WO2023283957A1 - 检体采集系统及检体采集方法 - Google Patents

检体采集系统及检体采集方法 Download PDF

Info

Publication number
WO2023283957A1
WO2023283957A1 PCT/CN2021/106924 CN2021106924W WO2023283957A1 WO 2023283957 A1 WO2023283957 A1 WO 2023283957A1 CN 2021106924 W CN2021106924 W CN 2021106924W WO 2023283957 A1 WO2023283957 A1 WO 2023283957A1
Authority
WO
WIPO (PCT)
Prior art keywords
collection
sample collection
unit
arm device
mechanical arm
Prior art date
Application number
PCT/CN2021/106924
Other languages
English (en)
French (fr)
Inventor
颜炳郎
萧铭献
谢云绮
赖乙豪
黄昱文
钟承晏
杨礼蔚
黄聿辰
Original Assignee
颜炳郎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 颜炳郎 filed Critical 颜炳郎
Priority to PCT/CN2021/106924 priority Critical patent/WO2023283957A1/zh
Publication of WO2023283957A1 publication Critical patent/WO2023283957A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements

Definitions

  • the present invention relates to a sample collection system, in particular to a sample collection system and a sample collection method which use a mechanical arm to assist in controlling the collection of biological samples.
  • the main reason is that the new coronavirus can transmit pathogens in the form of droplets, not only for direct infection, but also for indirect infection, and the mutant virus it evolves has an amazing ability to spread.
  • the object of the present invention is to provide a sample collection system, which mainly includes a mechanical arm device formed by combining a pitch unit, a feed unit and a rotation unit, and through a computing system
  • the control of the mechanical arm device can drive the collection stick to move in space, and then can collect the subject; in this way, the collection stick can be driven by the mechanical arm device to perform the professional behavior of the medical examiner to treat the subject.
  • the inspector can quickly complete the inspection operation, thereby effectively reducing the risk of contact infection.
  • Another object of the present invention is to provide a sample collection system, which is characterized in that:
  • An isolation body the isolation body defines a first isolation space, a second isolation space, and a through hole through which the first isolation space and the second isolation space can be communicated;
  • a mechanical arm device arranged in the first isolation space, which includes a collection rod holder that can be combined with a collection rod and penetrates from the through hole to the second isolation space, for a subject's contact with an examined site, which may be a nasopharyngeal site or an oropharyngeal site;
  • a force sensing element which is connected to the collection rod holder to measure a contact force information when the collection rod contacts the inspected part, and the contact force information can be at least one axis force or moment;
  • a computing system which is electrically connected to the mechanical arm device and the force sensing element, wherein at least one computing unit electrically controls the mechanical device through a stiffness control (Stiffness control) and the contact force information
  • Stiffness control stiffness control
  • the sample collection system is characterized in that: a sleeve is protruded around the through hole, and the sleeve can be assembled with the sleeve from the side of the second isolation space, and the
  • the socket part includes a pressure sensing element, and the cannula can be selected as a nasal cavity collection cannula or a throat collection cannula.
  • the sample collection system is characterized in that it includes a camera unit, which is erected on at least one of the isolation body or the end of the mechanical arm device, and can monitor a camera unit of the subject.
  • the inspected part performs image capture to generate a camera image and sends it back to the computing system.
  • the sample collection system is characterized in that it includes a distance sensing unit, which is erected on at least one of the isolation body or the end of the mechanical arm device, and can monitor the subject A detected part generates a distance data and sends it back to the computing system.
  • the sample collection system is characterized in that it includes a display unit and a remote remote control unit, the computing system displays the camera image or the depth camera image on the display unit, and an operator is
  • the remote control unit can be controlled according to the display unit, so that the remote control unit generates a control signal to the computing system.
  • the sample collection system is characterized in that: the computing system includes an image recognition model, and the image recognition model is trained through machine learning technology and a large number of images of the cavity under inspection marked by medical professionals. And get.
  • the computing system includes an image model database and a statistical model of the inspected part.
  • the image model database is formed by capturing images of the inspected parts of a plurality of different subjects, and the statistical model is Generated by performing principal component analysis on the captured image.
  • the sample collection system is characterized in that: the mechanical arm device has a remote center of motion (Remote Center of Motion, RCM), so that when the mechanical arm device drives the collection rod to move in space, the collection The rod will rotate about the remote center of motion.
  • RCM Remote Center of Motion
  • the sample collection system is characterized in that the mechanical arm device includes a pitch unit, a feed unit and a rotation unit, and the pitch unit includes a base, a pitch rod set, a translation rod group, a pitch seat and a first actuator, one end of the pitch rod group is pivotally connected to the base, the other end of the pitch rod group is pivotally connected to one end of the translation rod group, the The other end of the translation bar set is pivotally connected to the pitch seat, the first actuator is arranged on the base, and the first actuator is power-connected to the pitch bar set to drive the The pitch rod group swings relative to the base, and drives the pitch base to produce pitch swing through the translation rod group; the feed unit includes a feed slider and a second actuator, so The second actuator is erected on the pitch seat, and is power-linked to the feed slider, so as to drive the feed slider to slide relative to the pitch seat; the rotation unit includes The third actuator is connected with the collection rod gripper, the third actuator is erected on the feed slider, and is connected with the collection rod grip
  • the sample collection system is characterized in that: the mechanical arm device includes a rotating unit, which is provided with a frame and a fourth actuator, and the fourth actuator is arranged on the frame, And the fourth actuator is power-connected to the base, and the computing system includes at least one computing unit that can electrically control the fourth actuator, and then drive the pitch unit to rotate.
  • the present invention further provides a sample collection method, which is used in a sample collection system comprising an isolation body with a through hole, a mechanical arm device, a collection rod assembled at the end of the mechanical arm device, and a force sensor
  • a sample collection method which is used in a sample collection system comprising an isolation body with a through hole, a mechanical arm device, a collection rod assembled at the end of the mechanical arm device, and a force sensor
  • a measuring element and a computing system are characterized in that, comprising the following steps:
  • Step 1 The mechanical arm device performs spatial movement according to a planned path, and drives the collection rod through the through hole on the isolation body, so that the collection head of the collection rod smears the inspected part;
  • Step 2 As the mechanical arm device drives the acquisition head to touch the inspected part, the force sensing element generates a contact force message
  • Step 3 The contact force information is used for a stiffness control, and then the planned path of the robotic arm device is updated to limit the contact depth between the acquisition head and the inspected part.
  • the sample collection method is characterized in that it includes the step 1: the spatial movement path includes the rotation of the collection head, the rotation of the collection head around the inspected part, or the rotation of the collection head relative to the inspected part.
  • the spatial movement path includes the rotation of the collection head, the rotation of the collection head around the inspected part, or the rotation of the collection head relative to the inspected part.
  • Part translation and the like can enable the collection head to achieve a spatial movement path of smearing on the inspection part.
  • the sample collection method is characterized in that, comprising the step 1: the sampling site can be one of a nasal cavity and an oral cavity.
  • the sample collection method is characterized in that it includes the step 1: there is a socket around the through hole, and a sleeve can be combined with the socket so that the subject occludes the socket.
  • the cannula fixes the spatial position of the inspected part, wherein the cannula can be selected as a nasal cavity collection cannula or a throat collection cannula.
  • the sample collection method is characterized in that the sample collection system includes a camera unit, and the camera unit can capture images of the inspected parts to generate a camera image.
  • the sample collection method is characterized in that the sample collection system includes a remote remote control unit and a display unit, and the display unit displays the camera image, wherein in the step 1: the planning The path can be generated by an operator operating the remote control unit according to the camera image.
  • the sample collection method is characterized in that it includes the step 1: the planned path can identify the area of the inspected part from the camera image 1051 through the image recognition model, and according to It is generated based on the position error between the collection head and the region of the inspected part.
  • the sample collection method is characterized in that the sample collection system includes a distance sensing unit, and the distance sensing unit can generate a distance data for a tested part of the subject, wherein the In the above step 1: the planned path can calculate the position information of the inspected part through data fitting of a statistical model of the inspected cavity and the distance sensing data, and then according to the generated by the position error between the collection head and the inspected part.
  • the sample collection method is characterized in that it includes the step 1: the statistical model can be obtained by performing image capture on the examined parts of a plurality of different subjects, and the main function of the captured images is Generated by component analysis.
  • the sample collection method is characterized in that it includes the step 1: the planned path includes a remote center of motion (Remote Center of Motion, RCM), so that the mechanical arm device drives the collection rod to do When moving in space, the collection rod will rotate around the remote center of motion.
  • RCM Remote Center of Motion
  • FIG. 1 is an exploded perspective view of an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the electrical connections of the sample collection system according to an embodiment of the present invention.
  • FIG. 4 is a partially enlarged schematic view of an embodiment of the present invention.
  • FIG. 5 is an exploded schematic diagram of a multi-axis motion mechanism according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a combination of multi-axis motion mechanisms according to an embodiment of the present invention.
  • Fig. 7 is a schematic side view of a multi-axis motion mechanism according to an embodiment of the present invention.
  • Fig. 8 is a schematic side view of a multi-axis motion mechanism according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of an acquisition process according to an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of an auxiliary picking and checking support part according to an embodiment of the present invention.
  • FIG. 1 to FIG. 3 are a three-dimensional schematic diagram, a three-dimensional exploded view, and a system block diagram of a sample collection system of the present invention; as shown in the figure, the sample collection system 20 of this embodiment, its Including:
  • An isolation body 21, the isolation body 21 defines a first isolation space 211, a second isolation space 212, and a through hole 23 through which the first isolation space 211 and the first isolation space 211 can be communicated with the The second isolation space 212; a mechanical arm device 10 is arranged in the first isolation space 211, which includes a collection rod holder 151 that can be assembled with a collection rod 103 and penetrates from the through hole 23 to The second isolation space 212 is in contact with an inspected part of a subject, and the inspected part may be a nasopharyngeal part or an oropharyngeal part.
  • a force sensing element 27 is connected to the collection rod holder 151 to measure a contact force message 271 when the collection rod 103 is in contact with the inspected part, and the contact force message 271 can be is a force or moment on at least one axis.
  • the mechanical arm device 10 is electrically controlled to maintain a pressing depth of the collection rod 103 on the inspected part.
  • the stiffness control 177 mentioned here refers to controlling the operation of the mechanical arm device 10 and controlling the compression depth when the collection rod 103 touches the examined part of the subject.
  • a sleeve portion 233 protrudes around the through hole 23, and the sleeve 24 can be assembled with the sleeve portion 233 from the side of the second isolation space 212, and the
  • the sleeve part 233 may include a pressure sensing element 2331 , wherein the cannula 24 may be selected as a nasal cavity collection cannula 241 or a throat collection cannula 242 .
  • the corresponding cannula 24 for collecting the nasal cavity is the nasal cavity collection cannula 241 ; and the corresponding cannula 24 for collecting the throat is the throat collection cannula 242 .
  • the socket portion 233 is a cannula 24 that can correspond to two different types of nasal cavity collection cannula 241 or throat collection cannula 242;
  • the operation of different collection parts is not only conducive to the mobile collection of specimens, but also effectively reduces the operating cost and space of the medical examination unit.
  • the sleeve portion 233 includes a pressure sensing element 2331, and when the subject bites on the cannula 24, the pressure sensing element 2331 generates a pressure signal 2333 to the cannula 24.
  • the computing system 17 starts the collection operation. If the subject loosens the cannula 24 due to discomfort during the process, the computing system can stop the collection operation according to the pressure signal 2333 to avoid harming the subject.
  • the camera unit 105 includes a camera unit 105, which is mounted on at least one of the isolation body 21 or the end of the robotic arm device 10, and can monitor all An image of an inspected part of the subject is captured to generate a camera image 1051 and sent back to the computing system 17 .
  • the camera unit 105 may be a depth camera 29, which is mounted on at least one of the isolation body 21 or the end of the mechanical arm device 10, and monitors the subject Image capture is performed on an inspected part of the body, and a depth camera image 291 is generated and sent back to the computing system 17 .
  • the computing system 17 displays the camera image 1501 or the depth camera image 291 on the display unit 47, accordingly, An operator such as a sampling personnel can control the remote control unit 43 according to the display unit 47, so that the remote control unit 43 generates a control signal 431 to the computing system 17, and a computing unit 170
  • the planned path 171 can be generated according to the control signal 431 .
  • the control signal 431 described here can be a timing signal corresponding to the degree of freedom of the robotic arm, and the computing system 17 can generate the corresponding planning path 171 according to the master-slave mode; or can capture partial camera images as Collect the two-dimensional image signal of the part image 1053, calculate the position error between the collection head 103 and the collection part by the computing system 17, and generate the planning path 171 through an image servo 178; it can also be a The three-dimensional space coordinates of the inspected part, the computing system 17 calculates the position error between the acquisition head 103 and the three-dimensional space coordinates and generates the planned path 171, and electrically controls the space of the robotic arm device 10 sports.
  • a remote remote control unit 43 to control the robotic arm device 10 in real-time in a wireless or wired manner to perform collection operations, so that the operator can use the camera image 1051 And carry out collecting operation by described remote control unit 43, again, described remote control unit 43 can adopt a joystick, a mouse or a PC, only can reach the electronic product of output/input command function, No restrictions are imposed here.
  • the camera unit 105 may further include a distance sensing unit 25 mounted on at least one of the isolation body 21 or the end of the robotic arm device 10 for use in To generate a distance data 251 for an inspected part of the subject and send it back to the computing system 17, wherein the distance sensing unit 25 can be selected as a LiDAR unit, another depth camera and time-of-flight One of the ranging units.
  • the computing system 17 is provided with an image model database 173 and a statistical model 174, and the image model database 173 is for plural It is obtained by capturing images of the inspected parts of different subjects, and performing principal component analysis on the captured images to generate the statistical model 174, and the computing system 17 can integrate the statistical model 174 and the distance
  • the data 251 identifies the location information of the inspected part, and then calculates the position error between the collection head 103 and the inspected part, and generates the planned path 171 through an image-guided tracking 179 .
  • the camera unit 105 can cooperate with its focusing function to capture the image of the inspected part through the through hole 23 according to the different installation positions.
  • the camera unit 105 can be provided with at least one light source 1055 .
  • the computing system 17 can refer to the contact force information 271 in real time, and can dynamically modify the path parameter 171;
  • the signal feedback of the force sensing element 27 not only makes its collection behavior more similar to the collection behavior of professional medical staff, but also the force control of the collection action can achieve a balance between discomfort and accurate specimen collection, even if the
  • the computing system 17 immediately stops all actions to avoid injuring the subject. Sudden situations such as shrinking and dodging due to fear or the subject being pushed and touched by external force.
  • the computing system 17 includes an image recognition model 175.
  • the image recognition model 175 is trained through machine learning technology and a large number of images of the cavity under inspection marked by medical professionals. 17.
  • At least one of the camera image 1051 or the depth camera image 291 can identify the area of the inspected part, and the computing system 17 can calculate the position error between the collection head 103 and the inspected area. , and generate the planned path 171 through an image servo 178 .
  • the mechanical arm device 10 has a remote center of motion 107 (Remote Center of Motion, RCM), according to which, when the mechanical arm device 10 drives the collection rod 103 to move in space, the collection rod 103 will circle around the The remote motion center 107 rotates, and in some embodiments, the through hole 23 provided by the isolation body 21 is located near the remote motion center 107, so the collection rod 103 , will not interfere with the isolation body 21 , and effectively limit the movement space of the robotic arm device 10 around the inspected part, thereby helping to improve the safety of the examinee in the collection process.
  • RCM Remote Center of Motion
  • the robot arm device 10 includes a pitch unit 11 , a feed unit 13 and a rotation unit 15 .
  • the pitch unit 11 includes a base 111, a pitch rod group 113, a translation rod group 115, a pitch seat 117 and a first actuator 119, and one end of the pitch rod group 113 is pivotally connected to the base seat 111, the other end of the pitch rod group 113 is pivotally connected to one end of the translation rod group 115, the other end of the translation rod group 115 is pivotally connected to the pitch seat 117, and the first actuator 119
  • the feed unit 13 includes a feed slider 131 and a second actuator 133, and the second actuator 133 is mounted on the pitch seat 117 , and power-linked to
  • the rotation unit 15 includes a collection rod holder 151 and a third actuator 153, the collection rod holder 151 can be combined with a collection rod 103, and the third actuator 153 is erected on the
  • the feed slider 131 is connected to the collection rod holder 151 with power to drive the collection rod 103 to rotate. Accordingly, with the operation system 17, it electrically controls the first actuator 119, the second actuator 133, and the third actuator 153 respectively according to the path parameter 171,
  • the collection head 1031 of the collection rod 103 can be driven to move in space relative to a subject; in this way, the collection rod 103 can be driven by a mechanical arm device 10 to imitate the professional behavior of medical examiners. The inspector can quickly complete the inspection operation, thereby effectively reducing the risk of personnel contact with infection.
  • the mechanical arm device 10 includes a rotating unit 19, which is provided with a frame 191 and a fourth actuator 193, the fourth actuator 193 is arranged on the frame 191, and the The fourth actuator 193 is dynamically connected to the base 111, and the computing system 17 includes at least one computing unit 170 that can electrically control the fourth actuator 193, thereby driving the pitch unit 11 to rotate .
  • the rotation axis 31 of the rotation unit 19 is simultaneously pivoted to the first pitch rod 1131 and the second pitch rod 1132 respectively.
  • the pivot point 311 of the base 111 , and the intersection point 313 of the rotation axis 31 and the collection rod 103 is the remote motion center 107 .
  • the present invention proposes a sample collection method, and referring to FIGS. 1 to 8 at the same time, it is used in the sample collection system 20 including an isolation body 21 with a through hole 23, a mechanical arm device 10.
  • a collection rod 103 is assembled at the end of the mechanical arm device 10, a force sensing element 27 and a computing system 17, wherein the sample collection system 20 has the structural features as mentioned above, which are not described here Let me repeat.
  • the steps of the sample collection method of the present invention are as follows:
  • the sampling site can be one of a nasal cavity and an oral cavity.
  • the spatial position of the inspected part, wherein the cannula 24 can be selected as a nasal cavity collection cannula 241 or a throat collection cannula 242 .
  • the sleeve portion 233 may include a pressure sensing element 2331, when the subject bites on the cannula 24, the pressure sensing element 2331 generates a pressure signal 2333 to the computing system 17. Start the collection operation. If the subject loosens the cannula 24 due to discomfort during the process, the computing system can stop the collection operation according to the pressure signal 2333 . This operation step can make the specimen collection system 20 stop the collection operation in real time, so as to avoid harming the subject.
  • the spatial movement path includes the rotation of the collection head, the rotation of the collection head around the examined part, or the translation of the collection head relative to the examined part, etc.
  • the collection head can achieve a spatial movement path of smearing on the inspection site.
  • the sample collection system 20 used in the sample collection method includes a camera unit 105, and the camera unit 105 can capture images of the inspected parts to generate a camera image 1051 .
  • the sample collection system further includes a remote remote control unit 43 and a display unit 47, and the display unit 47 displays the camera image 1051, wherein in the step 1: the regulation The drawing path 171 can be generated by an operator operating the remote control unit 43 according to the camera image 1051 .
  • the remote control unit 43 can be a joystick, a mouse or a PC, as long as it can achieve the output/input command function, there is no limitation here.
  • the planning path 171 can identify the region of the inspected part from the camera image 1051 through the image recognition model 174, and according to the It is generated based on the position error between the collection head 1031 and the region of the examined part.
  • the sample collection system 20 used in the sample collection method may include a distance sensing unit 25, and the distance sensing unit 25 can generate a distance to a tested part of the subject.
  • the position information of the part is further generated according to the position error between the collection head 1031 and the part under inspection.
  • the statistical model 175 may be generated by capturing images of the inspected parts of a plurality of different subjects, and performing principal component analysis on the captured images.
  • the planned path 171 includes a remote motion center 107, so that when the mechanical arm device drives the collection rod to move in space, the The collection rod 103 will rotate around the remote motion center 107.
  • the computing system 17 may include a central processing unit (CPU), a microprocessor (MPU), an ARM processor, a MIPS processor, a micro computing system (MCU) or a field programmable
  • CPU central processing unit
  • MPU microprocessor
  • MIPS microinstructions
  • MCU micro computing system
  • FPGA field programmable
  • the logic array is not limited in the present invention.
  • the necessary disinfection operations and the assembly of the brand-new sampling stick 103 to the sampling holder 151 are not limited to the first isolation space 211 or the second isolation space 212, with the sample collection system and sample collection method of the present invention, the operator can perform collection operations at the remote end or directly operate in the first isolation space 211 on site.
  • the combination of a variety of sensors and multiple control strategies can achieve automatic collection operations or manual on-site or remote control collection operations, and not only has two collection methods of nasal cavity and throat in one machine, but also provides multiple safety protections. Not only can it effectively reduce the risk of personnel contact with infection, it can also improve the safety of the subject's collection process, and it can meet the needs of mobile rapid screening with a relatively light-weight collection device.

Abstract

一种检体采集系统及检体采集方法,检体采集系统包含一隔离本体(21)、一机械手臂装置(10)、一力量感测元件(27)、一运算系统(17),隔离本体(21)定义出一第一隔离空间(211)、第二隔离空间(212)以及一透孔(23),透过透孔(23)可连通第一隔离空间(211)与第二隔离空间(212);机械手臂装置(10)设置于第一隔离空间(211),其包含一采集棒夹持器(151),可与一采集棒(103)组配并从透孔(23)穿设至第二隔离空间(212),与一受检者的一受检部位接触,受检部位可为一鼻咽部位或一口咽部位;力量感测元件(27)连接于采集棒夹持器(151),以量测采集棒(103)与受检部位接触时的一接触力道讯息(271);运算系统(17)电性连接于机械手臂装置(10)与力量感测元件(27),其中至少一运算单元(170)透过一劲度控制(177)及接触力道讯息(271)电性控制机械手臂装置(10),以维持采集棒(103)对受检部位的一加压深度。

Description

检体采集系统及检体采集方法 技术领域
本发明是有关于检体采集系统,特别是一种利用机械手臂辅助控制采集生物检体的检体采集系统及检体采集方法。
背景技术
新冠(COVID-19)疫情蔓延全球,世界各地疫情可说是一波未平一波又起,着实冲击各国多项产业供应链;新冠病毒的所以能肆虐全球,除人类自身免疫力不足、未有强效疫苗外,其主要原因的一是新冠病毒是可以飞沫方式传播病原体,不仅可直接感染,更可间接感染,而且它所演变的变种病毒,其散播能力更是惊人。
现今新冠疫情惨烈,诸多具有医护专业的人员纷纷投入抗疫阵线,时时冒着受感染的高风险为人群服务,尤其是第一道防线的采检人员,不畏气候如何,穿着全套防护衣坚守防疫工作,执行快速筛检作业;又,当此关头,医护人员是重要的人力资产,因为医护人员除了要贡献自身医护专业来照护患者外,更要保护自己不受感染,以有效降低医疗负担。
为此,如何让医护人员在能顺利达成采检作业之前提下,有效减少接触受检者,避免自身感染,也避免下一个受检民众遭感染,着实为医护人员及广大民众所深深期望。
发明内容
有鉴于先前技术所述不足之处,本发明的目的在于提供一种检体采集系统,其主要包括由俯仰单元、进给单元和自转单元相互组配而形成机械手臂装置,并透过运算系统的控制而使机械手臂装置可带动采集棒进行空间运动,进而可对受检者进行采集作业;如此,便可藉由机械手臂装置以类仿医检人员的专业行为而带动采集棒来对受检者快速完成采检作业,进而有效降低接触感染的风险。
本发明又一目的在于提供一种检体采集系统,其特征在于:
一隔离本体,所述隔离本体定义出一第一隔离空间、第二隔离空间、以及一透孔,透过所述透孔可连通所述第一隔离空间与所述第二隔离空间;
一机械手臂装置,设置于所述第一隔离空间,其包含一采集棒夹持器是可与一采集棒组配并从所述透孔穿设至第二隔离空间,对一受检者的一受检部位接触,所述受检部位是可为一鼻咽部位或一口咽部位;
一力量感测元件,其是连接于所述采集棒夹持器,以量测所述采集棒与所述受检部位接 触时的一接触力道讯息,所述接触力道讯息是可为至少一轴的力或力矩;
一运算系统,其是电性连接于所述机械手臂装置与所述力量感测元件,其中至少一运算单元透过一劲度控制(Stiffness control)及所述接触力道讯息电性控制所述机械手臂装置,以维持所述采集棒对所述受检部位的一加压深度。
所述的检体采集系统,其特征在于:所述透孔周围凸设有一套接部,可由所述第二隔离空间这一侧将一套管与所述套接部相组配,且所述套接部包含一压力感测元件,其中所述套管是可选择为一鼻腔采集套管或一咽喉采集套管。
所述的检体采集系统,其特征在于:其包括有一相机单元,其是架设于所述隔离本体或所述机械手臂装置末端的至少其中之一者,并可对所述受检者的一受检部位进行影像撷取而生成一相机影像并回传所述运算系统。
所述的检体采集系统,其特征在于:其包括有一距离感测单元,其是架设于所述隔离本体或所述机械手臂装置末端的至少其中之一者,并可对所述受检者的一受检部位生成一距离资料并回传所述运算系统。
所述的检体采集系统,其特征在于:其包括有一显示单元及一远端遥控单元,所述运算系统将所述相机影像或所述深度相机影像显示于所述显示单元,一操作者是可依据所述显示单元操控所述远端遥控单元,使所述远端遥控单元生成一控制讯号至所述运算系统。
所述的检体采集系统,其特征在于:所述运算系统包含一影像辨识模型,所述影像辨识模型是透过机器学习技术与大量经医疗专业人员标注受检部位的受检腔体影像训练而得。
所述运算系统包含一影像模型数据库及一受检部位的统计学模型,所述影像模型数据库是对复数个不同受检者的受检部位进行影像撷取而成,而所述统计学模型是对所述撷取影像进行主成分分析而生成。
所述的检体采集系统,其特征在于:所述机械手臂装置具有一远程运动中心(Remote Center of Motion,RCM),使所述机械手臂装置带动所述采集棒做空间运动时,所述采集棒会绕着所述远程运动中心旋转。
所述的检体采集系统,其特征在于,所述机械手臂装置是包含一俯仰单元、一进给单元及一自转单元,所述俯仰单元是包括有一基座、一俯仰杆组、一平移杆组、一俯仰座及一第一致动器,所述俯仰杆组的一端是枢接于所述基座,所述俯仰杆组的另一端是枢接所述平移杆组的一端,所述平移杆组的另一端是枢接所述俯仰座,所述第一致动器是设于所述基座,且所述第一致动器是动力连接至所述俯仰杆组,而驱动所述俯仰杆组相对所述基座摆动,并透过平移杆组而带动所述俯仰座产生俯仰摆动;所述进给单元,其是包括有一进给滑块及一第二致动器,所述第二致动器是架设于所述俯仰座,并动力连结至所述进给滑块,而可驱动 所述进给滑块相对所述俯仰座滑动;所述自转单元,其是包括有第三致动器,且与所述采集棒夹取器连接,所述第三致动器是架设于所述进给滑块,且动力连接所述采集棒夹取器而带动采集棒进行旋转。
所述的检体采集系统,其特征在于:所述机械手臂装置包括有一旋转单元,其设有一机架及一第四致动器,所述第四致动器是设置于所述机架,且所述第四致器是动力连接所述基座,而所述运算系统至少含有一运算单元是可电性控制所述第四致动器,进而可带动所述俯仰单元进行旋转。
此外,本发明再提供一种检体采集方法,使用于一检体采集系统包含一带有一透孔的隔离本体,一机械手臂装置,一采集棒组配于所述机械手臂装置末端,一力量感测元件及一运算系统,其特征在于,包含以下步骤:
步骤1:所述机械手臂装置根据一规画路径进行空间运动,带动所述采集棒通过隔离本体上的透孔,使所述采集棒的采集头涂抹所述受检部位;
步骤2:因所述机械手臂装置带动所述采集头碰触所述受检部位,使所述力量感测元件产生一接触力道讯息;
步骤3:所述接触力道讯息用于一劲度控制,进而更新所述机械手臂装置的所述规画路径,以限制所述采集头与所述受检部位的接触深度。
所述的检体采集方法,其特征在于,包含所述步骤1中:所述空间运动路径包含所述采集头自转、所述采集头绕所述受检部位旋转或所述采集头相对受检部位平移等可使所述采集头对所述采检部位达成涂抹动作的空间运动路径。
所述的检体采集方法,其特征在于,包含所述步骤1中:所述采检部位可为一鼻腔部位及一口腔部位其中之一。
所述的检体采集方法,其特征在于,包含所述步骤1中:所述透孔周围有一套接部,可将一套管与所述套接部相组配,使受检者咬合于所述套管,固定所述受检部位的空间位置,其中所述套管是可选择为一鼻腔采集套管或一咽喉采集套管。
所述的检体采集方法,其特征在于,所述检体采集系统包含一相机单元,所述相机单元可对所述受检部位进行影像撷取而生成一相机影像。
所述的检体采集方法,其特征在于,所述检体采集系统包含一远端遥控单元及一显示单元,所述显示单元显示所述相机影像,其中所述步骤1中:所述规画路径可由一操作者根据所述相机影像操作所述远端遥控单元而生成。
所述的检体采集方法,其特征在于,包含所述步骤1中:所述规画路径可透过所述影像辨识模型从所述相机影像1051中辨识所述受检部位的区域,并根据所述采集头与所述受检部 位区域的位置误差而生成。
所述的检体采集方法,其特征在于,所述检体采集系统包含一距离感测单元,所述距离感测单元可对所述受检者的一受检部位生成一距离资料,其中所述步骤1中:所述规画路径可透过将一受检腔体的统计学模型及所述距离感测资料进行资料拟合,而运算出所述受检部位的位置信息,进而根据所述采集头与所述受检部位的位置误差而生成。
所述的检体采集方法,其特征在于,包含所述步骤1中:所述统计学模型可由对复数个不同受检者的受检部位进行影像撷取,而对所述撷取影像进行主成分分析而生成。
所述的检体采集方法,其特征在于,包含所述步骤1中:所述规画路径包含一远程运动中心(Remote Center of Motion,RCM),使所述机械手臂装置带动所述采集棒做空间运动时,所述采集棒会绕着所述远程运动中心旋转。
如下的实施方式中详细叙述本发明的详细特征及优点,其内容足以使相关技术者了解本发明的技术内容并据以实施,且根据本发明的说明书所揭露的内容、申请专利范围及图式,可轻易地了解本发明相关的目的及优点。
附图说明
图1是为本发明一实施例的立体分解示意图。
图2是为本发明一实施例的立体组合示意图。
图3是为本发明一实施例的检体采集系统的电性连接示意图。
图4是为本发明一实施例的局部放大示意图。
图5是为本发明一实施例的多轴运动机构分解示意图。
图6是为本发明一实施例的多轴运动机构组合示意图。
图7是为本发明一实施例的多轴运动机构侧视示意图。
图8是为本发明一实施例的多轴运动机构侧视示意图。
图9是为本发明一实施例的采集流程示意图。
图10是为本发明一实施例的辅助采检撑部示意图。
图例说明:
10                                      机械手臂装置
103                                       采集棒
1031                                      采集头
105                                      相机单元
1051                         相机影像
1053                       采集部位影像
1055                          光源
107                       远程运动中心
11                          俯仰单元
111                           基座
113                         俯仰杆组
1131                        第一俯仰杆
1132                        第二俯仰杆
115                         平移杆组
1151                       第一平移杆组
1152                       第二平移杆组
117                          俯仰座
119                        第一致动器
13                          进给单元
131                         进给滑块
133                        第二致动器
15                           自转单元
151                        采集棒夹持器
153                        第三致动器
17                          运算系统
170                         运算单元
171                         规画路径
173                       影像模型数据库
174                        统计学模型
175                       影像辨识模型
177                         劲度控制
178                         影像伺服
179                       影像导引追踪
19                          旋转单元
191                           机架
193                         第四致动器
20                         检体采集系统
21                           隔离本体
211                        第一隔离空间
212                        第二隔离空间
23                             透孔
233                           套接部
2331                       压力感测元件
2333                         压力讯号
24                             套管
241                        鼻腔采集套管
242                        咽喉采集套管
25                         距离感测单元
251                          距离资料
27                         力量感测元件
271                        接触力道讯息
29                           深度相机
291                        深度相机影像
2911                       采集部位影像
31                           旋转轴线
311                           枢接点
313                           交会点
43                         远端遥控单元
431                          控制讯号
47                           显示模块
S1、S2、S3                     步骤
具体实施方式
有关本发明之前述及其他技术内容、特点与功效,以下配合图式及较佳实施例的详细说明,将可清楚的呈现。实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考方位的用,因此所使用的方向用语是作为说明的用途,而非用来限制本发明。
首先,请同时参阅图1至图3,其是分别本发明的一检体采集系统的立体示意图、立体分解图以及系统方块图;如图所示,本实施例的检体采集系统20,其包括有:
一隔离本体21,所述隔离本体21定义出一第一隔离空间211、第二隔离空间212、以及一透孔23,透过所述透孔23可连通所述第一隔离空间211与所述第二隔离空间212;一机械手臂装置10,设置于所述第一隔离空间211,其包含一采集棒夹持器151是可与一采集棒103组配并从所述透孔23穿设至第二隔离空间212,对一受检者的一受检部位接触,所述受检部位是可为一鼻咽部位或一口咽部位。一力量感测元件27,是连接于所述采集棒夹持器151,以量测所述采集棒103与所述受检部位接触时的一接触力道讯息271,所述接触力道讯息271是可为至少一轴的力或力矩。一运算系统17,其是电性连接于所述机械手臂装置10与所述力量感测元件27,其中至少一运算单元170透过一劲度控制177(Stiffness control)及所述接触力道讯息271电性控制所述机械手臂装置10,以维持所述采集棒103对所述受检部位的一加压深度。在此所述的劲度控制177是指控制机械手臂装置10的运作,而控制采集棒103触碰到受检者的受检部位时的加压深度。
请参考图2,所述透孔23的周围凸设有一套接部233,可由所述第二隔离空间212这一侧将一套管24与所述套接部233相组配,且所述套接部233是可包含一压力感测元件2331,其中所述套管24是可选择为一鼻腔采集套管241或一咽喉采集套管242。换言的,采集所述鼻腔部位其所对应的套管24是鼻腔采集套管241;而采集所述咽喉部位其所对应使用的套管24是咽喉采集套管242。申言的,所述套接部233是可对应鼻腔采集套管241或咽喉采集套管242二种不同类别的套管24;如此,本发明便得以单独壹台检体采集系统20实施二种不同的采集部位的作业,因而不仅有利于机动性采集检体作业,且有效降低医检单元的经营成本及使用空间。
又,于一实施例中,所述套接部233是包含一压力感测元件2331,当受检者咬合于所述套管24时,所述压力感测元件2331产生一压力讯号2333至所述运算系统17,启动采集作,若过程中,受检者因不适感松开所述套管24,所述运算系统可依据所述压力讯号2333而停止采集作业,避免伤害受检者。
请继续参考图3与图4,于一实施例中,其包括有一相机单元105,其是架设于所述隔离本体21或所述机械手臂装置10末端的至少其中之一者,并可对所述受检者的一受检部位进行影像撷取而生成一相机影像1051并回传所述运算系统17。而在一实施例中,所述相机单元105可以是一深度相机29,其是架设于所述隔离本体21或所述机械手臂装置10末端的至少其中之一者,并对所述受检者的一受检部位进行影像撷取,并生成一深度相机影像291回传至所述运算系统17。
此外,在一实施例中,包括有一显示单元47及一远端遥控单元43,所述运算系统17将所述相机影像1501或所述深度相机影像291显示于所述显示单元47,据此,使一操作者例如采检人员是可依据所述显示单元47操控所述远端遥控单元43,使所述远端遥控单元43生成一控制讯号431至所述运算系统17,而一运算单元170是可依据所述控制讯号431生成所述规画路径171。在此所述的控制讯号431是可为一与机械手臂自由度对应的时序讯号,由所述运算系统17依据主从模式生成相对应所述规画路径171;或可撷取局部相机影像作为采集部位影像1053的二维影像讯号,由所述运算系统17计算所述采集头103与所述采集部位的位置误差,并透过一影像伺服178生成所述规画路径171;亦可为一受检部位的三维空间坐标,由所述运算系统17计算所述采集头103与所述三维空间坐标的位置误差并生成所述规画路径171,而电性控制所述机械手臂装置10的空间运动。据此,所述操作者可透过一远端遥控单元43以无线或有线的方式,配合以实时方式控制所述机械手臂装置10进行采集作业,如此操作者便可透过所述相机影像1051而藉由所述远端遥控单元43执行采集作业,又,所述远端遥控单元43是可采用一摇杆、一鼠标或一PC,惟能达到输出/输入指令功能的电子产品即可,在此并不多加限制。
此外,若相机单元105是使用其他单纯撷取影像的相机,也可以进一步包含一距离感测单元25,架设于所述隔离本体21或所述机械手臂装置10末端的至少其中之一者,用以对所述受检者的一受检部位生成一距离资料251并回传所述运算系统17,其中所述距离感测单元25是可选择为一光达单元、另一深度相机及飞时测距单元的其中之一者。再者,为增进受检部位位置信息的精确,于本发明的一些实施例中,所述运算系统17设有一影像模型数据库173及一统计学模型174,所述影像模型数据库173是对复数个不同受检者的受检部位进行影像撷取而成,所述撷取影像进行主成分分析可生成所述统计学模型174,所述运算系统17可整合所述统计学模型174及所述距离资料251辨识受检部位的位置信息,进而计算所述采集头103与所述受检部位的位置误差,并透过一影像导引追踪179生成所述规画路径171。
在一采检者的实务操作中,相机单元105依照架设的位置不同可配合其调焦功能透过所述透孔23而对所述受检部位进行影像撷取,然而为了有利于影像撷取作业,所述相机单元105是可设有至少一光源1055。
当然,在所述采集过程中,所述运算系统17是可实时参考所述接触力道讯息271,而可机动性地修正所述路径参数171;如此,所述机械手臂装置10便可藉由所述力量感测元件27的讯号反馈,不仅使得其采集行为更加类仿专业医护人员的采集行为,而且采集动作的力道控制更能在令人不适及确实采集检体的间取得平衡,甚至若所述接触力道讯息271过大而超过预设的阀值时,则所述运算系统17立即停止所有动作,以免伤及受检者,举例而言:在采 集过程中突然发生大地震、受检者因恐惧而退缩闪避或是受检者受到外力推碰等等突发情况。
其中,所述运算系统17包含一影像辨识模型175,所述影像辨识模型175是透过机器学习技术与大量经医疗专业人员标注受检部位的受检腔体影像训练而得,所述运算系统17可由所述相机影像1051或所述深度相机影像291中至少其中之一辨识所述受检部位的区域,所述运算系统17是可计算所述采集头103与所述受检区域的位置误差,并透过一影像伺服178生成所述规画路径171。
所述机械手臂装置10具有一远程运动中心107(Remote Center of Motion,RCM),据此,所述机械手臂装置10带动所述采集棒103做空间运动时,所述采集棒103会绕着所述远程运动中心107旋转,又,于一些实施例中所述隔离本体21所开设的所述透孔23是位于所述远程运动中心107附近,因此所述采集棒103在采集检体的过程中,并不会与隔离本体21产生干涉,并有效限制所述机械手臂装置10于受检部位周围的移动空间,而有助于提高受检者于采集过程的安全。
请参考图5至图8,所述机械手臂装置10是包含一俯仰单元11、一进给单元13及一自转单元15。俯仰单元11是包括有一基座111、一俯仰杆组113、一平移杆组115、一俯仰座117及一第一致动器119,所述俯仰杆组113的一端是枢接于所述基座111,所述俯仰杆组113的另一端是枢接所述平移杆组115的一端,所述平移杆组115的另一端是枢接所述俯仰座117,所述第一致动器119是设于所述基座111,且所述第一致动器119是动力连接至所述俯仰杆组113,而驱动所述俯仰杆组113相对所述基座111摆动,并透过平移杆组115而带动所述俯仰座117产生俯仰摆动;进给单元13是包括有一进给滑块131及一第二致动器133,所述第二致动器133是架设于所述俯仰座117,并动力连结至所述进给滑块131,而可驱动所述进给滑块131相对所述俯仰座117滑动。自转单元15是包括有一采集棒夹持器151及第三致动器153,所述采集棒夹持器151是可与一采集棒103组配,所述第三致动器153是架设于所述进给滑块131,且动力连接所述采集棒夹持器151而带动采集棒103进行旋转。据此,搭配所述运算系统17,其是依据所述路径参数171而分别电性控制所述第一致动器119、所述第二致动器133及所述第三致动器153,而可带动所述采集棒103的采集头1031相对一受检者进行空间运动;如此,便可藉由一机械手臂装置10以类仿医检人员的专业行为而带动所述采集棒103对受检者快速完成采检作业,进而有效降低人员接触感染的风险。
进一步地,所述机械手臂装置10包括有一旋转单元19,其设有一机架191及一第四致动器193,所述第四致动器193是设置于所述机架191,且所述第四致器193是动力连接所述基座111,而所述运算系统17至少含有一运算单元170是可电性控制所述第四致动器193,进而可带动所述俯仰单元11进行旋转。再者,值得说明的是,请再同时参阅图7至图8,所述 旋转单元19的旋转轴线31是同时通过所述第一俯仰杆1131及所述第二俯仰杆1132分别枢接所述基座111的枢接点311,而此旋转轴线31与所述采集棒103的交会点313即为远程运动中心107。
请参考图9,本发明提出一种检体采集方法,并同时参阅图1至图8,其是使用于所述检体采集系统20包含一带有一透孔23的隔离本体21,一机械手臂装置10,一采集棒103组配于所述机械手臂装置10末端,一力量感测元件27及一运算系统17,其中,所述检体采集系统20具有如前所述的结构特征,在此不再赘述。
本发明的检体采集方法的步骤如下:
步骤1(S1):所述机械手臂装置10根据所述规画路径171进行空间运动,带动所述采集棒103通过隔离本体21上的透孔23,使所述采集棒103的采集头1031涂抹所述受检部位。
步骤2(S2):因所述机械手臂装置10带动所述采集头1031碰触所述受检部位,使所述力量感测元件27产生一接触力道讯息271;及
步骤3(S3):所述接触力道讯息271用于一劲度控制177,进而更新所述机械手臂装置10的所述规画路径171,以限制所述采集头1031与所述受检部位的接触深度。
又,所述采检部位可为一鼻腔部位及一口腔部位其中之一。于一实施例中,所述透孔23周围有一套接部233,可将一套管24与所述套接部233相组配,使受检者咬合于所述套管24,固定所述受检部位的空间位置,其中所述套管24是可选择为一鼻腔采集套管241或一咽喉采集套管242。又,其中,所述套接部233是可包含一压力感测元件2331,当受检者咬合于所述套管24时,所述压力感测元件2331产生一压力讯号2333至所述运算系统17,启动采集作,若过程中,受检者因不适感松开所述套管24,所述运算系统可依据所述压力讯号2333而停止采集作业。此操作步骤可使所述检体采集系统20实时停止采集作业,避免伤害受检者。
再者,请参阅图10,其是为所述鼻腔采集套管241,其中,一鼻撑部2411是提供受检者靠近时,撑住受检者的鼻翼,而采集棒103由一采集孔2413穿伸出来进行采集作业。另外,所述的检体采集方法,所述步骤1中:所述空间运动路径包含所述采集头自转、所述采集头绕所述受检部位旋转或所述采集头相对受检部位平移等可使所述采集头对所述采检部位达成涂抹动作的空间运动路径。
在一实施例中,所述的检体采集方法应用的所述检体采集系统20包含一相机单元105,所述相机单元105可对所述受检部位进行影像撷取而生成一相机影像1051。又于另一实施例中,所述检体采集系统更包含一远端遥控单元43及一显示单元47,所述显示单元47显示所述相机影像1051,其中所述步骤1中:所述规画路径171可由一操作者根据所述相机影像1051操作所述远端遥控单元43而生成。又,所述远端遥控单元43是可采用一摇杆、一鼠标或一 PC,惟能达到输出/输入指令功能的电子产品即可,在此并不多加限制。
另外,所述的检体采集方法的所述步骤1中:所述规画路径171可透过所述影像辨识模型174从所述相机影像1051中辨识所述受检部位的区域,并根据所述采集头1031与所述受检部位区域的位置误差而生成。
此外,所述的检体采集方法应用的所述检体采集系统20是可包含一距离感测单元25,所述距离感测单元25可对所述受检者的一受检部位生成一距离资料251,其中所述步骤1中:所述规画路径171可透过将一受检腔体的统计学模型175及所述距离感测资料251进行资料拟合,而运算出所述受检部位的位置信息,进而根据所述采集头1031与所述受检部位的位置误差生成。又,其中,所述统计学模型175可由对复数个不同受检者的受检部位进行影像撷取,而对所述撷取影像进行主成分分析而生成。
于一实施例中,所述的检体采集方法的所述步骤1中:所述规画路径171包含一远程运动中心107,使所述机械手臂装置带动所述采集棒做空间运动时,所述采集棒103会绕着所述远程运动中心107旋转。
另外,前述各实施例中,所述运算系统17是可包括有中央处理器(CPU)、微处理器(MPU)、ARM处理器、MIPS处理器、微运算系统(MCU)或现场可程序化逻辑阵列(FPGA),于本发明中并不多加限制。
可以理解的是,本发明的检体采集方法,在重复执行前述步骤之前,必要的消毒作业以及将全新的采检棒103组配至采检夹持器151,并不限定在第一隔离空间211或第二隔离空间212所完成,藉由本发明的检体采集系统及检体采集方法,提供操作者可于远端进行采集作业或直接在现场的第一隔离空间211操作,同时,在多种传感器与多种控制策略的搭配,可以达到自动采集作业或透过人工于现场或远程操控采检做业,并且,不仅一机兼备鼻腔及咽喉二种采集方式,更提供多重安全性保护。不仅可有效降低人员接触感染的风险,亦可提高受检者采集过程的安全性,更可以尺寸相对轻巧的采检装置以满足机动性快筛的需求。
以上虽以特定实施例说明本发明,但并不因此限定本发明的范围,只要不脱离本发明的要旨,熟悉本技艺者了解在不脱离本发明的意图及范围下可进行各种变形或变更,举凡依本发明的技术手段与范畴所延伸的变化、修饰、改变或等效置换者,亦皆应落入本发明的专利申请范围中。又,本发明所揭示的具体实施态样,包含复数个共同描述且彼此间可协同提供一系列效益的特色;再者,以单数来指称所请求元件的任何参照,如「一」、「此」、或「所述」,亦不应视为将此元件限制为单数;即凡依本发明申请专利范围所作的均等变化与修饰者,皆为本发明专利范围所涵盖。

Claims (20)

  1. 一种检体采集系统,其特征在于:
    一隔离本体,所述隔离本体定义出一第一隔离空间、第二隔离空间、以及一透孔,透过所述透孔可连通所述第一隔离空间与所述第二隔离空间;
    一机械手臂装置,设置于所述第一隔离空间,其包含一采集棒夹持器是可与一采集棒组配并从所述透孔穿设至第二隔离空间,对一受检者的一受检部位接触,所述受检部位是可为一鼻咽部位或一口咽部位;
    一力量感测元件,其是连接于所述采集棒夹持器,以量测所述采集棒与所述受检部位接触时的一接触力道讯息,所述接触力道讯息是可为至少一轴的力或力矩;
    一运算系统,其是电性连接于所述机械手臂装置与所述力量感测元件,其中至少一运算单元透过一劲度控制及所述接触力道讯息电性控制所述机械手臂装置,以维持所述采集棒对所述受检部位的一加压深度。
  2. 根据权利要求1所述的检体采集系统,其特征在于:所述透孔周围凸设有一套接部,可由所述第二隔离空间这一侧将一套管与所述套接部相组配,且所述套接部包含一压力感测元件,其中所述套管是可选择为一鼻腔采集套管或一咽喉采集套。
  3. 根据权利要求1所述的检体采集系统,其特征在于:其包括有一相机单元,其是架设于所述隔离本体或所述机械手臂装置末端的至少其中之一者,并可对所述受检者的一受检部位进行影像撷取而生成一相机影像并回传所述运算系统。
  4. 根据权利要求3所述的检体采集系统,其特征在于:其包括有一距离感测单元,其是架设于所述隔离本体或所述机械手臂装置末端的至少其中之一者,并可对所述受检者的一受检部位生成一距离资料并回传所述运算系统。
  5. 根据权利要求3所述的检体采集系统,其特征在于:其包括有一显示单元及一远端遥控单元,所述运算系统将所述相机影像显示于所述显示单元,一操作者是可依据所述显示单元操控所述远端遥控单元,使所述远端遥控单元生成一控制讯号至所述运算系统。
  6. 根据权利要求3所述的检体采集系统,其特征在于:所述运算系统包含一影像辨识模型,所述影像辨识模型是透过机器学习技术与大量经医疗专业人员标注受检部位的受检腔体影像训练而得。
  7. 根据权利要求4所述的检体采集系统,其特征在于:所述运算系统包含一影像模型数据库及一受检部位的统计学模型,所述影像模型数据库是对复数个不同受检者的受检部位进行影像撷取而成,而所述统计学模型是对所述撷取影像进行主成分分析而生成。
  8. 根据权利要求1所述的检体采集系统,其特征在于:所述机械手臂装置具有一远程运动中心,使所述机械手臂装置带动所述采集棒做空间运动时,所述采集棒会绕着所述远程运 动中心旋转。
  9. 根据权利要求1所述的检体采集系统,其特征在于,所述机械手臂装置是包含一俯仰单元、一进给单元及一自转单元,所述俯仰单元是包括有一基座、一俯仰杆组、一平移杆组、一俯仰座及一第一致动器,所述俯仰杆组的一端是枢接于所述基座,所述俯仰杆组的另一端是枢接所述平移杆组的一端,所述平移杆组的另一端是枢接所述俯仰座,所述第一致动器是设于所述基座,且所述第一致动器是动力连接至所述俯仰杆组,而驱动所述俯仰杆组相对所述基座摆动,并透过平移杆组而带动所述俯仰座产生俯仰摆动;所述进给单元,其是包括有一进给滑块及一第二致动器,所述第二致动器是架设于所述俯仰座,并动力连结至所述进给滑块,而可驱动所述进给滑块相对所述俯仰座滑动;所述自转单元,其是包括有第三致动器,且与所述采集棒夹取器连接,所述第三致动器是架设于所述进给滑块,且动力连接所述采集棒夹取器而带动采集棒进行旋转。
  10. 根据权利要求9所述的检体采集系统,其特征在于:所述机械手臂装置包括有一旋转单元,其设有一机架及一第四致动器,所述第四致动器是设置于所述机架,且所述第四致器193是动力连接所述基座,而所述运算系统至少含有一运算单元是可电性控制所述第四致动器,进而可带动所述俯仰单元进行旋转。
  11. 一种检体采集方法,使用于一检体采集系统,包含一带有一透孔的隔离本体,一机械手臂装置,一采集棒组配于所述机械手臂装置末端,一力量感测元件及一运算系统,其特征在于,包含以下步骤:
    步骤1:所述机械手臂装置根据一规画路径进行空间运动,带动所述采集棒通过隔离本体上的透孔,使所述采集棒的采集头涂抹所述受检部位;
    步骤2:因所述机械手臂装置带动所述采集头碰触所述受检部位,使所述力量感测元件产生一接触力道讯息;
    步骤3:所述接触力道讯息用于一劲度控制,进而更新所述机械手臂装置的所述规画路径,以限制所述采集头与所述受检部位的接触深度。
  12. 根据权利要求11所述的检体采集方法,其特征在于,包含所述步骤1中:所述规画路径包含所述采集头自转、所述采集头绕所述受检部位旋转或所述采集头相对受检部位平移等可使所述采集头对所述采检部位达成涂抹动作的空间运动路径。
  13. 根据权利要求11所述的检体采集方法,其特征在于,包含所述步骤1中:所述采检部位可为一鼻腔部位及一口腔部位其中之一。
  14. 根据权利要求11所述的检体采集方法,其特征在于,包含所述步骤1中:所述透孔周围有一套接部,可将一套管与所述套接部相组配,使受检者咬合于所述套管,固定所述受检 部位的空间位置,其中所述套管是可选择为一鼻腔采集套管或一咽喉采集套管。
  15. 根据权利要求11所述的检体采集方法,其特征在于,所述检体采集系统包含一相机单元,所述相机单元可对所述受检部位进行影像撷取而生成一相机影像。
  16. 根据权利要求15所述的检体采集方法,其特征在于,所述检体采集系统包含一远端遥控单元及一显示单元,所述显示单元显示所述相机影像,其中所述步骤1中:所述规画路径可由一操作者根据所述相机影像操作所述远端遥控单元而生成。
  17. 根据权利要求15所述的检体采集方法,其特征在于,包含所述步骤1中:所述规画路径可透过所述影像辨识模型从所述相机影像中辨识所述受检部位的区域,并根据所述采集头与所述受检部位区域的位置误差而生成。
  18. 根据权利要求15所述的检体采集方法,其特征在于,所述检体采集系统包含一距离感测单元,所述距离感测单元可对所述受检者的一受检部位生成一距离资料,其中所述步骤1中:所述规画路径可透过将一受检腔体的统计学模型及所述距离感测资料进行资料拟合,而运算出所述受检部位的位置信息,进而根据所述采集头与所述受检部位的位置误差而生成。
  19. 根据权利要求18所述的检体采集方法,其特征在于,包含所述步骤1中:所述统计学模型可由对复数个不同受检者的受检部位进行影像撷取,而对所述撷取影像进行主成分分析而生成。
  20. 根据权利要求11所述的检体采集方法,其特征在于,包含所述步骤1中:所述规画路径包含一远程运动中心,使所述机械手臂装置带动所述采集棒做空间运动时,所述采集棒会绕着所述远程运动中心旋转。
PCT/CN2021/106924 2021-07-16 2021-07-16 检体采集系统及检体采集方法 WO2023283957A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106924 WO2023283957A1 (zh) 2021-07-16 2021-07-16 检体采集系统及检体采集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106924 WO2023283957A1 (zh) 2021-07-16 2021-07-16 检体采集系统及检体采集方法

Publications (1)

Publication Number Publication Date
WO2023283957A1 true WO2023283957A1 (zh) 2023-01-19

Family

ID=84918903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106924 WO2023283957A1 (zh) 2021-07-16 2021-07-16 检体采集系统及检体采集方法

Country Status (1)

Country Link
WO (1) WO2023283957A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111631754A (zh) * 2020-05-26 2020-09-08 清华大学 一种咽拭子自动采样系统
CN111956405A (zh) * 2020-08-17 2020-11-20 辛盛琛 一种咽拭子采集车
CN111975799A (zh) * 2020-08-26 2020-11-24 中国科学院沈阳自动化研究所 一种鼻口咽拭子采样机器人
CN112089447A (zh) * 2020-10-21 2020-12-18 高进贤 一种高效自动化新冠病毒核酸智能采集系统
CN212213773U (zh) * 2020-03-13 2020-12-25 中国科学院沈阳自动化研究所 用于咽喉采样的机器人
CN112690833A (zh) * 2021-01-21 2021-04-23 中国地质大学(武汉) 一种核酸自动采样和检测设备
CN113006538A (zh) * 2021-03-16 2021-06-22 北京京东乾石科技有限公司 一种咽拭子采集工作站
US11045271B1 (en) * 2021-02-09 2021-06-29 Bao Q Tran Robotic medical system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212213773U (zh) * 2020-03-13 2020-12-25 中国科学院沈阳自动化研究所 用于咽喉采样的机器人
CN111631754A (zh) * 2020-05-26 2020-09-08 清华大学 一种咽拭子自动采样系统
CN111956405A (zh) * 2020-08-17 2020-11-20 辛盛琛 一种咽拭子采集车
CN111975799A (zh) * 2020-08-26 2020-11-24 中国科学院沈阳自动化研究所 一种鼻口咽拭子采样机器人
CN112089447A (zh) * 2020-10-21 2020-12-18 高进贤 一种高效自动化新冠病毒核酸智能采集系统
CN112690833A (zh) * 2021-01-21 2021-04-23 中国地质大学(武汉) 一种核酸自动采样和检测设备
US11045271B1 (en) * 2021-02-09 2021-06-29 Bao Q Tran Robotic medical system
CN113006538A (zh) * 2021-03-16 2021-06-22 北京京东乾石科技有限公司 一种咽拭子采集工作站

Similar Documents

Publication Publication Date Title
Wang et al. Design of a low-cost miniature robot to assist the COVID-19 nasopharyngeal swab sampling
CN110200601B (zh) 一种脉象获取装置及系统
KR102363661B1 (ko) 원격동작 의료 시스템 내의 기구의 화면외 표시를 위한 시스템 및 방법
WO2023061113A1 (zh) 便携式远程超声扫查系统与安全超声扫查柔顺控制方法
US20110046637A1 (en) Sensorized medical instrument
CN112568998B (zh) 一种远程主从交互式医疗系统及方法
KR101057702B1 (ko) 수술용 로봇의 제어 방법 및 그 시스템
CN110993087A (zh) 一种远程超声扫描操纵设备及方法
JP2011110620A (ja) ロボットの動作を制御する方法およびロボットシステム
CN105832343A (zh) 多维视觉手功能康复定量评估系统和评估方法
US20210315647A1 (en) Surgical Robot and Method for Displaying Image of Patient Placed on Surgical Table
CN111166387B (zh) 甲状腺的超声成像方法和装置
Li et al. A flexible transoral robot towards COVID-19 swab sampling
CN112229617A (zh) 一种离体膝关节的动态加载平台及其应用方法
CN107945607B (zh) 超声演示系统及装置
CN114788735A (zh) 具有主端力反馈的远程交互式超声引导穿刺系统及方法
CN113499094A (zh) 一种依靠视觉及力反馈引导的心脏彩超检查装置和方法
WO2023283957A1 (zh) 检体采集系统及检体采集方法
CN111820920B (zh) 一种静脉采血数据处理方法、装置及智能采血机器人
Lee et al. Robotic Manipulation System Design and Control for Non-Contact Remote Diagnosis in Otolaryngology: Digital Twin Approach
KR20100095162A (ko) 임플란트 시술 보조 시스템
US20240050175A1 (en) Surgical robot, robotic surgical system, and control method for surgical robot
CN109620414B (zh) 一种针对外科手术的机械抓手力反馈方法以及系统
Jin et al. Safety design and control algorithm for robotic spinal surgical system
CN115869009B (zh) 一种远程超声诊断系统及交互控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE