WO2023284278A1 - 一种半潜式漂浮式风机、风机系统及其失效控制方法 - Google Patents

一种半潜式漂浮式风机、风机系统及其失效控制方法 Download PDF

Info

Publication number
WO2023284278A1
WO2023284278A1 PCT/CN2022/072325 CN2022072325W WO2023284278A1 WO 2023284278 A1 WO2023284278 A1 WO 2023284278A1 CN 2022072325 W CN2022072325 W CN 2022072325W WO 2023284278 A1 WO2023284278 A1 WO 2023284278A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
submersible floating
wind turbine
submersible
fans
Prior art date
Application number
PCT/CN2022/072325
Other languages
English (en)
French (fr)
Inventor
周昳鸣
李卫东
郭小江
刘鑫
黄和龙
孙伟鹏
李旭如
王俊伟
黄锐斌
林健聪
林育宁
黄焕良
Original Assignee
中国华能集团清洁能源技术研究院有限公司
中国华能集团有限公司南方分公司
华能广东汕头海上风电有限责任公司
华能海上风电科学技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 中国华能集团有限公司南方分公司, 华能广东汕头海上风电有限责任公司, 华能海上风电科学技术研究有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023284278A1 publication Critical patent/WO2023284278A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present application relates to the technical field of wind turbines, in particular to a semi-submersible floating wind turbine, a wind turbine system and a failure control method thereof.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose of this application is to propose a semi-submersible floating fan.
  • a plurality of anchor foundations are arranged around the base, and the base and the anchor foundation are passed through at least two or more
  • the mooring cable is connected to achieve stable fixation of the wind turbine.
  • Multiple anchoring foundations are respectively fixed to the base, and the base and the anchoring foundation are connected by at least two mooring cables, thereby preventing the wind turbine from drifting due to the breakage of a single mooring cable A collision situation occurs.
  • the application proposes a semi-submersible floating fan, including a base, a fan body arranged on the base, and a plurality of anchor foundations arranged around the base.
  • Each of the anchor foundations is arranged equidistantly with a predetermined distance from the center of the base, and the base and the anchor foundation are connected by at least two mooring cables.
  • the base includes a plurality of trusses and a plurality of buoys, and two adjacent buoys are fixedly connected by the trusses.
  • the truss includes cross braces and diagonal braces, and the cross braces and diagonal braces jointly realize the connection of adjacent buoys.
  • the cross braces and diagonal braces are steel pipes.
  • the base includes three buoys, and the connecting lines of the three buoys form a triangle, preferably a regular triangle.
  • the semi-submersible floating wind turbine includes three anchor foundations, the three anchor foundations are respectively arranged on the outside of the three buoys, and the lines connecting the three anchor foundations form a triangle , preferably a regular triangle.
  • the present application proposes a semi-submersible floating wind turbine system, which includes a plurality of the above wind turbines, and the plurality of wind turbines are arranged at intervals on the sea surface.
  • the large-scale development of wind turbines is arranged to reduce the impact of wake, increase power generation, reduce the number of anchoring foundations, and prevent floating wind turbines from moving and colliding due to mooring cable failure.
  • a plurality of wind turbines are arranged in a rectangular array on the sea surface.
  • the adjacent wind turbines in the longitudinal direction are symmetrically arranged in pairs and share the anchoring foundations on the adjacent sides.
  • a plurality of the fans are arranged in multiple rows, and the fans in each row are arranged alternately.
  • the adjacent wind turbines share the anchor foundations on their adjacent sides, and multiple semi-submersible floating wind turbines are connected to each other through the shared anchor foundations.
  • a plurality of the wind turbines are arranged in a triangular array, and the minimum distance between the anchoring foundations of adjacent wind turbines is twice the predetermined distance.
  • the present application proposes a failure control method for the above-mentioned semi-submersible floating fan system, which includes the following steps,
  • the monitoring of the wind turbine system is combined with the self-sinking control strategy to ensure that when the mooring system with floating wind turbines fails, it will not cause collision damage to other floating wind turbines in the wind field.
  • the range of r1 is 1000-3000m.
  • operating the wind turbine according to the relationship between r1 and r2 includes, when r2>r1, activating the damage device on the wind turbine to damage the cabin; when r2 ⁇ r1, monitoring the mooring lines of the wind turbine Stress value, when the stress value is less than the preset value, the blower is overhauled.
  • the range of the preset value is 50-150 MPa.
  • Fig. 1 is a three-dimensional structural schematic diagram of a semi-submersible floating fan proposed by an embodiment of the present application
  • Fig. 2 is a schematic plan view of a semi-submersible floating fan proposed by an embodiment of the present application
  • Fig. 3 is a schematic diagram of the activity range of the floating fan after two mooring cables on one side of the semi-submersible floating fan proposed by an embodiment of the present application fail at the same time;
  • Fig. 4 is a schematic diagram of the activity range of the floating fan after four mooring cables on both sides of the semi-submersible floating fan proposed by an embodiment of the present application fail at the same time;
  • Fig. 5 is a schematic diagram of the plane layout of a semi-submersible floating fan system proposed by an embodiment of the present application
  • Fig. 6 is a second schematic plan layout of a semi-submersible floating fan system proposed in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of the plane layout of the semi-submersible floating fan system proposed by an embodiment of the present application III;
  • Fig. 8 is a schematic diagram 4 of the plane layout of the semi-submersible floating fan system proposed by an embodiment of the present application.
  • Fig. 9 is a fifth schematic plan layout of a semi-submersible floating fan system proposed by an embodiment of the present application.
  • Fig. 1 is a schematic structural diagram of a semi-submersible floating fan proposed by an embodiment of the present application.
  • a semi-submersible floating fan includes a base 1, a fan body 2 arranged on the base 1 and a plurality of anchor foundations 3 arranged around the base 1, and the plurality of The anchoring foundations 3 are set at equal intervals with a predetermined distance from the center of the base 1, so that forces can be applied to the base in different directions in a balanced manner to ensure that the wind turbine is stably fixed on the sea surface.
  • the base 1 and the anchor foundation 3 are connected by at least two mooring cables 4 .
  • the foundation and the anchor foundation are connected by more than two mooring cables, which can avoid the instability of the foundation caused by the breakage of a single mooring cable, and then cause the wind turbine to drift.
  • the base 1 includes a plurality of trusses 11 and a plurality of buoys 12, and two adjacent buoys 12 are fixedly connected through the trusses 11, so as to strengthen the stability of the connection between the plurality of buoys and form a stable distribution
  • the structure is convenient for supporting the fan.
  • the truss includes cross braces and diagonal braces, through which the connection of adjacent buoys can be realized at multiple angles, which can ensure stronger connection stability of the entire wind turbine device.
  • Both the cross brace and the diagonal brace are steel pipes. Specifically, both the cross brace and the diagonal brace can be steel pipes, so that compared with steel columns, steel materials can be saved, and the requirements for stable connection can be met.
  • the connecting lines of the three buoys 12 form a triangle, preferably an equilateral triangle, as shown in Figure 1, so as to connect the three buoys 12 with the truss 2, triangular stability can be achieved, While ensuring sufficient stability and strength, it can also save materials to the greatest extent and ultimately reduce costs.
  • the three anchoring foundations 3 are respectively arranged on the outer sides of the three buoys 12.
  • the connecting lines of the three anchoring foundations also form a triangle, preferably an equilateral triangle. Fix and connect the anchor foundation separately, while fixing the wind turbine device as a whole, it can also avoid the drift of the wind turbine caused by the breakage of a single mooring cable.
  • the buoy 12 is a hollow columnar structure with good buoyancy and can carry the wind turbine to stand on the sea surface.
  • a semi-submersible floating wind turbine system includes a plurality of the wind turbines arranged at intervals on the sea surface.
  • the wind turbines adjacent to each other in the longitudinal direction are symmetrically arranged in pairs and share the anchoring foundation 3 on the adjacent side, so that the anchoring foundation can be reduced without affecting the probability of movement caused by mooring cable failure and the possibility of collision.
  • a plurality of the fans are arranged in multiple rows, and the fans in each row are arranged in a staggered manner.
  • this arrangement can reduce the influence of the wake between the fans and improve the power generation. efficiency.
  • the adjacent wind turbines share the anchor foundation 3 on the adjacent side, and multiple semi-submersible floating wind turbines are connected to each other through the shared anchor foundation 3, which reduces the number of anchor foundations used and improves the overall stability of the wind turbine connection. and improve the horizontal stress characteristics of the anchored foundation.
  • a plurality of said fans are arranged in a triangular array, and the minimum distance 3 between the anchoring foundations of adjacent fans is 2 times of the predetermined distance, and each fan is set at a relatively large interval, so that two adjacent fans
  • the wind turbine must have a total of 8 mooring cables on four sides that fail at the same time before it can collide; to further reduce the probability of wind turbine failure and collision, the probability of wind turbine collision due to mooring cable breakage is extremely low in this scheme.
  • a failure control method for a semi-submersible floating fan system, applied to the fan system comprising the following steps,
  • the range of r1 is 1000-3000m, which meets the requirements of most wind turbines on the market.
  • the range of r2 is determined according to the state of the mooring line.
  • r2 When the mooring line is intact, r2 is 0.
  • r2 When two mooring lines on one side or four on both sides are broken, r2 is generally smaller than r1.
  • the maximum value of r2 can be infinite.
  • the floating wind turbine damage procedure can be started to guide the wind turbine to self-sink to avoid damage to other wind turbines in the wind field. cause havoc.
  • This application scheme can effectively reduce the sea area, increase the number of wind turbines installed in the sea area per unit area, thereby increasing the power generation per unit area of the sea area, and ensure the safety of the system with floating wind turbines by combining the health monitoring of the mooring cables of the wind turbines and the self-sinking control strategy. When the mooring system fails, it will not cause collision damage to other floating wind turbines in the wind field.
  • Operating the wind turbine according to the relationship between r1 and r2 includes, when r2>r1, starting the damage device on the wind turbine for damage; in this embodiment, the damage device can be blasting equipment, which directly uses It sinks.
  • the damage device can be blasting equipment, which directly uses It sinks.
  • the stress value of the mooring cable 4 of the fan is monitored, and the monitoring of the stress value can be realized by a pressure sensor.
  • the stress value is less than a preset value, the fan is checked and repaired.
  • the range of the preset value is 50-150MPa, so as to avoid misjudgment of the state of the mooring line.

Abstract

一种半潜式漂浮式风机,包括基座(1)、设置于基座(1)上的风机本体(2)和设置于基座(1)周侧的多个锚固基础(3),多个锚固基础(3)分别和基座(1)的中心以预定距离等间距设置,基座(1)和锚固基础(3)通过至少两根以上的系泊缆(4)进行连接,进而预防单根系泊缆断裂造成风机漂移碰撞的情况发生。还涉及一种包括多个半潜式漂浮式风机的风机系统及其失效控制方法。

Description

一种半潜式漂浮式风机、风机系统及其失效控制方法
相关申请的交叉引用
本申请基于申请号为202110790241.0、申请日为2021年07月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及风机技术领域,尤其涉及一种半潜式漂浮式风机、风机系统及其失效控制方法。
背景技术
随着我国经济的飞速发展,能源环保矛盾日趋严峻,海上风电是一种清洁、安全、可再生的能源,是世界上能源利用增长最快的能源,也是最具大规模商业化开发前景的发电方式,在各国能源战略中地位不断提高。目前,世界上建成的海上风电场绝大多数为近海风电场。未来,海上风电由浅海走向深海将会是必然的发展趋势。半潜漂浮式海上风电机组以其结构稳定、运行可靠、移动灵活、适合深海等特点最具发展前景。在当前的漂浮式风机中,系泊缆容易发送断裂造成系泊缆失效,导致漂浮式风机移动碰撞的情况发生。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的目的在于提出一种半潜式漂浮式风机,通过在基座上设置风机本体,多个锚固基础设置在基座周侧,且基座和锚固基础通过至少两根以上的系泊缆连接,达到对风机稳定固定,多个锚固基础分别和基座进行固定,且基座和锚固基础通过至少两根以上的系泊缆进行连接,进而预防单根系泊缆断裂造成风机漂移碰撞的情况发生。
为达到上述目的,一方面,本申请提出一种半潜式漂浮式风机,包括基座、设置于所述基座上的风机本体和设置于所述基座周侧的多个锚固基础,多个所述锚固基础分别和所述基座的中心以预定距离等间距设置,所述基座和所述锚固基础通过至少两根以上的系泊缆进行连接。
在一种实施方案中,所述基座包括多个桁架和多个浮筒,相邻的两所述浮筒之间通过所述桁架固定连接。
在一种实施方案中,所述桁架包括横撑与斜撑,所述横撑与斜撑共同实现相邻浮筒的连接。
在一种实施方案中,所述横撑与斜撑为钢制管道。
在一种实施方案中,所述基座包括三个浮筒,所述三个浮筒的连线形成三角形,优选正 三角形。
在一种实施方案中,所述半潜式漂浮式风机包括三个锚固基础,所述三个锚固基础分别对应设置在所述三个浮筒的外侧,所述三个锚固基础的连线形成三角形,优选正三角形。
另一方面,本申请提出一种半潜式漂浮式风机系统,包括多个上述风机,多个所述风机在海面上间隔排列设置。
本申请中,通过对规模化开发的风机排布进行布置,以达到减小尾流影响,增加发电量,减少锚固基础数量,预防系泊缆失效造成漂浮式风机移动碰撞的效果。
在一种实施方案中,多个所述风机在海面上呈矩形阵列设置。
在一种实施方案中,在纵向上相邻的所述风机两两对称设置且共用其邻侧的锚固基础。
在一种实施方案中,多个所述风机呈多行排列设置,且各行所述风机之间交错设置。
在一种实施方案中,相邻所述风机共用其邻侧的锚固基础,多个所述半潜式漂浮式风机通过共用的锚固基础相互联结。
在一种实施方案中,多个所述风机呈三角形阵列排列,且相邻风机的锚固基础间的最小距离为所述预定距离的2倍。
另一方面,本申请提出一种上述半潜式漂浮式风机系统的失效控制方法,包括如下步骤,
设定全场所有风机的运动圆心位置及各风机的运动半径r1;监测各所述风机当前位置距离其对应的运动圆心的距离r2;根据r1和r2的关系对风机进行操作。
本申请中,通过对风机系统的监测与自沉控制策略结合保障在有漂浮式风机的系泊系统失效时不对风场内其他漂浮式风机造成碰撞破坏。
在一种实施方案中,所述r1的范围为1000-3000m。
在一种实施方案中,根据r1和r2的关系对风机进行操作包括,当r2>r1时,启动所述风机上的破舱装置进行破舱;当r2<r1时,监测风机的系泊缆的应力值,当所述应力值小于预设值时,对风机进行检修。
在一种实施方案中,所述预设值的范围为50-150MPa。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一实施例提出的半潜式漂浮式风机的立体结构示意图;
图2是本申请一实施例提出的半潜式漂浮式风机的平面结构示意图;
图3是本申请一实施例提出的半潜式漂浮式风机单侧2根系泊缆同时失效后漂浮式风机的活动范围示意图;
图4是本申请一实施例提出的半潜式漂浮式风机两侧4根系泊缆同时失效后漂浮式风机的活动范围示意图;
图5是本申请一实施例提出的半潜式漂浮式风机系统的平面布置示意图一;
图6是本申请一实施例提出的半潜式漂浮式风机系统的平面布置示意图二;
图7是本申请一实施例提出的半潜式漂浮式风机系统的平面布置示意图三;
图8是本申请一实施例提出的半潜式漂浮式风机系统的平面布置示意图四;
图9是本申请一实施例提出的半潜式漂浮式风机系统的平面布置示意图五。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。相反,本申请的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
图1是本申请一实施例提出的半潜式漂浮式风机的结构示意图。
参见图1,一种半潜式漂浮式风机,包括基座1、设置于所述基座1上的风机本体2和设置于所述基座1周侧的多个锚固基础3,多个所述锚固基础3分别和所述基座1的中心以预定距离等间距设置,从而可以在不同方向对基座进行均衡施力,保证风机稳定固定在海面上。所述基座1和所述锚固基础3通过至少两根以上的系泊缆4进行连接。通过两根以上的系泊缆对基座和锚固基础进行连接,能够避免单根系泊缆断裂造成的基座失稳,进而造成风机漂移。
所述基座1包括多个桁架11和多个浮筒12,相邻的两所述浮筒12之间通过所述桁架11固定连接,从而加强多个浮筒之间连接的稳固性,形成稳定的分布式结构,便于对风机进行支撑。桁架包括横撑与斜撑,通过横撑与斜撑共同以多个角度实现相邻浮筒的连接,可以保证整个风机装置有更强的连接稳定性。所述横撑与所述斜撑均为钢制管道。具体的,横撑与斜撑均可以为钢管,以此相较于钢柱,可以节约钢材,且可以起到稳定连接的要求。
具体地,所述浮筒12为三个,三个所述浮筒12的连线形成三角形,优选正三角形,如图1所示,以此结合桁架2连接这三个浮筒12,可以实现三角稳定,在保证足够的稳定性以及强度的同时,还能最大程度节约材料,最终降低成本。
具体地,所述锚固基础3为三个,三个所述锚固基础3分别对应设置在三个所述浮筒12的外侧,三个锚固基础的连线也形成三角形,优选正三角形,各个浮筒外侧分别固定连接锚固基础,在整体对风机装置进行固定的同时,也能够避免单一系泊缆断裂造成风机漂移的情况发生。
所述浮筒12为中空的柱状结构,具有较好的浮力,能够承载风机立于海面之上。
参见图2-图4,如果单根系泊缆失效的概率为p,则一侧2根系泊缆同时失效造成漂浮式风机移动的概率为P=3p 2,若漂浮式风机系泊缆的水平半径为R,则失效后漂浮式风机将在以原位置为圆心,半径为R的圆形范围内活动,如果单根系泊缆失效的概率为p,则两侧4根系泊缆同时失效造成漂浮式风机移动的概率为P=3p 4,若漂浮式风机系泊缆的水平半径为R,则失效后漂浮式风机的最大活动范围将在以原3个锚固基础其中一个为圆心,半径为 R的圆形范围内活动。
一种半潜式漂浮式风机系统,包括多个所述的风机,多个所述风机在海面上间隔排列设置。
参见图5,多个所述风机在海面上呈矩形阵列设置,可以理解地,多个风机在海面上纵向和横向上等间距间隔布置,使其整体呈矩形阵列设置,如果单根系泊缆失效的概率为p=5%,则按照矩形阵列排布时,单台风机一侧2根系泊缆同时失效导致移动的概率为0.75%,发生可能极低;两侧4根系泊缆同时失效导致移动且存在碰撞可能的概率为0.002%,几乎可忽略不计。
参见图6,在纵向上相邻的所述风机两两对称设置且共用其邻侧的锚固基础3,在不影响系泊缆失效导致移动且存在碰撞可能的概率的情况下,可以减少锚固基础的使用数量,进而降低成本。
参见图7,多个所述风机呈多行排列设置,且各行所述风机之间交错设置,在风机发生碰撞概率较低的情况下,这样布置能够降低风机之间的尾流影响,提高发电效率。
参见图8,相邻所述风机共用其邻侧的锚固基础3,多个所述半潜式漂浮式风机通过共用的锚固基础3相互联结,降低锚固基础的使用数量,提高风机联结整体的稳固性,改善锚固基础水平受力特性。
参见图9,多个所述风机呈三角形阵列排列,且相邻风机的锚固基础间3的最小距离为所述预定距离的2倍,各风机之间较大间隔设置,这样在相邻两台风机必须有四侧共8条系泊缆同时失效时才可能发生碰撞;进一步降低风机失效碰撞概率,此方案设计风机发生系泊缆断裂发生碰撞的概率极低。
一种半潜式漂浮式风机系统的失效控制方法,应用于所述风机系统,包括如下步骤,
S10、设定全场所有风机的运动圆心位置及各风机的运动半径r1。
具体地,所述r1的范围为1000-3000m,符合市场上绝大多数风机的需求。
S20、监测各所述风机当前位置距离其对应的运动圆心的距离r2。
可以理解地,r2范围根据系泊缆状态进行确定,当系泊缆无损时,r2为0,当系泊缆断裂一侧的两根或者两侧的四根时,r2一般小于r1,当系泊缆断裂三测点六根时,r2的最大可无穷远,当风机出现三侧6根系泊缆同时失效的时候,可启动漂浮式风机破舱程序,引导风机自沉以避免对风场内其他风机造成破坏。
S30、根据r1和r2的关系对风机进行操作。
本申请方案可有效减少用海面积,提高单位面积海域内的风机安装数量,从而提高单位面积海域的发电量,通过对风机系泊缆健康监测与自沉控制策略结合保障在有漂浮式风机的系泊系统失效时不对风场内其他漂浮式风机造成碰撞破坏。
根据r1和r2的关系对风机进行操作包括,当r2>r1时,启动所述风机上的破舱装置进行破舱;本实施例中,破舱装置可以为爆破设备,直接对风机破舱使其沉水。当r2<r1时,监测风机的系泊缆4的应力值,应力值的监测可以通过压力传感器实现,当所述应力值小于预设值时,对风机进行检修。
所述预设值的范围为50-150MPa,避免对系泊缆的状态发生误判。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种半潜式漂浮式风机,其特征在于,包括基座(1)、设置于所述基座(1)上的风机本体(2)和设置于所述基座(1)周侧的多个锚固基础(3),多个所述锚固基础(3)分别和所述基座(1)的中心以预定距离等间距设置,所述基座(1)和所述锚固基础(3)通过至少两根以上的系泊缆(4)进行连接。
  2. 如权利要求1所述的半潜式漂浮式风机,其特征在于,所述基座(1)包括多个桁架(11)和多个浮筒(12),相邻的两所述浮筒(12)之间通过所述桁架(11)固定连接。
  3. 根据权利要求2所述的半潜式漂浮式风机,其特征在于,所述桁架包括横撑与斜撑,所述横撑与斜撑共同实现相邻浮筒的连接,优选地,所述横撑与斜撑为钢制管道。
  4. 根据权利要求2或3所述的半潜式漂浮式风机,其特征在于,所述基座(1)包括三个浮筒(12),所述三个浮筒(12)的连线形成三角形,优选正三角形。
  5. 根据权利要求4所述的半潜式漂浮式风机,其特征在于,所述半潜式漂浮式风机包括三个锚固基础,所述三个锚固基础分别对应设置在所述三个浮筒(12)的外侧,所述三个锚固基础的连线形成三角形,优选正三角形。
  6. 一种半潜式漂浮式风机系统,其特征在于,包括多个上述权利要求1-5任一项所述的半潜式漂浮式风机,多个所述半潜式漂浮式风机在海面上间隔排列设置。
  7. 如权利要求6所述的半潜式漂浮式风机系统,其特征在于,多个所述半潜式漂浮式风机在海面上呈矩形阵列设置。
  8. 如权利要求7所述的半潜式漂浮式风机系统,其特征在于,在纵向上相邻的所述半潜式漂浮式风机两两对称设置且共用其邻侧的锚固基础(3)。
  9. 如权利要求6所述的半潜式漂浮式风机系统,其特征在于,多个所述半潜式漂浮式风机呈多行排列设置,且各行所述半潜式漂浮式风机之间交错设置。
  10. 如权利要求9所述的半潜式漂浮式风机系统,其特征在于,相邻所述半潜式漂浮式风机共用其邻侧的锚固基础(3),多个所述半潜式漂浮式风机通过共用的锚固基础(3)相互联结。
  11. 如权利要求6所述的半潜式漂浮式风机系统,其特征在于,多个所述半潜式漂浮式风机呈三角形阵列排列,且相邻半潜式漂浮式风机的锚固基础(3)间的最小距离为所述预定距离的2倍。
  12. 一种根据权利要求6至11中任一项所述的半潜式漂浮式风机系统的失效控制方法,其特征在于,包括如下步骤,
    设定全场所有半潜式漂浮式风机的运动圆心位置及各半潜式漂浮式风机的运动半径r1;
    监测各所述半潜式漂浮式风机当前位置距离其对应的运动圆心的距离r2;
    根据r1和r2的关系对所述半潜式漂浮式风机进行操作。
  13. 如权利要求12所述的半潜式漂浮式风机系统的失效控制方法,其特征在于,所述r1的范围为1000–3000m。
  14. 如权利要求12或13所述的半潜式漂浮式风机系统的失效控制方法,其特征在于, 根据r1和r2的关系对所述半潜式漂浮式风机进行操作包括,当r2>r1时,启动所述半潜式漂浮式风机上的破舱装置进行破舱;当r2<r1时,监测所述半潜式漂浮式风机的系泊缆(4)的应力值,当所述应力值小于预设值时,对所述半潜式漂浮式风机进行检修。
  15. 如权利要求14所述的半潜式漂浮式风机系统的失效控制方法,其特征在于,所述预设值的范围为50–150MPa。
PCT/CN2022/072325 2021-07-13 2022-01-17 一种半潜式漂浮式风机、风机系统及其失效控制方法 WO2023284278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110790241.0 2021-07-13
CN202110790241.0A CN113565694B (zh) 2021-07-13 2021-07-13 一种半潜式漂浮式风机、风机系统及其失效控制方法

Publications (1)

Publication Number Publication Date
WO2023284278A1 true WO2023284278A1 (zh) 2023-01-19

Family

ID=78164615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072325 WO2023284278A1 (zh) 2021-07-13 2022-01-17 一种半潜式漂浮式风机、风机系统及其失效控制方法

Country Status (2)

Country Link
CN (1) CN113565694B (zh)
WO (1) WO2023284278A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653601B (zh) * 2021-07-12 2023-03-03 中国华能集团清洁能源技术研究院有限公司 一种半潜式漂浮式风机装置及系统
CN113565694B (zh) * 2021-07-13 2022-12-06 中国华能集团清洁能源技术研究院有限公司 一种半潜式漂浮式风机、风机系统及其失效控制方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710242A (zh) * 2009-12-07 2010-05-19 天津大学 深海平台系泊线监控方法
CN102015435A (zh) * 2008-04-23 2011-04-13 原理动力有限公司 用于支撑近海风力涡轮机的不对称系泊系统和带有水收集板的支柱稳定式近海平台
US20120103244A1 (en) * 2010-10-28 2012-05-03 Jin Wang Truss Cable Semi-submersible Floater for Offshore Wind Turbines and Construction Methods
CN102454553A (zh) * 2011-12-26 2012-05-16 中国科学院工程热物理研究所 一种漂浮式风电场
CN104401458A (zh) * 2014-11-24 2015-03-11 新疆金风科技股份有限公司 半潜式浮动风机基础和浮动风机
CN104807586A (zh) * 2015-04-29 2015-07-29 湖南科技大学 海上浮式风机系泊系统断裂失效预报方法与系统
US20150252791A1 (en) * 2012-11-06 2015-09-10 Mecal Wind Turbine Design B.V. Floatable transportation and installation structure for transportation and installation of a floating wind turbine, a floating wind turbine and method for transportation and installation of the same
CN206876330U (zh) * 2017-07-18 2018-01-12 青岛黄海学院 一种海上浮式风机系泊系统断裂失效预报系统
CN108431407A (zh) * 2015-12-08 2018-08-21 艾罗丁咨询新加坡私人有限公司 海上风电场
CN109263818A (zh) * 2018-10-10 2019-01-25 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种半潜型5mw海上浮动式风力发电平台
CN209025795U (zh) * 2018-09-07 2019-06-25 中国能源建设集团广东火电工程有限公司 一种海上发电风机的升降控制系统
CN111186535A (zh) * 2020-01-19 2020-05-22 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种带有扁平下浮体的半潜型大功率海上浮式风电平台
US20200269960A1 (en) * 2019-02-21 2020-08-27 Vl Offshore, Llc Motion-attenuated semi-submersible floating-type foundation for supporting a wind power generation system
CN211519801U (zh) * 2020-01-06 2020-09-18 中能电力科技开发有限公司 一种附加网箱的漂浮式海上风电基础结构
CN113428307A (zh) * 2021-07-14 2021-09-24 中国海洋石油集团有限公司 一种半潜浮式风机基础和半潜浮式风机
CN113565694A (zh) * 2021-07-13 2021-10-29 中国华能集团清洁能源技术研究院有限公司 一种半潜式漂浮式风机、风机系统及其失效控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508088B2 (en) * 2005-06-30 2009-03-24 General Electric Company System and method for installing a wind turbine at an offshore location
WO2014105097A1 (en) * 2012-12-27 2014-07-03 Allinson Marc Gregory Maphbe turbine
US10723415B2 (en) * 2016-08-03 2020-07-28 Mangrove Deep LLC Mooring system for drifting energy converters
CN216002988U (zh) * 2021-05-15 2022-03-11 阳江海上风电实验室 一种漂浮式风电场场内海缆安装结构

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015435A (zh) * 2008-04-23 2011-04-13 原理动力有限公司 用于支撑近海风力涡轮机的不对称系泊系统和带有水收集板的支柱稳定式近海平台
CN101710242A (zh) * 2009-12-07 2010-05-19 天津大学 深海平台系泊线监控方法
US20120103244A1 (en) * 2010-10-28 2012-05-03 Jin Wang Truss Cable Semi-submersible Floater for Offshore Wind Turbines and Construction Methods
CN102454553A (zh) * 2011-12-26 2012-05-16 中国科学院工程热物理研究所 一种漂浮式风电场
US20150252791A1 (en) * 2012-11-06 2015-09-10 Mecal Wind Turbine Design B.V. Floatable transportation and installation structure for transportation and installation of a floating wind turbine, a floating wind turbine and method for transportation and installation of the same
CN104401458A (zh) * 2014-11-24 2015-03-11 新疆金风科技股份有限公司 半潜式浮动风机基础和浮动风机
CN104807586A (zh) * 2015-04-29 2015-07-29 湖南科技大学 海上浮式风机系泊系统断裂失效预报方法与系统
CN108431407A (zh) * 2015-12-08 2018-08-21 艾罗丁咨询新加坡私人有限公司 海上风电场
CN206876330U (zh) * 2017-07-18 2018-01-12 青岛黄海学院 一种海上浮式风机系泊系统断裂失效预报系统
CN209025795U (zh) * 2018-09-07 2019-06-25 中国能源建设集团广东火电工程有限公司 一种海上发电风机的升降控制系统
CN109263818A (zh) * 2018-10-10 2019-01-25 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种半潜型5mw海上浮动式风力发电平台
US20200269960A1 (en) * 2019-02-21 2020-08-27 Vl Offshore, Llc Motion-attenuated semi-submersible floating-type foundation for supporting a wind power generation system
CN211519801U (zh) * 2020-01-06 2020-09-18 中能电力科技开发有限公司 一种附加网箱的漂浮式海上风电基础结构
CN111186535A (zh) * 2020-01-19 2020-05-22 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) 一种带有扁平下浮体的半潜型大功率海上浮式风电平台
CN113565694A (zh) * 2021-07-13 2021-10-29 中国华能集团清洁能源技术研究院有限公司 一种半潜式漂浮式风机、风机系统及其失效控制方法
CN113428307A (zh) * 2021-07-14 2021-09-24 中国海洋石油集团有限公司 一种半潜浮式风机基础和半潜浮式风机

Also Published As

Publication number Publication date
CN113565694B (zh) 2022-12-06
CN113565694A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023284278A1 (zh) 一种半潜式漂浮式风机、风机系统及其失效控制方法
KR101726988B1 (ko) 해안 풍력 터빈의 지지를 위한 워터-엔트랩먼트 플레이트 및 비대칭 무링 시스템을 가진 칼럼-안정화된 해안 플랫폼
CN111712636B (zh) 具有张力腿装置的浮式风力发电平台
KR102552328B1 (ko) 복수의 전력 변환 장치를 가지는 부유식 풍력 발전 장치
JP2001165032A (ja) 風力発電装置
EP2267297A2 (en) Floating offshore wind turbine
JP2004176626A (ja) 洋上風力発電設備
JP2009085167A (ja) 風力発電用浮体装置
WO2023284671A1 (zh) 一种半潜式漂浮式风机装置及系统
US11858589B1 (en) Wave-dissipating and wave-resisting integrated floating photovoltaic device capable of resisting severe sea conditions
CN112539140A (zh) 一种软刚臂系泊的多风机浮式系统
KR20130000591A (ko) 해상구조물 수리용 선박
CN216894736U (zh) 一种半潜式漂浮式风机系统
CN116812075A (zh) 一种漂浮单柱式风电平台系泊系统
CN106275276B (zh) 一种自动复位弹性套筒式单点系泊系统
CN110185573B (zh) 一种运用联合供电系统的海上超大型浮体
CN217805152U (zh) 一种海上浮式平台系泊结构
CN115076041B (zh) 一种风力发电系统及用于该系统的支撑平台
WO2023168918A1 (zh) 漂浮式风机组和漂浮式风机阵
CN112324617B (zh) 基于光电系统的风力发电装置
JP6063358B2 (ja) 海流発電装置
CN219492476U (zh) 一种漂浮式风机基础装置及风电机组
CN220470118U (zh) 一种新型海上漂浮式混合发电平台
CN220890408U (zh) 一种用于海上风电制氢的浮式结构
CN116201696B (zh) 一种张拉整体式海上风力发电支撑结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE