WO2023284392A1 - 医用环境后勤保障监测系统 - Google Patents
医用环境后勤保障监测系统 Download PDFInfo
- Publication number
- WO2023284392A1 WO2023284392A1 PCT/CN2022/092172 CN2022092172W WO2023284392A1 WO 2023284392 A1 WO2023284392 A1 WO 2023284392A1 CN 2022092172 W CN2022092172 W CN 2022092172W WO 2023284392 A1 WO2023284392 A1 WO 2023284392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- pipeline
- air filter
- particle counter
- monitoring system
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 71
- 238000001514 detection method Methods 0.000 claims abstract description 31
- 230000010365 information processing Effects 0.000 claims description 32
- 238000000746 purification Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 5
- 230000003749 cleanliness Effects 0.000 abstract description 13
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 238000004887 air purification Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/12—Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B25/00—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
- G08B25/01—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
- G08B25/10—Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N2015/0662—Comparing before/after passage through filter
Definitions
- the invention relates to the field of air detection, in particular to a medical environment logistics support monitoring system.
- the operating room is a place to provide surgery and rescue for patients, and it is an important technical department of the hospital.
- the operating room should be connected to the operating department, and should also be close to the blood bank, intensive care unit, anesthesia recovery room, etc., and do a good job in the management of the four channels of surgical incision infection, namely: the air in the operating room, the items needed for the operation, and the care of doctors and nurses. Preventing infection of the fingers and the patient's skin is an important factor in ensuring the success of the operation.
- the cleanliness of the air in the operating room needs to be tested frequently. At present, whether the cleanliness of the operating room in the hospital is up to standard depends only on a petri dish test in an unmanned environment when the project is completed, but it is impossible to verify whether the cleanliness is still up to standard after the hospital is put into use.
- the main purpose of the present invention is to provide a medical environment post-guarantee monitoring system, which is convenient for the punctual monitoring of air filter consumables on the basis of flexible monitoring of the air quality in the clean area of the hospital, such as the operating room. Replacement, so as to ensure that the air cleanliness in the area remains within the required range for a long time.
- a medical environmental logistics support monitoring system including at least one detection device and at least one intelligent terminal connected to the detection device, the detection device includes a housing, a particle Counter and air filter, the bottom surface of the housing with air inlet and air outlet is provided with at least 3 universal wheels, the particle counter communicated with the air outlet and the air filter communicated with the air inlet are located in the housing ;
- a gas pipe that runs through the housing is connected to the air inlet of a first electromagnetic valve, and the two air outlets of the first electromagnetic valve are respectively connected to the particle counter and the air filter through the first pipeline and the second pipeline.
- the air filter is connected to the air inlet of a second electromagnetic valve through the third pipeline, and the two air outlets of the second electromagnetic valve are respectively communicated with the particle counter and the air outlet through the fourth pipeline and the fifth pipeline;
- a particle counter for measuring the particle content in the air from the first pipeline and the particle content in the air purified by the air filter from the fourth pipeline;
- the information processing module generates a purification control signal and an alarm signal according to the comparison result of the particle content information in the air from the first pipeline of the particle counter and the threshold value, and generates a purification detection control signal and a corresponding first Valve switching signal, second valve switching signal;
- the WiFi module is used to send the particle content information obtained from the particle counter or the information processing module to the smart terminal in real time;
- the alarm module is used to respond to the alarm signal from the information processing module and issue an alarm;
- the first solenoid valve is used to respond to the first valve switching signal from the information processing module to open the gas passage from the air pipe to the particle counter or the air passage from the air pipe to the air filter;
- the second solenoid valve is used to respond to the second valve switching signal from the information processing module to open the gas passage from the air filter to the air outlet or the gas passage from the air filter to the particle counter;
- the air filter is used to respond to the purification control signal from the information processing module, open or close the processing operation of the air from the air inlet, and is also used to respond to the purification detection control signal from the information processing module, open or close the air filter from the second Pipeline air treatment operations;
- Smart terminal for receiving, storing and/or analyzing particle content information.
- the number of said universal wheels is 4, which are respectively located at the four corners of the casing.
- the bottom surface of the housing is provided with 2 support rods, 2 of the 4 universal wheels are installed on the lower end surface of a support rod, and the other 2 universal wheels are installed on the other support lower end of the rod.
- the smart terminal includes a cloud, a computer, a mobile phone or a tablet.
- the alarm module is a two-color light alarm installed on the housing.
- the alarm module when responding to the alarm signal from the information processing module, the alarm module emits red light, otherwise, the alarm module emits green light.
- a solenoid valve for controlling the on-off of the air inlet is installed on the pipe connecting the air filter and the air inlet.
- the present invention has the following advantages compared with the prior art:
- the medical environment logistics support monitoring system of the present invention can move between independent areas with cleanliness requirements such as operating rooms, and monitor the cleanliness of each area in real time, and can also pass through the air filter before and after Gas detection, to accurately obtain the time to replace the air filter consumables, to avoid leakage points in the filters purchased by the hospital, unable to effectively filter the air or waste caused by frequent replacement of air filter consumables and replacement of air filter consumables If it is not timely and affects the air purification effect, so as to ensure that the air cleanliness in the area remains within the required range for a long time.
- the medical environment logistics support monitoring system of the present invention is used to send the particle content information obtained from the particle counter or information processing module to the smart terminal in real time, and the smart terminal is used to receive, store and/or analyze the particle content Information can realize convenient real-time transmission of data, and without the need for on-site readings, the air cleanliness information in the working space of each detection device can be obtained on the smart terminal, and the information can also be stored and multi-dimensionally analyzed; further, its alarm
- the module is used to respond to the alarm signal and issue an alarm, which can obtain the detection results more intuitively, in real time, and remotely, so that users such as medical staff can obtain the air quality compliance status more quickly and intuitively.
- Fig. 1 is the structural representation of the medical environment logistics support monitoring system of the present invention
- Fig. 2 is a schematic diagram of the internal structure of the medical environment logistics support monitoring system of the present invention.
- Fig. 3 is a schematic diagram of the principle of the medical environment logistics support monitoring system of the present invention.
- connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or a Electrical connection; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components.
- Embodiment 1 A medical environment logistics support monitoring system, including at least one detection device and at least one intelligent terminal 10 communicatively connected with the detection device, the detection device includes a housing 1, a particle counter 2 and an air filter 3 , the bottom surface of the housing 1 with the air inlet and the air outlet is provided with at least three universal wheels 5, the particle counter 2 communicated with the air outlet and the air filter 3 communicated with the air inlet are located in the housing 1 Inside;
- a gas pipe 7 that runs through the housing 1 is connected to the air inlet of a first electromagnetic valve 11, and the two air outlets of the first electromagnetic valve 11 pass through the first pipeline, the second pipeline, the particle counter 2, and the air filter respectively.
- the air filter 3 is connected to the air inlet of a second solenoid valve 12 through a third pipeline, and the two air outlets of the second solenoid valve 12 pass through the fourth pipeline and the fifth pipeline respectively. Connected with the particle counter 2 and the air outlet;
- the particle counter 2 is used to measure the particle content in the air from the first pipeline and the particle content in the gas purified by the air filter 3 from the fourth pipeline;
- the information processing module 8 according to the comparison result of the particle content information in the air from the first pipeline of the particle counter 2 and the threshold value, generates a purification control signal and an alarm signal and generates a purification detection control signal and a corresponding The first valve switching signal, the second valve switching signal;
- the WiFi module 6 is used to send the particle content information obtained from the particle counter 2 or the information processing module 8 to the intelligent terminal 10 in real time;
- the alarm module 13 is used to respond to the alarm signal from the information processing module 8 and send an alarm;
- the first electromagnetic valve 11 is used to respond to the first valve switching signal from the information processing module 8, and open the gas passage from the air pipe 7 to the particle counter 2 or the air passage from the air pipe 7 to the air filter 3;
- the second solenoid valve 12 is used to respond to the second valve switching signal from the information processing module 8, and open the gas passage from the air filter 3 to the air outlet or the gas passage from the air filter 3 to the particle counter 2;
- the air filter 3 is used to respond to the purification control signal from the information processing module 8, open or close the processing operation of the air from the air inlet, and is also used to respond to the purification detection control signal from the information processing module 8. treatment of air from the second line;
- the intelligent terminal 10 is used for receiving, storing and/or analyzing particle content information.
- the number of the above-mentioned universal wheels 5 is four, which are respectively located at the four corners of the housing 1; the bottom surface of the above-mentioned housing 1 is provided with two support rods 9, and two of the four universal wheels 5 are installed On the lower end surface of one support rod 9, the other two universal wheels 5 are installed on the lower end surface of another support rod 9;
- a solenoid valve for controlling the on-off of the air intake is installed on the pipeline that the above-mentioned air filter 3 communicates with the air inlet;
- the above-mentioned intelligent terminal 10 includes a computer; the above-mentioned alarm module 13 is a two-color light alarm installed on the casing 1 .
- Embodiment 2 A medical environment logistics support monitoring system, including 2 detection devices and 2 intelligent terminals 10 communicating with the detection devices, the detection device includes a housing 1, a particle counter 2 and an air filter 3.
- the bottom surface of the housing 1 with the air inlet and the air outlet is provided with at least 3 universal wheels 5, the particle counter 2 communicating with the air outlet and the air filter 3 communicating with the air inlet are located in the housing within 1;
- a gas pipe 7 that runs through the housing 1 is connected to the air inlet of a first electromagnetic valve 11, and the two air outlets of the first electromagnetic valve 11 pass through the first pipeline, the second pipeline, the particle counter 2, and the air filter respectively.
- the air filter 3 is connected to the air inlet of a second solenoid valve 12 through a third pipeline, and the two air outlets of the second solenoid valve 12 pass through the fourth pipeline and the fifth pipeline respectively. Connected with the particle counter 2 and the air outlet;
- the particle counter 2 is used to measure the particle content in the air from the first pipeline and the particle content in the gas purified by the air filter 3 from the fourth pipeline;
- the information processing module 8 according to the comparison result of the particle content information in the air from the first pipeline of the particle counter 2 and the threshold value, generates a purification control signal and an alarm signal and generates a purification detection control signal and a corresponding The first valve switching signal, the second valve switching signal;
- the WiFi module 6 is used to send the particle content information obtained from the particle counter 2 or the information processing module 8 to the intelligent terminal 10 in real time;
- the alarm module 13 is used to respond to the alarm signal from the information processing module 8 and issue an alarm;
- the first electromagnetic valve 11 is used to respond to the first valve switching signal from the information processing module 8, and open the gas passage from the air pipe 7 to the particle counter 2 or the air passage from the air pipe 7 to the air filter 3;
- the second solenoid valve 12 is used to respond to the second valve switching signal from the information processing module 8, and open the gas passage from the air filter 3 to the air outlet or the gas passage from the air filter 3 to the particle counter 2;
- the air filter 3 is used to respond to the purification control signal from the information processing module 8, open or close the processing operation of the air from the air inlet, and is also used to respond to the purification detection control signal from the information processing module 8. treatment of air from the second line;
- the intelligent terminal 10 is used for receiving, storing and/or analyzing particle content information.
- the number of the above-mentioned universal wheels 5 is 4, which are respectively located at the four corners of the housing 1; the above-mentioned intelligent terminal 10 includes a mobile phone; the above-mentioned alarm module 13 is a two-color light alarm installed on the housing 1. When processing the alarm signal of the module 8, the alarm module 13 emits a red light; otherwise, the alarm module 13 emits a green light.
- the above-mentioned medical environment logistics support monitoring system When the above-mentioned medical environment logistics support monitoring system is used, it can move between independent areas with cleanliness requirements such as the operating room, and monitor the cleanliness of each area in real time, and can also monitor the air flow before and after the air filter. Detection, accurate acquisition of the time to replace the air filter consumables, to avoid the occurrence of leaks in the hospital's self-purchased filters, the inability to effectively filter the air or the waste caused by frequent replacement of the air filter consumables and the lack of replacement of the air filter consumables The situation that affects the air purification effect in time, so as to ensure that the air cleanliness in the area is kept within the required range for a long time;
- the air cleanliness information in the working space of each detection device can be obtained on the smart terminal, and the information can also be stored and multi-dimensionally analyzed;
- its alarm module is used to respond to the alarm signal and send out an alarm, which can display the detection results more intuitively and in real time, so that users such as medical staff can obtain the air quality compliance status more quickly and intuitively.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Emergency Alarm Devices (AREA)
- Ventilation (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
提供一种医用环境后勤保障监测系统,包括至少一个检测装置和至少一个与检测装置通讯连接的智能终端(10),检测装置包括壳体(1)、颗粒计数器(2)和空气过滤器(3),一贯穿壳体(1)的气管(7)连接到一第一电磁阀(11)的进气口,第一电磁阀(11)的2个出气口分别通过第一管路、第二管路与颗粒计数器(2)、空气过滤器(3)连接,空气过滤器(3)通过第三管路连接到一第二电磁阀(12)的进气口,第二电磁阀(12)的2个出气口分别通过第四管路、第五管路与颗粒计数器(2)、出风口连通,智能终端(10)用于接收、存储和/或分析颗粒含量信息。医用环境后勤保障监测系统在实现对医院内洁净区域如手术室内空气质量进行灵活监控的基础上,便于对空气过滤器耗材的准时更换,从而保证区域内空气洁净度长期保持在要求范围内。
Description
本发明涉及空气检测领域,特别涉及一种医用环境后勤保障监测系统。
手术室是为病人提供手术及抢救的场所,是医院的重要技术部门。手术室应与手术科室相接连,还要与血库、监护室、麻醉复苏室等临近,抓好手术切口感染四条途径的环节管理,即:手术室的空气、手术所需的物品、医生护士的手指及病人的皮肤,防止感染,是确保手术成功率的重要因素。
手术室需要经常检测空气的洁净度,目前医院手术室洁净度是否达标仅依靠工程完工时的一次在无人环境下的培养皿检测,但在医院投入使用后洁净度是否还达标无从查证。
发明内容
本发明的主要目的在于提供一种医用环境后期保障监测系统,该医用环境后勤保障监测系统在实现对医院内洁净区域如手术室内空气质量进行灵活监控的基础上,便于对空气过滤器耗材的准时更换,从而保证区域内空气洁净度长期保持在要求范围内。
为达到上述目的,本发明采用的技术方案是:一种医用环境后勤保障监测系统,包括至少一个检测装置和至少一个与所述检测装置通讯连接的智能终端,所述检测装置包括壳体、颗粒计数器和空气过滤器,具有进风口和出风口的所述壳体的底面设置有至少3个万向轮,与出风口连通的所述颗粒计数器和与进风口连通的空气过滤器均位于壳体内;
一贯穿壳体的气管连接到一第一电磁阀的进气口,此第一电磁阀的2个出气口分别通过第一管路、第二管路与颗粒计数器、空气过滤器连接,所述空气过滤器通过第三管路连接到一第二电磁阀的进气口,此第二电磁阀的2个出气口分别通过第四管路、第五管路与颗粒计数器、出风口连通;
颗粒计数器,用于测量来自第一管路的空气中的颗粒含量和来自第四管路的经空气过滤器净化后气体中的颗粒含量;
还包括:
信息处理模块,根据来自颗粒计数器的第一管路的空气中的颗粒含量信息与阈值的比较结果,生成净化控制信号和报警信号以及根据设定的周期,生成净化检测控制信号和相应的第一阀门切换信号、第二阀门切换信号;
WiFi模块,用于将获取自颗粒计数器或信息处理模块的颗粒含量信息实时发送至智能终端;报警模块,用于响应来自信息处理模块的报警信号,发出警报;
第一电磁阀,用于响应来自信息处理模块的第一阀门切换信号,打开气管到颗粒计数器的气体通道或者气管到空气过滤器的气体通道;
第二电磁阀,用于响应来自信息处理模块的第二阀门切换信号,打开空气过滤器到出风口的气体通道或者空气过滤器到颗粒计数器的气体通道;
空气过滤器,用于响应来自信息处理模块的净化控制信号,开启或关闭对来自进风口的空气的处理操作,还用于响应来自信息处理模块的净化检测控制信号,开启或关闭对来自第二管路的空气的处理操作;
智能终端,用于接收、存储和/或分析颗粒含量信息。
上述技术方案中进一步改进的方案如下:
1.上述方案中,所述万向轮的数目为4个,分别位于壳体的四个拐角处。
2.上述方案中,所述壳体的底面设置有2个支撑杆,4个万向轮中2个万向轮安装于一个支撑杆的下端面,另2个万向轮安装于另一个支撑杆的下端面。
3.上述方案中,所述智能终端包括云端、电脑、手机或平板。
4.上述方案中,所述报警模块为安装于壳体上的双色灯光报警器。
5.上述方案中,当响应来自信息处理模块的报警信号时,所述报警模块发出红光,否则,所述报警模块发出绿光。
6.上述方案中,所述空气过滤器与进风口连通的管道上安装有一用于控制进风通断的电磁阀。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
1、本发明医用环境后勤保障监测系统,其可以在手术室等有洁净度要求的独立区域之间移动,并对每个区域的洁净度进行实时监测,还可以通过对经过空气过滤器前后的气体检测,精确获取更换空气过滤器耗材的时间,避免出现院方自购过滤器存在漏点,无法对空气进行有效过滤或对空气过滤器耗材的频繁更换导致的浪费以及对空气过滤器耗材更换不及时而影响空气净化效果的情况,从而保证区域内空气洁净度长期保持在要求范围内。
2、本发明医用环境后勤保障监测系统,其WiFi模块,用于将获取自颗粒计数器或信息处理模块的颗粒含量信息实时发送至智能终端,智能终端,用于接收、存储和/或分析颗粒含量信息,可以实现对数据的便捷实时传送,且无需现场读数,在智能终端即可获取各个检测装置作业空间内的空气洁净度信息,还可以对信息进行存储和多维度分析;进一步的,其报警模块,用于响应报警信号,发出警报,可以更加直观、实时、远距离的获取检测结果,便于使用者如医护人员更加快捷和直观的获得空气质量达标情况。
图1为本发明医用环境后勤保障监测系统的结构示意图;
图2为本发明医用环境后勤保障监测系统的内部结构示意图;
图3为本发明医用环境后勤保障监测系统的原理示意图。
以上附图中:1、壳体;2、颗粒计数器;3、空气过滤器;5、万向轮;6、WiFi模块;7、气管;8、信息处理模块;9、支撑杆;10、智能终端;11、第一电磁阀;12、第二电磁阀;13、报警模块。
在本专利的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制;术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性;此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本专利的具体含义。
实施例1:一种医用环境后勤保障监测系统,包括至少一个检测装置和至少一个与所述检测装置通讯连接的智能终端10,所述检测装置包括壳体1、颗粒计数器2和空气过滤器3,具有进风口和出风口的所述壳体1的底面设置有至少3个万向轮5,与出风口连通的所述颗粒计数器2和与进风口连通的空气过滤器3均位于壳体1内;
一贯穿壳体1的气管7连接到一第一电磁阀11的进气口,此第一电磁阀11的2个出气口分别通过第一管路、第二管路与颗粒计数器2、空气过滤器3连接,所述空气过滤器3通过第三管路连接到一第二电磁阀12的进气口,此第二电磁阀12的2个出气口分别通过第四管路、第五管路与颗粒计数器2、出风口连通;
颗粒计数器2,用于测量来自第一管路的空气中的颗粒含量和来自第四管路的经空气过滤器3净化后气体中的颗粒含量;
还包括:
信息处理模块8,根据来自颗粒计数器2的第一管路的空气中的颗粒含量信息与阈值的比较结果,生成净化控制信号和报警信号以及根据设定的周期,生成净化检测控制信号和相应的第一阀门切换信号、第二阀门切换信号;
WiFi模块6,用于将获取自颗粒计数器2或信息处理模块8的颗粒含量信息实时发送至智能 终端10;
报警模块13,用于响应来自信息处理模块8的报警信号,发出警报;
第一电磁阀11,用于响应来自信息处理模块8的第一阀门切换信号,打开气管7到颗粒计数器2的气体通道或者气管7到空气过滤器3的气体通道;
第二电磁阀12,用于响应来自信息处理模块8的第二阀门切换信号,打开空气过滤器3到出风口的气体通道或者空气过滤器3到颗粒计数器2的气体通道;
空气过滤器3,用于响应来自信息处理模块8的净化控制信号,开启或关闭对来自进风口的空气的处理操作,还用于响应来自信息处理模块8的净化检测控制信号,开启或关闭对来自第二管路的空气的处理操作;
智能终端10,用于接收、存储和/或分析颗粒含量信息。
上述万向轮5的数目为4个,分别位于壳体1的四个拐角处;上述壳体1的底面设置有2个支撑杆9,4个万向轮5中2个万向轮5安装于一个支撑杆9的下端面,另2个万向轮5安装于另一个支撑杆9的下端面;
上述空气过滤器3与进风口连通的管道上安装有一用于控制进风通断的电磁阀;
上述智能终端10包括电脑;上述报警模块13为安装于壳体1上的双色灯光报警器。
实施例2:一种医用环境后勤保障监测系统,包括至2个检测装置和2个与所述检测装置通讯连接的智能终端10,所述检测装置包括壳体1、颗粒计数器2和空气过滤器3,具有进风口和出风口的所述壳体1的底面设置有至少3个万向轮5,与出风口连通的所述颗粒计数器2和与进风口连通的空气过滤器3均位于壳体1内;
一贯穿壳体1的气管7连接到一第一电磁阀11的进气口,此第一电磁阀11的2个出气口分别通过第一管路、第二管路与颗粒计数器2、空气过滤器3连接,所述空气过滤器3通过第三管路连接到一第二电磁阀12的进气口,此第二电磁阀12的2个出气口分别通过第四管路、第五管路与颗粒计数器2、出风口连通;
颗粒计数器2,用于测量来自第一管路的空气中的颗粒含量和来自第四管路的经空气过滤器3净化后气体中的颗粒含量;
还包括:
信息处理模块8,根据来自颗粒计数器2的第一管路的空气中的颗粒含量信息与阈值的比较结果,生成净化控制信号和报警信号以及根据设定的周期,生成净化检测控制信号和相应的第一阀门切换信号、第二阀门切换信号;
WiFi模块6,用于将获取自颗粒计数器2或信息处理模块8的颗粒含量信息实时发送至智能终端10;
报警模块13,用于响应来自信息处理模块8的报警信号,发出警报;
第一电磁阀11,用于响应来自信息处理模块8的第一阀门切换信号,打开气管7到颗粒计数器2的气体通道或者气管7到空气过滤器3的气体通道;
第二电磁阀12,用于响应来自信息处理模块8的第二阀门切换信号,打开空气过滤器3到出风口的气体通道或者空气过滤器3到颗粒计数器2的气体通道;
空气过滤器3,用于响应来自信息处理模块8的净化控制信号,开启或关闭对来自进风口的空气的处理操作,还用于响应来自信息处理模块8的净化检测控制信号,开启或关闭对来自第二管路的空气的处理操作;
智能终端10,用于接收、存储和/或分析颗粒含量信息。
上述万向轮5的数目为4个,分别位于壳体1的四个拐角处;上述智能终端10包括手机;上述报警模块13为安装于壳体1上的双色灯光报警器,当响应来自信息处理模块8的报警信号时,所述报警模块13发出红光,否则,所述报警模块13发出绿光。
当处于正常使用状态时,通过颗粒计数器实时获取当前空气中的颗粒含量信息,当颗粒含量数值超过设定阈值时,启动空气过滤器对空气进行净化直至颗粒计数器获得到的颗粒含量数值下降至阈值以下;
每隔一段时间,启动对空气过滤器的检测模式,通过电磁阀切换气体通路,同时开启空气过滤器,并通过颗粒计数器对经过空气过滤器净化前、后的气体进行测量,并根据经过空气过滤器净化前、后的气体中颗粒含量的差值与设定阈值的比较,确定是否需要更换空气过滤器中的滤芯等耗材;
采用上述医用环境后勤保障监测系统时,其可以在手术室等有洁净度要求的独立区域之间移动,并对每个区域的洁净度进行实时监测,还可以通过对经过空气过滤器前后的气体检测,精确获取更换空气过滤器耗材的时间,避免出现院方自购过滤器存在漏点,无法对空气进行有效过滤或对空气过滤器耗材的频繁更换导致的浪费以及对空气过滤器耗材更换不及时而影响空气净化效果的情况,从而保证区域内空气洁净度长期保持在要求范围内;
另外,可以实现对数据的便捷实时传送,且无需现场读数,在智能终端即可获取各个检测装置作业空间内的空气洁净度信息,还可以对信息进行存储和多维度分析;
进一步的,其报警模块,用于响应报警信号,发出警报,可以更加直观且实时的将检测结果展示出来,便于使用者如医护人员更加快捷和直观的获得空气质量达标情况。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
Claims (7)
- 一种医用环境后勤保障监测系统,包括至少一个检测装置和至少一个与所述检测装置通讯连接的智能终端(10),其特征在于:所述检测装置包括壳体(1)、颗粒计数器(2)和空气过滤器(3),具有进风口和出风口的所述壳体(1)的底面设置有至少3个万向轮(5),与出风口连通的所述颗粒计数器(2)和与进风口连通的空气过滤器(3)均位于壳体(1)内;一贯穿壳体(1)的气管(7)连接到一第一电磁阀(11)的进气口,此第一电磁阀(11)的2个出气口分别通过第一管路、第二管路与颗粒计数器(2)、空气过滤器(3)连接,所述空气过滤器(3)通过第三管路连接到一第二电磁阀(12)的进气口,此第二电磁阀(12)的2个出气口分别通过第四管路、第五管路与颗粒计数器(2)、出风口连通;颗粒计数器(2),用于测量来自第一管路的空气中的颗粒含量和来自第四管路的经空气过滤器(3)净化后气体中的颗粒含量;还包括:信息处理模块(8),根据来自颗粒计数器(2)的第一管路的空气中的颗粒含量信息与阈值的比较结果,生成净化控制信号和报警信号以及根据设定的周期,生成净化检测控制信号和相应的第一阀门切换信号、第二阀门切换信号;WiFi模块(6),用于将获取自颗粒计数器(2)或信息处理模块(8)的颗粒含量信息实时发送至智能终端(10);报警模块(13),用于响应来自信息处理模块(8)的报警信号,发出警报;第一电磁阀(11),用于响应来自信息处理模块(8)的第一阀门切换信号,打开气管(7)到颗粒计数器(2)的气体通道或者气管(7)到空气过滤器(3)的气体通道;第二电磁阀(12),用于响应来自信息处理模块(8)的第二阀门切换信号,打开空气过滤器(3)到出风口的气体通道或者空气过滤器(3)到颗粒计数器(2)的气体通道;空气过滤器(3),用于响应来自信息处理模块(8)的净化控制信号,开启或关闭对来自进风口的空气的处理操作,还用于响应来自信息处理模块(8)的净化检测控制信号,开启或关闭对来自第二管路的空气的处理操作;智能终端(10),用于接收、存储和/或分析颗粒含量信息。
- 根据权利要求1所述的医用环境后勤保障监测系统,其特征在于:所述万向轮(5)的数目为4个,分别位于壳体(1)的四个拐角处。
- 根据权利要求1或2所述的医用环境后勤保障监测系统,其特征在于:所述壳体(1)的底面设置有2个支撑杆(9),4个万向轮(5)中2个万向轮(5)安装于一个支撑杆(9)的下端面,另2个万向轮(5)安装于另一个支撑杆(9)的下端面。
- 根据权利要求1所述的医用环境后勤保障监测系统,其特征在于:所述智能终端(10)包括云端、电脑、手机或平板。
- 根据权利要求1所述的医用环境后勤保障监测系统,其特征在于:所述报警模块(13)为安装于壳体(1)上的双色灯光报警器。
- 根据权利要求5所述的医用环境后勤保障监测系统,其特征在于:当响应来自信息处理模块(8)的报警信号时,所述报警模块(13)发出红光,否则,所述报警模块(13)发出绿光。
- 根据权利要求1所述的医用环境后勤保障监测系统,其特征在于:所述空气过滤器(3)与进风口连通的管道上安装有一用于控制进风通断的电磁阀。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110785516.1A CN113237806B (zh) | 2021-07-12 | 2021-07-12 | 医用环境后勤保障监测系统 |
CN202110785516.1 | 2021-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023284392A1 true WO2023284392A1 (zh) | 2023-01-19 |
Family
ID=77135437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/092172 WO2023284392A1 (zh) | 2021-07-12 | 2022-05-11 | 医用环境后勤保障监测系统 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN114252374A (zh) |
WO (1) | WO2023284392A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117524429A (zh) * | 2023-10-17 | 2024-02-06 | 武汉华康世纪医疗股份有限公司 | 一种手术室的净化控制方法及系统 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114252374A (zh) * | 2021-07-12 | 2022-03-29 | 韦氏(苏州)医疗科技有限公司 | 手术室移动监管设备 |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104456733A (zh) * | 2014-12-02 | 2015-03-25 | 芜湖中艺企业管理咨询有限公司 | 一种空气净化系统 |
US20150254958A1 (en) * | 2012-01-31 | 2015-09-10 | Cleanalert, Llc | Filter Clog Detection and Notification System |
CN205372933U (zh) * | 2016-01-20 | 2016-07-06 | 北京海克智动科技开发有限公司 | 可同时检测进风口和出风口空气质量的空气传感器 |
CN106196527A (zh) * | 2016-08-31 | 2016-12-07 | 北京爱空气科技有限公司 | 一种空气净化服务系统及空气净化服务方法 |
CN206310640U (zh) * | 2016-11-11 | 2017-07-07 | 天津深呼吸环境科技发展有限公司 | 用于发送提醒信息的空气净化器 |
CN107185328A (zh) * | 2017-05-31 | 2017-09-22 | 四川弘毅智慧知识产权运营有限公司 | 一种智能化空气净化器 |
CN107940565A (zh) * | 2017-11-15 | 2018-04-20 | 北京小米移动软件有限公司 | 空气质量检测装置、空气净化器、控制方法及装置 |
CN108176186A (zh) * | 2017-11-25 | 2018-06-19 | 安徽依诺格实验室设备有限公司 | 一种实验室空气安全净化系统 |
CN109028342A (zh) * | 2018-08-07 | 2018-12-18 | 安徽电信工程有限责任公司 | 一种具有空气质量监测功能的净化设备 |
CN208296195U (zh) * | 2018-02-27 | 2018-12-28 | 上海熙鼎信息科技有限公司 | 空气净化器及滤网到期判断组件 |
CN109814471A (zh) * | 2017-11-20 | 2019-05-28 | 高洲超 | 一种空气净化器的智能自检控制系统 |
CN209068683U (zh) * | 2018-11-15 | 2019-07-05 | 石家庄育才药用包装材料股份有限公司 | 一种过滤空气中使用的风量自动测量系统 |
EP3828472A1 (en) * | 2019-11-26 | 2021-06-02 | Koninklijke Philips N.V. | Systems and methods for detecting the status of a particle filter |
CN113237806A (zh) * | 2021-07-12 | 2021-08-10 | 韦氏(苏州)医疗科技有限公司 | 医用环境后勤保障监测系统 |
CN113640186A (zh) * | 2021-09-07 | 2021-11-12 | 韦氏(苏州)医疗科技有限公司 | 手术室洁净度保障系统 |
CN216170893U (zh) * | 2021-07-12 | 2022-04-05 | 韦氏(苏州)医疗科技有限公司 | 医用净化保障装置 |
CN216170894U (zh) * | 2021-07-12 | 2022-04-05 | 韦氏(苏州)医疗科技有限公司 | 医用净化装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102072863A (zh) * | 2009-11-20 | 2011-05-25 | 苏州华达仪器设备有限公司 | 一种车身内过滤器测试装置 |
CN101975728A (zh) * | 2010-08-24 | 2011-02-16 | 上海市建筑科学研究院(集团)有限公司 | 一种污染物散发率测试装置 |
CN202171548U (zh) * | 2011-09-06 | 2012-03-21 | 中国人民解放军第二炮兵装备研究院第六研究所 | 一种空气取样装置 |
CN103760079B (zh) * | 2014-01-24 | 2017-01-04 | 中国建筑科学研究院 | 粉尘测试仪校准方法及系统 |
CN104777082B (zh) * | 2015-04-14 | 2017-10-24 | 首都师范大学 | 机动车尾气检测装置及其检测的方法 |
CN106198337B (zh) * | 2016-08-29 | 2019-02-12 | 陕西正大环保科技有限公司 | 一种大气颗粒物再悬浮实验模拟方法 |
CN106226483B (zh) * | 2016-09-30 | 2018-06-26 | 天津大学 | 一种低成本多空气质量监测传感器标定系统 |
CN107490105A (zh) * | 2017-09-26 | 2017-12-19 | 时枫娇 | 一种高效可靠型的智能化的空气净化器 |
CN107907454A (zh) * | 2017-09-27 | 2018-04-13 | 常州信息职业技术学院 | 一种用于室内的空气质量检测装置 |
CN108844848B (zh) * | 2018-06-15 | 2020-12-08 | 福建汇顺职业健康评价有限公司 | 一种工作场所中空气粉尘检测方法 |
CN110252049B (zh) * | 2019-06-21 | 2021-06-22 | 湖南省宝满科技开发有限公司 | 一种室内空调的自动清洁系统 |
CN210473369U (zh) * | 2019-08-15 | 2020-05-08 | 赵云伟 | 一种环境中气体分析检测装置 |
CN111650004A (zh) * | 2019-11-07 | 2020-09-11 | 华北理工大学 | 一种便于清洗的大气颗粒物采样装置及其使用方法 |
-
2021
- 2021-07-12 CN CN202110959568.6A patent/CN114252374A/zh active Pending
- 2021-07-12 CN CN202110785516.1A patent/CN113237806B/zh active Active
-
2022
- 2022-05-11 WO PCT/CN2022/092172 patent/WO2023284392A1/zh unknown
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150254958A1 (en) * | 2012-01-31 | 2015-09-10 | Cleanalert, Llc | Filter Clog Detection and Notification System |
CN104456733A (zh) * | 2014-12-02 | 2015-03-25 | 芜湖中艺企业管理咨询有限公司 | 一种空气净化系统 |
CN205372933U (zh) * | 2016-01-20 | 2016-07-06 | 北京海克智动科技开发有限公司 | 可同时检测进风口和出风口空气质量的空气传感器 |
CN106196527A (zh) * | 2016-08-31 | 2016-12-07 | 北京爱空气科技有限公司 | 一种空气净化服务系统及空气净化服务方法 |
CN206310640U (zh) * | 2016-11-11 | 2017-07-07 | 天津深呼吸环境科技发展有限公司 | 用于发送提醒信息的空气净化器 |
CN107185328A (zh) * | 2017-05-31 | 2017-09-22 | 四川弘毅智慧知识产权运营有限公司 | 一种智能化空气净化器 |
CN107940565A (zh) * | 2017-11-15 | 2018-04-20 | 北京小米移动软件有限公司 | 空气质量检测装置、空气净化器、控制方法及装置 |
CN109814471A (zh) * | 2017-11-20 | 2019-05-28 | 高洲超 | 一种空气净化器的智能自检控制系统 |
CN108176186A (zh) * | 2017-11-25 | 2018-06-19 | 安徽依诺格实验室设备有限公司 | 一种实验室空气安全净化系统 |
CN208296195U (zh) * | 2018-02-27 | 2018-12-28 | 上海熙鼎信息科技有限公司 | 空气净化器及滤网到期判断组件 |
CN109028342A (zh) * | 2018-08-07 | 2018-12-18 | 安徽电信工程有限责任公司 | 一种具有空气质量监测功能的净化设备 |
CN209068683U (zh) * | 2018-11-15 | 2019-07-05 | 石家庄育才药用包装材料股份有限公司 | 一种过滤空气中使用的风量自动测量系统 |
EP3828472A1 (en) * | 2019-11-26 | 2021-06-02 | Koninklijke Philips N.V. | Systems and methods for detecting the status of a particle filter |
CN113237806A (zh) * | 2021-07-12 | 2021-08-10 | 韦氏(苏州)医疗科技有限公司 | 医用环境后勤保障监测系统 |
CN216170893U (zh) * | 2021-07-12 | 2022-04-05 | 韦氏(苏州)医疗科技有限公司 | 医用净化保障装置 |
CN216170894U (zh) * | 2021-07-12 | 2022-04-05 | 韦氏(苏州)医疗科技有限公司 | 医用净化装置 |
CN113640186A (zh) * | 2021-09-07 | 2021-11-12 | 韦氏(苏州)医疗科技有限公司 | 手术室洁净度保障系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117524429A (zh) * | 2023-10-17 | 2024-02-06 | 武汉华康世纪医疗股份有限公司 | 一种手术室的净化控制方法及系统 |
CN117524429B (zh) * | 2023-10-17 | 2024-05-10 | 武汉华康世纪医疗股份有限公司 | 一种手术室的净化控制方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114252374A (zh) | 2022-03-29 |
CN113237806A (zh) | 2021-08-10 |
CN113237806B (zh) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023284392A1 (zh) | 医用环境后勤保障监测系统 | |
CN113640186A (zh) | 手术室洁净度保障系统 | |
CN103676862A (zh) | 一种手术室信息采集与控制系统 | |
CN208389051U (zh) | 引流体液监测装置 | |
CN110009876A (zh) | 一种换热器运行状况在线监测报警装置及方法 | |
CN204016271U (zh) | 一种基于Zigbee的远程医疗监护系统 | |
CN105828284A (zh) | 一种新型智能化医护人员定位系统及其使用方法 | |
CN106248134A (zh) | 医用气体监测管理设备和系统 | |
CN103439956A (zh) | 医疗受控环境智能化管理、监控、运行系统 | |
CN216208390U (zh) | 便捷型空气检测装置 | |
CN109085318A (zh) | 一种城市管道饮用水水质监测用防腐蚀有机玻璃管 | |
CN204379924U (zh) | 可显示呼吸状况的呼吸辅助装置 | |
CN206347684U (zh) | 一种智能加湿器控制系统 | |
CN213269081U (zh) | 一种安全采样舱 | |
US12048816B2 (en) | Anesthesia machine exhaust emission control system and control method therefor | |
CN103868550A (zh) | 手术床旁用空气质量检测装置 | |
CN210427660U (zh) | 设备运行监测器 | |
CN211675048U (zh) | 新生儿暖箱视频探视及氧浓度监测与报警系统 | |
CN215782229U (zh) | 医用空气环境的控制系统 | |
CN207676161U (zh) | 一种触摸屏显示气体报警装置 | |
CN205958011U (zh) | 医用气体监测管理设备和系统 | |
CN207038178U (zh) | 用于医疗信息的管理系统 | |
CN104958110A (zh) | 全自动内镜储镜柜在线监测系统 | |
CN215297062U (zh) | 多功能空气监测系统 | |
CN212903332U (zh) | 一种管道检测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22841032 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |