WO2023286158A1 - Wireless communication system and communication method - Google Patents

Wireless communication system and communication method Download PDF

Info

Publication number
WO2023286158A1
WO2023286158A1 PCT/JP2021/026305 JP2021026305W WO2023286158A1 WO 2023286158 A1 WO2023286158 A1 WO 2023286158A1 JP 2021026305 W JP2021026305 W JP 2021026305W WO 2023286158 A1 WO2023286158 A1 WO 2023286158A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
receiving device
transmitting device
communication system
jitter
Prior art date
Application number
PCT/JP2021/026305
Other languages
French (fr)
Japanese (ja)
Inventor
淳 増野
斗煥 李
貴之 山田
裕文 笹木
康徳 八木
知哉 景山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/026305 priority Critical patent/WO2023286158A1/en
Priority to JP2023534476A priority patent/JPWO2023286158A1/ja
Publication of WO2023286158A1 publication Critical patent/WO2023286158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to technology for spatially multiplexing radio signals.
  • Non-Patent Document 2 In MIMO communication, spatial multiplexing transmission/reception is generally performed on the premise of time synchronization between antenna ports. That is, the sampling timings of the transmitting antenna ports #1 to #N are the same, and according to the rules of the radio frame, etc., the signals to be spatially multiplexed are superimposed on the same sample range at each antenna port, and MIMO detection processing is performed on the receiving side.
  • the alias component that appears when the baseband signal is oversampled in digital signal processing is extracted with an appropriate BPF (Band-pass filter), and the RF frequency band signal There are also radios that transmit as (and vice versa, receive).
  • BPF Band-pass filter
  • GSa/s class high-speed sampling DAC operation is a prerequisite, and when transmission (reception) is performed from multiple antenna ports as in a MIMO antenna configuration, sampling between antenna ports Level synchronization becomes difficult.
  • the specifications are such that a maximum deviation of ⁇ 1 sample occurs between the antenna ports.
  • the disclosed technology aims to improve sample-level synchronization performance between antenna ports and to separate spatially multiplexed signals appropriately.
  • a technology disclosed herein is a wireless communication system that performs MIMO communication and includes a transmitting device and a receiving device, wherein the transmitting device transmits a wireless communication signal to the receiving device, and the receiving device communicates with the transmitting device. obtaining information indicating a maximum jitter value indicating sample synchronization capability between antenna ports of the transmitting device, based on the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device.
  • the sample-level synchronization performance between antenna ports can be improved, and spatially multiplexed signals can be separated appropriately.
  • FIG. 1 is a configuration diagram of a communication system according to an embodiment of the present invention
  • FIG. FIG. 4 is a diagram for explaining synchronization of sample levels between antenna ports
  • FIG. 4 is a first diagram for explaining how inter-symbol interference occurs
  • FIG. 10 is a second diagram for explaining how inter-symbol interference occurs.
  • FIG. 10 is a diagram for explaining a method of offsetting an FFT interval according to the first embodiment
  • FIG. 2 is a diagram illustrating a configuration example of a transmission device according to Example 1
  • FIG. 2 is a diagram illustrating a configuration example of a receiving device according to Example 1
  • FIG. FIG. 10 is a diagram illustrating a configuration example of a transmission device according to a second embodiment
  • FIG. 10 is a diagram illustrating a configuration example of a receiving device according to Example 2;
  • FIG. 11 is a diagram for explaining a method of offsetting an FFT interval according to the second embodiment;
  • FIG. 4 is a diagram for explaining a method of offsetting FFT intervals in uplink multi-user MIMO;
  • FIG. 11 is a diagram illustrating a configuration example of a wireless communication system according to a third embodiment;
  • FIG. 13 is a diagram illustrating a configuration example of a transmission device according to a fourth embodiment;
  • FIG. 11 is a diagram for explaining a method of offsetting an FFT interval according to the fourth embodiment;
  • FIG. 1 is a configuration diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 1, the radio communication system according to this embodiment has transmitting apparatus 100 and receiving apparatus 200 .
  • FIG. 2 is a diagram for explaining synchronization of sample levels between antenna ports.
  • reception is performed based on the SYNC signal (synchronization signal) for time synchronization multiplexed on a specific antenna port (ch1 in the figure).
  • the FFT Fast Fourier Transform
  • the FFT interval is an interval used for signal demodulation or signal equalization.
  • CPrefix a cyclic prefix that duplicates the end of the signal waveform of the DATA part (data signal) ) is added before the DATA part, and after removing these on the receiving side, FFT is performed to obtain modulation symbols for each subcarrier.
  • CPrefix cyclic prefix
  • MIMO-OFDM if sample levels between antenna ports are not synchronized, sample positions of CPrefix shift for each MIMO channel, which causes inter-symbol interference.
  • FIG. 3 is a first diagram for explaining how inter-symbol interference occurs.
  • a SYNC signal is multiplexed to a specific antenna port (ch1 in the figure), and the receiver detects this to identify the start and end points of the following CPrefix and the start and end points of the DATA portion.
  • the receiver performs OFDM demodulation with the end point of CPrefix as the FFT start point, that is, the FFT section from the start point to the end point of the DATA section.
  • inter-symbol interference occurs when the received signal of the other antenna port is forward-shifted compared to the received signal of a specific reference antenna port.
  • FIG. 4 is a second diagram for explaining how inter-symbol interference occurs. As shown in FIG. 4, the case where the reference antenna port (ch1) is the rearmost is the case where the severest inter-symbol interference occurs.
  • FIG. 5 is a diagram for explaining a method of offsetting FFT intervals according to the first embodiment.
  • the transmitting apparatus 100 grasps in advance the maximum value of jitter that indicates sample synchronization capability between antenna ports.
  • the receiving device 200 acquires the information from the transmitting device 100 . At this time, let the jitter on the transmitting device 100 side be ⁇ Tx and the jitter on the receiving device 200 side be ⁇ Rx .
  • Receiving apparatus 200 determines the end point of CPrefix inserted by transmitting apparatus 100 as a countermeasure against delayed waves using a synchronization signal or the like for a specific antenna port, and a sample point of CPrefix that is at least 2 ( ⁇ Tx + ⁇ Rx ) samples ahead of that point. is the starting point of the FFT section, channel estimation, equalization and OFDM demodulation are performed. Since CPrefix is a cyclic shift signal in the DATA section, although phase rotation occurs, OFDM demodulation is possible without inter-symbol interference (ISI). The effect of phase rotation is compensated by channel estimation.
  • ISI inter-symbol interference
  • FIG. 6 is a diagram illustrating a configuration example of a transmission device according to the first embodiment;
  • the transmission device 100 includes a bit distribution circuit 110 and multiple transmission circuits 120 .
  • the number of transmission circuits 120 included in the transmission device 100 corresponds to the number of spatial multiplexing layers of the transmission signal.
  • Each transmission circuit 120 includes a transmission path estimation signal addition circuit 121, an m-QAM modulation circuit 122, a frequency multiplexing circuit 123, an IFFT circuit 124, a cyclic prefix addition circuit 125, a synchronization signal multiplexing circuit 126, and a transmission side.
  • a synchronization capability information transmission circuit 127 , a radio frame configuration circuit 128 , and a frequency conversion circuit 129 are provided.
  • the bit distribution circuit 110 distributes input bits to n MIMO channels for spatial multiplexing.
  • the m-QAM modulation circuit 122 of each MIMO channel performs symbol mapping for each subcarrier.
  • amplitude multilevel IQ quadrature modulation such as 16QAM and 64QAM is assumed, but other modulation schemes such as QPSK (4QAM) and BPSK may also be used.
  • a transmission path estimation signal output from a transmission path estimation signal addition circuit 121 is multiplexed on a specific subcarrier by a frequency multiplexing circuit 123, and then an IFFT circuit 124 for OFDM modulation is used. produces the time domain data signal.
  • the CyclicPrefix addition circuit 125 connects CPrefix, which is a copy of the latter half of the time domain data signal, to the head of the time domain data signal.
  • the length of CPrefix may generally be treated as a fixed parameter as a countermeasure against inter-symbol interference caused by delayed waves, but a separate control means may be provided.
  • the radio frame configuration circuit 128 embeds the control information sent by the transmission side synchronization capability information sending circuit 127 in the control information channel or the like.
  • the control information includes information indicating the maximum jitter value ( ⁇ Tx ) that indicates sample synchronization capability between antenna ports of transmitting apparatus 100 . Since the information indicating the maximum value of jitter ( ⁇ Tx ) is a value unique to the wireless device, transmitting apparatus 100 may report it only once in the initial connection stage before performing MIMO communication. good.
  • the synchronization signal (eg, modulated wave generated based on the M sequence) sent from the synchronization signal multiplexing circuit 126 is time-multiplexed at the beginning of the radio frame.
  • the radio frame configuration circuit 128 may multiplex the channel estimation signal at an appropriate location.
  • a signal of each MIMO channel is sent out from each antenna port through the frequency conversion circuit 129 .
  • the frequency conversion means an inexpensive configuration can be used in which an alias component that appears when the baseband signal is oversampled is extracted by an appropriate BPF and transmitted as a signal in the RF frequency band.
  • FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus according to the first embodiment;
  • the receiving device 200 includes a bit mixing circuit 210 , multiple m-QAM demodulation circuits 220 , a MIMO equalization circuit 230 and multiple receiving circuits 240 .
  • the number of receiving circuits 240 included in the receiving apparatus 200 corresponds to the number of spatial multiplexing layers of the received signal.
  • Each receiving circuit 240 includes a transmission path estimation signal detection circuit 241, an FFT section determination circuit 242, a radio frame position detection circuit 243, a transmission side synchronization capability information detection circuit 244, a synchronization signal detection circuit 245, and an FFT circuit. 246, and a frequency demultiplexing circuit 247.
  • Synchronization signal detection circuit 245 detects a known synchronization signal (for example, a modulated wave generated based on the M-sequence) by sliding correlation or the like from the received signal of a specific MIMO channel (for example, ch1) in which the synchronization signal is multiplexed. do.
  • the radio frame position detection circuit 243 determines the position of the radio frame, that is, the start/end point of CPrefix and the start/end point of the DATA part of each OFDM symbol.
  • the transmission-side synchronization capability information detection circuit 244 acquires information indicating the maximum value ⁇ Tx of the jitter that indicates the sampling synchronization capability between the antenna ports of the transmission device 100 .
  • the radio frame position detection circuit 243 transmits this information to the reception circuits 240 of other MIMO channels for sharing within the reception device 200 .
  • the FFT interval determination circuit 242 determines the sample point of the CPrefix that is at least 2 ( ⁇ Tx + ⁇ Rx ) samples ahead of the end point of the identified CPrefix as the starting point of the FFT interval, and from there corresponds to the FFT size (2048 samples for 2048 FFT). is determined to be the FFT interval.
  • the FFT circuit 246 performs FFT and decomposes into subcarriers based on the determined FFT interval.
  • a frequency demultiplexing circuit 247 demultiplexes the transmission path estimation signal.
  • the transmission path estimation signal detection circuit 241 estimates information indicating the transmission path.
  • the information indicating the transmission path includes the amount of phase rotation due to the forward offset of the FFT starting point, in addition to the amplitude change and phase rotation in the spatial propagation.
  • the MIMO equalization circuit 230 performs MIMO interference cancellation/equalization on the data subcarriers of each MIMO channel separated by the frequency demultiplexing circuit 247 using transmission path information.
  • ZeroForcing in the frequency domain is well known as a method of interference cancellation/equalization, but other methods may be used.
  • the number of m-QAM demodulation circuits 220 provided in the receiving device 200 corresponds to the number of MIMO channels of the received signal after equalization by the MIMO equalization circuit 230 .
  • Each m-QAM demodulation circuit 220 converts the equalized signal of each MIMO channel into bits.
  • the bit mixing circuit 210 collects and outputs the bits distributed to each spatial multiplexing.
  • Transmitting apparatus 100 obtains the maximum value of jitter ⁇ Rx indicating sample synchronization capability between antenna ports of receiving apparatus 200 in the feedback link from receiving apparatus 200 to transmitting apparatus 100, and then obtains 2( ⁇ Tx CPrefix may be variably controlled so as to be + ⁇ Rx ) samples or more, and in that case, it is desirable to perform control in consideration of delayed wave tolerance. That is, if the longest delay of the expected delayed wave is Cp samples, transmitting apparatus 100 may set the length of CPrefix to Cp+2( ⁇ Tx + ⁇ Rx ) samples, for example.
  • communication assuming OFDM-MIMO is taken as an example, but it is also applicable to other MIMO transmission systems assuming block-type frequency domain signal processing.
  • DFT-s-OFDM DFT-spreading-OFDM
  • SC-FDE Single Carrier-Frequency Domain Equalization
  • a forward error correction code may be combined.
  • both the transmitting apparatus 100 and the receiving apparatus 200 assume n ⁇ n MIMO that implements n spatial multiplexing using n antennas, but the present invention is not particularly limited to this. It can be applied to a k ⁇ n MIMO antenna configuration with k transmission antennas and n reception antennas, or it can be applied to OAM radio multiplexing using UCA antennas, which is considered as one aspect of MIMO. .
  • the maximum values of jitter ⁇ Tx and ⁇ Rx indicate the sample synchronization capability between the antenna ports of transmitting apparatus 100 and receiving apparatus 200, they may be values that take into account the influence of other factors.
  • a raised-cosine filter with a low roll-off rate may be combined as a band-limiting filter in order to increase the frequency utilization efficiency. In such a case, the absolute value of jitter in the forward direction may be increased.
  • the maximum jitter value ⁇ Tx ( ⁇ Rx ) is notified as control information, it may be stored in advance in transmitting apparatus 100 and receiving apparatus 200 as known information.
  • Example 2 A second embodiment will be described below with reference to the drawings.
  • the second embodiment is different from the first embodiment in that a synchronization signal is multiplexed on each MIMO channel, and the receiving apparatus 200 directly detects the synchronization deviation amount of each antenna port with respect to a specific antenna port. Therefore, in the following description of the second embodiment, the differences from the first embodiment will be mainly described. Reference numerals are assigned and descriptions thereof are omitted.
  • FIG. 8 is a diagram illustrating a configuration example of a transmission device according to a second embodiment.
  • Each transmission circuit 120 of the transmission device 100 according to the present embodiment has a configuration obtained by removing the transmission side synchronization capability information transmission circuit 127 from the transmission circuit 120 according to the first embodiment.
  • the transmitting apparatus 100 multiplexes the synchronization signal sent from the synchronization signal multiplexing circuit 126 in each MIMO channel at the beginning of the radio frame. Transmitting apparatus 100 may reuse a single synchronization signal in each MIMO channel by time-division processing that changes the MIMO channel that multiplexes the synchronization signal for each radio frame.
  • a plurality of excellent synchronization signals (for example, modulated waves generated based on Zadoff-Chu sequences) may be spatially multiplexed to each MIMO channel.
  • FIG. 9 is a diagram illustrating a configuration example of a receiving apparatus according to the second embodiment.
  • the FFT interval determination circuit 242 sets the end point of the CPrefix of the MIMO channel received at the earliest timing as the starting point of the FFT interval of each MIMO channel, and sets a sample interval corresponding to the FFT size (2048 samples for 2048 FFT) as the FFT interval. decide.
  • the FFT circuit 246 performs FFT and decomposes into subcarriers based on the determined FFT interval.
  • FIG. 10 is a diagram for explaining the method of offsetting the FFT interval according to the second embodiment.
  • Transmitting apparatus 100 multiplexes synchronization signals with good cross-correlation characteristics onto each MIMO channel.
  • Receiving apparatus 200 detects the sample position of the radio frame of each MIMO channel from the synchronization signal. As a result, OFDM demodulation can be performed with the end point of the CPrefix of the earliest arriving MIMO channel as the start point of the FFT interval.
  • Example 3 A third embodiment will be described below with reference to the drawings.
  • the third embodiment differs from the first embodiment in that the transmitter 100 individually transmits the maximum value of jitter to the receiver 200 . Therefore, in the following description of the third embodiment, the differences from the first embodiment will be mainly described. Reference numerals are assigned and descriptions thereof are omitted.
  • the radio communication system it is possible to support uplink multi-user MIMO from a plurality of terminal stations (an example of the transmitting device 100) to a single base station (an example of the receiving device 200).
  • FIG. 11 is a diagram for explaining a method of offsetting FFT intervals in uplink multi-user MIMO.
  • synchronization signals are detected in the downlink, while transmission timing is controlled in consideration of transmission delay in order to achieve uplink synchronization, as described above. Synchronization of sample levels between antenna ports can be difficult.
  • the terminal design differs for each user, the inter-antenna port jitter ⁇ Tx may also have a different value ⁇ Tx_UEi for each user.
  • transmitting apparatus 100 and receiving apparatus 200 share information indicating ⁇ Tx_UEi using a control channel or the like during non-MIMO communication.
  • FIG. 12 is a diagram illustrating a configuration example of a wireless communication system according to the third embodiment.
  • each terminal station transmits a jitter value indicating the sample synchronization capability between the antenna ports of the transmitting apparatus 100 to the base station (receiving station) (an example of the receiving apparatus 200).
  • the transmitting apparatus 100 in the uplink need not include the synchronization signal multiplexing circuit 126 .
  • the jitter ⁇ Rx which indicates the sample synchronization capability between the antenna ports of the receiving apparatus 200 itself, is grasped in advance.
  • the FFT interval determination circuit 242 determines the starting point of the FFT interval of each MIMO channel by at least 2 ⁇ ( ⁇ MAX + ⁇ Rx ) samples ahead of the end point of CPrefix identified in a specific MIMO channel (for example, ch1), and performs FFT from there. A sample interval corresponding to the size (2048 samples for 2048 FFT) is determined as the FFT interval.
  • the FFT circuit 246 performs FFT and decomposes into subcarriers based on the determined FFT interval.
  • Example 4 A fourth embodiment will be described below with reference to the drawings.
  • the fourth embodiment differs from the first embodiment in that the transmitting apparatus 100 adds CyclicPostfix (CPostfix) in addition to CPrefix. Therefore, in the following description of the fourth embodiment, the differences from the first embodiment will be mainly described. Reference numerals are assigned and descriptions thereof are omitted.
  • FIG. 13 is a diagram illustrating a configuration example of a transmission device according to the fourth embodiment.
  • Each transmission circuit 120 of the transmission device 100 according to the present embodiment includes a CyclicPrefix/Postfix addition circuit 1251 instead of the CyclicPrefix addition circuit 125 of the configuration of each transmission circuit 120 according to the first embodiment.
  • the CyclicPrefix/Postfix addition circuit 1251 concatenates CPrefix to the head of the time domain data signal and concatenates a cyclic postfix (hereinafter referred to as CPostfix) to the end of the time domain data signal.
  • CyclicPrefix/Postfix addition circuit 1251 acquires information indicating the maximum value ⁇ Rx of jitter indicating sample synchronization capability between antenna ports of receiving apparatus 200 in the feedback link from receiving apparatus 200 to transmitting apparatus 100, Setting or variable control is performed so that CPostfix is 2 ( ⁇ Tx + ⁇ Rx ) samples or more.
  • FIG. 14 is a diagram for explaining the method of offsetting the FFT interval according to the fourth embodiment.
  • the FFT interval determining circuit 242 uses the end point of the CPrefix identified by the synchronization signal as the starting point of the FFT interval, and determines a sample interval corresponding to the FFT size (2048 samples for 2048 FFT) as the FFT interval.
  • the FFT circuit 2216 performs FFT and decomposes into subcarriers based on the determined FFT interval.
  • the CyclicPrefix/Postfix adding circuit 1251 adds CPostfix in addition to CPrefix.
  • the forward offset can be absorbed by CPrefix, while the backward offset can be absorbed by CPostfix.
  • the receiver 200 does not require the transmission-side synchronization capability information detection circuit 244 . That is, receiving apparatus 200 does not need to acquire information indicating maximum jitter value ⁇ Tx indicating sample synchronization capability between antenna ports of transmitting apparatus 100 . This is because inter-symbol interference can be avoided by adding a sufficiently long CPostfix to the data signal.
  • Embodiments 1 to 4 may be combined as appropriate.
  • the first embodiment and the fourth embodiment may be combined.
  • transmitting apparatus 100 adds CPostfix of at least 2 ⁇ Tx samples to avoid inter-symbol interference due to jitter ⁇ ⁇ Tx , which indicates sample synchronization capability between antenna ports of transmitting apparatus 100 .
  • receiving apparatus 200 detects the synchronization signal from the end point of the identified CPrefix in a specific MIMO channel. A sample point at least 2 ⁇ Rx samples ahead is taken as the starting point of the FFT interval and OFDM demodulated.
  • a wireless communication system comprising a transmitting device and a receiving device and performing MIMO communication, The transmitting device transmits a wireless communication signal to the receiving device, The receiving device obtains information indicating a maximum value of jitter indicating sample synchronization capability between antenna ports of the transmitting device, and obtains the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device. Based on and, determining the FFT interval used for demodulation or signal equalization of the signal transmitted from the transmitting device, wireless communication system.
  • the transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel, At least 2 ( ⁇ Tx+ ⁇ Rx) samples from the end point of the cyclic prefix identified by the synchronization signal, based on the maximum jitter value ⁇ Tx of the transmitting device and the maximum jitter value ⁇ Rx of the receiving device.
  • the sample point of the cyclic prefix above is the starting point of the FFT interval
  • the transmitting device acquires information indicating a maximum jitter value ⁇ Rx of the receiving device from the receiving device, and sets the length of the cyclic prefix to at least 2 ( ⁇ Tx + ⁇ Rx) samples or more. 3.
  • the wireless communication system according to item 2. (Section 4) The transmitting device multiplexes a synchronization signal on each MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel, The receiving device detects the sample position of the radio frame of each MIMO channel from the synchronization signal, and sets the end point of the cyclic prefix of the earliest arriving MIMO channel as the starting point of the FFT interval.
  • the wireless communication system comprises a plurality of transmitters, each of the plurality of transmitting devices adds a cyclic prefix to a data signal of each MIMO channel in a radio frame of the signal, and transmits information indicating the maximum value of the jitter to the receiving device;
  • the receiving device receives information indicating the maximum value of the jitter from each of the plurality of transmitting devices, derives the maximum value ⁇ MAX of the jitter of each received transmitting device, and determines the jitter of the receiving device.
  • the starting point of the FFT interval is at least 2 ⁇ ( ⁇ MAX + ⁇ Rx ) samples ahead from the end point of the cyclic prefix. 5.
  • the wireless communication system according to any one of items 1 to 4. (Section 6)
  • the transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix and a cyclic postfix to the data signal of each MIMO channel,
  • the receiving device sets the end point of the cyclic prefix identified by the synchronization signal as the starting point of the FFT interval, 5.
  • the wireless communication system according to any one of items 1 to 4.
  • the transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel, and based on the maximum value ⁇ Tx of the jitter of the transmitting device , appending a cyclic postfix of length at least 2 ⁇ Tx samples, and The receiving device sets the starting point of the FFT interval to be at least 2 ⁇ Rx samples or more ahead from the end point of the cyclic prefix identified by the synchronization signal. 5.
  • the wireless communication system according to any one of items 1 to 4.
  • a communication method in a wireless communication system comprising a transmitting device and a receiving device, the transmitting device transmitting a wireless communication signal to the receiving device;
  • the receiving device acquires information indicating a maximum jitter value indicating sample synchronization capability between antenna ports of the transmitting device, and obtains the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device. and determining an FFT interval to be used for demodulation or signal equalization of the signal transmitted from the transmitting device, based on Communication method.
  • transmission device 110 bit distribution circuit 120 transmission circuit 121 transmission path estimation signal adding circuit 122 m-QAM modulation circuit 123 frequency multiplexing circuit 124 IFFT circuit 125 Cyclic Prefix adding circuit 1251 Cyclic Prefix/Postfix adding circuit 126 synchronous signal multiplexing circuit 127 transmitting side synchronization capability information transmission circuit 128 radio frame configuration circuit 129 frequency conversion circuit 200 receiver 210 bit mixing circuit 220 m-QAM demodulation circuit 230 MIMO equalization circuit 240 reception circuit 241 transmission path estimation signal detection circuit 242 FFT section determination circuit 243 radio frame Position detection circuit 244 Transmission side synchronization capability information detection circuit 245 Synchronization signal detection circuit 246 FFT circuit 247 Frequency demultiplexing circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

This wireless communication system comprises a transmission device and a reception device, and carries out MIMO communication. The transmission device transmits a signal of wireless communication to the reception device. The reception device acquires information indicating maximum values of jitter representing sample synchronization performance between antenna ports of the transmission device, and determines an FFT section to be used for demodulation or equalization of the signal transmitted from the transmission device, on the basis of the maximum values of jitter of the transmission device and the reception device.

Description

無線通信システムおよび通信方法Wireless communication system and communication method
 本発明は、無線信号を空間多重伝送する技術に関連するものである。 The present invention relates to technology for spatially multiplexing radio signals.
 近年、無線通信の需要の高まりに対してさまざまな高速化手段が検討されている。有効な手段の1つは空間多重により通信路を等価的に増やす手法が挙げられ、複数のアンテナ構成を用いたMIMO通信、特にOFDM(Orthogonal Frequency Domain Multiplexing)変調と組み合わせたOFDM-MIMO方式は無線LANやLTE/5Gといった無線通信システムにおいて実用化されている(非特許文献1)。 In recent years, various speed-enhancing methods have been considered in response to the increasing demand for wireless communication. One of the effective means is to equivalently increase the number of communication channels by spatial multiplexing. MIMO communication using multiple antenna configurations, especially OFDM (Orthogonal Frequency Domain Multiplexing) modulation combined with OFDM-MIMO system is wireless. It has been put into practical use in wireless communication systems such as LAN and LTE/5G (Non-Patent Document 1).
 MIMO通信では、一般にアンテナポート間の時間同期を前提とした空間多重送受信が行われる。すなわち送信アンテナポート♯1-♯Nのサンプリングタイミングは一致しており、無線フレーム等の規則に従い、空間多重対象の信号は各アンテナポートで同一のサンプル範囲に重畳され、受信側ではMIMO検出処理を行う(非特許文献2)。 In MIMO communication, spatial multiplexing transmission/reception is generally performed on the premise of time synchronization between antenna ports. That is, the sampling timings of the transmitting antenna ports #1 to #N are the same, and according to the rules of the radio frame, etc., the signals to be spatially multiplexed are superimposed on the same sample range at each antenna port, and MIMO detection processing is performed on the receiving side. (Non-Patent Document 2).
 高速化に有効なもう1つの手段として広帯域化が挙げられるが、使用可能な電波資源のひっ迫に伴い、広帯域が使用可能なRF周波数帯は高周波数化の一途にある。ベースバンド信号を実際に送信するRF周波数までアップコンバートするにあたり、IF周波数を経由したスーパーヘテロダイン方式などの伝統的手法ではアナログデバイスを多く含む。低周波数帯に比べ高周波数帯アナログデバイスは高価であることから、一般的に無線機コストは高まり、無線通信システムや特に端末装置の普及を阻害する要因となる。 Another effective way to increase speed is to increase the frequency band, but with the shortage of available radio wave resources, the RF frequency band that can be used for a wide band continues to increase in frequency. In up-converting the baseband signal to the RF frequency at which it is actually transmitted, traditional methods such as superheterodyne via the IF frequency involve many analog devices. High-frequency band analog devices are more expensive than low-frequency band analog devices, which generally increases the cost of wireless devices, which is a factor that hinders the spread of wireless communication systems and, in particular, terminal devices.
 近年では、低廉な高周波数無線機の実現手段として、デジタル信号処理においてベースバンド信号をオーバーサンプリングした際に出現するエイリアス成分を適当なBPF(Band-pass filter)で抽出し、RF周波数帯の信号として送信(またその逆で受信)を行う無線機も出現している。一方、そのような低廉な無線機構成では、GSa/sクラスの高速サンプリングのDAC動作が前提となり、MIMOアンテナ構成のように複数アンテナポートからの送信(受信)を行う場合、アンテナポート間のサンプルレベルの同期が難しくなる。例えば、非特許文献3の無線機の事例では、アンテナポート間で最大±1サンプルのずれが発生する仕様となっている。 In recent years, as a means of realizing low-cost high-frequency radio equipment, the alias component that appears when the baseband signal is oversampled in digital signal processing is extracted with an appropriate BPF (Band-pass filter), and the RF frequency band signal There are also radios that transmit as (and vice versa, receive). On the other hand, in such a low-cost wireless device configuration, GSa/s class high-speed sampling DAC operation is a prerequisite, and when transmission (reception) is performed from multiple antenna ports as in a MIMO antenna configuration, sampling between antenna ports Level synchronization becomes difficult. For example, in the case of the wireless device in Non-Patent Document 3, the specifications are such that a maximum deviation of ±1 sample occurs between the antenna ports.
 上記のように、原理的にはMIMO通信において、空間フィルタリング等の信号処理により空間多重された信号を分離することができるが、アンテナポート間でサンプルレベルの同期が難しい場合、分離性能の特性劣化を招く問題がある。 As described above, in principle, in MIMO communication, spatially multiplexed signals can be separated by signal processing such as spatial filtering. There is a problem that invites
 開示の技術は、アンテナポート間のサンプルレベルの同期性能を向上し、空間多重信号を適切に分離することを目的とする。 The disclosed technology aims to improve sample-level synchronization performance between antenna ports and to separate spatially multiplexed signals appropriately.
 開示の技術は、送信装置と受信装置とを備え、MIMO通信を行う無線通信システムであって、前記送信装置は、無線通信の信号を前記受信装置に送信し、前記受信装置は、前記送信装置のアンテナポート間のサンプル同期能力を示すジッタの最大値を示す情報を取得して、前記送信装置の前記ジッタの最大値と、前記受信装置の前記ジッタの最大値とに基づいて、前記送信装置から送信された前記信号の復調または信号等化に用いるFFT区間を決定する無線通信システムである。 A technology disclosed herein is a wireless communication system that performs MIMO communication and includes a transmitting device and a receiving device, wherein the transmitting device transmits a wireless communication signal to the receiving device, and the receiving device communicates with the transmitting device. obtaining information indicating a maximum jitter value indicating sample synchronization capability between antenna ports of the transmitting device, based on the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device A wireless communication system for determining an FFT interval to be used for demodulation or signal equalization of the signal transmitted from.
 アンテナポート間のサンプルレベルの同期性能を向上し、空間多重信号を適切に分離することができる。  The sample-level synchronization performance between antenna ports can be improved, and spatially multiplexed signals can be separated appropriately.
本発明の実施の形態における通信システムの構成図である。1 is a configuration diagram of a communication system according to an embodiment of the present invention; FIG. アンテナポート間のサンプルレベルの同期について説明するための図である。FIG. 4 is a diagram for explaining synchronization of sample levels between antenna ports; シンボル間干渉の発生状況について説明するための第一の図である。FIG. 4 is a first diagram for explaining how inter-symbol interference occurs; シンボル間干渉の発生状況について説明するための第二の図である。FIG. 10 is a second diagram for explaining how inter-symbol interference occurs. 実施例1に係るFFT区間のオフセット方法について説明するための図である。FIG. 10 is a diagram for explaining a method of offsetting an FFT interval according to the first embodiment; FIG. 実施例1に係る送信装置の構成例を示す図である。2 is a diagram illustrating a configuration example of a transmission device according to Example 1; FIG. 実施例1に係る受信装置の構成例を示す図である。2 is a diagram illustrating a configuration example of a receiving device according to Example 1; FIG. 実施例2に係る送信装置の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a transmission device according to a second embodiment; 実施例2に係る受信装置の構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a receiving device according to Example 2; 実施例2に係るFFT区間のオフセット方法について説明するための図である。FIG. 11 is a diagram for explaining a method of offsetting an FFT interval according to the second embodiment; 上りリンクマルチユーザMIMOにおけるFFT区間のオフセット方法について説明するための図である。FIG. 4 is a diagram for explaining a method of offsetting FFT intervals in uplink multi-user MIMO; 実施例3に係る無線通信システムの構成例を示す図である。FIG. 11 is a diagram illustrating a configuration example of a wireless communication system according to a third embodiment; 実施例4に係る送信装置の構成例を示す図である。FIG. 13 is a diagram illustrating a configuration example of a transmission device according to a fourth embodiment; 実施例4に係るFFT区間のオフセット方法について説明するための図である。FIG. 11 is a diagram for explaining a method of offsetting an FFT interval according to the fourth embodiment;
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 An embodiment (this embodiment) of the present invention will be described below with reference to the drawings. The embodiments described below are merely examples, and embodiments to which the present invention is applied are not limited to the following embodiments.
 (システム構成)
 図1は、本発明の実施の形態における通信システムの構成図である。図1に示すように、本実施の形態における無線通信システムは、送信装置100と受信装置200を有する。
(System configuration)
FIG. 1 is a configuration diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 1, the radio communication system according to this embodiment has transmitting apparatus 100 and receiving apparatus 200 .
 次に、本実施形態に係るアンテナポート間のサンプルレベルの同期について、実施例1から実施例5までの例を用いて説明する。 Next, sample level synchronization between antenna ports according to the present embodiment will be described using examples 1 to 5.
 図2は、アンテナポート間のサンプルレベルの同期について説明するための図である。例えば、図2に示すように各チャネルのアンテナポート間で完全に同期されている場合、特定のアンテナポート(図ではch1)に多重された時間同期用のSYNC信号(同期信号)を元に受信機側で同期をとることで、各アンテナポートの受信信号に適用するFFT(Fast Fourier Transform)区間には自シンボルのみが含まれている状況となり、すなわちシンボル間干渉は発生しない。FFT区間は、信号の復調または信号等化に用いられる区間である。なお、移動無線通信を想定したOFDM方式の場合、遅延波に起因するシンボル間干渉を抑圧するために、DATA部(データ信号)の信号波形の末尾を複製した巡回プレフィックス(CyclicPrefix)(以下、CPrefixとする)をDATA部の前に付加し、受信側でこれらを除去した上でFFTを行いサブキャリア毎の変調シンボルを取得するのが一般的である。しかし、MIMO-OFDMにおいてアンテナポート間のサンプルレベルの同期がとれていない場合、MIMOチャンネルごとにCPrefixのサンプル位置がずれるため、シンボル間干渉を引き起こす要因となる。 FIG. 2 is a diagram for explaining synchronization of sample levels between antenna ports. For example, when the antenna ports of each channel are completely synchronized as shown in FIG. 2, reception is performed based on the SYNC signal (synchronization signal) for time synchronization multiplexed on a specific antenna port (ch1 in the figure). By synchronizing on the equipment side, the FFT (Fast Fourier Transform) interval applied to the received signal of each antenna port contains only its own symbol, that is, no inter-symbol interference occurs. The FFT interval is an interval used for signal demodulation or signal equalization. In the case of the OFDM system assuming mobile radio communication, in order to suppress inter-symbol interference caused by delayed waves, a cyclic prefix (hereinafter referred to as CPrefix) that duplicates the end of the signal waveform of the DATA part (data signal) ) is added before the DATA part, and after removing these on the receiving side, FFT is performed to obtain modulation symbols for each subcarrier. However, in MIMO-OFDM, if sample levels between antenna ports are not synchronized, sample positions of CPrefix shift for each MIMO channel, which causes inter-symbol interference.
 図3は、シンボル間干渉の発生状況について説明するための第一の図である。図2と同様に、特定のアンテナポート(図ではch1)にSYNC信号が多重され、受信機はこれを検出して、後続するCPrefixの始点、終点、DATA部の始点、終点を同定する。受信機は、通常動作として、CPrefixの終点をFFTの始点、すなわちDATA部の始点から終点までをFFT区間としてOFDM復調する。アンテナポート間でサンプルレベルの同期がとれていない場合、基準となる特定のアンテナポートの受信信号に比べて他のアンテナポートの受信信号が前方にシフトしていると、シンボル間干渉が発生する。 FIG. 3 is a first diagram for explaining how inter-symbol interference occurs. As in FIG. 2, a SYNC signal is multiplexed to a specific antenna port (ch1 in the figure), and the receiver detects this to identify the start and end points of the following CPrefix and the start and end points of the DATA portion. As a normal operation, the receiver performs OFDM demodulation with the end point of CPrefix as the FFT start point, that is, the FFT section from the start point to the end point of the DATA section. When sample levels are not synchronized between antenna ports, inter-symbol interference occurs when the received signal of the other antenna port is forward-shifted compared to the received signal of a specific reference antenna port.
 このとき、送信機側のジッタを±ΔTx、受信機側のジッタを±ΔRxとすると、最大2(ΔTx+ΔRx)サンプルのシフトが生じる可能性がある。 At this time, if the jitter on the transmitter side is ±Δ Tx and the jitter on the receiver side is ±Δ Rx , a shift of up to 2 (Δ TxRx ) samples can occur.
 図4は、シンボル間干渉の発生状況について説明するための第二の図である。図4に示すように、基準となるアンテナポート(ch1)が最も後方となるケースが最も厳しいシンボル間干渉が発生するケースである。 FIG. 4 is a second diagram for explaining how inter-symbol interference occurs. As shown in FIG. 4, the case where the reference antenna port (ch1) is the rearmost is the case where the severest inter-symbol interference occurs.
 (実施例1に係るFFT区間のオフセット方法)
 図5は、実施例1に係るFFT区間のオフセット方法について説明するための図である。本実施例では、送信装置100が、アンテナポート間のサンプル同期能力を示すジッタの最大値を事前に把握しておく。受信装置200は送信装置100から当該情報を取得する。このとき、送信装置100側のジッタを±ΔTx、受信装置200側のジッタを±ΔRxとする。
(Offset method of FFT interval according to embodiment 1)
FIG. 5 is a diagram for explaining a method of offsetting FFT intervals according to the first embodiment. In this embodiment, the transmitting apparatus 100 grasps in advance the maximum value of jitter that indicates sample synchronization capability between antenna ports. The receiving device 200 acquires the information from the transmitting device 100 . At this time, let the jitter on the transmitting device 100 side be ±Δ Tx and the jitter on the receiving device 200 side be ±Δ Rx .
 受信装置200は、特定のアンテナポートの同期信号等により遅延波対策用に送信装置100が挿入するCPrefixの終点を決定し、そこから少なくとも2(ΔTx+ΔRx)サンプル以上前方のCPrefixのサンプル点をFFT区間の始点として、伝送路推定、等化およびOFDM復調を行う。なお、CPrefixはDATA部の巡回シフト信号のため、位相回転はするが、シンボル間干渉(ISI:Inter Symbol Interference)が無い状態でOFDM復調可能となる。前記位相回転の影響は伝送路推定によって補償される。 Receiving apparatus 200 determines the end point of CPrefix inserted by transmitting apparatus 100 as a countermeasure against delayed waves using a synchronization signal or the like for a specific antenna port, and a sample point of CPrefix that is at least 2 (Δ TxRx ) samples ahead of that point. is the starting point of the FFT section, channel estimation, equalization and OFDM demodulation are performed. Since CPrefix is a cyclic shift signal in the DATA section, although phase rotation occurs, OFDM demodulation is possible without inter-symbol interference (ISI). The effect of phase rotation is compensated by channel estimation.
 (実施例1に係る送信装置の構成例)
 図6は、実施例1に係る送信装置の構成例を示す図である。送信装置100は、ビット分配回路110と、複数の送信回路120と、を備える。送信装置100が備える送信回路120の数は、送信信号の空間多重レイヤ数に対応している。各送信回路120は、伝送路推定用信号付加回路121と、m-QAM変調回路122と、周波数多重回路123と、IFFT回路124と、CyclicPrefix付加回路125と、同期信号多重回路126と、送信側同期能力情報送出回路127と、無線フレーム構成回路128と、周波数変換回路129と、を備える。
(Configuration example of transmission device according to embodiment 1)
FIG. 6 is a diagram illustrating a configuration example of a transmission device according to the first embodiment; The transmission device 100 includes a bit distribution circuit 110 and multiple transmission circuits 120 . The number of transmission circuits 120 included in the transmission device 100 corresponds to the number of spatial multiplexing layers of the transmission signal. Each transmission circuit 120 includes a transmission path estimation signal addition circuit 121, an m-QAM modulation circuit 122, a frequency multiplexing circuit 123, an IFFT circuit 124, a cyclic prefix addition circuit 125, a synchronization signal multiplexing circuit 126, and a transmission side. A synchronization capability information transmission circuit 127 , a radio frame configuration circuit 128 , and a frequency conversion circuit 129 are provided.
 ビット分配回路110は、入力ビットを空間多重用のn個のMIMOチャンネルに分配する。各MIMOチャンネルのm-QAM変調回路122は、サブキャリア毎のシンボルマッピングを行う。 The bit distribution circuit 110 distributes input bits to n MIMO channels for spatial multiplexing. The m-QAM modulation circuit 122 of each MIMO channel performs symbol mapping for each subcarrier.
 本実施例では、16QAMや64QAMなどの振幅多値のIQ直交変調を想定しているが、QPSK(4QAM)やBPSKなど他の変調方式でも良い。これらのデータサブキャリアのほかに、特定サブキャリアには伝送路推定用信号付加回路121より出力される伝送路推定用信号が周波数多重回路123で多重された上で、OFDM変調用のIFFT回路124が時間領域データ信号を生成する。 In this embodiment, amplitude multilevel IQ quadrature modulation such as 16QAM and 64QAM is assumed, but other modulation schemes such as QPSK (4QAM) and BPSK may also be used. In addition to these data subcarriers, a transmission path estimation signal output from a transmission path estimation signal addition circuit 121 is multiplexed on a specific subcarrier by a frequency multiplexing circuit 123, and then an IFFT circuit 124 for OFDM modulation is used. produces the time domain data signal.
 続いてCyclicPrefix付加回路125は、時間領域データ信号の後半部を複写したCPrefixを時間領域データ信号の先頭に連結する。CPrefixの長さは一般的に遅延波によるシンボル間干渉対策として固定的なパラメータとして扱ってもよいが、別途制御する手段を設けても良い。 Subsequently, the CyclicPrefix addition circuit 125 connects CPrefix, which is a copy of the latter half of the time domain data signal, to the head of the time domain data signal. The length of CPrefix may generally be treated as a fixed parameter as a countermeasure against inter-symbol interference caused by delayed waves, but a separate control means may be provided.
 続いて、無線フレーム構成回路128は、送信側同期能力情報送出回路127により送出される制御情報を制御情報チャネル等に埋め込む。制御情報は、送信装置100のアンテナポート間のサンプル同期能力を示すジッタの最大値(±ΔTx)を示す情報を含む。なお、ジッタの最大値(±ΔTx)を示す情報は、無線機固有の値であるため、送信装置100は、MIMO通信を実施する前の初期接続段階において1回のみ報知するようにしても良い。 Subsequently, the radio frame configuration circuit 128 embeds the control information sent by the transmission side synchronization capability information sending circuit 127 in the control information channel or the like. The control information includes information indicating the maximum jitter value (±Δ Tx ) that indicates sample synchronization capability between antenna ports of transmitting apparatus 100 . Since the information indicating the maximum value of jitter (±Δ Tx ) is a value unique to the wireless device, transmitting apparatus 100 may report it only once in the initial connection stage before performing MIMO communication. good.
 また、特定のMIMOチャンネル(たとえばch1)については同期信号多重回路126から送出される同期信号(たとえばM系列を元に生成される変調波)が無線フレームの先頭に時間多重等される。なお、前述の伝送路推定用信号を時間領域で設計する場合は、無線フレーム構成回路128が適当な場所に伝送路推定用信号を多重しても良い。 Also, for a specific MIMO channel (eg, ch1), the synchronization signal (eg, modulated wave generated based on the M sequence) sent from the synchronization signal multiplexing circuit 126 is time-multiplexed at the beginning of the radio frame. When the above-described channel estimation signal is designed in the time domain, the radio frame configuration circuit 128 may multiplex the channel estimation signal at an appropriate location.
 各MIMOチャンネルの信号は、周波数変換回路129を経て、それぞれのアンテナポートから送出される。周波数変換手段としては、ベースバンド信号をオーバーサンプリングした際に出現するエイリアス成分を適当なBPFで抽出し、RF周波数帯の信号として送信する低廉な構成も取りえる。 A signal of each MIMO channel is sent out from each antenna port through the frequency conversion circuit 129 . As the frequency conversion means, an inexpensive configuration can be used in which an alias component that appears when the baseband signal is oversampled is extracted by an appropriate BPF and transmitted as a signal in the RF frequency band.
 (実施例1に係る受信装置の構成例)
 図7は、実施例1に係る受信装置の構成例を示す図である。受信装置200は、ビット混合回路210と、複数のm-QAM復調回路220と、MIMO等化回路230と、複数の受信回路240と、を備える。受信装置200が備える受信回路240の数は、受信信号の空間多重レイヤ数に対応している。各受信回路240は、伝送路推定用信号検出回路241と、FFT区間決定回路242と、無線フレーム位置検出回路243と、送信側同期能力情報検出回路244と、同期信号検出回路245と、FFT回路246と、周波数多重分離回路247と、を備える。
(Configuration example of receiving device according to embodiment 1)
FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus according to the first embodiment; The receiving device 200 includes a bit mixing circuit 210 , multiple m-QAM demodulation circuits 220 , a MIMO equalization circuit 230 and multiple receiving circuits 240 . The number of receiving circuits 240 included in the receiving apparatus 200 corresponds to the number of spatial multiplexing layers of the received signal. Each receiving circuit 240 includes a transmission path estimation signal detection circuit 241, an FFT section determination circuit 242, a radio frame position detection circuit 243, a transmission side synchronization capability information detection circuit 244, a synchronization signal detection circuit 245, and an FFT circuit. 246, and a frequency demultiplexing circuit 247.
 同期信号が多重された特定のMIMOチャンネル(たとえばch1)の受信信号に対し、同期信号検出回路245は、スライディング相関等により既知の同期信号(たとえばM系列を元に生成される変調波)を検出する。無線フレーム位置検出回路243は、無線フレームの位置、すなわち各OFDMシンボルのCPrefixの始点・終点およびDATA部の始点・終点を決定する。 Synchronization signal detection circuit 245 detects a known synchronization signal (for example, a modulated wave generated based on the M-sequence) by sliding correlation or the like from the received signal of a specific MIMO channel (for example, ch1) in which the synchronization signal is multiplexed. do. The radio frame position detection circuit 243 determines the position of the radio frame, that is, the start/end point of CPrefix and the start/end point of the DATA part of each OFDM symbol.
 送信側同期能力情報検出回路244は、送信装置100のアンテナポート間のサンプル同期能力を示すジッタの最大値±ΔTxを示す情報を取得する。無線フレーム位置検出回路243は、受信装置200内で共有するため、これらの情報を他のMIMOチャンネルの受信回路240に送信する。 The transmission-side synchronization capability information detection circuit 244 acquires information indicating the maximum value ±Δ Tx of the jitter that indicates the sampling synchronization capability between the antenna ports of the transmission device 100 . The radio frame position detection circuit 243 transmits this information to the reception circuits 240 of other MIMO channels for sharing within the reception device 200 .
 続いて、FFT区間決定回路242は、同定したCPrefixの終点から少なくとも2(ΔTx+ΔRx)サンプル以上前方のCPrefixのサンプル点をFFT区間の始点として、そこからFFTサイズ(2048FFTなら2048サンプル)相当のサンプル区間をFFT区間に決定する。FFT回路246は、決定されたFFT区間に基づいて、FFTを行い、サブキャリアに分解する。 Subsequently, the FFT interval determination circuit 242 determines the sample point of the CPrefix that is at least 2 (Δ TxRx ) samples ahead of the end point of the identified CPrefix as the starting point of the FFT interval, and from there corresponds to the FFT size (2048 samples for 2048 FFT). is determined to be the FFT interval. The FFT circuit 246 performs FFT and decomposes into subcarriers based on the determined FFT interval.
 周波数多重分離回路247は、伝送路推定用信号を分離する。伝送路推定用信号検出回路241は、伝送路を示す情報を推定する。ここで、伝送路を示す情報は、空間伝搬における振幅変化・位相回転に加え、前述のFFT開始点を前方へオフセットしたことによる位相回転量も含む。 A frequency demultiplexing circuit 247 demultiplexes the transmission path estimation signal. The transmission path estimation signal detection circuit 241 estimates information indicating the transmission path. Here, the information indicating the transmission path includes the amount of phase rotation due to the forward offset of the FFT starting point, in addition to the amplitude change and phase rotation in the spatial propagation.
 MIMO等化回路230は、周波数多重分離回路247によって分離された各MIMOチャンネルのデータサブキャリアに、伝送路情報を用いてMIMO干渉除去・等化を行う。干渉除去・等化の方法としては、周波数領域におけるZeroForcingなどが良く知られるが、他の方法でも良い。 The MIMO equalization circuit 230 performs MIMO interference cancellation/equalization on the data subcarriers of each MIMO channel separated by the frequency demultiplexing circuit 247 using transmission path information. ZeroForcing in the frequency domain is well known as a method of interference cancellation/equalization, but other methods may be used.
 また、受信装置200が備えるm-QAM復調回路220の数は、MIMO等化回路230による等化後の受信信号のMIMOチャンネルの数に相当する。各m-QAM復調回路220は、等化後の各MIMOチャンネルの信号を、ビットに変換する。ビット混合回路210は、各空間多重に分配されたビットをまとめて、出力する。 Also, the number of m-QAM demodulation circuits 220 provided in the receiving device 200 corresponds to the number of MIMO channels of the received signal after equalization by the MIMO equalization circuit 230 . Each m-QAM demodulation circuit 220 converts the equalized signal of each MIMO channel into bits. The bit mixing circuit 210 collects and outputs the bits distributed to each spatial multiplexing.
 なお、送信装置100は、受信装置200から送信装置100へのフィードバックリンクにおいて、受信装置200のアンテナポート間のサンプル同期能力を示すジッタの最大値±ΔRxを入手した上で、2(ΔTx+ΔRx)サンプル以上となるようにCPrefixを可変制御しても良く、その際は遅延波耐力も考慮した制御とすることが望ましい。すなわち、想定される遅延波の最長遅延がCpサンプルだとすれば、送信装置100は、たとえばCPrefixの長さをCp+2(ΔTx+ΔRx)サンプルとしても良い。 Transmitting apparatus 100 obtains the maximum value of jitter ±Δ Rx indicating sample synchronization capability between antenna ports of receiving apparatus 200 in the feedback link from receiving apparatus 200 to transmitting apparatus 100, and then obtains 2(Δ Tx CPrefix may be variably controlled so as to be +Δ Rx ) samples or more, and in that case, it is desirable to perform control in consideration of delayed wave tolerance. That is, if the longest delay of the expected delayed wave is Cp samples, transmitting apparatus 100 may set the length of CPrefix to Cp+2(Δ TxRx ) samples, for example.
 本実施例では、OFDM-MIMOを想定した通信を事例に挙げたが、そのほかのブロック型の周波数領域信号処理を前提としたMIMO伝送方式にも適用可能である。たとえば、DFT-s-OFDM(DFT-spreading-OFDM)、SC-FDE(Single Carrier-Frequency Domain Equalization)などが考えられる。また、前方誤り訂正符号を組合せても良い。 In this embodiment, communication assuming OFDM-MIMO is taken as an example, but it is also applicable to other MIMO transmission systems assuming block-type frequency domain signal processing. For example, DFT-s-OFDM (DFT-spreading-OFDM), SC-FDE (Single Carrier-Frequency Domain Equalization), etc. can be considered. Also, a forward error correction code may be combined.
 本実施例に係る各実施例では送信装置100、受信装置200ともに、n本のアンテナを用いてn空間多重を実現するn×nのMIMOを想定したが、特にこれに限らない。k本の送信アンテナ、n本の受信アンテナによるk×nのMIMOアンテナ構成にも適用可能であるし、あるいは、MIMOの一様態として考えられるUCAアンテナを用いたOAM無線多重にも適用可能である。 In each embodiment according to the present embodiment, both the transmitting apparatus 100 and the receiving apparatus 200 assume n×n MIMO that implements n spatial multiplexing using n antennas, but the present invention is not particularly limited to this. It can be applied to a k×n MIMO antenna configuration with k transmission antennas and n reception antennas, or it can be applied to OAM radio multiplexing using UCA antennas, which is considered as one aspect of MIMO. .
 ジッタの最大値±ΔTx、±ΔRxは、送信装置100および受信装置200のアンテナポート間のサンプル同期能力を示すものとしたが、そのほかの要因による影響を加味した値としても良い。たとえば前述のSC-FDEでは周波数利用効率を高めるために低ロールオフ率のraised-cosine filterを帯域制限フィルタとして組み合わせる場合があるが、時間応答が長いために、後続OFDMシンボルからのシンボル間干渉が生じるようなケースでは、ジッタの前方方向の絶対値を大きくとっても良い。 Although the maximum values of jitter ±Δ Tx and ±Δ Rx indicate the sample synchronization capability between the antenna ports of transmitting apparatus 100 and receiving apparatus 200, they may be values that take into account the influence of other factors. For example, in the SC-FDE mentioned above, a raised-cosine filter with a low roll-off rate may be combined as a band-limiting filter in order to increase the frequency utilization efficiency. In such a case, the absolute value of jitter in the forward direction may be increased.
 また、ジッタの最大値±ΔTx(±ΔRx)を制御情報として通知することとしているが、既知の情報として送信装置100および受信装置200が予め記憶しておいても良い。 Also, although the maximum jitter value ±Δ Tx (±Δ Rx ) is notified as control information, it may be stored in advance in transmitting apparatus 100 and receiving apparatus 200 as known information.
 (実施例2)
 以下に図面を参照して、実施例2について説明する。実施例2は、各MIMOチャンネルに同期信号を多重し、受信装置200が特定のアンテナポートに対する各アンテナポートの同期ずれ量を直接検出する点が、実施例1と相違する。よって、以下の実施例2の説明では、実施例1との相違点を中心に説明し、実施例1と同様の機能構成を有するものには、実施例1の説明で用いた符号と同様の符号を付与し、その説明を省略する。
(Example 2)
A second embodiment will be described below with reference to the drawings. The second embodiment is different from the first embodiment in that a synchronization signal is multiplexed on each MIMO channel, and the receiving apparatus 200 directly detects the synchronization deviation amount of each antenna port with respect to a specific antenna port. Therefore, in the following description of the second embodiment, the differences from the first embodiment will be mainly described. Reference numerals are assigned and descriptions thereof are omitted.
 (実施例2に係る送信装置の構成例)
 図8は、実施例2に係る送信装置の構成例を示す図である。本実施例に係る送信装置100の各送信回路120は、実施例1に係る送信回路120から送信側同期能力情報送出回路127を削除した構成である。
(Configuration example of transmission device according to embodiment 2)
FIG. 8 is a diagram illustrating a configuration example of a transmission device according to a second embodiment; Each transmission circuit 120 of the transmission device 100 according to the present embodiment has a configuration obtained by removing the transmission side synchronization capability information transmission circuit 127 from the transmission circuit 120 according to the first embodiment.
 本実施例に係る送信装置100は、各MIMOチャンネルにおいて同期信号多重回路126から送出される同期信号を無線フレームの先頭に多重する。送信装置100は、無線フレームごとに同期信号を多重するMIMOチャンネルを変える時分割処理によって単一の同期信号を各MIMOチャンネルで使いまわしても良いし、自己相関特性だけでなく相互相関特性にも優れた複数の同期信号(たとえばZadoff-Chu系列を元に生成した変調波)を各MIMOチャンネルに空間多重しても良い。 The transmitting apparatus 100 according to this embodiment multiplexes the synchronization signal sent from the synchronization signal multiplexing circuit 126 in each MIMO channel at the beginning of the radio frame. Transmitting apparatus 100 may reuse a single synchronization signal in each MIMO channel by time-division processing that changes the MIMO channel that multiplexes the synchronization signal for each radio frame. A plurality of excellent synchronization signals (for example, modulated waves generated based on Zadoff-Chu sequences) may be spatially multiplexed to each MIMO channel.
 (実施例2に係る受信装置の構成例)
 図9は、実施例2に係る受信装置の構成例を示す図である。
(Configuration example of receiving device according to embodiment 2)
FIG. 9 is a diagram illustrating a configuration example of a receiving apparatus according to the second embodiment;
 本実施例に係る受信装置200は、各MIMOチャンネルの無線フレーム位置検出回路243で同定した同期情報から、特定のMIMOチャンネル(たとえばch1)に対する各MIMOチャンネルのサンプルずれΔi(i=2,…,N)を算出する。FFT区間決定回路242は、最も早いタイミングで受信されたMIMOチャンネルのCPrefixの終点を、各MIMOチャンネルのFFT区間の始点として、そこからFFTサイズ(2048FFTなら2048サンプル)相当のサンプル区間をFFT区間に決定する。FFT回路246は、決定されたFFT区間に基づいて、FFTを行い、サブキャリアに分解する。 The receiving apparatus 200 according to the present embodiment detects the sample shift Δi (i=2, . N) is calculated. The FFT interval determination circuit 242 sets the end point of the CPrefix of the MIMO channel received at the earliest timing as the starting point of the FFT interval of each MIMO channel, and sets a sample interval corresponding to the FFT size (2048 samples for 2048 FFT) as the FFT interval. decide. The FFT circuit 246 performs FFT and decomposes into subcarriers based on the determined FFT interval.
 図10は、実施例2に係るFFT区間のオフセット方法について説明するための図である。送信装置100は、各MIMOチャンネルに相互相関特性の良好な同期信号を多重する。受信装置200は、各MIMOチャンネルの無線フレームのサンプル位置を前記同期信号により検出する。これによって、最も早着となるMIMOチャンネルのCPrefixの終点をFFT区間の始点としてOFDM復調することができる。 FIG. 10 is a diagram for explaining the method of offsetting the FFT interval according to the second embodiment. Transmitting apparatus 100 multiplexes synchronization signals with good cross-correlation characteristics onto each MIMO channel. Receiving apparatus 200 detects the sample position of the radio frame of each MIMO channel from the synchronization signal. As a result, OFDM demodulation can be performed with the end point of the CPrefix of the earliest arriving MIMO channel as the start point of the FFT interval.
 (実施例3)
 以下に図面を参照して、実施例3について説明する。実施例3は、送信装置100が個別にジッタの最大値を受信装置200に送信する点が、実施例1と相違する。よって、以下の実施例3の説明では、実施例1との相違点を中心に説明し、実施例1と同様の機能構成を有するものには、実施例1の説明で用いた符号と同様の符号を付与し、その説明を省略する。
(Example 3)
A third embodiment will be described below with reference to the drawings. The third embodiment differs from the first embodiment in that the transmitter 100 individually transmits the maximum value of jitter to the receiver 200 . Therefore, in the following description of the third embodiment, the differences from the first embodiment will be mainly described. Reference numerals are assigned and descriptions thereof are omitted.
 本実施例に係る無線通信システムによれば、複数の端末局(送信装置100の一例)から1台の基地局(受信装置200の一例)に対する上りリンクマルチユーザMIMOに対応することができる。 According to the radio communication system according to the present embodiment, it is possible to support uplink multi-user MIMO from a plurality of terminal stations (an example of the transmitting device 100) to a single base station (an example of the receiving device 200).
 図11は、上りリンクマルチユーザMIMOにおけるFFT区間のオフセット方法について説明するための図である。セルラ型無線通信システムにおける上りリンクマルチユーザMIMOでは、原則下りリンクで同期信号の検出を行う一方で、上りリンクの同期実現のためには伝送遅延を考慮した送信タイミング制御を行うが、前述の通りアンテナポート間のサンプルレベルの同期が困難となる可能性はある。さらに、ユーザ毎に端末設計が異なるとアンテナポート間ジッタΔTxもユーザ毎に異なる値ΔTx_UEiを持つ可能性がある。 FIG. 11 is a diagram for explaining a method of offsetting FFT intervals in uplink multi-user MIMO. In uplink multi-user MIMO in a cellular radio communication system, in principle, synchronization signals are detected in the downlink, while transmission timing is controlled in consideration of transmission delay in order to achieve uplink synchronization, as described above. Synchronization of sample levels between antenna ports can be difficult. Furthermore, if the terminal design differs for each user, the inter-antenna port jitter Δ Tx may also have a different value Δ Tx_UEi for each user.
 そこで、送信装置100および受信装置200は、非MIMO通信時の制御チャネルなどを用いて、ΔTx_UEiを示す情報を共有する。 Therefore, transmitting apparatus 100 and receiving apparatus 200 share information indicating ΔTx_UEi using a control channel or the like during non-MIMO communication.
 図12は、実施例3に係る無線通信システムの構成例を示す図である。前提として、能力の異なる無線機(送信装置100の一例)が混在する場合、無線機によってアンテナポート間のサンプルずれ量(ジッタの大きさ)が異なることが考えられる。そこで、各端末局(送信局)(送信装置100の一例)から基地局(受信局)(受信装置200の一例)に対し、個別に送信装置100のアンテナポート間のサンプル同期能力を示すジッタの最大値±ΔTx_UEi(i=1,…,n)を通知する。なお、セルラ型無線通信システムにおいて同期信号の検出は下りリンクのみで実施し、上りリンクの同期は下りリンクの同期情報を元に送信タイミング制御により確立する設計の場合、上りリンクにおける送信装置100(端末局)は、同期信号多重回路126を備えていなくて良い。 FIG. 12 is a diagram illustrating a configuration example of a wireless communication system according to the third embodiment; As a premise, when radio devices with different capabilities (an example of the transmission device 100) coexist, it is conceivable that the amount of sample deviation (magnitude of jitter) between antenna ports differs depending on the radio device. Therefore, each terminal station (transmitting station) (an example of the transmitting apparatus 100) individually transmits a jitter value indicating the sample synchronization capability between the antenna ports of the transmitting apparatus 100 to the base station (receiving station) (an example of the receiving apparatus 200). Notify the maximum value ±Δ Tx_UEi (i=1, . . . , n). In the case of a design in which the synchronization signal is detected only in the downlink in the cellular radio communication system, and the synchronization of the uplink is established by transmission timing control based on the synchronization information of the downlink, the transmitting apparatus 100 in the uplink ( terminal station) need not include the synchronization signal multiplexing circuit 126 .
 受信装置200は、ΔTx_UEi(i=1,…,n)の最大値、すなわちmax{ΔTx_UEi(i=1,…,n)}=ΔMAXを導出する。また、受信装置200自体のアンテナポート間のサンプル同期能力を示すジッタ±ΔRxも事前に把握しておく。FFT区間決定回路242は、特定のMIMOチャンネル(たとえばch1)で同定したCPrefixの終点に対し、少なくとも2×(ΔMAX+ΔRx)サンプル以上前方を各MIMOチャンネルのFFT区間の始点として、そこからFFTサイズ(2048FFTなら2048サンプル)相当のサンプル区間をFFT区間に決定する。FFT回路246は、決定されたFFT区間に基づいて、FFTを行い、サブキャリアに分解する。 Receiving apparatus 200 derives the maximum value of Δ Tx_UEi (i=1, . . . , n), that is, max{Δ Tx_UEi (i=1, . . . , n)}=Δ MAX . Also, the jitter ±Δ Rx , which indicates the sample synchronization capability between the antenna ports of the receiving apparatus 200 itself, is grasped in advance. The FFT interval determination circuit 242 determines the starting point of the FFT interval of each MIMO channel by at least 2×(Δ MAXRx ) samples ahead of the end point of CPrefix identified in a specific MIMO channel (for example, ch1), and performs FFT from there. A sample interval corresponding to the size (2048 samples for 2048 FFT) is determined as the FFT interval. The FFT circuit 246 performs FFT and decomposes into subcarriers based on the determined FFT interval.
 (実施例4)
 以下に図面を参照して、実施例4について説明する。実施例4は、送信装置100がCPrefixに加えて、CyclicPostfix(CPostfix)の付加も行う点が、実施例1と相違する。よって、以下の実施例4の説明では、実施例1との相違点を中心に説明し、実施例1と同様の機能構成を有するものには、実施例1の説明で用いた符号と同様の符号を付与し、その説明を省略する。
(Example 4)
A fourth embodiment will be described below with reference to the drawings. The fourth embodiment differs from the first embodiment in that the transmitting apparatus 100 adds CyclicPostfix (CPostfix) in addition to CPrefix. Therefore, in the following description of the fourth embodiment, the differences from the first embodiment will be mainly described. Reference numerals are assigned and descriptions thereof are omitted.
 図13は、実施例4に係る送信装置の構成例を示す図である。本実施例に係る送信装置100の各送信回路120は、実施例1に係る各送信回路120の構成のCyclicPrefix付加回路125に代えて、CyclicPrefix/Postfix付加回路1251を備える。 FIG. 13 is a diagram illustrating a configuration example of a transmission device according to the fourth embodiment. Each transmission circuit 120 of the transmission device 100 according to the present embodiment includes a CyclicPrefix/Postfix addition circuit 1251 instead of the CyclicPrefix addition circuit 125 of the configuration of each transmission circuit 120 according to the first embodiment.
 CyclicPrefix/Postfix付加回路1251は、時間領域データ信号の先頭にCPrefixを連結するのに加えて、時間領域データ信号の最後に巡回ポストフィックス(CyclicPostfix)(以下、CPostfixとする)を連結する。CyclicPrefix/Postfix付加回路1251は、受信装置200から送信装置100へのフィードバックリンクにおいて、受信装置200のアンテナポート間のサンプル同期能力を示すジッタの最大値±ΔRxを示す情報を取得した上で、CPostfixが2(ΔTx+ΔRx)サンプル以上となるよう設定または可変制御を行う。 The CyclicPrefix/Postfix addition circuit 1251 concatenates CPrefix to the head of the time domain data signal and concatenates a cyclic postfix (hereinafter referred to as CPostfix) to the end of the time domain data signal. CyclicPrefix/Postfix addition circuit 1251 acquires information indicating the maximum value ±Δ Rx of jitter indicating sample synchronization capability between antenna ports of receiving apparatus 200 in the feedback link from receiving apparatus 200 to transmitting apparatus 100, Setting or variable control is performed so that CPostfix is 2 (Δ TxRx ) samples or more.
 図14は、実施例4に係るFFT区間のオフセット方法について説明するための図である。本実施例に係るFFT区間決定回路242は、同期信号により同定したCPrefixの終点をそのままFFT区間の始点として、そこからFFTサイズ(2048FFTなら2048サンプル)相当のサンプル区間をFFT区間に決定する。FFT回路2216は、決定されたFFT区間に基づいて、FFTを行い、サブキャリアに分解する。 FIG. 14 is a diagram for explaining the method of offsetting the FFT interval according to the fourth embodiment. The FFT interval determining circuit 242 according to the present embodiment uses the end point of the CPrefix identified by the synchronization signal as the starting point of the FFT interval, and determines a sample interval corresponding to the FFT size (2048 samples for 2048 FFT) as the FFT interval. The FFT circuit 2216 performs FFT and decomposes into subcarriers based on the determined FFT interval.
 本実施例ではCyclicPrefix/Postfix付加回路1251がCPrefixに加え、CPostfixの付加も行う。これによって、アンテナポート間のサンプルずれのうち、前方オフセットはCPrefixで吸収する一方で、後方オフセットはCPostfixで吸収することができる。 In this embodiment, the CyclicPrefix/Postfix adding circuit 1251 adds CPostfix in addition to CPrefix. As a result, of the sample shift between antenna ports, the forward offset can be absorbed by CPrefix, while the backward offset can be absorbed by CPostfix.
 また、本実施例では、受信装置200は、送信側同期能力情報検出回路244が不要である。すなわち、受信装置200は、送信装置100のアンテナポート間のサンプル同期能力を示すジッタの最大値±ΔTxを示す情報を取得しなくても良い。これは、データ信号に十分な長さのCPostfixが付加されていることによって、シンボル間干渉を回避できるためである。 Also, in this embodiment, the receiver 200 does not require the transmission-side synchronization capability information detection circuit 244 . That is, receiving apparatus 200 does not need to acquire information indicating maximum jitter value ±Δ Tx indicating sample synchronization capability between antenna ports of transmitting apparatus 100 . This is because inter-symbol interference can be avoided by adding a sufficiently long CPostfix to the data signal.
 なお、実施例1から実施例4は適宜組み合わせても良い。例えば、実施例1と実施例4とを組み合わせても良い。 Note that Embodiments 1 to 4 may be combined as appropriate. For example, the first embodiment and the fourth embodiment may be combined.
 この場合、送信装置100は、送信装置100のアンテナポート間のサンプル同期能力を示すジッタ±ΔTxによるシンボル間干渉を回避するため、少なくとも2ΔTxサンプルのCPostfixを付加する。一方、受信装置200は、受信装置200のアンテナポート間のサンプル同期能力を示すジッタ±ΔRxによるシンボル間干渉を回避するため、同期信号を検出する特定のMIMOチャンネルにおいて、同定したCPrefixの終点より少なくとも2ΔRxサンプル前方のサンプル点をFFT区間の始点とし、OFDM復調する。 In this case, transmitting apparatus 100 adds CPostfix of at least 2ΔTx samples to avoid inter-symbol interference due to jitter ± ΔTx , which indicates sample synchronization capability between antenna ports of transmitting apparatus 100 . On the other hand, in order to avoid inter-symbol interference due to jitter ± ΔRx , which indicates the sample synchronization capability between antenna ports of receiving apparatus 200, receiving apparatus 200 detects the synchronization signal from the end point of the identified CPrefix in a specific MIMO channel. A sample point at least 2Δ Rx samples ahead is taken as the starting point of the FFT interval and OFDM demodulated.
 これによって、受信装置200から送信装置100へのフィードバックリンクで±ΔRxを示す情報を通知する処理が不要となる。なお、これはΔRxよりもCPrefixのサンプル長が十分長いことを前提としている。 This eliminates the need for the process of notifying the information indicating ±Δ Rx in the feedback link from the receiving device 200 to the transmitting device 100 . Note that this assumes that the sample length of CPrefix is sufficiently longer than ΔRx.
 (実施の形態のまとめ)
 本明細書には、少なくとも下記の各項に記載した無線通信システムおよび通信方法が記載されている。
(第1項)
 送信装置と受信装置とを備え、MIMO通信を行う無線通信システムであって、
 前記送信装置は、無線通信の信号を前記受信装置に送信し、
 前記受信装置は、前記送信装置のアンテナポート間のサンプル同期能力を示すジッタの最大値を示す情報を取得して、前記送信装置の前記ジッタの最大値と、前記受信装置の前記ジッタの最大値とに基づいて、前記送信装置から送信された前記信号の復調または信号等化に用いるFFT区間を決定する、
 無線通信システム。
(第2項)
 前記送信装置は、前記信号の無線フレームにおいて、特定のMIMOチャンネルに同期信号を多重して、各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、
 前記受信装置は、前記送信装置の前記ジッタの最大値ΔTxと、前記受信装置の前記ジッタの最大値ΔRxとに基づいて、前記同期信号により同定された巡回プレフィックスの終点から少なくとも2(ΔTx+ΔRx)サンプル以上前方の前記巡回プレフィックスのサンプル点を前記FFT区間の始点とする、
 第1項に記載の無線通信システム。
(第3項)
 前記送信装置は、前記受信装置から前記受信装置のジッタの最大値ΔRxを示す情報を取得して、前記巡回プレフィックスの長さを少なくとも2(ΔTx+ΔRx)サンプル以上とする、
 第2項に記載の無線通信システム。
(第4項)
 前記送信装置は、前記信号の無線フレームにおいて、各MIMOチャンネルに同期信号を多重し、前記各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、
 前記受信装置は、前記各MIMOチャンネルの無線フレームのサンプル位置を前記同期信号により検出し、最も早着となるMIMOチャンネルの前記巡回プレフィックスの終点を前記FFT区間の始点とする、
 第1項から第3項のいずれか1項に記載の無線通信システム。
(第5項)
 前記無線通信システムは、複数の送信装置を備え、
 前記複数の送信装置のそれぞれは、前記信号の無線フレームにおいて、各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、前記ジッタの最大値を示す情報を前記受信装置に送信し、
 前記受信装置は、前記複数の送信装置のそれぞれから前記ジッタの最大値を示す情報を受信して、受信したそれぞれの送信装置の前記ジッタの最大値ΔMAXを導出し、前記受信装置の前記ジッタの最大値ΔRxに基づいて、前記巡回プレフィックスの終点から少なくとも2×(ΔMAX+ΔRx)サンプル以上前方を前記FFT区間の始点とする、
 第1項から第4項のいずれか1項に記載の無線通信システム。
(第6項)
 前記送信装置は、前記信号の無線フレームにおいて、特定のMIMOチャンネルに同期信号を多重して、各MIMOチャンネルのデータ信号に巡回プレフィックスおよび巡回ポストフィックスを付加し、
 前記受信装置は、前記同期信号により同定された前記巡回プレフィックスの終点を前記FFT区間の始点とする、
 第1項から第4項のいずれか1項に記載の無線通信システム。
(第7項)
 前記送信装置は、前記信号の無線フレームにおいて、特定のMIMOチャンネルに同期信号を多重して、各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、前記送信装置の前記ジッタの最大値ΔTxに基づいて、少なくとも2×ΔTxサンプル以上の長さの巡回ポストフィックスを付加し、
 前記受信装置は、前記同期信号により同定された前記巡回プレフィックスの終点から少なくとも2×ΔRxサンプル以上前方を前記FFT区間の始点とする、
 第1項から第4項のいずれか1項に記載の無線通信システム。
(第8項)
 送信装置と受信装置とを備える無線通信システムにおける通信方法であって、
 前記送信装置が、無線通信の信号を前記受信装置に送信するステップと、
 前記受信装置が、前記送信装置のアンテナポート間のサンプル同期能力を示すジッタの最大値を示す情報を取得して、前記送信装置の前記ジッタの最大値と、前記受信装置の前記ジッタの最大値とに基づいて、前記送信装置から送信された前記信号の復調または信号等化に用いるFFT区間を決定するステップと、を備える、
 通信方法。
(Summary of embodiment)
Described herein are wireless communication systems and communication methods as set forth in at least the following sections.
(Section 1)
A wireless communication system comprising a transmitting device and a receiving device and performing MIMO communication,
The transmitting device transmits a wireless communication signal to the receiving device,
The receiving device obtains information indicating a maximum value of jitter indicating sample synchronization capability between antenna ports of the transmitting device, and obtains the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device. Based on and, determining the FFT interval used for demodulation or signal equalization of the signal transmitted from the transmitting device,
wireless communication system.
(Section 2)
The transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel,
At least 2 (ΔTx+ΔRx) samples from the end point of the cyclic prefix identified by the synchronization signal, based on the maximum jitter value ΔTx of the transmitting device and the maximum jitter value ΔRx of the receiving device. The sample point of the cyclic prefix above is the starting point of the FFT interval,
A wireless communication system according to claim 1.
(Section 3)
The transmitting device acquires information indicating a maximum jitter value ΔRx of the receiving device from the receiving device, and sets the length of the cyclic prefix to at least 2 (ΔTx + ΔRx) samples or more.
3. The wireless communication system according to item 2.
(Section 4)
The transmitting device multiplexes a synchronization signal on each MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel,
The receiving device detects the sample position of the radio frame of each MIMO channel from the synchronization signal, and sets the end point of the cyclic prefix of the earliest arriving MIMO channel as the starting point of the FFT interval.
The wireless communication system according to any one of items 1 to 3.
(Section 5)
The wireless communication system comprises a plurality of transmitters,
each of the plurality of transmitting devices adds a cyclic prefix to a data signal of each MIMO channel in a radio frame of the signal, and transmits information indicating the maximum value of the jitter to the receiving device;
The receiving device receives information indicating the maximum value of the jitter from each of the plurality of transmitting devices, derives the maximum value ΔMAX of the jitter of each received transmitting device, and determines the jitter of the receiving device. Based on the maximum value Δ Rx of , the starting point of the FFT interval is at least 2 × (Δ MAX + Δ Rx ) samples ahead from the end point of the cyclic prefix.
5. The wireless communication system according to any one of items 1 to 4.
(Section 6)
The transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix and a cyclic postfix to the data signal of each MIMO channel,
The receiving device sets the end point of the cyclic prefix identified by the synchronization signal as the starting point of the FFT interval,
5. The wireless communication system according to any one of items 1 to 4.
(Section 7)
The transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel, and based on the maximum value ΔTx of the jitter of the transmitting device , appending a cyclic postfix of length at least 2×ΔTx samples, and
The receiving device sets the starting point of the FFT interval to be at least 2×ΔRx samples or more ahead from the end point of the cyclic prefix identified by the synchronization signal.
5. The wireless communication system according to any one of items 1 to 4.
(Section 8)
A communication method in a wireless communication system comprising a transmitting device and a receiving device,
the transmitting device transmitting a wireless communication signal to the receiving device;
The receiving device acquires information indicating a maximum jitter value indicating sample synchronization capability between antenna ports of the transmitting device, and obtains the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device. and determining an FFT interval to be used for demodulation or signal equalization of the signal transmitted from the transmitting device, based on
Communication method.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It is possible.
100 送信装置
110 ビット分配回路
120 送信回路
121 伝送路推定用信号付加回路
122 m-QAM変調回路
123 周波数多重回路
124 IFFT回路
125 CyclicPrefix付加回路
1251 CyclicPrefix/Postfix付加回路
126 同期信号多重回路
127 送信側同期能力情報送出回路
128 無線フレーム構成回路
129 周波数変換回路
200 受信装置
210 ビット混合回路
220 m-QAM復調回路
230 MIMO等化回路
240 受信回路
241 伝送路推定用信号検出回路
242 FFT区間決定回路
243 無線フレーム位置検出回路
244 送信側同期能力情報検出回路
245 同期信号検出回路
246 FFT回路
247 周波数多重分離回路
100 transmission device 110 bit distribution circuit 120 transmission circuit 121 transmission path estimation signal adding circuit 122 m-QAM modulation circuit 123 frequency multiplexing circuit 124 IFFT circuit 125 Cyclic Prefix adding circuit 1251 Cyclic Prefix/Postfix adding circuit 126 synchronous signal multiplexing circuit 127 transmitting side synchronization capability information transmission circuit 128 radio frame configuration circuit 129 frequency conversion circuit 200 receiver 210 bit mixing circuit 220 m-QAM demodulation circuit 230 MIMO equalization circuit 240 reception circuit 241 transmission path estimation signal detection circuit 242 FFT section determination circuit 243 radio frame Position detection circuit 244 Transmission side synchronization capability information detection circuit 245 Synchronization signal detection circuit 246 FFT circuit 247 Frequency demultiplexing circuit

Claims (8)

  1.  送信装置と受信装置とを備え、MIMO通信を行う無線通信システムであって、
     前記送信装置は、無線通信の信号を前記受信装置に送信し、
     前記受信装置は、前記送信装置のアンテナポート間のサンプル同期能力を示すジッタの最大値を示す情報を取得して、前記送信装置の前記ジッタの最大値と、前記受信装置の前記ジッタの最大値とに基づいて、前記送信装置から送信された前記信号の復調または信号等化に用いるFFT区間を決定する、
     無線通信システム。
    A wireless communication system comprising a transmitting device and a receiving device and performing MIMO communication,
    The transmitting device transmits a wireless communication signal to the receiving device,
    The receiving device obtains information indicating a maximum value of jitter indicating sample synchronization capability between antenna ports of the transmitting device, and obtains the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device. Based on and, determining the FFT interval used for demodulation or signal equalization of the signal transmitted from the transmitting device,
    wireless communication system.
  2.  前記送信装置は、前記信号の無線フレームにおいて、特定のMIMOチャンネルに同期信号を多重して、各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、
     前記受信装置は、前記送信装置の前記ジッタの最大値ΔTxと、前記受信装置の前記ジッタの最大値ΔRxとに基づいて、前記同期信号により同定された巡回プレフィックスの終点から少なくとも2(ΔTx+ΔRx)サンプル以上前方の前記巡回プレフィックスのサンプル点を前記FFT区間の始点とする、
     請求項1に記載の無線通信システム。
    The transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel,
    Based on the maximum jitter value ΔTx of the transmitting device and the maximum jitter value ΔRx of the receiving device, the receiving device receives at least 2 (Δ Tx + Δ Rx ) samples or more before the sample point of the cyclic prefix is set as the starting point of the FFT interval;
    A wireless communication system according to claim 1 .
  3.  前記送信装置は、前記受信装置から前記受信装置のジッタの最大値ΔRxを示す情報を取得して、前記巡回プレフィックスの長さを少なくとも2(ΔTx+ΔRx)サンプル以上とする、
     請求項2に記載の無線通信システム。
    The transmitting device acquires information indicating the maximum jitter value Δ Rx of the receiving device from the receiving device, and sets the length of the cyclic prefix to at least 2 (Δ Tx + Δ Rx ) samples or more.
    A wireless communication system according to claim 2.
  4.  前記送信装置は、前記信号の無線フレームにおいて、各MIMOチャンネルに同期信号を多重し、前記各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、
     前記受信装置は、前記各MIMOチャンネルの無線フレームのサンプル位置を前記同期信号により検出し、最も早着となるMIMOチャンネルの前記巡回プレフィックスの終点を前記FFT区間の始点とする、
     請求項1から3のいずれか1項に記載の無線通信システム。
    The transmitting device multiplexes a synchronization signal on each MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel,
    The receiving device detects the sample position of the radio frame of each MIMO channel from the synchronization signal, and sets the end point of the cyclic prefix of the earliest arriving MIMO channel as the starting point of the FFT interval.
    The radio communication system according to any one of claims 1 to 3.
  5.  前記無線通信システムは、複数の送信装置を備え、
     前記複数の送信装置のそれぞれは、前記信号の無線フレームにおいて、各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、前記ジッタの最大値を示す情報を前記受信装置に送信し、
     前記受信装置は、前記複数の送信装置のそれぞれから前記ジッタの最大値を示す情報を受信して、受信したそれぞれの送信装置の前記ジッタの最大値ΔMAXを導出し、前記受信装置の前記ジッタの最大値ΔRxに基づいて、前記巡回プレフィックスの終点から少なくとも2×(ΔMAX+ΔRx)サンプル以上前方を前記FFT区間の始点とする、
     請求項1から4のいずれか1項に記載の無線通信システム。
    The wireless communication system comprises a plurality of transmitters,
    each of the plurality of transmitting devices adds a cyclic prefix to a data signal of each MIMO channel in a radio frame of the signal, and transmits information indicating the maximum value of the jitter to the receiving device;
    The receiving device receives information indicating the maximum value of the jitter from each of the plurality of transmitting devices, derives the maximum value ΔMAX of the jitter of each received transmitting device, and determines the jitter of the receiving device. Based on the maximum value Δ Rx of , the starting point of the FFT interval is at least 2 × (Δ MAX + Δ Rx ) samples ahead from the end point of the cyclic prefix.
    A radio communication system according to any one of claims 1 to 4.
  6.  前記送信装置は、前記信号の無線フレームにおいて、特定のMIMOチャンネルに同期信号を多重して、各MIMOチャンネルのデータ信号に巡回プレフィックスおよび巡回ポストフィックスを付加し、
     前記受信装置は、前記同期信号により同定された前記巡回プレフィックスの終点を前記FFT区間の始点とする、
     請求項1から4のいずれか1項に記載の無線通信システム。
    The transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix and a cyclic postfix to the data signal of each MIMO channel,
    The receiving device sets the end point of the cyclic prefix identified by the synchronization signal as the starting point of the FFT interval,
    A radio communication system according to any one of claims 1 to 4.
  7.  前記送信装置は、前記信号の無線フレームにおいて、特定のMIMOチャンネルに同期信号を多重して、各MIMOチャンネルのデータ信号に巡回プレフィックスを付加し、前記送信装置の前記ジッタの最大値ΔTxに基づいて、少なくとも2×ΔTxサンプル以上の長さの巡回ポストフィックスを付加し、
     前記受信装置は、前記同期信号により同定された前記巡回プレフィックスの終点から少なくとも2×ΔRxサンプル以上前方を前記FFT区間の始点とする、
     請求項1から4のいずれか1項に記載の無線通信システム。
    The transmitting device multiplexes a synchronization signal on a specific MIMO channel in a radio frame of the signal, adds a cyclic prefix to the data signal of each MIMO channel, and based on the maximum value ΔTx of the jitter of the transmitting device appending a cyclic postfix of length at least 2×Δ Tx samples or longer,
    The receiving device sets the starting point of the FFT interval to be at least 2× ΔRx samples ahead from the end point of the cyclic prefix identified by the synchronization signal.
    A radio communication system according to any one of claims 1 to 4.
  8.  送信装置と受信装置とを備える無線通信システムにおける通信方法であって、
     前記送信装置が、無線通信の信号を前記受信装置に送信するステップと、
     前記受信装置が、前記送信装置のアンテナポート間のサンプル同期能力を示すジッタの最大値を示す情報を取得して、前記送信装置の前記ジッタの最大値と、前記受信装置の前記ジッタの最大値とに基づいて、前記送信装置から送信された前記信号の復調または信号等化に用いるFFT区間を決定するステップと、を備える、
     通信方法。
    A communication method in a wireless communication system comprising a transmitting device and a receiving device,
    the transmitting device transmitting a wireless communication signal to the receiving device;
    The receiving device acquires information indicating a maximum jitter value indicating sample synchronization capability between antenna ports of the transmitting device, and obtains the maximum jitter value of the transmitting device and the maximum jitter value of the receiving device. and determining an FFT interval to be used for demodulation or signal equalization of the signal transmitted from the transmitting device, based on
    Communication method.
PCT/JP2021/026305 2021-07-13 2021-07-13 Wireless communication system and communication method WO2023286158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/026305 WO2023286158A1 (en) 2021-07-13 2021-07-13 Wireless communication system and communication method
JP2023534476A JPWO2023286158A1 (en) 2021-07-13 2021-07-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026305 WO2023286158A1 (en) 2021-07-13 2021-07-13 Wireless communication system and communication method

Publications (1)

Publication Number Publication Date
WO2023286158A1 true WO2023286158A1 (en) 2023-01-19

Family

ID=84919913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026305 WO2023286158A1 (en) 2021-07-13 2021-07-13 Wireless communication system and communication method

Country Status (2)

Country Link
JP (1) JPWO2023286158A1 (en)
WO (1) WO2023286158A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030243A1 (en) * 2016-08-10 2018-02-15 株式会社Nttドコモ User terminal and wireless communication method
JP2020537455A (en) * 2017-10-18 2020-12-17 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Receivers, Transmitters, Systems and Methods Using Spatial Delay Precoding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030243A1 (en) * 2016-08-10 2018-02-15 株式会社Nttドコモ User terminal and wireless communication method
JP2020537455A (en) * 2017-10-18 2020-12-17 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン Receivers, Transmitters, Systems and Methods Using Spatial Delay Precoding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIYANAGA YOSHIKAZU; MIURA MASAKI; GOTOH TOHRU; YAMANO JUNJI; IMAGAWA TAKASHI; TSUTSUI HIROSHI: "Development of High Performance RF Modules Used in Real-time FHD Video Communication over 8x8 MIMO-OFDM System", 2018 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), IEEE, 27 November 2018 (2018-11-27), pages 107 - 110, XP033644466, DOI: 10.1109/ISPACS.2018.8923426 *
TOMOAKI TAKEUCHI, KENICHI TSUCHIDA, KAZUHIKO SHIBUYA: "A Long Delay Multipath Equalization using High Frequency Resolution Spatial Filters for SDM MIMO-OFDM Systems", IEICE TECHNICAL REPORT, RCS, IEICE, JP, vol. 114, no. 295 (RCS2014-215), 5 November 2014 (2014-11-05), JP, pages 103 - 106, XP009542623 *

Also Published As

Publication number Publication date
JPWO2023286158A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
US10270574B2 (en) Transmission signal generation apparatus, transmission signal generation method, reception signal apparatus, and reception signal method
CN100391134C (en) Transmission method, transmission apparatus, and reception apparatus
US7856068B1 (en) Nested preamble for multi input multi output orthogonal frequency division multiplexing
AU2010301233B2 (en) Method and apparatus for transmitting data in WLAN system
JP5702387B2 (en) Signaling and channel estimation for uplink transmit diversity
US20050195734A1 (en) Transmission signals, methods and apparatus
WO2004030265A1 (en) Channel estimation for ofdm using orthogonal training sequences
KR20070082043A (en) Wireless communication apparatus and wireless communication method
KR20080036055A (en) Transmission and receiving method, and receiver for multi antenna wireless communication system
JP2007529143A (en) Method and apparatus for backward compatible communication in a multi-antenna communication system using a preamble structure based on FDM
US8385255B2 (en) Radio apparatus and communication system utilizing the same
JP2004336746A (en) Apparatus and method for estimating channel in orthogonal frequency division multiplexing system using multiplex antenna
EP1927216A1 (en) Radio apparatus and communication system utilizing the same
US8064388B2 (en) Radio apparatus and communication system using the same
WO2007032417A1 (en) Radio apparatus and communication system
WO2023286158A1 (en) Wireless communication system and communication method
JP3891986B2 (en) Multi-carrier transmission method and apparatus
JP4606407B2 (en) Transmission method and transmission apparatus
JP4255908B2 (en) Multi-carrier signal demodulation circuit and multi-carrier signal demodulation method
JP4260722B2 (en) Multi-carrier signal demodulation circuit and multi-carrier signal demodulation method
JP5183701B2 (en) Receiving method and receiving apparatus
Widyarachmanto et al. Design and Simulation of Variable Guard Interval Insertion for High Throughput WLAN System
JP2008109677A (en) Transmission method, and transmission apparatus
KR20130067843A (en) Apparatus and method for differential demodulating based cyclic delay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023534476

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE