WO2023284102A1 - 一种传动机构模糊卡塞故障强制解锁机电作动器及方法 - Google Patents

一种传动机构模糊卡塞故障强制解锁机电作动器及方法 Download PDF

Info

Publication number
WO2023284102A1
WO2023284102A1 PCT/CN2021/117739 CN2021117739W WO2023284102A1 WO 2023284102 A1 WO2023284102 A1 WO 2023284102A1 CN 2021117739 W CN2021117739 W CN 2021117739W WO 2023284102 A1 WO2023284102 A1 WO 2023284102A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
axial
axial spline
electromechanical actuator
lvdt
Prior art date
Application number
PCT/CN2021/117739
Other languages
English (en)
French (fr)
Inventor
宋洪舟
于志远
赵守军
左哲清
赵哲
曾博
李宗伦
周海平
朱晓荣
尹业成
王子兴
Original Assignee
北京精密机电控制设备研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京精密机电控制设备研究所 filed Critical 北京精密机电控制设备研究所
Priority to US18/038,167 priority Critical patent/US20230407953A1/en
Publication of WO2023284102A1 publication Critical patent/WO2023284102A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H25/2454Brakes; Rotational locks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors

Definitions

  • the invention relates to an electromechanical actuator, in particular to an electromechanical actuator for forced unlocking of fuzzy stuck faults of a transmission mechanism.
  • the ball or roller screw is an important transmission mechanism that converts the rotational motion of the motor into linear motion, and has high efficiency and high precision transmission characteristics.
  • the failure modes of the transmission mechanism mainly include: fracture, reduced efficiency, mismatch between rotation and linear expansion distance, unstable lead, etc.
  • ball screws for aerospace are usually characterized by high speed, high frequency and high overload. Under the special working conditions of aerospace, the failure mode of the transmission mechanism is different from that in the traditional application field. Ball or roller jamming and stagnation are more typical failure modes in the aerospace field.
  • the technical problem of the present invention is: to overcome the deficiencies of the prior art, and to provide an electromechanical actuator for forced unlocking of the fuzzy jamming fault of the transmission mechanism.
  • the biggest feature of the electromechanical actuator is that it can be forced Fault isolation is performed to achieve safety after failure without increasing the volume and weight of the electromechanical actuator.
  • An electromechanical actuator for forced unlocking of fuzzy jamming faults in a transmission mechanism including: a bidirectional electromagnetic brake assembly, a circumferentially rotating housing assembly, an axial spline bearing assembly, and an electromechanical actuator assembly;
  • the electromechanical actuator assembly, the two-way electromagnetic brake assembly, the circumferentially rotating housing assembly, and the axial spline bearing assembly are sequentially arranged on the same axis, and the axial spline bearing assembly is installed on the circumferentially rotating housing assembly.
  • the two-way electromagnetic brake assembly generates radial and axial suction forces simultaneously through active energization control, so that The circumferentially rotating shell component is disengaged from the fixed connection with the electromechanical actuator component, and makes a rotational movement, thereby forcing the connection between the axial spline bearing component and the electromechanical actuator component to fail, and forcibly releasing the force in the electromechanical actuator component.
  • the transmission mechanism of the rotor screw and the axial spline bearing assembly is jammed or stuck.
  • the two-way electromagnetic braking assembly includes: an axial magnetic rotor, a floating magnetic stator, an electromagnetic coil stator, a spring, a fixing screw and a magnetic steel ball;
  • the circumferential rotation housing assembly includes: a circumferential rotation bearing seat and an actuator housing;
  • the axial spline bearing assembly includes: axial spline nut and axial spline barrel;
  • Electromechanical actuator components include: screw support bearing, rotor screw, front end cover, front lug, servo motor and rear lug;
  • the electromagnetic coil stator of the two-way electromagnetic brake assembly is fixed on the circumferential rotation bearing seat, and the axial magnetic rotor is fixed on the rotor screw;
  • the electromagnetic coil stator When active power-on control, the electromagnetic coil stator axially attracts the floating magnetic stator and the axial magnetic rotor, so that the magnetic stator, the axial magnetic rotor and the rotor screw are solidly connected as one; the electromagnetic coil stator radially attracts the magnetic steel ball,
  • the steel ball compression spring enters the groove where the circumferential rotation bearing seat is located, so that the circumferential rotation bearing seat is disengaged from the epicyclic connection with the servo motor housing, and the fixing screw restricts the steel ball from moving outward, so that the spring is always in a preloaded state;
  • the axial spline nut and the rotor screw are installed on the same axis.
  • the axial spline nut moves linearly through the screw drive;
  • the circumferential rotation bearing seat supports the rotation of the bearing of the rotor screw;
  • the outer circumference of the axial spline nut is provided with a protruding spline, which is axially connected with the inner spline groove of the circumference of the axial spline barrel; Frame installation; screw support bearings, rotor screw, actuator housing, front end cover, front lugs, servo motor, rear lugs are installed on the same axis in sequence.
  • the protruding spline provided on the middle section of the outer surface of the axial spline nut is a rectangular spline.
  • Several rectangular splines are mated with the spline grooves provided on the inner wall of the axial spline barrel, so that the two can only move back and forth in the axial direction.
  • the two-way electromagnetic brake component is actively energized and controlled, and the actuator housing drives the axial spline barrel to rotate at a certain angle, forcing the axial spline barrel Disconnect the axial connection with the axial spline nut.
  • a protruding square block is provided on the outside of the axial spline nut, which reciprocates in the slide groove of the actuator housing; The height of the spline.
  • a fan-shaped notch is provided on the side of the axial spline barrel to avoid geometric interference with the raised square block provided on the axial spline nut.
  • the electromechanical actuator assembly also includes a linear displacement sensor, and when the linear displacement sensor of the electromechanical actuator assembly feeds back that the rotation of the ball screw pair is inconsistent with the linear displacement distance, it is determined that a jamming, stagnation or loosening fault occurs.
  • the electromechanical actuator of the present invention also includes an LVDT line displacement sensor assembly, a potentiometer line displacement sensor assembly and a control driver;
  • the absolute position of the spline nut is detected by the potentiometer linear displacement sensor assembly, and the absolute position of the axial spline barrel is detected by the LVDT linear displacement sensor assembly.
  • the control drive is The two-way electromagnetic brake component activates the recovery control signal, and the two-way electromagnetic brake component generates radial and axial suction forces simultaneously through active power-on control, and the servo motor makes a rotational movement, so that the circumferentially rotating shell component is fixedly connected with the electromechanical actuator component , forcing the axial spline barrel to connect with the axial spline nut at the disengagement of the corresponding annular groove, and then connecting the axial spline bearing assembly, forming a reciprocating linear motion again, and completing the restoration of the mechanical transmission function.
  • the LVDT linear displacement sensor assembly includes: LVDT stator, LVDT telescopic rod, LVDT bracket and LVDT housing;
  • the potentiometer linear displacement sensor assembly includes: potentiometer spring brush, potentiometer resistance plate;
  • the LVDT linear displacement sensor assembly is installed on the outside of the actuator housing.
  • the LVDT telescopic rod is coaxial with the LVDT stator and reciprocates in its inner cavity.
  • the LVDT telescopic rod and the LVDT bracket are connected by screws, and the LVDT bracket is fixed on the The front end of the axial spline barrel;
  • the LVDT stator is installed inside the LVDT shell, and the LVDT shell is connected to the outer surface of the actuator shell by screws;
  • the potentiometer spring brush is installed on the protruding position of the axial spline nut, and is in contact with the potentiometer resistance plate in a pre-pressed state; the potentiometer resistance plate is installed on the outside of the actuator housing.
  • the present invention also proposes a forced unlocking method for a fuzzy jamming fault of a transmission mechanism, the steps are as follows:
  • Step 1 When the linear displacement sensor of the electromechanical actuator component feeds back that the rotation of the ball screw pair is inconsistent with the linear displacement distance, it is determined that a jamming, stagnation or loosening fault occurs;
  • Step 2 The two-way electromagnetic brake component is actively energized and controlled, and the electromagnetic coil stator axially attracts the floating magnetic stator and the axial magnetic rotor, so that the floating magnetic stator, the axial magnetic rotor and the rotor screw are firmly connected as one;
  • Step 3 the electromagnetic coil stator radially attracts the magnetic steel ball, and the steel ball compression spring enters the groove provided on the circumferential rotation bearing seat, so that the circumferential rotation bearing seat is disengaged from the turnover connection with the servo motor housing;
  • Step 4 The actuator housing drives the axial spline cylinder to rotate at a certain angle, forcing the axial spline cylinder and the axial spline nut to disengage from the axial connection, thereby forcing the connection effect of the axial spline bearing assembly to fail, forcing Eliminate the jamming and stagnation faults of the transmission mechanism between the rotor screw and the axial spline nut, so that the axial spline barrel and the front lug become a floating state.
  • the present invention also proposes a mechanical fault self-recovery method realized by forced unlocking of the electromechanical actuator for fuzzy jamming faults of the transmission mechanism, the steps are as follows:
  • Step 1 The two sensors arranged inside and outside the electromechanical actuator simultaneously collect the position signals of the axial spline nut and the axial spline barrel, and use the redundant design of the servo system in the engine or air rudder to push the two structural parts. Align to the fault contact position, that is, the feedback values of the LVDT line displacement sensor and the potentiometer line displacement sensor are consistent within a certain error range;
  • Step 2 the electromagnetic coil stator radially attracts the magnetic steel ball, and the steel ball compression spring enters the groove provided on the circumferential rotation bearing seat, so that the circumferential rotation bearing seat and the servo motor housing are turned around;
  • Step 3 The actuator housing drives the axial spline barrel to rotate at a certain angle, forcing the axial spline barrel to connect with the axial spline nut at the disengaged position of the corresponding annular groove, so that the axial spline bearing assembly is connected, The reciprocating linear motion is formed again, and the recovery of the mechanical transmission function is completed.
  • a technical solution for the fuzzy jamming fault of the transmission mechanism to force unlock the electromechanical actuator proposed by the present invention can solve the jamming or jamming of the ball screw electromechanical actuator and can use the output torque of the servo motor to perform fault isolation and realize the operation It is safe after the failure of the actuator, and at the same time, it can also use the two linear displacement sensors to cooperate to realize the work after the failure.
  • a technical scheme of the electromechanical actuator forcibly unlocking the fuzzy jamming fault of the transmission mechanism proposed by the present invention uses a bidirectional control electromagnetic brake to realize power switching in two directions, which ensures the high power density requirement of the electromechanical actuator and does not Will add significant weight and bulk.
  • the technical scheme of a forced unlocking electromechanical actuator for a transmission mechanism fuzzy jam fault proposed by the present invention can be expanded and applied to the field of high reliability and high safety actuation technology, such as the main flight control surface of a civil airliner and the auxiliary flight control of a fighter jet Surfaces, engine thrust vector control, reusable flight control surfaces for space-to-ground reusable aircraft, etc., have broader application prospects.
  • Fig. 1 is a diagram of the internal composition and structure of the electromechanical actuator for forced unlocking of the fuzzy jamming fault of the transmission mechanism provided by Embodiment 1 of the present invention
  • Fig. 2 is an internal sectional view of the axial spline bearing assembly provided by Embodiment 1 of the present invention
  • Fig. 3 is an internal sectional view of the two-way electromagnetic brake assembly provided by Embodiment 1 of the present invention.
  • Fig. 4 is a schematic diagram of the appearance of the axial spline barrel of the present invention.
  • Fig. 5 is a schematic diagram of the appearance of the axial spline nut of the present invention.
  • Fig. 6 is a diagram of the internal composition and structure of the electromechanical actuator for forced unlocking of the fuzzy jam fault of the transmission mechanism provided by the second embodiment of the present invention.
  • Fig. 7 is an internal sectional view of the axial spline bearing assembly provided by the second embodiment of the present invention.
  • Fig. 8 is an internal sectional view of the two-way electromagnetic brake assembly provided by the second embodiment of the present invention.
  • the electromechanical actuator mainly includes: two-way Electromagnetic brake components, circumferentially rotating housing components, axial spline bearing components and electromechanical actuator components;
  • the electromechanical actuator assembly, the two-way electromagnetic brake assembly, the circumferentially rotating housing assembly, and the axial spline bearing assembly are sequentially arranged on the same axis, and the axial spline bearing assembly is installed on the circumferentially rotating housing assembly.
  • the two-way electromagnetic brake assembly generates radial and axial suction forces simultaneously through active energization control, so that The circumferentially rotating shell component is disengaged from the fixed connection with the electromechanical actuator component, and makes a rotational movement, thereby forcing the connection between the axial spline bearing component and the electromechanical actuator component to fail, and forcibly releasing the force in the electromechanical actuator component.
  • the transmission mechanism of the rotor screw and the axial spline bearing assembly is jammed or stuck.
  • the two-way electromagnetic braking assembly in the present invention includes: an axial magnetic rotor 1, a floating magnetic stator 2, an electromagnetic coil stator 3, a spring 4, a fixing screw 5 and a magnetic steel ball 6; a circumferential rotating housing assembly Including: circumferential rotation bearing seat 7 and actuator housing 12; axial spline bearing assembly includes: axial spline nut 10 and axial spline barrel 11; electromechanical actuator assembly includes: screw support bearing 8 , rotor screw 9, front cover 13, front lug 14, servo motor 15 and rear lug 16.
  • the electromagnetic coil stator 3 of the two-way electromagnetic brake assembly is fixed on the circumferential rotation bearing seat 7, and the axial magnetic rotor 1 is fixed on the rotor screw 9;
  • the electromagnetic coil stator 3 when the power is actively controlled, the electromagnetic coil stator 3 axially attracts the floating magnetic stator 2 and the axial magnetic rotor 1, so that the magnetic stator 2, the axial magnetic rotor 1 and the rotor screw 9 are solidly connected as one
  • the electromagnetic coil stator 3 radially attracts the magnetic steel ball 6, and the steel ball 6 compresses the spring 4 to enter the groove where the circumferential rotation bearing seat 7 is located, so that the circumferential rotation bearing seat 7 is disengaged from the turnover connection with the servo motor 15 housing , the fixing screw 5 restricts the movement of the steel ball 6 to the outside, so that the spring 4 always forms a preloaded state;
  • the axial spline nut 10 and the rotor screw 9 are installed on the same axis.
  • the axial spline nut 10 moves linearly through screw transmission;
  • the circumferential rotation bearing Seat 7 supports the bearing rotation of rotor screw rod 9;
  • the outer circumference of the axial spline nut 10 is provided with protruding splines, which are axially connected with the inner spline grooves of the circumference of the axial spline barrel 11; Installed with the external frame; the screw support bearing 8, the rotor screw 9, the actuator housing 12, the front cover 13, the front lug 14, the servo motor 15, and the rear lug 16 are successively installed on the same axis.
  • the relative rotational movement between the circumferential rotation bearing seat 7 and the rotor screw 9 is connected by a screw support bearing 8 .
  • the protruding spline provided on the middle section of the outer surface of the axial spline nut 10 is a rectangular spline.
  • Several rectangular splines towards the middle section of the outer surface of the spline nut 10 are mated with the spline grooves provided on the inner wall of the axial spline barrel 11, so that the two can only move back and forth in the axial direction.
  • the two-way electromagnetic brake assembly is actively energized and controlled, and the actuator housing 12 drives the axial spline barrel 11 to rotate at a certain angle, forcing the axial spline The barrel 11 is disconnected from the axial spline nut 10 in the axial direction.
  • a protruding square block is provided on the outside of the axial spline nut 10, which moves back and forth in the chute of the actuator housing 12; the protruding height of the protruding square block is larger than the axial spline nut.
  • a sector notch is provided on the side of the axial spline barrel 11 for avoiding geometric interference with the protruding square block provided on the axial spline nut 10 .
  • the electromechanical actuator assembly in the present invention further includes a linear displacement sensor.
  • the linear displacement sensor of the electromechanical actuator assembly feeds back that the rotation of the ball screw pair is inconsistent with the linear displacement distance, it is determined that jamming, stagnation or Loose fault.
  • the electromechanical actuator of the present invention has another form of implementation. On the basis of the implementations in Figures 1 to 3, it also includes an LVDT line displacement sensor assembly, a potentiometer line displacement sensor assembly and Control drive 17;
  • the absolute position of the spline nut 10 is detected by the potentiometer linear displacement sensor assembly, and the absolute position of the axial spline barrel 11 is detected by the LVDT linear displacement sensor assembly.
  • the control The driver 17 sends a recovery control signal to the two-way electromagnetic brake assembly, and the two-way electromagnetic brake assembly generates radial and axial suction forces simultaneously through active power-on control, and the servo motor 15 makes a rotational movement, so that the circumferentially rotating housing assembly and the electromechanical actuation
  • the device assembly is fixedly connected, forcing the axial spline barrel 11 and the axial spline nut 10 to be connected at the corresponding annular groove, and then the axial spline bearing assembly is connected, forming a reciprocating linear motion again, and completing the recovery of the mechanical transmission function .
  • the LVDT linear displacement sensor assembly includes: LVDT stator 18, LVDT telescopic rod 19, LVDT bracket 20 and LVDT housing 21;
  • the potentiometer linear displacement sensor assembly includes: potentiometer spring brush 22, Potentiometer resistance plate 23;
  • the LVDT linear displacement sensor assembly is installed on the outside of the actuator housing 12, the LVDT telescopic rod 19 is coaxial with the LVDT stator 18, and reciprocates and telescopically moves in its inner cavity, the LVDT telescopic rod 19 and the LVDT bracket 20 are connected by screws, and The LVDT bracket 20 is fixedly installed on the front end of the axial spline barrel 11; the LVDT stator 18 is installed inside the LVDT housing 21, and the LVDT housing 21 is connected to the outer surface of the actuator housing 12 by screws;
  • the potentiometer spring brush 22 is installed on the protruding position of the axial spline nut 10 and is in contact with the potentiometer resistance plate 23 in a pre-pressed state; the potentiometer resistance plate 23 is installed on the outside of the actuator housing 12 .
  • the linear displacement sensor of the electromechanical actuator feedbacks that the rotation of the ball screw pair is inconsistent with the linear displacement distance, it is determined that faults such as jamming, stagnation, and looseness have occurred. Then, the two-way electromagnetic brake assembly is actively energized and controlled. At this time, the electromagnetic coil stator axially attracts the floating magnetic stator 2 and the axial magnetic rotor 1, so that the magnetic stator 2 and the axial magnetic rotor 1 are fixedly connected with the rotor screw 9.
  • the actuator housing 12 drives the axial spline barrel 11 to rotate at a certain angle, forcing the axial spline barrel 11 and the axial spline nut 10 to disengage the axial connection, and then forcing the axial spline bearing assembly to connect Failure, the jamming and stagnation faults of the transmission mechanism between the rotor screw 9 and the axial spline nut 10 are forcibly released, so that the axial spline barrel 11 and the front lug 14 become a floating state.
  • the absolute position of the spline nut 10 is detected by the potentiometer linear displacement sensor assembly, and the absolute position of the axial spline barrel 11 is detected by the LVDT linear displacement sensor assembly.
  • the control The driver 17 sends a recovery control signal to the two-way electromagnetic brake assembly, and the two-way electromagnetic brake assembly generates radial and axial suction forces simultaneously through active power-on control, and the servo motor 15 makes a rotational movement, so that the circumferentially rotating housing assembly and the electromechanical actuation
  • the device assembly is fixedly connected, forcing the axial spline barrel 11 and the axial spline nut 10 to be connected at the corresponding annular groove, and then the axial spline bearing assembly is connected, forming a reciprocating linear motion again, and completing the recovery of the mechanical transmission function .
  • the present invention provides an implementation plan of an electromechanical actuator for forced unlocking of a transmission mechanism fuzzy jam fault.
  • the linear thrust of the actuator reaches 30kN
  • the unlocking torque of the servo motor should not be less than 20Nm
  • the diameter of the steel ball should not be less than 5mm
  • the suction force of the electromagnetic brake is not less than 20Nm
  • the suction force of the radial electromagnetic brake is not less than 5Nm.
  • the servo motor uses the torque capacity of 20Nm and the axial electromagnetic brake capacity of 20Nm to restore the steel ball from the unlocked position to the connected position.
  • the mechanical transmission function can be restored, and It can output 30kN linear thrust again.

Abstract

一种传动机构模糊卡塞故障强制解锁机电作动器,包括双向电磁制动组件、周向旋转壳体组件、轴向花键承载组件、LVDT线位移传感器组件、电位计线位移传感器组件和机电作动器组件。轴向花键承载组件安装于周向旋转壳体组件的内部往复直线运动,且轴向花键承载组件与机电作动器组件的输出转轴连接构成螺旋传动副;双向电磁制动组件主动通电产生径向和轴向吸合力,使周向旋转壳体组件脱开与机电作动器组件的固连而旋转运动,迫使轴向花键承载组件与机电作动器组件的连接失效,强制解除机电作动器组件中的转子丝杆(9)与轴向花键承载组件的传动卡塞或卡滞故障;当两个线位移传感器瞬时到达切换位置时,对双向电磁制动组件发出恢复控制信号,完成机械传动功能恢复。

Description

一种传动机构模糊卡塞故障强制解锁机电作动器及方法
本申请要求于2021年7月16日提交中国专利局、申请号为202110808088.X、发明名称为“一种传动机构模糊卡塞故障强制解锁机电作动器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种机电作动器,特别涉及一种传动机构模糊卡塞故障强制解锁机电作动器。
背景技术
传统的机电作动器中,滚珠或滚柱丝杠是将电机的旋转运动转化为直线运动的重要传动机构,具有高效率和高精密的传动特点。在传统应用领域中,传动机构的失效形式主要包括:断裂、效率降低、旋转和直线伸缩距离不匹配,导程不稳定等等。然而,面向航天领域的滚珠丝杠通常具有高速、高频和高过载的使用特点。在航天特殊使用工况下,传动机构的失效形式与传统应用领域有所不同,滚珠或滚柱卡塞、卡滞是航天领域较为典型的故障失效形式。
从国内外的专利来看,解除卡塞或卡滞故障的直线式机电作动器原理多数基于余度设计考虑,采用两套滚珠丝杠副或滚柱丝杠副,导致机构重量体积显著增加,功率密度严重下降。现有传动机构卡塞解锁技术方案是,丝杠副的故障必须是完全卡死,伺服电机才能利用卡死点传递转矩至壳体进行故障解除,但通常情况下丝杠副可能存在“卡滞、假卡塞”的问题,现有技术方案无法对这种模糊情况进行解除。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供了一种传动机构 模糊卡塞故障强制解锁机电作动器,该机电作动器最大特点是无论“卡塞或卡滞”可强制进行故障隔离,在机电作动器的体积重量不增加基础上,实现故障后安全。
本发明的技术解决方案是:
一种传动机构模糊卡塞故障强制解锁机电作动器,包括:双向电磁制动组件、周向旋转壳体组件、轴向花键承载组件以及机电作动器组件;
所述的机电作动器组件、双向电磁制动组件、周向旋转壳体组件、轴向花键承载组件依次布置于同一轴线上,轴向花键承载组件安装于周向旋转壳体组件的内部,构成往复直线运动,且轴向花键承载组件与机电作动器组件的输出转轴连接,构成螺旋传动副;双向电磁制动组件通过主动通电控制同时产生径向和轴向吸合力,使得周向旋转壳体组件脱开与机电作动器组件的固定连接,作出旋转运动,进而迫使轴向花键承载组件与机电作动器组件的连接作用失效,强制解除机电作动器组件中的转子丝杆与轴向花键承载组件的传动机构卡塞或卡滞故障。
进一步的,双向电磁制动组件包括:轴向磁性转子、浮动磁性定子、电磁线圈定子、弹簧、固定螺钉以及磁性钢球;
周向旋转壳体组件包括:周向旋转轴承座和作动器壳体;
轴向花键承载组件包括:轴向花键螺母和轴向花键筒;
机电作动器组件包括:丝杠支承轴承、转子丝杆、前端盖、前支耳、伺服电机以及后支耳;
双向电磁制动组件的电磁线圈定子固定于周向旋转轴承座上,轴向磁性转子固定于转子丝杆上;
当主动通电控制时,电磁线圈定子轴向吸合浮动磁性定子和轴向磁性转子,使得磁性定子、轴向磁性转子与转子丝杆固联为一体;电磁线圈定子径向吸合磁性钢球,钢球压缩弹簧进入周向旋转轴承座所在的凹槽,使得周向旋转轴承座脱开与伺服电机壳体的周转连接,固定螺钉限制钢球向外侧运 动,使得弹簧一直构成预压状态;
轴向花键螺母与转子丝杆安装在同一轴线上,转子丝杆定轴旋转时,经过螺旋传动使得轴向花键螺母作直线运动;周向旋转轴承座支撑转子丝杆的轴承旋转;
轴向花键螺母外侧圆周设有凸起状花键,与轴向花键筒的圆周内侧花键槽轴向连接;轴向花键筒与前支耳螺纹连接成一体,用于与外部的机架安装;丝杠支承轴承、转子丝杆、作动器壳体、前端盖、前支耳、伺服电机、后支耳依次安装在同一轴线上。
进一步的,周向旋转轴承座与转子丝杆之间的相对旋转运动采用丝杠支承轴承连接。
进一步的,轴向花键螺母外侧面中间段设有的凸起状花键为矩形花键,当轴向花键螺母与转子丝杆正常啮合传动时,轴向花键螺母外侧面中间段的若干矩形花键与轴向花键筒内壁设有的花键槽配合连接,使得两者只能做轴向往复移动。
进一步的,当轴向花键筒被作动器壳体驱动旋转时,使得轴向花键螺母上的矩形花键与轴向花键筒内侧的花键槽脱开连接。
进一步的,轴向花键螺母与转子丝杆发生卡塞或卡滞时,双向电磁制动组件主动通电控制,作动器壳体驱动轴向花键筒旋转一定角度,迫使轴向花键筒与轴向花键螺母脱开轴向连接。
进一步的,轴向花键螺母外侧设有凸起方形块,在作动器壳体的滑槽内往复移动;该凸起方形块的凸起高度大于轴向花键螺母外侧设有的凸起状花键的高度。
进一步的,轴向花键筒侧面设有扇形缺口,用于避开与轴向花键螺母设有凸起方形块的几何干涉。
进一步的,所述机电作动器组件还包括线位移传感器,当机电作动器组件的线位移传感器反馈滚珠丝杠副旋转与直线位移距离不一致后,判定发生 卡塞、卡滞或松动故障。
进一步的,本发明机电作动器还包括LVDT线位移传感器组件、电位计线位移传感器组件和控制驱动器;
通过电位计线位移传感器组件对花键螺母的绝对位置进行检测,通过LVDT线位移传感器组件对轴向花键筒的绝对位置进行检测,当两个线位移传感器瞬时到达切换位置时,控制驱动器对双向电磁制动组件发动恢复控制信号,双向电磁制动组件通过主动通电控制同时产生径向和轴向吸合力,伺服电机作出旋转运动,使得周向旋转壳体组件与机电作动器组件固定连接,迫使轴向花键筒与轴向花键螺母在对应环形凹槽脱开处连接,进而使轴向花键承载组件连接,再次构成往复直线运动,完成机械传动功能恢复。
进一步的,LVDT线位移传感器组件包括:LVDT定子、LVDT伸缩杆、LVDT支架和LVDT壳体;电位计线位移传感器组件包括:电位计弹簧刷片、电位计电阻板;
LVDT线位移传感器组件安装于的作动器壳体外侧,LVDT伸缩杆与LVDT定子同轴,并在其内腔中往复伸缩运动,LVDT伸缩杆与LVDT支架通过螺钉连接,且LVDT支架固定安装于轴向花键筒前端部;LVDT定子安装在LVDT壳体内部,LVDT壳体通过螺钉连接于作动器壳体的外表面;
电位计弹簧刷片安装于轴向花键螺母的凸起位置,并与电位计电阻板接触,呈预压状态;电位计电阻板安装于作动器壳体外侧。
进一步的,本发明还提出一种传动机构模糊卡塞故障强制解锁方法,步骤如下:
步骤一、当机电作动器组件的线位移传感器反馈滚珠丝杠副旋转与直线位移距离不一致后,判定发生卡塞、卡滞或松动故障;
步骤二、双向电磁制动组件主动通电控制,电磁线圈定子轴向吸合浮动磁性定子和轴向磁性转子,使得浮动磁性定子和轴向磁性转子与转子丝杆固联为一体;
步骤三、电磁线圈定子径向吸合磁性钢球,钢球压缩弹簧进入周向旋转轴承座上设置的凹槽,使得周向旋转轴承座脱开与伺服电机壳体的周转连接;
步骤四、作动器壳体驱动轴向花键筒旋转一定角度,迫使轴向花键筒与轴向花键螺母脱开轴向连接,进而迫使轴向花键承载组件的连接作用失效,强制解除转子丝杆与轴向花键螺母的传动机构卡塞和卡滞故障,从而使得轴向花键筒与前支耳成为浮动状态。
进一步的,本发明还提出传动机构模糊卡塞故障强制解锁机电作动器实现的机械故障自恢复方法,步骤如下:
步骤一、机电作动器内外布置的两种传感器同时采集轴向花键螺母和轴向花键筒的位置信号,并借助伺服系统在发动机或空气舵的系统冗余设计,推动两个结构件对齐到故障接触位置,即,LVDT线位移传感器与电位计线位移传感器反馈数值在一定误差范围内一致;
步骤二、电磁线圈定子径向吸合磁性钢球,钢球压缩弹簧进入周向旋转轴承座上设置的凹槽,使得周向旋转轴承座与伺服电机壳体周转;
步骤三、作动器壳体驱动轴向花键筒旋转一定角度,迫使轴向花键筒与轴向花键螺母在对应环形凹槽脱开处连接,进而使轴向花键承载组件连接,再次构成往复直线运动,完成机械传动功能恢复。
本发明与现有技术相比的有益效果是:
(1)本发明提出的一种传动机构模糊卡塞故障强制解锁机电作动器技术方案,解决滚珠丝杠机电作动器卡塞或卡滞后能够利用伺服电机输出转矩进行故障隔离,实现作动器故障后安全,同时也可以再次利用两个线位移传感器配合实现故障后工作。
(2)本发明提出的一种传动机构模糊卡塞故障强制解锁机电作动器技术方案,利用双向控制电磁制动器实现两个方向的动力切换,保证了机电作动器的高功率密度要求,不会显著增加重量和体积。
(3)本发明提出的一种传动机构模糊卡塞故障强制解锁机电作动器技术方案,解决了滚柱或滚珠丝杠可能存在“卡滞、假卡塞”的问题,能够强制进行故障解除和隔离。
(4)本发明提出的一种传动机构模糊卡塞故障强制解锁机电作动器技术方案,巧妙利用了伺服电机大转矩输出特点,采用共同的动力源,对卡塞、卡滞点进行强制解除,该思想可借用到其他作动器中。
(5)本发明提出的一种传动机构模糊卡塞故障强制解锁机电作动器技术方案,能够拓展应用到高可靠、高安全作动技术领域,例如民用客机主飞行操纵面、战斗机辅助飞行操纵面、发动机推力矢量控制、天地往返可重复使用飞行器飞行操纵面等,具有更为广阔的应用前景。
附图说明
图1是本发明实施例一提供的传动机构模糊卡塞故障强制解锁机电作动器内部组成结构图;
图2是本发明实施例一提供的轴向花键承载组件内部剖面图;
图3是本发明实施例一提供的双向电磁制动组件内部剖面图;
图4是本发明轴向花键筒外观示意图;
图5是本发明轴向花键螺母外观示意图;
图6是本发明实施例二提供的传动机构模糊卡塞故障强制解锁机电作动器内部组成结构图;
图7是本发明实施例二提供的轴向花键承载组件内部剖面图;
图8是本发明实施例二提供的双向电磁制动组件内部剖面图。
具体实施方式
下面结合附图对本发明的具体实施方式进行进一步的详细描述。
针对现有技术方案无法对“卡滞、卡塞”这种模糊情况进行解除的情况,本发明提出一种传动机构模糊卡塞故障强制解锁机电作动器,该机电作动器主要包括:双向电磁制动组件、周向旋转壳体组件、轴向花键承载组件以及 机电作动器组件;
所述的机电作动器组件、双向电磁制动组件、周向旋转壳体组件、轴向花键承载组件依次布置于同一轴线上,轴向花键承载组件安装于周向旋转壳体组件的内部,构成往复直线运动,且轴向花键承载组件与机电作动器组件的输出转轴连接,构成螺旋传动副;双向电磁制动组件通过主动通电控制同时产生径向和轴向吸合力,使得周向旋转壳体组件脱开与机电作动器组件的固定连接,作出旋转运动,进而迫使轴向花键承载组件与机电作动器组件的连接作用失效,强制解除机电作动器组件中的转子丝杆与轴向花键承载组件的传动机构卡塞或卡滞故障。
如图1所示,本发明中双向电磁制动组件包括:轴向磁性转子1、浮动磁性定子2、电磁线圈定子3、弹簧4、固定螺钉5以及磁性钢球6;周向旋转壳体组件包括:周向旋转轴承座7和作动器壳体12;轴向花键承载组件包括:轴向花键螺母10和轴向花键筒11;机电作动器组件包括:丝杠支承轴承8、转子丝杆9、前端盖13、前支耳14、伺服电机15以及后支耳16。
双向电磁制动组件的电磁线圈定子3固定于周向旋转轴承座7上,轴向磁性转子1固定于转子丝杆9上;
如图3所示,当主动通电控制时,电磁线圈定子3轴向吸合浮动磁性定子2和轴向磁性转子1,使得磁性定子2、轴向磁性转子1与转子丝杆9固联为一体;电磁线圈定子3径向吸合磁性钢球6,钢球6压缩弹簧4进入周向旋转轴承座7所在的凹槽,使得周向旋转轴承座7脱开与伺服电机15壳体的周转连接,固定螺钉5限制钢球6向外侧运动,使得弹簧4一直构成预压状态;
如图2所示,轴向花键螺母10与转子丝杆9安装在同一轴线上,转子丝杆9定轴旋转时,经过螺旋传动使得轴向花键螺母10作直线运动;周向旋转轴承座7支撑转子丝杆9的轴承旋转;
轴向花键螺母10外侧圆周设有凸起状花键,与轴向花键筒11的圆周内 侧花键槽轴向连接;轴向花键筒11与前支耳14螺纹连接成一体,用于与外部的机架安装;丝杠支承轴承8、转子丝杆9、作动器壳体12、前端盖13、前支耳14、伺服电机15、后支耳16依次安装在同一轴线上。
周向旋转轴承座7与转子丝杆9之间的相对旋转运动采用丝杠支承轴承8连接。
如图4和图5所示,轴向花键螺母10外侧面中间段设有的凸起状花键为矩形花键,当轴向花键螺母10与转子丝杆9正常啮合传动时,轴向花键螺母10外侧面中间段的若干矩形花键与轴向花键筒11内壁设有的花键槽配合连接,使得两者只能做轴向往复移动。
当轴向花键筒11被作动器壳体12驱动旋转时,使得轴向花键螺母10上的矩形花键与轴向花键筒11内侧的花键槽脱开连接。
轴向花键螺母10与转子丝杆9发生卡塞或卡滞时,双向电磁制动组件主动通电控制,作动器壳体12驱动轴向花键筒11旋转一定角度,迫使轴向花键筒11与轴向花键螺母10脱开轴向连接。
如图4和图5所示,轴向花键螺母10外侧设有凸起方形块,在作动器壳体12的滑槽内往复移动;该凸起方形块的凸起高度大于轴向花键螺母10外侧设有的凸起状花键的高度。
轴向花键筒11侧面设有扇形缺口,用于避开与轴向花键螺母10设有凸起方形块的几何干涉。
优选的,本发明中所述机电作动器组件还包括线位移传感器,当机电作动器组件的线位移传感器反馈滚珠丝杠副旋转与直线位移距离不一致后,判定发生卡塞、卡滞或松动故障。
如图6、7、8所示,本发明机电作动器还有另一种实现形式,在图1~3实施方案的基础上,还包括LVDT线位移传感器组件、电位计线位移传感器组件和控制驱动器17;
通过电位计线位移传感器组件对花键螺母10的绝对位置进行检测,通 过LVDT线位移传感器组件对轴向花键筒11的绝对位置进行检测,当两个线位移传感器瞬时到达切换位置时,控制驱动器17对双向电磁制动组件发动恢复控制信号,双向电磁制动组件通过主动通电控制同时产生径向和轴向吸合力,伺服电机15作出旋转运动,使得周向旋转壳体组件与机电作动器组件固定连接,迫使轴向花键筒11与轴向花键螺母10在对应环形凹槽脱开处连接,进而使轴向花键承载组件连接,再次构成往复直线运动,完成机械传动功能恢复。
如图6、7、8所示,LVDT线位移传感器组件包括:LVDT定子18、LVDT伸缩杆19、LVDT支架20和LVDT壳体21;电位计线位移传感器组件包括:电位计弹簧刷片22、电位计电阻板23;
LVDT线位移传感器组件安装于的作动器壳体12外侧,LVDT伸缩杆19与LVDT定子18同轴,并在其内腔中往复伸缩运动,LVDT伸缩杆19与LVDT支架20通过螺钉连接,且LVDT支架20固定安装于轴向花键筒11前端部;LVDT定子18安装在LVDT壳体21内部,LVDT壳体21通过螺钉连接于作动器壳体12的外表面;
电位计弹簧刷片22安装于轴向花键螺母10的凸起位置,并与电位计电阻板23接触,呈预压状态;电位计电阻板23安装于作动器壳体12外侧。
工作原理:
当机电作动器的线位移传感反馈滚珠丝杠副旋转与直线位移距离不一致后,判定发生卡塞、卡滞、松动等故障。而后,双向电磁制动组件主动通电控制,此时,电磁线圈定子轴向吸合浮动磁性定子2和轴向磁性转子1,使得磁性定子2和轴向磁性转子1与转子丝杆9固联为一体;电磁线圈定子径向吸合磁性钢球6,钢球6压缩弹簧4进入周向旋转轴承座7上设置的凹槽,使得周向旋转轴承座7脱开与伺服电机15壳体的周转连接,作动器壳体12驱动轴向花键筒11旋转一定角度,迫使轴向花键筒11与轴向花键螺母10脱开轴向连接,进而迫使轴向花键承载组件的连接作用失效,强制解 除转子丝杆9与轴向花键螺母10的传动机构卡塞和卡滞故障,从而使得轴向花键筒11与前支耳14成为浮动状态。
当对传动机构的导程精度、传动效率等进行综合检测,符合技术要求后,判定可以继续正常恢复工作。通过电位计线位移传感器组件对花键螺母10的绝对位置进行检测,通过LVDT线位移传感器组件对轴向花键筒11的绝对位置进行检测,当两个线位移传感器瞬时到达切换位置时,控制驱动器17对双向电磁制动组件发动恢复控制信号,双向电磁制动组件通过主动通电控制同时产生径向和轴向吸合力,伺服电机15作出旋转运动,使得周向旋转壳体组件与机电作动器组件固定连接,迫使轴向花键筒11与轴向花键螺母10在对应环形凹槽脱开处连接,进而使轴向花键承载组件连接,再次构成往复直线运动,完成机械传动功能恢复。
实施例:
给出具体数据作为例子,说明本发明优势。
本发明提供的一种传动机构模糊卡塞故障强制解锁机电作动器实施方案,当作动器直线推力达到30kN时,伺服电机解锁转矩应当不小于20Nm,钢球直径不小于5mm,轴向向电磁制动器吸合力不小于20Nm,径向电磁制动器吸合力不小于5Nm,按照此实施案例能够实现当传动机构发生模糊卡塞故障时,强制进行解锁达到安全效果。
当作动器推动负载小于30kN时,伺服电机利用20Nm的转矩能力和20Nm轴向向电磁制动器能力,使得钢球从解锁位置恢复到连接位置,按照此实施案例能够实现机械传动功能恢复,并可再次输出30kN直线推力。
本发明未详细说明部分属本领域技术人员公知常识。

Claims (13)

  1. 一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:包括:双向电磁制动组件、周向旋转壳体组件、轴向花键承载组件以及机电作动器组件;
    所述的机电作动器组件、双向电磁制动组件、周向旋转壳体组件、轴向花键承载组件依次布置于同一轴线上,轴向花键承载组件安装于周向旋转壳体组件的内部,构成往复直线运动,且轴向花键承载组件与机电作动器组件的输出转轴连接,构成螺旋传动副;双向电磁制动组件通过主动通电控制同时产生径向和轴向吸合力,使得周向旋转壳体组件脱开与机电作动器组件的固定连接,作出旋转运动,进而迫使轴向花键承载组件与机电作动器组件的连接作用失效,强制解除机电作动器组件中的转子丝杆与轴向花键承载组件的传动机构卡塞或卡滞故障。
  2. 根据权利要求1所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:双向电磁制动组件包括:轴向磁性转子(1)、浮动磁性定子(2)、电磁线圈定子(3)、弹簧(4)、固定螺钉(5)以及磁性钢球(6);
    周向旋转壳体组件包括:周向旋转轴承座(7)和作动器壳体(12);
    轴向花键承载组件包括:轴向花键螺母(10)和轴向花键筒(11);
    机电作动器组件包括:丝杠支承轴承(8)、转子丝杆(9)、前端盖(13)、前支耳(14)、伺服电机(15)以及后支耳(16);
    双向电磁制动组件的电磁线圈定子(3)固定于周向旋转轴承座(7)上,轴向磁性转子(1)固定于转子丝杆(9)上;
    当主动通电控制时,电磁线圈定子(3)轴向吸合浮动磁性定子(2)和轴向磁性转子(1),使得磁性定子(2)、轴向磁性转子(1)与转子丝杆(9)固联为一体;电磁线圈定子(3)径向吸合磁性钢球(6),钢球(6) 压缩弹簧(4)进入周向旋转轴承座(7)所在的凹槽,使得周向旋转轴承座(7)脱开与伺服电机(15)壳体的周转连接,固定螺钉(5)限制钢球(6)向外侧运动,使得弹簧(4)一直构成预压状态;
    轴向花键螺母(10)与转子丝杆(9)安装在同一轴线上,转子丝杆(9)定轴旋转时,经过螺旋传动使得轴向花键螺母(10)作直线运动;周向旋转轴承座(7)支撑转子丝杆(9)的轴承旋转;
    轴向花键螺母(10)外侧圆周设有凸起状花键,与轴向花键筒(11)的圆周内侧花键槽轴向连接;轴向花键筒(11)与前支耳(14)螺纹连接成一体,用于与外部的机架安装;丝杠支承轴承(8)、转子丝杆(9)、作动器壳体(12)、前端盖(13)、前支耳(14)、伺服电机(15)、后支耳(16)依次安装在同一轴线上。
  3. 根据权利要求2所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:周向旋转轴承座(7)与转子丝杆(9)之间的相对旋转运动采用丝杠支承轴承(8)连接。
  4. 根据权利要求2所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:轴向花键螺母(10)外侧面中间段设有的凸起状花键为矩形花键,当轴向花键螺母(10)与转子丝杆(9)正常啮合传动时,轴向花键螺母(10)外侧面中间段的若干矩形花键与轴向花键筒(11)内壁设有的花键槽配合连接,使得两者只能做轴向往复移动。
  5. 根据权利要求4所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:当轴向花键筒(11)被作动器壳体(12)驱动旋转时,使得轴向花键螺母(10)上的矩形花键与轴向花键筒(11)内侧的花键槽脱开连接。
  6. 根据权利要求5所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:轴向花键螺母(10)与转子丝杆(9)发生卡塞或卡滞时,双向电磁制动组件主动通电控制,作动器壳体(12)驱动轴向花键筒(11) 旋转一定角度,迫使轴向花键筒(11)与轴向花键螺母(10)脱开轴向连接。
  7. 根据权利要求5所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:轴向花键螺母(10)外侧设有凸起方形块,在作动器壳体(12)的滑槽内往复移动;该凸起方形块的凸起高度大于轴向花键螺母(10)外侧设有的凸起状花键的高度。
  8. 根据权利要求7所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:轴向花键筒(11)侧面设有扇形缺口,用于避开与轴向花键螺母(10)设有凸起方形块的几何干涉。
  9. 根据权利要求2所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:所述机电作动器组件还包括线位移传感器,当机电作动器组件的线位移传感器反馈滚珠丝杠副旋转与直线位移距离不一致后,判定发生卡塞、卡滞或松动故障。
  10. 根据权利要求5所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:还包括LVDT线位移传感器组件、电位计线位移传感器组件和控制驱动器(17);
    通过电位计线位移传感器组件对花键螺母(10)的绝对位置进行检测,通过LVDT线位移传感器组件对轴向花键筒(11)的绝对位置进行检测,当两个线位移传感器瞬时到达切换位置时,控制驱动器(17)对双向电磁制动组件发动恢复控制信号,双向电磁制动组件通过主动通电控制同时产生径向和轴向吸合力,伺服电机(15)作出旋转运动,使得周向旋转壳体组件与机电作动器组件固定连接,迫使轴向花键筒(11)与轴向花键螺母(10)在对应环形凹槽脱开处连接,进而使轴向花键承载组件连接,再次构成往复直线运动,完成机械传动功能恢复。
  11. 根据权利要求10所述的一种传动机构模糊卡塞故障强制解锁机电作动器,其特征在于:LVDT线位移传感器组件包括:LVDT定子(18)、LVDT伸缩杆(19)、LVDT支架(20)和LVDT壳体(21);电位计线位移传感器 组件包括:电位计弹簧刷片(22)、电位计电阻板(23);
    LVDT线位移传感器组件安装于的作动器壳体(12)外侧,LVDT伸缩杆(19)与LVDT定子(18)同轴,并在其内腔中往复伸缩运动,LVDT伸缩杆(19)与LVDT支架(20)通过螺钉连接,且LVDT支架(20)固定安装于轴向花键筒(11)前端部;LVDT定子(18)安装在LVDT壳体(21)内部,LVDT壳体(21)通过螺钉连接于作动器壳体(12)的外表面;
    电位计弹簧刷片(22)安装于轴向花键螺母(10)的凸起位置,并与电位计电阻板(23)接触,呈预压状态;电位计电阻板(23)安装于作动器壳体(12)外侧。
  12. 一种根据权利要求2~11中任一项所述的传动机构模糊卡塞故障强制解锁机电作动器实现的传动机构模糊卡塞故障强制解锁方法,其特征在于步骤如下:
    步骤一、当机电作动器组件的线位移传感器反馈滚珠丝杠副旋转与直线位移距离不一致后,判定发生卡塞、卡滞或松动故障;
    步骤二、双向电磁制动组件主动通电控制,电磁线圈定子轴向吸合浮动磁性定子(2)和轴向磁性转子(1),使得浮动磁性定子(2)和轴向磁性转子(1)与转子丝杆(9)固联为一体;
    步骤三、电磁线圈定子径向吸合磁性钢球(6),钢球(6)压缩弹簧(4)进入周向旋转轴承座(7)上设置的凹槽,使得周向旋转轴承座(7)脱开与伺服电机(15)壳体的周转连接;
    步骤四、作动器壳体(12)驱动轴向花键筒(11)旋转一定角度,迫使轴向花键筒(11)与轴向花键螺母(10)脱开轴向连接,进而迫使轴向花键承载组件的连接作用失效,强制解除转子丝杆(9)与轴向花键螺母(10)的传动机构卡塞和卡滞故障,从而使得轴向花键筒(11)与前支耳(14)成为浮动状态。
  13. 一种根据权利要求10或11所述的传动机构模糊卡塞故障强制解锁 机电作动器实现的机械故障自恢复方法,其特征在于步骤如下:
    步骤一、机电作动器组件布置的LVDT线位移传感器组件、电位计线位移传感器组件同时工作,分别采集轴向花键筒(11)和轴向花键螺母(10)的位置信号,推动两个线位移传感器对齐到故障接触位置,即,LVDT线位移传感器组件与电位计线位移传感器组件反馈数值在一定误差范围内一致;
    步骤二、电磁线圈定子径向吸合钢球(6),钢球(6)压缩弹簧(4)进入周向旋转轴承座(7)上设置的凹槽,使得周向旋转轴承座(7)与伺服电机(15)壳体周转;
    步骤三、作动器壳体(12)驱动轴向花键筒(11)旋转一定角度,迫使轴向花键筒(11)与轴向花键螺母(10)在对应环形凹槽脱开处连接,进而使轴向花键承载组件连接,再次构成往复直线运动,完成机械传动功能恢复。
PCT/CN2021/117739 2021-07-16 2021-09-10 一种传动机构模糊卡塞故障强制解锁机电作动器及方法 WO2023284102A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/038,167 US20230407953A1 (en) 2021-07-16 2021-09-10 Electromechanical Actuator and Method for Forced Unlocking of Fuzzy Jamming Fault of Transmission Mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110808088.X 2021-07-16
CN202110808088.XA CN113700814B (zh) 2021-07-16 2021-07-16 一种传动机构模糊卡塞故障强制解锁机电作动器及方法

Publications (1)

Publication Number Publication Date
WO2023284102A1 true WO2023284102A1 (zh) 2023-01-19

Family

ID=78648827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117739 WO2023284102A1 (zh) 2021-07-16 2021-09-10 一种传动机构模糊卡塞故障强制解锁机电作动器及方法

Country Status (3)

Country Link
US (1) US20230407953A1 (zh)
CN (1) CN113700814B (zh)
WO (1) WO2023284102A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115580075A (zh) * 2022-09-22 2023-01-06 北京精密机电控制设备研究所 一种超短型机械故障自恢复机电伺服机构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060266146A1 (en) * 2005-05-31 2006-11-30 Waide William M Direct drive electromechanical linear actuators
CN103545977A (zh) * 2013-09-22 2014-01-29 上海交通大学 高度集成机电作动器
CN103840601A (zh) * 2014-03-06 2014-06-04 北京精密机电控制设备研究所 一种机电作动器
CN107612205A (zh) * 2017-08-21 2018-01-19 北京精密机电控制设备研究所 一种机电作动器及其控制方法
CN107725705A (zh) * 2017-09-30 2018-02-23 北京精密机电控制设备研究所 一种直线式防卡塞双余度机电作动器
CN112460220A (zh) * 2020-10-29 2021-03-09 北京精密机电控制设备研究所 一种故障安全阻尼式防卡塞机电作动器
CN112539118A (zh) * 2020-10-29 2021-03-23 北京精密机电控制设备研究所 一种串联式自锁定机电伺服机构
CN112636528A (zh) * 2020-12-08 2021-04-09 四川凌峰航空液压机械有限公司 多余度应急功能机电作动器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252318A1 (en) * 2003-09-05 2005-11-17 Bae Systems Plc Apparatus for releasing a jam in a lead screw actuator
DE102013005732A1 (de) * 2013-04-05 2014-10-09 Festo Ag & Co. Kg Linearsteller
JP6148961B2 (ja) * 2013-10-08 2017-06-14 ナブテスコ株式会社 電動アクチュエータ
CN204533416U (zh) * 2015-02-27 2015-08-05 北京精密机电控制设备研究所 机电作动器
CN109695682A (zh) * 2017-10-24 2019-04-30 随州职业技术学院 一种机电作动器
CN207777555U (zh) * 2018-01-18 2018-08-28 深圳市兆威机电股份有限公司 防换向卡滞的直线传动副
CN109774693A (zh) * 2018-12-28 2019-05-21 联创汽车电子有限公司 主动建压机构
CN110486433B (zh) * 2019-07-18 2021-03-26 北京精密机电控制设备研究所 一种螺母可分离式行星滚柱丝杠副
CN110748620A (zh) * 2019-10-21 2020-02-04 武汉滨湖电子有限责任公司 一种万向节螺母、防止卡滞的防风支撑装置
CN212278098U (zh) * 2020-07-20 2021-01-01 浙江禾川科技股份有限公司 一种高精密组合传动装置
CN112117863A (zh) * 2020-08-14 2020-12-22 西安交通大学 一种无机械卡阻高推力密度直驱型机电作动器
CN113028017B (zh) * 2021-02-24 2022-06-14 内蒙古工业大学 防卡滞的液压备份式机电作动器及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060266146A1 (en) * 2005-05-31 2006-11-30 Waide William M Direct drive electromechanical linear actuators
CN103545977A (zh) * 2013-09-22 2014-01-29 上海交通大学 高度集成机电作动器
CN103840601A (zh) * 2014-03-06 2014-06-04 北京精密机电控制设备研究所 一种机电作动器
CN107612205A (zh) * 2017-08-21 2018-01-19 北京精密机电控制设备研究所 一种机电作动器及其控制方法
CN107725705A (zh) * 2017-09-30 2018-02-23 北京精密机电控制设备研究所 一种直线式防卡塞双余度机电作动器
CN112460220A (zh) * 2020-10-29 2021-03-09 北京精密机电控制设备研究所 一种故障安全阻尼式防卡塞机电作动器
CN112539118A (zh) * 2020-10-29 2021-03-23 北京精密机电控制设备研究所 一种串联式自锁定机电伺服机构
CN112636528A (zh) * 2020-12-08 2021-04-09 四川凌峰航空液压机械有限公司 多余度应急功能机电作动器

Also Published As

Publication number Publication date
CN113700814B (zh) 2023-05-09
CN113700814A (zh) 2021-11-26
US20230407953A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP3074392B2 (ja) 耐故障性ボールネジアクチュエータ
CA2797985C (en) Automatically locking linear actuator
US5214972A (en) Fault-tolerant linear electromechanical actuator
US9493230B2 (en) Drive assembly with selective disconnect
GB2551094A (en) Subsea electric actuators and latches for them
US9353804B2 (en) Harmonic drive assembly with selective disconnect and method
WO2023284102A1 (zh) 一种传动机构模糊卡塞故障强制解锁机电作动器及方法
US20210039770A1 (en) System for an aircraft wing
US9347535B1 (en) Fault tolerant electro-mechanical acutator
CN112460220B (zh) 一种故障安全阻尼式防卡塞机电作动器
CN115940498A (zh) 集中式分步作动多级机电作动器
CN219802066U (zh) 防卡滞多级电传机电作动器
WO2024060364A1 (zh) 一种超短型机械故障自恢复机电伺服机构
CN212305001U (zh) 一种紧凑型机电作动器
CN219802072U (zh) 多级分步作动机电作动器
CN219139745U (zh) 高容错性卡堵机电作动器
CN220037126U (zh) 具备应急解锁伸出机电作动器
CN116624569A (zh) 非相似能源介质多级电传机电作动器
CN219510099U (zh) 双锁级容错机电作动器
CN219513902U (zh) 活塞筒全行程循环伸缩双余度机电作动器
CN116336880A (zh) 一种基于ema与火工品应急分离异构冗余抛载机构
CN115978049A (zh) 内锁式应急缩回解锁机电作动器
CN115842441A (zh) 机电作动器真实到位锁定信号触发机构
CN115681434A (zh) 一种串行式双丝杠余度控制机电伺服机构
CN116014968A (zh) 带上下位锁定多级机电作动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE