WO2023284685A1 - 电池充电控制电路及电子设备 - Google Patents

电池充电控制电路及电子设备 Download PDF

Info

Publication number
WO2023284685A1
WO2023284685A1 PCT/CN2022/104948 CN2022104948W WO2023284685A1 WO 2023284685 A1 WO2023284685 A1 WO 2023284685A1 CN 2022104948 W CN2022104948 W CN 2022104948W WO 2023284685 A1 WO2023284685 A1 WO 2023284685A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
switch
capacitor
terminal
module
Prior art date
Application number
PCT/CN2022/104948
Other languages
English (en)
French (fr)
Inventor
姚杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22841321.7A priority Critical patent/EP4372954A1/en
Publication of WO2023284685A1 publication Critical patent/WO2023284685A1/zh
Priority to US18/402,973 priority patent/US20240235218A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the field of integrated circuits, and in particular relates to a battery charging control circuit and electronic equipment.
  • folding screens have entered people's field of vision.
  • two independent batteries are usually used in series to form the main screen and secondary screen of the folding screen.
  • Power supply the power supply system formed in series can use higher power to power the folding screen.
  • the battery with the smaller capacity will be charged to full charge first, but the battery with the larger capacity will not be fully charged at this time. If you continue to charge, it will cause A fully charged battery is a safety risk. If the charging of the two batteries connected in series is stopped, the battery with a large capacity will not reach the actual full charge state, which will significantly reduce the use efficiency of the battery.
  • the purpose of the embodiments of the present application is to provide a battery charging control circuit and electronic equipment, which can solve the problems of battery safety risks and low use efficiency caused by differences in battery capacity.
  • the embodiment of the present application provides a battery charging control circuit, including:
  • a charging module connected to the capacitor module, the first battery and the second battery connected in series;
  • the control module is connected to the capacitor module, the first battery and the second battery in series, and controls to disconnect the charging module when only one of the first battery and the second battery reaches the first preset threshold.
  • the path for charging the first battery and the second battery and opening the path for the charging module to charge the capacitor module; when the capacitor voltage of the capacitor module reaches a second preset threshold, control to disconnect the charging module The path for charging the capacitor module is opened, and the path for the capacitor module to charge the batteries in the first battery and the second battery whose power does not reach the first preset threshold is opened.
  • an embodiment of the present application provides an electronic device, including the battery charging control circuit described in the first aspect.
  • the charging path corresponding to the charging module when it is detected that there is no difference in the charging power of the first battery and the second battery connected in series, the charging path corresponding to the charging module can be connected to charge the first battery and the second battery at the same time; when it is detected that the first battery When there is a difference in the charging quantity of the battery and the second battery, the charging path corresponding to the charging module can be controlled to be disconnected and the capacitor module can be charged instead; The charging path and charge it to ensure that the two independent batteries can eventually reach the preset state of charge.
  • the two independent batteries can finally reach a preset power state, thereby significantly improving the use efficiency of the first battery and the second battery.
  • FIG. 1 is a circuit connection block diagram of a battery charging control circuit provided by an embodiment of the present application.
  • FIG. 2 is a circuit diagram of the battery charging control circuit of the first embodiment of the present application.
  • FIG. 3 is a schematic diagram of a charging process corresponding to the battery charging control circuit of the first embodiment of the present application.
  • FIG. 4 is a circuit diagram of a battery charging control circuit according to a second embodiment of the present application.
  • FIG. 5 is a schematic diagram of a charging process corresponding to the battery charging control circuit according to the second embodiment of the present application.
  • Fig. 6 is a circuit connection block diagram of an electronic device provided by an embodiment of the present application.
  • An embodiment of the present application provides a battery charging control circuit, including: a first battery and a second battery connected in series; a capacitor module connected to the first battery and the second battery connected in series; a charging module connected to the capacitor module, connected in series, respectively
  • the first battery is connected to the second battery;
  • the control module is respectively connected to the capacitor module, the first battery and the second battery in series, and when only one of the first battery and the second battery reaches the first preset threshold value, Controlling to disconnect the charging path of the charging module for charging the first battery and the second battery and opening the charging module for charging the capacitor module; when the capacitor voltage of the capacitor module reaches a second preset threshold, control Disconnecting the path for the charging module to charge the capacitor module and opening the path for the capacitor module to charge the batteries whose power levels in the first battery and the second battery do not reach the first preset threshold.
  • the first battery and the second battery connected in series may be two independent batteries, and the batteries are connected in series through a flexible printed circuit (FPC) to supply power to the smart terminal, or the first battery and The second battery is a dual-cell structure, and after being connected in series, an external protection board is connected to supply power for the smart terminal.
  • FPC flexible printed circuit
  • first battery and the second battery There is a difference in capacity between the first battery and the second battery, which may be caused by the unequal initial capacity of the first battery and the second battery, or it may be that the initial capacity of the first battery and the second battery are the same, but in use During the process, due to the different degrees of aging of the two batteries, a capacity difference occurs between the first battery and the second battery.
  • FIG. 1 is a circuit connection block diagram of a battery charging control circuit provided by an embodiment of the present application.
  • the charging module 40 is connected to an external charging device (not shown in the figure), when there is no capacity difference between the first battery 10 and the second battery 20, or when the first battery 10 and the second battery When the two batteries 20 have different capacities but are not fully charged, the charging module 40 can supply power to the first battery 10 and the second battery 20 at the same time through the charging path formed by plugging in the charging device.
  • the capacitor module 30 may include one or more capacitors, connected to the charging module 40, when there is a difference in capacity between the first battery 10 and the second battery 20, resulting in only one battery being fully charged to a preset threshold, that is, When one battery is fully charged but the other battery is not fully charged, the control module 50 controls the charging module 40 to disconnect the above-mentioned charging path for supplying power to the first battery and the second battery, and the charging module 40 and the capacitor module 30 Connecting constitutes a new charging path, thereby charging the capacitor of the capacitor module 30 instead.
  • the control module 50 controls the charging module 40 to be disconnected from the capacitor module 30, and controls the capacitor module 30 to be connected in parallel with a battery that has not reached a fully charged state, thereby through the capacitor module 30.
  • the batteries connected in parallel are discharged, and the power of the batteries is supplemented, so as to ensure that both the first battery 10 and the second battery 20 finally reach a fully charged state.
  • the battery charging control circuit also includes a differential voltage detection circuit (not shown in the figure), connected between the control module 50 and the capacitor module 30, used to measure the capacitor voltage of the capacitor module 30, and send it to control module 50 .
  • a differential voltage detection circuit (not shown in the figure), connected between the control module 50 and the capacitor module 30, used to measure the capacitor voltage of the capacitor module 30, and send it to control module 50 .
  • the battery charging control circuit further includes a power metering module (not shown in the figure), which is connected between the control module 50 and the first battery 10 and the second battery 20 connected in series, and is used to measure the first and second batteries respectively.
  • the power of the battery 10 and the second battery 20 is sent to the control module 50 .
  • the battery charging control circuit of the embodiment of the present application also includes a switch group (not shown in the figure), the switches in the switch group include a first access terminal, a second access terminal and a control terminal, and the switches in the switch group
  • the first access terminal and the second access terminal are respectively connected to the first battery 10 and the second battery 20 connected in series, the capacitor module 30 and the charging module 40, and the control module 50 is connected to the switches in the switch group.
  • the control terminal controls the corresponding charging path through the control terminal of the switch in the switch group.
  • the switch group includes a plurality of switches, and the access terminals of the plurality of switches are correspondingly connected to the first battery 10, the second battery 20, the capacitor module 30 and the charging module 40, and the control module 50 sends a control signal to the control terminals of each switch, thereby Control the conduction or disconnection of the corresponding switches in the switch group to form a charging path for the charging module 40 to charge the first battery 10 and the second battery 20 connected in series, or to form a charging path for the charging module 40 to charge the capacitor module 30 path, or form a charging channel in which the capacitor module 30 is connected in parallel with one of the first battery 10 and the second battery 20 that is not fully charged to charge the parallel battery.
  • FIG. 2 is a circuit diagram of a battery charging control circuit according to a first embodiment of the present application.
  • the batteries connected in series include a first battery B1 and a second battery B2, the capacitor module includes a first capacitor C1 and a second capacitor C2, and the differential voltage detection module includes a first differential voltage detection channel ADC_P and a second differential voltage detection channel
  • the electricity metering module includes an electricity meter 1 and an electricity meter 2
  • the switch group includes a second switch Q2, a third switch Q3, a fourth switch Q4, a fifth switch Q5 and a sixth switch Q6.
  • the first terminal of the first capacitor C1 is connected to the first terminal of the fifth switch Q5, and the second terminal of the first capacitor C1 is connected to the first terminal of the fourth switch Q4.
  • An access terminal, the first terminal of the second capacitor C2 is connected to the second input terminal of the third switch Q3 and the first input terminal of the sixth switch Q6.
  • the first access end of the second switch Q2 is connected to the first end of the charging module 40 and the first access end of the third switch Q3, and the second access end of the second switch Q2 is connected to the second battery B2.
  • the first terminal connected to the first battery B1 and the second access terminal of the sixth switch Q6.
  • the first access end of the third switch Q3 is connected to the first end of the charging module 40
  • the second access end of the third switch Q3 is connected to the first access end of the sixth switch Q6
  • the second access end of the fourth switch Q4 is connected to the second end of the first battery B1 not connected to the second battery B2, and the second end of the charging module 40
  • the second access end of the fifth switch Q5 is connected to The third end of the first battery B1 connected to the second battery B2
  • the second access end of the sixth switch Q6 is connected to the first end of the second battery B2 not connected to the first battery B1, and the first end of the second switch Q2 Two access terminals.
  • the fuel gauge 1 is connected to the first battery B1 for measuring the power of the first battery B1 and transmitting corresponding power data to the control unit 50 .
  • the fuel gauge 2 is connected to the second battery B2 for measuring the power of the second battery B2 and transmitting the corresponding power data to the control unit 50, and the control unit 50 compares the power data of the corresponding battery with a predetermined threshold value to know that the second Which battery among the battery B2 and the first battery B1 is charged to a fully charged state first.
  • the control unit 50 will That is, it can be known that the corresponding batteries are fully charged.
  • the control unit 50 will output the corresponding output of the fuel gauge 1 When the power data of the battery reaches 4.3 volts, it can be known that the first battery B1 is fully charged, but the second battery B2 is not yet fully charged.
  • the control unit 50 When the power data of the corresponding battery output by the fuel gauge 1 reaches 4.3 volts, it can be known that the first battery B1 is fully charged, but the second battery B2 is not yet fully charged.
  • the first differential voltage detection channel ADC_P is connected to the first terminal of the second capacitor C2, and the second differential voltage detection channel ADC_N is connected to the second terminal of the first capacitor C1.
  • the first terminal of the first capacitor C1 is connected in series with the second terminal of the second capacitor C2, so the capacitance values detected by the first differential voltage detection channel ADC_P and the second differential voltage detection channel ADC_N are respectively output to the control module 50, that is, it can be obtained Know the current voltage value at both ends of the first capacitor C1 and the second capacitor C2 connected in series.
  • the control unit 50 compares the corresponding current voltage value with the predetermined threshold, that is, it can know whether the first capacitor C1 and the second capacitor C2 connected in series are charged to a fully charged state.
  • the first capacitor C1 and the second capacitor C2 may be large capacitors, for example, the capacitances of the capacitors C1 and C2 may be in the range of 20-100 microfarads.
  • the capacity of the first capacitor C1 and the second capacitor C2 can be the same.
  • the first capacitor C1 and the second capacitor C2 share the 9 volt voltage, that is, the first capacitor C1 and the second capacitor
  • the two capacitors C2 are respectively 4.5 volts.
  • control unit 50 calculates according to the capacitance values output by the first differential voltage detection channel ADC_P and the second differential voltage detection channel ADC_N, when the voltage across the first capacitor C1 and the second capacitor C2 is 9 volts, it can be known that the first capacitor C1 and the second capacitor C2 are respectively charged to 4.5 volts to reach a fully charged state.
  • the battery charging control circuit may further include a first switch Q1. As shown in FIG. between the first access terminal of Q3). One end of the first switch Q1 is connected to the charging module 40 , and the other end is connected to the power management module 60 , and is used to control the conduction or disconnection of the path for the charging module 40 to charge the power management module 60 .
  • the power management module 60 is connected with peripheral devices of the smart terminal, such as a motherboard, a central processing unit, a camera, etc., and is used to convert the received power supply voltage into voltages corresponding to different peripheral devices, and then supply power to the peripheral devices.
  • peripheral devices of the smart terminal such as a motherboard, a central processing unit, a camera, etc.
  • control module 50 can control the corresponding charging path through the control terminals of the switches in the switch group.
  • the charging module 40 forms a charging path with the power management module 60, and can directly supply power to the power management module 60 through an external charging device.
  • the embodiment of the present application may not include the switch Q1.
  • the first access terminal of the switch Q2 is also connected to the power management module 60. After the control module 50 controls the switch Q2 to conduct Module 60 supplies power.
  • the control module 50 controls the second switch Q2 in the switch group to be turned on to form a first charging path, wherein the charging module 40 charges through the first The pathway charges the first battery B1 and the second battery B2.
  • the control module 50 monitors that only one of the first battery B1 and the second battery B2 measured by the fuel gauge 1 and the fuel gauge 2 reaches the first When the threshold is preset, control the second switch Q2 in the first charging path to turn off and control the third switch Q3 and the fourth switch Q4 in the switch group to turn on to form the second charging path, wherein the charging module 40 passes through the second The charging path charges the first capacitor C1 and the second capacitor C2.
  • the first preset threshold corresponds to a voltage value at which a battery with a small capacity reaches a fully charged state, such as the above-mentioned 4.3 volts.
  • the control module 50 needs to control the charging module 40 to charge the first capacitor C1 and the second capacitor C2, so as to use the corresponding first capacitor C1 or the second capacitor C2 to continue charging the first battery B1 that is not fully charged.
  • control module 50 controls the third switch Q3 in the second charging path to be turned off and controls The fifth switch Q5 in the switch group is turned on to connect the first capacitor C1 in parallel with the first battery B1 and charge the first battery B1.
  • the first battery B1 is charged separately through the first capacitor C1. After the power of the first capacitor C1 drops enough to charge the first battery B1, the fifth switch Q5 is turned off again, and the third switch Q3 is turned on to form a second charging path. .
  • the charging module 40 recharges the first capacitor C1 and the second capacitor C2 through the second charging path until the capacitor voltages of the first capacitor C1 and the second capacitor C2 reach a second preset threshold, and then charges the first capacitor C1 and the first capacitor C1
  • the batteries B1 are connected in parallel and charge the first battery B1. This cycle continues until the first battery B1 reaches a fully charged state.
  • the control module 50 needs to control the charging module 40 to charge the first capacitor C1 and the second capacitor C2, so as to use the corresponding first capacitor C1 or the second capacitor C2 to continue charging the second battery B2 that is not yet fully charged.
  • control the third switch Q3 and the fourth switch in the second charging path Q4 is turned off and the fifth switch Q5 and the sixth switch Q6 in the switch group are turned on, so as to connect the second capacitor C2 in parallel with the second battery B2 and charge the second battery B2.
  • the second battery B2 is charged separately through the second capacitor C2. After the power of the second capacitor C2 is not enough to charge the second battery B2, the fifth switch Q5 and the sixth switch Q6 are turned off again, and the third switch Q3 is turned on. A second charging path is formed.
  • the charging module 40 recharges the first capacitor C1 and the second capacitor C2 through the second charging channel until the capacitor voltages of the first capacitor C1 and the second capacitor C2 reach a second preset threshold, and then charges the second capacitor C2 and the second capacitor C2
  • the battery B2 is connected in parallel and charges the second battery B2. This cycle continues until the second battery B2 reaches a fully charged state.
  • the battery charging control circuit may further include a third battery connected in series with the first battery B1 and the second battery B2, the capacitor module 40 further includes a third capacitor, and the switch group further includes a ninth switch, wherein the third The second end of the battery is connected to the first end of the second battery B2 that is not connected to the first battery B1, the first end of the third battery is connected to the second access end of the second switch Q2; the second end of the third capacitor One end is connected to the second access end of the second switch Q2, the second end of the third capacitor is connected to the first end of the second capacitor C2; the first end of the ninth switch is connected to the first end of the third capacitor One end, the second end of the ninth switch is connected to the first end of the third battery.
  • the battery charging control circuit of the embodiment of the present application includes a plurality of batteries connected in series, and there is a capacity difference between the batteries, an additional switch and capacitor can be set for the added third battery, so that the control module 50 When it is detected that the third battery is not fully charged, control the corresponding switch to form a path for the charging module 40 to charge the first capacitor C1 and the second capacitor C2, and when it is detected that the first capacitor C1 and the second capacitor C2 are fully charged After the power state, the third capacitor is controlled to be connected in parallel with the third battery, so that the third capacitor can charge the third battery independently.
  • Fig. 3 is a schematic diagram of the charging process corresponding to the battery charging control circuit of the first embodiment of the present application, as shown in Fig. 3, including the following steps:
  • Step 102 judging whether the capacity of the first battery B1 is equal to the capacity of the second battery B2 in the charging state, if (Y), proceed to step 104, if not (N), proceed to step 106;
  • Step 104 maintaining the current charging state
  • Step 106 judging whether the capacity of the first battery B1 is greater than the capacity of the second battery B2, if yes, proceed to step 108, if not, proceed to step 116;
  • Step 108 when the second battery B2 is fully charged, turn off the switch Q2, and turn on the switches Q3 and Q4 at the same time;
  • Step 110 when the first capacitor C1 and the second capacitor C2 are fully charged, turn off the switch Q3 and turn on the switch Q5;
  • Step 112 charge the first battery B1 through the first capacitor C1, the fuel gauge 1 determines whether the first battery B1 is fully charged, if so, enter step 114, if not, return to step 108;
  • Step 114 stop charging the first battery B1;
  • Step 116 when the first battery B1 is fully charged, turn off the switch Q2, and turn on the switches Q3 and Q4 at the same time;
  • Step 118 when the first capacitor C1 and the second capacitor C2 are fully charged, the switch Q3 is turned off, and the switches Q5 and Q6 are turned on;
  • Step 120 charge the second battery B2 through the second capacitor C2, the fuel gauge 2 determines whether the second battery B2 has reached a fully charged state, if it is, enter step 122, if not, return to step 116;
  • Step 122 stop charging the second battery B2.
  • FIG. 4 is a circuit diagram of a battery charging control circuit according to a second embodiment of the present application.
  • the capacitor module includes a capacitor C
  • the switch group includes a second switch Q2, a third switch Q3, a fourth switch Q4, a sixth switch Q6, a seventh switch Q7 and The eighth switch Q8.
  • the first terminal of the capacitor C is respectively connected to the second terminal of the third switch Q3, the first terminal of the sixth switch Q6, and the first terminal of the seventh switch Q7.
  • the access terminal, the second terminal of the capacitor C is respectively connected to the first access terminal of the fourth switch Q4 and the first access terminal of the eighth switch Q8, and the first access terminal of the second switch Q2 is connected to the charging
  • the first end of the module 40, the first access end of the third switch Q3, the second access end of the second switch Q2 is connected to the first end of the second battery B2 not connected to the first battery B1, the sixth switch
  • the second access end of Q6, the first access end of the third switch Q3 is connected to the first end of the charging module 40, the second access end of the third switch Q3 is connected to the first connection of the sixth switch Q6 input end, the first access end of the seventh switch Q7, the second input end of the fourth switch Q4 is connected to the second end of the first battery B1 not connected to the second battery B2, and the second end of the charging
  • the first differential voltage detection channel ADC_P is connected to the first end of the capacitor C
  • the second differential voltage detection channel ADC_N is connected to the second end of the capacitor C. Therefore, the capacitance values detected by the first differential voltage detection channel ADC_P and the second differential voltage detection channel ADC_N are output to the control module 50 , that is, the current voltage value at both ends of the capacitor C can be obtained.
  • the control unit 50 compares the corresponding capacitor voltage value with the preset second threshold to know whether the capacitor C currently reaches the voltage threshold that can charge the corresponding first battery B1 or second battery B2 that is not fully charged.
  • the voltage required to charge the first battery B1 or the second battery B2 to a fully charged state is 4.4 volts, and the capacitor C needs to be charged to a voltage higher than 4.4 volts to charge the corresponding battery. If the power supply voltage provided by the external charging device remains at 9 volts, the capacitor C can be charged to 9 volts normally. Usually, the fully charged voltage of the battery of the smart terminal is 4.4 volts. If a capacitor charged to 9 volts is used to charge the 4.4 volt battery, the charging current is difficult to control due to the relatively large voltage difference. Therefore, in the embodiment of the present application, the second preset threshold value corresponding to the capacitor C may be higher than 4.4 volts and not more than 4.5 volts.
  • the battery charging control circuit of the embodiment of the present application A timer 70 may also be included.
  • the timer 70 is connected to the control module 50, and is used for timing the maximum charging duration required for charging the capacitor C to reach the preset threshold, and sends a signal to the control module 50 when the maximum charging duration is reached, so that the control module 50 controls the corresponding switch to form a corresponding charging path to charge the battery that is not fully charged.
  • the above-mentioned maximum charging duration can be calculated according to the capacity of the capacitor C, the output voltage of the external charging device, the on-resistance of the switch Q3 and the current voltage of the capacitor C.
  • R is the on-resistance of Q3
  • C is the capacitance value of capacitor C
  • Vbat is the output voltage of the external charging device, which is generally slightly higher than the sum of the voltages of the first battery B1 and the second battery B2
  • Vc is the capacitor C of the current voltage.
  • the charging current and battery safety can be guaranteed.
  • the capacitor C may be a large capacitor, for example, the capacitance of the capacitor C may be in the range of 20-100 microfarads.
  • control module 50 can control the corresponding charging path through the control terminals of the switches in the switch group.
  • the charging module 40 and the power management module 60 form a charging path, which can be passed through an external The charging device directly supplies power to the power management module 60 .
  • the embodiment of the present application may not include the first switch Q1.
  • the control module 50 controls the second switch Q2 in the switch group to be turned on to form a third charging path, wherein the charging module 40 charges through the third The pathway charges the first battery B1 and the second battery B2.
  • the control module 50 monitors that only one of the first battery B1 and the second battery B2 measured by the fuel gauge 1 and the fuel gauge 2 reaches the first
  • the second switch Q2 in the third charging path is controlled to be turned off and the third switch Q3 and the fourth switch Q4 in the switch group are controlled to be turned on to form a fourth charging path, wherein the charging module 40 passes through the fourth The charging path charges the capacitor C.
  • the first preset threshold corresponds to a voltage value at which a battery with a small capacity reaches a fully charged state.
  • the control module 50 needs to control the charging module 40 to charge the capacitor C, so as to use the corresponding capacitor C to continue charging the first battery B1 that is not yet fully charged.
  • control module 50 detects that the capacitance voltage of the capacitor C measured by the differential voltage detection module reaches the second preset threshold, it controls the third switch Q3 in the fourth charging path to turn off and controls the fourth switch in the switch group to Q4 and the seventh switch Q7 are turned on, so as to connect the capacitor C in parallel with the first battery B1 and charge the first battery B1.
  • the control module 50 turns on the timer while turning on the third switch Q3 and the fourth switch Q4 to form a fourth charging path for charging the capacitor C, and calculates the maximum charging time T required for the capacitor C to be charged to the second preset threshold, Then charge the capacitor C. After T time, turn off the third switch Q3 again, turn on the seventh switch Q7, use the capacitor C to charge the first battery B1 alone, and when the power of the capacitor C is not enough to charge the first battery B1, turn off the second Seventh Q7, turning on the third switch Q3 to form a fourth charging path.
  • the charging module 40 recharges the capacitor C through the fourth charging path until the capacitor voltage of the capacitor C reaches the second preset threshold after T time, and then connects the capacitor C in parallel with the first battery B1 to charge the first battery B1. This cycle continues until the first battery B1 reaches a fully charged state.
  • the control module 50 needs to control the charging module 40 to charge the capacitor C, so as to use the capacitor C to continue charging the second battery B2 that is not yet fully charged.
  • control module 50 detects that the capacitance voltage of the capacitor C measured by the differential voltage detection module reaches the second preset threshold, it controls the third switch Q3 and the fourth switch Q4 in the fourth charging path to turn off and controls the switch group
  • the eighth switch Q8 and the sixth switch Q6 are turned on, so as to connect the capacitor C in parallel with the second battery B2 and charge the second battery B2.
  • the charging module 40 recharges the capacitor C through the fourth charging path until the capacitor voltage of the capacitor C reaches a second preset threshold, and then connects the capacitor C in parallel with the second battery B2 to charge the second battery B2. This cycle continues until the second battery B2 reaches a fully charged state.
  • the battery charging control circuit may further include a third battery connected in series with the first battery B1 and the second battery B2, and the switch group further includes a tenth switch, wherein the second terminal of the third battery is connected to the second terminal of the second battery.
  • the first terminal of the second battery B2 is not connected to the first battery B1, the first terminal of the third battery is connected to the second terminal of the second switch Q2; the first terminal of the tenth switch is connected to the first terminal of the capacitor C Two terminals, the second terminal of the second switch is connected to the second terminal of the third battery.
  • the battery charging control circuit of the embodiment of the present application includes a plurality of batteries connected in series, and there is a capacity difference between the batteries, an additional switch can be set for the added third battery, so that the control module 50 monitors When the third battery is not fully charged, control the corresponding switch to form a path for the charging module 40 to charge the capacitor C, and after monitoring that the capacitor C reaches the second preset threshold, control the third capacitor to be connected in parallel with the third battery, In order to realize that the third capacitor charges the third battery alone.
  • Fig. 5 is a schematic diagram of the charging process corresponding to the battery charging control circuit of the second embodiment of the present application, as shown in Fig. 5, including the following steps:
  • Step 202 judging whether the capacity of the first battery B1 is equal to the capacity of the second battery B2 in the charging state, if (Y), proceed to step 204, if not (N), proceed to step 206;
  • Step 204 maintaining the current charging state
  • Step 206 judging whether the capacity of the first battery B1 is greater than the capacity of the second battery B2, if yes, proceed to step 208, if not, proceed to step 216;
  • Step 208 when the second battery B2 is fully charged, turn off the switch Q2, and turn on the switches Q3 and Q4 at the same time;
  • Step 210 detecting the current voltage of the capacitor C and calculating the maximum charging time, turning off the switch Q3 and turning on the switch Q7 after the maximum charging time is reached;
  • Step 212 charge the first battery B1 through the capacitor C, and the fuel gauge 1 determines whether the first battery B1 is fully charged, if it is, enter step 214, if not, return to step 208;
  • Step 214 stop charging the first battery B1;
  • Step 216 when the first battery B1 is fully charged, turn off the switch Q2, and turn on the switches Q3 and Q4 at the same time;
  • Step 218 detecting the current voltage of the capacitor C and calculating the maximum charging time, turning off the switches Q3 and Q4 after reaching the maximum charging time, and turning on the switches Q6 and Q8;
  • Step 220 charge the second battery B2 through the capacitor C, the fuel gauge 2 determines whether the second battery B2 is fully charged, if it is, enter step 222, if not, return to step 216;
  • Step 222 stop charging the second battery B2.
  • the switches in the switch group are MOS transistors.
  • the charging path corresponding to the charging module can be connected to charge the batteries B1 and B2 at the same time; when the batteries B1 and B2 are detected
  • FIG. 6 is a schematic diagram of a hardware structure of an electronic device 900 implementing an embodiment of the present application.
  • the electronic device 900 includes but not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, a battery charging control circuit 102, a memory 908 and a processor 909 and other components.
  • the battery charging control circuit 102 may correspond to the battery charging control circuit of any one of the above-mentioned embodiments in FIG. 1 to FIG. 5 , and can achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the electronic device 900 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 909 through the power management system, so that the management of charging, discharging, and function can be realized through the power management system. Consumption management and other functions.
  • a power supply such as a battery
  • the structure of the electronic device shown in FIG. 6 does not constitute a limitation to the electronic device, and the electronic device may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here. .
  • the processor is the processor in the electronic device described in the above embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in various embodiments of the present application.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

提供一种电池充电控制电路,属于集成电路领域。电池充电控制电路包括串联的第一电池(10)和第二电池(20)、电容模块(30)、充电模块(40)和控制模块(50),控制模块(50)在第一电池(10)和第二电池(20)中只有一个电量达到第一预设阈值的情况下,控制断开充电模块(40)对第一电池(10)和第二电池(20)充电的通路并打开充电模块(40)对电容模块(30)充电的通路;在电容模块(30)的电容电压达到第二预设阈值的情况下控制断开充电模块(40)对电容模块(30)的充电的通路并打开电容模块(30)对第一电池(10)和第二电池(20)中电量未达到第一预设阈值的电池充电的通路。

Description

电池充电控制电路及电子设备
交叉引用
本发明要求在2021年07月14日提交中国专利局、申请号为202110794675.8、发明名称为“电池充电控制电路及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于集成电路领域,具体涉及一种电池充电控制电路及电子设备。
背景技术
随着智能终端的发展,折叠屏开始进入了人们的视野,为了保证市场上折叠屏主屏和副屏的空间得到利用最大化,现通常采用两个独立电池串联分别为折叠屏的主屏、副屏供电,串联形成的供电系统可以使用更高功率为折叠屏供电。
但是在使用过程中,如果两个独立电池之间存在容量差异,在充电过程中,容量小的电池首先充到满电状态,但是此时容量大的电池还未充满,如果继续充电,则导致已达到满电状态的电池存在安全风险。如果停止对串联的两个电池充电,则导致容量大的电池没有达到实际的满电状态,如此会显著降低该电池的使用效率。
发明内容
本申请实施例的目的是提供一种电池充电控制电路及电子设备,能够解决电池容量差异导致电池存在安全风险及使用效率低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种电池充电控制电路,包括:
串联的第一电池和第二电池;
电容模块,与串联的第一电池和第二电池连接;
充电模块,分别与所述电容模块、串联的第一电池和第二电池连接;
控制模块,分别与所述电容模块、串联的第一电池和第二电池连接,在第一电池和第二电池中只有一个电量达到第一预设阈值的情况下,控制断开所述充电模块对第一电池和第二电池充电的通路并打开所述充电模块对所述电容模块充电的通路;在所述电容模块的电容电压达到第二预设阈值的情况下控制断开所述充电模块对所述电容模块充电的通路并打开所述电容模块对第一电池和第二电池中电量未达到第一预设阈值的电池充电的通路。
第二方面,本申请实施例提供了一种电子设备,包括如第一方面所述的电池充电控制电路。
在本申请实施例中,当检测到串联的第一电池和第二电池的充电电量没有差异时,可以连通充电模块对应的充电通路对第一电池和第二电池同时充电;当检测到第一电池和第二电池的充电电量有差异时,可以控制充电模块对应的充电通路断开并改对电容模块充电;通过连通电容模块对应的充电通路,打开电容模块对未充电到预设阈值的电池充电的通路并对其充电,保证两个独立电池最终能达到预设的电量状态。由此,可以避免一个电池达到满电状态而另一个电池未到达满电状态下,继续对未达到满电状态的电池充电时导致已达到满电状态的电池存在安全风险。同时,在保证电池安全的同时可以使得两个独立电池最终能达到预设的电量状态,由此显著提高第一电池和第二电池的使用效率。
附图说明
图1是本申请实施例提供的电池充电控制电路的电路连接框图。
图2是本申请第一实施例的电池充电控制电路的电路图。
图3是本申请第一实施例的电池充电控制电路对应的充电流程示意图。
图4是本申请第二实施例的电池充电控制电路的电路图。
图5是本申请第二实施例的电池充电控制电路对应的充电流程示意图。
图6是本申请实施例提供的电子设备的电路连接框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的电池充电控制电路及电子设备进行详细地说明。
本申请实施例提供了一种电池充电控制电路,包括:串联的第一电池和第二电池;电容模块,与串联的第一电池和第二电池连接;充电模块,分别与电容模块、串联的第一电池和第二电池连接;控制模块,分别与电容模块、串联的第一电池和第二电池连接,在第一电池和第二电池中只有一个电量达到第一预设阈值的情况下,控制断开所述充电模块对第一电池和第二电池的充电的通路并打开充电模块对所述电容模块充电的通路;在所述电容模块的电容电压达到第二预设阈值的情况下控制断开所述充电模块对所述电容模块充电的通路并打开所述电容模块对第一电池和第二电池中电量未达到第一预设阈值的电池充电的通路。
在本申请实施例中,串联的第一电池和第二电池可以是两个独立的电池,电池之间通过柔性电路板(Flexible Printed Circuit,FPC)串联起来为智能终端供电,或者第一电池和第二电池为双电芯结构,串联之后外接一个保护板为智能终端供电。
第一电池与第二电池之间存在容量差异,可以是第一电池与第二电池各自的初始容量不等导致存在,也可以是第一电池与第二电池各自的初始容量相同,但在使用过程中由于两个电池老化程度不同,导致第一电池与第二电池之间产生容量差异。
请参考图1,图1是本申请实施例提供的电池充电控制电路的电路连接框图。
如图1所示,充电模块40与外设的充电设备(图中未示出)连接,在第一电池10和第二电池20不存在容量差异的情况下,或者在第一电池10和第二电池20存在容量差异但均未达到满电状态的情况下,充电模块40可以通过插接充电设备形成的充电通路,同时为第一电池10和第二电池20供电。
电容模块30可以包括一个或多个电容,与充电模块40连接,在第一电池10和第二电池20存在容量差异,导致只有一个电池充电达到预设阈值的满电状态的情况下,也就是一个电池达到满电状态而另一个电池未达到满电状态的情况下,控制模块50控制使得充电模块40断开上述为第一电池和第二电池供电的充电通路,充电模块40与电容模块30接通构成新的充电通路,从而改为对电容模块30的电容充电。
在电容模块30充电到预定阈值的情况下,控制模块50控制充电模块40与电容模块30断开连接,并且控制使得电容模块30与未达到满电状态的一个电池并联,从而通过电容模块30对并联的该电池放电,而对该电池的电量进行补充,从而保证第一电池10和第二电池20最终均达到满电状态。
在一个实施例中,电池充电控制电路还包括差分电压检测电路(图中未示出),接入在控制模块50与电容模块30之间,用于测量电容模块30的电 容电压,并发送给控制模块50。
在一个实施例中,电池充电控制电路还包括电量计量模块(图中未示出),接入在控制模块50与串联的第一电池10、第二电池20之间,用于分别测量第一电池10和第二电池20的电量,并发送给控制模块50。
本申请实施例的电池充电控制电路还包括开关组(图中未示出),开关组中的开关包括第一接入端、第二接入端和控制端,所述开关组中的开关的第一接入端、第二接入端分别对应连接串联的第一电池10和第二电池20、所述电容模块30和所述充电模块40,所述控制模块50连接到开关组中开关的控制端并通过开关组中开关的控制端进行对应充电通路的控制。
开关组包括多个开关,多个开关的接入端对应接入第一电池10、第二电池20、电容模块30和充电模块40,控制模块50通过向各开关的控制端发送控制信号,从而控制开关组中对应开关的导通或断开,以形成上述充电模块40对串联的第一电池10和第二电池20进行充电的充电通路,或者形成充电模块40对电容模块30进行充电的充电通路,或者形成电容模块30与第一电池10和第二电池20中未达到满电状态的一个电池并联,以对该并联电池进行充电的充电通道。
下面,将结合不同的实施例对本申请的电池充电控制电路进行展开说明。
首先,参考图2,图2是本申请第一实施例的电池充电控制电路的电路图。
在该实施例中,串联的电池包括第一电池B1和第二电池B2,电容模块包括包括第一电容C1和第二电容C2,差分电压检测模块包括第一差分电压检测通道ADC_P和第二差分电压检测通道ADC_N,电量计量模块包括电量计1和电量计2,开关组包括第二开关Q2、第三开关Q3、第四开关Q4、第五开关Q5和第六开关Q6。
在该实施例的电池充电控制电路中,第一电容C1的第一端接入到第五开关Q5的第一接入端,第一电容C1的第二端接入到第四开关Q4的第一接 入端,第二电容C2的第一端接入到第三开关Q3的第二接入端、第六开关Q6的第一接入端。第二开关Q2的第一接入端接入到充电模块40的第一端、第三开关Q3的第一接入端,第二开关Q2的第二接入端接入到第二电池B2不与第一电池B1连接的第一端、第六开关Q6的第二接入端。
第三开关Q3的第一接入端接入到充电模块40的第一端,第三开关Q3的第二接入端接入到第六开关Q6的第一接入端。第四开关Q4的第二接入端接入到第一电池B1不与第二电池B2连接的第二端、充电模块40的第二端;第五开关Q5的第二接入端接入到第一电池B1与第二电池B2连接的第三端,第六开关Q6的第二接入端接入到第二电池B2不与第一电池B1连接的第一端、第二开关Q2的第二接入端。
如图2所示,电量计1与第一电池B1连接,用于测量第一电池B1的电量并传输对应的电量数据至控制单元50。电量计2与第二电池B2连接,用于测量第二电池B2的电量并传输对应的电量数据至控制单元50,控制单元50将对应电池的电量数据与预定阈值比较,即可以得知第二电池B2和第一电池B1中哪个电池首先充电到满电状态。
例如对于智能终端设备,如果正常情况下,第一电池B1和第二电池B2对应的满电电压值均为4.4伏,则控制单元50在电量计输出的对应电池的电量数据达到4.4伏时,即可以得知对应的电池均充电到满电状态。
如果电池发生老化导致电池容量出现损耗,且第一电池B1对应的满电电压值为4.3伏、第二电池B2对应的满电电压值为4.5伏,则控制单元50在电量计1输出的对应电池的电量数据达到4.3伏时,即可以得知第一电池B1充电到满电状态,而第二电池B2还未充电到满电状态。
如果第一电池B1和第二电池B2之间初始存在容量差异,且第一电池B1对应的满电电压值为4.3伏、第二电池B2对应的满电电压值为4.5伏,则控制单元50在电量计1输出的对应电池的电量数据达到4.3伏时,即可以得知第一电池B1充电到满电状态,而第二电池B2还未充电到满电状态。
第一差分电压检测通道ADC_P接入到第二电容C2的第一端,第二差分电压检测通道ADC_N接入到第一电容C1的第二端。第一电容C1的第一端与第二电容C2的第二端串联,因此第一差分电压检测通道ADC_P和第二差分电压检测通道ADC_N各自检测到的电容值输出给控制模块50,即可以得知串联的第一电容C1与第二电容C2两端的当前电压值。控制单元50将对应当前电压值与预定阈值比较,即可以得知串联的第一电容C1与第二电容C2是否充电到满电状态。
在一个实施例中,第一电容C1和第二电容C2可以选择大电容,例如电容C1和C2的电容容量可以位于20-100微法范围内。第一电容C1和第二电容C2的电容容量可以相同,对于智能终端连接的充电设备电压为9伏的情况,第一电容C1和第二电容C2分摊9伏电压,即第一电容C1和第二电容C2分别为4.5伏。则控制单元50根据第一差分电压检测通道ADC_P和第二差分电压检测通道ADC_N输出的电容值计算第一电容C1和第二电容C2两端电压为9伏时,即可以得知第一电容C1和第二电容C2分别充电到4.5伏,达到满电状态。
在一个实施例中,电池充电控制电路还可以包括第一开关Q1,如图2所示,第一开关Q1设置在充电模块40的第一端和开关Q2的第一接入端(也即开关Q3的第一接入端)之间。第一开关Q1一端与充电模块40连接,另一端与电源管理模块60连接,用于控制充电模块40对电源管理模块60充电的通路的导通或断开。
电源管理模块60与智能终端的外围设备,例如主板、中央处理单元、摄像头等连接,用于将接收到的电源电压转换为不同外围设备对应的电压后,向外围设备供电。
如上文所述,控制模块50可以通过开关组中各开关的控制端进行对应充电通路的控制。
在包括开关Q1的实施例中,控制模块50控制开关Q1导通且开关Q2 断开后,充电模块40与电源管理模块60形成充电通路,可以通过外部充电设备直接向电源管理模块60供电。当然,本申请实施例也可以不包括开关Q1。
如图2所示,开关Q2的第一接入端也与电源管理模块60连接,在控制模块50控制开关Q2导通后,也可以通过串联的第一电池B1和第二电池B2向电源管理模块60供电。
对于图2的实施例,在不考虑开关Q1的情况下,具体来说,控制模块50控制开关组中的第二开关Q2导通以形成第一充电通路,其中,充电模块40通过第一充电通路对第一电池B1和第二电池B2充电。
在充电模块40对第一电池B1和第二电池B2充电的过程中,如果控制模块50监测到电量计1、电量计2测量的第一电池B1和第二电池B2中只有一个电量达到第一预设阈值时,控制第一充电通路中的第二开关Q2关断以及控制开关组中的第三开关Q3、第四开关Q4导通以形成第二充电通路,其中,充电模块40通过第二充电通路对第一电容C1和第二电容C2充电。
这里,第一预设阈值即对应容量小的电池达到满电状态的电压值,例如上述的4.3伏。
在第一电池B1和第二电池B2中电量达到第一预设阈值的电池为第二电池B2时,也即第二电池B2的容量小于第一电池B1的容量,因此第二电池B2达到满电状态,而第一电池B1还未充满电。此时,控制模块50需要控制充电模块40对第一电容C1和第二电容C2充电,以利用对应的第一电容C1或第二电容C2对还未充满的第一电池B1继续充电。
具体地,控制模块50在监测到差分电压检测模块测量的第一电容C1和第二电容C2的电容电压达到第二预设阈值时,控制第二充电通路中的第三开关Q3断开以及控制开关组中的第五开关Q5导通,以将第一电容C1与第一电池B1并联并对第一电池B1充电。
通过第一电容C1给第一电池B1单独充电,待第一电容C1电量下降不 足以给第一电池B1充电后,再次断开第五开关Q5、导通第三开关Q3以形成第二充电通路。充电模块40通过第二充电通路再对第一电容C1和第二电容C2充电,直至第一电容C1和第二电容C2的电容电压达到第二预设阈值,再将第一电容C1与第一电池B1并联并对第一电池B1充电。如此循环,直到第一电池B1达到满电状态。
在第一电池B1和第二电池B2中电量达到第一预设阈值的电池为第一电池B1时,也即第一电池B1的容量小于第二电池B2的容量,因此第一电池B1达到满电状态,而第二电池B2还未充满电。此时,控制模块50需要控制充电模块40对第一电容C1和第二电容C2充电,以利用对应的第一电容C1或第二电容C2对还未充满的第二电池B2继续充电。
具体地,控制模块50在监测到差分电压检测模块测量的第一电容C1和第二电容C2的电容电压达到第二预设阈值时,控制第二充电通路中的第三开关Q3、第四开关Q4断开以及控制开关组中的第五开关Q5和第六开关Q6导通,以将第二电容C2与第二电池B2并联并对第二电池B2充电。
通过第二电容C2给第二电池B2单独充电,待第二电容C2电量下降不足以给第二电池B2充电后,再次断开第五开关Q5、第六开关Q6,导通第三开关Q3以形成第二充电通路。充电模块40通过第二充电通路再对第一电容C1和第二电容C2充电,直至第一电容C1和第二电容C2的电容电压达到第二预设阈值,再将第二电容C2与第二电池B2并联并对第二电池B2充电。如此循环,直到第二电池B2达到满电状态。
在一个实施例中,电池充电控制电路还可以包括与第一电池B1、第二电池B2串联的第三电池,电容模块40还包括第三电容,开关组还包括第九开关,其中,第三电池的第二端接入到第二电池B2不与第一电池B1连接的第一端,第三电池的第一端接入到第二开关Q2的第二接入端;第三电容的第一端接入到第二开关Q2的第二接入端,第三电容的第二端接入到第二电容C2的第一端;第九开关的第一端接入到第三电容的第一端,第九开关的第二 端接入到第三电池的第一端。
换言之,本申请实施例的电池充电控制电路在包括多个串联的电池,且电池之间存在容量差异的情况下,可以对增加的第三电池再对应额外设置开关和电容,使得控制模块50在监测到第三电池未达到满电状态的情况下,控制对应的开关形成充电模块40对第一电容C1和第二电容C2充电的通路,在监测到第一电容C1和第二电容C2达到满电状态后,控制第三电容与第三电池并联,以实现第三电容单独对第三电池充电。
图3是本申请第一实施例的电池充电控制电路对应的充电流程示意图,如图3所示,包括以下步骤:
步骤102,判断充电状态下第一电池B1的容量是否等于第二电池B2的容量,若是(Y),进入步骤104,若否(N),进入步骤106;
步骤104,保持当前充电状态;
步骤106,判断第一电池B1的容量是否大于第二电池B2的容量,若是,进入步骤108,若否,进入步骤116;
步骤108,第二电池B2达到满电状态时,断开开关Q2,同时导通开关Q3、Q4;
步骤110,第一电容C1、第二电容C2达到满电状态时,断开开关Q3,导通开关Q5;
步骤112,通过第一电容C1对第一电池B1充电,电量计1判定第一电池B1是否达到满电状态,若是进入步骤114,若否,返回步骤108;
步骤114,停止对第一电池B1充电;
步骤116,第一电池B1达到满电状态时,断开开关Q2,同时导通开关Q3、Q4;
步骤118,第一电容C1、第二电容C2达到满电状态时,断开开关Q3,导通开关Q5、Q6;
步骤120,通过第二电容C2对第二电池B2充电,电量计2判定第二电 池B2是否达到满电状态,若是进入步骤122,若否,返回步骤116;
步骤122,停止对第二电池B2充电。
下面,参考图4,图4是本申请第二实施例的电池充电控制电路的电路图。
与图2的实施例不同的是,在该实施例中,电容模块包括电容C,开关组包括第二开关Q2、第三开关Q3、第四开关Q4、第六开关Q6、第七开关Q7和第八开关Q8。
在该实施例的电池充电控制电路中,电容C的第一端分别接入到第三开关Q3的第二接入端、第六开关Q6的第一接入端、第七开关Q7的第一接入端,电容C的第二端分别接入到第四开关Q4的第一接入端、第八开关Q8的第一接入端,第二开关Q2的第一接入端接入到充电模块40的第一端、第三开关Q3的第一接入端,第二开关Q2的第二接入端接入到第二电池B2不与第一电池B1连接的第一端、第六开关Q6的第二接入端,第三开关Q3的第一接入端接入到充电模块40的第一端,第三开关Q3的第二接入端接入到第六开关Q6的第一接入端、第七开关Q7的第一接入端,第四开关Q4的第二接入端接入到第一电池B1不与第二电池B2连接的第二端、充电模块40的第二端,第六开关Q6的第二接入端接入到第二电池B2不与第一电池B1连接的第一端、第二开关Q2的第二接入端,第七开关Q7的第二接入端和第八开关Q8的第二接入端分别接入到第一电池B1与第二电池B2连接的第三端。
第一差分电压检测通道ADC_P接入到电容C的第一端,第二差分电压检测通道ADC_N接入到电容C的第二端。因此,第一差分电压检测通道ADC_P和第二差分电压检测通道ADC_N各自检测到的电容值输出给控制模块50,即可以得知电容C两端的当前电压值。控制单元50将对应电容电压值与预设第二阈值比较,即可以得知电容C当前是否达到可以给对应未充满电的第一电池B1或第二电池B2充电的电压阈值。
例如第一电池B1或第二电池B2对应充电到满电状态所需电压是4.4伏,则电容C需要充电到高于4.4伏才可以向对应的电池充电。如果外接的充电设备提供的电源电压保持为9伏,则电容C正常可以充电到9伏电压。通常,智能终端的电池满电电压为4.4伏,如果利用充电到9伏的电容给4.4伏的电池充电,则由于压差比较大,充电电流不好控制。因此,在本申请实施例中,电容C对应的第二预设阈值可以高于4.4伏且不超过4.5伏。
为了使得电容C的充电电压达到第二预设阈值后,即停止充电模块40向电容C充电,并改为由电容C向未达到满电状态的电池充电,本申请实施例的电池充电控制电路还可以包括计时器70。计时器70与控制模块50连接,用于对电容C充电达到上述预设阈值所需的最大充电时长进行计时,并在达到最大充电时长时向控制模块50发送信号,使得控制模块50控制对应的开关,以形成对应的充电通路对未达到满电状态的电池充电。
上述最大充电时长可以根据电容C的电容容量、外接充电设备的输出电压、开关Q3的导通阻抗以及电容C的当前电压计算得到。
电容C最大充电时长对应的计算公式为:
RC*ln[(2*Vbat-Vc)/Vbat],
其中,R为Q3的导通阻抗,C为电容C的电容容量值,Vbat为外部充电设备的输出电压,一般略高于第一电池B1与第二电池B2的电压之和,Vc为电容C的当前电压。
通过控制电容C的最大充电时长,使得电容C得到对应的第二预设阈值,可以保证充电电流和电池安全性。
在一个实施例中,电容C可以选择大电容,例如电容C的电容容量可以位于20-100微法范围内。
如上文所述,控制模块50可以通过开关组中各开关的控制端进行对应充电通路的控制。
对于图4的实施例,在包括第一开关Q1时,控制模块50控制第一开关 Q1导通且控制第二开关Q2断开后,充电模块40与电源管理模块60形成充电通路,可以通过外部充电设备直接向电源管理模块60供电。当然,本申请实施例也可以不包括第一开关Q1。
具体来说,对于图4的实施例,在不包括第一开关Q1时,控制模块50控制开关组中的第二开关Q2导通以形成第三充电通路,其中,充电模块40通过第三充电通路对第一电池B1和第二电池B2充电。
在充电模块40对第一电池B1和第二电池B2充电的过程中,如果控制模块50监测到电量计1、电量计2测量的第一电池B1和第二电池B2中只有一个电量达到第一预设阈值时,控制第三充电通路中的第二开关Q2关断以及控制开关组中的第三开关Q3、第四开关Q4导通以形成第四充电通路,其中,充电模块40通过第四充电通路对电容C充电。
这里,第一预设阈值即对应容量小的电池达到满电状态的电压值。
在第一电池B1和第二电池B2中电量达到第一预设阈值的电池为第二电池B2时,也即第二电池B2的容量小于第一电池B1的容量,因此第二电池B2达到满电状态,而第一电池B1还未充满电。此时,控制模块50需要控制充电模块40对电容C充电,以利用对应的电容C对还未充满的第一电池B1继续充电。
具体地,控制模块50在监测到差分电压检测模块测量的电容C的电容电压达到第二预设阈值时,控制第四充电通路中的第三开关Q3断开以及控制开关组中的第四开关Q4、第七开关Q7导通,以将电容C与第一电池B1并联并对第一电池B1充电。
控制模块50在导通第三开关Q3、第四开关Q4形成为电容C充电的第四充电通路的同时打开计时器,计算电容C需要充电到第二预设阈值所需的最大充电时长T,然后为电容C充电。经过T时长后,再次断开第三开关Q3、导通第七开关Q7,利用电容C为第一电池B1单独充电,待电容C电量下降不足以给第一电池B1充电后,再次断开第七Q7、导通第三开关Q3 以形成第四充电通路。充电模块40通过第四充电通路再对电容C充电,直至电容C的电容电压经过T时长达到第二预设阈值,再将电容C与第一电池B1并联并对第一电池B1充电。如此循环,直到第一电池B1达到满电状态。
在第一电池B1和第二电池B2中电量达到第一预设阈值的电池为第一电池B1时,也即第一电池B1的容量小于第二电池B2的容量,因此第一电池B1达到满电状态,而第二电池B2还未充满电。此时,控制模块50需要控制充电模块40对电容C充电,以利用电容C对还未充满的第二电池B2继续充电。
具体地,控制模块50在监测到差分电压检测模块测量的电容C的电容电压达到第二预设阈值时,控制第四充电通路中的第三开关Q3、第四开关Q4断开以及控制开关组中的第八开关Q8和第六开关Q6导通,以将电容C与第二电池B2并联并对第二电池B2充电。
通过电容C给第二电池B2单独充电,待电容C电量下降不足以给第二电池B2充电后,再次断开第八开关Q8、第六开关Q6,导通第三开关Q3、第四开关Q4以形成第四充电通路。充电模块40通过第四充电通路再对电容C充电,直至电容C的电容电压达到第二预设阈值,再将电容C与第二电池B2并联并对第二电池B2充电。如此循环,直到第二电池B2达到满电状态。
在一个实施例中,电池充电控制电路还可以包括与第一电池B1、第二电池B2串联的第三电池,开关组还包括第十开关,其中,第三电池的第二端接入到第二电池B2不与第一电池B1连接的第一端,第三电池的第一端接入到第二开关Q2的第二接入端;第十开关的第一端接入到电容C的第二端,第二开关的第二端接入到第三电池的第二端。
换言之,本申请实施例的电池充电控制电路在包括多个串联的电池,且电池之间存在容量差异的情况下,可以对增加的第三电池再对应额外设置开关,使得控制模块50在监测到第三电池未达到满电状态的情况下,控制对应的开关形成充电模块40对电容C充电的通路,在监测到电容C达到第二预 设阈值后,控制第三电容与第三电池并联,以实现第三电容单独对第三电池充电。
图5是本申请第二实施例的电池充电控制电路对应的充电流程示意图,如图5所示,包括以下步骤:
步骤202,判断充电状态下第一电池B1的容量是否等于第二电池B2的容量,若是(Y),进入步骤204,若否(N),进入步骤206;
步骤204,保持当前充电状态;
步骤206,判断第一电池B1的容量是否大于第二电池B2的容量,若是,进入步骤208,若否,进入步骤216;
步骤208,第二电池B2达到满电状态时,断开开关Q2,同时导通开关Q3、Q4;
步骤210,检测电容C当前电压并计算最大充电时长,在达到最大充电时长后断开开关Q3,导通开关Q7;
步骤212,通过电容C对第一电池B1充电,电量计1判定第一电池B1是否达到满电状态,若是进入步骤214,若否,返回步骤208;
步骤214,停止对第一电池B1充电;
步骤216,第一电池B1达到满电状态时,断开开关Q2,同时导通开关Q3、Q4;
步骤218,检测电容C当前电压并计算最大充电时长,在达到最大充电时长后断开开关Q3、Q4,导通开关Q6、Q8;
步骤220,通过电容C对第二电池B2充电,电量计2判定第二电池B2是否达到满电状态,若是进入步骤222,若否,返回步骤216;
步骤222,停止对第二电池B2充电。
可选的,开关组中的开关为MOS管。
通过本申请实施例的电池充电控制电路,当检测到串联的电池B1和B2的充电电量没有差异时,可以连通充电模块对应的充电通路对电池B1和B2 同时充电;当检测到电池B1和B2的充电电量有差异时,可以控制充电模块对应的充电通路断开并改对电容模块充电;通过连通电容模块对应的充电通路,打开电容模块对未充电到预设阈值的电池充电的通路并对其充电,保证两个独立电池最终能达到预设的电量状态。由此,可以避免一个电池达到满电状态而另一个电池未到达满电状态下,继续对未达到满电状态的电池充电时导致已达到满电状态的电池存在安全风险。同时,在保证电池安全的同时可以使得两个独立电池最终能达到预设的电量状态,由此显著提高电池B1和B2的使用效率。
本申请实施例还提供了一种电子设备900,包括本申请上述实施例的所述的电池充电控制电路。图6为实现本申请实施例的一种电子设备900的硬件结构示意图。该电子设备900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、电池充电控制电路102、存储器908以及处理器909等部件。
电池充电控制电路102可以对应于上述图1至图5任一实施例的电池充电控制电路,且能达到相同的技术效果,为避免重复,这里不再赘述。
本领域技术人员可以理解,电子设备900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器909逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品 或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (17)

  1. 一种电池充电控制电路,其中,包括:
    串联的第一电池和第二电池;
    电容模块,与串联的第一电池和第二电池连接;
    充电模块,分别与所述电容模块、串联的第一电池和第二电池连接;
    控制模块,分别与所述电容模块、串联的第一电池和第二电池连接,在第一电池和第二电池中只有一个电量达到第一预设阈值的情况下,控制断开所述充电模块对第一电池和第二电池充电的通路并打开所述充电模块对所述电容模块充电的通路;在所述电容模块的电容电压达到第二预设阈值的情况下控制断开所述充电模块对所述电容模块充电的通路并打开所述电容模块对第一电池和第二电池中电量未达到第一预设阈值的电池充电的通路。
  2. 根据权利要求1所述的电路,其中,所述电路还包括开关组,开关组中的开关包括第一接入端、第二接入端和控制端,所述开关组中的开关的第一接入端、第二接入端分别对应连接串联的第一电池和第二电池、所述电容模块和所述充电模块,所述控制模块连接到所述开关组中开关的控制端并通过开关组中开关的控制端进行对应充电通路的控制。
  3. 根据权利要求2所述的电路,其中,所述开关组包括第二开关、第三开关、第四开关、第五开关和第六开关,所述电容模块包括第一电容和第二电容,所述第一电容的第一端接入到第五开关的第一接入端,所述第一电容的第二端接入到第四开关的第一接入端,所述第二电容的第一端接入到第三开关的第二接入端、第六开关的第一接入端,第二开关的第一接入端接入到所述充电模块的第一端、第三开关的第一接入端,第二开关的第二接入端接入到第二电池不与第一电池连接的第一端、第六开关的第二接入端,第三开关的第一接入端接入到所述充电模块的第一端,第三开关的第二接入端接入到第六开关的第一接入端,第四开关的第二接入端接入到所述第一电池不与第二电池连接的第二端、所述充电模块的第二端,第五开关的第二接入端接 入到所述第一电池与第二电池连接的第三端,第六开关的第二接入端接入到所述第二电池不与第一电池连接的第一端、第二开关的第二接入端。
  4. 如权利要求3所述的电路,其中,所述控制模块具体用于:
    控制所述开关组中的第二开关导通以形成第一充电通路,其中,所述充电模块通过所述第一充电通路对第一电池和第二电池充电;
    在监测到第一电池和第二电池中只有一个电量达到第一预设阈值时,控制所述第一充电通路中的第二开关关断以及控制所述开关组中的第三开关、第四开关导通以形成第二充电通路,其中,所述充电模块通过所述第二充电通路对所述第一电容和第二电容充电。
  5. 如权利要求4所述的电路,其中,在第一电池和第二电池中电量达到第一预设阈值的电池为第二电池时,所述控制模块具体用于:
    在监测到第一电容和第二电容的电容电压达到第二预设阈值时,控制所述第二充电通路中的第三开关断开以及控制所述开关组中的第五开关导通,以将所述第一电容与所述第一电池并联并对所述第一电池充电。
  6. 如权利要求4所述的电路,其中,在第一电池和第二电池中电量达到第一预设阈值的电池为第一电池时,所述控制模块具体用于:
    在监测到第一电容和第二电容的串联电容电压达到第二预设阈值时,控制所述第二充电通路中的第三开关、第四开关断开以及控制所述开关组中的第五开关和第六开关导通,以将所述第二电容与所述第二电池并联并对所述第二电池充电。
  7. 如权利要求3所述的电路,其中,所述第一电容和第二电容的电容容量相同。
  8. 如权利要求3所述的电路,其中,所述电路还包括与第一电池、第二电池串联的第三电池,所述电容模块还包括第三电容,所述开关组还包括第九开关,其中,
    所述第三电池的第二端接入到所述第二电池不与第一电池连接的第一端, 所述第三电池的第一端接入到第二开关的第二接入端;
    所述第三电容的第一端接入到第二开关的第二接入端,所述第三电容的第二端接入到所述第二电容的第一端;
    所述第九开关的第一端接入到所述第三电容的第一端,所述第九开关的第二端接入到所述第三电池的第一端。
  9. 根据权利要求2所述的电路,其中,所述开关组包括第二开关、第三开关、第四开关、第六开关、第七开关和第八开关,所述电容模块包括电容,所述电容的第一端分别接入到第三开关的第二接入端、第六开关的第一接入端、第七开关的第一接入端,所述电容的第二端分别接入到第四开关的第一接入端、第八开关的第一接入端,第二开关的第一接入端接入到所述充电模块的第一端、第三开关的第一接入端,第二开关的第二接入端接入到第二电池不与第一电池连接的第一端、第六开关的第二接入端,第三开关的第一接入端接入到所述充电模块的第一端,第三开关的第二接入端接入到第六开关的第一接入端、第七开关的第一接入端,第四开关的第二接入端接入到所述第一电池不与第二电池连接的第二端、所述充电模块的第二端,第六开关的第二接入端接入到所述第二电池不与第一电池连接的第一端、第二开关的第二接入端,第七开关的第二接入端和第八开关的第二接入端分别接入到第一电池与第二电池连接的第三端。
  10. 如权利要求9所述的电路,其中,所述控制模块具体用于:
    控制所述开关组中的第二开关导通以形成第三充电通路,其中,所述充电模块通过所述第三充电通路对第一电池和第二电池充电;
    在监测到所述第一电池和第二电池中只有一个电量达到第一预设阈值时,控制所述第三充电通路中的第二开关关断以及控制所述开关组中的第三开关以及第四开关导通以形成第四充电通路,其中,所述充电模块通过所述第四充电通路对所述电容充电。
  11. 如权利要求10所述的电路,其中,在第一电池和第二电池中电量达 到第一预设阈值的电池为第二电池时,所述控制模块具体用于:
    在监测到所述电容的电容电压达到第二预设阈值时,控制所述第四充电通路中的第三开关断开以及控制所述开关组中的第四开关、第七开关导通,以将所述电容与所述第一电池并联并对所述第一电池充电。
  12. 如权利要求10所述的电路,其中,在第一电池和第二电池中电量达到第一预设阈值的电池为第一电池时,所述控制模块具体用于:
    在监测到所述电容的电容电压达到第二预设阈值时,控制所述第四充电通路中的第三开关、第四开关断开以及控制所述开关组中的第八开关和第六开关导通,以将所述电容与所述第二电池并联并对所述第二电池充电。
  13. 如权利要求10所述的电路,其中,所述电路还包括与第一电池、第二电池串联的第三电池,所述开关组还包括第十开关,其中,
    所述第三电池的第二端接入到所述第二电池不与第一电池连接的第一端,所述第三电池的第一端接入到第二开关的第二接入端;
    所述第十开关的第一端接入到所述电容的第一端,所述第二开关的第二端接入到所述第三电池的第一端。
  14. 如权利要求1所述的电路,其中,还包括差分电压检测电路,接入在所述控制模块与所述电容模块之间,用于测量所述电容模块的电容电压,并发送给所述控制模块。
  15. 如权利要求1所述的电路,其中,还包括电量计量模块,接入在所述控制模块与串联的第一电池、第二电池之间,用于分别测量第一电池和第二电池的电量,并发送给所述控制模块。
  16. 如权利要求1所述的电路,其中,所述开关为MOS管。
  17. 一种电子设备,其中,包括如权利要求1-16中任一项所述的电池充电控制电路。
PCT/CN2022/104948 2021-07-14 2022-07-11 电池充电控制电路及电子设备 WO2023284685A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22841321.7A EP4372954A1 (en) 2021-07-14 2022-07-11 Battery charging control circuit and electronic device
US18/402,973 US20240235218A9 (en) 2021-07-14 2024-01-03 Battery charging control circuit and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110794675.8A CN113541250B (zh) 2021-07-14 2021-07-14 电池充电控制电路及电子设备
CN202110794675.8 2021-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/402,973 Continuation US20240235218A9 (en) 2021-07-14 2024-01-03 Battery charging control circuit and electronic device

Publications (1)

Publication Number Publication Date
WO2023284685A1 true WO2023284685A1 (zh) 2023-01-19

Family

ID=78127944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104948 WO2023284685A1 (zh) 2021-07-14 2022-07-11 电池充电控制电路及电子设备

Country Status (4)

Country Link
US (1) US20240235218A9 (zh)
EP (1) EP4372954A1 (zh)
CN (1) CN113541250B (zh)
WO (1) WO2023284685A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541250B (zh) * 2021-07-14 2023-04-11 维沃移动通信有限公司 电池充电控制电路及电子设备
CN114447491B (zh) * 2022-01-29 2024-07-23 维沃移动通信有限公司 电子设备及控制方法
CN118435103A (zh) * 2022-06-02 2024-08-02 深圳市韶音科技有限公司 一种智能眼镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192371A (ja) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd 蓄電装置、充電方法及び放電方法
CN103560548A (zh) * 2013-08-26 2014-02-05 中国科学院苏州纳米技术与纳米仿生研究所 新型电池组、电池组连接方法及电池组充放电管理方法
CN104953194A (zh) * 2014-03-31 2015-09-30 比亚迪股份有限公司 电池均衡控制装置及具有其的电动车和电池均衡控制方法
US20160013521A1 (en) * 2013-02-27 2016-01-14 Nec Corporation Storage battery, control method of storage battery, control device, and control method
CN113541250A (zh) * 2021-07-14 2021-10-22 维沃移动通信有限公司 电池充电控制电路及电子设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3113315A1 (en) * 2015-07-02 2017-01-04 Hella KGaA Hueck & Co Automotive dual voltage battery charging system
CN111900769A (zh) * 2019-05-06 2020-11-06 华为技术有限公司 一种充电控制电路及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013192371A (ja) * 2012-03-14 2013-09-26 Sumitomo Electric Ind Ltd 蓄電装置、充電方法及び放電方法
US20160013521A1 (en) * 2013-02-27 2016-01-14 Nec Corporation Storage battery, control method of storage battery, control device, and control method
CN103560548A (zh) * 2013-08-26 2014-02-05 中国科学院苏州纳米技术与纳米仿生研究所 新型电池组、电池组连接方法及电池组充放电管理方法
CN104953194A (zh) * 2014-03-31 2015-09-30 比亚迪股份有限公司 电池均衡控制装置及具有其的电动车和电池均衡控制方法
CN113541250A (zh) * 2021-07-14 2021-10-22 维沃移动通信有限公司 电池充电控制电路及电子设备

Also Published As

Publication number Publication date
US20240136830A1 (en) 2024-04-25
CN113541250B (zh) 2023-04-11
EP4372954A1 (en) 2024-05-22
CN113541250A (zh) 2021-10-22
US20240235218A9 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
WO2023284685A1 (zh) 电池充电控制电路及电子设备
CN107894567B (zh) 电池包以及电池包接口状态的检测系统和检测方法
US9385551B2 (en) Automatic mobile device detector
CN108461834B (zh) 一种电池组结构、移动终端及充放电控制方法
CN105680422B (zh) 改进型电池保护电路及系统
CN108539830B (zh) 一种充电切换控制电路及控制方法
CN104993534A (zh) 一种移动终端及其充电控制方法
US10367364B2 (en) Method and apparatus for powering mobile device
US11296517B2 (en) Battery and external component
WO2024061191A1 (zh) 电子设备
CN111884303B (zh) 充电控制电路、充电控制方法和电子设备
CN116111659A (zh) 充电电路、方法、装置、电子设备及介质
TW201136095A (en) Battery state monitoring circuit and battery device
CN113809812A (zh) 双电池电路及其控制方法、电子设备
US20130103878A1 (en) Universal usb charger
CN111537915A (zh) 一种多类型充电线的断线检测电路及充电宝
CN114725893B (zh) 电池的短路保护系统、方法及电子设备
CN114362509A (zh) 动态电压切换装置、tws芯片及tws设备
US20040004463A1 (en) Power-on device
US11119557B2 (en) Host hardware reset based on adapter removal pattern
CN105896662A (zh) 单端口移动电源控制电路及其控制方法
CN217216042U (zh) 一种接口电路、智能电池及电子设备
CN216121873U (zh) 开机控制电路及移动电源
CN215494042U (zh) 浪涌发生器及受限制短路试验装置
CN215009602U (zh) 线控器和电气设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841321

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841321

Country of ref document: EP

Effective date: 20240214