the spiral casing 6 are connected. The connecting portion 15 is a curved surface chamfered so as to cut off the corners, and connects the wall surface 12 and the side surface 13 in a chamfered manner. Although FIG. 4 shows the connecting portion 15 chamfered into a half-moon shape, the chamfered shape of the connecting portion 15 is not limited to this. Moreover, the connection part 15 is provided so that the connection part 15 and the wall surface 12 may continue. By providing the connecting portion 15 so as to be continuous, the air that has passed through the heat exchanger 3 can smoothly flow along the curved surface of the connecting portion 15 to the casing suction port 6a. In addition, by chamfering the corners of the wall surface 12 and the side surface 13 of the spiral casing, it is possible to suppress turbulence of the air due to the vortices formed at the corners in the flow path inside the spiral casing, thereby improving the air blowing efficiency. An improvement and noise reduction effect are also obtained.
 また、図3に示すように、隣り合う渦巻ケーシング間の距離をLcと定義し、渦巻ケーシングの壁面12の回転軸方向の長さを壁面の回転軸方向の長さHcと定義する。なお、隣り合うケーシング間距離Lcとは、回転軸方向に隣り合う二つの遠心送風機4において、渦巻ケーシングの側面同士の距離を指す。 Also, as shown in FIG. 3, the distance between adjacent spiral casings is defined as Lc, and the length of the wall surface 12 of the spiral casing in the direction of the rotation axis is defined as the length of the wall surface in the direction of the rotation axis Hc. The distance Lc between adjacent casings refers to the distance between the side surfaces of the spiral casings of two centrifugal fans 4 adjacent in the rotation axis direction.
 壁面12の回転軸方向の長さHcは、接続部15の大きさにより変化するため、接続部15において、面取りを大きく形成すれば、壁面の回転軸方向の長さHcは短くなり、面取りを小さく形成すれば、壁面12の回転軸方向の長さHcは長くなる。回転軸方向に沿って、所定の間隔を保って並べられた複数の遠心送風機4は、壁面12の回転軸方向の長さHcを調整することで、隣り合う渦巻ケーシング間の接続部同士の距離が広がる。 Since the length Hc of the wall surface 12 in the rotation axis direction varies depending on the size of the connection portion 15, if the connection portion 15 is chamfered larger, the length Hc of the wall surface in the rotation axis direction becomes shorter. If the wall surface 12 is formed small, the length Hc of the wall surface 12 in the rotation axis direction becomes long. A plurality of centrifugal blowers 4 arranged along the rotation axis direction at a predetermined interval maintains the distance between the connecting portions between adjacent spiral casings by adjusting the length Hc of the wall surface 12 in the rotation axis direction. spreads.
 図5はケーシング吸い込み口6a側から見た平面図である。筐体2を小型にするために、熱交換器3は筐体内部において、遠心送風機4と近づけて配置される。図5に示すように、熱交換器3は筐体内部において、遠心送風機4よりも上流側にあって、全体として曲がった形状を有することで壁面12の周囲を取り巻き、壁面12との間の距離が変化するように、配置される。 FIG. 5 is a plan view seen from the side of the casing suction port 6a. In order to make the housing 2 compact, the heat exchanger 3 is arranged close to the centrifugal blower 4 inside the housing. As shown in FIG. 5 , the heat exchanger 3 is located upstream of the centrifugal blower 4 inside the housing, and has a curved shape as a whole to surround the wall surface 12 and to separate the wall surface 12 from the heat exchanger 3 . They are arranged so that the distance changes.
 ここで、回転軸8の径方向における熱交換器3と壁面12との径方向の距離を径方向距離Lと定義し、回転軸8まわりの角度を回転角度θと定義し、渦巻ケーシング6の巻き始めの舌部14をθ=0°とする。径方向距離Lは、室内機1を回転軸に垂直な面できった断面において、壁面12外周面から外周面と向かい合う熱交換器3までの距離を指す。全体として曲がった形状を有し、壁面の周囲を取り巻き、径方向距離Lが変化するように熱交換器3を配置するとは、たとえば、図5のように、外周面が曲線を描く渦巻ケーシングの壁面12に対して、2枚の平板形状の熱交換器3を配置することである。 Here, the radial distance between the heat exchanger 3 and the wall surface 12 in the radial direction of the rotating shaft 8 is defined as the radial distance LH , the angle around the rotating shaft 8 is defined as the rotation angle θ, and the spiral casing 6 The tongue portion 14 at the start of winding is set to θ=0°. The radial distance LH refers to the distance from the outer peripheral surface of the wall surface 12 to the heat exchanger 3 facing the outer peripheral surface in a cross section of the indoor unit 1 perpendicular to the rotation axis. Arranging the heat exchanger 3 so that it has a curved shape as a whole, surrounds the periphery of the wall surface, and changes the radial distance LH means, for example, a spiral casing having a curved outer peripheral surface as shown in FIG. is to arrange two flat plate-shaped heat exchangers 3 against the wall surface 12 of the .
 このような平坦な熱交換器3が、渦巻型の外径を有する遠心送風機4に近づけて設置されるので、回転軸のまわりの回転角度によって、熱交換器3と壁面12との径方向距離Lが大きく変化する。また、遠心送風機4の回転軸の中心と熱交換器3との距離も大きく変化する。熱交換器3を遠心送風機4に近づけて配置するとは、熱交換器3と壁面12との間の径方向距離Lが、回転軸の中心から壁面12までの距離よりも小さくなるように箇所を有するように配置することである。例えば、熱交換器3と壁面12との間の径方向距離Lが回転軸の中心から壁面12までの距離の半分以下である。  Since such a flat heat exchanger 3 is installed close to the centrifugal fan 4 having a spiral outer diameter, the radial distance between the heat exchanger 3 and the wall surface 12 varies depending on the rotation angle around the rotation axis. LH changes greatly. Moreover, the distance between the center of the rotation shaft of the centrifugal fan 4 and the heat exchanger 3 also changes greatly. Arranging the heat exchanger 3 close to the centrifugal fan 4 means that the radial distance LH between the heat exchanger 3 and the wall surface 12 is smaller than the distance from the center of the rotation shaft to the wall surface 12. is arranged so as to have For example, the radial distance LH between the heat exchanger 3 and the wall surface 12 is less than half the distance from the center of the rotating shaft to the wall surface 12 .
 先行技術文献は、一枚の熱交換器を、ケーシング吸込み口と対向するように、遠心送風機側ではなくケーシング吸込み口側に設けたものであって、熱交換器とケーシングとの距離は、遠心ファンの回転軸中心からケーシングまでの距離よりも長い。このような場合、筐体の小型化の要求に対し、熱交換容量を確保することができない。 In the prior art document, one heat exchanger is provided on the casing suction port side instead of the centrifugal fan side so as to face the casing suction port, and the distance between the heat exchanger and the casing is the centrifugal fan. Longer than the distance from the center of the rotation shaft of the fan to the casing. In such a case, the heat exchange capacity cannot be secured in response to the demand for miniaturization of the housing.
 一方で、本実施の形態1にかかる熱交換器3は、全体として曲がった形状を有し、壁面の周囲を取り巻き、径方向距離Lが変化するように熱交換器3を配置されることで、筐体の小型化の要求に対しても、熱交換容量を十分確保することができる。 On the other hand, the heat exchanger 3 according to the first embodiment has a curved shape as a whole, surrounds the periphery of the wall surface, and is arranged so that the radial distance LH changes. Therefore, a sufficient heat exchange capacity can be secured even in response to the demand for downsizing of the housing.
 また、本実施の形態1にかかる室内機1は、径方向距離Lが短い回転角度における壁面12の回転軸方向の長さHcが、径方向距離Lが長い回転角度における壁面12の回転軸方向の長さHcよりも短い。すなわち、回転角度における径方向距離L短くなるほど、壁面12の回転軸方向長さHcを短くなるよう接続部15を設ける。たとえば、熱交換器3が渦巻ケーシング6に近接して配置される回転角度において、それ以外の回転角度に比べて、渦巻ケーシングの壁面12の回転軸方向の長さHcを短くなるように、接続部15の面取りを大きさ調整する。 Further, in the indoor unit 1 according to the first embodiment, the length Hc in the rotation axis direction of the wall surface 12 at a rotation angle with a short radial distance LH is equal to the rotation of the wall surface 12 at a rotation angle with a long radial distance LH . shorter than the axial length Hc. That is, the connecting portion 15 is provided such that the shorter the radial distance LH in the rotation angle, the shorter the length Hc of the wall surface 12 in the axial direction of rotation. For example, at a rotation angle at which the heat exchanger 3 is arranged close to the spiral casing 6, the connection is made so that the length Hc of the wall surface 12 of the spiral casing in the direction of the rotation axis is shorter than at other rotation angles. The chamfer of portion 15 is sized.
 また、本実施の形態1に係る熱交換器3は、熱交換器3のうち渦巻ケーシングの壁面12との距離が近接する箇所を2つ有するように配置する。たとえば、図5に示すように、
二枚の熱交換器3が逆V字を描くように、回転軸8まわりの角度θ0≦θ≦θ1、θ2≦θ≦θ3範囲に熱交換器3を配置する。二枚の熱交換器3は、回転軸8に垂直な面で切った断面において、第一の熱交換器3aと第二の熱交換器3bとがそれぞれの一方の端が近づきあい他方の端が離れあうように、相互に傾斜させて配置される。第一の熱交換器3aと第二の熱交換器3bとの離れあう他方の端の間に遠心送風機4が位置するように配置される。これにより、熱交換器3が渦巻ケーシングに近接している箇所と、近接していない箇所とにおいて、径方向距離Lを変化させることができる。また、熱交換器全体でみてもが回転軸8の周りで曲がった構成となり、熱交換器3が遠心送風機4の外側を取り巻く配置となる。そして、それぞれの熱交換器3が回転軸8まわりで占める角度θ0≦θ≦θ1、θ2≦θ≦θ3範囲が合計で、120°以上、望ましくは150°以上となるようにするとよい。このように熱交換器を配置することで、熱交換容量を確保しつつ、筐体の小型化が可能となる。
Further, the heat exchanger 3 according to Embodiment 1 is arranged so that the heat exchanger 3 has two portions close to the wall surface 12 of the spiral casing. For example, as shown in FIG.
The heat exchangers 3 are arranged in the ranges of angles θ 0 ≤ θ ≤ θ 1 and θ 2 ≤ θ ≤ θ 3 around the rotating shaft 8 so that the two heat exchangers 3 form an inverted V shape. The two heat exchangers 3 are arranged such that, in a cross section taken along a plane perpendicular to the rotation shaft 8, one end of each of the first heat exchanger 3a and the second heat exchanger 3b approaches each other. are arranged at an angle to each other such that the A centrifugal blower 4 is arranged between the other ends of the first heat exchanger 3a and the second heat exchanger 3b. Thereby, the radial distance LH can be changed between the location where the heat exchanger 3 is close to the spiral casing and the location where it is not. Also, the heat exchanger as a whole is curved around the rotating shaft 8, and the heat exchanger 3 surrounds the outside of the centrifugal blower 4. As shown in FIG. If the total angles θ 0 ≤ θ ≤ θ 1 and θ 2 ≤ θ ≤ θ 3 that each heat exchanger 3 occupies around the rotating shaft 8 are 120° or more, preferably 150° or more. good. By arranging the heat exchangers in this way, it is possible to reduce the size of the housing while ensuring the heat exchange capacity.
 ここで、回転角度をθに対して、径方向距離Lが変化する関係を関数L(θ)と定義する。近接する箇所とは、熱交換器3と壁面12とが向かい合う回転角度の範囲θ≦θ≦θ、θ≦θ≦θにおいて、関数L(θ)が極小値となる回転角度θに対応する箇所を指す。なお、関数L(θ)が極小値となる回転角度θには、θの前後約20°の角度も含む。 Here, the relationship in which the radial distance LH changes with respect to the rotation angle θ is defined as a function LH (θ). The adjacent portion means the rotation angle at which the function LH (θ) becomes a minimum value in the rotation angle ranges θ 0 ≤ θ ≤ θ 1 and θ 2 ≤ θ ≤ θ 3 where the heat exchanger 3 and the wall surface 12 face each other. It points to the point corresponding to θ. Note that the rotation angle θ at which the function L H (θ) has a minimum value includes an angle of about 20° before and after θ.
 図6は図5を一例として回転角度θに対する径方向距離Lと壁面の回転軸方向長さHcとの関係を示したグラフである。図6において回転角度θは回転軸から舌部の方向を0°とし、2つの下向きに凸の曲線(実線)は2つの熱交換器3a、3bのLを示している。また、破線はHcを示している。なお、Lは角度θにおける回転軸中心から熱交換器3までの距離から回転軸中心から渦巻ケーシングの壁面12までの距離を差し引いて、熱交換器3の厚みで除した値を用いた。なお、熱交換器3の厚みが回転角度θに対して変化する場合は、その中央部など典型的な箇所の厚み、または平均厚みを用いるとよい。また、Hcは面取り部が形成されていない回転角度θにおける側面13間の距離、つまり渦巻ケーシング6の軸方向の長さを基準として壁面12の軸方向の長さを示す。 FIG. 6 is a graph showing the relationship between the radial distance LH with respect to the rotation angle .theta. and the wall surface length Hc in the rotation axis direction, using FIG. In FIG. 6, the rotation angle θ is 0° in the direction of the tongue from the rotation axis, and two downwardly convex curves (solid lines) indicate LH of the two heat exchangers 3a and 3b. A broken line indicates Hc. For LH , a value obtained by subtracting the distance from the center of the rotation shaft to the wall surface 12 of the spiral casing from the distance from the center of the rotation shaft to the heat exchanger 3 at the angle θ and dividing by the thickness of the heat exchanger 3 was used. When the thickness of the heat exchanger 3 changes with respect to the rotation angle θ, it is preferable to use the thickness of a typical portion such as the central portion or the average thickness. Hc indicates the axial length of the wall surface 12 based on the axial length of the spiral casing 6, that is, the distance between the side surfaces 13 at the rotation angle θ where no chamfer is formed.
 図6の2つの下向きに凸の曲線のうち、回転角度70°~155°の実線は図5において舌部に近い左側に位置する熱交換器3aのLを示し、回転角度165°~255°の実線は図5において吹き出し口に近い右側に位置する熱交換器3bのLを示す。このように、2つの熱交換器3a、3bにより回転角度において合計で約175°の範囲でケーシングを取り巻くように配置されている。 Of the two downwardly convex curves in FIG. 6, the solid line with a rotation angle of 70° to 155° indicates LH of the heat exchanger 3a located on the left side near the tongue in FIG. The solid line of ° indicates LH of the heat exchanger 3b located on the right side near the outlet in FIG. Thus, the two heat exchangers 3a, 3b are arranged to surround the casing over a total rotation angle of about 175°.
 図5において左側に位置する熱交換器3aは回転角度が70°から大きくなるにつれてLが小さくなり、約100°付近で極小となり、さらに回転角度が大きくなるにつれてLは大きくなる。図5において右側に位置する熱交換器3bは回転角度が165°から大きくなるにつれてLが小さくなり、約220°付近で極小となり、さらに回転角度が大きくなるにつれてLは大きくなる。回転角度70°未満、155°より大きく165°未満、255°より大きいの範囲は、熱交換器3が配置されていない範囲である。なお、回転角度θの範囲は任意に変更可能である。 In the heat exchanger 3a located on the left side in FIG. 5, LH decreases as the rotation angle increases from 70°, reaches a minimum around 100°, and further increases as the rotation angle increases. In the heat exchanger 3b located on the right side in FIG. 5, LH decreases as the rotation angle increases from 165°, reaches a minimum around 220°, and further increases as the rotation angle increases. The ranges where the rotation angle is less than 70°, greater than 155° and less than 165°, and greater than 255° are ranges in which the heat exchanger 3 is not arranged. Note that the range of the rotation angle θ can be changed arbitrarily.
 Lの極小値は熱交換器3の厚みに比べて小さくなっており、熱交換器3の厚みの0.5以下とされるなど、熱交換器3が渦巻ケーシングの壁面12と非常に接近して配置されていることを示している。一方、図5のように平板形状の熱交換器3を用いた場合は、回転角度θによるLの変化が極めて大きく、極小値と最大値との比は5倍以上にもなる。 The minimum value of LH is smaller than the thickness of the heat exchanger 3, and the heat exchanger 3 is very close to the wall surface 12 of the spiral casing, such as 0.5 or less of the thickness of the heat exchanger 3. It indicates that it is placed as On the other hand, when the plate-shaped heat exchanger 3 is used as shown in FIG. 5, the change in LH due to the rotation angle θ is extremely large, and the ratio between the minimum value and the maximum value is five times or more.
 Hcは回転角度θが増加する方向に見ていくと、0°(舌部)から70°付近までは1であり、70°付近から減少し、約115°付近で極小となったのち、増加して155°付近で1になり、165°付近から再び減少し、約220°付近で極小となったのち、増加して255°付近で1となっている。回転角度θによるLの変化とHcの変化はおおむね似た変化となり、Lが極小値となる回転角度θにおいておおよそHcが極小となる。なお、Lが極小値となる回転角度θとHcが極小となる角度とが20°程度ずれてもよい。 Hc is 1 from 0° (tongue) to around 70°, decreases from around 70°, reaches a minimum around 115°, and then increases. and becomes 1 around 155°, decreases again around 165°, reaches a minimum around 220°, then increases and becomes 1 around 255°. The change in LH and the change in Hc due to the rotation angle θ are generally similar changes, and Hc becomes minimum at the rotation angle θ at which LH is the minimum value. The rotation angle θ at which LH is the minimum value and the angle at which Hc is the minimum value may deviate by about 20°.
 図6のように、LとHcの回転角度θに対する変化は2次関数に似ており、極小値付近での変化が緩やかで、Lが極小値となる回転角度θにおけるHcは、少しずれた回転角度で極小値となるHcの値と大きく違わないので、本開示の効果を得ることができる。また、製造上においても完全に一致させることは難しい。本開示において、径方向距離Lが短い回転角度θにおける壁面の回転軸方向の長さHcが、径方向距離Lが長い回転角度θにおける壁面の回転軸方向の長さHcよりも短いとは、径方向距離Lが極小値となる回転角度θにおいて面取り部によってHcが極小値となる程小さくされていることを意味する。たとえば、Lが極小値となる回転角度θとHcが極小値となる回転角度θとの差が20°以下の場合も含むものとする。 As shown in FIG. 6, the change of LH and Hc with respect to the rotation angle θ resembles a quadratic function. Since it is not greatly different from the value of Hc that becomes the minimum value at the deviated rotation angle, the effect of the present disclosure can be obtained. In addition, it is difficult to match them perfectly in terms of manufacturing. In the present disclosure, if the length Hc of the wall surface in the rotation axis direction at the rotation angle θ at which the radial distance LH is short is shorter than the length Hc of the wall surface in the rotation axis direction at the rotation angle θ at which the radial distance LH is long means that the chamfered portion reduces Hc to the minimum value at the rotation angle θ at which the radial distance LH is the minimum value. For example, the difference between the rotation angle θ at which LH is the minimum value and the rotation angle θ at which Hc is the minimum value is 20° or less.
 本実施の形態1に係る熱交換器3は、遠心送風機4よりも上流側で、かつ、熱交換器3と壁面12とが向かい合う回転角度の範囲において、熱交換器3と渦巻ケーシングの壁面12との距離である径方向距離Lの関数L(θ)が極小値を二つ有するように配置される。二つの極小値の角度をβ1、β2とし、それぞれの角度における壁面12の回転軸方向長さをHc1、Hc2で表すとすると、θ≦θ<β1、β1<θ<β2、β2<θ≦θにおける各軸方向長さHcよりも、θがβ1、β2となる回転角度におけるHc1、Hc2の方が短くなるように、熱交換器が配置される。 In the heat exchanger 3 according to Embodiment 1, the heat exchanger 3 and the wall surface 12 of the spiral casing are arranged on the upstream side of the centrifugal blower 4 and in the range of rotation angles at which the heat exchanger 3 and the wall surface 12 face each other. is arranged so that the function L H (θ) of the radial distance L H , which is the distance between , has two minimum values. Let β1 and β2 be the angles of the two minimum values, and Hc1 and Hc2 be the lengths of the wall surface 12 in the rotation axis direction at the respective angles. The heat exchangers are arranged so that Hc1 and Hc2 at rotation angles at which θ is β1 and β2 are shorter than each axial length Hc at θ3.
 また、より好ましくは、関数L(θ)が最小値となる回転角度θにおいて、壁面12の回転軸方向の長さHcが最小となるように接続部15を設ける。関数L(θ)が最小値となるのは、熱交換器3と渦巻ケーシングの壁面12とが最も近接する、すなわち、径方向距離Lが最も短いことを示す。よって、径方向距離Lが最小になる角度において、壁面12の回転軸方向の長さHcが最小となるように、面取りを大きくした接続部15を設ける。面取りを大きくするには、例えば、面取りの幅を大きくすればよく、半円状に面取りする場合は、半径を大きくすればよい。径方向距離Lが最小になる回転角度において、面取りの幅が一番大きくなるように、壁面12と側面13とで形成される角を落とせばよい。なお、関数L(θ)が最小値となる回転角度θには、θの前後約20°の角度も含む。 More preferably, the connecting portion 15 is provided so that the length Hc of the wall surface 12 in the rotation axis direction is minimized at the rotation angle θ at which the function L H (θ) is minimized. The minimum value of the function L H (θ) indicates that the heat exchanger 3 and the wall surface 12 of the spiral casing are the closest, that is, the radial distance L H is the shortest. Therefore, the connecting portion 15 with a large chamfer is provided so that the length Hc of the wall surface 12 in the rotation axis direction is minimized at the angle at which the radial distance LH is minimized. In order to increase the chamfer, for example, the width of the chamfer may be increased, and in the case of chamfering in a semicircular shape, the radius may be increased. The angle formed by the wall surface 12 and the side surface 13 may be rounded so that the width of the chamfer is maximized at the rotation angle at which the radial distance LH is minimized. Note that the rotation angle θ at which the function L H (θ) is the minimum value includes an angle of about 20° before and after θ.
 さらに好ましくは、図4に示すように、接続部15を設けた回転角度の範囲において、壁面12の回転軸方向の長さHcが羽根車5の回転軸方向の長さHbよりも短くなるように、面取りされた接続部15を設ける。たとえば、関数L(θ)が極小値となる回転角度θにおいて、羽根車5の回転軸方向の長さHbよりも短い接続部15を設ける。羽根車5の回転軸方向の長さHbは、羽根車5の高さであり、主板と主板の両面に取り付けられた羽根を合わせた長さである。すなわち、熱交換器3が渦巻ケーシング6に近接する箇所において、壁面12の回転軸方向の長さHcが羽根車5の回転軸方向の長さHbよりも短くなるように、面取りの幅を大きくした接続部15を設けるとよい。 More preferably, as shown in FIG. 4, the length Hc of the wall surface 12 in the direction of the rotation axis is shorter than the length Hb of the impeller 5 in the direction of the rotation axis in the range of rotation angles in which the connecting portion 15 is provided. is provided with a chamfered connecting portion 15 . For example, at the rotation angle θ at which the function L H (θ) is the minimum value, the connection portion 15 is provided that is shorter than the length Hb of the impeller 5 in the rotation axis direction. The length Hb of the impeller 5 in the rotation axis direction is the height of the impeller 5, and is the length of the main plate and the blades attached to both surfaces of the main plate. That is, the width of the chamfer is increased so that the length Hc of the wall surface 12 in the direction of the rotation axis is shorter than the length Hb of the impeller 5 in the direction of the rotation axis at the location where the heat exchanger 3 is close to the spiral casing 6. It is preferable to provide a connecting portion 15 with a
 次に、本実施の形態1の室内機1の動作について説明する。駆動モータ7により羽根車5が回転し、筐体外部の空気を本体吸い込み口2aから取り込む。筐体内部に取り込まれた空気は、遠心送風機4よりも上流側に配置された熱交換器3で熱交換され、渦巻ケーシングの接続部15を通過し、ケーシング吸い込み口6aから渦巻ケーシングの内部に吸い込まれる。吸い込まれた空気は、渦巻ケーシングの内部において羽根車5の回転により風量と静圧を獲得し、ケーシング吹き出し口6bから送り出される。ケーシング吹き出し口6bから送り出された空気は、ケーシング吹き出し口6bと連通した本体吹き出し口2bから室内機1の筐体外部へと送風される。 Next, the operation of the indoor unit 1 of Embodiment 1 will be described. The impeller 5 is rotated by the drive motor 7, and the air outside the housing is taken in from the main intake port 2a. The air taken into the housing is heat-exchanged by the heat exchanger 3 arranged upstream of the centrifugal blower 4, passes through the connecting portion 15 of the spiral casing, and enters the inside of the spiral casing from the casing suction port 6a. sucked in. The sucked air acquires air volume and static pressure by rotation of the impeller 5 inside the spiral casing, and is sent out from the casing outlet 6b. The air sent out from the casing outlet 6b is sent to the outside of the housing of the indoor unit 1 from the body outlet 2b communicating with the casing outlet 6b.
 室内機1を小型化する場合、熱交換器3を渦巻ケーシング6に近づけて配置すること考えられる。たとえば、図7に示すように、熱交換器3を配置した場合、熱交換器3と渦巻ケーシング6とが対向する角度範囲θ≦θ≦θ、θ≦θ≦θの中でも、それぞれの回転角度において熱交換器3と壁面12との距離が異なるため、熱交換器3と遠心送風機4が近接する回転角度θ付近では、それ以外の角度範囲と比較して、ケーシング吸い込み口6aに向かう空気の流れが遅くなる。すなわち、遠心送風機4の回転軸まわりをみた場合、径方向距離Lが最も短いところで空気の流れが遅くなるため、全体としてケーシング吸い込み口6aに向かう空気の流れに速度分布が生じる。空気の流れが一様でない場合、熱交換器3からケーシング吸い込み口6aに向かう流路において圧力損失が生じ、送風効率が低下する虞がある。 When downsizing the indoor unit 1 , it is conceivable to dispose the heat exchanger 3 closer to the spiral casing 6 . For example , when the heat exchanger 3 is arranged as shown in FIG . Since the distance between the heat exchanger 3 and the wall surface 12 differs at each rotation angle, in the vicinity of the rotation angle θ at which the heat exchanger 3 and the centrifugal fan 4 are close to each other, the casing inlet 6a slows down the flow of air toward That is, when looking around the rotation axis of the centrifugal blower 4, the air flow becomes slow where the radial distance LH is the shortest, so the air flow toward the casing suction port 6a as a whole has a velocity distribution. If the air flow is not uniform, pressure loss may occur in the flow path from the heat exchanger 3 to the casing suction port 6a, and the air blowing efficiency may decrease.
 先行技術文献では、単に、渦巻ケーシングの吹き出し孔の反対側に切り欠きを設けたものであって、このような切り欠きが設けられた渦巻ケーシングの近くに、熱交換器3を壁面の周囲を取り囲むように配置した場合、熱交換器3と渦巻ケーシングとの距離が考慮されていないため却って空気の流れの不均一性を増大させる虞がある。 In the prior art document, a notch is simply provided on the opposite side of the blowout hole of the spiral casing, and the heat exchanger 3 is placed around the wall near the spiral casing provided with such a notch. If they are arranged so as to surround the heat exchanger 3, the distance between the heat exchanger 3 and the spiral casing is not considered.
 そこで、本実施の形態1に係る室内機1は、本体吸い込み口と本体吹き出し口2bとを有する筐体2と、筐体内部に設けられ、回転軸8を中心に回転する主板9と主板9に配置された複数の羽根10とを有する羽根車5と、羽根車5の回転方向に羽根車5を囲む渦巻状の壁面12、及び壁面12と接続され、羽根車5が空気を吸い込むための吸い込み口6aが形成された側面13とを備えた渦巻ケーシング6とを、有する遠心送風機4と、筐体内部に設けられ、全体として曲がった形状を有することで、壁面12の周囲を取り巻く熱交換器3と、を備えた。さらに、回転軸8まわりの角度を回転角度θ、壁面12と熱交換器3との間の距離を径方向距離L、壁面12の回転軸方向の長さをHcとすると、熱交換器3は、回転角度θによって径方向距離Lが変化するように配置され、渦巻ケーシング6は、壁面12と側面13とを面取り状に接続する接続部15を有し、径方向距離Lが短い回転角度θにおける壁面の回転軸方向の長さHcは、径方向距離Lが長い回転角度θにおける壁面の回転軸方向の長さHcよりも短くなるように構成した。 Therefore, the indoor unit 1 according to Embodiment 1 includes a housing 2 having a main body suction port and a main body outlet 2b, and a main plate 9 provided inside the housing and rotating around a rotation shaft 8 and a main plate 9 and a spiral wall surface 12 surrounding the impeller 5 in the direction of rotation of the impeller 5, and the wall surface 12 for the impeller 5 to suck air. A centrifugal fan 4 having a spiral casing 6 provided with a side surface 13 in which a suction port 6a is formed, and a heat exchange surrounding a wall surface 12 provided inside the housing and having a curved shape as a whole. and a vessel 3. Furthermore, when the angle around the rotation axis 8 is the rotation angle θ, the distance between the wall surface 12 and the heat exchanger 3 is L H , and the length of the wall surface 12 in the direction of the rotation axis is Hc, the heat exchanger 3 is arranged so that the radial distance LH varies depending on the rotation angle θ, and the spiral casing 6 has a connection portion 15 that connects the wall surface 12 and the side surface 13 in a chamfered manner, and the radial distance LH is short. The length Hc of the wall surface in the rotation axis direction at the rotation angle θ is configured to be shorter than the length Hc of the wall surface in the rotation axis direction at the rotation angle θ at which the radial distance LH is long.
 詳細には、径方向距離Lが短い回転角度の接続部15の面取りを、熱交換器3と渦巻ケーシングの壁面12との径方向距離Lが長い回転角度の接続部15の面取りよりも大きく形成する。これにより、径方向距離Lが短い回転角度における壁面12の回転軸方向の長さHcが、径方向距離Lが長い回転角度における壁面12の回転軸方向の長さHcよりも短くなる。 More specifically, the chamfering of the connection portion 15 with a small radial distance LH at a rotation angle is greater than the chamfering of the connection portion 15 with a large radial distance LH between the heat exchanger 3 and the wall surface 12 of the spiral casing. form large. As a result, the length Hc of the wall surface 12 in the rotation axis direction at the rotation angle where the radial distance LH is short becomes shorter than the length Hc of the wall surface 12 in the rotation axis direction at the rotation angle where the radial distance LH is long.
 したがって、かかる構成により、径方向距離Lの変化に合わせて、渦巻ケーシング6に接続部15を設けることで、熱交換器3から渦巻ケーシングのケーシング吸い込み口6aに向かう流路を適切に確保でき、筐体2の小型化に伴い熱交換器3が遠心送風機4の近くに配置された室内機1であっても、熱交換容量を確保しつつ、室内機1の送風効率を向上できる。  Therefore, with such a configuration, by providing the connection portion 15 in the spiral casing 6 according to the change in the radial distance LH , it is possible to appropriately secure the flow path from the heat exchanger 3 to the casing suction port 6a of the spiral casing. Even in the indoor unit 1 in which the heat exchanger 3 is arranged near the centrifugal fan 4 due to the miniaturization of the housing 2, the air blowing efficiency of the indoor unit 1 can be improved while securing the heat exchange capacity.
 なお、接続部15を設けることで、隣り合う渦巻ケーシングの側面同士よりも、接続部同士の距離の方が長くなるので、隣り合うケーシングの間の距離を広げた効果と同じような効果も得られる。 By providing the connecting portion 15, the distance between the connecting portions becomes longer than that between the side surfaces of the adjacent spiral casings, so that the same effect as the effect obtained by widening the distance between the adjacent casings can be obtained. be done.
 また、遠心送風機4よりも上流側で、かつ、熱交換器3と壁面12とが向かい合う回転角度の範囲において、径方向距離Lの関数L(θ)が極小値を二つ有するように熱交換器3を配置することで、筐体の小型化に伴い熱交換器の設置領域が限られた場合でも、熱交換容量を十分に確保しながら、送風効率を向上させることが可能となる。 Also, in the range of the rotation angle between the heat exchanger 3 and the wall surface 12 facing each other upstream of the centrifugal fan 4, the function LH (θ) of the radial distance LH has two minimum values. By arranging the heat exchanger 3, even if the installation area of the heat exchanger is limited due to the downsizing of the housing, it is possible to improve the ventilation efficiency while ensuring sufficient heat exchange capacity. .
 また、渦巻ケーシングの接続部15を、径方向距離Lの関数L(θ)が極小値をとるθを含む角度範囲θ≦θ≦θ、θ≦θ≦θにのみ形成することで、不必要に渦巻ケーシング6内部の流路を縮小させることがなくなる。そのため、室内機1を小型化し、複数並列に配置される遠心送風機4の隣り合う渦巻ケーシングの間の距離が狭くなる場合においても、空気吸い込み部の流路と渦巻ケーシング内部の流路の双方を確保し、圧力損失を低減し、送風効率を良くすることができる。 Further, the connection portion 15 of the spiral casing is formed only in the angle ranges θ 0 ≤ θ ≤ θ 1 and θ 2 ≤ θ ≤ θ 3 including θ where the function L H (θ) of the radial distance L H has a minimum value. By doing so, the flow path inside the spiral casing 6 is not unnecessarily narrowed. Therefore, even when the indoor unit 1 is downsized and the distance between the adjacent spiral casings of the centrifugal blowers 4 arranged in parallel is narrowed, both the flow path of the air suction portion and the flow path inside the spiral casing can be reduced. can be secured, pressure loss can be reduced, and air blowing efficiency can be improved.
 また、径方向距離Lの関数L(θ)が最小値となるθにおいて、壁面12の回転軸方向の長さHcが最小となるように接続部15を設けることで、熱交換器3からケーシング吸い込み口6aまでの流路における送風効率を向上させることが可能となる。すなわち、径方向距離Lの関数L(θ)が最小値となるθにおいて、最も大きく面取りされることで、ケーシング吸い込み口6aに向かう流路を十分に確保でき、圧力損失を低減できる。よって、熱交換器3を遠心送風機4に近づけて配置しても、室内機1の送風効率を向上できる。 Further, by providing the connection portion 15 so that the length Hc of the wall surface 12 in the direction of the rotational axis is minimized at θ where the function LH (θ) of the radial distance LH is the minimum value, the heat exchanger 3 to the casing suction port 6a. That is, at θ where the function L H (θ) of the radial distance L H is the minimum value, the chamfer is maximized, so that a sufficient flow path toward the casing suction port 6a can be secured and pressure loss can be reduced. Therefore, even if the heat exchanger 3 is arranged close to the centrifugal fan 4, the ventilation efficiency of the indoor unit 1 can be improved.
 また、接続部15を設けた回転角度の範囲において、壁面12の回転軸方向の長さHcが羽根車5の回転軸方向の長さHbよりも短くなるように面取りされた接続部15を設けることで、熱交換器3からケーシング吸い込み口6aに向かう流路において、さらに圧力損失を低減できる。よって、熱交換器3を遠心送風機4に近づけて配置しても、さらに室内機1の送風効率を向上できる。 In addition, the chamfered connection portion 15 is provided so that the length Hc of the wall surface 12 in the direction of the rotation axis is shorter than the length Hb of the impeller 5 in the direction of the rotation axis in the range of the rotation angle in which the connection portion 15 is provided. As a result, the pressure loss can be further reduced in the flow path from the heat exchanger 3 to the casing suction port 6a. Therefore, even if the heat exchanger 3 is arranged close to the centrifugal blower 4, the blowing efficiency of the indoor unit 1 can be further improved.
 なお、本実施の形態1に係る熱交換器3は、外周面が曲線を描く渦巻ケーシングの壁面12との距離が、回転軸8の回転方向において変化して、渦巻ケーシングの周囲を取り巻けばよいため、図8に示したように、1枚の熱交換器3を折り曲げて配置してもよい。 In the heat exchanger 3 according to the first embodiment, if the distance from the wall surface 12 of the spiral casing whose outer peripheral surface draws a curve changes in the rotation direction of the rotating shaft 8, the heat exchanger 3 surrounds the spiral casing. Therefore, as shown in FIG. 8, one heat exchanger 3 may be folded and arranged.
 また、本実施の形態1に係る熱交換器3は、遠心送風機4よりも上流側で、かつ、壁面12との間の距離が変化する位置であって、近接箇所が2か所である場合を説明したが、近接箇所が2か所に限定されるものではなく、2か所以上あってもよい。すなわち、関数L(θ)が極小値を二つ以上有していてもよい。 Further, when the heat exchanger 3 according to the first embodiment is located upstream of the centrifugal fan 4 and at a position where the distance from the wall surface 12 changes, and there are two adjacent locations , the number of adjacent positions is not limited to two, and may be two or more. That is, the function L H (θ) may have two or more local minimum values.
 また、熱交換器3が複数の近接箇所を有して渦巻ケーシング6の周りを取り巻く構成において、1つの近接箇所が他の近接箇所に比べて熱交換器3と渦巻ケーシング6との距離(径方向距離L)が離れるように設置される場合は、径方向距離Lが離れている箇所の面取りを小さく、すなわち、壁面の回転軸方向の長さHcが他の箇所に比べて長くなるようにしてもよい。 In addition, in a configuration in which the heat exchanger 3 has a plurality of proximate points and surrounds the spiral casing 6, one proximate point has a greater distance (diameter) between the heat exchanger 3 and the spiral casing 6 than the other proximate points. When installed so that the directional distance L H ) is apart, the chamfer at the location where the radial distance L H is apart is small, that is, the length Hc of the wall surface in the direction of the rotation axis is longer than at other locations. You may do so.
 また、複数の近接箇所のうち、1つの箇所が熱交換器3と渦巻ケーシングとの距離(径方向距離L)が十分に離れる場合には、その箇所に面取りを設けずに他の箇所にのみ面取りを設けるようにしてもよい。 In addition, when one of the plurality of adjacent locations is sufficiently separated from the heat exchanger 3 and the spiral casing (radial distance L H ), the chamfer is not provided at that location and the other locations are chamfered. Only the chamfer may be provided.
 また、複数の近接箇所を有する場合に、回転角度において舌部14に近い近接位置の面取りに比べて遠い位置の面取りを大きく、すなわち壁面の回転軸方向の長さHcが短くなるようにしてもよい。特に舌部の回転角度を起点0°としたとき、その反対となる180°よりも大きな回転角度に近接位置があるように熱交換器を設置してその位置における面取りを最も大きくしてもよい。すなわち、180°よりも小さな回転角度における壁面の回転軸方向の長さHcよりも、180°よりも大きな回転角度の近接箇所の壁面の回転軸方向の長さHcが短くなるようにしてもよい。大きな回転角度の位置では小さな回転角度の位置に比べて羽根10と壁面12のとの間の径方向距離が大きくなっているので、このように大きな面取りを形成しても、渦巻ケーシング内部の風の流れの損失が小さくすることができる。 Further, when there are a plurality of adjacent portions, even if the chamfering at the position farther from the tongue portion 14 is larger than the chamfering at the position closer to the tongue portion 14 in terms of rotation angle, that is, the length Hc of the wall surface in the direction of the rotation axis is shortened. good. In particular, when the rotation angle of the tongue is 0°, the heat exchanger may be installed so that there is a position close to the rotation angle larger than 180°, which is the opposite, and the chamfer at that position may be the largest. . That is, the length Hc of the wall surface in the direction of rotation axis at the rotation angle smaller than 180° may be shorter than the length Hc of the wall surface in the direction of rotation axis at the rotation angle larger than 180°. . Since the radial distance between the blades 10 and the wall surface 12 is larger at positions with large rotation angles than at positions with small rotation angles, even if such a large chamfer is formed, the wind inside the spiral casing will not be affected. flow loss can be small.
 また、本実施の形態1に係る壁面の回転軸方向の長さHcは、接続部15の面取りの形成によって短くされるが、側面13全体を傾斜させるなどにより面取り部が形成されていない部分でHcの長さが変化してもよい。また、面取り部の形成される角度範囲が熱交換器3を形成する角度範囲とほぼ一致する例を示したが、熱交換器3を形成する角度範囲に対して、少し狭い範囲、また少し広い範囲に面取り部を形成してもよい。 Further, the length Hc of the wall surface in the rotation axis direction according to Embodiment 1 is shortened by forming the chamfered portion of the connecting portion 15, but the portion where the chamfered portion is not formed by, for example, inclining the entire side surface 13 has the length Hc. may vary in length. Moreover, although an example in which the angle range in which the chamfered portion is formed substantially matches the angle range in which the heat exchanger 3 is formed has been shown, the angle range in which the heat exchanger 3 is formed is slightly narrower or wider. A chamfer may be formed in the range.
実施の形態2.
 本開示の実施の形態2における室内機1について図9から図13を用いて説明する。実施の形態2に係る室内機1は、実施の形態1の室内機1にさらにガイドプレート16を設けたものである。実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
Embodiment 2.
The indoor unit 1 according to Embodiment 2 of the present disclosure will be described with reference to FIGS. 9 to 13. FIG. The indoor unit 1 according to the second embodiment is obtained by further providing a guide plate 16 to the indoor unit 1 according to the first embodiment. The description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
 図9は本実施の形態2に係る室内機1内部の斜視図であり、図10は本実施の形態2に係るケーシングの吸い込み口側から見た平面図であり、図11は本実施の形態2に係る室内機1の内部を背面側からみた平面図である。 FIG. 9 is a perspective view of the interior of the indoor unit 1 according to Embodiment 2, FIG. 10 is a plan view of the casing according to Embodiment 2 as seen from the suction port side, and FIG. 11 is this embodiment. 2 is a plan view of the inside of the indoor unit 1 according to 2 as seen from the rear side.
 図9に示すように、本実施の形態2にかかる室内機1は、熱交換器3と対向するように設けられたガイドプレート16を有する。たとえば、図10に示すように、ガイドプレート16は渦巻ケーシングの側面側からみるとV字形状であり、熱交換器3よりも下流側であって、複数の熱交換器3のそれぞれの下流側の端部を繋ぐように、渦巻ケーシングの側面13に設けられる。熱交換器3と対向するようとは、回転軸に垂直な断面で見た場合に、熱交換器3が配置された回転角度から、ケーシング吸い込み口6aを挟んで、熱交換器3が設置されていない角度範囲に、ガイドプレート16を配置することである。
なお、ガイドプレート16は図10に示したものに限定されず、熱交換器3よりも下流側であって、熱交換器3と対向するように配置すればよく、複数の熱交換器3のそれぞれの下流側端部とガイドプレート16の端部とが離れていてもよい。また、ガイドプレート16はV字形状に限定されるもではなく、U字形状、その他の形状であってもよい。
As shown in FIG. 9 , the indoor unit 1 according to Embodiment 2 has a guide plate 16 provided to face the heat exchanger 3 . For example, as shown in FIG. 10, the guide plate 16 has a V-shape when viewed from the side of the spiral casing, is downstream of the heat exchangers 3, and is downstream of each of the plurality of heat exchangers 3. is provided on the side surface 13 of the spiral casing so as to connect the ends of the spiral casing. Facing the heat exchanger 3 means that the heat exchanger 3 is installed across the casing suction port 6a from the rotation angle at which the heat exchanger 3 is arranged when viewed in a cross section perpendicular to the rotation axis. It is to arrange the guide plate 16 in an angular range not
In addition, the guide plate 16 is not limited to that shown in FIG. Each downstream end and the end of the guide plate 16 may be separated. Also, the guide plate 16 is not limited to the V-shape, and may be U-shaped or other shapes.
 図11に示すように、ガイドプレート16は、遠心送風機4が複数配置されている場合は、隣り合う渦巻ケーシング間および、両端の遠心送風機4の渦巻ケーシング6と筐体2との間に設けられる。 As shown in FIG. 11, when a plurality of centrifugal fans 4 are arranged, the guide plates 16 are provided between adjacent spiral casings and between the spiral casings 6 of the centrifugal fans 4 at both ends and the housing 2. .
 遠心送風機4が両吸い込み型である場合には、隣り合う渦巻ケーシング間に配置されるガイドプレート16は、隣り合う渦巻ケーシングの中間点においてケーシングの側面13と平行な面を軸に対称な形状である。ガイドプレート16は、隣り合う渦巻ケーシング間の中間点から渦巻ケーシングの側面13に向かって傾斜する。図11において、上下方向をガイドプレート16の高さとすると、隣り合う渦巻ケーシング間の中間点からケーシング吸い込み口6aに向かうにつれて、ガイドプレート16の高さが低くなる。すなわち、回転軸8が伸びている方向(図11の左右方向)おける渦巻ケーシングの側面13からの距離が長いほど、ガイドプレート16の高さが高くなるようにする。 When the centrifugal blower 4 is of the double-suction type, the guide plate 16 arranged between adjacent spiral casings has a shape symmetrical about a plane parallel to the side surface 13 of the casing at the midpoint of the adjacent spiral casings. be. The guide plates 16 are slanted from the midpoint between adjacent spiral casings towards the side surfaces 13 of the spiral casings. In FIG. 11, if the vertical direction is the height of the guide plate 16, the height of the guide plate 16 decreases from the middle point between the adjacent spiral casings toward the casing suction port 6a. That is, the height of the guide plate 16 is increased as the distance from the side surface 13 of the spiral casing in the direction in which the rotating shaft 8 extends (horizontal direction in FIG. 11) increases.
 また、遠心送風機4が片吸い込み型である場合には、隣り合う渦巻ケーシング間において、第一の遠心送風機の渦巻ケーシングの側面13のうち吸い込み口を有さない側面13と、第一の遠心送風機と隣り合う第二の遠心送風機の渦巻ケーシングの側面13のうち吸い込み口を有する側面13と繋ぐようにガイドプレート16が設けられる。ガイドプレート16は、第一の遠心送風機の渦巻ケーシングの側面13のうち吸い込み口を有さない側面13から、第二の遠心送風機の渦巻ケーシングの側面13のうち吸い込み口を有する側面13に向かって傾斜する形状である。複数の遠心送風機4のうち、両端に並べられた遠心送風機4の側面13と筐体2との間に設けられるガイドプレート16も同様の形状である。すなわち、筐体2から遠心送風機4の渦巻ケーシングの側面13に向かってガイドプレート16が傾斜する。 Further, when the centrifugal blower 4 is of the single-suction type, the side 13 of the spiral casing of the first centrifugal blower having no suction port and the side 13 of the first centrifugal blower between the adjacent spiral casings. A guide plate 16 is provided so as to connect with the side surface 13 having the suction port among the side surfaces 13 of the spiral casing of the second centrifugal blower adjacent to the second centrifugal fan. The guide plate 16 extends from the side 13 of the spiral casing of the first centrifugal fan that does not have a suction port toward the side 13 that has a suction port of the side 13 of the spiral casing of the second centrifugal fan. It has an inclined shape. Of the plurality of centrifugal fans 4, the guide plates 16 provided between the side surfaces 13 of the centrifugal fans 4 arranged at both ends and the housing 2 also have the same shape. That is, the guide plate 16 inclines from the housing 2 toward the side surface 13 of the spiral casing of the centrifugal fan 4 .
 図12は、渦巻ケーシングの側面側からみた場合における室内機1の空気の流れを示す模式図であり、図13は、室内機1の内部を背面側からみた場合における室内機1の空気の流れを示す模式図である。 12 is a schematic diagram showing the flow of air in the indoor unit 1 when viewed from the side of the spiral casing, and FIG. 13 is the flow of air in the indoor unit 1 when viewed from the back side of the interior of the indoor unit 1. It is a schematic diagram showing.
 遠心送風機4のケーシング吸い込み口6aへの空気の流れが、熱交換器3が配置される上流側からのみであり、かつ、羽根車の回転方向と垂直である場合においては、熱交換器3を通った後の空気の一部は、吸い込み口に向かわずに、熱交換器3が配置されている反対側の筐体2の底面に向かい、底面の角部で渦を形成し、圧力損失を生じ、送風効率を低下させる。 When the air flow to the casing suction port 6a of the centrifugal blower 4 is only from the upstream side where the heat exchanger 3 is arranged and is perpendicular to the rotation direction of the impeller, the heat exchanger 3 is After passing through, part of the air does not go to the suction port, but to the bottom surface of the housing 2 on the opposite side where the heat exchanger 3 is arranged, forming vortices at the corners of the bottom surface and reducing pressure loss. and reduce air blow efficiency.
 ガイドプレート16を熱交換器3と対向するように、渦巻ケーシングの側面13に設けた場合、図12に示すように、ケーシング吸い込み口6aを通り過ぎた気流(図12中の破線)が、ガイドプレート16によって吸い込み口へと誘導される。これにより、筐体2の底面へ向かう流れが無くなり、筐体角部での渦の発生が無くなる。 When the guide plate 16 is provided on the side surface 13 of the spiral casing so as to face the heat exchanger 3, as shown in FIG. 16 to the suction port. This eliminates the flow toward the bottom surface of the housing 2 and eliminates the generation of vortices at the corners of the housing.
 遠心送風機4の上流側に配置された熱交換器3を通り、ケーシング吸い込み口6aに向かう流路において、熱交換器3が配置される反対側に傾斜したガイドプレート16を配置することで、吸い込み口に流れを誘導し、かつ、熱交換器3が配置される反対側の筐体底面の角部において生じる渦を抑制し、流路における圧力損失を低減することができる。  By arranging an inclined guide plate 16 on the side opposite to where the heat exchanger 3 is arranged in the flow path that passes through the heat exchanger 3 arranged on the upstream side of the centrifugal blower 4 and goes to the casing suction port 6a, the suction It is possible to guide the flow to the mouth, suppress the vortex generated at the corner of the bottom surface of the housing on the opposite side where the heat exchanger 3 is arranged, and reduce the pressure loss in the flow path. 
 また、図13に示すように、遠心送風機4が両吸い込み型である場合においては、隣り合う渦巻ケーシングの間にガイドプレート16を配置することで、隣り合うケーシング吸い込み口6aに向かう気流(図13中の破線)を整流し、流れの合流による圧力損失も低減し、送風効率を向上させることができる。よって、熱交換器3をケーシングに近づけて配置した場合であっても送風効率が向上する室内機1及び空気調和機を提供することができる。 Further, as shown in FIG. 13, when the centrifugal blower 4 is of the double suction type, by arranging the guide plate 16 between the adjacent spiral casings, the airflow directed to the adjacent casing suction port 6a (see FIG. 13) Broken line in the middle) can be rectified, pressure loss due to confluence of flows can be reduced, and air blowing efficiency can be improved. Therefore, it is possible to provide the indoor unit 1 and the air conditioner in which the air blowing efficiency is improved even when the heat exchanger 3 is arranged close to the casing.
 以上より、熱交換器3と対向するように、渦巻ケーシングの側面13にガイドプレート16を備えたことにより、実施の形態1の効果を得られるだけでなく、さらに、圧力損失の低減および送風効率を向上させることができる。 As described above, by providing the guide plate 16 on the side surface 13 of the spiral casing so as to face the heat exchanger 3, not only the effect of the first embodiment can be obtained, but also the reduction in pressure loss and the blowing efficiency can be achieved. can be improved.
実施の形態3.
 本開示の実施の形態3における室内機1について図14から図17を用いて説明する。実施の形態3に係る室内機1は、実施の形態1の室内機1のベルマウス11を変形したものである。実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
Embodiment 3.
The indoor unit 1 according to Embodiment 3 of the present disclosure will be described with reference to FIGS. 14 to 17. FIG. The indoor unit 1 according to the third embodiment is obtained by modifying the bell mouth 11 of the indoor unit 1 according to the first embodiment. The description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
 図14は、実施の形態3にかかる室内機1内部の斜視図であり、図15は、実施の形態3にかかる渦巻ケーシングの吸い込み口側から見た平面図であり、図16は図15のA-A断面図であり、図17は、図16の断面における室内機1の吸い込み空気の流れを示す模式図である。 14 is a perspective view of the interior of the indoor unit 1 according to Embodiment 3, FIG. 15 is a plan view of the spiral casing according to Embodiment 3 as seen from the intake port side, and FIG. 17 is a schematic diagram showing the flow of air taken in by the indoor unit 1 in the cross section of FIG.
 図15に示すように、実施の形態3にかかる室内機1は、ケーシング吸い込み口6aにおけるベルマウス11において、熱交換器3が配置されている側を延伸するベルマウス延伸部17を有する。ベルマウス延伸部17は、接続部15が形成される角度範囲θ≦θ≦θ、θ≦θ≦θにおいて、ベルマウス11と渦巻ケーシングの側面13との境界線18が側面13上で、熱交換器3が配置される側に延伸して形成される。すなわち、図15において、接続部15が形成される角度範囲θ≦θ≦θ、θ≦θ≦θにおいて、ベルマウス11が回転軸8の径方向外側に向かって延伸される。 As shown in FIG. 15, the indoor unit 1 according to the third embodiment has a bell mouth extending portion 17 extending from the bell mouth 11 of the casing suction port 6a on the side where the heat exchanger 3 is arranged. The bell mouth extending portion 17 is formed so that the boundary line 18 between the bell mouth 11 and the side surface 13 of the spiral casing extends to the side surface 13 in the angle ranges θ 0 ≤ θ ≤ θ 1 and θ 2 ≤ θ ≤ θ 3 in which the connecting portion 15 is formed. It is formed extending to the side on which the heat exchanger 3 is arranged. That is, in FIG. 15 , the bell mouth 11 extends radially outward of the rotating shaft 8 in the angular ranges θ 0 ≤ θ ≤ θ 1 and θ 2 ≤ θ ≤ θ 3 where the connecting portion 15 is formed.
 図16に示すように、ベルマウス11はケーシング吸い込み口6aにおいて、上流側の円形断面19の径が下流側の円形断面20の径よりも大きい。上流側の円形断面19と下流側の円形断面20とは、滑らかな曲面21で接続される。実施の形態3では、曲面21が長くなるように、ケーシング吸い込み口6aの上流側の円形断面19の径を大きくする。すなわち、ケーシング吸い込み口6aの上流側のベルマウス11の端部を熱交換器3が配置されている側へ延伸させることで、ベルマウス延伸部17を設けた。 As shown in FIG. 16, the diameter of the circular cross section 19 on the upstream side of the bell mouth 11 is larger than the diameter of the circular cross section 20 on the downstream side at the casing suction port 6a. The circular section 19 on the upstream side and the circular section 20 on the downstream side are connected by a smooth curved surface 21 . In the third embodiment, the diameter of the circular cross section 19 on the upstream side of the casing suction port 6a is increased so that the curved surface 21 becomes longer. That is, the bell mouth extending portion 17 is provided by extending the end portion of the bell mouth 11 on the upstream side of the casing suction port 6a toward the side where the heat exchanger 3 is arranged.
 図17に示すように、熱交換器3を通過した空気は接続部15及びベルマウス11を通り、羽根車5へと吸い込まれる。ベルマウス11の曲面21が長いほど、吸い込まれる空気が整流され、羽根車5に滑らかに吸い込まれるようになる。 As shown in FIG. 17, the air that has passed through the heat exchanger 3 passes through the connecting portion 15 and the bell mouth 11 and is sucked into the impeller 5. The longer the curved surface 21 of the bell mouth 11 is, the more rectified the sucked air is and the smoother the sucked air is by the impeller 5 .
 よって、渦巻ケーシングの接続部15が形成される角度範囲において、ベルマウス11を熱交換器側に延伸させたベルマウス延伸部17を備えることで、熱交換器3および接続部15を通ってきた流れが、より滑らかに羽根車5へと吸い込まれ、送風性能が向上する。 Therefore, in the angle range where the connecting portion 15 of the spiral casing is formed, by providing the bell mouth extending portion 17 that extends the bell mouth 11 toward the heat exchanger side, the heat passing through the heat exchanger 3 and the connecting portion 15 is reduced. The flow is more smoothly sucked into the impeller 5, and the blowing performance is improved.
 以上より、実施の形態3に係る室内機1は、接続部15が形成された角度範囲において、ケーシング吸い込み口6aと側面13との接続部分であるベルマウス11が回転軸8の径方向外側に向かって延伸されたベルマウス延伸部17を備えたことで、実施の形態1の効果を得られるだけでなく、さらに、圧力損失の低減および送風効率を向上させることができる。 As described above, in the indoor unit 1 according to Embodiment 3, the bell mouth 11, which is the connecting portion between the casing suction port 6a and the side surface 13, is radially outward of the rotating shaft 8 in the angle range where the connecting portion 15 is formed. By providing the bell mouth extending portion 17 extending toward, not only the effect of the first embodiment can be obtained, but also the pressure loss can be reduced and the ventilation efficiency can be improved.
 なお、図15では、ベルマウス延伸部17が2箇所に分かれている例で説明したが、これに限らず、その他種々の形状を適用できる。他の例としては、二つのベルマウス延伸部が繋がっている形状でもよく、2箇所に分かれている形状と同様の効果を得ることができる。 Although FIG. 15 illustrates an example in which the bell mouth extending portion 17 is divided into two parts, it is not limited to this, and various other shapes can be applied. As another example, a shape in which two bellmouth extending portions are connected may be used, and the same effect as the shape in which the bellmouth is divided into two portions can be obtained.
 なお、実施の形態4では、ベルマウス11の曲面21を長くするために、上流側の円形断面19の径を大きくするように、回転軸8の径方向外側に向かって延伸させたベルマウス延伸部17を設けたが、他にも、回転軸方向で羽根車5と離れる向きに側面13に突出部を設ける構成も考えられる。しかし、羽根車5の回転軸方向に対して垂直方向から空気を吸い込む場合、吸い込み口に突出した突出部は吸入空気が突出部に衝突し、圧力損失を生じさせ、送風効率を低下させてしまうため、かかる場合は、実施の形態4に示すベルマウス延伸部17を備える方がよい。 In the fourth embodiment, in order to lengthen the curved surface 21 of the bell mouth 11, the bell mouth is stretched outward in the radial direction of the rotating shaft 8 so as to increase the diameter of the circular cross section 19 on the upstream side. Although the portion 17 is provided, a configuration in which a projecting portion is provided on the side surface 13 in a direction away from the impeller 5 in the rotation axis direction is also conceivable. However, when air is sucked in from a direction perpendicular to the rotation axis direction of the impeller 5, the suction air collides with the protruding portion protruding from the suction port, causing pressure loss and lowering the blowing efficiency. Therefore, in such a case, it is better to provide the bell mouth extending portion 17 shown in the fourth embodiment.
実施の形態4.
 本開示の実施の形態4における室内機1について図18から図20を用いて説明する。実施の形態4に係る室内機1は、実施の形態1の室内機1にさらに仕切り板22を備えたものである。実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
Embodiment 4.
The indoor unit 1 according to Embodiment 4 of the present disclosure will be described with reference to FIGS. 18 to 20. FIG. The indoor unit 1 according to Embodiment 4 further includes a partition plate 22 in addition to the indoor unit 1 according to Embodiment 1. As shown in FIG. The description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
 図18は、実施の形態4にかかる室内機1内部の斜視図であり、図19は、実施の形態4にかかる渦巻ケーシングの吸い込み口側から見た平面図であり、図20は、実施の形態4に渦巻ケーシングの側面側からみた場合における室内機1の吸い込み空気の流れを示す模式図である。 18 is a perspective view of the interior of the indoor unit 1 according to Embodiment 4, FIG. 19 is a plan view of the spiral casing according to Embodiment 4 as viewed from the suction port side, and FIG. FIG. 11 is a schematic diagram showing the flow of air sucked into the indoor unit 1 when viewed from the side of the spiral casing in Mode 4;
 図18に示すように、実施の形態4に係る室内機1は、第一の熱交換器3aと第二の熱交換器3bとの近づきあう一方の端の間から渦巻ケーシング6に向かってのびる仕切り板を有する。仕切り板22は、第一の熱交換器3aの上端部と第二の熱交換器3bの上端部との間から、渦巻ケーシング6に向かって延伸されるため、第一の熱交換器及び第二の熱交換器と、渦巻ケーシング6との空間を仕切る。遠心送風機4が複数台配置される場合は、遠心送風機4の回転軸8に沿って仕切り板22が設けられる。 As shown in FIG. 18, the indoor unit 1 according to Embodiment 4 extends toward the spiral casing 6 from between one end where the first heat exchanger 3a and the second heat exchanger 3b approach each other. It has a partition plate. Since the partition plate 22 extends toward the spiral casing 6 from between the upper end of the first heat exchanger 3a and the upper end of the second heat exchanger 3b, the first heat exchanger and the second heat exchanger are separated from each other. The space between the two heat exchangers and the spiral casing 6 is partitioned. When a plurality of centrifugal blowers 4 are arranged, a partition plate 22 is provided along the rotating shaft 8 of the centrifugal blower 4 .
 図19に示すように、渦巻ケーシングの吸い込み口側から見た場合、仕切り板22は、遠心送風機4の上流側に配置された前面側の熱交換器(第一の熱交換器3a)と背面側の熱交換器(第二の熱交換器3b)のなす角側(紙面上方向)から、渦巻ケーシングの壁面12に向けて、流路を仕切る断面形状である。また、仕切り板22は図19の断面図に示すように接続部15が形成される角度範囲外θ<θ<θに配置される。接続部15が形成される角度範囲以外に仕切り板22を設けることで、遠心送風機4に流れ込む流路を確保することが可能となる。 As shown in FIG. 19, when viewed from the suction port side of the spiral casing, the partition plate 22 has a front side heat exchanger (first heat exchanger 3a) arranged upstream of the centrifugal fan 4 and a rear side heat exchanger (first heat exchanger 3a). It is a cross-sectional shape that partitions the flow path from the corner side (upper side of the paper surface) formed by the side heat exchanger (second heat exchanger 3b) toward the wall surface 12 of the spiral casing. 19, the partition plate 22 is arranged outside the angle range θ 1 <θ<θ 2 where the connecting portion 15 is formed. By providing the partition plate 22 outside the angle range where the connecting portion 15 is formed, it becomes possible to secure a flow path for flowing into the centrifugal fan 4 .
 図20に示すように、遠心送風機4の上流側に、回転軸8を中心に渦巻ケーシング6を囲うように熱交換器が配置されている場合、前面側の熱交換器(第一の熱交換器3a)と背面側の熱交換器(第二の熱交換器3b)とは平行ではなく、角度αをなして配置される。このとき、前面側の熱交換器(第一の熱交換器3a)と背面側の熱交換器(第二の熱交換器3b)とが距離が近接している箇所においては、それぞれの熱交換器を通過した空気は、熱交換器を通過後に合流し、圧力損失を生じ、送風効率を低下されるおそれがる。 As shown in FIG. 20, when a heat exchanger is arranged on the upstream side of the centrifugal blower 4 so as to surround the spiral casing 6 around the rotation shaft 8, the heat exchanger on the front side (first heat exchange The vessel 3a) and the heat exchanger on the rear side (second heat exchanger 3b) are not arranged parallel but at an angle α. At this time, at a location where the heat exchanger on the front side (first heat exchanger 3a) and the heat exchanger on the back side (second heat exchanger 3b) are close to each other, the respective heat exchange The air that has passed through the unit merges after passing through the heat exchanger, causing pressure loss and possibly reducing blowing efficiency.
 そこで、熱交換器3a、3bからケーシング吸い込み口6aまでの流路において、前面側の熱交換器(第一の熱交換器3a)と背面側の熱交換器(第二の熱交換器3b)との間に仕切り板22を配置することで、前面側から流入してくる気流と背面側からの気流が合流するのを防ぐことができ、流れの合流による圧力損失を低減させ、送風効率を向上させることができる。 Therefore, in the flow path from the heat exchangers 3a, 3b to the casing suction port 6a, the heat exchanger on the front side (first heat exchanger 3a) and the heat exchanger on the back side (second heat exchanger 3b) By arranging the partition plate 22 between, it is possible to prevent the airflow flowing in from the front side and the airflow from the back side from merging, reducing the pressure loss caused by the merging of the flows and improving the ventilation efficiency. can be improved.
 また、仕切り板22を配置することで、熱交換器3a、3bを通った後の流れを、実施の形態1で示した渦巻ケーシングの接続部15に誘導し、実施の形態1よりさらに送風効率を向上できる。 In addition, by arranging the partition plate 22, the flow after passing through the heat exchangers 3a and 3b is guided to the connection portion 15 of the spiral casing shown in the first embodiment, and the air blowing efficiency is further improved than that of the first embodiment. can be improved.
 以上より、実施の形態4に係る室内機1は、第一の熱交換器3aと第二の熱交換器3bとの近づきあう一方の端の間から渦巻ケーシング6に向かってのびる仕切り板22を備えたことで、実施の形態1の効果を得られるだけでなく、さらに、圧力損失の低減および送風効率を向上させることができる。 As described above, the indoor unit 1 according to Embodiment 4 includes the partition plate 22 extending toward the spiral casing 6 from between the approaching ends of the first heat exchanger 3a and the second heat exchanger 3b. With the provision, not only can the effect of the first embodiment be obtained, but also the pressure loss can be reduced and the blowing efficiency can be improved.
 なお、実施の形態4では、熱交換器3が2枚に分かれている場合について説明したが、他の例としては、熱交換器3が1枚で構成されている場合も、同様の効果が得られるように仕切り板22を設置すればよく、熱交換器3の枚数や形状は実施の形態4に示したものに限定されない。 In the fourth embodiment, the case where the heat exchanger 3 is divided into two sheets has been described. The number and shape of the heat exchangers 3 are not limited to those shown in the fourth embodiment.
実施の形態5.
 本開示の実施の形態5における空気調和機30について図21を用いて説明する。実施の形態5に係る空気調和機30は、実施の形態1から4にかかる室内機1を備えた空気調和機である。実施の形態1と重複する構成については説明を省略し、実施の形態1と同一又は相当する部分には同一符号を付す。
Embodiment 5.
Air conditioner 30 according to Embodiment 5 of the present disclosure will be described with reference to FIG. 21 . An air conditioner 30 according to the fifth embodiment is an air conditioner including the indoor unit 1 according to the first to fourth embodiments. The description of the configuration that overlaps with that of the first embodiment is omitted, and the same reference numerals are given to the parts that are the same as or correspond to those of the first embodiment.
 図21は、実施の形態5に係る空気調和機30を示す回路図である。空気調和機30は、室内の空気を調整する装置であり、図21に示すように、室外機31と、室内機1とを備えている。室外機31には、例えば圧縮機32、流路切替装置33、室外熱交換器34、室外送風機35及び膨張部36が設けられている。室内機1には、例えば室内熱交換器37、室内送風機38が設けられている。なお、実施の形態1から4における熱交換器3が室内熱交換器37に対応し、実施の形態1から4における遠心送風機4が室内送風機38に対応する。 FIG. 21 is a circuit diagram showing the air conditioner 30 according to the fifth embodiment. The air conditioner 30 is a device that adjusts indoor air, and includes an outdoor unit 31 and an indoor unit 1 as shown in FIG. 21 . The outdoor unit 31 is provided with, for example, a compressor 32, a channel switching device 33, an outdoor heat exchanger 34, an outdoor fan 35, and an expansion section . The indoor unit 1 is provided with, for example, an indoor heat exchanger 37 and an indoor fan 38 . The heat exchanger 3 in Embodiments 1 to 4 corresponds to the indoor heat exchanger 37 , and the centrifugal fan 4 in Embodiments 1 to 4 corresponds to the indoor fan 38 .
 圧縮機32、流路切替装置33、室外熱交換器34、膨張部36及び室内熱交換器37が冷媒配管39により接続されて冷媒回路が構成されている。圧縮機32は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置33は、冷媒回路において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器34は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器34は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機35は、室外熱交換器34に室外空気を送る機器である。 The compressor 32, the flow switching device 33, the outdoor heat exchanger 34, the expansion section 36, and the indoor heat exchanger 37 are connected by refrigerant pipes 39 to form a refrigerant circuit. The compressor 32 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, converts it into a high-temperature, high-pressure refrigerant, and discharges it. The channel switching device 33 switches the direction in which the refrigerant flows in the refrigerant circuit, and is, for example, a four-way valve. The outdoor heat exchanger 34 exchanges heat, for example, between outdoor air and refrigerant. The outdoor heat exchanger 34 acts as a condenser during cooling operation and acts as an evaporator during heating operation. The outdoor fan 35 is a device that sends outdoor air to the outdoor heat exchanger 34 .
 膨張部36は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部36は、例えば開度が調整される電子式膨張弁である。室内熱交換器37は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器37は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機38は、室内熱交換器37に室内空気を送る機器である。なお、冷媒は、水でもよく不凍液でもよい。 The expansion part 36 is a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant to expand it. The expansion part 36 is, for example, an electronic expansion valve whose opening is adjusted. The indoor heat exchanger 37 exchanges heat, for example, between indoor air and refrigerant. The indoor heat exchanger 37 acts as an evaporator during cooling operation and acts as a condenser during heating operation. The indoor air blower 38 is a device that sends indoor air to the indoor heat exchanger 37 . The coolant may be water or antifreeze.
 次に、空気調和機30の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機32に吸入された冷媒は、圧縮機32によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機32から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置33を通過して、凝縮器として作用する室外熱交換器34に流入し、室外熱交換器34において、室外送風機35によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部36に流入し、膨張部36において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室内熱交換器37に流入し、室内熱交換器37において、室内送風機38によって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置33を通過して、圧縮機32に吸入される。 Next, the operation modes of the air conditioner 30 will be explained. First, the cooling operation will be explained. In the cooling operation, the refrigerant sucked into the compressor 32 is compressed by the compressor 32 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 32 passes through the flow switching device 33 and flows into the outdoor heat exchanger 34 acting as a condenser. It is heat exchanged with outdoor air sent by 35 and condenses and liquefies. The condensed liquid refrigerant flows into the expansion section 36, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 37 acting as an evaporator, where it exchanges heat with the indoor air sent by the indoor blower 38 to evaporate and become gas. do. At this time, the indoor air is cooled, and cooling is performed in the room. The vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 33 and is sucked into the compressor 32 .
 次に、暖房運転について説明する。暖房運転において、圧縮機32に吸入された冷媒は、圧縮機32によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機32から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置33を通過して、凝縮器として作用する室内熱交換器37に流入し、室内熱交換器37において、室内送風機38によって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部36に流入し、膨張部36において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器34に流入し、室外熱交換器34において、室外送風機35によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置33を通過して、圧縮機32に吸入される。 Next, I will explain the heating operation. In the heating operation, the refrigerant sucked into the compressor 32 is compressed by the compressor 32 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 32 passes through the flow path switching device 33 and flows into the indoor heat exchanger 37 acting as a condenser. It is heat exchanged with the room air sent by 38 and condenses and liquefies. At this time, the indoor air is warmed, and heating is performed in the room. The condensed liquid refrigerant flows into the expansion section 36, where it is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. Then, the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 34 acting as an evaporator, where it is heat-exchanged with the outdoor air sent by the outdoor fan 35 to evaporate and gasify. do. The vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 33 and is sucked into the compressor 32 .
 以上より、空気調和機30に実施の形態1から4のいずれかに示した室内機1を配置することで、室内機1の小型化に伴い、熱交換器をケーシングに近づけて配置した場合にも、室内熱交換器37の容量を確保しつつ、送風効率を向上できる空気調和機を提供することができる。 As described above, by arranging the indoor unit 1 shown in any one of Embodiments 1 to 4 in the air conditioner 30, as the size of the indoor unit 1 is reduced, when the heat exchanger is arranged close to the casing, Also, it is possible to provide an air conditioner capable of improving the air blowing efficiency while ensuring the capacity of the indoor heat exchanger 37 .
 なお、各実施の形態を、適宜、組み合わせたり、変形や省略したりすることも、実施の形態で示された技術的思想の範囲に含まれる。 It should be noted that appropriate combinations, modifications, and omissions of the embodiments are also included within the scope of the technical ideas shown in the embodiments.
1 室内機、2 筐体、2a 本体吸い込み口、2b 本体吹き出し口、3 熱交換器、4 遠心送風機、5 羽根車、6 渦巻ケーシング、6a ケーシング吸い込み口、6b ケーシング吹き出し口、7 駆動モータ、8 回転軸、9 主板、10 羽根、11 ベルマウス、12 壁面、13 側面、14 舌部、15 接続部、16 ガイドプレート、17 ベルマウス延伸部、22 仕切り板、30 空気調和機、31 室外機、Lc 隣り合う渦巻ケーシング間の距離、L 熱交換器と壁面との距離、Hb 羽根車の回転軸方向の長さ、Hc 壁面の回転軸方向の長さ。 REFERENCE SIGNS LIST 1 indoor unit 2 housing 2a body suction port 2b body outlet 3 heat exchanger 4 centrifugal blower 5 impeller 6 spiral casing 6a casing suction port 6b casing outlet 7 drive motor 8 rotating shaft 9 main plate 10 blades 11 bell mouth 12 wall surface 13 side surface 14 tongue portion 15 connection portion 16 guide plate 17 bell mouth extension portion 22 partition plate 30 air conditioner 31 outdoor unit, Lc: Distance between adjacent spiral casings, L: Distance between H heat exchanger and wall surface, Hb: Length of impeller in direction of rotation axis, Hc: Length of wall surface in direction of rotation axis.

Claims (10)

  1.  本体吸い込み口と本体吹き出し口とを有する筐体と、
     前記筐体内部に設けられ、回転軸を中心に回転する主板と前記主板に配置された複数の羽根とを有する羽根車と、前記羽根車の周囲を渦巻状に囲む壁面及び前記羽根車が空気を吸い込むための吸い込み口が形成された側面を備えた渦巻ケーシングとを、有する遠心送風機と、
     前記筐体内部に設けられ、全体として曲がった形状を有することで、前記壁面の周囲を取り巻く熱交換器と、
    を備え、
     前記回転軸まわりの角度を回転角度θ、前記壁面と前記熱交換器との間の距離を径方向距離L、前記壁面の回転軸方向の長さをHcとすると、
     前記熱交換器は、前記回転角度θによって前記径方向距離Lが変化するように配置され、
     前記渦巻ケーシングは、前記壁面と前記側面とを面取り状に接続する接続部を有し、
     前記径方向距離Lが短い前記回転角度θにおける前記壁面の回転軸方向の長さHcは、前記径方向距離Lが長い前記回転角度θにおける前記壁面の回転軸方向の長さHcよりも短い
    室内機。
    a housing having a body inlet and a body outlet;
    An impeller provided inside the housing and having a main plate that rotates about a rotation axis and a plurality of blades arranged on the main plate; a wall surface spirally surrounding the impeller; a centrifugal blower having a spiral casing with a side surface having a suction port for sucking in;
    a heat exchanger provided inside the housing and having a curved shape as a whole to surround the wall surface;
    with
    Letting the angle around the rotation axis be the rotation angle θ, the distance between the wall surface and the heat exchanger be the radial distance L H , and the length of the wall surface in the direction of the rotation axis be Hc,
    The heat exchanger is arranged so that the radial distance LH varies depending on the rotation angle θ,
    The spiral casing has a connecting portion that connects the wall surface and the side surface in a chamfered manner,
    The length Hc of the wall surface in the rotation axis direction at the rotation angle θ at which the radial distance LH is short is longer than the length Hc of the wall surface in the rotation axis direction at the rotation angle θ at which the radial distance LH is long. Short indoor unit.
  2.  前記回転角度θに対して前記径方向距離Lが変化する関係を関数L(θ)として表すと、
     前記熱交換器が前記壁面と向かい合う角度の範囲において、前記関数L(θ)が極小値を二つ以上有する
    請求項1に記載の室内機。
    If the relationship in which the radial distance LH changes with respect to the rotation angle θ is expressed as a function LH (θ),
    2. The indoor unit according to claim 1, wherein the function LH ([theta]) has two or more minimum values in a range of angles at which the heat exchanger faces the wall surface.
  3.  前記関数L(θ)が最小値をとる前記回転角度θにおいて、前記壁面の回転軸方向の長さHcが最小となる
    請求項2に記載の室内機。
    The indoor unit according to claim 2, wherein the length Hc of the wall surface in the rotation axis direction is the minimum at the rotation angle θ at which the function LH (θ) takes the minimum value.
  4.  前記羽根車の回転軸方向の長さをHbとすると、
     前記接続部を設けた前記回転角度θにおいて、前記壁面の回転軸方向の長さHcは、前記羽根車の回転軸方向の長さHbよりも短い
    請求項1~3のいずれか一項に記載の室内機。
    Assuming that the length of the impeller in the direction of the rotation axis is Hb,
    The length Hc of the wall surface in the direction of the rotation axis is shorter than the length Hb of the impeller in the direction of the rotation axis at the rotation angle θ at which the connecting portion is provided. indoor unit.
  5.  前記壁面の回転軸方向長さHcは、前記接続部の大きさにより変化する
    請求項1~4のいずれか一項に記載の室内機。
    The indoor unit according to any one of claims 1 to 4, wherein the length Hc of the wall surface in the rotation axis direction varies depending on the size of the connecting portion.
  6.  前記熱交換器は、第一の熱交換器と第二の熱交換器とがそれぞれの一方の端が近づきあい他方の端が離れあうように、互いに傾斜して配置され、
     前記第一の熱交換器と前記第二の熱交換器との離れあう他方の端の間に前記遠心送風機が位置するように配置される
    請求項1~5いずれか一項に記載の室内機。
    the heat exchangers are arranged at an angle to each other such that one end of each of the first heat exchanger and the second heat exchanger approaches and the other end separates;
    The indoor unit according to any one of claims 1 to 5, wherein the centrifugal fan is positioned between the other ends of the first heat exchanger and the second heat exchanger. .
  7.  前記筐体内部において、前記熱交換器と対向するように、前記側面に設けられたガイドプレートを
    さらに備えた請求項1~6のいずれか一項に記載の室内機。
    7. The indoor unit according to any one of claims 1 to 6, further comprising a guide plate provided on the side surface so as to face the heat exchanger inside the housing.
  8.  前記接続部が形成された角度範囲において、前記渦巻ケーシングの吸い込み口と前記側面との接続部分であるベルマウスが、前記回転軸の径方向外側に向かって延伸されたベルマウス延伸部をさらに備えた
    請求項1~7のいずれか一項に記載の室内機。
    A bell mouth, which is a connecting portion between the suction port of the spiral casing and the side surface, further includes a bell mouth extending portion extending radially outward of the rotating shaft in the angular range where the connecting portion is formed. The indoor unit according to any one of claims 1 to 7.
  9.  前記第一の熱交換器と前記第二の熱交換器との近づきあう一方の端の間から前記渦巻ケーシングに向かってのびる仕切り板を備える
    請求項6に記載の室内機。
    7. The indoor unit according to claim 6, further comprising a partition plate extending toward the spiral casing from between adjacent ends of the first heat exchanger and the second heat exchanger.
  10.  請求項1~9のいずれか1項に記載の室内機と、室外機とを備えた空気調和機。 An air conditioner comprising the indoor unit according to any one of claims 1 to 9 and an outdoor unit.
PCT/JP2021/026475 2021-07-14 2021-07-14 Indoor unit and air conditioner WO2023286208A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026475 WO2023286208A1 (en) 2021-07-14 2021-07-14 Indoor unit and air conditioner
JP2023534518A JP7357827B2 (en) 2021-07-14 2021-07-14 Indoor unit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026475 WO2023286208A1 (en) 2021-07-14 2021-07-14 Indoor unit and air conditioner

Publications (1)

Publication Number Publication Date
WO2023286208A1 true WO2023286208A1 (en) 2023-01-19

Family

ID=84919178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026475 WO2023286208A1 (en) 2021-07-14 2021-07-14 Indoor unit and air conditioner

Country Status (2)

Country Link
JP (1) JP7357827B2 (en)
WO (1) WO2023286208A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347311A (en) * 2003-04-30 2004-12-09 Fujitsu General Ltd Air conditioner
JP2007127089A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Centrifugal air blower and air-conditioning equipment including the same
WO2017199444A1 (en) * 2016-05-20 2017-11-23 三菱電機株式会社 Centrifugal blower, air conditioner, and refrigeration cycle device
WO2019082392A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Centrifugal blower, air blower device, air conditioning device, and refrigeration cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213031A1 (en) 2019-04-15 2020-10-22 三菱電機株式会社 Air blower, indoor unit for air conditioning device, and air conditioning device
CN212252886U (en) 2020-03-26 2020-12-29 青岛海尔空调器有限总公司 Indoor unit of air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347311A (en) * 2003-04-30 2004-12-09 Fujitsu General Ltd Air conditioner
JP2007127089A (en) * 2005-11-07 2007-05-24 Daikin Ind Ltd Centrifugal air blower and air-conditioning equipment including the same
WO2017199444A1 (en) * 2016-05-20 2017-11-23 三菱電機株式会社 Centrifugal blower, air conditioner, and refrigeration cycle device
WO2019082392A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Centrifugal blower, air blower device, air conditioning device, and refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2023286208A1 (en) 2023-01-19
JP7357827B2 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
CN111279085B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
US9513021B2 (en) Blower and heat pump apparatus using the same
CN112119224B (en) Centrifugal blower, blower device, air conditioner, and refrigeration cycle device
CN106481574B (en) Centrifugal fan and air conditioner comprising same
US20230151821A1 (en) Air-conditioning apparatus and refrigeration cycle apparatus [as amended]
TWI714957B (en) Telecentric blower, blower, air conditioning device and refrigeration cycle device
CN109247023B (en) Centrifugal blower, air conditioner, and refrigeration cycle device
TWI832906B (en) Centrifugal blowers, air conditioning units and refrigeration cycle units
JP4720203B2 (en) Centrifugal blower, air conditioner
WO2023286208A1 (en) Indoor unit and air conditioner
JP7130061B2 (en) Centrifugal blowers, blowers, air conditioners and refrigeration cycle devices
JP7258099B2 (en) Air conditioning equipment and refrigeration cycle equipment
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
JP7301236B2 (en) SCROLL CASING FOR CENTRIFUGAL BLOWER, CENTRIFUGAL BLOWER INCLUDING THIS SCROLL CASING, AIR CONDITIONER AND REFRIGERATION CYCLE DEVICE
WO2023223383A1 (en) Cross flow fan, blowing device, and refrigeration cycle device
WO2023058228A1 (en) Centrifugal blower, air conditioning device, and refrigeration cycle device
WO2024038573A1 (en) Blower fan, multi-blade centrifugal blower, and air-conditioning indoor unit
WO2017085889A1 (en) Centrifugal fan, air conditioner, and refrigerating cycle device
WO2019198150A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023534518

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE