WO2018101724A1 - Conductive flexible element - Google Patents

Conductive flexible element Download PDF

Info

Publication number
WO2018101724A1
WO2018101724A1 PCT/KR2017/013767 KR2017013767W WO2018101724A1 WO 2018101724 A1 WO2018101724 A1 WO 2018101724A1 KR 2017013767 W KR2017013767 W KR 2017013767W WO 2018101724 A1 WO2018101724 A1 WO 2018101724A1
Authority
WO
WIPO (PCT)
Prior art keywords
poisson
oxtic
ratio
conductive flexible
present
Prior art date
Application number
PCT/KR2017/013767
Other languages
French (fr)
Korean (ko)
Inventor
주영창
이영주
임승민
양정권
최광묵
진민기
이정호
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170155974A external-priority patent/KR102088864B1/en
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2018101724A1 publication Critical patent/WO2018101724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a conductive flexible element. More specifically, the present invention relates to a conductive flexible device in which the Poisson's ratio of the substrate portion and the electrode portion is adjusted to improve tensile properties, elasticity and reliability.
  • the conductive flexible element may be applied to a flexible device, a wearable device, or the like, and furthermore, may be used as a sensor, an electrode, or the like, attached to the skin or in the human body.
  • the pattern of the metal electrode is made into a structure suitable for flexible characteristics such as wavy and horse-shoe.
  • materials such as conductive polymers, CNTs, and graphene having excellent flexibility are employed.
  • conventional conductive flexible devices are usually implemented by forming metal electrodes in a polymer material.
  • the conductive flexible device thus implemented may be exposed to external forces such as pulling and folding.
  • defects such as cracking and buckling may be caused by the difference in physical properties between the metal and the polymer material. There was a problem that occurred.
  • Elastic matching among the physical properties between the metal and the polymer material in the conductive flexible device becomes important. This is because when exposed to external forces such as pulling and folding, defects are generated at the interface because the metal and the polymer have different stretching properties.
  • the Poisson's ratio which means the ratio between the transverse strain and the longitudinal strain due to the vertically applied stress, can be considered as a value reflecting this stretching property.
  • 1 is a graph showing Young's modulus and Poisson's ratio for various materials.
  • 2 is a schematic diagram showing elastic mismatching between a metal and a polymeric material.
  • the Poisson's ratio of the elastomer is about 0.5
  • the Poisson's ratio of the metal corresponds to about 3.5.
  • an elastic polymer may be used as a support substrate, and a conductive thin film may be manufactured by bonding a metal thin film to an upper portion thereof.
  • the elastic polymer substrate and the metal thin film may have different transverse and vertical strains according to the Poisson's ratio.
  • (c) of FIG. 2 when a mismatch due to the difference of Poisson's ratio accumulates at the interface between the polymer substrate and the metal thin film, the interface adhesion is weakened or the metal thin film is damaged, thereby reducing the reliability of the flexible device. May result.
  • the present invention has been made to solve various problems including the above problems, and an object of the present invention is to provide a conductive flexible device capable of reducing the Poisson's ratio difference between the substrate material and the electrode material of the conductive flexible device.
  • an object of the present invention is to provide a conductive flexible device having improved tensile properties, elasticity and reliability.
  • a substrate portion for solving the above problems, a substrate portion; And an electrode part disposed on at least one surface of the substrate part, wherein the substrate part is provided with a conductive flexible element into which an aoxetic structure is inserted.
  • the substrate portion may be made of an elastic material.
  • the Poisson's ratio of the substrate may be 0.47 to 0.52.
  • the electrode portion may be made of a metal material.
  • the electrode unit may include at least one of Au, Ag, Al, Cu, Ti.
  • the Poisson's ratio of the electrode part may be 0.31 to 0.41.
  • the oxetic structure may have a Poisson's ratio having a negative value.
  • the oxtic structure may be made of an elastic material.
  • an oxtic structure may be inserted into the substrate to reduce the Poisson's ratio.
  • 1 is a graph showing Young's modulus and Poisson's ratio for various materials.
  • FIG. 2 is a schematic diagram showing elastic mismatching between a metal and a polymeric material.
  • 3 is a diagram illustrating non-auxetic and oxetic.
  • FIG. 4 is a view showing an oxtic structure according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a manufacturing process of a conductive flexible device according to an embodiment of the present invention.
  • 6 to 8 illustrate a process and results of measuring Poisson's ratio of the PDMS to which the oxtic structure according to the embodiment of the present invention is coupled and the PDMS according to the comparative example.
  • FIG 9 shows a conductive flexible device according to an embodiment of the present invention and a conductive flexible device according to a comparative example.
  • FIG. 10 is a graph showing the tensile fatigue properties with or without the oxtic structure according to an embodiment of the present invention.
  • 3 is a diagram illustrating non-auxetic and oxetic.
  • the Poisson's ratio which means the ratio between the transverse strain and the longitudinal strain due to the vertical stress occurring inside the material, is positive.
  • auxetic materials may extend in a direction perpendicular to the corresponding direction when stress is applied to the material.
  • Poisson's ratio has a negative number.
  • FIG. 4 shows an oxtic structure 30 according to an embodiment of the invention.
  • the conductive flexible device 1 of the present invention may be implemented to include an oxtic structure 30. While the prior arts focus on the structure of the electrode, the material of the electrode and the like, the conductive flexible element 1 of the present invention is characterized by focusing on adjusting the structure of the substrate portion 10. The conductive flexible device 1 having the oxtic structure 30 having the oxtic structure 30 inserted into the substrate 10 may be implemented.
  • the oxtic structure 30 may have a unit border in which a pair of triangles face each other, and vertex portions of the triangles overlap each other and are integrally connected.
  • a unit border may have a shape in which the unit border is repeatedly arranged in the horizontal direction and the vertical direction.
  • the oxtic structure 30 is not necessarily limited to this shape, and as long as the Poisson's ratio has a negative number, the oxtic structure 30 can be employed as the oxetic structure 30 of the present invention.
  • a stress when a stress is applied to the oxtic structure 30, it may be extended 30 ′ in both the direction in which the stress is applied and the direction perpendicular thereto. That is, it may be extended 30 'in the direction in which the area occupied by the oxtic structure 30 becomes larger.
  • the oxtic structure 30 is preferably made of an elastic material so that when the stress is applied and released, the oxtic structure 30 'can be restored to its original form 30.
  • FIG. 4C illustrates an embodiment in which the oxtic structure 30 is formed of an elastic silicone rubber.
  • FIG 5 is a schematic view showing a manufacturing process of the conductive flexible device 1 according to an embodiment of the present invention.
  • the substrate 10 and the oxtic structure 30 are prepared.
  • the substrate unit 10 is preferably made of an elastic material.
  • the elastic material may be composed of any one material selected from the group of elastomers of FIG. 1.
  • the elastic material may have a Poisson's ratio of about 0.47 to 0.52.
  • PDMS polydimethylsiloxane
  • the oxtic structure 30 may have a structure and a material described with reference to FIG. 4.
  • the oxtic structure 30 may be inserted into the substrate portion 10.
  • the insertion of the oxtic structure 30 means that the substrate portion 10 and the oxtic structure 30 are manufactured, respectively, and then inserted into the substrate portion 10 by inserting the oxtic structure 30 into the substrate portion 10. Rather, it should be understood to include forming the oxtic structure 30 to be embedded in the substrate 10 in the process of forming the substrate 10.
  • the glass and the oxtic structure 30 are coated with a solution mixed with a PDMS base and a curing agent 10: 1 on the glass, and then cured to form a PDMS substrate ( 10) and the oxtic structure 30 may be integrally formed.
  • the electrode part 20 may be formed on at least one surface of the substrate part 10.
  • the electrode unit 20 may be formed by attaching a metal foil, or using a known thin film forming method such as printing, plating, physical vapor deposition (PVD), chemical vapor deposition (CVD), etc. without limitation. Can be.
  • the electrode unit 20 is preferably in the form of a wire having an electrode pattern such as a wave, horse-shoe, etc., so as to be suitable for the flexible property, but is not necessarily limited thereto.
  • the material of the electrode unit 20 may be made of a material selected from the metal group of FIG. 1, that is, Au, Ag, Al, Cu, Ti, or the like.
  • the metal material may have a Poisson's ratio of about 0.31 to 0.41.
  • the conductive flexible device 1 of the present invention is characterized in that it is adjusted to have a Poisson's ratio lower than the original Poisson's ratio of the substrate portion 10 as the oxtic structure 30 is inserted into the substrate portion 10.
  • the PDMS substrate portion 10 has a Poisson's ratio of about 0.5
  • the Cu electrode portion 20 has a Poisson's ratio of about 0.34.
  • the Poisson's ratio of the PDMS substrate 10 is lower than 0.5. That is, when the stress is applied to the PDMS substrate portion 10, it should be elongated in the stress application direction and reduced in the direction perpendicular to the stress application direction. It is also extended in the direction perpendicular to the direction, it can be prevented to some extent to shrink the PDMS substrate portion 10 in the vertical direction. As a result, the Poisson's ratio of the PDMS substrate portion 10 into which the oxtic structure 30 is inserted may be reduced.
  • the Poisson's ratio of the PDMS substrate portion 10 into which the oxtic structure 30 is inserted is reduced to a degree similar to that of the Cu electrode portion 20, it acts on the interface between the PDMS substrate portion 10 and the Cu electrode portion 20.
  • the stress can be reduced, and the occurrence of defects such as cracks and buckling in the electrode portion 20 can be reduced.
  • 6 to 8 illustrate a process and results of measuring Poisson's ratio of the PDMS to which the oxtic structure according to the embodiment of the present invention is coupled and the PDMS according to the comparative example. 6 to 8, a change in Poisson's ratio of the substrate part 10 according to whether the oxtic structure 30 is inserted without looking at the electrode part 20 will be described.
  • a PDMS substrate part having a thickness of 2 mm was manufactured according to a comparative example [FIG. 6A] (hereinafter, a “comparative sample”), and according to the example [FIG. 6B).
  • a PDMS substrate part 10 having a thickness of 2 mm and having an oxtic structure 30 of Si rubber inserted therein was manufactured (hereinafter, an “sample”).
  • the distance between the recognition points (marked with red dots) in each sample was measured to calculate the strain rate.
  • the Poisson's ratio was measured for three recognition points of Positions (1), (2), and (3) while pulling the comparative example sample.
  • Poisson's ratio data at Positions (1), (2), and (3) of the comparative sample was measured to be about 0.71, 0.82, and 0.74.
  • FIG. 9 shows a conductive flexible element 1 according to an embodiment of the present invention and a conductive flexible element 5 according to a comparative example.
  • 10 is a graph showing the tensile fatigue properties with or without the oxtic structure according to an embodiment of the present invention.
  • the conductive flexible device 1 of the present invention inserts / couples the oxtic structure 30 to the PDMS substrate portion 10 and bonds the Cu electrode portion 20.
  • the Cu electrode unit 20 is preferably disposed to correspond to the direction in which the unit edge of the oxtic structure 30 is repeatedly arranged, but is not limited thereto.
  • the Cu electrode portion 20 was bonded to the PDMS substrate portion 10.
  • substrate part 10 was 2 mm, and the thickness of the electrode part 20 was 2 micrometers.
  • the tensile strength was tested under the test conditions of the tensile force applied, 5% elongation, frequency 0.05 Hz.
  • the conductive flexible element 5 of the comparative example does not exceed 10 tensile tests and the electrode portion 20 breaks to show a high resistance value, whereas the conductive flexible element 1 of the embodiment is about 1000 times. It can be seen that the tensile fatigue property of the flexible element 1 in which the oxtic structure 30 is inserted / coupled by maintaining the property is excellent.
  • the Poisson's ratio is about 0.5 in the case of the polymer material not applied to the oxetic structure, and the Poisson's ratio is reduced to 0.3 in the case of the same polymer material in which the oxetic structure is applied. Since the Poisson's ratio of the metal is about 0.3, the tensile properties can be improved by adjusting the Poisson's ratio of the polymer and the metal material to a similar level through the oxetic structure.
  • the present invention has an effect of reducing the Poisson's ratio difference between the substrate material and the electrode material of the conductive flexible device by inserting the oxtic structure in the polymer substrate.
  • the present invention has an effect of reducing the Poisson's ratio difference between the substrate material and the electrode material of the conductive flexible device by inserting the oxtic structure in the polymer substrate.
  • by improving tensile properties, elasticity, and reliability there is an effect applicable to a flexible device, a wearable device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

The present invention relates to a conductive flexible element. The conductive flexible element (1) of the present invention comprises: a substrate unit (10); and an electrode unit (20) disposed on at least one surface of the substrate unit (10), wherein an auxetic structure (30) is inserted into the substrate unit (10).

Description

전도성 유연 소자Conductive Flexible Element
본 발명은 전도성 유연 소자에 관한 것이다. 보다 상세하게는, 기판부와 전극부의 푸아송비를 조절하여 인장 특성, 신축성 및 신뢰성을 향상시킨 전도성 유연 소자에 관한 것이다.The present invention relates to a conductive flexible element. More specifically, the present invention relates to a conductive flexible device in which the Poisson's ratio of the substrate portion and the electrode portion is adjusted to improve tensile properties, elasticity and reliability.
최근 들어, 단단한 기판 상에 전극을 형성한 전도성 소자에서 벗어나, 유연한 기판 상에 전극을 형성한 전도성 유연 소자가 많이 연구되고 있다. 특히, 전도성 유연 소자는 플렉서블 장치, 웨어러블 장치 등에 적용될 수 있고, 더 나아가서는 표피 상에 또는 인체 내에 부착되어 센서, 전극 등으로 활용될 가능성이 있다.Recently, a lot of researches have been conducted on conductive flexible devices in which electrodes are formed on flexible substrates, away from conductive devices on which electrodes are formed on rigid substrates. In particular, the conductive flexible element may be applied to a flexible device, a wearable device, or the like, and furthermore, may be used as a sensor, an electrode, or the like, attached to the skin or in the human body.
유연성과 바이오 호환성을 확보하기 위한 종래 기술의 유형을 살펴보면 다음과 같다. 첫째, 금속 전극의 구조에 초점을 맞춘 기술로서, 금속 전극의 패턴을 물결(wavy), 말발굽(horse-shoe) 등의 유연 특성에 적합한 구조로 만드는 것이다. 둘째, 전극 재료에 초점을 맞춘 기술로서, 유연특성이 뛰어난 전도성 고분자, CNT, 그래핀(graphene) 등의 재료를 채용하는 것이다.Looking at the type of the prior art to ensure flexibility and bio-compatibility is as follows. First, as a technology focused on the structure of the metal electrode, the pattern of the metal electrode is made into a structure suitable for flexible characteristics such as wavy and horse-shoe. Secondly, as a technology focused on electrode materials, materials such as conductive polymers, CNTs, and graphene having excellent flexibility are employed.
이처럼, 기존의 전도성 유연 소자는 통상적으로 고분자 재료 내 금속 전극을 형성하여 구현하는 것이 대부분이다. 이렇게 구현한 전도성 유연 소자는 당김, 접힘 등의 외력에 노출될 수 있고, 이때, 금속과 고분자 재료 간의 물성의 차이로 인해서 소자 내 크랙(crack), 버클링(buckling) 등의 결함(defect)이 발생되는 문제점이 있었다.As such, conventional conductive flexible devices are usually implemented by forming metal electrodes in a polymer material. The conductive flexible device thus implemented may be exposed to external forces such as pulling and folding. In this case, defects such as cracking and buckling may be caused by the difference in physical properties between the metal and the polymer material. There was a problem that occurred.
전도성 유연 소자 내 금속과 고분자 재료 간의 물성 중에서 탄성 매칭(elastic matching)이 중요하게 된다. 당김, 접힘 등의 외력에 노출될 경우, 금속과 고분자가 각각 신축되는 특성이 다르기 때문에, 계면에서 결함이 발생되기 때문이다. 수직 인가 응력에 의한 가로 변형과 세로 변형과의 비를 의미하는 푸아송비(Poisson's ratio)는 이러한 신축되는 특성을 반영하는 수치로서 고려될 수 있다.Elastic matching among the physical properties between the metal and the polymer material in the conductive flexible device becomes important. This is because when exposed to external forces such as pulling and folding, defects are generated at the interface because the metal and the polymer have different stretching properties. The Poisson's ratio, which means the ratio between the transverse strain and the longitudinal strain due to the vertically applied stress, can be considered as a value reflecting this stretching property.
도 1은 각종 재료에 대한 영률(Young's modulus), 푸아송비(Poisson's ratio)를 나타내는 그래프이다. 도 2는 금속과 고분자 재료 간의 탄성 미스매칭(elastic mismatching)을 나타내는 개략도이다.1 is a graph showing Young's modulus and Poisson's ratio for various materials. 2 is a schematic diagram showing elastic mismatching between a metal and a polymeric material.
도 1에서 탄성 고분자(elastomer)의 푸아송비는 약 0.5, 금속의 푸아송비는 약 3.5에 해당한다. 도 2의 (a)와 같이 탄성 고분자를 지지 기판으로 사용하고, 상부에 금속 박막을 접합하여 전도성 유연 소자를 제조할 수 있다. 전도성 유연 소자의 특정 방향으로의 외력이 작용하면, 도 2의 (b)에 도시된 바와 같이 탄성 고분자 기판과 금속 박막은 푸아송비의 차이에 따라 가로 변형과 세로 변형이 상이하게 이루어 질 수 있다. 결과적으로 도 2의 (c)에 도시된 바와 같이 고분자 기판과 금속 박막의 계면에서 푸아송비의 차이에 의한 미스매치가 누적되면, 계면 접착이 약화되거나 금속 박막에 손상이 발생하여 유연 소자의 신뢰성 저하를 초래할 수 있다.In FIG. 1, the Poisson's ratio of the elastomer is about 0.5, and the Poisson's ratio of the metal corresponds to about 3.5. As shown in FIG. 2A, an elastic polymer may be used as a support substrate, and a conductive thin film may be manufactured by bonding a metal thin film to an upper portion thereof. When an external force acts in a specific direction of the conductive flexible device, as shown in FIG. 2B, the elastic polymer substrate and the metal thin film may have different transverse and vertical strains according to the Poisson's ratio. As a result, as shown in (c) of FIG. 2, when a mismatch due to the difference of Poisson's ratio accumulates at the interface between the polymer substrate and the metal thin film, the interface adhesion is weakened or the metal thin film is damaged, thereby reducing the reliability of the flexible device. May result.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 전도성 유연 소자의 기판 물질과 전극 물질 간의 푸아송비 차이를 줄일 수 있는 전도성 유연 소자를 제공하는 것을 목적으로 한다.The present invention has been made to solve various problems including the above problems, and an object of the present invention is to provide a conductive flexible device capable of reducing the Poisson's ratio difference between the substrate material and the electrode material of the conductive flexible device.
그리고, 본 발명은 인장 특성, 신축성 및 신뢰성을 향상시킨 전도성 유연 소자를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a conductive flexible device having improved tensile properties, elasticity and reliability.
그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these problems are exemplary, and the scope of the present invention is not limited thereby.
상기 과제를 해결하기 위한 본 발명의 일 관점에 따르면, 기판부; 및 상기 기판부의 적어도 일면 상에 배치되는 전극부를 포함하고, 상기 기판부에는 옥세틱(auxetic) 구조체가 삽입되는, 전도성 유연 소자가 제공된다.According to an aspect of the present invention for solving the above problems, a substrate portion; And an electrode part disposed on at least one surface of the substrate part, wherein the substrate part is provided with a conductive flexible element into which an aoxetic structure is inserted.
또한, 본 발명의 일 실시예에 따르면, 상기 기판부는 탄성 재질로 구성될 수 있다.In addition, according to an embodiment of the present invention, the substrate portion may be made of an elastic material.
또한, 본 발명의 일 실시예에 따르면, 상기 기판부의 푸아송비(Poisson's ratio)는 0.47 내지 0.52일 수 있다.In addition, according to an embodiment of the present invention, the Poisson's ratio of the substrate may be 0.47 to 0.52.
또한, 본 발명의 일 실시예에 따르면, 상기 전극부는 금속 재질로 구성될 수 있다.In addition, according to an embodiment of the present invention, the electrode portion may be made of a metal material.
또한, 본 발명의 일 실시예에 따르면, 상기 전극부는 Au, Ag, Al, Cu, Ti 중 적어도 어느 하나를 포함할 수 있다.In addition, according to an embodiment of the present invention, the electrode unit may include at least one of Au, Ag, Al, Cu, Ti.
또한, 본 발명의 일 실시예에 따르면, 상기 전극부의 푸아송비는 0.31 내지 0.41일 수 있다.In addition, according to an embodiment of the present invention, the Poisson's ratio of the electrode part may be 0.31 to 0.41.
또한, 본 발명의 일 실시예에 따르면, 상기 옥세틱 구조체는 푸아송비가 음의 값을 가질 수 있다.In addition, according to an embodiment of the present invention, the oxetic structure may have a Poisson's ratio having a negative value.
또한, 본 발명의 일 실시예에 따르면, 상기 옥세틱 구조체는 탄성 재질로 구성될 수 있다.In addition, according to an embodiment of the present invention, the oxtic structure may be made of an elastic material.
또한, 본 발명의 일 실시예에 따르면, 상기 기판부에 옥세틱 구조체가 삽입되어, 푸아송비 값이 감소될 수 있다.In addition, according to an embodiment of the present invention, an oxtic structure may be inserted into the substrate to reduce the Poisson's ratio.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 전도성 유연 소자의 기판 물질과 전극 물질 간의 푸아송비 차이를 줄일 수 있는 효과가 있다.According to one embodiment of the present invention made as described above, there is an effect that can reduce the Poisson's ratio difference between the substrate material and the electrode material of the conductive flexible device.
그리고, 본 발명의 일 실시예에 따르면, 인장 특성, 신축성 및 신뢰성을 향상시킬 수 있는 효과가 있다.And, according to one embodiment of the present invention, there is an effect that can improve the tensile properties, elasticity and reliability.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Of course, the scope of the present invention is not limited by these effects.
도 1은 각종 재료에 대한 영률(Young's modulus), 푸아송비(Poisson's ratio)를 나타내는 그래프이다.1 is a graph showing Young's modulus and Poisson's ratio for various materials.
도 2는 금속과 고분자 재료 간의 탄성 미스매칭(elastic mismatching)을 나타내는 개략도이다.2 is a schematic diagram showing elastic mismatching between a metal and a polymeric material.
도 3은 논옥세틱(Non-auxetic)과 옥세틱(Auxetic)을 나타내는 도면이다.3 is a diagram illustrating non-auxetic and oxetic.
도 4는 본 발명의 일 실시예에 따른 옥세틱 구조체를 나타내는 도면이다.4 is a view showing an oxtic structure according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 전도성 유연 소자의 제조 과정을 나타내는 개략도이다.5 is a schematic diagram illustrating a manufacturing process of a conductive flexible device according to an embodiment of the present invention.
도 6 내지 도 8은 본 발명의 일 실시예에 따른 옥세틱 구조체가 결합된 PDMS 및 비교예에 따른 PDMS의 푸아송비를 측정하는 과정 및 결과를 나타낸다.6 to 8 illustrate a process and results of measuring Poisson's ratio of the PDMS to which the oxtic structure according to the embodiment of the present invention is coupled and the PDMS according to the comparative example.
도 9는 본 발명의 일 실시예에 따른 전도성 유연 소자 및 비교예에 따른 전도성 유연 소자를 나타낸다.9 shows a conductive flexible device according to an embodiment of the present invention and a conductive flexible device according to a comparative example.
도 10은 본 발명의 일 실시예에 따른 옥세틱 구조체의 유무에 따른 인장 피로도 특성을 나타내는 그래프이다.10 is a graph showing the tensile fatigue properties with or without the oxtic structure according to an embodiment of the present invention.
<부호의 설명><Description of the code>
1: 전도성 유연 소자1: conductive flexible element
10: 기판부10: substrate portion
20: 전극부20: electrode part
30: 옥세틱 구조체30: oxtic structure
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. In the drawings, like reference numerals refer to the same or similar functions throughout the several aspects, and length, area, thickness, and the like may be exaggerated for convenience.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
도 3은 논옥세틱(Non-auxetic)과 옥세틱(Auxetic)을 나타내는 도면이다.3 is a diagram illustrating non-auxetic and oxetic.
도 3의 (a)를 참조하면, 일반적인 물질, 즉, 논옥세틱(Non-auxetic) 물질들은 물질 내부에 응력이 가해지면 해당 방향으로 신장함과 동시에 수직 방향으로 수축이 행해진다. 따라서, 재료 내부에 생기는 수직 응력에 의한 가로 변형과 세로 변형과의 비를 의미하는 푸아송비(Poisson's ratio)는 양수를 가진다.Referring to FIG. 3A, when a general material, that is, non-auxetic materials, is stressed inside the material, the material expands in the corresponding direction and contracts in the vertical direction. Therefore, the Poisson's ratio, which means the ratio between the transverse strain and the longitudinal strain due to the vertical stress occurring inside the material, is positive.
도 3의 (b)를 참조하면, 반대로, 옥세틱(Auxetic) 물질[또는, 팽창 구조(Auxetic structure)를 가지는 물질]들은 물질 내부에 응력이 가해지면 해당 방향과 수직 방향으로 모두 신장될 수 있다. 따라서, 푸아송비는 음수를 가진다.Referring to (b) of FIG. 3, on the contrary, auxetic materials (or materials having an auxetic structure) may extend in a direction perpendicular to the corresponding direction when stress is applied to the material. . Thus, Poisson's ratio has a negative number.
도 4는 본 발명의 일 실시예에 따른 옥세틱 구조체(30)를 나타내는 도면이다.4 shows an oxtic structure 30 according to an embodiment of the invention.
도 4의 (a)를 참조하면, 본 발명의 전도성 유연 소자(1)는 옥세틱 구조체(30)를 포함하여 구현될 수 있다. 종래 기술들은 전극의 구조, 전극의 재료 등에 초점을 맞춘 반면, 본 발명의 전도성 유연 소자(1)는 기판부(10)의 구조를 조절하는 것에 초점을 맞춘 것을 특징으로 한다. 옥세틱 구조를 가지는 옥세틱 구조체(30)를 기판부(10) 내에 삽입시킨 전도성 유연 소자(1)가 구현될 수 있다.Referring to FIG. 4A, the conductive flexible device 1 of the present invention may be implemented to include an oxtic structure 30. While the prior arts focus on the structure of the electrode, the material of the electrode and the like, the conductive flexible element 1 of the present invention is characterized by focusing on adjusting the structure of the substrate portion 10. The conductive flexible device 1 having the oxtic structure 30 having the oxtic structure 30 inserted into the substrate 10 may be implemented.
옥세틱 구조체(30)는 한 쌍의 삼각형이 상호 대향하고, 삼각형의 꼭지점 부분이 중첩되어 일체로 연결된 듯한 단위 테두리를 가질 수 있다. 이러한 단위 테두리가 가로 방향 및 세로 방향으로 빈틈없이 반복 배치된 형태를 가질 수 있다. 하지만, 반드시 옥세틱 구조체(30)가 반드시 이 형상에 제한되는 것은 아니며, 푸아송비가 음수를 가지는 구조라면 본 발명의 옥세틱 구조체(30)로 채용할 수 있다.The oxtic structure 30 may have a unit border in which a pair of triangles face each other, and vertex portions of the triangles overlap each other and are integrally connected. Such a unit border may have a shape in which the unit border is repeatedly arranged in the horizontal direction and the vertical direction. However, the oxtic structure 30 is not necessarily limited to this shape, and as long as the Poisson's ratio has a negative number, the oxtic structure 30 can be employed as the oxetic structure 30 of the present invention.
도 4의 (b)를 참조하면, 옥세틱 구조체(30)에 응력이 가해지면 해당 응력 인가 방향과 그에 수직하는 방향으로 모두 신장(30')될 수 있다. 즉, 옥세틱 구조체(30)가 점유하는 면적이 커지는 방향으로 신장(30')될 수 있다.Referring to FIG. 4B, when a stress is applied to the oxtic structure 30, it may be extended 30 ′ in both the direction in which the stress is applied and the direction perpendicular thereto. That is, it may be extended 30 'in the direction in which the area occupied by the oxtic structure 30 becomes larger.
응력이 인가되었다가 해제되면 다시 옥세틱 구조체(30')가 원래의 형태(30)로 원상복구될 수 있도록, 옥세틱 구조체(30)는 탄성 재질로 구성되는 것이 바람직하다. 도 4의 (c)에는 탄성 재질인 실리콘 러버(Si rubber)로 옥세틱 구조체(30)를 형성한 실시예가 도시된다.The oxtic structure 30 is preferably made of an elastic material so that when the stress is applied and released, the oxtic structure 30 'can be restored to its original form 30. FIG. 4C illustrates an embodiment in which the oxtic structure 30 is formed of an elastic silicone rubber.
도 5는 본 발명의 일 실시예에 따른 전도성 유연 소자(1)의 제조 과정을 나타내는 개략도이다.5 is a schematic view showing a manufacturing process of the conductive flexible device 1 according to an embodiment of the present invention.
도 5의 (a)를 참조하면, 먼저, 기판부(10) 및 옥세틱 구조체(30)를 준비한다.Referring to FIG. 5A, first, the substrate 10 and the oxtic structure 30 are prepared.
유연성, 신축성을 확보하기 위해 기판부(10)는 탄성 재질로 구성되는 것이 바람직하다. 탄성 재질은 도 1의 탄성체(elastomers) 군에서 선택된 어느 하나의 재질로 구성될 수 있다. 이러한 탄성 재질은 푸아송비가 약 0.47 ~ 0.52의 값을 가질 수 있다. 본 명세서에서는 PDMS(polydimethylsiloxane)을 재질의 기판부(10)를 사용하는 것을 상정하여 설명한다. In order to secure flexibility and elasticity, the substrate unit 10 is preferably made of an elastic material. The elastic material may be composed of any one material selected from the group of elastomers of FIG. 1. The elastic material may have a Poisson's ratio of about 0.47 to 0.52. In the present specification, it is assumed that the substrate portion 10 made of PDMS (polydimethylsiloxane) is used.
옥세틱 구조체(30)는 도4에서 설명한 구조, 재질을 가질 수 있다.The oxtic structure 30 may have a structure and a material described with reference to FIG. 4.
다음으로, 도 5의 (b)를 참조하면, 옥세틱 구조체(30)를 기판부(10)에 삽입할 수 있다. 옥세틱 구조체(30)를 삽입한다는 의미는, 기판부(10)와 옥세틱 구조체(30)를 각각 제조한 후 옥세틱 구조체(30)를 기판부(10)에 집어넣는 방식으로 삽입하는 것뿐만 아니라, 기판부(10)를 형성하는 과정에서 옥세틱 구조체(30)가 기판부(10) 내부에 매립되도록 형성하는 것까지 포함하는 의미로 이해되어야 한다.Next, referring to FIG. 5B, the oxtic structure 30 may be inserted into the substrate portion 10. The insertion of the oxtic structure 30 means that the substrate portion 10 and the oxtic structure 30 are manufactured, respectively, and then inserted into the substrate portion 10 by inserting the oxtic structure 30 into the substrate portion 10. Rather, it should be understood to include forming the oxtic structure 30 to be embedded in the substrate 10 in the process of forming the substrate 10.
일 예로, 글래스 상에 옥세틱 구조체(30)를 배치한 후, 글라스 및 옥세틱 구조체(30) 상부에 PDMS 베이스와 경화제가 10:1로 섞인 용액을 도포한 후, 경화를 거쳐 PDMS 기판부(10)와 옥세틱 구조체(30)를 일체로 형성할 수 있다. For example, after the oxtic structure 30 is disposed on the glass, the glass and the oxtic structure 30 are coated with a solution mixed with a PDMS base and a curing agent 10: 1 on the glass, and then cured to form a PDMS substrate ( 10) and the oxtic structure 30 may be integrally formed.
다음으로, 도 5의 (c)를 참조하면, 기판부(10)의 적어도 일면 상에 전극부(20)를 형성할 수 있다. 전극부(20)는 금속박을 부착하거나, 프린팅법, 도금법, 물리기상 증착법(Physical Vapor Deposition: PVD), 화학기상 증착법(Chemical Vapor Deposition: CVD) 등 공지의 박막 형성 방법을 제한없이 사용하여 형성할 수 있다.Next, referring to FIG. 5C, the electrode part 20 may be formed on at least one surface of the substrate part 10. The electrode unit 20 may be formed by attaching a metal foil, or using a known thin film forming method such as printing, plating, physical vapor deposition (PVD), chemical vapor deposition (CVD), etc. without limitation. Can be.
전극부(20)는 유연 특성에 적합하도록, 물결(wavy), 말발굽(horse-shoe) 등의 전극 패턴을 가지는 와이어 형태인 것이 바람직하나, 반드시 이에 제한되는 것은 아니다. 전극부(20)의 재질은 도 1의 금속(metal) 군에서 선택된 재질, 즉, Au, Ag, Al, Cu, Ti 등의 재질로 구성될 수 있다. 이러한 금속 재질은 푸아송비가 약 0.31 ~ 0.41의 값을 가질 수 있다.The electrode unit 20 is preferably in the form of a wire having an electrode pattern such as a wave, horse-shoe, etc., so as to be suitable for the flexible property, but is not necessarily limited thereto. The material of the electrode unit 20 may be made of a material selected from the metal group of FIG. 1, that is, Au, Ag, Al, Cu, Ti, or the like. The metal material may have a Poisson's ratio of about 0.31 to 0.41.
본 발명의 전도성 유연 소자(1)는 기판부(10)에 옥세틱 구조체(30)가 삽입됨에 따라, 기판부(10)의 원래 푸아송비보다 낮은 푸아송비를 가지도록 조절한 것을 특징으로 한다.The conductive flexible device 1 of the present invention is characterized in that it is adjusted to have a Poisson's ratio lower than the original Poisson's ratio of the substrate portion 10 as the oxtic structure 30 is inserted into the substrate portion 10.
예를 들어, PDMS 기판부(10)는 푸아송비가 약 0.5, Cu 전극부(20)는 푸아송비가 약 0.34로 차이가 있다. PDMS 기판부(10)에 음의 푸아송비를 가지는 옥세틱 구조체(30)를 삽입하면, PDMS 기판부(10)의 푸아송비가 0.5보다 낮아지게 된다. 즉, PDMS 기판부(10)에 응력을 인가하면 응력 인가 방향으로 신장과 동시에 응력 인가 방향에 수직하는 방향으로는 축소가 되어야 하는데, 옥세틱 구조체(30)가 응력 인가 방향으로 신장과 동시에 응력 인가 방향에 수직하는 방향으로도 신장이 되어, PDMS 기판부(10)가 수직하는 방향으로 축소되는 것을 어느 정도 방지할 수 있게 된다. 따라서, 결과적으로 옥세틱 구조체(30)가 삽입된 PDMS 기판부(10)의 푸아송비가 감소되는 효과가 나타날 수 있다.For example, the PDMS substrate portion 10 has a Poisson's ratio of about 0.5, and the Cu electrode portion 20 has a Poisson's ratio of about 0.34. When the oxtic structure 30 having the negative Poisson's ratio is inserted into the PDMS substrate 10, the Poisson's ratio of the PDMS substrate 10 is lower than 0.5. That is, when the stress is applied to the PDMS substrate portion 10, it should be elongated in the stress application direction and reduced in the direction perpendicular to the stress application direction. It is also extended in the direction perpendicular to the direction, it can be prevented to some extent to shrink the PDMS substrate portion 10 in the vertical direction. As a result, the Poisson's ratio of the PDMS substrate portion 10 into which the oxtic structure 30 is inserted may be reduced.
옥세틱 구조체(30)가 삽입된 PDMS 기판부(10)의 푸아송비를 Cu 전극부(20)에 유사한 정도로 감소시키게 되면, PDMS 기판부(10)와 Cu 전극부(20)의 계면에 작용하는 응력을 감소시킬 수 있고, 전극부(20)에 크랙, 버클링 등의 결함이 발생하는 것을 감소시킬 수 있다.When the Poisson's ratio of the PDMS substrate portion 10 into which the oxtic structure 30 is inserted is reduced to a degree similar to that of the Cu electrode portion 20, it acts on the interface between the PDMS substrate portion 10 and the Cu electrode portion 20. The stress can be reduced, and the occurrence of defects such as cracks and buckling in the electrode portion 20 can be reduced.
도 6 내지 도 8은 본 발명의 일 실시예에 따른 옥세틱 구조체가 결합된 PDMS 및 비교예에 따른 PDMS의 푸아송비를 측정하는 과정 및 결과를 나타낸다. 도 6 내지 도 8에서는 전극부(20)를 형성하지 않고, 옥세틱 구조체(30)의 삽입 여부에 따른 기판부(10)의 푸아송비의 변화를 살펴본다.6 to 8 illustrate a process and results of measuring Poisson's ratio of the PDMS to which the oxtic structure according to the embodiment of the present invention is coupled and the PDMS according to the comparative example. 6 to 8, a change in Poisson's ratio of the substrate part 10 according to whether the oxtic structure 30 is inserted without looking at the electrode part 20 will be described.
도 6을 참조하면, 비교예[도 6의 (a)]에 따라 2mm의 두께를 가지는 PDMS 기판부를 제조하고(이하, "비교예 샘플"), 실시예[도 6의 (b)]에 따라 2mm의 두께를 가지고 Si rubber 재질의 옥세틱 구조체(30)가 삽입된 PDMS 기판부(10)를 제조하였다(이하, "실시예 샘플"). 그리고, 인장강도 테스트 장비를 이용하여 비교예 샘플, 실시예 샘플을 인장시키는 동안, 각 샘플 내의 인식점(빨간점으로 표시) 간 거리를 측정하여 변형율을 계산하였다.Referring to FIG. 6, a PDMS substrate part having a thickness of 2 mm was manufactured according to a comparative example [FIG. 6A] (hereinafter, a “comparative sample”), and according to the example [FIG. 6B). A PDMS substrate part 10 having a thickness of 2 mm and having an oxtic structure 30 of Si rubber inserted therein was manufactured (hereinafter, an “sample”). In addition, while tensioning the comparative sample and the example sample using the tensile strength test equipment, the distance between the recognition points (marked with red dots) in each sample was measured to calculate the strain rate.
도 7의 (a)와 같이, 비교예 샘플을 인장시키는 동안, Position (1), (2), (3)의 인식점 3개에 대해서 푸아송비를 측정하였다. 그 결과, 도 7의 (b)와 같이, 비교예 샘플의 Position (1), (2), (3)에서의 푸아송비 데이터는 약 0.71, 0.82, 0.74로 측정되었다.As shown in Fig. 7A, the Poisson's ratio was measured for three recognition points of Positions (1), (2), and (3) while pulling the comparative example sample. As a result, as in FIG. 7B, Poisson's ratio data at Positions (1), (2), and (3) of the comparative sample was measured to be about 0.71, 0.82, and 0.74.
또한, 도 8의 (a)와 같이, 실시예 샘플을 인장시키는 동안, Position (1), (2), (3)의 인식점 3개에 대해서 푸아송비를 측정하였다. 그 결과, 도 8의 (b)와 같이, 실시예 샘플의 Position (1), (2), (3)에서의 푸아송비 데이터는 약 0.23, 0.28, 0.44로 측정되었다.In addition, as shown in Fig. 8A, the Poisson's ratio was measured for three recognition points of Positions (1), (2) and (3) while the Example sample was stretched. As a result, as in FIG. 8B, Poisson's ratio data at Positions (1), (2), and (3) of the example samples were measured to be about 0.23, 0.28, 0.44.
옥세틱 구조체(30)를 적용한 실시예 샘플과 적용하지 않은 비교예 샘플 간의 유의차를 확인하기 위해 2-sample T test를 실시한 결과, 옥세틱 구조체(30)를 적용하기 전 푸아송비는 0.76에서, 적용한 후 0.32로 감소하였다.As a result of performing a 2-sample T test to confirm the significant difference between the example sample to which the oxetic structure 30 was applied and the comparative sample to which the oxetic structure 30 was not applied, the Poisson's ratio before applying the oxtic structure 30 was 0.76, It decreased to 0.32 after application.
도 9는 본 발명의 일 실시예에 따른 전도성 유연 소자(1) 및 비교예에 따른 전도성 유연 소자(5)를 나타낸다. 도 10은 본 발명의 일 실시예에 따른 옥세틱 구조체의 유무에 따른 인장 피로도 특성을 나타내는 그래프이다.9 shows a conductive flexible element 1 according to an embodiment of the present invention and a conductive flexible element 5 according to a comparative example. 10 is a graph showing the tensile fatigue properties with or without the oxtic structure according to an embodiment of the present invention.
도 9를 참조하면, 본 발명의 전도성 유연 소자(1)는 PDMS 기판부(10)에 옥세틱 구조체(30)를 삽입/결합하고, Cu 전극부(20)를 접합하였다. Cu 전극부(20)는 옥세틱 구조체(30)의 단위 테두리가 반복 배치된 방향에 대응하도록 배치되는 것이 바람직하나, 이에 제한되는 것은 아니다. 비교예의 전도성 유연 소자(5)는 PDMS 기판부(10)에 Cu 전극부(20)를 접합하였다. 기판부(10)의 두께는 2mm, 전극부(20)의 두께는 2㎛로 형성하였다.Referring to FIG. 9, the conductive flexible device 1 of the present invention inserts / couples the oxtic structure 30 to the PDMS substrate portion 10 and bonds the Cu electrode portion 20. The Cu electrode unit 20 is preferably disposed to correspond to the direction in which the unit edge of the oxtic structure 30 is repeatedly arranged, but is not limited thereto. In the conductive flexible element 5 of the comparative example, the Cu electrode portion 20 was bonded to the PDMS substrate portion 10. The thickness of the board | substrate part 10 was 2 mm, and the thickness of the electrode part 20 was 2 micrometers.
도 9의 샘플을 이용하여, 인장력 인가, 5% 신장, frequency 0.05 Hz의 테스트 조건 하에 인장 피도로 특성을 테스트 하였다. 도 10을 참조하면, 비교예의 전도성 유연 소자(5)는 10회의 인장 테스트를 넘지 못하고 전극부(20)가 파단되어 저항 값이 높게 나타나는 반면, 실시예의 전도성 유연 소자(1)는 1000회 정도까지 특성을 유지하여 옥세틱 구조체(30)를 삽입/결합한 유연 소자(1)의 인장 피로도 특성이 우수함을 확인할 수 있다.Using the sample of Figure 9, the tensile strength was tested under the test conditions of the tensile force applied, 5% elongation, frequency 0.05 Hz. Referring to FIG. 10, the conductive flexible element 5 of the comparative example does not exceed 10 tensile tests and the electrode portion 20 breaks to show a high resistance value, whereas the conductive flexible element 1 of the embodiment is about 1000 times. It can be seen that the tensile fatigue property of the flexible element 1 in which the oxtic structure 30 is inserted / coupled by maintaining the property is excellent.
이는 옥세틱 구조를 적용하지 않은 고분자 재료의 경우는 푸아송비가 약 0.5 정도로 측정되는데, 옥세틱 구조를 적용한 동일한 고분자 재료의 경우에는 푸아송비가 0.3 수준으로 감소한 결과이다. 금속의 푸아송비가 약 0.3 수준이므로 옥세틱 구조를 통해서 고분자와 금속 재료의 푸아송비를 유사한 수준으로 조절함으로써 인장 특성을 향상 시킬 수 있음을 보여준다.The Poisson's ratio is about 0.5 in the case of the polymer material not applied to the oxetic structure, and the Poisson's ratio is reduced to 0.3 in the case of the same polymer material in which the oxetic structure is applied. Since the Poisson's ratio of the metal is about 0.3, the tensile properties can be improved by adjusting the Poisson's ratio of the polymer and the metal material to a similar level through the oxetic structure.
위와 같이, 본 발명은 고분자 기판 내 옥세틱 구조를 삽입함으로써 전도성 유연 소자의 기판 물질과 전극 물질 간의 푸아송비 차이를 줄일 수 있는 효과가 있다. 그리고, 인장 특성, 신축성 및 신뢰성을 향상시킴에 따라, 플렉서블 장치, 웨어러블 장치 등에 적용가능한 효과가 있다.As described above, the present invention has an effect of reducing the Poisson's ratio difference between the substrate material and the electrode material of the conductive flexible device by inserting the oxtic structure in the polymer substrate. In addition, by improving tensile properties, elasticity, and reliability, there is an effect applicable to a flexible device, a wearable device, and the like.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.Although the present invention has been shown and described with reference to preferred embodiments as described above, it is not limited to the above embodiments and various modifications made by those skilled in the art without departing from the spirit of the present invention. Modifications and variations are possible. Such modifications and variations are intended to fall within the scope of the invention and the appended claims.

Claims (9)

  1. 기판부; 및A substrate portion; And
    상기 기판부의 적어도 일면 상에 배치되는 전극부An electrode portion disposed on at least one surface of the substrate portion
    를 포함하고,Including,
    상기 기판부에는 옥세틱(auxetic) 구조체가 삽입되는, 전도성 유연 소자.An oxetic structure is inserted into the substrate portion, the conductive flexible device.
  2. 제1항에 있어서,The method of claim 1,
    상기 기판부는 탄성 재질로 구성되는, 전도성 유연 소자.The substrate portion is made of an elastic material, conductive flexible device.
  3. 제2항에 있어서,The method of claim 2,
    상기 기판부의 푸아송비(Poisson's ratio)는 0.47 내지 0.52인, 전도성 유연 소자.Poisson's ratio of the substrate portion is 0.47 to 0.52, the conductive flexible device.
  4. 제1항에 있어서,The method of claim 1,
    상기 전극부는 금속 재질로 구성되는, 전도성 유연 소자.The electrode unit is made of a metal material, conductive flexible device.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 전극부는 Au, Ag, Al, Cu, Ti 중 적어도 어느 하나를 포함하는, 전도성 유연 소자.The electrode unit includes at least one of Au, Ag, Al, Cu, Ti, conductive flexible device.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 전극부의 푸아송비는 0.31 내지 0.41인, 전도성 유연 소자.Poisson's ratio of the electrode portion is 0.31 to 0.41, conductive flexible device.
  7. 제1항에 있어서,The method of claim 1,
    상기 옥세틱 구조체는 푸아송비가 음의 값을 가지는, 전도성 유연 소자.Wherein the oxtic structure has a Poisson's ratio of a negative value.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 옥세틱 구조체는 탄성 재질로 구성되는, 전도성 유연 소자.The oxtic structure is made of an elastic material, conductive flexible device.
  9. 제1항에 있어서,The method of claim 1,
    상기 기판부에 옥세틱 구조체가 삽입되어, 푸아송비 값이 감소되는, 전도성 유연 소자.An oxtic structure is inserted into the substrate to reduce the Poisson's ratio.
PCT/KR2017/013767 2016-11-29 2017-11-29 Conductive flexible element WO2018101724A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160160729 2016-11-29
KR10-2016-0160729 2016-11-29
KR10-2017-0155974 2017-11-21
KR1020170155974A KR102088864B1 (en) 2016-11-29 2017-11-21 Conductive flexible device

Publications (1)

Publication Number Publication Date
WO2018101724A1 true WO2018101724A1 (en) 2018-06-07

Family

ID=62241635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013767 WO2018101724A1 (en) 2016-11-29 2017-11-29 Conductive flexible element

Country Status (1)

Country Link
WO (1) WO2018101724A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114052737A (en) * 2021-11-20 2022-02-18 吉林大学 Flexible electrode connected with concave honeycomb negative Poisson ratio structure and application
CN115376834A (en) * 2022-08-21 2022-11-22 东北电力大学 Super capacitor with negative Poisson ratio characteristic and oak-leaf-imitating structure
US11905651B2 (en) 2020-06-18 2024-02-20 Swift Textile Metalizing LLC Auxetic fabric reinforced elastomers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080106922A (en) * 2006-03-08 2008-12-09 다우 코닝 코포레이션 Impregnated flexible sheet material
KR20090093375A (en) * 2008-02-29 2009-09-02 삼성모바일디스플레이주식회사 Flexible substrate, Fabrication method of the same and Thin Film Transistor using the same
JP2009215610A (en) * 2008-03-11 2009-09-24 Tohoku Univ High-ductility metal glass alloy
KR20120001642A (en) * 2010-06-29 2012-01-04 건국대학교 산학협력단 Method of printing electronic pattern for minimizing crack of flexible electronic device
KR20160042288A (en) * 2014-10-08 2016-04-19 삼성디스플레이 주식회사 Stretchable films, methods of manufacturing the same and display devices including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080106922A (en) * 2006-03-08 2008-12-09 다우 코닝 코포레이션 Impregnated flexible sheet material
KR20090093375A (en) * 2008-02-29 2009-09-02 삼성모바일디스플레이주식회사 Flexible substrate, Fabrication method of the same and Thin Film Transistor using the same
JP2009215610A (en) * 2008-03-11 2009-09-24 Tohoku Univ High-ductility metal glass alloy
KR20120001642A (en) * 2010-06-29 2012-01-04 건국대학교 산학협력단 Method of printing electronic pattern for minimizing crack of flexible electronic device
KR20160042288A (en) * 2014-10-08 2016-04-19 삼성디스플레이 주식회사 Stretchable films, methods of manufacturing the same and display devices including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905651B2 (en) 2020-06-18 2024-02-20 Swift Textile Metalizing LLC Auxetic fabric reinforced elastomers
CN114052737A (en) * 2021-11-20 2022-02-18 吉林大学 Flexible electrode connected with concave honeycomb negative Poisson ratio structure and application
CN115376834A (en) * 2022-08-21 2022-11-22 东北电力大学 Super capacitor with negative Poisson ratio characteristic and oak-leaf-imitating structure
CN115376834B (en) * 2022-08-21 2024-06-04 东北电力大学 Super capacitor with negative poisson ratio characteristic oak leaf imitation structure

Similar Documents

Publication Publication Date Title
KR102088864B1 (en) Conductive flexible device
WO2018101724A1 (en) Conductive flexible element
WO2017082654A1 (en) Optical stack and image display device comprising same
WO2015182885A1 (en) Socket for inspecting semiconductor package and substrate, flexible contact pin used therein, and method for manufacturing flexible contact pin
Soman et al. Reliability challenges in fabrication of flexible hybrid electronics for human performance monitors: A system-level study
WO2018151448A1 (en) Dry-type biomimetic adhesion patch having high elasticity and conductivity, method for manufacturing same, and wearable device comprising same
WO2020045739A1 (en) Hybrid large-area pressure sensor including capacitive sensor and resistive sensor integrated with each other
WO2017204514A1 (en) Pressure detection sensor and pressure detection insole including same
EP3711783B1 (en) Cable and medical hollow tube
WO2017209435A1 (en) High-sensitivity sensor having crack-containing transparent conductive thin film and method for preparing same
CN113243920A (en) Flexible attached skin electrode and preparation method and application thereof
WO2014119930A1 (en) Silicone rubber composition for adhering semiconductor chip
WO2010032905A1 (en) Micro-contact probe coated with nano-structure, and fabricating method thereof
AU2020368576B2 (en) Hybrid soft-rigid electrical interconnection system
CN113545173A (en) Stretchable circuit board
JPWO2020105206A1 (en) Manufacturing method of elastic wiring board and elastic wiring board
WO2023282386A1 (en) Strain measuring sensor and manufacturing method therefor
WO2012050270A1 (en) Pressure measurement apparatus and method for manufacturing same
WO2012011629A1 (en) Multi-cantilever beam structure of probe card and manufacturing method therefor
WO2018093109A2 (en) Probe for testing device
CN210804371U (en) Flexible capacitive touch screen
CN117387481A (en) High-sensitivity and ultra-soft silica gel elastomer strain sensor and preparation method thereof
WO2022085919A1 (en) System for measuring physical properties of electrode specimen using masking tape, and method for measuring physical properties using same
WO2024154859A1 (en) Stretchable pressure sensor array and method for manufacturing same
CN117890208A (en) Carrier and method for testing micro materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17876305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17876305

Country of ref document: EP

Kind code of ref document: A1