WO2023282386A1 - Strain measuring sensor and manufacturing method therefor - Google Patents

Strain measuring sensor and manufacturing method therefor Download PDF

Info

Publication number
WO2023282386A1
WO2023282386A1 PCT/KR2021/012819 KR2021012819W WO2023282386A1 WO 2023282386 A1 WO2023282386 A1 WO 2023282386A1 KR 2021012819 W KR2021012819 W KR 2021012819W WO 2023282386 A1 WO2023282386 A1 WO 2023282386A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
measuring sensor
conductive wire
strain measuring
manufacturing
Prior art date
Application number
PCT/KR2021/012819
Other languages
French (fr)
Korean (ko)
Inventor
김회준
류채현
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Publication of WO2023282386A1 publication Critical patent/WO2023282386A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/12Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by electrolysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a strain measuring sensor using cracks and a method for manufacturing the same, and more particularly, to a strain measuring sensor capable of forming a conductive thin film layer having straight or curved cracks on a substrate layer by a simple method such as electroplating, and It relates to a manufacturing method thereof.
  • a strain measurement sensor is a device that detects minute signals (eg, tension, force, bending, pressure, friction, etc.) and transmits them as data such as electrical signals, and is one of the parts essential in modern industry.
  • minute signals eg, tension, force, bending, pressure, friction, etc.
  • strain measurement sensors capacitive sensors, piezoelectric sensors, and strain gauges are widely known as sensors that measure pressure or tensile force. Recently, resistance changes due to cracks caused by tension on the surface of a conductive thin film Research on crack-based strain sensors that measure strain by measuring is being actively conducted.
  • FIG. 1 is a conventional strain measuring sensor 1, in which a metal thin film layer 20 as a sensing layer is deposited on a flexible substrate 10, and a sensing range is provided between the substrate 10 and the metal thin film layer 20. It includes an intermediate layer 30 made of a conductive material having a smaller modulus of elasticity than metal to increase the thickness. Accordingly, after forming a crack 20a in the metal thin film layer 20 by applying pre-strain in the direction to be measured, when tension is applied by measuring the change in resistance between both ends of the strain measuring sensor 1 strain can be measured.
  • the intermediate layer 30 is provided between the substrate 10 and the metal thin film layer 20 in this way, precise and expensive equipment such as a sputtering device is required to deposit the intermediate layer 30, and it takes a lot of time.
  • precise and expensive equipment such as a sputtering device is required to deposit the intermediate layer 30, and it takes a lot of time.
  • the size of the result is determined by the manufacturing equipment.
  • the strain measuring sensor has better sensitivity and a wider sensing range as the distribution area of the crack 20a formed in the metal thin film layer 20 increases.
  • the crack 20a moves in one direction. Since it is formed in the form of a continuous straight line, it is difficult to increase the distribution area of the crack 20a.
  • An object of the present invention is to provide a strain measuring sensor capable of forming a conductive thin film layer having straight or curved cracks on a substrate layer by a simple method such as electroplating, and a manufacturing method thereof.
  • Strain measurement sensor for achieving the above object is a substrate layer formed of a flexible material; and a conductive thin film layer provided on one side of the base layer and formed with cracks having at least one pattern of irregular straight lines or irregular curves.
  • the conductive thin film layer includes a plurality of island portions formed by growing metal nanoparticles on a conductive wire coated on one surface of the base layer, and the crack is formed between the island portions by a space between the conductive wires. It can be.
  • the conductive wire may include at least one of CNT, silver nano wire, graphene, or graphite.
  • the area of the crack widens or narrows to change the contact area between the island portions, and the electrical change of the island portion according to the change in the contact area is measured to obtain The external force applied to it can be measured.
  • the conductive thin film layer may be deposited and formed on the substrate layer using an electrochemical deposition process including at least one of electrodeposition, electroplating, electrophorethic deposition, and electroless plating.
  • a method of manufacturing a strain measuring sensor for achieving the above object includes providing a conductive wire on one surface of a substrate; coating one surface of the substrate with a liquid polymer material to form a substrate layer with the conductive wire interposed therebetween; Separating the base layer on which the conductive wire is fixed on one side of the substrate from the substrate; growing metal nanoparticles on the conductive wire through an electrochemical deposition process actively using the conductive wire after immersing the substrate layer in a solution containing metal ions; and forming a conductive thin film layer having at least one pattern of cracks among irregular straight lines and irregular curves on the base layer by using the growth of the metal nanoparticles.
  • the forming of the base layer may include spin-coating the liquid polymer material on the substrate provided with the conductive wire, and curing the polymer material to form a base layer having a portion of the conductive wire fixed to one surface. Acquisition process may be included.
  • the step of separating the base layer from the substrate may include cutting the base layer into a desired size and shape after separating the base layer from the substrate.
  • the density and size of the metal nanoparticles may be controlled by controlling at least one of the electrochemical deposition process time and the size of the electric field.
  • the distribution of the cracks may be controlled according to the amount of the conductive wire provided on the substrate.
  • the electrochemical deposition process may include at least one of an electrodeposition method, an electroplating method, an electrophorethic deposition method, and an electroless plating method.
  • the polymer material is one selected from PDMS (Polydimethylsiloxane), PI (Polyimide), PET (Polyehtylene-terephthalate), PES (Polyether sulfone), PEN (Polyethylene naphthalate), PMMA (PolymethymethAcrylate), PC (Polycarbonate), and Ecoflex.
  • PDMS Polydimethylsiloxane
  • PI Polyimide
  • PET Polyehtylene-terephthalate
  • PES Polyether sulfone
  • PEN Polyethylene naphthalate
  • PMMA PolymethymethAcrylate
  • PC Polycarbonate
  • Ecoflex Ecoflex
  • the conductive wire may include at least one of CNT, silver nano wire, graphene, or graphite.
  • the manufacturing time can be shortened compared to the manufacturing process of the conductive thin film layer using a conventional sputtering device, Since expensive equipment is not required, manufacturing costs can be reduced.
  • the sensitivity and sensing range of the strain measuring sensor are improved without providing an intermediate layer between the substrate layer and the conductive thin film layer. can make it
  • the conductive thin film layer is prepared by growing metal nanoparticles on the conductive wire by using the conductive wire as an electrode during electroplating, when controlling the time of electroplating and the size of the applied electric field, the size and Density can be controlled. That is, since the sensing range increases as the size of the metal nanoparticles decreases, a strain measuring sensor having a wide sensing range can be manufactured when the time and the size of the electric field are appropriately controlled during electroplating.
  • the external force applied to the strain measuring sensor can be measured by measuring the electrical change of the conductive thin film layer, it can be applied to a wearable device to measure a biosignal or movement.
  • FIG. 1 is a perspective view showing the configuration of a strain measuring sensor according to the prior art.
  • FIG. 2 is a perspective view showing the configuration of a strain measuring sensor according to an embodiment of the present invention.
  • FIG. 3 is a view showing a state in which an external force is applied in the X-axis direction to the strain measuring sensor of FIG. 2 .
  • FIG. 4 is a view showing a state in which an external force is applied in the Y-axis direction to the strain measuring sensor of FIG. 2 .
  • FIG. 5 is a flowchart of a method of manufacturing a strain measuring sensor according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a process for implementing the manufacturing method of the strain measuring sensor shown in FIG. 5 .
  • FIG. 7 is a view showing an electroplating apparatus for forming a conductive thin film layer on a substrate layer in FIG. 5 .
  • FIG. 8(a) is a SEM image of a strain measuring sensor manufactured by a conventional manufacturing method
  • FIG. 8(b) is a SEM image of a strain measuring sensor manufactured by the manufacturing method of FIG. 4 .
  • strain measuring sensor 9 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to wearable devices.
  • FIG. 10 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to a sound recognition device.
  • FIG. 2 is a perspective view showing the configuration of a strain measuring sensor according to an embodiment of the present invention
  • FIG. 3 is a view showing a state in which an external force is applied in the X-axis direction to the strain measuring sensor of FIG. 2
  • FIG. It is a diagram showing a state in which an external force is applied in the Y-axis direction to the strain measuring sensor of Fig. 2.
  • the strain measuring sensor 100 converts and detects minute mechanical changes (strain) into electrical signals, and may include a substrate layer 110 and a conductive thin film layer 120.
  • the substrate layer 110 forms the base of the strain measuring sensor 100 and may be formed in a plate shape made of a flexible material.
  • the base layer 110 may be formed by processing a polymer material such as PDMS, which will be described in detail later.
  • the conductive thin film layer 120 may be provided on one surface of the substrate layer 110 and cracks 120a having at least one pattern of irregular straight lines or irregular curves may be formed.
  • cracks 120a having an irregular curved pattern are formed on one surface of the substrate layer 110 for convenience of description.
  • Cracks 120a having an irregular curved pattern is formed in the conductive thin film layer 120 of the strain measuring sensor 100, compared to the conventional strain measuring sensor 1 in which the straight crack 20a is formed, Cracks 120a having a wide distribution may be formed. That is, in the case of the conventional strain measuring sensor 1, as shown in FIG. 1, the crack 20a is formed in only one direction, but in the case of the strain measuring sensor 100 according to the present invention, as shown in FIG. Since the cracks 120a are formed not only in one direction but also in a direction perpendicular thereto, cracks 120a having a wider distribution can be provided. Due to the increase in the distribution area of the cracks 120a, the sensitivity and sensing range of the strain measuring sensor 100 may be improved without an intermediate layer.
  • the crack 120a is formed in both one direction and a direction perpendicular thereto, it is possible to measure an external force applied in both directions (biaxial). That is, conventionally, since cracks are formed in only one direction, only external force applied in a single direction could be measured, but in the case of the present invention, as shown in FIGS. 3 and 4, applied in the X-axis direction and the Y-axis direction External forces can be measured. Therefore, there is an advantage in that tension applied in various directions can be measured using only one strain measuring sensor 100 .
  • resistance change in the conductive thin film layer 120 may be determined according to the state of the crack 120a. That is, when a tensile force is applied to the strain measuring sensor 100 as shown in FIG. 3, the crack 120a widens and increases in area, thereby reducing the conductivity of the conductive thin film layer 120, which causes the conductive thin film layer 120 to will increase the resistance of Conversely, when the tensile force applied to the strain measuring sensor 100 is released and restored to its original state, the area of the crack 120a is reduced to increase the conductivity of the conductive thin film layer 120, which reduces the resistance of the conductive thin film layer 120 be able to do Therefore, when the electrical change of the conductive thin film layer 120 is measured using this change in resistance, the external force applied to the base layer 110 can be measured.
  • the conductive thin film layer 120 may include an island portion 121 and a crack 120a.
  • the island portion 121 may be formed by growing metal nanoparticles 21 on the conductive wire 22 coated on one surface of the base layer 110 .
  • the conductive wire 22 may include at least one of CNT, silver nano wire, graphene, or graphite, and the metal nanoparticle 21 may be any material capable of electroplating.
  • Metal for example, may be provided with gold (Au).
  • the crack 120a may be formed between the island portions 121 and may be formed due to the space 22a between the skein-shaped conductive wires 22 .
  • gold (Au) ions gold nanoparticles grow on the CNTs.
  • the CNT since the CNT has a structure like a skein, a plurality of empty spaces 22a may be provided therein (see FIG. 5).
  • the area of the crack 120a widens or narrows, and the contact area between the island portions 121 changes, and the island portion 121 according to the change in the contact area ) It is possible to measure the external force applied to the base layer 110 by measuring the electrical change.
  • FIG. 5 is a flow chart of a method for manufacturing a strain measuring sensor according to an embodiment of the present invention
  • FIG. 6 is a diagram schematically illustrating a process for implementing the method for manufacturing a strain measuring sensor shown in FIG. 5
  • FIG. 7 is a diagram showing an electroplating apparatus for forming a conductive thin film layer on a substrate layer in FIG. 5 .
  • the method of manufacturing a strain measuring sensor includes providing a conductive wire on one surface of a substrate (S110), forming a base layer (S120), and removing the base layer from the substrate. It may include separating (S130), growing metal nanoparticles on the conductive wire (S140), and forming a conductive thin film layer on the substrate layer (S140).
  • the conductive wire 22 is spray-coated on one surface of the substrate 130 made of a silicon (Si) wafer to form a conductive wire 22 on one surface of the substrate 130.
  • the conductive wire 22 provided on the substrate 130 may include at least one of CNT, silver nano wire, graphene, or graphite.
  • the step of providing a conductive wire on one surface of the substrate (S110) may further include a step of preparing a pretreated substrate 130 by cleaning the silicon wafer before spray-coating the conductive wire 22 (S111).
  • a liquid polymer material is coated on one surface of the substrate 130 to form the substrate layer 110 with the conductive wire 22 interposed between the substrate 130 and the substrate 130.
  • the conductive wire 22 may be provided to have a nano-sized diameter
  • the polymer material may include polydimethylsiloxane (PDMS), polyimide (PI), polyehtylene-terephthalate (PET), polyether sulfone (PES), and PEN ( polyethylene naphthalate), PMMA (PolymethymethAcrylate), PC (Polycarbonate), and Ecoflex.
  • the step of forming the substrate layer (S120) is a process of spin-coating a liquid polymer material on the substrate 130 provided with the conductive wire 22, and curing the polymer material to form the conductive wire 22 on one surface.
  • a part of may include a process of obtaining the fixed base layer 110.
  • the reason for using the liquid polymer material as the base layer 110 is to harden a part of the conductive wire 22 while being inserted into the polymer material, so that when the base layer 110 is separated from the substrate 130 This is to prevent the conductive wire 22 from escaping from the base layer 110 .
  • the substrate layer 110 having the conductive wire 22 fixed to one surface may be separated from the substrate 130 using a physical method or a chemical method.
  • the step of separating the base layer from the substrate (S130) may include separating the base layer 110 from the substrate 130 and then cutting the base layer 110 into a desired size and shape (S131). there is. Accordingly, it is possible to obtain a base layer 110 having a desired size and shape, and the conductive wire 22 may be fixed to one surface of the base layer 110 thus obtained.
  • the step of growing metal nanoparticles on the conductive wire (S140), as shown in FIG. 6, after immersing the substrate layer 110 in a solution containing metal ions, an electrochemical process using the conductive wire 22 is actively performed.
  • Metal nanoparticles 21 may be grown on the conductive wire 22 through a deposition process.
  • the electrochemical deposition process may include at least one of an electrodeposition method, an electroplating method, an electrophorethic deposition method, and an electroless plating method.
  • the density control of the metal nanoparticles 21 is achieved by controlling at least one of the time of the electrochemical deposition process and the magnitude of the electric field applied during the electrochemical deposition process in the step of growing the metal nanoparticles on the conductive wire (S140).
  • the conductive thin film layer 120 having irregular curved patterns of cracks 120a is formed on the substrate layer 110 by using the growth of metal nanoparticles 21. can do. That is, the conductive thin film layer 120 including the island portion 121 and the crack 120a is formed on the substrate layer 110 through the growth of metal nanoparticles 21 using electroplating, so that the strain measurement sensor 100 ) can be obtained.
  • CNT provided on one side of the substrate layer 110 is used as an electrode, and gold (Au) on the CNT ) nanoparticles grow. Therefore, if this is used, gold nanoparticles grow on the CNT and combine with the surrounding gold nanoparticles to form the island portion 121, and the space 22a formed inside the CNT causes the gold (Au) nanoparticles to grow. If not yet combined, this space 22a forms a crack 120a. At this time, due to the skein-shaped CNT structure, the space 22a is formed in a curved shape, and thus, the crack 120a may also be formed in a curved shape.
  • the cracks 120a As such, as the curved cracks 120a are provided between the island portions 121, the cracks 120a having a wider distribution are formed than in the conventional strain measuring sensor 1 in which straight cracks 20a are formed. And, due to the increased distribution of cracks 120a, it is possible to improve the sensitivity and sensing range of the strain measuring sensor 100 without an intermediate layer.
  • the area of the crack 120a may be controlled according to the amount of the conductive wire 22 provided on the substrate 130 .
  • the space 22a between the conductive wires 22 becomes more dense, which reduces the distribution (number) of cracks 120a. can increase
  • the space 22a between the conductive wires 22 becomes coarser, which may reduce the distribution (number) of cracks 120a. That is, when the amount of conductive wire 22 is controlled, the distribution of cracks 120a can be increased.
  • FIG. 8(a) is a SEM image of a strain measuring sensor manufactured by a conventional manufacturing method
  • FIG. 8(b) is a SEM image of a strain measuring sensor manufactured by the manufacturing method of FIG. 4 .
  • FIG. 8(a) is a conventional strain measuring sensor 1 manufactured using a sputtering device, and it can be seen that cracks are formed in one direction.
  • the strain measuring sensor 100 according to the present invention as shown in FIG. 8(b), it can be confirmed that the crack is formed in a curved shape.
  • the strain measuring sensor 100 according to the present invention since the distribution of cracks per unit area is more formed, it can have a wider sensing range than the conventional strain measuring sensor 1.
  • FIG. 9 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to wearable devices
  • FIG. 10 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to a sound recognition device.
  • the strain measurement sensor 100 may be installed in a wearable device such as a mask or glove to measure a signal caused by a user's cough or movement.
  • a wearable device such as a mask or glove to measure a signal caused by a user's cough or movement.
  • it may be used as an acoustic perception device by measuring vibrations caused by sound waves.
  • the conductive thin film layer 120 having the crack 120a can be formed on the substrate layer 110 by a simple method such as electroplating, Compared to the manufacturing process of the conductive thin film layer 20 using a conventional sputtering device, the manufacturing time can be shortened, and manufacturing cost can be reduced because expensive equipment is not required.
  • the strain is measured without providing an intermediate layer between the substrate layer 110 and the thin film layer 120.
  • the sensitivity and sensing range of the sensor 100 may be improved.
  • the conductive thin film layer 120 is prepared by growing metal nanoparticles 21 on the conductive wire 22 using the conductive wire 22 as an electrode during electroplating, the time of electroplating and the applied electric field When controlling the size of the size and density of the metal nanoparticles 21 can be controlled. That is, since the sensing range increases as the size of the metal nanoparticles 21 decreases, the strain measurement sensor 100 having a wide sensing range can be manufactured when the time and the size of the electric field are appropriately controlled during electroplating.
  • the external force applied to the strain measuring sensor 100 can be measured by measuring the electrical change of the conductive thin film layer 120, it can be applied to a wearable device to measure a biosignal or movement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

A strain measuring sensor according to the present invention may comprise: a substrate layer formed of a flexible material; and a conductive thin-film layer provided on a surface of the substrate layer and having at least any one pattern with irregular straight lines or irregular curves.

Description

변형률 측정 센서 및 이의 제조방법Strain measurement sensor and its manufacturing method
본 발명은 크랙을 이용한 변형률 측정 센서 및 이의 제조방법에 관한 것으로, 보다 상세하게는 전기도금과 같이 간단한 방법으로 기재층 상에 직선 또는 곡선의 크랙이 형성된 전도성 박막층을 형성할 수 있는 변형률 측정 센서 및 이의 제조방법에 관한 것이다.The present invention relates to a strain measuring sensor using cracks and a method for manufacturing the same, and more particularly, to a strain measuring sensor capable of forming a conductive thin film layer having straight or curved cracks on a substrate layer by a simple method such as electroplating, and It relates to a manufacturing method thereof.
일반적으로 변형률 측정 센서는 미세한 신호(예컨대, 인장, 힘, 구부러짐, 압력 및 마찰 등)를 감지하여 이를 전기적 신호 등의 데이터로 전달하는 장치로서, 현대산업에서 필수적으로 요구되는 부품 중 하나이다. In general, a strain measurement sensor is a device that detects minute signals (eg, tension, force, bending, pressure, friction, etc.) and transmits them as data such as electrical signals, and is one of the parts essential in modern industry.
변형률 측정 센서 중 압력이나 인장력을 측정하는 센서로서는 정전용량(capacitive) 센서, 압전기(piezoelectric) 센서, 스트레인 게이지 등이 널리 알려져 있으며, 최근에는 전도성 박막 표면에서 인장에 의해 발생하는 크랙으로 인한 저항의 변화를 측정함으로써 변형률을 측정하는 크랙 기반 변형률 센서의 연구가 활발히 진행되고 있다. Among strain measurement sensors, capacitive sensors, piezoelectric sensors, and strain gauges are widely known as sensors that measure pressure or tensile force. Recently, resistance changes due to cracks caused by tension on the surface of a conductive thin film Research on crack-based strain sensors that measure strain by measuring is being actively conducted.
한편, 도 1은 종래의 변형률 측정 센서(1)로서, 유연 기판(10) 상에 센신층으로서의 금속 박막층(20)이 증착되어 있으며, 기판(10)과 금속 박막층(20) 사이에는 센싱 범위를 증가시키기 위해 금속보다 탄성계수가 작은 전도성 물질로 구성된 중간층(30)을 포함하고 있다. 이에 따라, 측정하고자 하는 방향으로 Pre-strain을 가해줌으로써 금속 박막층(20)에 크랙(20a)을 형성시킨 후, 변형률 측정 센서(1)의 양 끝단 사이의 저항 변화를 측정함으로써 인장이 가해졌을 때의 변형률을 측정할 수 있다. On the other hand, FIG. 1 is a conventional strain measuring sensor 1, in which a metal thin film layer 20 as a sensing layer is deposited on a flexible substrate 10, and a sensing range is provided between the substrate 10 and the metal thin film layer 20. It includes an intermediate layer 30 made of a conductive material having a smaller modulus of elasticity than metal to increase the thickness. Accordingly, after forming a crack 20a in the metal thin film layer 20 by applying pre-strain in the direction to be measured, when tension is applied by measuring the change in resistance between both ends of the strain measuring sensor 1 strain can be measured.
그러나, 이와 같이 기판(10)과 금속 박막층(20) 사이에 중간층(30)이 구비된 경우에는 중간층(30)을 증착하기 위해 스퍼터링 장치와 같은 정밀한 고액의 장비가 필요하고, 많은 시간이 소요될 뿐 아니라 그 결과물의 크기가 제조 장비에 의해 결정된다는 한계가 있다. However, when the intermediate layer 30 is provided between the substrate 10 and the metal thin film layer 20 in this way, precise and expensive equipment such as a sputtering device is required to deposit the intermediate layer 30, and it takes a lot of time. However, there is a limitation that the size of the result is determined by the manufacturing equipment.
또한, 변형률 측정 센서는 금속 박막층(20)에 형성된 크랙(20a)의 분포 면적이 증가할수록 민감도가 좋고 센싱 범위가 넓어지는데, 종래의 변형률 측정 센서(1)의 경우 크랙(20a)이 한 방향으로 이어진 직선 형태로 형성되어 있기 때문에 크랙(20a)의 분포 면적을 증가시키기 어려운 문제가 있다. In addition, the strain measuring sensor has better sensitivity and a wider sensing range as the distribution area of the crack 20a formed in the metal thin film layer 20 increases. In the case of the conventional strain measuring sensor 1, the crack 20a moves in one direction. Since it is formed in the form of a continuous straight line, it is difficult to increase the distribution area of the crack 20a.
본 발명의 과제는 전기도금과 같이 간단한 방법으로 기재층 상에 직선 또는 곡선의 크랙이 형성된 전도성 박막층을 형성할 수 있는 변형률 측정 센서 및 이의 제조방법을 제공함에 있다.An object of the present invention is to provide a strain measuring sensor capable of forming a conductive thin film layer having straight or curved cracks on a substrate layer by a simple method such as electroplating, and a manufacturing method thereof.
상기의 과제를 달성하기 위한 본 발명에 따른 변형률 측정 센서는 유연한 재질로 형성된 기재층; 및 상기 기재층의 일면에 제공되고, 불규칙한 직선 또는 불규칙한 곡선 중 적어도 어느 하나의 패턴을 갖는 크랙이 형성된 전도성 박막층;을 포함할 수 있다. Strain measurement sensor according to the present invention for achieving the above object is a substrate layer formed of a flexible material; and a conductive thin film layer provided on one side of the base layer and formed with cracks having at least one pattern of irregular straight lines or irregular curves.
또한, 상기 전도성 박막층은 상기 기재층의 일면에 코팅된 전도성 와이어 상에 금속 나노입자를 성장시켜 형성된 복수의 아일랜드부를 포함하고, 상기 크랙은 상기 전도성 와이어 사이의 공간에 의해 상기 아일랜드부들의 사이에 형성될 수 있다. In addition, the conductive thin film layer includes a plurality of island portions formed by growing metal nanoparticles on a conductive wire coated on one surface of the base layer, and the crack is formed between the island portions by a space between the conductive wires. It can be.
또한, 상기 전도성 와이어는 CNT, 실버나노와이어(silver nano wire), 그래핀(graphene) 또는 그래파이트(graphite) 중 적어도 하나를 포함할 수 있다. In addition, the conductive wire may include at least one of CNT, silver nano wire, graphene, or graphite.
또한, 상기 기재층에 외력이 가해지는 경우 상기 크랙의 면적이 넓어지거나 좁아져 상기 아일랜드부들 사이의 접촉면적이 변화하게 되고, 상기 접촉면적의 변화에 따른 상기 아일랜드부의 전기적 변화를 측정하여 상기 기재층에 가해지는 외력을 측정할 수 있다. In addition, when an external force is applied to the substrate layer, the area of the crack widens or narrows to change the contact area between the island portions, and the electrical change of the island portion according to the change in the contact area is measured to obtain The external force applied to it can be measured.
또한, 상기 전도성 박막층은 전기증착법, 전기도금법, 전기이동법(electrophorethic deposition), 무전해도금법 중 적어도 하나를 포함하는 전기화학적 증착 공정을 이용하여 상기 기재층 상에 증착 형성될 수 있다. In addition, the conductive thin film layer may be deposited and formed on the substrate layer using an electrochemical deposition process including at least one of electrodeposition, electroplating, electrophorethic deposition, and electroless plating.
상기의 과제를 달성하기 위한 본 발명에 따른 변형률 측정 센서의 제조방법은 기판의 일면에 전도성 와이어를 제공하는 단계; 상기 기판의 일면에 액상의 고분자 재료를 코팅하여, 상기 기판과의 사이에 상기 전도성 와이어가 개재된 기재층을 형성하는 단계; 상기 기판으로부터 일면에 상기 전도성 와이어가 고정된 기재층을 분리하는 단계; 금속이온이 포함된 용액에 상기 기재층을 침지한 후, 상기 전도성 와이어를 적극으로 이용한 전기화학적 증착 공정을 통해 상기 전도성 와이어 상에 금속 나노입자를 성장시키는 단계; 및 상기 금속 나노입자의 성장을 이용하여 상기 기재층 상에 불규칙한 직선 또는 불규칙한 곡선 중 적어도 어느 한 패턴의 크랙이 구비된 전도성 박막층을 형성하는 단계;를 포함할 수 있다. A method of manufacturing a strain measuring sensor according to the present invention for achieving the above object includes providing a conductive wire on one surface of a substrate; coating one surface of the substrate with a liquid polymer material to form a substrate layer with the conductive wire interposed therebetween; Separating the base layer on which the conductive wire is fixed on one side of the substrate from the substrate; growing metal nanoparticles on the conductive wire through an electrochemical deposition process actively using the conductive wire after immersing the substrate layer in a solution containing metal ions; and forming a conductive thin film layer having at least one pattern of cracks among irregular straight lines and irregular curves on the base layer by using the growth of the metal nanoparticles.
또한, 상기 기재층을 형성하는 단계는 상기 전도성 와이어가 구비된 상기 기판에 상기 액상의 고분자 재료를 스핀 코팅하는 과정과, 상기 고분자 재료를 경화시켜 일면에 상기 전도성 와이어의 일부가 고정된 기재층을 획득하는 과정을 포함할 수 있다. In addition, the forming of the base layer may include spin-coating the liquid polymer material on the substrate provided with the conductive wire, and curing the polymer material to form a base layer having a portion of the conductive wire fixed to one surface. Acquisition process may be included.
또한, 상기 기판으로부터 기재층을 분리하는 단계는 상기 기판으로부터 상기 기재층을 분리시킨 이후, 상기 기재층을 원하는 크기 및 형상으로 커팅하는 단계를 포함할 수 있다. In addition, the step of separating the base layer from the substrate may include cutting the base layer into a desired size and shape after separating the base layer from the substrate.
또한, 상기 전도성 와이어 상에 금속 나노입자를 성장시키는 단계는 상기 전기화학적 증착 공정의 시간, 전기장의 크기 중 적어도 하나를 제어하여 상기 금속 나노입자의 밀도와 크기를 제어할 수 있다. In addition, in the step of growing the metal nanoparticles on the conductive wire, the density and size of the metal nanoparticles may be controlled by controlling at least one of the electrochemical deposition process time and the size of the electric field.
또한, 상기 기판에 제공되는 상기 전도성 와이어의 양에 따라 상기 크랙의 분포의 제어가 가능해질 수 있다. In addition, the distribution of the cracks may be controlled according to the amount of the conductive wire provided on the substrate.
또한, 상기 전기화학적 증착 공정은 전기증착법, 전기도금법, 전기이동법(electrophorethic deposition), 무전해도금법 중 적어도 하나를 포함할 수 있다. In addition, the electrochemical deposition process may include at least one of an electrodeposition method, an electroplating method, an electrophorethic deposition method, and an electroless plating method.
또한, 상기 고분자 재료는 PDMS(Polydimethylsiloxane), PI(Polyimide), PET(Polyehtylene-terephthalate), PES(Polyether sulfone), PEN(Polyethylene naphthalate), PMMA(PolymethymethAcrylate), PC(Polycarbonate), Ecoflex 중 선택된 하나를 포함할 수 있다. In addition, the polymer material is one selected from PDMS (Polydimethylsiloxane), PI (Polyimide), PET (Polyehtylene-terephthalate), PES (Polyether sulfone), PEN (Polyethylene naphthalate), PMMA (PolymethymethAcrylate), PC (Polycarbonate), and Ecoflex. can include
또한, 상기 전도성 와이어는 CNT, 실버나노와이어(silver nano wire), 그래핀(graphene) 또는 그래파이트(graphite) 중 적어도 하나를 포함할 수 있다.In addition, the conductive wire may include at least one of CNT, silver nano wire, graphene, or graphite.
본 발명에 따르면, 전기도금과 같이 간단한 방법으로 기재층 상에 크랙이 구비된 전도성 박막층을 형성할 수 있기 때문에, 종래의 스퍼터링 장치를 이용한 전도성 박막층의 제조 공정에 비하여 제조 시간을 단축할 수 있으며, 고액의 장비를 필요로 하지 않아 제조 비용을 감소시킬 수 있다. According to the present invention, since the conductive thin film layer having cracks can be formed on the base layer by a simple method such as electroplating, the manufacturing time can be shortened compared to the manufacturing process of the conductive thin film layer using a conventional sputtering device, Since expensive equipment is not required, manufacturing costs can be reduced.
또한, 기재층 상에 증착 형성된 전도성 박막층이 직선 또는 곡선 중 적어도 어느 하나의 패턴을 갖는 크랙을 구비함에 따라, 기재층과 전도성 박막층 사이에 중간층을 구비하지 않고도 변형률 측정 센서의 민감도 및 센싱 범위를 향상시킬 수 있다.In addition, as the conductive thin film layer deposited on the substrate layer has cracks having at least one pattern of straight lines or curves, the sensitivity and sensing range of the strain measuring sensor are improved without providing an intermediate layer between the substrate layer and the conductive thin film layer. can make it
또한, 전기도금시 전도성 와이어를 전극으로 이용하여 전도성 와이어 상에서 금속 나노입자를 성장시키는 방법으로 전도성 박막층을 제조하기 때문에, 전기도금의 시간 및 인가되는 전기장의 크기를 제어하는 경우 금속나노 입자의 크기 및 밀도를 제어할 수 있다. 즉, 금속나노 입자의 크기가 작을수록 센싱 범위가 증가하기 때문에 전기도금시 시간 및 전기장의 크기를 적절히 제어하는 경우, 센싱 범위가 넓은 변형률 측정 센서를 제조할 수 있다. In addition, since the conductive thin film layer is prepared by growing metal nanoparticles on the conductive wire by using the conductive wire as an electrode during electroplating, when controlling the time of electroplating and the size of the applied electric field, the size and Density can be controlled. That is, since the sensing range increases as the size of the metal nanoparticles decreases, a strain measuring sensor having a wide sensing range can be manufactured when the time and the size of the electric field are appropriately controlled during electroplating.
아울러, 전도성 박막층의 전기적 변화를 측정하여 변형률 측정 센서에 가해지는 외력을 측정할 수 있기 때문에, 이를 웨어러블 디바이스에 적용하여 생체 신호나 움직임 등을 측정할 수 있다.In addition, since the external force applied to the strain measuring sensor can be measured by measuring the electrical change of the conductive thin film layer, it can be applied to a wearable device to measure a biosignal or movement.
도 1은 종래 기술 따른 변형률 측정 센서의 구성을 도시한 사시도이다. 1 is a perspective view showing the configuration of a strain measuring sensor according to the prior art.
도 2는 본 발명의 일 실시예에 따른 변형률 측정 센서의 구성을 도시한 사시도이다. 2 is a perspective view showing the configuration of a strain measuring sensor according to an embodiment of the present invention.
도 3은 도 2의 변형률 측정 센서에 X축 방향으로 외력이 가해진 상태를 도시한 도면이다. FIG. 3 is a view showing a state in which an external force is applied in the X-axis direction to the strain measuring sensor of FIG. 2 .
도 4는 도 2의 변형률 측정 센서에 Y축 방향으로 외력이 가해진 상태를 도시한 도면이다. FIG. 4 is a view showing a state in which an external force is applied in the Y-axis direction to the strain measuring sensor of FIG. 2 .
도 5는 본 발명의 일 실시예에 따른 변형률 측정 센서의 제조방법의 순서도이다. 5 is a flowchart of a method of manufacturing a strain measuring sensor according to an embodiment of the present invention.
도 6은 도 5에 도시된 변형률 측정 센서의 제조방법을 구현하기 위한 과정을 개략적으로 도시한 도면이다. FIG. 6 is a diagram schematically illustrating a process for implementing the manufacturing method of the strain measuring sensor shown in FIG. 5 .
도 7은 도 5에서 기재층에 전도성 박막층을 형성하기 위한 전기도금 장치를 도시한 도면이다. FIG. 7 is a view showing an electroplating apparatus for forming a conductive thin film layer on a substrate layer in FIG. 5 .
도 8(a)는 종래의 제조방법에 의해 제조된 변형률 측정 센서의 SEM 이미지이고, 도 8(b)는 도 4의 제조방법에 의해 제조된 변형률 측정 센서의 SEM 이미지이다.8(a) is a SEM image of a strain measuring sensor manufactured by a conventional manufacturing method, and FIG. 8(b) is a SEM image of a strain measuring sensor manufactured by the manufacturing method of FIG. 4 .
도 9는 본 발명에 따른 변형률 측정 센서가 웨어러블 디바디스에 적용된 예를 도시한 도면이다. 9 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to wearable devices.
도 10은 본 발명에 따른 변형률 측정 센서가 음향 인지 장치에 적용된 예를 도시한 도면이다.10 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to a sound recognition device.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 변형률 측정 센서 및 이의 제조방법에 대해 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. Hereinafter, a strain measuring sensor and a manufacturing method thereof according to a preferred embodiment will be described in detail with reference to the accompanying drawings. Here, the same reference numerals are used for the same components, and repeated descriptions and detailed descriptions of known functions and configurations that may unnecessarily obscure the subject matter of the invention are omitted. Embodiments of the invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shapes and sizes of elements in the drawings may be exaggerated for clarity.
도 2는 본 발명의 일 실시예에 따른 변형률 측정 센서의 구성을 도시한 사시도이고, 도 3은 도 2의 변형률 측정 센서에 X축 방향으로 외력이 가해진 상태를 도시한 도면이고, 도 4는 도 2의 변형률 측정 센서에 Y축 방향으로 외력이 가해진 상태를 도시한 도면이다. 2 is a perspective view showing the configuration of a strain measuring sensor according to an embodiment of the present invention, FIG. 3 is a view showing a state in which an external force is applied in the X-axis direction to the strain measuring sensor of FIG. 2, and FIG. It is a diagram showing a state in which an external force is applied in the Y-axis direction to the strain measuring sensor of Fig. 2.
도 2 내지 도 4를 참조하면, 변형률 측정 센서(100)는 기계적인 미세한 변화(Strain)를 전기신호로 변환하여 검출하는 것으로서, 기재층(110) 및 전도성 박막층(120)을 포함할 수 있다. Referring to FIGS. 2 to 4 , the strain measuring sensor 100 converts and detects minute mechanical changes (strain) into electrical signals, and may include a substrate layer 110 and a conductive thin film layer 120.
기재층(110)은 변형률 측정 센서(100)의 베이스를 이루는 것으로서, 유연한 재질의 판 형상으로 형성될 수 있다. 이러한 기재층(110)은 PDMS 등의 고분자 재료를 가공하여 형성될 수 있는데, 자세한 설명은 후술하기로 한다. The substrate layer 110 forms the base of the strain measuring sensor 100 and may be formed in a plate shape made of a flexible material. The base layer 110 may be formed by processing a polymer material such as PDMS, which will be described in detail later.
전도성 박막층(120)은 기재층(110)의 일면에 제공되고, 불규칙한 직선 또는 불규칙한 곡선 중 적어도 어느 하나의 패턴을 갖는 크랙(120a)이 형성될 수 있다. 이하, 본 실시예에서는 설명의 편의를 위하여 기재층(110)의 일면에 불규칙한 곡선의 패턴을 갖는 크랙(120a)만 형성된 것으로 한정하여 설명한다.The conductive thin film layer 120 may be provided on one surface of the substrate layer 110 and cracks 120a having at least one pattern of irregular straight lines or irregular curves may be formed. Hereinafter, in this embodiment, only cracks 120a having an irregular curved pattern are formed on one surface of the substrate layer 110 for convenience of description.
이와 같이, 변형률 측정 센서(100)의 전도성 박막층(120)에 불규칙한 곡선의 패턴을 갖는 크랙(120a)이 형성됨에 따라, 직선의 크랙(20a)이 형성된 종래의 변형률 측정 센서(1)에 비하여 보다 넓은 분포를 갖는 크랙(120a)을 형성할 수 있다. 즉, 종래의 변형률 측정 센서(1)의 경우 도 1에 도시된 바와 같이 크랙(20a)이 일방향으로만 형성되어 있는데, 본 발명에 따른 변형률 측정 센서(100)의 경우 도 2에 도시된 바와 같이 크랙(120a)이 일방향뿐 아니라 그에 수직되는 방향으로까지 형성되어 있기 때문에 보다 넓은 분포를 갖는 크랙(120a)을 제공할 수 있다. 이러한 크랙(120a)의 분포 면적의 증가로 인해 중간층 없이도 변형률 측정 센서(100)의 민감도 및 센싱 범위를 향상시킬 수 있다. In this way, as the crack 120a having an irregular curved pattern is formed in the conductive thin film layer 120 of the strain measuring sensor 100, compared to the conventional strain measuring sensor 1 in which the straight crack 20a is formed, Cracks 120a having a wide distribution may be formed. That is, in the case of the conventional strain measuring sensor 1, as shown in FIG. 1, the crack 20a is formed in only one direction, but in the case of the strain measuring sensor 100 according to the present invention, as shown in FIG. Since the cracks 120a are formed not only in one direction but also in a direction perpendicular thereto, cracks 120a having a wider distribution can be provided. Due to the increase in the distribution area of the cracks 120a, the sensitivity and sensing range of the strain measuring sensor 100 may be improved without an intermediate layer.
또한, 크랙(120a)이 일방향과 그에 수직되는 방향 모두에 형성되어 있기 때문에 양방향(biaxial)으로 가해지는 외력의 측정이 가능하다. 즉, 종래에는 크랙이 한 방향으로만 형성되어 있기 때문에 단일 방향으로 가해지는 외력만 측정이 가능하였지만, 본 발명의 경우 도 3 및 도 4에 도시된 바와 같이 X축 방향 및 Y축 방향으로 가해지는 외력의 측정이 가능해지게 된다. 따라서, 하나의 변형률 측정 센서(100)만으로 여러 방향에서 가해지는 인장의 측정이 가능한 이점이 있다. In addition, since the crack 120a is formed in both one direction and a direction perpendicular thereto, it is possible to measure an external force applied in both directions (biaxial). That is, conventionally, since cracks are formed in only one direction, only external force applied in a single direction could be measured, but in the case of the present invention, as shown in FIGS. 3 and 4, applied in the X-axis direction and the Y-axis direction External forces can be measured. Therefore, there is an advantage in that tension applied in various directions can be measured using only one strain measuring sensor 100 .
한편, 전도성 박막층(120)에서의 저항 변화는 크랙(120a)의 상태에 따라 결정될 수 있다. 즉, 변형률 측정 센서(100)에 도 3에 도시된 바와 같이 인장력이 가해지는 경우 크랙(120a)이 벌어지면서 면적이 증가하여 전도성 박막층(120)의 전도성이 감소하게 되고, 이는 전도성 박막층(120)의 저항을 증가시키게 된다. 반대로 변형률 측정 센서(100)에 가해지는 인장력이 해제되어 원 상태로 복원되는 경우 크랙(120a)의 면적이 줄어들어 전도성 박막층(120)의 전도성이 증가하게 되고, 이는 전도성 박막층(120)의 저항을 감소시킬 수 있게 된다. 따라서, 이러한 저항의 변화를 이용하여 전도성 박막층(120)의 전기적 변화를 측정하는 경우 기재층(110)에 가해지는 외력을 측정할 수 있게 된다. Meanwhile, resistance change in the conductive thin film layer 120 may be determined according to the state of the crack 120a. That is, when a tensile force is applied to the strain measuring sensor 100 as shown in FIG. 3, the crack 120a widens and increases in area, thereby reducing the conductivity of the conductive thin film layer 120, which causes the conductive thin film layer 120 to will increase the resistance of Conversely, when the tensile force applied to the strain measuring sensor 100 is released and restored to its original state, the area of the crack 120a is reduced to increase the conductivity of the conductive thin film layer 120, which reduces the resistance of the conductive thin film layer 120 be able to do Therefore, when the electrical change of the conductive thin film layer 120 is measured using this change in resistance, the external force applied to the base layer 110 can be measured.
전도성 박막층(120)은 아일랜드부(121)와, 크랙(120a)을 포함할 수 있다. The conductive thin film layer 120 may include an island portion 121 and a crack 120a.
아일랜드부(121)는 기재층(110)의 일면에 코팅된 전도성 와이어(22) 상에서 금속 나노입자(21)를 성장시키는 방법으로 형성될 수 있다. 여기서, 전도성 와이어(22)는 CNT, 실버나노와이어(silver nano wire), 그래핀(graphene) 또는 그래파이트(graphite) 중 적어도 하나를 포함할 수 있으며, 금속 나노입자(21)는 전기도금이 가능한 모든 금속, 일 예로는 금(Au)으로 제공될 수 있다. The island portion 121 may be formed by growing metal nanoparticles 21 on the conductive wire 22 coated on one surface of the base layer 110 . Here, the conductive wire 22 may include at least one of CNT, silver nano wire, graphene, or graphite, and the metal nanoparticle 21 may be any material capable of electroplating. Metal, for example, may be provided with gold (Au).
크랙(120a)은 아일랜드부(121)들 사이에 형성될 수 있으며, 실타래 형상의 전도성 와이어(22) 사이의 공간(22a)으로 인해 형성될 수 있다. 예를 들어, 일면에 CNT가 구비된 기재층(110)을 금(Au) 이온이 포함된 용액에 침지시킨 후 전기도금을 수행하면, CNT 상에서는 금 나노입자가 성장하게 된다. 이때, CNT는 실타래와 같은 구조를 가지기 때문에 내부에는 복수의 빈 공간(22a)이 구비될 수 있다(도 5 참조). 따라서, 전기도금의 완료 후에는 CNT 상에서 복수의 금 나노입자가 성장하며 주변의 금 나노입자들과 결합하여 아일랜드부(121)가 형성되고, CNT의 빈 공간(22a)으로 인해 아일랜드부(121)들의 사이에는 곡선의 크랙(120a)이 형성되는 것이다. The crack 120a may be formed between the island portions 121 and may be formed due to the space 22a between the skein-shaped conductive wires 22 . For example, when electroplating is performed after immersing the substrate layer 110 having CNTs on one surface in a solution containing gold (Au) ions, gold nanoparticles grow on the CNTs. At this time, since the CNT has a structure like a skein, a plurality of empty spaces 22a may be provided therein (see FIG. 5). Therefore, after completion of the electroplating, a plurality of gold nanoparticles grow on the CNT and combine with the surrounding gold nanoparticles to form the island portion 121, and the empty space 22a of the CNT forms the island portion 121 A curved crack 120a is formed between them.
이에 따라, 기재층(110)에 외력이 가해지는 경우 크랙(120a)의 면적이 넓어지거나 좁아져 아일랜드부(121)들 사이의 접촉면적이 변화하게 되고, 접촉면적의 변화에 따른 아일랜드부(121)의 전기적 변화를 측정하여 기재층(110)에 가해지는 외력을 측정할 수 있게 된다. Accordingly, when an external force is applied to the substrate layer 110, the area of the crack 120a widens or narrows, and the contact area between the island portions 121 changes, and the island portion 121 according to the change in the contact area ) It is possible to measure the external force applied to the base layer 110 by measuring the electrical change.
도 5는 본 발명의 일 실시예에 따른 변형률 측정 센서의 제조방법의 순서도이고, 도 6은 도 5에 도시된 변형률 측정 센서의 제조방법을 구현하기 위한 과정을 개략적으로 도시한 도면이고, 도 7은 도 5에서 기재층에 전도성 박막층을 형성하기 위한 전기도금 장치를 도시한 도면이다. 5 is a flow chart of a method for manufacturing a strain measuring sensor according to an embodiment of the present invention, and FIG. 6 is a diagram schematically illustrating a process for implementing the method for manufacturing a strain measuring sensor shown in FIG. 5, and FIG. 7 is a diagram showing an electroplating apparatus for forming a conductive thin film layer on a substrate layer in FIG. 5 .
본 실시예에서는 앞서 설명한 실시예와의 차이점을 중심으로 설명하기로 한다.In this embodiment, a description will be made focusing on differences from the previous embodiment.
도 5 내지 도 7을 참조하면, 변형률 측정 센서의 제조방법(S100)은 기판의 일면에 전도성 와이어를 제공하는 단계(S110)와, 기재층을 형성하는 단계(S120)와, 기판으로부터 기재층을 분리하는 단계(S130)와, 전도성 와이어 상에 금속 나노입자를 성장시키는 단계(S140), 및 기재층 상에 전도성 박막층을 형성하는 단계(S140)를 포함할 수 있다. 5 to 7, the method of manufacturing a strain measuring sensor (S100) includes providing a conductive wire on one surface of a substrate (S110), forming a base layer (S120), and removing the base layer from the substrate. It may include separating (S130), growing metal nanoparticles on the conductive wire (S140), and forming a conductive thin film layer on the substrate layer (S140).
기판의 일면에 전도성 와이어를 제공하는 단계(S110)에서는 실리콘(Si) 웨이퍼로 이루어진 기판(130)의 일면에 전도성 와이어(22)를 스프레이 코팅하는 방법으로 기판(130)의 일면에 전도성 와이어(22)를 제공할 수 있다. 여기서, 기판(130) 상에 제공되는 전도성 와이어(22)는 CNT, 실버나노와이어(silver nano wire), 그래핀(graphene) 또는 그래파이트(graphite) 중 적어도 하나를 포함할 수 있다.In the step of providing a conductive wire on one surface of the substrate (S110), the conductive wire 22 is spray-coated on one surface of the substrate 130 made of a silicon (Si) wafer to form a conductive wire 22 on one surface of the substrate 130. ) can be provided. Here, the conductive wire 22 provided on the substrate 130 may include at least one of CNT, silver nano wire, graphene, or graphite.
기판의 일면에 전도성 와이어를 제공하는 단계(S110)는 전도성 와이어(22)를 스프레이 코팅하기 전 실리콘 웨이퍼를 클리닝하여 전처리된 기판(130)을 마련하는 단계(S111)를 더 포함할 수 있다. The step of providing a conductive wire on one surface of the substrate (S110) may further include a step of preparing a pretreated substrate 130 by cleaning the silicon wafer before spray-coating the conductive wire 22 (S111).
기재층을 형성하는 단계(S120)에서는 기판(130)의 일면에 액상의 고분자 재료를 코팅하여, 기판(130)과의 사이에 전도성 와이어(22)가 개재된 기재층(110)을 형성할 수 있다. 여기서, 전도성 와이어(22)는 나노(nm) 크기의 직경을 갖도록 제공될 수 있으며, 고분자 재료는 PDMS(Polydimethylsiloxane), PI(Polyimide), PET(Polyehtylene-terephthalate), PES(Polyether sulfone), PEN(Polyethylene naphthalate), PMMA(PolymethymethAcrylate), PC(Polycarbonate), Ecoflex 중 선택된 하나를 포함할 수 있다. In the step of forming the substrate layer (S120), a liquid polymer material is coated on one surface of the substrate 130 to form the substrate layer 110 with the conductive wire 22 interposed between the substrate 130 and the substrate 130. there is. Here, the conductive wire 22 may be provided to have a nano-sized diameter, and the polymer material may include polydimethylsiloxane (PDMS), polyimide (PI), polyehtylene-terephthalate (PET), polyether sulfone (PES), and PEN ( polyethylene naphthalate), PMMA (PolymethymethAcrylate), PC (Polycarbonate), and Ecoflex.
예를 들어, 기재층을 형성하는 단계(S120)는 전도성 와이어(22)가 구비된 기판(130)에 액상의 고분자 재료를 스핀 코팅하는 과정과, 고분자 재료를 경화시켜 일면에 전도성 와이어(22)의 일부가 고정된 기재층(110)을 획득하는 과정을 포함할 수 있다. 여기서, 기재층(110)으로서 액상의 고분자 재료를 사용하는 이유는 전도성 와이어(22)의 일부가 고분자 재료에 삽입된 상태로 경화되도록 하여, 기판(130)으로부터 기재층(110)을 분리하였을 때 기재층(110)에서 전도성 와이어(22)가 이탈하지 않도록 하기 위함이다. For example, the step of forming the substrate layer (S120) is a process of spin-coating a liquid polymer material on the substrate 130 provided with the conductive wire 22, and curing the polymer material to form the conductive wire 22 on one surface. A part of may include a process of obtaining the fixed base layer 110. Here, the reason for using the liquid polymer material as the base layer 110 is to harden a part of the conductive wire 22 while being inserted into the polymer material, so that when the base layer 110 is separated from the substrate 130 This is to prevent the conductive wire 22 from escaping from the base layer 110 .
기판으로부터 기재층을 분리하는 단계(S130)에서는 물리적 방법 또는 화학적 방법을 이용하여 기판(130)으로부터 일면에 전도성 와이어(22)가 고정된 기재층(110)을 분리할 수 있다. 여기서, 기판으로부터 기재층을 분리하는 단계(S130)는 기판(130)으로부터 기재층(110)을 분리시킨 이후, 기재층(110)을 원하는 크기 및 형상으로 커팅하는 단계(S131)를 포함할 수 있다. 이에 따라, 원하는 크기 및 형상으로 이루어진 기재층(110)을 획득할 수 있으며, 이렇게 획득한 기재층(110)의 일면에는 전도성 와이어(22)가 고정되어 있을 수 있다. In the step of separating the substrate layer from the substrate ( S130 ), the substrate layer 110 having the conductive wire 22 fixed to one surface may be separated from the substrate 130 using a physical method or a chemical method. Here, the step of separating the base layer from the substrate (S130) may include separating the base layer 110 from the substrate 130 and then cutting the base layer 110 into a desired size and shape (S131). there is. Accordingly, it is possible to obtain a base layer 110 having a desired size and shape, and the conductive wire 22 may be fixed to one surface of the base layer 110 thus obtained.
전도성 와이어 상에 금속 나노입자를 성장시키는 단계(S140)에서는 도 6에 도시된 바와 같이 금속이온이 포함된 용액에 기재층(110)을 침지한 후, 전도성 와이어(22)를 적극으로 이용한 전기화학적 증착 공정을 통해 전도성 와이어(22) 상에 금속 나노입자(21)를 성장시킬 수 있다. 여기서, 전기화학적 증착 공정은 전기증착법, 전기도금법, 전기이동법(electrophorethic deposition), 무전해도금법 중 적어도 하나를 포함할 수 있다. In the step of growing metal nanoparticles on the conductive wire (S140), as shown in FIG. 6, after immersing the substrate layer 110 in a solution containing metal ions, an electrochemical process using the conductive wire 22 is actively performed. Metal nanoparticles 21 may be grown on the conductive wire 22 through a deposition process. Here, the electrochemical deposition process may include at least one of an electrodeposition method, an electroplating method, an electrophorethic deposition method, and an electroless plating method.
한편, 단위면적당 금속 나노입자(21)의 밀도가 클수록 민감도 및 센싱 범위를 향상시킬 수 있다. 즉, CNT 상에서 성장되는 금속 나노입자(21)의 크기가 작고, 단위 면적당 분포(개수)가 많을수록 미세한 진동에도 반응하여 민감도 및 센싱 범위를 향상시킬 수 있다. 이러한 금속 나노입자(21)의 밀도 제어는 전도성 와이어 상에 금속 나노입자를 성장시키는 단계(S140)에서 전기화학적 증착 공정의 시간과 전기화학적 증착 공정시 인가되는 전기장의 크기 중 적어도 하나를 제어하여 이루어질 수 있다. Meanwhile, as the density of the metal nanoparticles 21 per unit area increases, sensitivity and sensing range can be improved. That is, as the size of the metal nanoparticles 21 grown on the CNT is small and the distribution (number) per unit area increases, sensitivity and sensing range can be improved by responding to minute vibrations. The density control of the metal nanoparticles 21 is achieved by controlling at least one of the time of the electrochemical deposition process and the magnitude of the electric field applied during the electrochemical deposition process in the step of growing the metal nanoparticles on the conductive wire (S140). can
기재층 상에 전도성 박막층을 형성하는 단계(S140)에서는 금속 나노입자(21)의 성장을 이용하여 기재층(110) 상에 불규칙한 곡선 패턴의 크랙(120a)이 구비된 전도성 박막층(120)을 형성할 수 있다. 즉, 전기도금을 이용한 금속 나노입자(21)의 성장을 통해 기재층(110) 상에 아일랜드부(121)와 크랙(120a)을 포함하는 전도성 박막층(120)을 형성함으로써, 변형률 측정 센서(100)를 획득할 수 있다. In the step of forming the conductive thin film layer on the substrate layer (S140), the conductive thin film layer 120 having irregular curved patterns of cracks 120a is formed on the substrate layer 110 by using the growth of metal nanoparticles 21. can do. That is, the conductive thin film layer 120 including the island portion 121 and the crack 120a is formed on the substrate layer 110 through the growth of metal nanoparticles 21 using electroplating, so that the strain measurement sensor 100 ) can be obtained.
예를 들어, 금(Au) 이온이 포함된 용액에 기재층(110)을 침지시킨 후 전기도금을 수행하면, 기재층(110)의 일면에 구비된 CNT가 전극으로 활용되어 CNT 상에서는 금(Au) 나노입자가 성장하게 된다. 따라서, 이를 이용하면 CNT 상에서 금 나노입자가 성장하면서 주위의 금 나노입자들과 결합하여 아일랜드부(121)를 형성하게 되고, CNT의 내부에 형성된 공간(22a)으로 인해 금(Au) 나노입자들이 미처 결합하지 못한 경우에는 이 공간(22a)이 크랙(120a)을 형성하게 된다. 이때, 실타래 형상의 CNT 구조로 인하여 공간(22a)은 곡선 형상을 이루게 되고, 이로 인해 크랙(120a) 또한 곡선 형상으로 형성될 수 있다. For example, when electroplating is performed after immersing the substrate layer 110 in a solution containing gold (Au) ions, CNT provided on one side of the substrate layer 110 is used as an electrode, and gold (Au) on the CNT ) nanoparticles grow. Therefore, if this is used, gold nanoparticles grow on the CNT and combine with the surrounding gold nanoparticles to form the island portion 121, and the space 22a formed inside the CNT causes the gold (Au) nanoparticles to grow. If not yet combined, this space 22a forms a crack 120a. At this time, due to the skein-shaped CNT structure, the space 22a is formed in a curved shape, and thus, the crack 120a may also be formed in a curved shape.
이와 같이, 아일랜드부(121) 사이에 곡선 형상의 크랙(120a)이 제공됨에 따라 직선의 크랙(20a)이 형성된 종래의 변형률 측정 센서(1)에 비하여 보다 넓은 분포를 갖는 크랙(120a)을 형성할 수 있게 되며, 크랙(120a)의 분포 증가로 인하여 중간층 없이도 변형률 측정 센서(100)의 민감도 및 센싱 범위를 향상시킬 수 있게 된다. As such, as the curved cracks 120a are provided between the island portions 121, the cracks 120a having a wider distribution are formed than in the conventional strain measuring sensor 1 in which straight cracks 20a are formed. And, due to the increased distribution of cracks 120a, it is possible to improve the sensitivity and sensing range of the strain measuring sensor 100 without an intermediate layer.
한편, 기판(130) 상에 제공되는 전도성 와이어(22)의 양에 따라 크랙(120a)의 면적의 제어가 가능해질 수 있다. 예를 들어, 동일한 기판(130) 상에 제공되는 전도성 와이어(22)의 양이 증가할수록 전도성 와이어(22) 사이의 공간(22a)은 더욱 치밀해지고, 이는 크랙(120a)의 분포(수)를 증가시킬 수 있다. 반대로 전도성 와이어(22)의 양이 감소할수록 전도성 와이어(22) 사이의 공간(22a)은 엉성해지고, 이는 크랙(120a)의 분포(수)를 감소시킬 수 있다. 즉, 전도성 와이어(22)의 양을 제어하는 경우 크랙(120a)의 분포를 증가시킬 수 있게 된다. 그러나, 전도성 와이어(22)를 필요 이상으로 많이 제공하는 경우, 전도성 와이어(22)에 내에 형성된 공간(22a)이 너무 촘촘하여 금속 나노입자(21)의 성장시 주변의 금속 나노입자(21)들과 모두 결합하여 크랙(120a)을 형성하지 못할 수도 있으므로 이러한 점을 고려하여 전도성 와이어(22)의 양을 적절히 제어하는 것이 중요하다. Meanwhile, the area of the crack 120a may be controlled according to the amount of the conductive wire 22 provided on the substrate 130 . For example, as the amount of conductive wires 22 provided on the same substrate 130 increases, the space 22a between the conductive wires 22 becomes more dense, which reduces the distribution (number) of cracks 120a. can increase Conversely, as the amount of the conductive wires 22 decreases, the space 22a between the conductive wires 22 becomes coarser, which may reduce the distribution (number) of cracks 120a. That is, when the amount of conductive wire 22 is controlled, the distribution of cracks 120a can be increased. However, when more conductive wires 22 are provided than necessary, the spaces 22a formed in the conductive wires 22 are too dense, so that when the metal nanoparticles 21 grow, the surrounding metal nanoparticles 21 Since cracks 120a may not be formed by combining both, it is important to properly control the amount of the conductive wire 22 in consideration of this point.
도 8(a)는 종래의 제조방법에 의해 제조된 변형률 측정 센서의 SEM 이미지이고, 도 8(b)는 도 4의 제조방법에 의해 제조된 변형률 측정 센서의 SEM 이미지이다.8(a) is a SEM image of a strain measuring sensor manufactured by a conventional manufacturing method, and FIG. 8(b) is a SEM image of a strain measuring sensor manufactured by the manufacturing method of FIG. 4 .
도 8(a)는 스퍼터링 장치를 이용하여 제조된 종래의 변형률 측정 센서(1)로서, 크랙이 일방향으로 형성된 것을 확인할 수 있다. 반면, 도 8(b)에 도시된 바와 같이 본 발명에 따른 변형률 측정 센서(100)의 경우 크랙이 곡선 형상으로 형성된 것을 확인할 수 있다. 뿐만 아니라, 본 발명에 따른 변형률 측정 센서(100)의 경우 단위 면적당 크랙의 분포가 더 많이 형성되어 있기 때문에 종래의 변형률 측정 센서(1)에 비하여 더 넓은 센싱 범위를 가질 수 있게 된다. 8(a) is a conventional strain measuring sensor 1 manufactured using a sputtering device, and it can be seen that cracks are formed in one direction. On the other hand, in the case of the strain measuring sensor 100 according to the present invention, as shown in FIG. 8(b), it can be confirmed that the crack is formed in a curved shape. In addition, in the case of the strain measuring sensor 100 according to the present invention, since the distribution of cracks per unit area is more formed, it can have a wider sensing range than the conventional strain measuring sensor 1.
도 9는 본 발명에 따른 변형률 측정 센서가 웨어러블 디바디스에 적용된 예를 도시한 도면이고, 도 10은 본 발명에 따른 변형률 측정 센서가 음향 인지 장치에 적용된 예를 도시한 도면이다. 9 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to wearable devices, and FIG. 10 is a diagram showing an example in which the strain measuring sensor according to the present invention is applied to a sound recognition device.
도 9를 참조하면, 본 발명에 따른 변형률 측정 센서(100)는 마스크나 장갑 등과 같은 웨어러블 장치에 설치되어 사용자의 기침이나 움직임 등에 의한 신호를 측정할 수 있다. 뿐만 아니라, 도 10에 도시된 바와 같이 음파에 의한 진동을 측정함으로써 음향 인지 장치로 사용될 수도 있다. Referring to FIG. 9 , the strain measurement sensor 100 according to the present invention may be installed in a wearable device such as a mask or glove to measure a signal caused by a user's cough or movement. In addition, as shown in FIG. 10 , it may be used as an acoustic perception device by measuring vibrations caused by sound waves.
전술한 바와 같이, 본 발명에 따른 변형률 측정 센서(100)의 경우 전기도금과 같이 간단한 방법으로 기재층(110) 상에 크랙(120a)이 구비된 전도성 박막층(120)을 형성할 수 있기 때문에, 종래의 스퍼터링 장치를 이용한 전도성 박막층(20)의 제조 공정에 비하여 제조 시간을 단축할 수 있으며, 고액의 장비를 필요로 하지 않아 제조 비용을 감소시킬 수 있다. As described above, in the case of the strain measuring sensor 100 according to the present invention, since the conductive thin film layer 120 having the crack 120a can be formed on the substrate layer 110 by a simple method such as electroplating, Compared to the manufacturing process of the conductive thin film layer 20 using a conventional sputtering device, the manufacturing time can be shortened, and manufacturing cost can be reduced because expensive equipment is not required.
또한, 기재층(110) 상에 증착 형성된 전도성 박막층(120)이 곡선의 패턴을 갖는 크랙(120a)을 구비함에 따라, 기재층(110)과 박막층(120) 사이에 중간층을 구비하지 않고도 변형률 측정 센서(100)의 민감도 및 센싱 범위를 향상시킬 수 있다.In addition, as the conductive thin film layer 120 deposited on the substrate layer 110 has a crack 120a having a curved pattern, the strain is measured without providing an intermediate layer between the substrate layer 110 and the thin film layer 120. The sensitivity and sensing range of the sensor 100 may be improved.
또한, 전기도금시 전도성 와이어(22)를 전극으로 이용하여 전도성 와이어(22) 상에서 금속 나노입자(21)를 성장시키는 방법으로 전도성 박막층(120)을 제조하기 때문에, 전기도금의 시간 및 인가되는 전기장의 크기를 제어하는 경우 금속 나노입자(21)의 크기 및 밀도를 제어할 수 있다. 즉, 금속 나노입자(21)의 크기가 작을수록 센싱 범위가 증가하기 때문에 전기도금시 시간 및 전기장의 크기를 적절히 제어하는 경우, 센싱 범위가 넓은 변형률 측정 센서(100)를 제조할 수 있다. In addition, since the conductive thin film layer 120 is prepared by growing metal nanoparticles 21 on the conductive wire 22 using the conductive wire 22 as an electrode during electroplating, the time of electroplating and the applied electric field When controlling the size of the size and density of the metal nanoparticles 21 can be controlled. That is, since the sensing range increases as the size of the metal nanoparticles 21 decreases, the strain measurement sensor 100 having a wide sensing range can be manufactured when the time and the size of the electric field are appropriately controlled during electroplating.
아울러, 전도성 박막층(120)의 전기적 변화를 측정하여 변형률 측정 센서(100)에 가해지는 외력을 측정할 수 있기 때문에, 이를 웨어러블 디바이스에 적용하여 생체 신호나 움직임 등을 측정할 수 있다. In addition, since the external force applied to the strain measuring sensor 100 can be measured by measuring the electrical change of the conductive thin film layer 120, it can be applied to a wearable device to measure a biosignal or movement.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.The present invention has been described with reference to an embodiment shown in the accompanying drawings, but this is only exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. You will be able to. Therefore, the true protection scope of the present invention should be defined only by the appended claims.
본문에 포함되어 있음included in the text

Claims (13)

  1. 유연한 재질로 형성된 기재층; 및 A base layer formed of a flexible material; and
    상기 기재층의 일면에 제공되고, 불규칙한 직선 또는 불규칙한 곡선 중 적어도 어느 하나의 패턴을 갖는 크랙이 형성된 전도성 박막층;a conductive thin film layer provided on one side of the substrate layer and formed with cracks having at least one pattern of irregular straight lines or irregular curves;
    을 포함하는 변형률 측정 센서. Strain measurement sensor comprising a.
  2. 제1항에 있어서, According to claim 1,
    상기 전도성 박막층은 상기 기재층의 일면에 코팅된 전도성 와이어 상에 금속 나노입자를 성장시켜 형성된 복수의 아일랜드부를 포함하고, 상기 크랙은 상기 전도성 와이어 사이의 공간에 의해 상기 아일랜드부들의 사이에 형성되는 변형률 측정 센서. The conductive thin film layer includes a plurality of island portions formed by growing metal nanoparticles on a conductive wire coated on one surface of the base layer, and the crack is formed between the island portions by a space between the conductive wires. measuring sensor.
  3. 제2항에 있어서, According to claim 2,
    상기 전도성 와이어는 CNT, 실버나노와이어(silver nano wire), 그래핀(graphene) 또는 그래파이트(graphite) 중 적어도 하나를 포함하는 변형률 측정 센서.The conductive wire is a strain measuring sensor comprising at least one of CNT, silver nano wire, graphene or graphite.
  4. 제2항에 있어서, According to claim 2,
    상기 기재층에 외력이 가해지는 경우 상기 크랙의 면적이 넓어지거나 좁아져 상기 아일랜드부들 사이의 접촉면적이 변화하게 되고, 상기 접촉면적의 변화에 따른 상기 아일랜드부의 전기적 변화를 측정하여 상기 기재층에 가해지는 외력을 측정하는 변형률 측정 센서.When an external force is applied to the base layer, the area of the crack widens or narrows to change the contact area between the island parts, and the electrical change of the island part according to the change in the contact area is measured and applied to the base layer Strain measurement sensor that measures the external force.
  5. 제1항에 있어서, According to claim 1,
    상기 전도성 박막층은 전기증착법, 전기도금법, 전기이동법(electrophorethic deposition), 무전해도금법 중 적어도 하나를 포함하는 전기화학적 증착 공정을 이용하여 상기 기재층 상에 증착 형성되는 변형률 측정 센서. The conductive thin film layer is deposited and formed on the base layer using an electrochemical deposition process including at least one of an electroporation method, an electroplating method, an electrophorethic deposition method, and an electroless plating method. Strain measuring sensor.
  6. 기판의 일면에 전도성 와이어를 제공하는 단계; providing a conductive wire on one side of the substrate;
    상기 기판의 일면에 액상의 고분자 재료를 코팅하여, 상기 기판과의 사이에 상기 전도성 와이어가 개재된 기재층을 형성하는 단계; coating one surface of the substrate with a liquid polymer material to form a substrate layer with the conductive wire interposed therebetween;
    상기 기판으로부터 일면에 상기 전도성 와이어가 고정된 기재층을 분리하는 단계; Separating the base layer on which the conductive wire is fixed on one side of the substrate from the substrate;
    금속이온이 포함된 용액에 상기 기재층을 침지한 후, 상기 전도성 와이어를 적극으로 이용한 전기화학적 증착 공정을 통해 상기 전도성 와이어 상에 금속 나노입자를 성장시키는 단계; 및 growing metal nanoparticles on the conductive wire through an electrochemical deposition process actively using the conductive wire after immersing the substrate layer in a solution containing metal ions; and
    상기 금속 나노입자의 성장을 이용하여 상기 기재층 상에 불규칙한 직선 또는 불규칙한 곡선 중 적어도 어느 한 패턴의 크랙이 구비된 전도성 박막층을 형성하는 단계; forming a conductive thin film layer having at least one pattern of cracks among irregular straight lines and irregular curves on the base layer by using the growth of the metal nanoparticles;
    를 포함하는 변형률 측정 센서의 제조방법.Method of manufacturing a strain measuring sensor comprising a.
  7. 제6항에 있어서, According to claim 6,
    상기 기재층을 형성하는 단계는, Forming the base layer,
    상기 전도성 와이어가 구비된 상기 기판에 상기 액상의 고분자 재료를 스핀 코팅하는 과정과, spin-coating the liquid polymer material on the substrate provided with the conductive wire;
    상기 고분자 재료를 경화시켜 일면에 상기 전도성 와이어의 일부가 고정된 기재층을 획득하는 과정을 포함하는 포함하는 변형률 측정 센서의 제조방법. A method of manufacturing a strain measuring sensor comprising a step of curing the polymer material to obtain a substrate layer on one surface of which a portion of the conductive wire is fixed.
  8. 제6항에 있어서, According to claim 6,
    상기 기판으로부터 기재층을 분리하는 단계는, Separating the substrate layer from the substrate,
    상기 기판으로부터 상기 기재층을 분리시킨 이후, 상기 기재층을 원하는 크기 및 형상으로 커팅하는 단계를 더 포함하는 변형률 측정 센서의 제조방법. After separating the base layer from the substrate, the manufacturing method of the strain measuring sensor further comprising the step of cutting the base layer into a desired size and shape.
  9. 제6항에 있어서, According to claim 6,
    상기 전도성 와이어 상에 금속 나노입자를 성장시키는 단계는,Growing metal nanoparticles on the conductive wire,
    상기 전기화학적 증착 공정의 시간, 전기장의 크기 중 적어도 하나를 제어하여 상기 금속 나노입자의 크기와 밀도를 제어하는 변형률 측정 센서의 제조방법. A method of manufacturing a strain measuring sensor in which the size and density of the metal nanoparticles are controlled by controlling at least one of the time of the electrochemical deposition process and the size of the electric field.
  10. 제6항에 있어서, According to claim 6,
    상기 기판에 제공되는 상기 전도성 와이어의 양에 따라 상기 크랙의 분포의 제어가 가능한 변형률 측정 센서의 제조방법.A method of manufacturing a strain measuring sensor capable of controlling the distribution of the cracks according to the amount of the conductive wire provided on the substrate.
  11. 제6항에 있어서, According to claim 6,
    상기 전기화학적 증착 공정은 전기증착법, 전기도금법, 전기이동법(electrophorethic deposition), 무전해도금법 중 적어도 하나를 포함하는 변형률 측정 센서의 제조방법. The method of manufacturing a strain measuring sensor, wherein the electrochemical deposition process includes at least one of an electrodeposition method, an electroplating method, an electrophorethic deposition method, and an electroless plating method.
  12. 제6항에 있어서, According to claim 6,
    상기 고분자 재료는 PDMS(Polydimethylsiloxane), PI(Polyimide), PET(Polyehtylene-terephthalate), PES(Polyether sulfone), PEN(Polyethylene naphthalate), PMMA(PolymethymethAcrylate), PC(Polycarbonate), Ecoflex 중 선택된 하나를 포함하는 변형률 측정 센서의 제조방법.The polymer material includes one selected from polydimethylsiloxane (PDMS), polyimide (PI), polyehtylene-terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polymethymethacrylate (PMMA), polycarbonate (PC), and Ecoflex. Manufacturing method of strain measuring sensor.
  13. 제6항에 있어서, According to claim 6,
    상기 전도성 와이어는 CNT, 실버나노와이어(silver nano wire), 그래핀(graphene) 또는 그래파이트(graphite) 중 적어도 하나를 포함하는 변형률 측정 센서의 제조방법. The conductive wire is a method of manufacturing a strain measuring sensor comprising at least one of CNT, silver nano wire, graphene or graphite.
PCT/KR2021/012819 2021-07-05 2021-09-17 Strain measuring sensor and manufacturing method therefor WO2023282386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0087605 2021-07-05
KR1020210087605A KR20230006966A (en) 2021-07-05 2021-07-05 Strain sensor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2023282386A1 true WO2023282386A1 (en) 2023-01-12

Family

ID=84801823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012819 WO2023282386A1 (en) 2021-07-05 2021-09-17 Strain measuring sensor and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20230006966A (en)
WO (1) WO2023282386A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191177A1 (en) * 2005-05-25 2008-08-14 Royal Melbourne Institute Of Technology Polymeric Strain Sensor
KR20170117000A (en) * 2013-12-03 2017-10-20 재단법인 멀티스케일 에너지시스템 연구단 Highly sensitive sensor comprising cracked conductive thin film and process for preparing same
KR101946150B1 (en) * 2017-05-02 2019-02-08 포항공과대학교 산학협력단 The high-sensitive, high strain rate measuring sensor comprising nano-crack and the manufacturing method for the same
KR102094134B1 (en) * 2019-02-12 2020-03-27 고려대학교 산학협력단 Method for manufacturing strain sensor and manufacturing strain sensor through the same
KR20210026510A (en) * 2019-08-30 2021-03-10 한국전력공사 Strain sensor and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102080855B1 (en) 2018-05-14 2020-02-24 재단법인 멀티스케일 에너지시스템 연구단 Crack-based high sensitivity strain sensor with diverse metal films by inserting an inter-layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080191177A1 (en) * 2005-05-25 2008-08-14 Royal Melbourne Institute Of Technology Polymeric Strain Sensor
KR20170117000A (en) * 2013-12-03 2017-10-20 재단법인 멀티스케일 에너지시스템 연구단 Highly sensitive sensor comprising cracked conductive thin film and process for preparing same
KR101946150B1 (en) * 2017-05-02 2019-02-08 포항공과대학교 산학협력단 The high-sensitive, high strain rate measuring sensor comprising nano-crack and the manufacturing method for the same
KR102094134B1 (en) * 2019-02-12 2020-03-27 고려대학교 산학협력단 Method for manufacturing strain sensor and manufacturing strain sensor through the same
KR20210026510A (en) * 2019-08-30 2021-03-10 한국전력공사 Strain sensor and method for manufacturing the same

Also Published As

Publication number Publication date
KR20230006966A (en) 2023-01-12

Similar Documents

Publication Publication Date Title
Jeong et al. Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap
You et al. A wearable piezocapacitive pressure sensor with a single layer of silver nanowire-based elastomeric composite electrodes
WO2015084061A1 (en) High-sensitivity sensor comprising conductive thin film containing cracks and method for manufacturing same
WO2014208883A1 (en) Strain sensor manufacturing method, strain sensor, and motion sensing device using strain sensor
WO2016186281A1 (en) Method for manufacturing strain sensor, strain sensor, and wearable device including same
WO2016153155A1 (en) Biomimetic based pressure sensor manufacturing method and pressure sensor manufactured thereby
Alizadehyazdi et al. An electrostatic/gecko-inspired adhesives soft robotic gripper
WO2017061799A1 (en) Pressure-sensing chair
Zhang et al. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films
WO2016105031A1 (en) Electrical test socket and method for manufacturing conductive particle for electrical test socket
KR20180061003A (en) Conductive flexible device
CN109099832A (en) Strain transducer and its manufacturing method
CN110701992B (en) Method for manufacturing capacitive strain sensor by taking sandpaper surface microstructure as template
WO2023282386A1 (en) Strain measuring sensor and manufacturing method therefor
WO2012165839A9 (en) Reversible electrical connector using interlocking of a fine cilium, a multi functional sensor using same, and method of manufacturing same
WO2011105664A1 (en) Manufacturing method of microelectrode array and connector connection method using the same
WO2017209435A1 (en) High-sensitivity sensor having crack-containing transparent conductive thin film and method for preparing same
CN111766001A (en) Micro-wrinkle gold thin film flexible crack sensor with controllable scale
WO2018101724A1 (en) Conductive flexible element
US20180113152A1 (en) Anisotropic conductive sheet, electrical inspection head, electrical inspection device, and method for manufacturing an anisotropic conductive sheet
KR102094134B1 (en) Method for manufacturing strain sensor and manufacturing strain sensor through the same
Oh et al. Highly sensitive metal-grid strain sensors via water-based solution processing
WO2014112766A1 (en) Transparent electrode including nano-material layer, method for fabricating same, and optical element device, display device and touch panel device including same
CN111766000A (en) Gold thin film flexible crack sensor based on micro-scale wrinkles
WO2014081109A1 (en) Apparatus and method for measuring mechanical properties of freestanding nano thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE