WO2023282358A1 - Secondary battery module and control method therefor - Google Patents

Secondary battery module and control method therefor Download PDF

Info

Publication number
WO2023282358A1
WO2023282358A1 PCT/JP2022/027268 JP2022027268W WO2023282358A1 WO 2023282358 A1 WO2023282358 A1 WO 2023282358A1 JP 2022027268 W JP2022027268 W JP 2022027268W WO 2023282358 A1 WO2023282358 A1 WO 2023282358A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical communication
current extraction
optical
timing
secondary battery
Prior art date
Application number
PCT/JP2022/027268
Other languages
French (fr)
Japanese (ja)
Inventor
英明 堀江
洋志 川崎
Original Assignee
Apb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021114269A external-priority patent/JP7208309B1/en
Priority claimed from JP2021114106A external-priority patent/JP2023010166A/en
Application filed by Apb株式会社 filed Critical Apb株式会社
Publication of WO2023282358A1 publication Critical patent/WO2023282358A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/298Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the wiring of battery packs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery module and its control method.
  • an overcharge heat generating circuit including a light emitting diode is connected in parallel to both ends of a battery module including single cells connected in series, and when overcharge occurs, the light emitted from the light emitting diode is a common optical fiber.
  • Patent Document 1 emits light when the unit cell is overcharged and the corresponding light emitting diode is energized. I can't let you know.
  • the configuration of Patent Document 1 is a configuration in which the light emitted from the plurality of light emitting diodes is sent to the light receiving diode through a common optical fiber, an additional device for separating the light emitted from the plurality of overlapping light emitting diodes on the common optical fiber is provided. Requires processing.
  • the present invention has been made in view of such problems, and its object is to provide optical signals from each of a plurality of single cells constituting an assembled battery without overlapping on an optical waveguide and in an arbitrary manner.
  • a control device an external control device for controlling each of the plurality of cells, a second optical communication unit provided in the external control device, the first optical communication unit and the second optical communication unit and an optical waveguide provided between, wherein the first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide, and the external control device is a control method executed in a secondary battery module configured to operate as a master that manages the control device as a slave,
  • Each of the first optical communication units has a unique light emission timing and a unique light reception timing
  • the second optical communication unit has a variable light emission timing and a variable light reception timing
  • the control method is the second optical communication unit transmitting a predetermined code by radiating light to the optical waveguide with the variable light emission timing matching the unique light reception timing of the first optical communication unit;
  • optical signals are transmitted and received at arbitrary timing without overlapping on the optical waveguide from each of the plurality of single cells forming the assembled battery.
  • FIG. 1 is a partially cutaway perspective view of a secondary battery module according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing a schematic cross-sectional structure of a cell that is part of a secondary battery module according to one embodiment of the present invention.
  • FIG. 2B is a diagram illustrating a schematic cross-sectional structure of part of the secondary battery module according to one embodiment of the present invention.
  • FIG. 2C is a diagram illustrating another example of the secondary battery module according to the embodiment of the invention shown in FIG. 2B.
  • FIG. 3 is a diagram showing an outline of the configuration of a secondary battery module control device according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing functional blocks of a secondary battery module control device according to an embodiment of the present invention.
  • FIG. 1 is a partially cutaway perspective view of a secondary battery module according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing a schematic cross-sectional structure of a cell that is part of a
  • FIG. 5 is a diagram showing a schematic configuration of an optical communication device provided in a cell of a secondary battery module according to one embodiment of the present invention.
  • FIG. 6 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention.
  • FIG. 7A is a diagram illustrating signals transmitted and received in a secondary battery module according to an embodiment of the present invention and transmitted from a control device.
  • FIG. 7B is a diagram illustrating signals transmitted and received in the secondary battery module according to one embodiment of the present invention, and signals received by the single-cell optical communication device.
  • FIG. 7C is a diagram illustrating signals transmitted and received in the secondary battery module according to the embodiment of the present invention, and signals received by the single-cell optical communication device.
  • FIG. 7A is a diagram illustrating signals transmitted and received in a secondary battery module according to an embodiment of the present invention and transmitted from a control device.
  • FIG. 7B is a diagram illustrating signals transmitted and received in the secondary battery module according to one embodiment of the present invention,
  • FIG. 7D is a diagram illustrating signals transmitted and received in the secondary battery module according to the embodiment of the present invention, and signals received by the single-cell optical communication device.
  • FIG. 8 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention.
  • FIG. 9 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention.
  • FIG. 10 is a perspective view showing an example in which battery cells according to a modification of the present embodiment are stacked in multiple stages.
  • FIG. 11 is a perspective view showing an example in which a battery cell is composed of a single layer.
  • FIG. 12 is a side sectional view of a secondary battery module.
  • FIG. 13A is a plan view of the positive current extraction layer viewed from above.
  • FIG. 13A is a plan view of the positive current extraction layer viewed from above.
  • FIG. 13B is a plan view of the positive current extraction layer viewed from above.
  • FIG. 14 is a plan view showing another form of the positive electrode side current extraction layer viewed from above.
  • FIG. 15A is a plan view of the negative electrode-side current supply layer viewed from below.
  • FIG. 15B is a plan view of the negative electrode-side current supply layer viewed from below.
  • FIG. 16A is an enlarged cross-sectional view of a battery cell as a lithium ion secondary battery.
  • FIG. 16B is an enlarged cross-sectional view of a battery cell as a lithium ion secondary battery.
  • FIG. 17 is a perspective view showing an example of forming an assembled battery in which a plurality of battery cells are stacked and connected.
  • FIG. 18 is a plan view showing an example in which a plurality of current take-out units each including a current take-out portion, a plurality of positive electrode conductive lines, and a positive electrode junction portion are provided.
  • FIG. 19 is a plan view showing an example in which a plurality of battery cells having one current extraction unit provided on one positive electrode current collector are provided.
  • FIG. 20A is a cross-sectional view showing an example in which a small hole penetrating from the upper end to the lower end is formed in the positive current extraction layer.
  • FIG. 20B is a cross-sectional view showing an example in which a small hole penetrating from the upper end to the lower end is formed in the positive current extraction layer.
  • a secondary battery module includes a plurality of stacked unit cells constituting an assembled battery, a plurality of optical communication devices provided in each of the plurality of unit cells, and the plurality of optical communication devices.
  • a control device for controlling each of a plurality of cells, an optical communication device provided in the control device, and a plurality of optical communication devices provided in the plurality of cells and provided in the control device and an optical waveguide provided between the optical communication device.
  • the secondary battery module includes a control device (controlling the plurality of optical communication devices) provided in each of the plurality of cells, and a control device provided in each of the plurality of cells.
  • a control device that controls each of the plurality of cells is also called an external control device.
  • the external control device is configured to operate as a master that manages the control device provided for each of the plurality of cells as a slave.
  • the external control device operating as a master controls the transmission of optical signals from the optical communication device provided in each cell via the control device managed as a slave, whereby each cell can be transmitted and received at arbitrary timing without overlapping on the optical waveguide.
  • the communication device provided in each unit cell has a unique identification code, and unique light emission timing and unique light reception timing.
  • the communication device provided in each cell receives light from the optical waveguide at a unique light receiving timing to receive an optical signal, and emits light to the optical waveguide at a unique light emitting timing to transmit the optical signal. is configured to Further, the communication device provided in each unit cell emits light to the optical waveguide at a unique light emission timing to transmit the optical signal, provided that the received optical signal matches the unique identification code. It is configured.
  • the optical communication device provided in the control device has variable light emission timing and variable light reception timing. The optical communication device provided in the control device radiates light to the optical waveguide by matching the variable light emission timing with the unique light reception timing of the optical communication device provided in the cell selected from the plurality of cells. By doing so, it is configured to transmit the unique identification code of the optical communication device provided in the cell.
  • the optical communication device provided in the control device matches the variable light receiving timing with the light emission timing unique to the optical communication device provided in the single cell selected from the plurality of single cells, and emits light from the optical waveguide. It is configured to receive an optical signal by receiving light.
  • FIG. 1 is a partially cutaway perspective view of a secondary battery module according to one embodiment of the present invention.
  • the secondary battery module of this embodiment is, for example, a lithium ion battery module. More preferably, it is a battery that is highly safe and requires low monitoring density (low frequency of collecting information on temperature and voltage conditions).
  • An example in which a secondary battery module according to an embodiment of the present invention is configured by a lithium ion battery module will be described below.
  • the lithium ion battery module 1 has a plurality of stacked single cells 30 .
  • the lithium-ion battery module 1 also has an optical waveguide 60 arranged adjacent to or in close proximity to the light-emitting surface of the light-emitting portion 20 and the light-receiving surface of the light-receiving portion 21 .
  • the lithium-ion battery module 1 has an exterior body 70 that accommodates the plurality of cells 30 and the optical waveguides 60 .
  • a plurality of stacked single cells 30 constitute an assembled battery 50 .
  • FIG. 1 shows a configuration in which five cells 30 are stacked, more or less than five cells may be stacked. In one implementation, the number of stacks of cells 30 may be 20 or more.
  • a conductive sheet is provided on the uppermost negative electrode current collector of the assembled battery 50 . A part of the conductive sheet is drawn out from the outer package 70 to form the lead wiring 57 . A conductive sheet is provided under the positive electrode current collector on the bottom surface of the assembled battery 50 . A part of the conductive sheet is pulled out from the exterior body 70 to form the lead wiring 59 .
  • Each unit cell 30 has a light emitting unit 20 for transmitting the measured characteristics of the unit cell, such as temperature and voltage, to the outside as an optical signal, and a light receiving unit 21 for receiving an optical signal from the outside. .
  • the optical waveguide 60 has an optical input/output portion from which an incident and propagated optical signal is emitted.
  • light emitted from the light emitting units 20 provided in each of 20 or more single cells 30 arranged adjacent or close to one optical waveguide 60 is optically coupled to form an optical input/output unit.
  • a portion of the optical waveguide 60 is pulled out from the exterior body 70 to serve as an optical input/output section.
  • An optical signal emitted from the optical input/output unit is received by the light receiving unit 80 .
  • the optical waveguide 60 propagates an optical signal incident from the light emitting portion 81 to the optical input/output portion.
  • the external light receiving section 80 and light emitting section 81 and the light emitting section 20 and light receiving section 21 of the plurality of cells 30 perform two-way communication by half-duplex communication.
  • a pair of two optical waveguides 60 i.e., one optical waveguide 60 for communication from the external light emitter 81 to the light receivers 21 of the plurality of cells 30 and from the light emitters 20 of the plurality of cells 30 to the outside.
  • another optical waveguide 60 for communication to the light receiving unit 80 of the external light receiving unit 80 and light emitting unit 81 and the light emitting unit 20 and light receiving unit 21 of the plurality of cells 30 by full duplex communication Two-way communication may be performed.
  • the entire optical waveguide 60 including the optical input/output section may be housed inside the exterior body 70 .
  • the optical signal emitted from the optical input/output portion is received by the light receiving section 80 arranged inside the exterior body 70 , and is also received inside the exterior body 70 .
  • An optical signal incident from the arranged light emitting portion 81 propagates toward the unit cell 30 .
  • FIG. 2A is a diagram showing a schematic cross-sectional structure of a cell that is part of a secondary battery module according to one embodiment of the present invention.
  • FIG. 2B is a diagram illustrating a schematic cross-sectional structure of part of the secondary battery module according to one embodiment of the present invention.
  • FIG. 2C is a diagram illustrating another example of the secondary battery module according to the embodiment of the invention shown in FIG. 2B.
  • each unit cell 30 has a positive electrode current collector 17, a positive electrode active material layer 15, a separator 14, a negative electrode active material layer 11, and a negative electrode current collector 19 stacked in this order from the bottom. It is.
  • the single cell 30 includes a positive electrode 12 in which a positive electrode active material layer 15 is formed on the surface of a positive electrode current collector 17 having a substantially rectangular flat plate shape, and a negative electrode active material layer 15 formed on the surface of a negative electrode current collector 19 having a substantially rectangular flat plate shape.
  • a negative electrode 13 having a material layer 11 formed thereon is laminated with a substantially flat separator 14 interposed therebetween.
  • the unit cell 30 has an annular frame member 18 arranged between the positive electrode current collector 17 and the negative electrode current collector 19 , and the frame member allows the separator 14 to be placed between the positive electrode current collector 17 and the negative electrode current collector 19 . , and seals the positive electrode active material layer 15 , the separator 14 and the negative electrode active material layer 11 .
  • FIG. 2A shows the light-emitting part 20 and the light-receiving part 21 arranged on the wiring board 24 .
  • the wiring board 24 , the light emitting section 20 and the light receiving section 21 constitute an optical communication device provided in the cell 30 .
  • a voltage sensor and a temperature sensor may be arranged on the wiring board 24.
  • part of the light receiving part 21 and the light emitting part 20 is embedded in the frame member 18 and fixed with the insulating resin 25 so as to be exposed from the surface of the frame member 18 that contacts the outside.
  • the surface of the frame member 18 in contact with the outside may be a side surface substantially parallel to the stacking direction of the cells 30, or a concave surface having an opening on the side surface and facing the cell 30 from the side surface (cell 30 may be a surface substantially perpendicular to or substantially parallel to the stacking direction of 30).
  • Cell 30 may be a surface substantially perpendicular to or substantially parallel to the stacking direction of 30.
  • At least a portion of the light receiving surface of the light receiving unit 21 and at least a portion of the light emitting surface of the light emitting unit 20, or at least a portion of the light receiving unit 21 including the light receiving surface and at least a portion of the light emitting unit 20 including the light emitting surface are the frame member 18.
  • Two cells 30 adjacent to each other in the assembled battery 50 are stacked such that the upper surface of the negative electrode current collector 19 of one cell 30 and the lower surface of the positive electrode current collector 17 of the other cell 30 are adjacent to each other. .
  • FIG. 2B is a diagram showing a schematic cross-sectional structure of part of the secondary battery module according to one embodiment of the present invention.
  • FIG. 2B illustrates a structure in which a portion of the optical waveguide 60 is pulled out from the exterior body 70 and becomes an optical input/output section.
  • the optical waveguide 60 extending in the stacking direction of the unit cells 30 is arranged adjacent to or close to the light emitting surface of the light emitting section 20 and the light receiving surface of the light receiving section 21 .
  • the optical waveguide 60 may be, for example, an optical fiber, or may be a light guide plate having a sufficient width (length in the direction perpendicular to the stacking direction of the cells) to receive the optical signal from the light emitting section 20 .
  • the width dimension of the optical waveguide 60 is the maximum dimension of the light emitting surface of the light emitting part 20 and the light receiving part 21 (the diameter if the light emitting surface and the light receiving surface are circular, and the diagonal if the light emitting surface and the light receiving surface are rectangular). ) should be larger than FIG. 2B shows a case where the optical waveguide 60 is configured using a light guide plate.
  • the optical waveguide 60 is arranged so as to cover all of the light emitting surfaces of the plurality of light emitting portions 20 and the light receiving surfaces of the light receiving portions 21 (each corresponding to the plurality of stacked unit cells 30). can be placed.
  • the light emitting direction of the light emitting unit 20 and the light receiving direction of the light receiving unit 21 are covered.
  • An optical waveguide 60 can be arranged.
  • the optical signal output from the light emitting unit 20 is more likely to enter the light guide plate, and the light output from the light guide plate Positioning of the optical waveguide, which makes it easier for the signal to enter the light receiving portion 21, thereby eliminating the need for additional parts such as lenses for condensing the optical signal between the light emitting portion 20 and the light receiving portion 21 and the optical waveguide 60. is reduced, or the allowable amount of misalignment is increased.
  • additional parts such as lenses may be used.
  • the optical waveguide 60 extending in the stacking direction of the unit cells is exemplified, it is also possible to use the optical waveguide 60 extending in a direction orthogonal to the stacking direction of the unit cells.
  • the light guide plate as the optical waveguide 60 can cover all of the light emitting surfaces of the plurality of light emitting units 20 and the light receiving surfaces of the light receiving units 21 .
  • the optical waveguide 60 corresponds to the position of the back surface corresponding to the position of the surface receiving the optical signal from the light emitting unit 20 or the position of the surface emitting the optical signal to the light receiving surface of the light receiving unit 21.
  • Scattering processing 60a is applied to the position of the back surface.
  • the scattering processing 60a is applied to positions corresponding to the light-emitting surface of the light-emitting portion 20 and the light-receiving surface of the light-receiving portion 21 adjacent or close to each other.
  • the scattering processing 60a can be, for example, uneven processing. A portion of the optical signal that enters the optical waveguide 60 and is scattered by the scattering processing 60a propagates in the direction of the optical output section.
  • the optical waveguide 60 is subjected to reflection processing 60b in the bent portion, so that the optical signal scattered by the bent portion can be reflected in the direction of the optical input/output portion.
  • reflection processing 60b is applied to the end opposite to the end serving as the light input/output portion of the optical waveguide 60 and the bent portion. can be reflected in the direction of the optical input/output section.
  • FIG. 2C illustrates a structure in which the entire optical waveguide 60 including the optical input/output section is accommodated inside the exterior body 70, which is another example of FIG. 2B.
  • a lead-out portion is not required as shown in the optical waveguide 60 shown in FIG. 2B.
  • An optical signal emitted from the optical input/output part in the exterior body 70 is received by the light receiving part 80 arranged adjacent to the optical waveguide 60 inside the exterior body 70 , and is received by the optical waveguide 60 inside the exterior body 70 .
  • An optical signal incident from the adjacently arranged light emitting portion 81 propagates toward the unit cell 30 .
  • the optical signal received by the light receiving unit 80 is converted into an electric signal and transmitted to the control unit 90 outside the exterior body 70 via the lead wiring 82 .
  • An electrical signal from the control unit 90 outside the exterior body 70 is transmitted to the interior of the exterior body 70 via the lead wire 83 and converted into an optical signal by the light emitting section 81 .
  • FIG. 3 is a diagram showing a schematic configuration of a control device for a secondary battery module according to one embodiment of the present invention.
  • the control device 100 includes a control section 90, a light receiving section 80, and a light emitting section 81 arranged on a control board (not shown).
  • the control device 100 has an oscillator such as a crystal oscillator (not shown) on its substrate, and supplies a relatively high-precision clock to the control section 90 .
  • the control device 100 may be powered by the lithium-ion battery module 1 or may be powered by another power source.
  • the control unit 90 controls the variable light emission timing of the light emitting unit 81 and the variable light receiving timing of the light receiving unit 80 as described later.
  • the controller 90 may be a general-purpose processor or a dedicated processor.
  • the processor may have built-in storage or may cooperate with external storage (not shown).
  • the light emitting section 81 can be configured using an LED element or the like.
  • the light receiving section 80 can be configured using a photodiode, a phototransistor, or the like.
  • the light-receiving section 80 may be configured using an LED element, which is a light-emitting element, as a light-receiving element.
  • the light emitting unit 81 and the light receiving unit 80 constitute an optical communication device.
  • the time interval from ON to OFF of the light emission of the light emitting unit 81 (corresponding to the pulse width of one light pulse transmitted from the light emitting unit 81) is controlled by the control unit 90 and is variable. Here, it is called variable light emission timing.
  • the time interval (corresponding to the pulse width of one light pulse) from ON to OFF of light sampling by the light receiving unit 80 is controlled and variable by the control unit 90 . Here, it is called variable light receiving timing.
  • FIG. 4 is a diagram showing functional blocks of a control device for a secondary battery module according to one embodiment of the present invention.
  • the control unit 90 functions as a light emission timing setting unit 91 , a light reception timing setting unit 92 , a cell selection unit 93 , a cell information storage unit 94 , a cell timing measurement unit 95 and a cell timing setting unit 96 .
  • the light emission timing setting unit 91 sets the variable light emission timing of the light emitting unit 81 to transmit the optical signal.
  • the light receiving timing setting section 92 sets the variable light receiving timing of the light receiving section 80 in order to receive the optical signal.
  • the unit cell information storage unit 94 stores information on the plurality of unit cells 30 that make up the assembled battery 50 .
  • the information of the single cell 30 includes, for example, a unique identification code, a unique light emission timing, a unique light reception timing, etc. possessed by the optical communication device of each single cell.
  • the unit cell selection unit 93 selects targets for transmitting and receiving optical signals from among the plurality of unit cells 30 .
  • the unit cell selection unit 93 reads the unique identification code, the unique light emission timing, or the unique light reception timing of the optical communication device of the unit cell 30 selected from the unit cell information storage unit 94, and sets the light emission timing setting unit 91 or the light reception timing. It is supplied to the setting section 92 .
  • the single cell timing measurement unit 95 measures (determines) the unique light emission timing and unique light reception timing of the single cell 30 by the method described with reference to FIG.
  • the unit cell timing measurement unit 95 stores the unique light emission timing and the unique light reception timing of the unit cell 30 in the unit cell information storage unit 94 .
  • the single cell timing setting unit 96 sets the unique light emission timing and unique light receiving timing of the plurality of single cells 30 forming the assembled battery 50 by the method described with reference to FIG. Adjustments are made so that the unique light emission timings and unique light receiving timings of the plurality of cells 30 do not overlap.
  • the single cell timing setting unit 96 stores the set unique light emission timing and unique light receiving timing of the single cell 30 in the single cell information storage unit 94 .
  • FIG. 5 is a diagram showing a schematic configuration of an optical communication device provided in a cell of a secondary battery module according to one embodiment of the present invention.
  • the communication device includes a control circuit 23, a light emitting section 20, and a light receiving section 21 arranged on a wiring board 24.
  • FIG. The communication device is driven by the corresponding cell 30 as a power source.
  • a sensor (not shown) for measuring the measured temperature and voltage of the cell may also be arranged on the wiring board 24 .
  • the control circuit 23 controls the light emitting section 20 to transmit an optical signal in response to a predetermined code from the control device 100 received via the light receiving section 21 .
  • the control circuit 23 can consist of a microcontroller with a CR (capacitor, resistor) oscillator. Since the CR oscillator consumes less power than the crystal oscillator, it is possible to reduce the power consumption of the cell 30, which is the power supply. The accuracy of CR oscillators is lower and more variable than that of crystal oscillators. This embodiment utilizes the accuracy feature of the CR oscillator.
  • the control circuit 23 may reset the transmitter in response to a predetermined code (reset code) from the control device 100 received via the light receiving section 21 . Alternatively, the control circuit 23 may set the light receiving timing of the light receiving unit 21 and the light emitting timing of the light emitting unit 20 in response to a predetermined code (setting code) received from the control device 100 via the light receiving unit 21 .
  • the light emitting section 20 and the light receiving section 21 can be configured similarly to the light emitting section 81 and the light receiving section 80 . Since the transmission frequencies of the CR oscillators of the plurality of unit cell communication devices constituting the assembled battery 50 are different, the light emission timing of the light emission unit 20 of each optical communication device (time interval from light emission ON to OFF (transmission from the light emission unit 20 (pulse width of one optical pulse)) and light receiving timing of the light receiving unit 21 (time interval from ON to OFF of sampling of light (pulse width of one optical pulse)) are unique according to the accuracy of the CR oscillator. is the timing.
  • the control circuit 23 when the control circuit 23 resets the oscillator in response to the reset code, the light emission timing specific to the light emitting unit 20 and the light receiving timing specific to the light receiving unit 21 are also reset. Independent of the accuracy of the CR oscillator, the control circuit 23 responds to the setting code so that the light emission timing of the light emitting unit 20 and the light receiving timing of the light receiving unit 21 of each communication device are different from each other. may be set. A setting code from the control device 100 to the optical communication device of the cell 30 may indicate the offset. The light emission timing of one light emitting unit 20 and the light receiving timing of the light receiving unit 21 are equal, but they may be set differently.
  • the optical communication device provided in the unit cell of the secondary battery module is configured to be driven using the corresponding unit cell 30 as a power supply
  • the electric power converted from the optical signal by the light receiving unit 21 It may be configured to drive using signal power as a power source.
  • a capacitor (not shown) for storing the power of the electrical signal converted from the optical signal by the light receiving unit 21 is provided on the wiring board 24, and the stored power is used as the power of the electrical signal converted from the optical signal.
  • an element included in the control circuit 23 may be driven, or the light emitting section 20 may be driven to transmit an optical signal.
  • power can be supplied from the control device 100 to drive the optical communication device provided in the unit cell through the transmission of the optical signal, and the power consumption of the unit cell by the optical communication device can be reduced. becomes possible.
  • FIG. 6 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention.
  • the control device 100 allows optical signals to be transmitted and received from each of the plurality of single cells 30 forming the assembled battery at arbitrary timing without overlapping on the optical waveguide.
  • the object to which the control device 100 transmits and receives the optical signal is indicated as the cell 301, and the remaining cells are indicated as the cell 30k ( k ⁇ 1 ).
  • control device 100 (cell selection unit 93 ) selects the cell 301 .
  • control device 100 reads the light emission timing and light reception timing unique to the optical communication device of the selected cell 301 from the cell information storage unit 94 .
  • the control device 100 sets the variable light emission timing of the optical communication device of the control device 100 to the read unique light reception timing, and transmits a predetermined code (light signal) through the light emission unit 81 . ).
  • the predetermined code may include any code known to the optical communication device of the plurality of cells 30, plus or additionally a unique identification code of the optical communication device of the selected cell 301. may contain.
  • the predetermined code may include an error detection code to improve detection accuracy of the cell 30 in the optical communication device.
  • FIG. 7A schematically shows an optical signal transmitted in S503 by matching the light receiving timing specific to the unit cell 301 for which the variable light emitting timing is selected.
  • the optical signal is composed of 1010101 optical pulse trains, and the pulse width of each optical pulse is determined by the unique light receiving timing of the optical communication device of the unit cell 301 ( each optical pulse of the optical pulse train sampled and decoded by the light receiving unit 21). pulse width).
  • control device 100 determines whether or not a predetermined time has elapsed, and returns to S503 if the predetermined time has elapsed.
  • each of the light receiving units 21 of the cells 30 1 and 30 k receives light and decodes it at a unique light receiving timing.
  • FIG. 7B schematically shows an optical pulse train received and decoded by the light receiving section 21 of the cell 301.
  • the pulse width of each decoded optical pulse matches the pulse width of each optical pulse in the optical pulse train shown in FIG. 7A.
  • 7C and 7D schematically show an optical pulse train received and decoded by the light receiving section 21 of the cell 30k .
  • the pulse width of each optical pulse decoded at the unique light receiving timing of the optical communication device of the single cell 30k different from the unique light receiving timing of the optical communication device of the single cell 301 is equal to that of each light of the optical pulse train shown in FIG. 7A. Does not match the pulse width of the pulse.
  • control circuits 23 of the cells 30 1 and 30 k determine whether the decoded optical signal matches a known predetermined code.
  • the process proceeds to S506, and the control circuit 23 of the cell 301 transmits an optical signal via the light emitting section 20 at a unique light emission timing. do.
  • the process proceeds to S507, and the control circuit 23 of the cell 30k does not transmit the optical signal.
  • control device 100 (light receiving timing setting unit 92) sets the variable light receiving timing of the optical communication device of the control device 100 to the read unique light emitting timing, and transmits a signal (optical signal) through the light receiving unit 80. receive.
  • control device 100 allows the optical signal to be optically guided at an arbitrary timing with the unit cell selected from the plurality of unit cells 30 constituting the assembled battery.
  • Optical signals can be transmitted and received without overlapping on the road.
  • FIG. 8 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention.
  • the operation of measuring (determining) the unique light emission timing and unique light reception timing of the optical communication device of the cell 30 and storing them in the cell information storage unit 94 will be described with reference to FIG.
  • the operation of FIG. 8 is an operation of measuring (determining) the unknown unique light emission timing and unique light reception timing of the optical communication device of the cell 30 by trial and error.
  • the operation of FIG. 8 can be performed before the operation of reading the timing specific to the unit cell selected in S502 of FIG. 6, or as an additional operation or an alternative operation to the operation.
  • a case will be described where the unknown unique light emission timing and unique light reception timing of the optical communication device of the unit cell 301 are measured (determined) by the operation of FIG.
  • the control device 100 selects or changes the variable light emission timing of the optical communication device of the control device 100.
  • the variable light emission timing and variable light reception timing of the optical communication device can range from the minimum value to the maximum value that can be set based on a relatively high-precision clock such as a crystal oscillator provided in the control device 100, for example.
  • a relatively high-precision clock such as a crystal oscillator provided in the control device 100, for example.
  • the minimum and maximum values of the variable light emission timing and the variable light reception timing there is included the light emission timing and light reception timing unique to the optical communication device of the single cell 30 based on the CR oscillator, which has lower precision than the crystal oscillator. In this case, in S701, it is possible to sequentially select (change) from the minimum value to the maximum value of the variable light emission timing.
  • the control device 100 sets the variable light emission timing of the optical communication device of the selected (changed) control device 100, and transmits a predetermined code (optical signal) through the light emission unit 81. Send.
  • a predetermined code optical signal
  • the predetermined code may include, for example, any code known to the optical communication device of the plurality of unit cells 30, similar to S503 in FIG. A unique identification code for the optical communication device may be included. Further, the predetermined code may include an error detection code to improve detection accuracy in single cell optical communication devices. Assume that the optical signal transmitted in S702 is the same as in FIG. 7A.
  • control device 100 determines whether or not a predetermined time has elapsed, and returns to S701 if the predetermined time has elapsed.
  • each of the light receiving units 21 of the cells 30 1 and 30 k receives light and decodes it at a unique light receiving timing.
  • control circuits 23 of the cells 30 1 and 30 k determine whether the decoded optical signal matches a known predetermined code.
  • the decoded optical signal becomes the optical pulse train shown in FIG. 7C or FIG. 7D, and if it does not match the known predetermined code (NO in S704 ), proceed to S706 to The control circuit 23 does not transmit optical signals.
  • control circuit 23 of the cell 301 transmits an optical signal via the light emitting section 20 at a unique light emission timing.
  • the control circuit 23 of cell 30 1 can transmit a unique identification (ID) code as an optical signal to indicate that the optical signal is being transmitted from cell 30 1 .
  • ID unique identification
  • control device 100 (light receiving timing setting unit 92) sets the variable light emission timing of the optical communication device of the control device 100 selected (changed) in S701, and transmits a signal (optical signal) via the light receiving unit 80. receive.
  • the control device 100 determines that the variable light emission timing and the variable light reception timing of the optical communication device of the control device 100 selected (changed) in S701 are , is determined to be the timing of light reception and the timing of light emission unique to the optical communication device of the single cell 301, and is stored in the single cell information storage unit 94 in association with the unique identification (ID) code of the optical communication device of the single cell 301.
  • ID unique identification
  • the control device 100 determines whether or not the unique identification (ID) codes of the optical communication devices of all the single cells 30 are stored in association with the unique light emission timing and light reception timing. . If the unique identification (ID) codes of the optical communication devices of all the cells 30 are not stored (NO in S710), the process returns to S701. When the unique identification (ID) codes of the optical communication devices of all the cells 30 have been stored, the operation shown in FIG. 8 ends.
  • control device 100 can know the specific light emission timing and specific light reception of the plurality of single cells 30 constituting the assembled battery.
  • FIG. 9 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention.
  • control device 100 transmits a predetermined code including a setting code to the optical communication device of a specific cell 30 to the optical communication device of cell 30, the optical communication device of cell 30
  • the operation of setting the light emission timing and the unique light reception timing of is explained.
  • the reset code is used as the setting code
  • the operation of FIG. Allows you to reset timings.
  • the setting code indicates the offset of the unique light emission timing and the unique light reception timing
  • the operation of FIG. It is possible to set the unique light emission timing and the unique light reception timing of the optical communication device of a plurality of single cells 30 so as to be different from each other.
  • a case of setting the unique light emission timing and the unique light reception timing of the optical communication device of the unit cell 30k by the operation of FIG. 9 will be described.
  • control device 100 selects and changes the variable light emission timing of the optical communication device of the control device 100.
  • the control device 100 (light emission timing setting unit 91) sets the variable light emission timing of the optical communication device of the selected (changed) control device 100, and transmits a predetermined code (optical signal) through the light emission unit 81. Send.
  • a predetermined code optical signal
  • the predetermined code may be a unique identification (ID) code for the optical communication device of the cell 30k. Further, the predetermined code may include an error detection code to improve detection accuracy in single cell optical communication devices.
  • control device 100 determines whether a predetermined time has elapsed, and returns to S801 if the predetermined time has elapsed.
  • the light receiving unit 21 of the cell 30k receives light and decodes it at a unique light receiving timing.
  • control circuit 23 of the cell 30k determines whether the decoded optical signal matches the unique identification (ID) code of the optical communication device of the cell 30k .
  • control circuit 23 of the cell 30k transmits an optical signal via the light emitting section 20 at a unique light emission timing.
  • the control circuit 23 of the cell 30k can transmit a unique identification (ID) code as an optical signal to indicate that the optical signal is being transmitted from the cell 30k .
  • ID unique identification
  • control device 100 (the light receiving timing setting unit 92) sets the variable light receiving timing corresponding to the variable light emitting timing of the optical communication device of the control device 100 selected (changed) in S801. Receive a signal (optical signal).
  • control device 100 determines whether the received optical signal matches the unique identification (ID) code of the optical communication device of the cell 30k .
  • the optical signal is assumed to be transmitted from the optical communication device of a unit cell other than the unit cell 30k , and the process proceeds to S801. return.
  • ID unique identification
  • a predetermined code (optical signal) is transmitted at the variable light emission timing selected and set in S801. .
  • the predetermined code can be setting information (setting code, optical signal) for setting unique timing. Additionally or alternatively, the predetermined code (optical signal) may include a unique identification code of the optical communication device of the unit cell 30k to be measured. Further, the predetermined code may include an error detection code to improve detection accuracy in single cell optical communication devices.
  • the setting code may be a reset code for resetting a transmitter such as a CR oscillator, and may indicate a unique light emission timing and a unique light reception timing offset.
  • the light receiving unit 21 of the unit cell 30k receives light and decodes it at a unique light receiving timing. Thereby, the setting code (reset code, information indicating the offset) is decoded.
  • the control circuit 23 of the cell 30k sets the unique light emission timing and light reception timing of the optical transmitter of the cell 30k according to the decoded setting code (reset code, information indicating offset). If the setting code is a reset code, the control circuit 23 resets the oscillator. Through resetting the oscillator, the intrinsic light emission timing and light reception timing are reset. If the setting code indicates an offset, the control circuit 23 offsets the inherent light emission timing and light reception timing. As a result, the pulse width of one optical pulse transmitted from the light emitting unit 20 of the optical communication device of the unit cell 30 k and the pulse width of one optical pulse received by the light receiving unit 21 are offset. The pulse width of one optical pulse transmitted from the light emitting unit 20 and the pulse width of one optical pulse received by the light receiving unit 21 of the optical communication device are different.
  • the shape of the main surface of the stacked battery (the end face in the stacking direction of a stacked battery in which almost planar batteries are stacked) is placed on both ends in the stacking direction.
  • a current collector (current extraction portion) having substantially the same shape as the current collector is arranged, and the current collectors at both ends are connected to electrode tabs (terminals). This electrode tab is drawn out of the battery package.
  • a certain region (hereinafter also referred to as a specific region) on the main surface of the positive electrode current extraction portion (the end surface in the stacking direction of the stacked battery) is provided from the electrode tab connected to the positive electrode current extraction portion. ), and through a certain portion on the main surface of the laminated battery that is in contact with this specific region, to a certain region (hereinafter also referred to as a specific region) on the main surface of the negative electrode current extraction portion that is in contact with the same portion. , to the electrode tab connected to the negative electrode current extraction part.
  • the electric resistance is usually not uniform in each specific region of the current path.
  • FIG. 10 and 11 are perspective views showing a secondary battery module 1 to which the present invention is applied.
  • 12 is a side sectional view of FIG. 11;
  • FIG. 1 a negative electrode 2 composed of a negative electrode current collector 51 and a negative electrode active material layer 52, and a positive electrode 3 composed of a positive electrode active material layer 54 and a positive electrode current collector 55 are laminated with a separator 53 interposed therebetween.
  • Battery cells 40 each formed of a single cell on a flat plate are stacked in a plurality of stages. That is, the battery cell 40 constituting the secondary battery module 1 has a negative electrode current collector 51, a negative electrode active material layer 52, a separator 53, a positive electrode active material layer 54, and a positive electrode current collector 55 stacked upward. , is formed in a substantially rectangular flat plate shape as a whole.
  • FIGS. 10 to 12 are opposite in polarity to FIGS. 1 and 2A to 2C in the above-described embodiment, and correspond to the state in which FIGS. 1 and 2A to 2C are turned upside down. .
  • the secondary battery module 1 further includes an annular frame member 9 arranged around the periphery of the battery cells 40 .
  • the frame member 9 supports the separator 53 by embedding the end portion of the separator 53, and the frame member 9 brings the positive electrode current collector 55 and the negative electrode current collector 51 into surface contact with the upper surface and the lower surface thereof. They are fixed on top of each other.
  • the negative electrode active material layer 52 and the positive electrode active material layer 54 are firmly prevented from leaking to the outside. It becomes possible to seal to Further, the frame member 9 can determine the positional relationship among the negative electrode current collector 51 , the separator 53 , and the positive electrode current collector 55 .
  • the gap between the negative electrode current collector 51 and the separator 53 and the gap between the separator 53 and the positive electrode current collector 55 are adjusted in advance according to the capacity of the battery.
  • the negative electrode current collector 51, the separator 53, and the positive electrode current collector 55 can be fixed to each other.
  • the battery cell 40 includes the light emitting unit 20 and the light emitting unit 20 arranged on the wiring board 24, as in FIGS.
  • a communication device or the like having a light receiving portion 21 and a control circuit 23 is provided
  • the secondary battery module 1 includes an optical waveguide 60, a control device 100 having a light emitting portion 81, a light receiving portion 80, and a control portion 90. is provided.
  • the secondary battery module 1 may also be configured without the communication device, the optical waveguide 60, the control device 100, and the like. Moreover, as shown in FIGS. 11 and 12, the secondary battery module 1 does not have a communication device, an optical waveguide 60, a control device 100, and the like, and is composed of a single layer without stacking the battery cells 40. is also conceivable.
  • the negative electrode side current extraction layer 10 is laminated in a planar shape
  • the positive electrode side current extraction layer 16 is similarly laminated in a planar shape.
  • the positive current extraction layer 16 and the negative current extraction layer 10 should be in contact with at least one surface of the outermost layer.
  • the electricity storage element composed of the negative electrode current collector 51, the negative electrode active material layer 52, the separator 53, the positive electrode active material layer 54, and the positive electrode current collector 55 described below is an example.
  • a negative electrode active material layer 52, a separator 53, and a positive electrode active material layer 54 are provided, and the positive electrode side current extraction layer 16 and the negative electrode side current extraction layer 10 may be in contact with at least one surface of the outermost layer.
  • the positive electrode-side current extraction layer 16 is formed on the upper surface of the positive electrode current collector 55 and is made of an insulator. As shown in FIG. 10, the positive electrode-side current extraction layer 16 is divided into current extraction portions 6 corresponding to a plurality of sections.
  • the partitions are provided in substantially uniform shapes and positions in the positive electrode side current extraction layer 16 and the negative electrode side current extraction layer 10 to be described later.
  • substantially uniform shape as used herein means not only uniformity in terms of mutual shapes, but also uniformity in area. Also, the respective regions are not limited to a completely equal relationship, and may be approximately equal (substantially equal).
  • This section is configured by dividing the back side of the positive electrode current extraction layer 16 .
  • the current extraction part 6 may be completely physically separated in the positive electrode side current extraction layer 16, but is not limited to this. Although not physically separated, an apparent boundary is provided. It may be as small as it is.
  • the term "apparent boundary” as used herein refers to a mere boundary allocated for design purposes, that is, a single positive current extraction layer 16 that has no boundary as a whole, although it is separated as a boundary on the design drawing. It may be configured. Also, the current extractor 6 corresponding to this section may be physically clearly separated.
  • the positive electrode current extraction layers 16 are separated by an insulator or the like so as to form mutually independent sections.
  • the positive electrode-side current extraction layer 16 is physically divided into a plurality of compartments, not only the positive electrode-side current extraction layer 16 but also the negative electrode current collector 51, the negative electrode active material layer 52, the separator 53, and the positive electrode, which constitute the battery cell 40.
  • the active material layers 54 may also be similarly separated via an insulator or the like.
  • FIG. 13A is a plan view of the positive electrode-side current extraction layer 16 viewed from above when focusing on one current extraction portion 6 .
  • the current extracting ends 36 a to 36 d are electrically connected to the positive current collector 55 .
  • a plurality of positive electrode conductive wires 22a to 22d are provided for electrically connecting the current extraction end portions 36a to 36d to the positive electrode merging portion 26.
  • the current extraction end portion 36, the positive electrode conductor wire 22, and the positive electrode junction portion 26 are also referred to as a current extraction wire.
  • the lengths from the current extracting ends 36a to 36d of the positive electrode conductors 22a to 22d to the positive electrode junction portion 26 are substantially the same.
  • the term “substantially the same” as used herein is not limited to the case where the lengths are completely the same.
  • the current extraction portion 6 in the positive electrode side current extraction layer 16 is divided into a plurality of regions 32a to 32d having substantially uniform upper surfaces.
  • the term "substantially uniform” as used herein means that the shapes of the regions 32a to 32d are completely symmetrical, and the regions 32a to 32d have the same area. is slightly off from perfect symmetry, and an error may occur in the areas between the regions 32a to 32d.
  • the electric resistances from the current extraction ends 36a to 36d of the positive electrode conductors 22a to 22d to the positive electrode junction portion 26 may be substantially the same.
  • the positive electrode conductors 22a to 22d may have different materials, lengths, and diameters as long as they have substantially the same electrical resistance. It is preferable that the electrical resistances are approximately equal to each other if they are 20% or less, and more preferably 10% or less or 5% or less.
  • areas 32a to 32d do not need to consist of areas that are clearly physically separated, and may be areas that are not physically separated and are separated beyond what they appear to be.
  • the term "apparent division” as used herein means a division allocated in design, that is, although it is divided as a region on the design drawing, it is actually a positive electrode side current extraction layer 16 that does not have any division as a whole. It may be configured. Also, the regions 32a to 32d may be composed of physically distinct regions. In such a case, the positive current extraction layer 16 is separated by an insulator or the like so as to form independent regions 32a to 32d.
  • the positive electrode current extraction layer 16 When the positive electrode current extraction layer 16 is physically divided into a plurality of regions 32a to 32b, not only the positive electrode current extraction layer 16 but also the negative electrode current collector 51, the negative electrode active material layer 52, and the separator that constitute the battery cell 40. 53 and the positive electrode active material layer 54 may be similarly separated via an insulator or the like.
  • the regions 32a to 32d are formed by equally dividing the positive electrode side current extraction layer 16, which is square in plan view, into four parts, and are exactly square in plan view.
  • the regions 32a to 32d are not limited to having such a shape, and if the positive electrode-side current extraction layer 16 is rectangular in plan view, it can be It may be configured in a rectangular shape divided into four.
  • the positive current extraction layer 16 is divided into four regions 32a to 32d has been described as an example. It may be configured by being divided. Even in such a case, it is assumed that the regions 32 are configured to be equal to each other. It may be understood that there is. Also, the respective regions are not limited to a completely equal relationship, and may be approximately equal (substantially equal).
  • the current extraction ends 36a-36d are provided substantially at the center of the above-described regions 32a-32d.
  • the positive electrode confluence portion 26 is located at the center of the positive electrode current collector 55 composed of the regions 32a to 32b, and is provided at a confluence point where the boundaries of the regions 32a to 32b intersect each other at one point.
  • positive electrode conductive wires 22a to 22d extend linearly toward the positive electrode confluence portion 26 from current extracting ends 36a to 36d provided substantially at the center of regions 32a to 32d. That is, the positive electrode conductors 22a to 22d are linearly extended toward the positive junction 26 from the current extraction ends 36a to 36d provided substantially at the center of the regions 32a to 32d that are evenly provided.
  • the lengths of the positive electrode conductors 22a to 22d are designed to be the same as each other, but they do not necessarily have to be exactly the same, and there is some length deviation between the positive electrode conductors 22a to 22d. is acceptable.
  • an extraction wiring 8 made of a conductor layer for supplying current to the electric circuit during discharge is connected. That is, one extraction wiring 8 connected to the positive junction 26 is assigned to each current extraction portion 6 .
  • the extraction wiring 8 for extracting this current, and the current extraction line including this, are provided independently for each current extraction section 6, so that the current is independently extracted for each current extraction section 6 corresponding to the section. becomes possible.
  • the lead wiring 8 may be drawn out side by side with the lead wiring 7 in the same manner as the lead wiring 57 in FIG. 1 of the above-described embodiment.
  • FIG. 13B shows an example in which the configurations of the positive electrode conductive wire 22 and the positive electrode junction portion 26 are omitted.
  • at least one lead wire 8 extending from one current take-out end 36 is provided in each current take-out portion 6 corresponding to the section. It may be extended. Note that, even in such a case, the lead wiring 8 may be branched in different directions along the way. Also, in the example shown in FIG. 13B, the concept of the area 32 may be abstracted.
  • the positive electrode current collector 55 is formed at the center of the positive electrode current collector 55 composed of the regions 32a to 32b. For example, as shown in FIG. It may be
  • the wiring composed of the current extracting ends 36a to 36d, the positive electrode conductors 22a to 22d, and the positive electrode merging portion 26 is not essential, and at least the wiring provided with the current extracting end 36 is used. It is good if there is At this time, the current extraction end portion 36 is configured to penetrate the positive electrode current extraction layer 16 from the upper end to the lower end, so that when another circuit is connected to the upper portion of the positive electrode current extraction layer 16, It is possible to improve convenience.
  • the negative electrode-side current extraction layer 10 is formed on the lower surface of the negative electrode current collector 51 as shown in FIG. 15A, and is made of an insulator. In other words, in the negative electrode current extraction layer 10, a plurality of current extraction end portions 35a to 35d are connected to the lower surface of the negative electrode current collector 51 as conductors. The current extracting ends 35 a to 35 d are electrically connected to the negative electrode current collector 51 .
  • the negative current extraction layer 10 is also divided into a plurality of current extraction portions 6' corresponding to the divisions.
  • a current flows from the battery cell 40 to the current extractor 6'.
  • This current extraction portion 6' may be completely physically separated in the negative electrode side current extraction layer 10, but is not limited to this. may be provided. Further, the current extracting portion 6' may be configured by physically separating the negative current extracting layer 10 clearly. In such a case, the negative current extraction layers 10 are separated by an insulator or the like so as to form independent current extraction portions 6'.
  • the negative electrode-side current extraction layer 10 When the negative electrode-side current extraction layer 10 is physically divided into the current extraction portions 6′ corresponding to a plurality of sections, not only the negative electrode-side current extraction layer 10 but also the negative electrode current collector 11 and the negative electrode active layer constituting the battery cell 40 are used.
  • the material layer 52, the separator 53, and the positive electrode active material layer 54 may be similarly separated via an insulator or the like.
  • a plurality of negative electrode conductive wires 21a to 21d are provided for electrically connecting the current extraction end portions 35a to 35d to the negative electrode junction portion 25.
  • the current extraction end portion 35, the negative electrode conductor wire 21, and the negative electrode junction portion 25 are also referred to as current extraction wires.
  • the lengths from the current extracting ends 35a to 35d of the negative electrode conductors 21a to 21d to the negative junction 25 are substantially the same.
  • the negative current extraction layer 10 has a lower surface divided into a plurality of regions 31a to 31d that are substantially equal to each other. Details of the regions 31a to 31d are the same as those of the regions 32a to 32d described above.
  • the electrical resistances from the current extraction end portions 35a to 35d of the negative electrode conductors 21a to 21d to the negative electrode junction portion 25 may be substantially the same.
  • the negative electrode conductors 21a to 21d may have different materials, lengths, and diameters as long as they have substantially the same electric resistance. It is preferable that the electrical resistances are approximately equal to each other if they are 20% or less, and more preferably 10% or less or 5% or less.
  • the current extraction ends 35a-35d are provided substantially at the center of the above-described regions 31a-31d.
  • the negative junction 25 is located at the center of the negative current extraction layer 10 composed of the regions 31a to 31d, and is provided at a junction where the boundaries of the regions 31a to 31d intersect at one point. That is, the negative electrode conductors 21a to 21d are linearly extended toward the negative junction 25 from the current extraction ends 35a to 35d provided substantially at the center of the regions 31a to 31d which are evenly provided. , it is obvious that the lengths are geometrically the same.
  • the negative junction 25 is connected to a lead wire 7 made of a conductor layer to which current is supplied from the electric circuit during discharge. That is, one lead wire 7 connected to the negative junction 25 is assigned to the current extraction portion 6' corresponding to each section.
  • the extraction wiring 7 for extracting the current, and the current extraction line including this, are provided independently for each current extraction section 6' according to the section, so that the current is independently extracted for each current extraction section 6'. supply becomes possible.
  • the wiring composed of the current extraction ends 35a to 35d, the negative electrode conductors 21a to 21d, and the negative electrode merging portion 25 is not essential. It is good if it is.
  • the current extraction end portion 35 is configured to pass through the negative electrode current extraction layer 10 from the upper end to the lower end, so that when another circuit is connected to the lower portion of the negative electrode current extraction layer 10, It is possible to improve convenience.
  • FIG. 15B shows an example in which the configuration of the negative electrode conductive wire 21 and the negative electrode junction portion 25 is omitted.
  • each current take-out portion 6' corresponding to the section is provided with at least one lead wire 7 extending from one current take-out end portion 35 as shown in FIG. 15B. It may be extended outside. Also in this case, the lead wiring 7 may be branched in different directions along the way. Also, in the example shown in FIG. 15B, the concept of the area 32 may be abstracted.
  • the battery cell 40 is composed of a so-called lithium ion secondary battery.
  • FIG. 16A shows an enlarged cross-sectional view of a battery cell 40 as a lithium ion secondary battery.
  • the constituent positive electrode active material layer 54 contains the positive electrode active material 42 and the electrolytic solution 43 .
  • the positive electrode terminal of a charger (not shown) is first connected to the positive electrode 3 side, and the negative electrode terminal of the charger is connected to the negative electrode 2 side, and current is supplied.
  • electrons separated from the positive electrode active material 42 containing lithium-transition metal composite oxide or the like flow through an external circuit including a charger and reach the negative electrode active material 41 made of a carbonaceous material or the like.
  • positively charged lithium ions are attracted to the negative electrode 2 side, flow through the electrolytic solution 43, reach the negative electrode active material 41, and are occluded therein.
  • the battery cell 40 is in a fully charged state.
  • An external load (not shown) is connected between the positive electrode 3 and the negative electrode 2 during discharging.
  • the lithium ions occluded in the negative electrode active material 41 return to a stable state as part of the lithium-transition metal composite oxide, so they pass through the electrolyte 43 and move toward the positive electrode. Energy is also consumed when electrons flow from the negative electrode 2 through an external load to the positive electrode 3 side.
  • the material forming the negative current extraction layer 10 and the positive current extraction layer 16 may be composed of insulating resin such as epoxy resin and polytetrafluoroethylene, or may be made of carbon fiber or the like. It may be composed of an elastic material that can be elastically deformed, such as a non-woven fabric.
  • the material forming the negative current extraction layer 10 and the positive current extraction layer 16 may be made of any kind of resin such as polyethylene (PE) or polypropylene (PP).
  • the positive electrode current extraction layer 16, and the current extraction end portion 36, the positive electrode conductive wire 22, and the positive junction 26 included in the positive electrode current extraction layer 16 are functionally classified like a so-called printed circuit board. good. That is, even if the positive current extraction layer 16 is made of an insulator on the printed circuit board, and the current extraction end portion 36, the positive conductive wire 22, and the positive junction 26 are configured as wiring on the printed circuit board. good.
  • the negative electrode current extraction layer 10, and the current extraction end portion 35, the negative electrode conductive wire 21, and the negative junction 25 included in the negative electrode current extraction layer 10 are functionally classified like a so-called printed circuit board. good. That is, even if the negative current extraction layer 10 is composed of an insulator on the printed circuit board, and the current extraction end portion 35, the negative electrode conductive wire 21, and the negative junction 25 are configured as wiring on the printed circuit board. good.
  • the material thereof may be a paper substrate impregnated with phenol resin, or a paper substrate impregnated with epoxy resin.
  • impregnated material glass cloth (woven glass fabric made of glass fibers) impregnated with epoxy resin, paper base material impregnated with polyimide resin, glass cloth base material with fluorine It can be composed of material impregnated with resin, glass cloth substrate impregnated with PPO (Poly Phenylene Oxide) resin, substrate based on metal such as aluminum, or glass ceramic based It may be composed of a substrate.
  • PPO Poly Phenylene Oxide
  • the functions like the printed circuit board it is possible to reduce the contact resistance when connecting directly to other circuits or printed circuit boards (not shown).
  • the positive electrode current extraction layer 16 and the negative electrode current extraction layer 10 with a hard printed circuit board, the current extraction end portion 35, the negative electrode conductive wire 21, the negative junction portion 25, and the current extraction end portion can be formed. 35, the negative electrode conductive wire 21, and the negative electrode merging portion 25, it is possible to improve the easiness of the work. As a result, it is possible to enhance the convenience in providing the wiring described above.
  • the positive current extraction layer 16 and/or the negative current extraction layer 10 may be composed of a flexible printed circuit board, and the flexible printed circuit board is composed of a so-called double-sided board in which circuit boards are formed on both sides.
  • a flexible printed circuit board with a double-sided board By constructing a flexible printed circuit board with a double-sided board in this way, it is possible to increase the degree of freedom in wiring, and since the design is easy, there is the advantage that the equal length can be improved from one side.
  • the flexible printed circuit board by configuring the flexible printed circuit board with a double-sided board, since it includes a through hole between the surfaces from the front surface to the back surface and a conductive part that penetrates between the surfaces, the heat of the battery cell 40 is transferred to the outside of the battery. It also has the advantage of increasing the ability to escape.
  • this flexible printed circuit board may be composed of a single-sided board in which a circuit board is formed only on one side instead of a so-called double-sided board.
  • this single-sided board is slightly inferior to double-sided boards in terms of wiring design and thermal conductivity in the vertical direction of the board, it has excellent cost performance and can be configured with a thin board, so in terms of energy density. is also excellent.
  • the current extraction portions 6, 6' are configured corresponding to a plurality of sections, and the current extraction sections 6, 6' are configured corresponding to each section. It has a current lead-out line independent from the current lead-out portions 6, 6'.
  • the current extraction portion is divided into a plurality of sections in the current extraction layer, and each section has an independent current extraction line.
  • a configuration of a known stacked battery for example, a configuration in which an electrode tab (terminal) is connected to a current collector (current extraction portion) in the outermost layer of the stacked battery
  • current concentrates in a part of the current extraction portion.
  • the current extraction portion is divided into a plurality of sections, each of which has a current extraction line, so the current extraction portions are dispersed.
  • the concentration of current in a certain portion of the current extraction portion is suppressed, so that the distribution of current can be suppressed.
  • the current distribution it is possible to suppress the repetition of deep charging and discharging in a certain part of the laminated battery, thereby suppressing deterioration of the battery.
  • the wiring width and wiring thickness of the lead wirings 7 and 8 provided in each section may be defined based on the following equation (1).
  • the maximum current referred to here is the maximum current that flows through the negative current extraction layer 10 and the positive current extraction layer 16 .
  • the left hand side of equation (1) is the maximum current per compartment, obtained by dividing this maximum current by the number of compartments. Since the wiring width and wiring thickness of the lead wirings 7 and 8 need only exceed the maximum current per section, the wiring thickness (oz) and the wiring width (mm) having the relationship shown on the right side of the equation (1) must be designed with The relationship shown on the right side of the equation (1) is based on the general rule in the industry that a wire with a thickness of 35 oz and a wire width of 1 mm can withstand up to 1 A.
  • the maximum current is 20A and the number of sections is 36, the maximum current per section is 0.55A.
  • the wiring thickness is 70 oz and the wiring width is 0.5 mm, it exceeds 0.55 A, which is the right side of the formula (1), so that the formula (1) is satisfied.
  • the positive electrode side current extraction layer 16, the negative electrode side current extraction layer 10, and the printed circuit board constituting these layers are too thin, it becomes difficult to mount the lead wires 7 and 8 themselves. .
  • the thickness of the positive current extraction layer 16, the negative current extraction layer 10, and the thickness of the printed circuit board constituting these layers be 100 ⁇ m or more.
  • the number of partitions is 4 or more and 40 or less.
  • the lower limit of the number of sections is the electrode area (cm 2 )/400 of the battery cell 40 as a single battery, and the upper limit of the number of sections is the electrode area (cm 2 ) /400 of the battery cell 40 as the single battery. It may be calculated.
  • the current extraction end portion 36, the positive electrode conductive wire 22, the positive junction portion 26, and the lead wire 8 included in the positive electrode side current extraction layer 16 are plated with gold to suppress corrosion of the printed circuit board due to the potential of the battery. can be done.
  • the current extraction end portion 35, the negative electrode conductive wire 21, the negative electrode junction portion 25, and the lead wire 7 are plated with gold to suppress corrosion of the printed circuit board due to the potential of the battery.
  • Materials constituting the current take-out end portion 36, the positive electrode conductive wire 22, and the positive electrode junction portion 26 include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, baked carbon, and conductive polymers. material, conductive glass, and the like.
  • the current extracting end portion 36, the positive electrode conductive wire 22, and the positive electrode junction portion 26 may be composed of a resin current collector made of a conductive polymer material, and constitute the resin current collector.
  • the conductive polymer material for example, a conductive polymer or a matrix resin to which a conductive filler made of a conductive filler is added as needed may be used.
  • the materials forming the current extracting end portion 35 , the negative electrode conductive wire 21 , and the negative electrode junction portion 25 are the same as those of the current extracting end portion 36 , the positive electrode conductive wire 22 , and the positive electrode junction portion 26 .
  • the material constituting the frame member 9 is not particularly limited as long as it has adhesiveness to the negative electrode current collector 51 and the positive electrode current collector 55 and is durable to the electrolytic solution 43 .
  • Specific examples of the material forming the frame member 9 include epoxy-based resin, polyolefin-based resin, polyurethane-based resin, and polyvinylidene fluoride resin. preferable.
  • the negative electrode current collector 51, the negative electrode active material layer 52, the separator 53, the positive electrode active material layer 54, and the positive electrode current collector 55 are stacked in this order.
  • the electrolytic solution 43 is injected, the outer peripheries of the negative electrode active material layer 52, the separator 53 and the positive electrode active material layer 54 are sealed with the frame member 9, and further the negative electrode side current extraction layer 10 and the positive electrode side current extraction layer 16 are formed. It can be obtained by layering.
  • the current extraction end portion 35, the negative electrode conductive wire 21, the negative electrode junction portion 25, the current extraction end portion 36, the positive electrode wire 22, and the positive electrode junction portion 26 are also formed.
  • the negative electrode active material layer 52 and the positive electrode active material layer 54 are bonded to the upper and lower surfaces of one of the frame members 9.
  • a lithium-ion secondary battery consisting of a single cell by a method of bonding and sealing one frame member 9 and the other frame member 9 in a state where the separator 53 is inserted in the other frame member 9.
  • a cell 40 can be obtained.
  • the battery cell 40' configured with a so-called all-solid lithium ion battery, which uses a solid electrolyte 46 as shown in FIG. 16B instead of the liquid electrolytic solution 43, is substituted. You may do so.
  • the configuration of the separator 53 is omitted, and the entire area from the negative electrode 2 to the positive electrode 3 is filled with the solid electrolyte 46 .
  • the negative electrode active material layer 52 the negative electrode active material 41 is interposed in the solid electrolyte 46 .
  • the cathode active material layer 54 the cathode active material 42 is interposed in the solid electrolyte 46 .
  • the details and materials of the components that make up the battery cell 40′ are the same as the components that make up the battery cell 40, so the same reference numerals are used to omit the description below. do.
  • the solid electrolyte 46 includes known solid polymer electrolytes such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • the solid electrolyte 46 contains a supporting salt (lithium salt) to ensure ionic conductivity.
  • LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , or a mixture thereof can be used as the supporting salt.
  • polyalkylene oxide polymers such as PEO and PPO that constitute the solid electrolyte 46 are lithium such as LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 and LiN(SO 2 C 2 F 5 ) 2 . It has the property of being able to dissolve salts well, and by forming a crosslinked structure between the two, excellent mechanical strength can be exhibited.
  • the battery cell 40' using the above-described solid electrolyte 46 as an electrolyte, since the electrolyte has no fluidity, a sealing structure for preventing the electrolyte from flowing out becomes unnecessary, and the configuration of the secondary battery module 1 is simplified. becomes possible.
  • the battery cell 40' by using a solid electrolyte, it is possible to prevent liquid leakage, prevent liquid junction, which is a problem specific to lithium ion secondary batteries, and improve reliability. can be improved.
  • the secondary battery module 1 to which the present invention is applied is not limited to the case where the battery cells 40 of the lithium ion secondary battery are composed of single cells.
  • an assembled battery 50 may be formed by stacking and connecting a plurality of battery cells 40 .
  • the lead wiring 8 provided in the positive electrode side current extraction layer 16 of the battery cell 40 at the top and the battery at the bottom are connected.
  • a current may be freely supplied through the extraction wiring 7 provided in the negative current extraction layer 10 of the cell 40 .
  • the battery cells 40 that are connected to each other are stacked such that the lower surface of the negative electrode current extraction layer 10 and the upper surface of the positive electrode current extraction layer 16 are adjacent to each other.
  • a plurality of battery cells 40 may be connected in parallel, or series connection and parallel connection may be combined. A high capacity and high output can be obtained by configuring the assembled battery 50 in this manner.
  • the lead wires 7 and 8 connected to the negative current extraction layer 10 and the positive current extraction layer 16 of each battery cell 40 may be configured to independently supply current.
  • electrons trying to propagate on the positive electrode current collector 55 are sent from the external circuit to the positive electrode junction portion 26 via the lead wiring 8 .
  • the electrons sent to the positive electrode junction portion 26 are sent to the current extraction end portion 36 via the positive electrode conductive wire 22 . Since the current extraction end 36 is provided in each of the regions 32a to 32d, the electrons in each of the regions 32a to 32d propagate to the positive electrode current collector 55 that constitutes the region 32, and the electrons in the region 32 It propagates to the positive electrode active material layer 54 .
  • the current in each of the regions 32a to 32d in the positive electrode current extraction layer 16 is generated by the current extraction terminal provided in the center of each region 32.
  • the current is extracted independently for each current extraction portion 6' by the portion 36.
  • FIG. The current extracted by each current extraction end portion 36 flows through the positive electrode conductor wire 22 to the positive electrode junction portion 26, and flows from the positive electrode junction portion 26 through the lead wire 8 to the external circuit.
  • a current from an external circuit flows into the negative junction 25 through the lead wire 7 provided in each current extraction portion 6', branches from here to each negative electrode conductive wire 21, and reaches the current extraction end portion 35. . Since the current extracting end portion 35 is provided for each of the regions 31a to 31d, the current can flow through the regions 31a to 31d.
  • the lithium ions occluded in the negative electrode active material 41 move toward the positive electrode active material 42 . Since it is obvious that the lithium ions try to move toward the positive electrode active material 42 in the shortest possible distance, the movement path is perpendicular to the longitudinal direction x and parallel to the thickness direction z. , and linear.
  • the current in each of the regions 32a to 32d in the positive electrode-side current extraction layer 16 flows through the current extraction end 36 provided in the center of each region 32. is taken out by That is, the currents are dispersed in each of the regions 32 a to 32 d and extracted to the current extracting end portion 36 , and the extracted currents are dispersed and flow through the positive electrode conductor wire 22 to be sent to the positive electrode junction portion 26 . Similarly, the current that has flowed into the negative electrode confluence portion 25 is dispersed and branched to each of the negative electrode conductive wires 21 to reach the current extraction end portion 35 .
  • each current extraction portion 6 in the positive current extraction layer 16 is extracted via the current extraction end portion 36 , the positive electrode conductor wire 22 , and the positive electrode junction portion 26 .
  • the current that has flowed into the negative electrode is distributed to the respective current extraction portions 6 ′, branched to the respective negative electrode conductive wires 21 , and reaches the current extraction end portion 35 .
  • the current from the external circuit flows into the negative electrode confluence portion 25, and from there it is dispersed in each negative electrode conductive wire 21 and reaches the current extraction end portion 35. Since the current extracting end portion 35 is provided for each of the regions 31a to 31d, the current can flow through the regions 31a to 31d. As a result, the current flowing through the negative electrode current collector 51 can be distributed without being concentrated in one pole.
  • the current supplied to the negative electrode current collector 51 and the current extracted from the positive electrode current collector 55 can be distributed without being concentrated in the negative electrode current extraction layer 10 and the positive electrode current extraction layer 16 .
  • the current flowing through each negative electrode conductive line 21 and each positive electrode conductive line 22 can be reduced, and the resistance can be decreased.
  • the paths of the current flowing through the negative electrode current extraction layer 10 and the positive electrode current extraction layer 16 via the negative electrode conductive wires 21 and the positive electrode conductive wires 22 have the same propagation distance, The uniformity of the resistance in the current extraction layer 10 and the positive current extraction layer 16 can be achieved.
  • the resistance can be made uniform between the specific regions without generating a local resistance distribution on the negative current extraction layer 10 and the positive current extraction layer 16, and the current can be reduced. can flow evenly. Therefore, in the path corresponding to the specific area, charging and discharging with a relatively deep depth are not repeated compared to other paths, so that deterioration of the battery can be prevented and the life of the battery can be extended.
  • a plurality of positive electrode conductive wires 22 are provided for electrically connecting each current extraction end portion 36 to the positive electrode junction portion 26, and the electrical resistance of the positive electrode conductive wires 22 is , are substantially identical to each other.
  • the current extraction end portions 36 are provided at substantially even positions in the positive electrode side current extraction layer 16 .
  • the current to be extracted from the positive electrode current extraction layer 16 can be extracted more evenly between the plurality of current extraction end portions 36, and the current can be distributed and distributed to the plurality of positive electrode conductive wires 22. This eliminates the occurrence of a portion where a large amount of current flows locally.
  • the positive current extraction layer 16 is divided into a plurality of regions 32 that are substantially equal to each other, and each current extraction end portion 36 is provided substantially at the center of each region 32, so that the positive current extraction layer The current to be tapped at 16 can be tapped more evenly between the plurality of current tapping ends 36 .
  • a plurality of negative electrode conductive wires 21 are provided for electrically connecting each current extraction end portion 35 to the negative electrode junction portion 25, and the electrical resistance of the negative electrode conductive wire 21 is are substantially identical to each other.
  • the current extraction end portions 35 are provided at substantially even positions in the negative electrode current extraction layer 10 .
  • the current to be supplied to the negative electrode current collector 51 can be more evenly supplied among the plurality of current extraction end portions 35 , and a plurality of current extraction end portions 35 are connected to the current extraction end portions 35 .
  • the current can be dispersedly distributed to the negative electrode conductor 21, thereby eliminating the occurrence of a portion where a large amount of current flows locally.
  • the negative electrode-side current extraction layer 10 is divided into a plurality of regions 31 that are substantially equal to each other, and each current extraction end portion 35 is provided substantially at the center of each region 31, so that the negative electrode current collector 51 It becomes possible to more evenly supply the current to be supplied to between the plurality of current extraction end portions 35 .
  • the configuration of the negative junction part 25 may be provided only on the side that produces the above-described operation, and may be omitted on the side that does not produce the operation.
  • FIG. 18 shows an example of configuring a secondary battery module by arranging a plurality of battery cells 40 in parallel.
  • the example of FIG. 19 is an example in which four battery cells 40 arranged in parallel share a common positive electrode junction portion 26 .
  • the positive electrode side current extraction layer 16 in each battery cell 40 is provided with one current extraction end 36 .
  • positive electrode conductors 22a to 22d are extended to the positive electrode confluence portion 26 from respective current extraction end portions 36a to 36d of the four battery cells 40 sharing one positive electrode confluence portion 26.
  • FIG. The electric resistances of the positive electrode conductors 22a to 22d are substantially the same.
  • a positive electrode overall merging portion 72 is separately provided.
  • the positive electrode general junction portion 72 is a portion for collecting the current taken out by each positive electrode junction portion 26 at one place.
  • Each positive electrode junction 26 is electrically connected to the overall positive electrode junction 72 by a unit positive electrode conductor wire 92 .
  • the unit positive electrode conductor wire 92 is similar in material and the like to the positive electrode conductor wire 22 , and has one end connected to the positive electrode junction portion 26 and the other end connected to the positive electrode overall junction portion 72 .
  • the lengths of the unit positive electrode conductors 92 are substantially the same. Since the positions of the positive electrode junctions 26 with respect to the overall positive electrode junction 72 are various, in order to make the lengths of the unit positive electrode conductive wires 92 approximately the same, the wires are intentionally detoured or reciprocated in a certain area. It will be adjusted by, for example, making a conductor shape that allows
  • a plurality of unit positive electrode conductor wires 92 are provided for electrically connecting from the positive electrode junction 26 to the positive electrode overall junction portion 72, and the lengths of the unit positive electrode conductor wires 92 are substantially the same. It is said that As a result, the current to be taken out from the positive electrode current collector 55 can be taken out more evenly between the plurality of positive electrode junction portions 26, and the current can be dispersed and flowed to the plurality of unit positive electrode conductive wires 92. This eliminates the occurrence of a portion where a large amount of current locally flows. As a result, since the current distribution can be made uniform, the deterioration of the battery cell 40 itself can be suppressed, and the life of the battery cell 40 can be extended.
  • the materials, lengths, and diameters may be different from each other. . It is preferable that the electrical resistances are approximately equal to each other if they are 20% or less, and more preferably 10% or less or 5% or less.
  • the unit positive electrode conductive wire 92 starts at the positive electrode junction 26 and ends at the overall positive electrode junction 72, but is not limited to this.
  • each unit positive electrode conductive wire 92 is also served by at least one lead wire 8 extending from one current extraction end portion 36 .
  • the unit positive electrode conductor wire 92 which also serves as the lead wire 8, should have substantially the same electrical resistance from the current extracting end portion 36 to the entire positive electrode confluence portion 72.
  • This overall negative electrode junction portion is a portion for collecting the current to be supplied from each of the plurality of negative electrode junction portions 25 at one point.
  • Each negative electrode junction 25 is electrically connected to the entire negative electrode junction (not shown) by a unit negative electrode conductive line (not shown) corresponding to the unit positive electrode conductive line 92 .
  • a secondary battery module may be configured by arranging a plurality of battery cells 40 in parallel.
  • the four battery cells 40 arranged in parallel may share the common negative electrode junction 25 .
  • the negative current extraction layer 10 in each battery cell 40 is provided with one current extraction end 35 .
  • Negative electrode conductive lines 21 a to 21 d are similarly extended to the negative electrode junction 25 from the respective current extraction end portions 35 a to 35 d of the four battery cells 40 sharing one negative electrode junction 25 .
  • the lengths of the negative electrode conductors 21a to 21d are substantially the same.
  • the lengths of the unit negative electrode conductor wires (not shown) corresponding to the unit positive electrode conductor wires 92 from the negative electrode junction portion 25 to the negative electrode general junction portion (not shown) corresponding to the positive electrode general junction portion 72 are different from each other.
  • each unit negative electrode conductive wire (not shown) is made of the same material and has the same diameter.
  • the electrical resistance between the unit negative electrode conductive lines (not shown) becomes substantially the same.
  • each lead wiring 7 also serves as a unit negative electrode conductive line (not shown).
  • the materials, lengths, and diameters may be different from each other.
  • at least one lead wire 7 extending from one current extraction end portion 35 also serves as each unit negative electrode conductive line (not shown). good too.
  • the positive electrode-side current extraction layer 16 is made of a material in which a small hole 96 penetrating from the upper end to the lower end is formed, the following effects can be obtained. Become. If air bubbles 81 are formed between the positive electrode current extraction layer 16 and the positive electrode current collector 55 during manufacturing, the air bubbles 81 pass through the small holes 96 and are released to the outside by placing in a reduced pressure environment. By doing so, it becomes possible to remove this.
  • a secondary battery module includes an assembled battery in which a plurality of single cells are stacked; a first optical communication unit provided in each of the plurality of cells; a control device provided in the plurality of cells and controlling the first optical communication unit; an external control device that controls each of the plurality of cells; a second optical communication unit provided in the external control device; an optical waveguide provided between the first optical communication unit and the second optical communication unit, The first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide, The external control device is configured to operate as a master that manages the control device as a slave.
  • the two-way communication is half-duplex communication.
  • Each of the first optical communication units having a unique light emission timing and a unique light reception timing, receiving an optical signal by receiving light from the optical waveguide at the unique light receiving timing; On the condition that the received optical signal matches a predetermined code, the optical signal is transmitted by emitting light to the optical waveguide at the unique light emission timing.
  • the second optical communication unit is having variable light emission timing and variable light reception timing, transmitting the predetermined code by radiating light to the optical waveguide by matching the variable light emission timing with the unique light reception timing of the first optical communication unit; An optical signal is received by receiving the light from the optical waveguide by matching the variable light receiving timing with the unique light emitting timing of the first optical communication unit.
  • the second optical communication unit for each of the plurality of cells, transmitting the predetermined code by sequentially changing the variable light emission timing and emitting light to the optical waveguide; receiving an optical signal by receiving light from the optical waveguide by matching the variable light receiving timing with the variable light emitting timing at which the predetermined code is transmitted;
  • the variable light emission timing at which the predetermined code is transmitted is the first optical communication on condition that the optical signal is received at the variable light reception timing that coincides with the variable light emission timing at which the predetermined code is transmitted. It is further configured to determine that it is the unique light receiving timing of the part.
  • the second optical communication unit has a storage unit, The second optical communication unit is further configured to store the determined specific light receiving timing of the first optical communication unit in the storage unit.
  • the predetermined code includes a setting code for setting the specific light emission timing and the specific light reception timing of the first optical communication unit;
  • Each of the first optical communication units The specific light emission timing and the specific light reception of the first optical communication unit based on the setting code included in the predetermined code on condition that the received optical signal matches the predetermined code. It is further configured to set the timing.
  • the setting code is a reset code.
  • the setting code indicates the offset of the unique light emission timing and the unique light reception timing.
  • each of the first optical communication units has a unique identification code;
  • the predetermined code includes the unique identification code.
  • the predetermined code includes an error detection code.
  • the unit cell corresponding to the first optical communication unit is used as a power source.
  • a current extraction layer is in contact with at least one surface of the outermost layer in the assembled battery, the current extraction layer has a current extraction part through which current flows from the laminated battery, The current extraction portion is divided into a plurality of sections in the current extraction layer, and each section has an independent current extraction line.
  • the current extraction portion is divided into 4 or more and 50 or less sections in the current extraction layer.
  • the compartments are provided in substantially uniform shapes and positions in the current extraction layer.
  • the current extraction layer is divided into a plurality of regions having substantially equal top surfaces; Each of the current extraction portions is provided substantially at the center of each of the regions.
  • a plurality of current extraction units including one or more current extraction ends;
  • a unit electrode conductive wire for electrically connecting the current take-out end portion to the entire electrode confluence portion is provided for each current take-out unit,
  • the electric resistance of each unit electrode conductive line is substantially the same.
  • the current extraction line has a plurality of current extraction end portions and a plurality of electrode conductive wires for electrically connecting the current extraction end portions to the electrode confluence portion,
  • the electrical resistance of each electrode conductive line is substantially the same.
  • the current extraction layer is made of a flexible printed circuit board,
  • the flexible printed circuit board is a double-sided board.
  • the current extraction layer is made of a flexible printed circuit board,
  • the flexible printed circuit board is provided on the positive electrode side and the negative electrode side of the laminated battery,
  • the current take-out portion is divided into a plurality of sections on the flexible printed circuit board, and each section has an independent current take-out line.
  • the method for controlling the secondary battery module includes: an assembled battery in which a plurality of unit cells are stacked; a first optical communication unit provided in each of the plurality of unit cells; and a first optical communication unit provided in the plurality of unit cells to control the first optical communication unit.
  • a control device an external control device for controlling each of the plurality of cells, a second optical communication unit provided in the external control device, the first optical communication unit and the second optical communication unit and an optical waveguide provided between, wherein the first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide, and the external control device is a control method executed in a secondary battery module configured to operate as a master that manages the control device as a slave,
  • Each of the first optical communication units has a unique light emission timing and a unique light reception timing
  • the second optical communication unit has a variable light emission timing and a variable light reception timing
  • the control method is the second optical communication unit transmitting a predetermined code by radiating light to the optical waveguide with the variable light emission timing matching the unique light reception timing of the first optical communication unit;
  • Each of the first optical communication units receives an optical signal by receiving light from the optical waveguide at the unique light receiving timing;
  • Each of the first optical communication units transmits an optical signal by emitting light to the optical waveguide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This secondary battery module comprises: an assembled battery (50) obtained by stacking a plurality of single cells (30); first optical communication units (20, 21) provided respectively to the plurality of cells (40); a control device (23) provided to the plurality of cells (30) and for controlling the first optical communication units (20, 21); an external control device (100) that individually controls the plurality of cells (30); second optical communication units (80, 81) provided to the external control device (100); and an optical waveguide (60) included between the first optical communication units (20, 21) and the second optical communication units (80, 81). The first optical communication units (20, 21) and the second optical communication units (80, 81) are configured to perform two-way communication via the optical waveguide (60), and the external control device (100) is configured to act as a master that manages the control device (23) as a slave. Optical signals can be transmitted and received from each of the plurality of single cells (30) constituting the assembled battery (50) at arbitrary timing without overlapping on the optical waveguide (60).

Description

二次電池モジュール及びその制御方法Secondary battery module and its control method
 本発明は、二次電池モジュール及びその制御方法に関する。 The present invention relates to a secondary battery module and its control method.
 従来、電気自動車及びハイブリッド電気自動車等の電源や携帯型電子機器の電源としてリチウムイオン電池等で構成された複数の単電池を積層した組電池が用いられている。このような組電池を充電する場合、過充電状態になる単電池が存在することがないように充電管理を行う必要がある。 Conventionally, assembled batteries in which multiple single cells made of lithium-ion batteries and the like are stacked are used as power sources for electric vehicles, hybrid electric vehicles, etc., and as power sources for portable electronic devices. When charging such an assembled battery, it is necessary to manage charging so that there is no overcharged unit cell.
 特許文献1には、直列に接続された単電池を含む電池モジュールの両端に、発光ダイオードを含む過充電発熱回路を並列に接続し、過充電が生じたときに発光ダイオードの発光が共通の光ファイバーにより受光ダイオードに送られることが開示されている(例えば、特許文献1の段落[0012]、[0023]~[0024]、図5参照)。 In Patent Document 1, an overcharge heat generating circuit including a light emitting diode is connected in parallel to both ends of a battery module including single cells connected in series, and when overcharge occurs, the light emitted from the light emitting diode is a common optical fiber. (eg, paragraphs [0012], [0023] to [0024] of Patent Document 1, see FIG. 5).
特開平11-341693号公報JP-A-11-341693
 しかしながら、特許文献1の構成は、単電池に過充電が生じて対応する発光ダイオードに通電が生じると発光する構成であるため、任意のタイミングで発光ダイオードを発光させて温度や電圧などの特性を通知させることができない。また、特許文献1の構成は、複数の発光ダイオードの発光が共通の光ファイバーにより受光ダイオードに送られる構成であるため、共通の光ファイバー上で重なった複数の発光ダイオードの発光を分離するための追加の処理を必要とする。 However, the configuration of Patent Document 1 emits light when the unit cell is overcharged and the corresponding light emitting diode is energized. I can't let you know. In addition, since the configuration of Patent Document 1 is a configuration in which the light emitted from the plurality of light emitting diodes is sent to the light receiving diode through a common optical fiber, an additional device for separating the light emitted from the plurality of overlapping light emitting diodes on the common optical fiber is provided. Requires processing.
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、組電池を構成する複数の単電池の各々から光信号が、光導波路上で重ならずに、かつ任意のタイミングで送受信されるようにした、二次電池モジュール及びその制御方法を提供することにある。 The present invention has been made in view of such problems, and its object is to provide optical signals from each of a plurality of single cells constituting an assembled battery without overlapping on an optical waveguide and in an arbitrary manner. To provide a secondary battery module and a method for controlling the same, in which data is transmitted and received at the timing of
 本発明者は、上記のような知見に基づいて鋭意検討を重ねた結果、以下に示す発明の態様に想到した。 As a result of intensive studies based on the above knowledge, the inventor has arrived at the following aspects of the invention.
 複数の単電池が積層された組電池と、
 前記複数の単電池の各々に備えられた第1の光通信部と、
 前記複数の単電池に備えられ、前記第1の光通信部を制御する制御装置と、
 前記複数の単電池を各々に制御する外部制御装置と、
 前記外部制御装置に備えられた第2の光通信部と、
 前記第1の光通信部と前記第2の光通信部との間に設けられた光導波路と
 を備え、
 前記第1の光通信部と前記第2の光通信部とが前記光導波路を介して双方向通信を行うように構成され、
 前記外部制御装置が、前記制御装置をスレーブとして管理するマスターとして動作するように構成された、二次電池モジュール。
an assembled battery in which a plurality of single cells are stacked;
a first optical communication unit provided in each of the plurality of cells;
a control device provided in the plurality of cells and controlling the first optical communication unit;
an external control device that controls each of the plurality of cells;
a second optical communication unit provided in the external control device;
an optical waveguide provided between the first optical communication unit and the second optical communication unit,
The first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide,
A secondary battery module, wherein the external control device is configured to operate as a master that manages the control device as a slave.
 複数の単電池が積層された組電池と、前記複数の単電池の各々に備えられた第1の光通信部と、前記複数の単電池に備えられ、前記第1の光通信部を制御する制御装置と、前記複数の単電池を各々に制御する外部制御装置と、前記外部制御装置に備えられた第2の光通信部と、前記第1の光通信部と前記第2の光通信部との間に設けられた光導波路とを備え、前記第1の光通信部と前記第2の光通信部とが前記光導波路を介して双方向通信を行うように構成され、前記外部制御装置は、前記制御装置をスレーブとして管理するマスターとして動作するように構成された二次電池モジュールにおいて実行する制御方法であって、
 前記第1の光通信部の各々は固有の発光タイミング及び固有の受光タイミングを有し、前記第2の光通信部は可変発光タイミング及び可変受光タイミングを有し、
 前記制御方法は、
 前記第2の光通信部が、前記可変発光タイミングを前記第1の光通信部の前記固有の受光タイミングに一致させて前記光導波路へ光を放射することにより所定のコードを送信することと、
 前記第1の光通信部の各々が、前記固有の受光タイミングで前記光導波路からの光を受光することにより光信号を受信することと、
 前記第1の光通信部の各々が、前記受信した光信号が前記所定のコードに一致することを条件に、前記固有の発光タイミングで前記光導波路へ光を放射することにより光信号を送信することと、
 前記第2の光通信部が、前記可変受光タイミングを前記第1の光通信部の前記固有の発光タイミングに一致させて前記光導波路からの光を受光することにより光信号を受信することと
 を含む、二次電池モジュールの制御方法。
an assembled battery in which a plurality of unit cells are stacked; a first optical communication unit provided in each of the plurality of unit cells; and a first optical communication unit provided in the plurality of unit cells to control the first optical communication unit. a control device, an external control device for controlling each of the plurality of cells, a second optical communication unit provided in the external control device, the first optical communication unit and the second optical communication unit and an optical waveguide provided between, wherein the first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide, and the external control device is a control method executed in a secondary battery module configured to operate as a master that manages the control device as a slave,
Each of the first optical communication units has a unique light emission timing and a unique light reception timing, the second optical communication unit has a variable light emission timing and a variable light reception timing,
The control method is
the second optical communication unit transmitting a predetermined code by radiating light to the optical waveguide with the variable light emission timing matching the unique light reception timing of the first optical communication unit;
Each of the first optical communication units receives an optical signal by receiving light from the optical waveguide at the unique light receiving timing;
Each of the first optical communication units transmits an optical signal by emitting light to the optical waveguide at the unique light emission timing on condition that the received optical signal matches the predetermined code. and
The second optical communication unit receives an optical signal by receiving light from the optical waveguide with the variable light receiving timing matching the unique light emission timing of the first optical communication unit. A control method for a secondary battery module, comprising:
 本発明に係る二次電池モジュールによれば、組電池を構成する複数の単電池の各々から光信号が、光導波路上で重ならずに、かつ任意のタイミングで送受信されるようになる。 According to the secondary battery module of the present invention, optical signals are transmitted and received at arbitrary timing without overlapping on the optical waveguide from each of the plurality of single cells forming the assembled battery.
図1は、本発明の一実施形態に係る二次電池モジュールの一部を切り欠いた斜視図である。FIG. 1 is a partially cutaway perspective view of a secondary battery module according to an embodiment of the present invention. 図2Aは、本発明の一実施形態に係る二次電池モジュールの一部である単電池の概略断面構造を示す図である。FIG. 2A is a diagram showing a schematic cross-sectional structure of a cell that is part of a secondary battery module according to one embodiment of the present invention. 図2Bは、本発明の一実施形態に係る二次電池モジュールの一部の概略断面構造を説明する図である。FIG. 2B is a diagram illustrating a schematic cross-sectional structure of part of the secondary battery module according to one embodiment of the present invention. 図2Cは、図2Bに示す本発明の一実施形態に係る二次電池モジュールの他の例を説明する図である。FIG. 2C is a diagram illustrating another example of the secondary battery module according to the embodiment of the invention shown in FIG. 2B. 図3は、本発明の一実施形態に係る二次電池モジュールの制御装置の構成の概略を示す図である。FIG. 3 is a diagram showing an outline of the configuration of a secondary battery module control device according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る二次電池モジュールの制御装置の機能ブロックを示す図である。FIG. 4 is a diagram showing functional blocks of a secondary battery module control device according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る二次電池モジュールの単電池に備えられた光通信装置の構成の概略を示す図である。FIG. 5 is a diagram showing a schematic configuration of an optical communication device provided in a cell of a secondary battery module according to one embodiment of the present invention. 図6は、本発明の一実施形態に係る二次電池モジュールの動作を説明するフローチャートである。FIG. 6 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention. 図7Aは、本発明の一実施形態に係る二次電池モジュールにおいて送受信される信号であり、制御装置から送信される信号を説明する図である。FIG. 7A is a diagram illustrating signals transmitted and received in a secondary battery module according to an embodiment of the present invention and transmitted from a control device. 図7Bは、本発明の一実施形態に係る二次電池モジュールにおいて送受信される信号であり、単電池の光通信装置で受光される信号を説明する図である。FIG. 7B is a diagram illustrating signals transmitted and received in the secondary battery module according to one embodiment of the present invention, and signals received by the single-cell optical communication device. 図7Cは、本発明の一実施形態に係る二次電池モジュールにおいて送受信される信号であり、単電池の光通信装置で受光される信号を説明する図である。FIG. 7C is a diagram illustrating signals transmitted and received in the secondary battery module according to the embodiment of the present invention, and signals received by the single-cell optical communication device. 図7Dは、本発明の一実施形態に係る二次電池モジュールにおいて送受信される信号であり、単電池の光通信装置で受光される信号を説明する図である。FIG. 7D is a diagram illustrating signals transmitted and received in the secondary battery module according to the embodiment of the present invention, and signals received by the single-cell optical communication device. 図8は、本発明の一実施形態に係る二次電池モジュールの動作を説明するフローチャートである。FIG. 8 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention. 図9は、本発明の一実施形態に係る二次電池モジュールの動作を説明するフローチャートである。FIG. 9 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention. 図10は、本実施形態の変形例に係る電池セルを複数段に亘り積層させた例を示す斜視図である。FIG. 10 is a perspective view showing an example in which battery cells according to a modification of the present embodiment are stacked in multiple stages. 図11は、電池セルを単一層で構成した例を示す斜視図である。FIG. 11 is a perspective view showing an example in which a battery cell is composed of a single layer. 図12は、二次電池モジュールの側断面図である。FIG. 12 is a side sectional view of a secondary battery module. 図13Aは、正極側電流取出層を上面から視認した平面図である。FIG. 13A is a plan view of the positive current extraction layer viewed from above. 図13Bは、正極側電流取出層を上面から視認した平面図である。FIG. 13B is a plan view of the positive current extraction layer viewed from above. 図14は、正極側電流取出層を上面から視認した他の形態を示す平面図である。FIG. 14 is a plan view showing another form of the positive electrode side current extraction layer viewed from above. 図15Aは、負極側電流供給層を下面から視認した平面図である。FIG. 15A is a plan view of the negative electrode-side current supply layer viewed from below. 図15Bは、負極側電流供給層を下面から視認した平面図である。FIG. 15B is a plan view of the negative electrode-side current supply layer viewed from below. 図16Aは、リチウムイオン二次電池としての電池セルの拡大断面図である。FIG. 16A is an enlarged cross-sectional view of a battery cell as a lithium ion secondary battery. 図16Bは、リチウムイオン二次電池としての電池セルの拡大断面図である。FIG. 16B is an enlarged cross-sectional view of a battery cell as a lithium ion secondary battery. 図17は、電池セルを複数に亘り積層させて接続した組電池を形成する例を示す斜視図である。FIG. 17 is a perspective view showing an example of forming an assembled battery in which a plurality of battery cells are stacked and connected. 図18は、電流取出部、複数の正極導電線、正極合流部から構成される電流取出ユニットを複数に亘り設ける例を示す平面図である。FIG. 18 is a plan view showing an example in which a plurality of current take-out units each including a current take-out portion, a plurality of positive electrode conductive lines, and a positive electrode junction portion are provided. 図19は、一の正極集電体上に対して一の電流取出ユニットを設けた電池セルを複数個設ける例を示す平面図である。FIG. 19 is a plan view showing an example in which a plurality of battery cells having one current extraction unit provided on one positive electrode current collector are provided. 図20Aは、正極側電流取出層について、上端から下端に至るまで貫通する小孔を形成させる例を示す断面図である。FIG. 20A is a cross-sectional view showing an example in which a small hole penetrating from the upper end to the lower end is formed in the positive current extraction layer. 図20Bは、正極側電流取出層について、上端から下端に至るまで貫通する小孔を形成させる例を示す断面図である。FIG. 20B is a cross-sectional view showing an example in which a small hole penetrating from the upper end to the lower end is formed in the positive current extraction layer.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。同一または類似の符号は、同一または類似の要素を示すものとし、繰り返しの説明を省略する場合がある。以下に説明される数値及び材料は例示であり、したがって、本発明の実施形態は、その要旨を逸脱しない範囲で他の数値及び材料を用いて実施することができることは言うまでもない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same or similar reference numerals indicate the same or similar elements, and repeated descriptions may be omitted. It goes without saying that the numerical values and materials described below are exemplary and, therefore, the embodiments of the present invention can be implemented using other numerical values and materials without departing from the scope of the invention.
 本発明の一実施形態にかかる二次電池モジュールは、組電池を構成する積層された複数の単電池と、複数の単電池の各々に備えられた複数の光通信装置及び当該複数の光通信装置を制御する制御装置と、複数の単電池を各々に制御する制御装置と、制御装置に備えられた光通信装置と、複数の単電池に備えられた複数の光通信装置と制御装置に備えられた光通信装置との間に設けられた光導波路とを含む。二次電池モジュールは、複数の単電池の各々に備えられた制御装置(複数の光通信装置を制御する)と、複数の単電池の各々に備えられた制御装置とを含む。複数の単電池の各々に備えられた制御装置に対して、複数の単電池を各々に制御する制御装置を外部制御装置ともいう。外部制御装置は、複数の単電池の各々に備えられた制御装置をスレーブとして管理するマスターとして動作するように構成されている。このような構成により、マスターとして動作する外部制御装置が、スレーブとして管理する制御装置を介して、各単電池に備えられた光通信装置からの光信号の送信を制御することにより、各単電池からの光信号が、光導波路上で重ならずに、かつ任意のタイミングで送受信されるようにできる。以下に説明する一例では、各単電池に備えられた通信装置は、固有の識別コード、ならびに固有の発光タイミング及び固有の受光タイミングを有している。各単電池に備えられた通信装置は、固有の受光タイミングで光導波路からの光を受光することにより光信号を受信し、固有の発光タイミングで光導波路へ光を放射することにより光信号を送信するように構成されている。更に、各単電池に備えられた通信装置は、受信した光信号が固有の識別コードに一致することを条件に、固有の発光タイミングで光導波路へ光を放射して光信号を送信するように構成されている。制御装置に備えられた光通信装置は、可変発光タイミング及び可変受光タイミングを有している。制御装置に備えられた光通信装置は、可変発光タイミングを、複数の単電池のうちから選択される単電池に備えられた光通信装置の固有の受光タイミングに一致させて光導波路へ光を放射することにより単電池に備えられた光通信装置の固有の識別コードを送信するように構成されている。また、制御装置に備えられた光通信装置は、可変受光タイミングを、複数の単電池のうちから選択される単電池に備えられた光通信装置の固有の発光タイミングに一致させて光導波路からの光を受光することにより光信号を受信するように構成されている。 A secondary battery module according to an embodiment of the present invention includes a plurality of stacked unit cells constituting an assembled battery, a plurality of optical communication devices provided in each of the plurality of unit cells, and the plurality of optical communication devices. a control device for controlling each of a plurality of cells, an optical communication device provided in the control device, and a plurality of optical communication devices provided in the plurality of cells and provided in the control device and an optical waveguide provided between the optical communication device. The secondary battery module includes a control device (controlling the plurality of optical communication devices) provided in each of the plurality of cells, and a control device provided in each of the plurality of cells. In contrast to the control device provided for each of the plurality of cells, a control device that controls each of the plurality of cells is also called an external control device. The external control device is configured to operate as a master that manages the control device provided for each of the plurality of cells as a slave. With such a configuration, the external control device operating as a master controls the transmission of optical signals from the optical communication device provided in each cell via the control device managed as a slave, whereby each cell can be transmitted and received at arbitrary timing without overlapping on the optical waveguide. In one example described below, the communication device provided in each unit cell has a unique identification code, and unique light emission timing and unique light reception timing. The communication device provided in each cell receives light from the optical waveguide at a unique light receiving timing to receive an optical signal, and emits light to the optical waveguide at a unique light emitting timing to transmit the optical signal. is configured to Further, the communication device provided in each unit cell emits light to the optical waveguide at a unique light emission timing to transmit the optical signal, provided that the received optical signal matches the unique identification code. It is configured. The optical communication device provided in the control device has variable light emission timing and variable light reception timing. The optical communication device provided in the control device radiates light to the optical waveguide by matching the variable light emission timing with the unique light reception timing of the optical communication device provided in the cell selected from the plurality of cells. By doing so, it is configured to transmit the unique identification code of the optical communication device provided in the cell. Further, the optical communication device provided in the control device matches the variable light receiving timing with the light emission timing unique to the optical communication device provided in the single cell selected from the plurality of single cells, and emits light from the optical waveguide. It is configured to receive an optical signal by receiving light.
 図1は本発明の一実施形態にかかる二次電池モジュールの一部を切り欠いた斜視図である。本実施形態の二次電池モジュールは、例えば、リチウムイオン電池モジュールである。より好適には、安全性が高く、要求される監視密度が低い(温度や電圧の状態を測定した情報を収集する頻度が低い)、電池である。以下、本発明の一実施形態にかかる二次電池モジュールをリチウムイオン電池モジュールで構成する例を説明する。 FIG. 1 is a partially cutaway perspective view of a secondary battery module according to one embodiment of the present invention. The secondary battery module of this embodiment is, for example, a lithium ion battery module. More preferably, it is a battery that is highly safe and requires low monitoring density (low frequency of collecting information on temperature and voltage conditions). An example in which a secondary battery module according to an embodiment of the present invention is configured by a lithium ion battery module will be described below.
 図1に示すように、リチウムイオン電池モジュール1は積層された複数の単電池30を有する。また、リチウムイオン電池モジュール1は、発光部20の発光面及び受光部21の受光面に隣接または近接して配置された光導波路60を有する。更に、リチウムイオン電池モジュール1は複数の単電池30及び光導波路60を収容する外装体70を有する。 As shown in FIG. 1, the lithium ion battery module 1 has a plurality of stacked single cells 30 . The lithium-ion battery module 1 also has an optical waveguide 60 arranged adjacent to or in close proximity to the light-emitting surface of the light-emitting portion 20 and the light-receiving surface of the light-receiving portion 21 . Furthermore, the lithium-ion battery module 1 has an exterior body 70 that accommodates the plurality of cells 30 and the optical waveguides 60 .
 積層された複数の単電池30は組電池50を構成している。図1は、5つの単電池30を積層した形態を示しているが、単電池の積層数は5より多くても、または5より少なくてもよい。一実装例では、単電池30の積層数は20以上であり得る。 A plurality of stacked single cells 30 constitute an assembled battery 50 . Although FIG. 1 shows a configuration in which five cells 30 are stacked, more or less than five cells may be stacked. In one implementation, the number of stacks of cells 30 may be 20 or more.
 組電池50の最上面の負極集電体の上には導電性シートが設けられている。導電性シートの一部が外装体70から引き出されて引出配線57となっている。また、組電池50の最下面の正極集電体の下には導電性シートが設けられている。導電性シートの一部が外装体70から引き出されて引出配線59となっている。 A conductive sheet is provided on the uppermost negative electrode current collector of the assembled battery 50 . A part of the conductive sheet is drawn out from the outer package 70 to form the lead wiring 57 . A conductive sheet is provided under the positive electrode current collector on the bottom surface of the assembled battery 50 . A part of the conductive sheet is pulled out from the exterior body 70 to form the lead wiring 59 .
 各単電池30は、当該単電池の測定された温度や電圧などの特性を光信号で外部に送信するための発光部20と、外部からの光信号を受信するための受光部21とを有する。 Each unit cell 30 has a light emitting unit 20 for transmitting the measured characteristics of the unit cell, such as temperature and voltage, to the outside as an optical signal, and a light receiving unit 21 for receiving an optical signal from the outside. .
 光導波路60は、入射し伝搬した光信号が出射する光入出力部を有する。一実装例では、1つの光導波路60に隣接または近接して配置された20個以上の単電池30の各々に備えられた発光部20からの発光が、光学的に結合され、光入出力部から出射する。本実施形態において、光導波路60の一部は、外装体70から引き出されて、光入出力部となっている。光入出力部から出射した光信号は、受光部80により受信される。また、光導波路60は、発光部81から光入出力部へ入射した光信号が伝搬する。このように1つの光導波路60を介して、外部の受光部80及び発光部81と複数の単電池30の発光部20及び受光部21とが半二重通信による双方向通信を行う。2つの光導波路60のペアを用いて、すなわち外部の発光部81から複数の単電池30の受光部21への通信のための1つの光導波路60及び複数の単電池30の発光部20から外部の受光部80への通信のためのもう1つの光導波路60を用いて、外部の受光部80及び発光部81と複数の単電池30の発光部20及び受光部21とが全二重通信による双方向通信を行ってもよい。なお、光入出力部を含む光導波路60の全体は外装体70の内部に収容されていてもよい。光導波路60の全体を外装体70の内部に収容する場合、光入出力部から出射した光信号は、外装体70の内部に配置された受光部80により受信され、また外装体70の内部に配置された発光部81から入射した光信号が単電池30に向かって伝搬する。 The optical waveguide 60 has an optical input/output portion from which an incident and propagated optical signal is emitted. In one implementation example, light emitted from the light emitting units 20 provided in each of 20 or more single cells 30 arranged adjacent or close to one optical waveguide 60 is optically coupled to form an optical input/output unit. emitted from In this embodiment, a portion of the optical waveguide 60 is pulled out from the exterior body 70 to serve as an optical input/output section. An optical signal emitted from the optical input/output unit is received by the light receiving unit 80 . Further, the optical waveguide 60 propagates an optical signal incident from the light emitting portion 81 to the optical input/output portion. In this way, through one optical waveguide 60, the external light receiving section 80 and light emitting section 81 and the light emitting section 20 and light receiving section 21 of the plurality of cells 30 perform two-way communication by half-duplex communication. Using a pair of two optical waveguides 60, i.e., one optical waveguide 60 for communication from the external light emitter 81 to the light receivers 21 of the plurality of cells 30 and from the light emitters 20 of the plurality of cells 30 to the outside. By using another optical waveguide 60 for communication to the light receiving unit 80 of the external light receiving unit 80 and light emitting unit 81 and the light emitting unit 20 and light receiving unit 21 of the plurality of cells 30 by full duplex communication Two-way communication may be performed. The entire optical waveguide 60 including the optical input/output section may be housed inside the exterior body 70 . When the entire optical waveguide 60 is housed inside the exterior body 70 , the optical signal emitted from the optical input/output portion is received by the light receiving section 80 arranged inside the exterior body 70 , and is also received inside the exterior body 70 . An optical signal incident from the arranged light emitting portion 81 propagates toward the unit cell 30 .
 図2Aは、本発明の一実施形態にかかる二次電池モジュールの一部である単電池の概略断面構造を示す図である。図2Bは、本発明の一実施形態にかかる二次電池モジュールの一部の概略断面構造を説明する図である。図2Cは、図2Bに示す本発明の一実施形態に係る二次電池モジュールの他の例を説明する図である。 FIG. 2A is a diagram showing a schematic cross-sectional structure of a cell that is part of a secondary battery module according to one embodiment of the present invention. FIG. 2B is a diagram illustrating a schematic cross-sectional structure of part of the secondary battery module according to one embodiment of the present invention. FIG. 2C is a diagram illustrating another example of the secondary battery module according to the embodiment of the invention shown in FIG. 2B.
 図2Aに示すように、各単電池30は、下から順に正極集電体17と、正極活物質層15と、セパレータ14と、負極活物質層11と、負極集電体19とを積層したものである。また、単電池30は、略矩形平板状の正極集電体17の表面に正極活物質層15が形成された正極12と、同様に略矩形平板状の負極集電体19の表面に負極活物質層11が形成された負極13とが、略平板状のセパレータ14を介して積層されて形成されている。単電池30は、正極集電体17と負極集電体19との間に環状の枠部材18を配置し、当該枠部材により、正極集電体17と負極集電体19の間にセパレータ14の周縁部を固定するとともに、正極活物質層15、セパレータ14及び負極活物質層11を封止している。 As shown in FIG. 2A, each unit cell 30 has a positive electrode current collector 17, a positive electrode active material layer 15, a separator 14, a negative electrode active material layer 11, and a negative electrode current collector 19 stacked in this order from the bottom. It is. The single cell 30 includes a positive electrode 12 in which a positive electrode active material layer 15 is formed on the surface of a positive electrode current collector 17 having a substantially rectangular flat plate shape, and a negative electrode active material layer 15 formed on the surface of a negative electrode current collector 19 having a substantially rectangular flat plate shape. A negative electrode 13 having a material layer 11 formed thereon is laminated with a substantially flat separator 14 interposed therebetween. The unit cell 30 has an annular frame member 18 arranged between the positive electrode current collector 17 and the negative electrode current collector 19 , and the frame member allows the separator 14 to be placed between the positive electrode current collector 17 and the negative electrode current collector 19 . , and seals the positive electrode active material layer 15 , the separator 14 and the negative electrode active material layer 11 .
 図2Aには、配線基板24に配置された発光部20及び受光部21が示されている。配線基板24、発光部20及び受光部21は、単電池30が備える光通信装置を構成する。配線基板24に発光部20及び受光部21を制御する制御回路23の他、電圧センサや温度センサを配置してもよい。例えば、受光部21及び発光部20の一部は、枠部材18の外部と接する面から露出するように、枠部材18内に埋め込まれて、絶縁樹脂25で固定されている。枠部材18の外部と接する面は、単電池30の積層方向に略平行な側面であってもよく、または当該側面に開口部を有し当該側面から単電池30へ向かう凹部の面(単電池30の積層方向に略垂直な面または略平行な面)であってもよい。受光部21の受光面の少なくとも一部及び発光部20の発光面の少なくとも一部、または受光面を含む受光部21の少なくとも一部及び発光面を含む発光部20の少なくとも一部が枠部材18の外部と接する面から露出するように配置することで、光信号が枠部材18に遮られずに外部へ送出される。 FIG. 2A shows the light-emitting part 20 and the light-receiving part 21 arranged on the wiring board 24 . The wiring board 24 , the light emitting section 20 and the light receiving section 21 constitute an optical communication device provided in the cell 30 . In addition to the control circuit 23 that controls the light emitting section 20 and the light receiving section 21, a voltage sensor and a temperature sensor may be arranged on the wiring board 24. FIG. For example, part of the light receiving part 21 and the light emitting part 20 is embedded in the frame member 18 and fixed with the insulating resin 25 so as to be exposed from the surface of the frame member 18 that contacts the outside. The surface of the frame member 18 in contact with the outside may be a side surface substantially parallel to the stacking direction of the cells 30, or a concave surface having an opening on the side surface and facing the cell 30 from the side surface (cell 30 may be a surface substantially perpendicular to or substantially parallel to the stacking direction of 30). At least a portion of the light receiving surface of the light receiving unit 21 and at least a portion of the light emitting surface of the light emitting unit 20, or at least a portion of the light receiving unit 21 including the light receiving surface and at least a portion of the light emitting unit 20 including the light emitting surface are the frame member 18. By arranging so that it is exposed from the surface in contact with the outside of the frame member 18, the optical signal is transmitted to the outside without being blocked by the frame member 18. - 特許庁
 組電池50内において隣り合う2つの単電池30は、一方の単電池30の負極集電体19の上面と他方の単電池30の正極集電体17の下面が隣接するように積層されている。 Two cells 30 adjacent to each other in the assembled battery 50 are stacked such that the upper surface of the negative electrode current collector 19 of one cell 30 and the lower surface of the positive electrode current collector 17 of the other cell 30 are adjacent to each other. .
 図2Bは、本発明の一実施形態にかかる二次電池モジュールの一部の概略断面構造を示す図である。図2Bは、光導波路60の一部が外装体70から引き出されて光入出力部となる構造を例示する。図2Bに示すように、単電池30の積層方向に延伸した光導波路60は、発光部20の発光面及び受光部21の受光面に隣接または近接して配置される。光導波路60は、例えば、光ファイバーとしてもよく、発光部20からの光信号を受光するのに十分な幅(単電池の積層方向に直交する方向の長さ)を有する導光板としてもよい。光導波路60を導光板で構成する場合、光導波路60の幅方向寸法を発光部20の発光面及び受光部21の最大寸法(発光面及び受光面が円形の場合は直径、矩形の場合は対角線)よりも大きくするとよい。図2Bは、導光板を用いて光導波路60を構成した場合を示している。 FIG. 2B is a diagram showing a schematic cross-sectional structure of part of the secondary battery module according to one embodiment of the present invention. FIG. 2B illustrates a structure in which a portion of the optical waveguide 60 is pulled out from the exterior body 70 and becomes an optical input/output section. As shown in FIG. 2B , the optical waveguide 60 extending in the stacking direction of the unit cells 30 is arranged adjacent to or close to the light emitting surface of the light emitting section 20 and the light receiving surface of the light receiving section 21 . The optical waveguide 60 may be, for example, an optical fiber, or may be a light guide plate having a sufficient width (length in the direction perpendicular to the stacking direction of the cells) to receive the optical signal from the light emitting section 20 . When the optical waveguide 60 is composed of a light guide plate, the width dimension of the optical waveguide 60 is the maximum dimension of the light emitting surface of the light emitting part 20 and the light receiving part 21 (the diameter if the light emitting surface and the light receiving surface are circular, and the diagonal if the light emitting surface and the light receiving surface are rectangular). ) should be larger than FIG. 2B shows a case where the optical waveguide 60 is configured using a light guide plate.
 光導波路60として導光板を用いる場合、複数の発光部20の発光面及び受光部21の受光面(各々が積層された複数の単電池30に対応する)のすべてを覆うように光導波路60を配置することができる。また、発光部20の発光方向及び受光部21の受光方向(発光面及び受光面の鉛直方向に一致する場合ならびに発光面及び受光面の鉛直方向から傾斜している場合を含む)を覆うように光導波路60を配置することができる。 When a light guide plate is used as the optical waveguide 60, the optical waveguide 60 is arranged so as to cover all of the light emitting surfaces of the plurality of light emitting portions 20 and the light receiving surfaces of the light receiving portions 21 (each corresponding to the plurality of stacked unit cells 30). can be placed. In addition, the light emitting direction of the light emitting unit 20 and the light receiving direction of the light receiving unit 21 (including the case where the light emitting surface and the light receiving surface are aligned with the vertical direction and the case where the light emitting surface and the light receiving surface are inclined from the vertical direction) are covered. An optical waveguide 60 can be arranged.
 このように光導波路60として導光板を用いる場合、光導波路60として光ファイバーを用いる場合に比べて、発光部20から出力された光信号が導光板に入射し易くなるとともに導光板から出力された光信号が受光部21に入射し易くなり、これにより、発光部20及び受光部21と光導波路60との間に光信号を集光するためのレンズなどの追加部品が必要なくなる、光導波路の位置決めの手間が削減される、または位置ずれの許容量が増大される。勿論、光導波路60としての導光板と発光部20及び受光部21との間の光信号の結合効率を高めるために、レンズなどの追加部品を用いてもよく、集光加工を施した導光板を用いてもよい。レンズなどの追加部品及び集光加工を施した導光板の一方または双方を用いる場合であっても、光導波路60として光ファイバーを用いる場合に比べ、位置決めの手間の煩雑性が削減される、または位置ずれ許容量が増大される。単電池の積層方向に延伸した光導波路60を例示するが、単電池の積層方向に直交する方向に延伸した光導波路60を用いることも可能である。この場合、光導波路60としての導光板は、複数の発光部20の発光面及び受光部21の受光面のすべてを覆うことが可能である。 When a light guide plate is used as the optical waveguide 60 in this way, compared to the case where an optical fiber is used as the optical waveguide 60, the optical signal output from the light emitting unit 20 is more likely to enter the light guide plate, and the light output from the light guide plate Positioning of the optical waveguide, which makes it easier for the signal to enter the light receiving portion 21, thereby eliminating the need for additional parts such as lenses for condensing the optical signal between the light emitting portion 20 and the light receiving portion 21 and the optical waveguide 60. is reduced, or the allowable amount of misalignment is increased. Of course, in order to increase the coupling efficiency of optical signals between the light guide plate as the optical waveguide 60 and the light emitting section 20 and the light receiving section 21, additional parts such as lenses may be used. may be used. Even when one or both of an additional component such as a lens and a light-condensing light guide plate are used, compared to the case of using an optical fiber as the optical waveguide 60, the complexity of positioning can be reduced or the position can be reduced. The deviation allowance is increased. Although the optical waveguide 60 extending in the stacking direction of the unit cells is exemplified, it is also possible to use the optical waveguide 60 extending in a direction orthogonal to the stacking direction of the unit cells. In this case, the light guide plate as the optical waveguide 60 can cover all of the light emitting surfaces of the plurality of light emitting units 20 and the light receiving surfaces of the light receiving units 21 .
 図2Bに示すように、光導波路60は、発光部20から光信号を受光する表面の位置に対応する裏面の位置にまたは受光部21の受光面へ光信号を出射する表面の位置に対応する裏面の位置に、散乱加工60aが施されている。散乱加工60aは、隣接または近接する発光部20の発光面及び受光部21の受光面に対応する位置に施されている。散乱加工60aは、例えば、凹凸加工であり得る。光導波路60に入射し散乱加工60aにより散乱した光信号の一部は、光出力部の方向に伝搬する。 As shown in FIG. 2B, the optical waveguide 60 corresponds to the position of the back surface corresponding to the position of the surface receiving the optical signal from the light emitting unit 20 or the position of the surface emitting the optical signal to the light receiving surface of the light receiving unit 21. Scattering processing 60a is applied to the position of the back surface. The scattering processing 60a is applied to positions corresponding to the light-emitting surface of the light-emitting portion 20 and the light-receiving surface of the light-receiving portion 21 adjacent or close to each other. The scattering processing 60a can be, for example, uneven processing. A portion of the optical signal that enters the optical waveguide 60 and is scattered by the scattering processing 60a propagates in the direction of the optical output section.
 また、光導波路60は、曲げ部分に反射加工60bが施されており、これにより曲げ部分により散乱した光信号を光入出力部の方向へ反射することができる。また、光導波路60の光入出力部となる端部と反対の端部及び曲げ部分に反射加工60bが施されており、これにより凹凸加工により光入出力部の方向と反対方向に散乱した光を、光入出力部の方向へ反射することができる。 In addition, the optical waveguide 60 is subjected to reflection processing 60b in the bent portion, so that the optical signal scattered by the bent portion can be reflected in the direction of the optical input/output portion. In addition, reflection processing 60b is applied to the end opposite to the end serving as the light input/output portion of the optical waveguide 60 and the bent portion. can be reflected in the direction of the optical input/output section.
 図2Cは、図2Bの他の例である、光入出力部を含む光導波路60の全体が外装体70の内部に収容される構造を例示する。光導波路60の全体を外装体70の内部に収容する場合、図2Bに示すような光導波路60に示すようや引き出し部が不要となる。外装体70内の光入出力部から出射した光信号は、外装体70の内部に光導波路60に隣接して配置された受光部80により受信され、また外装体70の内部に光導波路60に隣接して配置された発光部81から入射した光信号が単電池30に向かって伝搬する。受光部80により受信された光信号は、電気信号に変換されて引出配線82を介して、外装体70の外部の制御部90へ送信される。また、外装体70の外部の制御部90からの電気信号は、引出配線83を介して外装体70の内部へ送信され、発光部81により光信号に変換される。 FIG. 2C illustrates a structure in which the entire optical waveguide 60 including the optical input/output section is accommodated inside the exterior body 70, which is another example of FIG. 2B. When the entire optical waveguide 60 is accommodated inside the exterior body 70, a lead-out portion is not required as shown in the optical waveguide 60 shown in FIG. 2B. An optical signal emitted from the optical input/output part in the exterior body 70 is received by the light receiving part 80 arranged adjacent to the optical waveguide 60 inside the exterior body 70 , and is received by the optical waveguide 60 inside the exterior body 70 . An optical signal incident from the adjacently arranged light emitting portion 81 propagates toward the unit cell 30 . The optical signal received by the light receiving unit 80 is converted into an electric signal and transmitted to the control unit 90 outside the exterior body 70 via the lead wiring 82 . An electrical signal from the control unit 90 outside the exterior body 70 is transmitted to the interior of the exterior body 70 via the lead wire 83 and converted into an optical signal by the light emitting section 81 .
 図3は、本発明に一実施形態にかかる二次電池モジュールの制御装置の構成の概略を示す図である。制御装置100は、制御基板(不図示)に配置された制御部90と、受光部80と、発光部81とを備えている。制御装置100は、基板上に水晶発振器(不図示)などの発振器を備え、制御部90へ比較的高精度のクロックを供給する。制御装置100は、リチウムイオン電池モジュール1から電力を供給されてもよく、他の電源から電力を供給されてもよい。 FIG. 3 is a diagram showing a schematic configuration of a control device for a secondary battery module according to one embodiment of the present invention. The control device 100 includes a control section 90, a light receiving section 80, and a light emitting section 81 arranged on a control board (not shown). The control device 100 has an oscillator such as a crystal oscillator (not shown) on its substrate, and supplies a relatively high-precision clock to the control section 90 . The control device 100 may be powered by the lithium-ion battery module 1 or may be powered by another power source.
 制御部90は、後述するように発光部81の可変発光タイミング及び受光部80の可変受光タイミングを制御する。制御部90は、汎用プロセッサでもよく、専用プロセッサでもよい。プロセッサは、記憶装置を内蔵してもよく、外部の記憶装置(不図示)と協同してもよい。 The control unit 90 controls the variable light emission timing of the light emitting unit 81 and the variable light receiving timing of the light receiving unit 80 as described later. The controller 90 may be a general-purpose processor or a dedicated processor. The processor may have built-in storage or may cooperate with external storage (not shown).
 発光部81は、LED素子などを用いて構成することができる。受光部80は、フォトダイオード、フォトトランジスタなどを用いて構成することができる。発光素子であるLED素子を受光素子として用いて受光部80を構成してもよい。発光部81及び受光部80は、光通信装置を構成する。 The light emitting section 81 can be configured using an LED element or the like. The light receiving section 80 can be configured using a photodiode, a phototransistor, or the like. The light-receiving section 80 may be configured using an LED element, which is a light-emitting element, as a light-receiving element. The light emitting unit 81 and the light receiving unit 80 constitute an optical communication device.
 発光部81の発光のONからOFFまでの時間間隔(発光部81から送信される1つの光パルスのパルス幅に相当する)は、制御部90によって制御され可変である。ここでは、可変発光タイミングという。また、受光部80による光のサンプリングのONからOFFまでの時間間隔(1つの光パルスのパルス幅に相当する)は、制御部90によって制御され可変である。ここでは、可変受光タイミングという。 The time interval from ON to OFF of the light emission of the light emitting unit 81 (corresponding to the pulse width of one light pulse transmitted from the light emitting unit 81) is controlled by the control unit 90 and is variable. Here, it is called variable light emission timing. The time interval (corresponding to the pulse width of one light pulse) from ON to OFF of light sampling by the light receiving unit 80 is controlled and variable by the control unit 90 . Here, it is called variable light receiving timing.
 図4は、本発明の一実施形態にかかる二次電池モジュールの制御装置の機能ブロックを示す図である。制御部90は、発光タイミング設定部91、受光タイミング設定部92、単電池選択部93、単電池情報記憶部94、単電池タイミング測定部95、及び単電池タイミング設定部96として機能する。 FIG. 4 is a diagram showing functional blocks of a control device for a secondary battery module according to one embodiment of the present invention. The control unit 90 functions as a light emission timing setting unit 91 , a light reception timing setting unit 92 , a cell selection unit 93 , a cell information storage unit 94 , a cell timing measurement unit 95 and a cell timing setting unit 96 .
 発光タイミング設定部91は、光信号を送信するために発光部81の可変発光タイミングを設定する。受光タイミング設定部92は、光信号を受信するために受光部80の可変受光タイミングを設定する。 The light emission timing setting unit 91 sets the variable light emission timing of the light emitting unit 81 to transmit the optical signal. The light receiving timing setting section 92 sets the variable light receiving timing of the light receiving section 80 in order to receive the optical signal.
 単電池情報記憶部94は、組電池50を構成する複数の単電池30の情報を記憶する。単電池30の情報は、例えば、各単電池の光通信装置が有する固有の識別コード、固有の発光タイミング、及び固有の受光タイミングなどを含む。 The unit cell information storage unit 94 stores information on the plurality of unit cells 30 that make up the assembled battery 50 . The information of the single cell 30 includes, for example, a unique identification code, a unique light emission timing, a unique light reception timing, etc. possessed by the optical communication device of each single cell.
 単電池選択部93は、複数の単電池30のうちから光信号を送受信する対象を選択する。単電池選択部93は、単電池情報記憶部94から選択した単電池30の光通信装置の固有の識別コード、固有の発光タイミング、または固有の受光タイミングを読み出し、発光タイミング設定部91または受光タイミング設定部92へ供給する。 The unit cell selection unit 93 selects targets for transmitting and receiving optical signals from among the plurality of unit cells 30 . The unit cell selection unit 93 reads the unique identification code, the unique light emission timing, or the unique light reception timing of the optical communication device of the unit cell 30 selected from the unit cell information storage unit 94, and sets the light emission timing setting unit 91 or the light reception timing. It is supplied to the setting section 92 .
 単電池タイミング測定部95は、図8を参照して説明する方法により、単電池30の固有の発光タイミング及び固有の受光タイミングを測定する(決定する)。単電池タイミング測定部95は、単電池30の固有の発光タイミング及び固有の受光タイミングを単電池情報記憶部94に記憶する。 The single cell timing measurement unit 95 measures (determines) the unique light emission timing and unique light reception timing of the single cell 30 by the method described with reference to FIG. The unit cell timing measurement unit 95 stores the unique light emission timing and the unique light reception timing of the unit cell 30 in the unit cell information storage unit 94 .
 単電池タイミング設定部96は、図9を参照して説明する方法により、組電池50を構成する複数の単電池30の固有の発光タイミング及び固有の受光タイミングを設定する。複数の単電池30の固有の発光タイミング及び固有の受光タイミングが重複しないように、調整される。単電池タイミング設定部96は、設定した単電池30の固有の発光タイミング及び固有の受光タイミングを単電池情報記憶部94に記憶する。 The single cell timing setting unit 96 sets the unique light emission timing and unique light receiving timing of the plurality of single cells 30 forming the assembled battery 50 by the method described with reference to FIG. Adjustments are made so that the unique light emission timings and unique light receiving timings of the plurality of cells 30 do not overlap. The single cell timing setting unit 96 stores the set unique light emission timing and unique light receiving timing of the single cell 30 in the single cell information storage unit 94 .
 図5は、本発明の一実施形態にかかる二次電池モジュールの単電池に備えられた光通信装置の構成の概略を示す図である。通信装置は、配線基板24に配置された制御回路23、発光部20、及び受光部21により構成される。通信装置は、対応する単電池30を電源として駆動する。配線基板24には、単電池の測定された温度や電圧を測定するセンサ(不図示)も配置され得る。 FIG. 5 is a diagram showing a schematic configuration of an optical communication device provided in a cell of a secondary battery module according to one embodiment of the present invention. The communication device includes a control circuit 23, a light emitting section 20, and a light receiving section 21 arranged on a wiring board 24. FIG. The communication device is driven by the corresponding cell 30 as a power source. A sensor (not shown) for measuring the measured temperature and voltage of the cell may also be arranged on the wiring board 24 .
 制御回路23は、受光部21を介して受信する制御装置100から所定のコードに応答して、光信号を送信するように発光部20を制御する。制御回路23は、CR(コンデンサ、抵抗)発振器を備えたマイクロコントローラで構成することができる。CR発振器は、水晶発振器に比べ消費電力が小さいため、電源である単電池30の電力の消費量を小さくできる。CR発振器の精度は、水晶発振器の精度よりも低く、ばらつきが大きい。本実施形態では、CR発振器の精度の特徴を利用する。また、制御回路23は、受光部21を介して受信する制御装置100から所定のコード(リセットコード)に応答して、発信器をリセットしてもよい。または制御回路23は、受光部21を介して受信する制御装置100から所定のコード(設定コード)に応答して、受光部21の受光タイミング及び発光部20の発光タイミングを設定してもよい。 The control circuit 23 controls the light emitting section 20 to transmit an optical signal in response to a predetermined code from the control device 100 received via the light receiving section 21 . The control circuit 23 can consist of a microcontroller with a CR (capacitor, resistor) oscillator. Since the CR oscillator consumes less power than the crystal oscillator, it is possible to reduce the power consumption of the cell 30, which is the power supply. The accuracy of CR oscillators is lower and more variable than that of crystal oscillators. This embodiment utilizes the accuracy feature of the CR oscillator. Further, the control circuit 23 may reset the transmitter in response to a predetermined code (reset code) from the control device 100 received via the light receiving section 21 . Alternatively, the control circuit 23 may set the light receiving timing of the light receiving unit 21 and the light emitting timing of the light emitting unit 20 in response to a predetermined code (setting code) received from the control device 100 via the light receiving unit 21 .
 発光部20及び受光部21は、発光部81及び受光部80と同様に構成することができる。組電池50を構成する複数の単電池の通信装置のCR発振器の発信周波数に異なるため、各光通信装置の発光部20の発光タイミング(発光のONからOFFまでの時間間隔(発光部20から送信される1つの光パルスのパルス幅))及び受光部21の受光タイミング(光のサンプリングのONからOFFまでの時間間隔(1つの光パルスのパルス幅))は、CR発振器の精度に応じた固有のタイミングとなる。また、リセットコードに応答して制御回路23が発振器をリセットすると発光部20の固有の発光タイミング及び受光部21の固有の受光タイミングもリセットされる。CR発振器の精度に依存せずに、設定コードに応答して制御回路23が、各通信装置の発光部20の発光タイミング及び受光部21の受光タイミングが互いに異なるように、固有の発光タイミング及び固有の受光タイミングを設定してもよい。制御装置100から単電池30の光通信装置への設定コードがオフセットを示してもよい。1つの発光部20の発光タイミング及び受光部21の受光タイミングは等しくなるが、異なるように設定してもよい。 The light emitting section 20 and the light receiving section 21 can be configured similarly to the light emitting section 81 and the light receiving section 80 . Since the transmission frequencies of the CR oscillators of the plurality of unit cell communication devices constituting the assembled battery 50 are different, the light emission timing of the light emission unit 20 of each optical communication device (time interval from light emission ON to OFF (transmission from the light emission unit 20 (pulse width of one optical pulse)) and light receiving timing of the light receiving unit 21 (time interval from ON to OFF of sampling of light (pulse width of one optical pulse)) are unique according to the accuracy of the CR oscillator. is the timing. Further, when the control circuit 23 resets the oscillator in response to the reset code, the light emission timing specific to the light emitting unit 20 and the light receiving timing specific to the light receiving unit 21 are also reset. Independent of the accuracy of the CR oscillator, the control circuit 23 responds to the setting code so that the light emission timing of the light emitting unit 20 and the light receiving timing of the light receiving unit 21 of each communication device are different from each other. may be set. A setting code from the control device 100 to the optical communication device of the cell 30 may indicate the offset. The light emission timing of one light emitting unit 20 and the light receiving timing of the light receiving unit 21 are equal, but they may be set differently.
 なお、二次電池モジュールの単電池に備えられた光通信装置は、対応する単電池30を電源として駆動するように構成されることを説明したが、受光部21により光信号から変換された電気信号の電力を電源として駆動するように構成されてもよい。例えば、受光部21により光信号から変換された電気信号の電力を蓄電するためのコンデンサ(不図示)を配線基板24に設け、蓄電した電力を光信号から変換された電気信号の電力を使用して、制御回路23に含まれる素子を駆動してもよく、発光部20を駆動して光信号を送信するようにしてもよい。この場合は、制御装置100から、光信号の送信を介して、単電池に備えられた光通信装置を駆動するための電力を供給でき、当該光通信装置による単電池の電力の消費を減らすことが可能となる。 Although it has been described that the optical communication device provided in the unit cell of the secondary battery module is configured to be driven using the corresponding unit cell 30 as a power supply, the electric power converted from the optical signal by the light receiving unit 21 It may be configured to drive using signal power as a power source. For example, a capacitor (not shown) for storing the power of the electrical signal converted from the optical signal by the light receiving unit 21 is provided on the wiring board 24, and the stored power is used as the power of the electrical signal converted from the optical signal. Accordingly, an element included in the control circuit 23 may be driven, or the light emitting section 20 may be driven to transmit an optical signal. In this case, power can be supplied from the control device 100 to drive the optical communication device provided in the unit cell through the transmission of the optical signal, and the power consumption of the unit cell by the optical communication device can be reduced. becomes possible.
 図6は、本発明の一実施形態にかかる二次電池モジュールの動作を説明するフローチャートである。図6に示す動作により、制御装置100は、組電池を構成する複数の単電池30の各々から光信号が、光導波路上で重ならずに、かつ任意のタイミングで送受信されるようになる。図6において、制御装置100が光信号を送受信する対象を単電池30として示し、残りを単電池30(k≠1)として示している。 FIG. 6 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention. By the operation shown in FIG. 6, the control device 100 allows optical signals to be transmitted and received from each of the plurality of single cells 30 forming the assembled battery at arbitrary timing without overlapping on the optical waveguide. In FIG. 6, the object to which the control device 100 transmits and receives the optical signal is indicated as the cell 301, and the remaining cells are indicated as the cell 30k ( k1 ).
 S501において、制御装置100(単電池選択部93)が、単電池30を選択する。 In S<b>501 , the control device 100 (cell selection unit 93 ) selects the cell 301 .
 S502において、制御装置100(単電池選択部93)が、単電池情報記憶部94から選択した単電池30の光通信装置の固有の発光タイミング及び固有の受光タイミングを読み出す。 In S<b>502 , the control device 100 ( single cell selection unit 93 ) reads the light emission timing and light reception timing unique to the optical communication device of the selected cell 301 from the cell information storage unit 94 .
 S503において、制御装置100(発光タイミング設定部91)が、制御装置100の光通信装置の可変発光タイミングを読み出した固有の受光タイミングに設定して、発光部81を介して所定のコード(光信号)を送信する。その後、S508へ進む。例えば、所定のコードは、複数の単電池30の光通信装置に既知の任意のコードを含んでよく、加えてまたは追加して、選択した単電池30の光通信装置の固有の識別コードを含んでもよい。所定のコードは、単電池30の光通信装置における検出精度を向上するために誤り検出符号を含んでもよい。 In S<b>503 , the control device 100 (light emission timing setting unit 91 ) sets the variable light emission timing of the optical communication device of the control device 100 to the read unique light reception timing, and transmits a predetermined code (light signal) through the light emission unit 81 . ). After that, the process proceeds to S508. For example, the predetermined code may include any code known to the optical communication device of the plurality of cells 30, plus or additionally a unique identification code of the optical communication device of the selected cell 301. may contain. The predetermined code may include an error detection code to improve detection accuracy of the cell 30 in the optical communication device.
 図7Aは、S503において、可変発光タイミングを選択した単電池30の固有の受光タイミングに一致させて送信された光信号を模式的に示している。光信号は、1010101の光パルス列から構成され、各光パルスのパルス幅は、単電池30の光通信装置の固有の受光タイミング(受光部21でサンプリングされて復号される光パルス列の各光パルスのパルス幅)に一致している。 FIG. 7A schematically shows an optical signal transmitted in S503 by matching the light receiving timing specific to the unit cell 301 for which the variable light emitting timing is selected. The optical signal is composed of 1010101 optical pulse trains, and the pulse width of each optical pulse is determined by the unique light receiving timing of the optical communication device of the unit cell 301 ( each optical pulse of the optical pulse train sampled and decoded by the light receiving unit 21). pulse width).
 S508において、制御装置100(制御部90)は所定時間が経過したかどうかを判定し、所定時間が経過した場合には、S503へ戻る。 In S508, the control device 100 (control unit 90) determines whether or not a predetermined time has elapsed, and returns to S503 if the predetermined time has elapsed.
 S504において、単電池30及び30の受光部21はそれぞれ、光を受光して固有の受光タイミングで復号する。 In S504, each of the light receiving units 21 of the cells 30 1 and 30 k receives light and decodes it at a unique light receiving timing.
 図7Bは、単電池301の受光部21で受光して復号された光パルス列を模式的に示している。復号された各光パルスのパルス幅は、図7Aに示した光パルス列の各光パルスのパルス幅と一致している。図7C及び図7Dは、単電池30の受光部21で受光して復号された光パルス列を模式的に示している。単電池30の光通信装置の固有の受光タイミングと異なる単電池30の光通信装置の固有の受光タイミングで復号された各光パルスのパルス幅は、図7Aに示した光パルス列の各光パルスのパルス幅と一致しない。 FIG. 7B schematically shows an optical pulse train received and decoded by the light receiving section 21 of the cell 301. The pulse width of each decoded optical pulse matches the pulse width of each optical pulse in the optical pulse train shown in FIG. 7A. 7C and 7D schematically show an optical pulse train received and decoded by the light receiving section 21 of the cell 30k . The pulse width of each optical pulse decoded at the unique light receiving timing of the optical communication device of the single cell 30k different from the unique light receiving timing of the optical communication device of the single cell 301 is equal to that of each light of the optical pulse train shown in FIG. 7A. Does not match the pulse width of the pulse.
 S505において、単電池30及び30の制御回路23は、復号された光信号が既知の所定のコードと一致するかどうかを判定する。 At S505, the control circuits 23 of the cells 30 1 and 30 k determine whether the decoded optical signal matches a known predetermined code.
 復号された光信号が既知の所定のコードと一致する場合(S505のYES)、S506へ進み、単電池30の制御回路23は、固有の発光タイミングで発光部20を介して光信号を送信する。 If the decoded optical signal matches the known predetermined code (YES in S505), the process proceeds to S506, and the control circuit 23 of the cell 301 transmits an optical signal via the light emitting section 20 at a unique light emission timing. do.
 復号された光信号が既知の所定のコードと一致しない場合(S505のNO)、S507へ進み、単電池30の制御回路23は、光信号を送信しない。 If the decoded optical signal does not match the known predetermined code (NO in S505), the process proceeds to S507, and the control circuit 23 of the cell 30k does not transmit the optical signal.
 S509において、制御装置100(受光タイミング設定部92)が、制御装置100の光通信装置の可変受光タイミングを読み出した固有の発光タイミングに設定して、受光部80を介して信号(光信号)を受信する。 In S509, the control device 100 (light receiving timing setting unit 92) sets the variable light receiving timing of the optical communication device of the control device 100 to the read unique light emitting timing, and transmits a signal (optical signal) through the light receiving unit 80. receive.
 以上、図6を参照して説明した動作により、制御装置100は、組電池を構成する複数の単電池30のうちから選択した単電池との間で、任意のタイミングでかつ光信号が光導波路上で重ならずに光信号を送受信できる。 By the operation described above with reference to FIG. 6, the control device 100 allows the optical signal to be optically guided at an arbitrary timing with the unit cell selected from the plurality of unit cells 30 constituting the assembled battery. Optical signals can be transmitted and received without overlapping on the road.
 図8は、本発明の一実施形態にかかる二次電池モジュールの動作を説明するフローチャートである。図8を参照して、単電池30の光通信装置の固有の発光タイミング及び固有の受光タイミングを測定して(決定して)、単電池情報記憶部94に記憶する動作を説明する。図8の動作は、単電池30の光通信装置の未知の固有の発光タイミング及び固有の受光タイミングを、試行錯誤的に測定する(決定する)動作である。図8の動作は、図6のS502において選択した単電池の固有のタイミングを読み出す動作よりも前、または、当該動作の追加動作もしくは代替動作として行うことができる。図8の動作により、単電池30の光通信装置の未知の固有の発光タイミング及び固有の受光タイミングが測定される(決定される)場合を説明する。 FIG. 8 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention. The operation of measuring (determining) the unique light emission timing and unique light reception timing of the optical communication device of the cell 30 and storing them in the cell information storage unit 94 will be described with reference to FIG. The operation of FIG. 8 is an operation of measuring (determining) the unknown unique light emission timing and unique light reception timing of the optical communication device of the cell 30 by trial and error. The operation of FIG. 8 can be performed before the operation of reading the timing specific to the unit cell selected in S502 of FIG. 6, or as an additional operation or an alternative operation to the operation. A case will be described where the unknown unique light emission timing and unique light reception timing of the optical communication device of the unit cell 301 are measured (determined) by the operation of FIG.
 S701において、制御装置100(発光タイミング設定部91)が、制御装置100の光通信装置の可変発光タイミングを選択または変更する。光通信装置の可変発光タイミング及び可変受光タイミングは、例えば、制御装置100に備えられた水晶発振器などの比較的高精度のクロックに基づいて設定され得る最小値から最大値までとすることができる。可変発光タイミング及び可変受光タイミングの最小値から最大値の間に、水晶発振器よりも精度の低いCR発振器に基づく単電池30の光通信装置の固有の発光タイミング及び受光タイミングが含まれる。この場合、S701において、可変発光タイミングの最小値から最大値までを順に選択する(変更する)ことができる。 In S701, the control device 100 (light emission timing setting unit 91) selects or changes the variable light emission timing of the optical communication device of the control device 100. The variable light emission timing and variable light reception timing of the optical communication device can range from the minimum value to the maximum value that can be set based on a relatively high-precision clock such as a crystal oscillator provided in the control device 100, for example. Between the minimum and maximum values of the variable light emission timing and the variable light reception timing, there is included the light emission timing and light reception timing unique to the optical communication device of the single cell 30 based on the CR oscillator, which has lower precision than the crystal oscillator. In this case, in S701, it is possible to sequentially select (change) from the minimum value to the maximum value of the variable light emission timing.
 S702において、制御装置100(発光タイミング設定部91)が、選択した(変更した)制御装置100の光通信装置の可変発光タイミングを設定し、発光部81を介して所定のコード(光信号)を送信する。その後、S707へ進む。所定のコードは、図6のS503と同様に、例えば、複数の単電池30の光通信装置に既知の任意のコードを含んでよく、加えてまたは追加して、測定対象の単電池30の光通信装置の固有の識別コードを含んでもよい。更に所定のコードは、単電池の光通信装置における検出精度を向上するために誤り検出符号を含んでもよい。S702において送信された光信号は、図7Aと同様であるとする。 In S702, the control device 100 (light emission timing setting unit 91) sets the variable light emission timing of the optical communication device of the selected (changed) control device 100, and transmits a predetermined code (optical signal) through the light emission unit 81. Send. After that, the process proceeds to S707. The predetermined code may include, for example, any code known to the optical communication device of the plurality of unit cells 30, similar to S503 in FIG. A unique identification code for the optical communication device may be included. Further, the predetermined code may include an error detection code to improve detection accuracy in single cell optical communication devices. Assume that the optical signal transmitted in S702 is the same as in FIG. 7A.
 S707において、制御装置100(制御部90)は所定時間が経過したかどうかを判定し、所定時間が経過した場合には、S701へ戻る。 In S707, the control device 100 (control unit 90) determines whether or not a predetermined time has elapsed, and returns to S701 if the predetermined time has elapsed.
 S703において、単電池30及び30の受光部21はそれぞれ、光を受光して固有の受光タイミングで復号する。 In S703, each of the light receiving units 21 of the cells 30 1 and 30 k receives light and decodes it at a unique light receiving timing.
 S704において、単電池30及び30の制御回路23は、復号された光信号が既知の所定のコードと一致するかどうかを判定する。 At S704, the control circuits 23 of the cells 30 1 and 30 k determine whether the decoded optical signal matches a known predetermined code.
 S704において、復号された光信号が図7Bに示した光パルス列となり、所定のコードと一致する場合(S704のYES)、S705へ進む。 In S704, if the decoded optical signal becomes the optical pulse train shown in FIG. 7B and matches the predetermined code (YES in S704), the process proceeds to S705.
 S704において、復号された光信号が図7Cまたは図7Dに示した光パルス列となり、既知の所定のコードと一致しない場合(S704のNO)、S706へ進み、単電池30(k≠1)の制御回路23は、光信号を送信しない。 In S704, the decoded optical signal becomes the optical pulse train shown in FIG. 7C or FIG. 7D, and if it does not match the known predetermined code (NO in S704 ), proceed to S706 to The control circuit 23 does not transmit optical signals.
 S705において、単電池30の制御回路23は、固有の発光タイミングで発光部20を介して光信号を送信する。単電池301の制御回路23は、固有の識別(ID)コードを光信号として送信して、光信号が単電池30から送信されていることを明示することができる。 In S705, the control circuit 23 of the cell 301 transmits an optical signal via the light emitting section 20 at a unique light emission timing. The control circuit 23 of cell 30 1 can transmit a unique identification (ID) code as an optical signal to indicate that the optical signal is being transmitted from cell 30 1 .
 S708において、制御装置100(受光タイミング設定部92)は、S701で選択した(変更した)制御装置100の光通信装置の可変発光タイミングを設定し、受光部80を介して信号(光信号)を受信する。 In S708, the control device 100 (light receiving timing setting unit 92) sets the variable light emission timing of the optical communication device of the control device 100 selected (changed) in S701, and transmits a signal (optical signal) via the light receiving unit 80. receive.
 S708で信号を受信することを条件に、S709において、制御装置100(単電池タイミング測定部)は、S701で選択した(変更した)制御装置100の光通信装置の可変発光タイミング及び可変受光タイミングが、単電池30の光通信装置の固有の受光タイミング及び固有の発光タイミングであると決定し、単電池301の光通信装置の固有の識別(ID)コードと関連付けて単電池情報記憶部94に記憶する。 On the condition that the signal is received in S708, in S709, the control device 100 (single cell timing measurement unit) determines that the variable light emission timing and the variable light reception timing of the optical communication device of the control device 100 selected (changed) in S701 are , is determined to be the timing of light reception and the timing of light emission unique to the optical communication device of the single cell 301, and is stored in the single cell information storage unit 94 in association with the unique identification (ID) code of the optical communication device of the single cell 301. Remember.
 S710において、制御装置100(単電池タイミング測定部)は、全ての単電池30の光通信装置の固有の識別(ID)コードを固有の発光タイミング及び受光タイミングと関連付けて記憶したかどうかを判定する。全ての単電池30の光通信装置の固有の識別(ID)コードが記憶されていない場合(S710のNO)、S701へ戻る。全ての単電池30の光通信装置の固有の識別(ID)コードが記憶された場合、図8に示す動作を終了する。 In S710, the control device 100 (single cell timing measuring unit) determines whether or not the unique identification (ID) codes of the optical communication devices of all the single cells 30 are stored in association with the unique light emission timing and light reception timing. . If the unique identification (ID) codes of the optical communication devices of all the cells 30 are not stored (NO in S710), the process returns to S701. When the unique identification (ID) codes of the optical communication devices of all the cells 30 have been stored, the operation shown in FIG. 8 ends.
 以上、図8を参照して説明した動作により、制御装置100は、組電池を構成する複数の単電池30の固有の発光タイミング及び固有の受光を既知とすることができる。 By the operation described above with reference to FIG. 8, the control device 100 can know the specific light emission timing and specific light reception of the plurality of single cells 30 constituting the assembled battery.
 図9は、本発明の一実施形態にかかる二次電池モジュールの動作を説明するフローチャートである。図9を参照して、制御装置100が特定の単電池の光通信装置へ設定コードを含む所定のコードを単電池30の光通信装置へ送信することにより、単電池30の光通信装置の固有の発光タイミング及び固有の受光タイミングを設定する動作を説明する。図9の動作は、設定コードをリセットコードとした場合には、単電池30の光通信装置のCR発振器などの発振器のリセットを通じて、単電池30の光通信装置の固有の発光タイミング及び固有の受光タイミングをリセットすることを可能にする。また、図9の動作は、設定コードを固有の発光タイミング及び固有の受光タイミングのオフセットを示すようにした場合には、図9の動作は、CR発振器などの発振器の精度に依存せずに、複数の単電池30の光通信装置の固有の発光タイミング及び固有の受光タイミングを互いに異なるように設定することを可能にする。図9の動作により、単電池30の光通信装置の固有の発光タイミング及び固有の受光タイミングを設定する場合を説明する。 FIG. 9 is a flow chart explaining the operation of the secondary battery module according to one embodiment of the present invention. Referring to FIG. 9, when control device 100 transmits a predetermined code including a setting code to the optical communication device of a specific cell 30 to the optical communication device of cell 30, the optical communication device of cell 30 The operation of setting the light emission timing and the unique light reception timing of is explained. When the reset code is used as the setting code, the operation of FIG. Allows you to reset timings. Also, in the operation of FIG. 9, when the setting code indicates the offset of the unique light emission timing and the unique light reception timing, the operation of FIG. It is possible to set the unique light emission timing and the unique light reception timing of the optical communication device of a plurality of single cells 30 so as to be different from each other. A case of setting the unique light emission timing and the unique light reception timing of the optical communication device of the unit cell 30k by the operation of FIG. 9 will be described.
 S801において、S701と同様に、制御装置100(発光タイミング設定部91)が、制御装置100の光通信装置の可変発光タイミングを選択して変更する。 In S801, similarly to S701, the control device 100 (light emission timing setting unit 91) selects and changes the variable light emission timing of the optical communication device of the control device 100.
 S802において、制御装置100(発光タイミング設定部91)が、選択した(変更した)制御装置100の光通信装置の可変発光タイミングを設定し、発光部81を介して所定のコード(光信号)を送信する。その後、S807へ進む。所定のコードは、単電池30kの光通信装置の固有の識別(ID)コードとすることができる。更に所定のコードは、単電池の光通信装置における検出精度を向上するために誤り検出符号を含んでもよい。 In S802, the control device 100 (light emission timing setting unit 91) sets the variable light emission timing of the optical communication device of the selected (changed) control device 100, and transmits a predetermined code (optical signal) through the light emission unit 81. Send. After that, the process proceeds to S807. The predetermined code may be a unique identification (ID) code for the optical communication device of the cell 30k. Further, the predetermined code may include an error detection code to improve detection accuracy in single cell optical communication devices.
 S807において、制御装置100(制御部90)は所定時間が経過したかどうかを判定し、所定時間が経過した場合には、S801へ戻る。 In S807, the control device 100 (control unit 90) determines whether a predetermined time has elapsed, and returns to S801 if the predetermined time has elapsed.
 S803において、単電池30の受光部21は、光を受光して固有の受光タイミングで復号する。 In S803, the light receiving unit 21 of the cell 30k receives light and decodes it at a unique light receiving timing.
 S804において、単電池30の制御回路23は、復号された光信号が単電池30の光通信装置の固有の識別(ID)コードと一致するかどうかを判定する。 At S804, the control circuit 23 of the cell 30k determines whether the decoded optical signal matches the unique identification (ID) code of the optical communication device of the cell 30k .
 S804において、復号された光信号が単電池30の光通信装置の固有の識別(ID)コードと一致しない場合(S804のNO)、S805へ進み、単電池30の制御回路23は、光信号を送信しない。 In S804, if the decoded optical signal does not match the unique identification (ID) code of the optical communication device of the cell 30k (NO in S804), the process proceeds to S805, and the control circuit 23 of the cell 30k Send no signal.
 S804において、復号された光信号が単電池30の光通信装置の固有の識別(ID)コードと一致する場合(S804のYES)、S806へ進む。 In S804, if the decoded optical signal matches the unique identification (ID) code of the optical communication device of the unit cell 30k (YES in S804), the process proceeds to S806.
 S806において、単電池30の制御回路23は、固有の発光タイミングで発光部20を介して光信号を送信する。単電池30の制御回路23は、固有の識別(ID)コードを光信号として送信して、光信号が単電池30から送信されていることを明示することができる。 In S806, the control circuit 23 of the cell 30k transmits an optical signal via the light emitting section 20 at a unique light emission timing. The control circuit 23 of the cell 30k can transmit a unique identification (ID) code as an optical signal to indicate that the optical signal is being transmitted from the cell 30k .
 S808において、制御装置100(受光タイミング設定部92)は、S801で選択した(変更した)制御装置100の光通信装置の可変発光タイミングに対応する可変受光タイミングを設定し、受光部80を介して信号(光信号)を受信する。 In S808, the control device 100 (the light receiving timing setting unit 92) sets the variable light receiving timing corresponding to the variable light emitting timing of the optical communication device of the control device 100 selected (changed) in S801. Receive a signal (optical signal).
 S809において、制御装置100(単電池タイミング設定部96)は、受信した光信号が単電池30の光通信装置の固有の識別(ID)コードと一致するかどうかを判定する。 In S809, the control device 100 (cell timing setting unit 96) determines whether the received optical signal matches the unique identification (ID) code of the optical communication device of the cell 30k .
 受信した光信号が単電池30の光通信装置の固有の識別(ID)コードと一致しない場合、単電池30以外の単電池の光通信装置から送信された光信号であるとし、S801へ戻る。 If the received optical signal does not match the unique identification (ID) code of the optical communication device of the unit cell 30k , the optical signal is assumed to be transmitted from the optical communication device of a unit cell other than the unit cell 30k , and the process proceeds to S801. return.
 受信した光信号が単電池30の光通信装置の固有の識別(ID)コードと一致する場合、S810において、S801で選択し設定した可変発光タイミングで、所定のコード(光信号)を送信する。所定のコード(光信号)は、固有のタイミングを設定するための設定情報(設定コード、光信号)とすることができる。加えてまたは代替として、所定のコード(光信号)は、測定対象の単電池30の光通信装置の固有の識別コードを含んでもよい。更に所定のコードは、単電池の光通信装置における検出精度を向上するために誤り検出符号を含んでもよい。設定コードは、CR発振器などの発信器をリセットするリセットコードとしてもよく、固有の発光タイミング及び固有の受光タイミングのオフセットを示してもよい。 If the received optical signal matches the unique identification (ID) code of the optical communication device of the unit cell 30k , in S810, a predetermined code (optical signal) is transmitted at the variable light emission timing selected and set in S801. . The predetermined code (optical signal) can be setting information (setting code, optical signal) for setting unique timing. Additionally or alternatively, the predetermined code (optical signal) may include a unique identification code of the optical communication device of the unit cell 30k to be measured. Further, the predetermined code may include an error detection code to improve detection accuracy in single cell optical communication devices. The setting code may be a reset code for resetting a transmitter such as a CR oscillator, and may indicate a unique light emission timing and a unique light reception timing offset.
 S811において、単電池30の受光部21は、光を受光して固有の受光タイミングで復号する。これにより、設定コード(リセットコード、オフセットを示す情報)が復号される。 In S811, the light receiving unit 21 of the unit cell 30k receives light and decodes it at a unique light receiving timing. Thereby, the setting code (reset code, information indicating the offset) is decoded.
 S812において、単電池30の制御回路23は、復号した設定コード(リセットコード、オフセットを示す情報)にしたがって、単電池30の光送信装置の固有の発光タイミング及び受光タイミングを設定する。設定コードがリセットコードの場合、制御回路23は発振器をリセットする。発振器のリセットを通じて、固有の発光タイミング及び受光タイミングがリセットされる。設定コードがオフセットを示す場合、制御回路23は、固有の発光タイミング及び受光タイミングをオフセットする。これにより、単電池30の光通信装置の発光部20から送信される1つの光パルスのパルス幅及び受光部21で受信される1つの光パルスのパルス幅がオフセットされ、他の単電池30の光通信装置の発光部20から送信される1つの光パルスのパルス幅及び受光部21で受信される1つの光パルスのパルス幅と異なるようになる。 In S812, the control circuit 23 of the cell 30k sets the unique light emission timing and light reception timing of the optical transmitter of the cell 30k according to the decoded setting code (reset code, information indicating offset). If the setting code is a reset code, the control circuit 23 resets the oscillator. Through resetting the oscillator, the intrinsic light emission timing and light reception timing are reset. If the setting code indicates an offset, the control circuit 23 offsets the inherent light emission timing and light reception timing. As a result, the pulse width of one optical pulse transmitted from the light emitting unit 20 of the optical communication device of the unit cell 30 k and the pulse width of one optical pulse received by the light receiving unit 21 are offset. The pulse width of one optical pulse transmitted from the light emitting unit 20 and the pulse width of one optical pulse received by the light receiving unit 21 of the optical communication device are different.
 [変形例]
 以下、上述した実施形態の変形例について説明する。本変形例では、上述した実施形態、例えば図1~図4等を用いて説明した二次電池モジュールに、後述する電流取出層が付加される場合について例示する。
[Modification]
Modifications of the above-described embodiment will be described below. In this modified example, a case in which a current extraction layer, which will be described later, is added to the above-described embodiment, eg, the secondary battery module described with reference to FIGS.
 リチウムイオン電池(単電池)を複数積層した構造の積層型電池では、積層方向両端に、積層型電池の主面(略平面状の電池が積層された積層型電池における積層方向の端面)の形状と略同形状を呈する集電体(電流取出部)が配置され、両端の集電体が電極タブ(端子)と接続される。この電極タブが電池パッケージ外に引き出されている。 In a stacked battery with a structure in which multiple lithium-ion batteries (single cells) are stacked, the shape of the main surface of the stacked battery (the end face in the stacking direction of a stacked battery in which almost planar batteries are stacked) is placed on both ends in the stacking direction. A current collector (current extraction portion) having substantially the same shape as the current collector is arranged, and the current collectors at both ends are connected to electrode tabs (terminals). This electrode tab is drawn out of the battery package.
 この積層型電池に電流が流れる経路として、正極電流取出部に接続された電極タブから、正極電流取出部の主面(積層型電池における積層方向の端面)上のある領域(以下、特定領域とも称する)に至り、この特定領域に接した積層型電池の主面上のある部分を介し、同部分に接した負極電流取出部の主面上のある領域(以下、特定領域とも称する)に至り、負極電流取出部に接続された電極タブに至る。従来の積層型電池では、この電流経路における特定領域ごとに、その電気抵抗が均一ではないことが通常である。電気抵抗が均一ではないと、電気抵抗が相対的に低い領域に相対的に大きな電流が流れ、充放電の際に電流が分布する。このような特定領域に対応する経路では、相対的に他の経路に比べて深度が高い充放電が繰り返されるので、電池の劣化が促進され、積層型電池の寿命を縮めるおそれがある。 As a path through which current flows in this stacked battery, a certain region (hereinafter also referred to as a specific region) on the main surface of the positive electrode current extraction portion (the end surface in the stacking direction of the stacked battery) is provided from the electrode tab connected to the positive electrode current extraction portion. ), and through a certain portion on the main surface of the laminated battery that is in contact with this specific region, to a certain region (hereinafter also referred to as a specific region) on the main surface of the negative electrode current extraction portion that is in contact with the same portion. , to the electrode tab connected to the negative electrode current extraction part. In a conventional stacked battery, the electric resistance is usually not uniform in each specific region of the current path. If the electrical resistance is not uniform, relatively large current flows in areas with relatively low electrical resistance, and the current is distributed during charging and discharging. In the route corresponding to such a specific region, charging and discharging are repeated at a relatively deeper depth than in the other routes, which accelerates deterioration of the battery and may shorten the life of the stacked battery.
 本変形例によれば、上述した実施形態の奏する諸効果に加え、電池の充放電の際に電流が分布することを抑制し、電池の劣化を抑制して電池の長寿命化を図ることができる二次電池モジュールが実現する。 According to this modification, in addition to the various effects of the above-described embodiment, it is possible to suppress current distribution during charging and discharging of the battery, suppress deterioration of the battery, and extend the life of the battery. A secondary battery module that can
 以下、本発明を適用した二次電池モジュールについて、図面を参照しながら詳細に説明をする。 A secondary battery module to which the present invention is applied will be described in detail below with reference to the drawings.
 図10及び図11は、本発明を適用した二次電池モジュール1を示す斜視図である。図12は、図11の側断面図である。二次電池モジュール1は、負極集電体51及び負極活物質層52からなる負極2と、正極活物質層54及び正極集電体55からなる正極3とが、セパレータ53を介して積層させた平板上の単電池からなる電池セル40が複数段に亘り積層されて構成される。即ち、二次電池モジュール1を構成する電池セル40は、負極集電体51、負極活物質層52、セパレータ53、正極活物質層54、正極集電体55が、上方向に向けて積層され、全体として略矩形平板状に形成されている。 10 and 11 are perspective views showing a secondary battery module 1 to which the present invention is applied. 12 is a side sectional view of FIG. 11; FIG. In the secondary battery module 1, a negative electrode 2 composed of a negative electrode current collector 51 and a negative electrode active material layer 52, and a positive electrode 3 composed of a positive electrode active material layer 54 and a positive electrode current collector 55 are laminated with a separator 53 interposed therebetween. Battery cells 40 each formed of a single cell on a flat plate are stacked in a plurality of stages. That is, the battery cell 40 constituting the secondary battery module 1 has a negative electrode current collector 51, a negative electrode active material layer 52, a separator 53, a positive electrode active material layer 54, and a positive electrode current collector 55 stacked upward. , is formed in a substantially rectangular flat plate shape as a whole.
 なお、図10~図12は、上述した実施形態における図1及び図2A~図2Cとは正負が逆であり、図1及び図2A~図2Cの上下を逆にした状態に対応している。 10 to 12 are opposite in polarity to FIGS. 1 and 2A to 2C in the above-described embodiment, and correspond to the state in which FIGS. 1 and 2A to 2C are turned upside down. .
 二次電池モジュール1は、更に電池セル40の周縁に配設される環状の枠部材9を備えている。枠部材9は、セパレータ53の端部が埋め込まれてなることで当該セパレータ53を支持すると共に、枠部材9は、その上面及び下面に正極集電体55及び負極集電体51を面接触させた上でそれぞれ固定している。負極集電体51、正極集電体55及びセパレータ53の周縁部がこの枠部材9を介して固定されることにより、負極活物質層52及び正極活物質層54を外部に漏洩させることなく強固に封止することが可能となる。また、枠部材9は、負極集電体51、セパレータ53、正極集電体55のそれぞれの位置関係を定めることができる。負極集電体51とセパレータ53との間隔、セパレータ53と正極集電体55との間隔は、電池の容量に応じて予め調整されるが、枠部材9を通じてこの調整された間隔を保持できるように負極集電体51、セパレータ53、正極集電体55を固定することができる。 The secondary battery module 1 further includes an annular frame member 9 arranged around the periphery of the battery cells 40 . The frame member 9 supports the separator 53 by embedding the end portion of the separator 53, and the frame member 9 brings the positive electrode current collector 55 and the negative electrode current collector 51 into surface contact with the upper surface and the lower surface thereof. They are fixed on top of each other. By fixing the peripheral edge portions of the negative electrode current collector 51, the positive electrode current collector 55, and the separator 53 via the frame member 9, the negative electrode active material layer 52 and the positive electrode active material layer 54 are firmly prevented from leaking to the outside. It becomes possible to seal to Further, the frame member 9 can determine the positional relationship among the negative electrode current collector 51 , the separator 53 , and the positive electrode current collector 55 . The gap between the negative electrode current collector 51 and the separator 53 and the gap between the separator 53 and the positive electrode current collector 55 are adjusted in advance according to the capacity of the battery. The negative electrode current collector 51, the separator 53, and the positive electrode current collector 55 can be fixed to each other.
 本変形例では更に、図示及び説明は省略するが、上述の実施形態で説明したように、図1~図5と同様に、電池セル40には、配線基板24に配置された発光部20及び受光部21、並びに制御回路23を有する通信装置等が設けられており、二次電池モジュール1には、光導波路60、並びに発光部81、受光部80及び制御部90を備えた制御装置100等が設けられている。 Further, although illustration and description are omitted in this modified example, as described in the above embodiment, the battery cell 40 includes the light emitting unit 20 and the light emitting unit 20 arranged on the wiring board 24, as in FIGS. A communication device or the like having a light receiving portion 21 and a control circuit 23 is provided, and the secondary battery module 1 includes an optical waveguide 60, a control device 100 having a light emitting portion 81, a light receiving portion 80, and a control portion 90. is provided.
 なお、二次電池モジュール1では、上記の通信装置、光導波路60、及び制御装置100等を設けない構成も考えられる。また、図11及び図12に示すように、二次電池モジュール1を、通信装置、光導波路60、及び制御装置100等を有さず、電池セル40を積層させることなく単一層で構成することも考えられる。 It should be noted that the secondary battery module 1 may also be configured without the communication device, the optical waveguide 60, the control device 100, and the like. Moreover, as shown in FIGS. 11 and 12, the secondary battery module 1 does not have a communication device, an optical waveguide 60, a control device 100, and the like, and is composed of a single layer without stacking the battery cells 40. is also conceivable.
 負極集電体51の下側には、負極側電流取出層10が平面状に積層され、正極集電体55の上側には、同じく正極側電流取出層16が平面状に積層されている。 On the lower side of the negative electrode current collector 51, the negative electrode side current extraction layer 10 is laminated in a planar shape, and on the upper side of the positive electrode current collector 55, the positive electrode side current extraction layer 16 is similarly laminated in a planar shape.
 図10に示すように電池セル40を複数段に亘り積層されている場合には、その最外層の少なくとも一面に、正極側電流取出層16、負極側電流取出層10が接していればよい。 When the battery cells 40 are stacked in multiple stages as shown in FIG. 10, the positive current extraction layer 16 and the negative current extraction layer 10 should be in contact with at least one surface of the outermost layer.
 なお、以下に説明する負極集電体51、負極活物質層52、セパレータ53、正極活物質層54、正極集電体55からなる蓄電要素は一例であり、例えば、集電体を挟みこむようにして、負極活物質層52、セパレータ53、正極活物質層54が設けられ、その最外層の少なくとも一面に、正極側電流取出層16、負極側電流取出層10が接する場合もある。 The electricity storage element composed of the negative electrode current collector 51, the negative electrode active material layer 52, the separator 53, the positive electrode active material layer 54, and the positive electrode current collector 55 described below is an example. , a negative electrode active material layer 52, a separator 53, and a positive electrode active material layer 54 are provided, and the positive electrode side current extraction layer 16 and the negative electrode side current extraction layer 10 may be in contact with at least one surface of the outermost layer.
 正極側電流取出層16は、正極集電体55の上面に形成されてなり、絶縁体で構成されている。正極側電流取出層16は、図10に示すように複数の区画に応じた電流取出部6に分かれている。 The positive electrode-side current extraction layer 16 is formed on the upper surface of the positive electrode current collector 55 and is made of an insulator. As shown in FIG. 10, the positive electrode-side current extraction layer 16 is divided into current extraction portions 6 corresponding to a plurality of sections.
 この区画は、正極側電流取出層16及び後述する負極側電流取出層10において略均等の形状及び位置に設けられている。ここでいう略均等の形状とは、互いの形状の面における均等を意味するものに加え、面積が均等であると解されるものであってもよい。また各領域は完全なる均等の関係である場合に限定されるものではなく、ほぼ均等(略均等)であればよい。 The partitions are provided in substantially uniform shapes and positions in the positive electrode side current extraction layer 16 and the negative electrode side current extraction layer 10 to be described later. The term "substantially uniform shape" as used herein means not only uniformity in terms of mutual shapes, but also uniformity in area. Also, the respective regions are not limited to a completely equal relationship, and may be approximately equal (substantially equal).
 この電流取出部6には、電池セル40から電流が流れることとなる。この区画は、正極側電流取出層16における裏側において分割されて構成されたものである。電流取出部6は、正極側電流取出層16において完全に物理的に分離されていてもよいが、これに限定されるものでは無く、物理的には分離されていないものの見かけ上の境界が設けられた程度のものであってもよい。ここでいう見かけ上の境界とは、設計上割り当てた単なる境界、即ち設計図面上では境界として区切られたものであるものの、実際には全体として何ら境界の無い一つの正極側電流取出層16として構成されているものであってもよい。また、この区画に応じた電流取出部6は、物理的に明確に区切られて構成されていてもよい。かかる場合には、正極側電流取出層16は、互いに独立した区画となるように絶縁体等により隔てられて構成されている。正極側電流取出層16を複数の区画に物理的に分割する場合、正極側電流取出層16のみならず、電池セル40を構成する負極集電体51、負極活物質層52、セパレータ53、正極活物質層54も同様に絶縁体等を介して隔てられるものであってもよい。 A current flows from the battery cell 40 to the current extractor 6 . This section is configured by dividing the back side of the positive electrode current extraction layer 16 . The current extraction part 6 may be completely physically separated in the positive electrode side current extraction layer 16, but is not limited to this. Although not physically separated, an apparent boundary is provided. It may be as small as it is. The term "apparent boundary" as used herein refers to a mere boundary allocated for design purposes, that is, a single positive current extraction layer 16 that has no boundary as a whole, although it is separated as a boundary on the design drawing. It may be configured. Also, the current extractor 6 corresponding to this section may be physically clearly separated. In such a case, the positive electrode current extraction layers 16 are separated by an insulator or the like so as to form mutually independent sections. When the positive electrode-side current extraction layer 16 is physically divided into a plurality of compartments, not only the positive electrode-side current extraction layer 16 but also the negative electrode current collector 51, the negative electrode active material layer 52, the separator 53, and the positive electrode, which constitute the battery cell 40. The active material layers 54 may also be similarly separated via an insulator or the like.
 図13Aは、一の電流取出部6に着目した場合において、この正極側電流取出層16を上面から視認した平面図である。電流取出用端部36a~36dは、正極集電体55に電気的に接続されている。また各電流取出用端部36a~36dから正極合流部26までを電気的に接続するための複数本の正極導電線22a~22dを備えている。以下、この電流取出用端部36、正極導電線22、正極合流部26までを電流取出線ともいう。正極導電線22a~22dにおける電流取出用端部36a~36dから正極合流部26に至るまでの長さは、互いに略同一である。ここでいう略同一とは、完全に長さが同一である場合に限定されるものではない。正極側電流取出層16における電流取出部6は、その上面が互いに略均等な複数の領域32a~32dに分割されている。ここでいう略均等とは、領域32a~32dの形状が完全に対称で、かつ同一面積で構成されている場合を例にとり説明をするが、これに限定されるものでは無く、領域32a~32dの形状が完全な対象からややずれており、しかも領域32a~32d間の面積において誤差が生じていてもよい。 FIG. 13A is a plan view of the positive electrode-side current extraction layer 16 viewed from above when focusing on one current extraction portion 6 . The current extracting ends 36 a to 36 d are electrically connected to the positive current collector 55 . A plurality of positive electrode conductive wires 22a to 22d are provided for electrically connecting the current extraction end portions 36a to 36d to the positive electrode merging portion 26. As shown in FIG. Hereinafter, the current extraction end portion 36, the positive electrode conductor wire 22, and the positive electrode junction portion 26 are also referred to as a current extraction wire. The lengths from the current extracting ends 36a to 36d of the positive electrode conductors 22a to 22d to the positive electrode junction portion 26 are substantially the same. The term “substantially the same” as used herein is not limited to the case where the lengths are completely the same. The current extraction portion 6 in the positive electrode side current extraction layer 16 is divided into a plurality of regions 32a to 32d having substantially uniform upper surfaces. The term "substantially uniform" as used herein means that the shapes of the regions 32a to 32d are completely symmetrical, and the regions 32a to 32d have the same area. is slightly off from perfect symmetry, and an error may occur in the areas between the regions 32a to 32d.
 なお、上述した実施形態においては、正極導電線22a~22dにおける電流取出用端部36a~36dから正極合流部26までの電気抵抗が互いに略同一であってもよい。電気抵抗が互いに略同一になっていれば、各正極導電線22a~22dが互いに材質や長さ、径が互いに異なるものであってもよい。この電気抵抗が互いに略同一とは、20%以下であれば好ましく、10%以下、或いは5%以下であれば更に好ましい。 Incidentally, in the above-described embodiment, the electric resistances from the current extraction ends 36a to 36d of the positive electrode conductors 22a to 22d to the positive electrode junction portion 26 may be substantially the same. The positive electrode conductors 22a to 22d may have different materials, lengths, and diameters as long as they have substantially the same electrical resistance. It is preferable that the electrical resistances are approximately equal to each other if they are 20% or less, and more preferably 10% or less or 5% or less.
 この領域32a~32dは、物理的に明確に区切られた領域で構成されている必要はなく、物理的な区切りの無い、見かけ以上区切られた領域であってもよい。ここでいう見かけ上の区切りとは、設計上割り当てた単なる区切り、即ち設計図面上では領域として区切られたものであるものの、実際には全体として何ら区切りの無い一つの正極側電流取出層16として構成されているものであってもよい。また、この領域32a~32dは、物理的に明確に区切られた領域で構成されていてもよい。かかる場合には、正極側電流取出層16は、互いに独立した領域32a~32dとなるように絶縁体等により隔てられて構成されている。正極側電流取出層16を複数の領域32a~32bに物理的に分割する場合、正極側電流取出層16のみならず、電池セル40を構成する負極集電体51、負極活物質層52、セパレータ53、正極活物質層54も同様に絶縁体等を介して隔てられるものであってもよい。 These areas 32a to 32d do not need to consist of areas that are clearly physically separated, and may be areas that are not physically separated and are separated beyond what they appear to be. The term "apparent division" as used herein means a division allocated in design, that is, although it is divided as a region on the design drawing, it is actually a positive electrode side current extraction layer 16 that does not have any division as a whole. It may be configured. Also, the regions 32a to 32d may be composed of physically distinct regions. In such a case, the positive current extraction layer 16 is separated by an insulator or the like so as to form independent regions 32a to 32d. When the positive electrode current extraction layer 16 is physically divided into a plurality of regions 32a to 32b, not only the positive electrode current extraction layer 16 but also the negative electrode current collector 51, the negative electrode active material layer 52, and the separator that constitute the battery cell 40. 53 and the positive electrode active material layer 54 may be similarly separated via an insulator or the like.
 図13Aの例において領域32a~32dは、平面視で正方形状の正極側電流取出層16を均等に4分割した形状で構成されており、ちょうど平面視で正方形状となる。但し、この領域32a~32dは、このような形状で構成されている場合に限定されるものではなく、仮に正極側電流取出層16が平面視で長方形状とされているのであれば、これを4分割した長方形状で構成されていてもよい。 In the example of FIG. 13A, the regions 32a to 32d are formed by equally dividing the positive electrode side current extraction layer 16, which is square in plan view, into four parts, and are exactly square in plan view. However, the regions 32a to 32d are not limited to having such a shape, and if the positive electrode-side current extraction layer 16 is rectangular in plan view, it can be It may be configured in a rectangular shape divided into four.
 また図13Aの例では、正極側電流取出層16を領域32a~32dへと4分割する場合を例に挙げて説明をしたが、これに限定されるものではなく、複数であればいかなる数に分割されて構成されるものであってもよい。かかる場合においても、各領域32は、互いに均等となるように構成されていることが前提となるが、ここでいう均等とは、形状の面における均等を意味するものに加え、面積が均等であると解されるものであってもよい。また各領域は完全なる均等の関係である場合に限定されるものではなく、ほぼ均等(略均等)であればよい。 In the example of FIG. 13A, the case where the positive current extraction layer 16 is divided into four regions 32a to 32d has been described as an example. It may be configured by being divided. Even in such a case, it is assumed that the regions 32 are configured to be equal to each other. It may be understood that there is. Also, the respective regions are not limited to a completely equal relationship, and may be approximately equal (substantially equal).
 電流取出用端部36a~36dは、上述した領域32a~32dの略中心に設けられている。また、正極合流部26は、各領域32a~32bからなる正極集電体55の中心にあり、各領域32a~32bの境界が互いに一点で交差する合流点に設けられている。図13Aの例では、領域32a~32dの略中心に設けられた電流取出用端部36a~36dからこの正極合流部26に向けて正極導電線22a~22dが直線状に伸びている。即ち、正極導電線22a~22dは、互いに均等に設けられている領域32a~32dの略中心に設けられた電流取出用端部36a~36dから正極合流部26に向けて直線状に延長されていることから、幾何的に長さが互いに同一になることは自明である。このようにして、正極導電線22a~22dの長さは互いに同一となるように設計されるが、必ずしも完全に同一である必要はなく、正極導電線22a~22d間において多少の長さのずれがあっても許容される。正極合流部26からは、放電時において電気回路上へ電流を供給するための導電体層からなる引出配線8が接続される。即ち、各電流取出部6において正極合流部26に接続される一の引出配線8が割り当てられる。この電流を取り出すための引出配線8、ひいてはこれを含む電流取出線が、電流取出部6毎に互いに独立して設けられることにより、区画に応じた電流取出部6毎に独立して電流を取り出すことが可能となる。なお、引出配線8は、上述した実施形態の図1の引出配線57と同様に引出配線7と並んで引き出されるようにしても良い。 The current extraction ends 36a-36d are provided substantially at the center of the above-described regions 32a-32d. The positive electrode confluence portion 26 is located at the center of the positive electrode current collector 55 composed of the regions 32a to 32b, and is provided at a confluence point where the boundaries of the regions 32a to 32b intersect each other at one point. In the example of FIG. 13A, positive electrode conductive wires 22a to 22d extend linearly toward the positive electrode confluence portion 26 from current extracting ends 36a to 36d provided substantially at the center of regions 32a to 32d. That is, the positive electrode conductors 22a to 22d are linearly extended toward the positive junction 26 from the current extraction ends 36a to 36d provided substantially at the center of the regions 32a to 32d that are evenly provided. , it is obvious that the lengths are geometrically the same. In this manner, the lengths of the positive electrode conductors 22a to 22d are designed to be the same as each other, but they do not necessarily have to be exactly the same, and there is some length deviation between the positive electrode conductors 22a to 22d. is acceptable. From the positive junction 26, an extraction wiring 8 made of a conductor layer for supplying current to the electric circuit during discharge is connected. That is, one extraction wiring 8 connected to the positive junction 26 is assigned to each current extraction portion 6 . The extraction wiring 8 for extracting this current, and the current extraction line including this, are provided independently for each current extraction section 6, so that the current is independently extracted for each current extraction section 6 corresponding to the section. becomes possible. Note that the lead wiring 8 may be drawn out side by side with the lead wiring 7 in the same manner as the lead wiring 57 in FIG. 1 of the above-described embodiment.
 図13Bの例では、正極導電線22、正極合流部26の構成を省略した例を示している。つまり、区画に応じた各電流取出部6には、図13Bに示すように一の電流取出用端部36から伸びる少なくとも1本の引出配線8が設けられており、これが電流取出部6外へ延出されるものであってもよい。なお、かかる場合においても、引出配線8は、途中で互いに異なる方向に分岐していてもよい。また、この図13Bに示す例では、領域32の概念を捨象してもよい。 The example of FIG. 13B shows an example in which the configurations of the positive electrode conductive wire 22 and the positive electrode junction portion 26 are omitted. 13B, at least one lead wire 8 extending from one current take-out end 36 is provided in each current take-out portion 6 corresponding to the section. It may be extended. Note that, even in such a case, the lead wiring 8 may be branched in different directions along the way. Also, in the example shown in FIG. 13B, the concept of the area 32 may be abstracted.
 なお、正極合流部26は、各領域32a~32bからなる正極集電体55の中心に形成される点は、必須ではなく、例えば図14に示すように正極集電体55の中心以外に形成されるものであってもよい。 It should be noted that it is not essential that the positive electrode current collector 55 is formed at the center of the positive electrode current collector 55 composed of the regions 32a to 32b. For example, as shown in FIG. It may be
 なお、本発明においては、電流取出用端部36a~36d、正極導電線22a~22d、正極合流部26からなる配線は必須ではなく、少なくとも電流取出用端部36が設けられた配線で構成されていればよい。このとき、この電流取出用端部36は、正極側電流取出層16を上端から下端に至るまで貫通する構成とすることにより、正極側電流取出層16の上部に別の回路を接続する場合において利便性を高くすることが可能となる。 In the present invention, the wiring composed of the current extracting ends 36a to 36d, the positive electrode conductors 22a to 22d, and the positive electrode merging portion 26 is not essential, and at least the wiring provided with the current extracting end 36 is used. It is good if there is At this time, the current extraction end portion 36 is configured to penetrate the positive electrode current extraction layer 16 from the upper end to the lower end, so that when another circuit is connected to the upper portion of the positive electrode current extraction layer 16, It is possible to improve convenience.
 負極側電流取出層10は、図15Aに示すように負極集電体51の下面に形成されてなり、絶縁体で構成されている。負極側電流取出層10中には、換言すれば負極集電体51の下面には導電体としての複数の電流取出用端部35a~35dが接続されている。電流取出用端部35a~35dは、負極集電体51に対して電気的に接続されている。 The negative electrode-side current extraction layer 10 is formed on the lower surface of the negative electrode current collector 51 as shown in FIG. 15A, and is made of an insulator. In other words, in the negative electrode current extraction layer 10, a plurality of current extraction end portions 35a to 35d are connected to the lower surface of the negative electrode current collector 51 as conductors. The current extracting ends 35 a to 35 d are electrically connected to the negative electrode current collector 51 .
 負極側電流取出層10も、正極側電流取出層16と同様に複数の区画に応じた電流取出部6´に分かれている。電流取出部6´には、電池セル40から電流が流れることとなる。この電流取出部6´は、負極側電流取出層10において完全に物理的に分離されていてもよいが、これに限定されるものでは無く、物理的には分離されていないものの見かけ上の境界が設けられた程度のものであってもよい。また、この電流取出部6´は、負極側電流取出層10を物理的に明確に区切られて構成されていてもよい。かかる場合には、負極側電流取出層10は、互いに独立した電流取出部6´となるように絶縁体等により隔てられて構成されている。負極側電流取出層10を複数の区画に応じた電流取出部6´に物理的に分割する場合、負極側電流取出層10のみならず、電池セル40を構成する負極集電
体11、負極活物質層52、セパレータ53、正極活物質層54も同様に絶縁体等を介して隔てられるものであってもよい。
Similarly to the positive current extraction layer 16, the negative current extraction layer 10 is also divided into a plurality of current extraction portions 6' corresponding to the divisions. A current flows from the battery cell 40 to the current extractor 6'. This current extraction portion 6' may be completely physically separated in the negative electrode side current extraction layer 10, but is not limited to this. may be provided. Further, the current extracting portion 6' may be configured by physically separating the negative current extracting layer 10 clearly. In such a case, the negative current extraction layers 10 are separated by an insulator or the like so as to form independent current extraction portions 6'. When the negative electrode-side current extraction layer 10 is physically divided into the current extraction portions 6′ corresponding to a plurality of sections, not only the negative electrode-side current extraction layer 10 but also the negative electrode current collector 11 and the negative electrode active layer constituting the battery cell 40 are used. The material layer 52, the separator 53, and the positive electrode active material layer 54 may be similarly separated via an insulator or the like.
 各電流取出用端部35a~35dから負極合流部25までを電気的に接続するための複数本の負極導電線21a~21dを備えている。以下、この電流取出用端部35、負極導電線21、負極合流部25を電流取出線ともいう。負極導電線21a~21dにおける電流取出用端部35a~35dから負極合流部25に至るまでの長さは、互いに略同一である。負極側電流取出層10も正極側電流取出層16と同様にその下面が互いに略均等な複数の領域31a~31dに分割されている。この領域31a~31dの詳細は、上述した領域32a~32dと同様である。 A plurality of negative electrode conductive wires 21a to 21d are provided for electrically connecting the current extraction end portions 35a to 35d to the negative electrode junction portion 25. Hereinafter, the current extraction end portion 35, the negative electrode conductor wire 21, and the negative electrode junction portion 25 are also referred to as current extraction wires. The lengths from the current extracting ends 35a to 35d of the negative electrode conductors 21a to 21d to the negative junction 25 are substantially the same. Similarly to the positive current extraction layer 16, the negative current extraction layer 10 has a lower surface divided into a plurality of regions 31a to 31d that are substantially equal to each other. Details of the regions 31a to 31d are the same as those of the regions 32a to 32d described above.
 かかる場合も負極導電線21a~21dにおける電流取出用端部35a~35dから負極合流部25までの電気抵抗が互いに略同一であってもよい。電気抵抗が互いに略同一になっていれば、各負極導電線21a~21dが互いに材質や長さ、径が互いに異なるものであってもよい。この電気抵抗が互いに略同一とは、20%以下であれば好ましく、10%以下、或いは5%以下であれば更に好ましい。 In this case also, the electrical resistances from the current extraction end portions 35a to 35d of the negative electrode conductors 21a to 21d to the negative electrode junction portion 25 may be substantially the same. The negative electrode conductors 21a to 21d may have different materials, lengths, and diameters as long as they have substantially the same electric resistance. It is preferable that the electrical resistances are approximately equal to each other if they are 20% or less, and more preferably 10% or less or 5% or less.
 電流取出用端部35a~35dは、上述した領域31a~31dの略中心に設けられている。また、負極合流部25は、各領域31a~31dからなる負極側電流取出層10の中心にあり、各領域31a~31dの境界が互いに一点で交差する合流点に設けられている。即ち、負極導電線21a~21dは、互いに均等に設けられている領域31a~31dの略中心に設けられた電流取出用端部35a~35dから負極合流部25に向けて直線状に延長されていることから、幾何的に長さが互いに同一になることは自明である。このようにして、負極導電線21a~21dの長さは互いに同一となるように設計されるが、必ずしも完全に同一である必要はなく、負極導電線21a~21d間において多少の長さのずれがあっても許容される。負極合流部25には、放電時において電気回路上から電流が供給される導電体層からなる引出配線7が接続される。即ち、各区画に応じた電流取出部6´において負極合流部25に接続される一の引出配線7が割り当てられる。この電流を取り出すための引出配線7、ひいてはこれを含む電流取出線が区画に応じた電流取出部6´毎に互いに独立して設けられることにより、電流取出部6´毎に独立して電流を供給することが可能となる。 The current extraction ends 35a-35d are provided substantially at the center of the above-described regions 31a-31d. The negative junction 25 is located at the center of the negative current extraction layer 10 composed of the regions 31a to 31d, and is provided at a junction where the boundaries of the regions 31a to 31d intersect at one point. That is, the negative electrode conductors 21a to 21d are linearly extended toward the negative junction 25 from the current extraction ends 35a to 35d provided substantially at the center of the regions 31a to 31d which are evenly provided. , it is obvious that the lengths are geometrically the same. In this way, the lengths of the negative electrode conductors 21a to 21d are designed to be the same as each other, but they do not necessarily have to be exactly the same, and the lengths of the negative electrode conductors 21a to 21d are slightly different. is acceptable. The negative junction 25 is connected to a lead wire 7 made of a conductor layer to which current is supplied from the electric circuit during discharge. That is, one lead wire 7 connected to the negative junction 25 is assigned to the current extraction portion 6' corresponding to each section. The extraction wiring 7 for extracting the current, and the current extraction line including this, are provided independently for each current extraction section 6' according to the section, so that the current is independently extracted for each current extraction section 6'. supply becomes possible.
 なお、負極合流部25は、各領域31a~31dからなる負極側電流取出層10の中心に形成される点は、必須ではなく、負極側電流取出層10の中心以外に形成されるものであってもよい。 It should be noted that it is not essential to form the negative electrode junction portion 25 at the center of the negative electrode current extraction layer 10 consisting of the regions 31a to 31d, and it is formed at a location other than the center of the negative electrode current extraction layer 10. may
 なお、本変形例においては、電流取出用端部35a~35d、負極導電線21a~21d、負極合流部25からなる配線は必須ではなく、少なくとも電流取出用端部35が設けられた配線で構成されていればよい。このとき、この電流取出用端部35は、負極側電流取出層10を上端から下端に至るまで貫通する構成とすることにより、負極側電流取出層10の下部に別の回路を接続する場合において利便性を高くすることが可能となる。 In this modification, the wiring composed of the current extraction ends 35a to 35d, the negative electrode conductors 21a to 21d, and the negative electrode merging portion 25 is not essential. It is good if it is. At this time, the current extraction end portion 35 is configured to pass through the negative electrode current extraction layer 10 from the upper end to the lower end, so that when another circuit is connected to the lower portion of the negative electrode current extraction layer 10, It is possible to improve convenience.
 図15Bの例では、負極導電線21、負極合流部25の構成を省略した例を示している。つまり、区画に応じた各電流取出部6´には、図15Bに示すように一の電流取出用端部35から伸びる少なくとも1本の引出配線7が設けられており、これが電流取出部6´外へ延出されるものであってもよい。なお、かかる場合においても、引出配線7は、途中で互いに異なる方向に分岐していてもよい。また、この図15Bに示す例では、領域32の概念を捨象してもよい。 The example of FIG. 15B shows an example in which the configuration of the negative electrode conductive wire 21 and the negative electrode junction portion 25 is omitted. In other words, each current take-out portion 6' corresponding to the section is provided with at least one lead wire 7 extending from one current take-out end portion 35 as shown in FIG. 15B. It may be extended outside. Also in this case, the lead wiring 7 may be branched in different directions along the way. Also, in the example shown in FIG. 15B, the concept of the area 32 may be abstracted.
 電池セル40は、いわゆるリチウムイオン二次電池で構成される。図16Aは、リチウムイオン二次電池としての電池セル40の拡大断面図を示しており、負極2を構成する負極活物質層52は、負極活物質41と電解液43とを含み、正極3を構成する正極活物質層54は、正極活物質42と電解液43とを含んでいる。 The battery cell 40 is composed of a so-called lithium ion secondary battery. FIG. 16A shows an enlarged cross-sectional view of a battery cell 40 as a lithium ion secondary battery. The constituent positive electrode active material layer 54 contains the positive electrode active material 42 and the electrolytic solution 43 .
 このような電池セル40をリチウムイオン二次電池として動作させる場合、先ず図示しない充電器の正極端子を正極3側に、充電器の負極端子を負極2側に接続して電流を流す。その結果、リチウム遷移金属複合酸化物等を含む正極活物質42から引き離された電子は、充電器を含む外部回路を流れ、炭素系材料等からなる負極活物質41へと到達する。その間において、プラスに帯電したリチウムイオンは、負極2側へと引き寄せられ、電解液43を流れて負極活物質41へと到達し、これに吸蔵される。正極活物質42中の全てのリチウム原子が負極活物質41へと到達することで、電池セル40が完全に充電された状態となる。 When such a battery cell 40 is operated as a lithium-ion secondary battery, the positive electrode terminal of a charger (not shown) is first connected to the positive electrode 3 side, and the negative electrode terminal of the charger is connected to the negative electrode 2 side, and current is supplied. As a result, electrons separated from the positive electrode active material 42 containing lithium-transition metal composite oxide or the like flow through an external circuit including a charger and reach the negative electrode active material 41 made of a carbonaceous material or the like. In the meantime, positively charged lithium ions are attracted to the negative electrode 2 side, flow through the electrolytic solution 43, reach the negative electrode active material 41, and are occluded therein. When all the lithium atoms in the positive electrode active material 42 reach the negative electrode active material 41, the battery cell 40 is in a fully charged state.
 放電時には、図示しない外部の負荷を正極3と負極2との間に接続する。これにより、この負極活物質41に吸蔵されているリチウムイオンは、リチウム遷移金属複合酸化物の一部として安定な状態に戻るため、電解液43を通過し、正極に向かって移動する。また電子も負極2から外部の負荷を通過して正極3側へと流れ込むことでエネルギーが消費される。 An external load (not shown) is connected between the positive electrode 3 and the negative electrode 2 during discharging. As a result, the lithium ions occluded in the negative electrode active material 41 return to a stable state as part of the lithium-transition metal composite oxide, so they pass through the electrolyte 43 and move toward the positive electrode. Energy is also consumed when electrons flow from the negative electrode 2 through an external load to the positive electrode 3 side.
 負極側電流取出層10及び正極側電流取出層16を構成する材料は、例えばエポキシ樹脂、ポリテトラフルオロエチレン等を始めとする絶縁性の樹脂で構成されていてもよいし、カーボンファイバー等からなる不織布等のような弾性変形可能な弾性材で構成してもよい。この負極側電流取出層10及び正極側電流取出層16を構成する材料について、ポリエチレン(PE)又はポリプロピレン(PP)等のいかなる種類の樹脂で構成されていてもよい。 The material forming the negative current extraction layer 10 and the positive current extraction layer 16 may be composed of insulating resin such as epoxy resin and polytetrafluoroethylene, or may be made of carbon fiber or the like. It may be composed of an elastic material that can be elastically deformed, such as a non-woven fabric. The material forming the negative current extraction layer 10 and the positive current extraction layer 16 may be made of any kind of resin such as polyethylene (PE) or polypropylene (PP).
 正極側電流取出層16と、この正極側電流取出層16に含まれる電流取出用端部36、正極導電線22、正極合流部26とは、いわゆるプリント基板のように機能が分類されていてもよい。つまり、正極側電流取出層16は、プリント基板における絶縁体で構成され、電流取出用端部36、正極導電線22、正極合流部26は、プリント基板における配線として構成されるものであってもよい。 The positive electrode current extraction layer 16, and the current extraction end portion 36, the positive electrode conductive wire 22, and the positive junction 26 included in the positive electrode current extraction layer 16 are functionally classified like a so-called printed circuit board. good. That is, even if the positive current extraction layer 16 is made of an insulator on the printed circuit board, and the current extraction end portion 36, the positive conductive wire 22, and the positive junction 26 are configured as wiring on the printed circuit board. good.
 負極側電流取出層10と、この負極側電流取出層10に含まれる電流取出用端部35、負極導電線21、負極合流部25とは、いわゆるプリント基板のように機能が分類されていてもよい。つまり、負極側電流取出層10は、プリント基板における絶縁体で構成され、電流取出用端部35、負極導電線21、負極合流部25は、プリント基板における配線として構成されるものであってもよい。 The negative electrode current extraction layer 10, and the current extraction end portion 35, the negative electrode conductive wire 21, and the negative junction 25 included in the negative electrode current extraction layer 10 are functionally classified like a so-called printed circuit board. good. That is, even if the negative current extraction layer 10 is composed of an insulator on the printed circuit board, and the current extraction end portion 35, the negative electrode conductive wire 21, and the negative junction 25 are configured as wiring on the printed circuit board. good.
 正極側電流取出層16及び負極側電流取出層10は、プリント基板における絶縁体で構成する場合、その材質としては、紙基材にフェノール樹脂を含侵させた材料、紙基材にエポキシ樹脂を含侵させた材料、ガラス布(ガラス繊維を布状に編んだガラス織布)にエポキシ樹脂を含侵させた材料、紙基材にポリイミド樹脂を含侵させた材料、ガラス布基材にフッ素樹脂を含浸させた材料、ガラス布基材にPPO(Poly Phenylene Oxide)樹脂を含浸させた材料で構成してもよいし、アルミニウムのような金属をベースにした基板、或いはガラスセラミックをベースにした基板で構成してもよい。 When the positive electrode side current extraction layer 16 and the negative electrode side current extraction layer 10 are composed of an insulator on a printed circuit board, the material thereof may be a paper substrate impregnated with phenol resin, or a paper substrate impregnated with epoxy resin. impregnated material, glass cloth (woven glass fabric made of glass fibers) impregnated with epoxy resin, paper base material impregnated with polyimide resin, glass cloth base material with fluorine It can be composed of material impregnated with resin, glass cloth substrate impregnated with PPO (Poly Phenylene Oxide) resin, substrate based on metal such as aluminum, or glass ceramic based It may be composed of a substrate.
 このようなプリント基板のような機能分類がなされていることにより、他の図示しない回路やプリント基板に対して直接接続する場合において、その接触抵抗低減を図ることが可能となる。また、実際に硬質のプリント基板で正極側電流取出層16及び負極側電流取出層10を構成することにより、電流取出用端部35、負極導電線21、負極合流部25や電流取出用端部35、負極導電線21、負極合流部25からなる配線を施す上でその作業の容易性を向上させることができる。その結果、上述した配線を施す上で利便性を高くすることができる。 By classifying the functions like the printed circuit board, it is possible to reduce the contact resistance when connecting directly to other circuits or printed circuit boards (not shown). In addition, by forming the positive electrode current extraction layer 16 and the negative electrode current extraction layer 10 with a hard printed circuit board, the current extraction end portion 35, the negative electrode conductive wire 21, the negative junction portion 25, and the current extraction end portion can be formed. 35, the negative electrode conductive wire 21, and the negative electrode merging portion 25, it is possible to improve the easiness of the work. As a result, it is possible to enhance the convenience in providing the wiring described above.
 正極側電流取出層16及び/又は負極側電流取出層10は、フレキシブルプリント基板で構成されていてもよく、そのフレキシブルプリント基板は、両面に回路基板が形成された、いわゆる両面基板で構成されていてもよい。 The positive current extraction layer 16 and/or the negative current extraction layer 10 may be composed of a flexible printed circuit board, and the flexible printed circuit board is composed of a so-called double-sided board in which circuit boards are formed on both sides. may
 このようにフレキシブルプリント基板を両面基板で構成することにより、配線の自由度を高くすることができ、またデザインが容易なので片側より等長性を上げられるという利点がある。これに加えて、フレキシブルプリント基板を両面基板で構成することにより、表面から裏面までの面間の貫通孔や、面間を貫通する導電部を含むので、電池セル40の熱を電池の外側に逃す能力を高くすることができる利点もある。 By constructing a flexible printed circuit board with a double-sided board in this way, it is possible to increase the degree of freedom in wiring, and since the design is easy, there is the advantage that the equal length can be improved from one side. In addition to this, by configuring the flexible printed circuit board with a double-sided board, since it includes a through hole between the surfaces from the front surface to the back surface and a conductive part that penetrates between the surfaces, the heat of the battery cell 40 is transferred to the outside of the battery. It also has the advantage of increasing the ability to escape.
 勿論、このフレキシブルプリント基板をいわゆる両面基板ではなく、片側のみに回路基板が形成された片面基板で構成してもよい。この片面基板は、配線デザイン性、基板垂直方向の熱伝導性の面において両面基板よりもやや劣る点があるものの、コストパフォーマンスに優れ、また基板の厚みを薄く構成できることから、エネルギー密度の面においても優れる。正極側電流取出層16及び/又は負極側電流取出層10をこのようなフレキシブルプリント基板で構成する場合においても、複数の区画に対応した電流取出部6,6´が構成され、各区画に応じた電流取出部6,6´から独立した電流取出線を有するものとなる。 Of course, this flexible printed circuit board may be composed of a single-sided board in which a circuit board is formed only on one side instead of a so-called double-sided board. Although this single-sided board is slightly inferior to double-sided boards in terms of wiring design and thermal conductivity in the vertical direction of the board, it has excellent cost performance and can be configured with a thin board, so in terms of energy density. is also excellent. Even when the positive electrode side current extraction layer 16 and/or the negative electrode side current extraction layer 10 are configured by such a flexible printed circuit board, the current extraction portions 6, 6' are configured corresponding to a plurality of sections, and the current extraction sections 6, 6' are configured corresponding to each section. It has a current lead-out line independent from the current lead-out portions 6, 6'.
 このように、本変形例では、電流取出部が電流取出層において複数の区画に分かれ、該区画に独立した電流取出線を有する。公知の積層型電池の構成(例えば、積層型電池の最外層の集電体(電流取出部)に電極タブ(端子)が接続された構成)では、電流取出部の一部において電流が集中するおそれがあるのに対し、本実施形態では、電流取出部が複数の区画に分かれ、当該区画にそれぞれ電流取出線を有するため、電流取出部位が分散される。そのため、公知の積層型電池の構成と比較して、本変形例では電流取出部のある一部に電流が集中することが抑制されるので、電流が分布することを抑制することができる。電流の分布が抑制されることにより、積層型電池のある一部において深度が高い充放電が繰り返されることが抑えられるので、電池の劣化を抑制することができる。 Thus, in this modification, the current extraction portion is divided into a plurality of sections in the current extraction layer, and each section has an independent current extraction line. In a configuration of a known stacked battery (for example, a configuration in which an electrode tab (terminal) is connected to a current collector (current extraction portion) in the outermost layer of the stacked battery), current concentrates in a part of the current extraction portion. In contrast to this, in the present embodiment, the current extraction portion is divided into a plurality of sections, each of which has a current extraction line, so the current extraction portions are dispersed. Therefore, compared with the configuration of a known stacked battery, in this modified example, the concentration of current in a certain portion of the current extraction portion is suppressed, so that the distribution of current can be suppressed. By suppressing the current distribution, it is possible to suppress the repetition of deep charging and discharging in a certain part of the laminated battery, thereby suppressing deterioration of the battery.
 なお、各区画に設けられる引出配線7,8の配線幅や配線厚みは以下に説明する(1)式に基づいて規定されていてもよい。 Note that the wiring width and wiring thickness of the lead wirings 7 and 8 provided in each section may be defined based on the following equation (1).
 最大電流/区画数<(配線厚み(oz)/35)×配線幅(mm)…(1)
 ここでいう最大電流は、負極側電流取出層10、正極側電流取出層16を流れる最大電流である。(1)式の左辺は、この最大電流を区画数で割ることにより得られる、区画当たりの最大電流である。引出配線7,8の配線幅や配線厚みは、この区画当たりの最大電流を上回っていればよいことから、(1)式の右辺に示す関係からなる配線厚み(oz)、配線幅(mm)で設計される必要がある。この(1)式の右辺に示す関係の根拠としては、配線厚み35ozで配線幅1mmであるとき1Aまで耐えることができるというのが業界の一般的なルールであり、これに基づくものである。
Maximum current/number of sections<(wiring thickness (oz)/35)×wiring width (mm) (1)
The maximum current referred to here is the maximum current that flows through the negative current extraction layer 10 and the positive current extraction layer 16 . The left hand side of equation (1) is the maximum current per compartment, obtained by dividing this maximum current by the number of compartments. Since the wiring width and wiring thickness of the lead wirings 7 and 8 need only exceed the maximum current per section, the wiring thickness (oz) and the wiring width (mm) having the relationship shown on the right side of the equation (1) must be designed with The relationship shown on the right side of the equation (1) is based on the general rule in the industry that a wire with a thickness of 35 oz and a wire width of 1 mm can withstand up to 1 A.
 例えば、最大電流が20Aであり、区画数が36であれば区画当たりの最大電流は0.55Aとなる。かかる場合には、例えば、配線厚み70ozで配線幅0.5mmであれば、(1)式の右辺である0.55Aを上回るため、(1)式を満たすものとなる。 For example, if the maximum current is 20A and the number of sections is 36, the maximum current per section is 0.55A. In this case, for example, if the wiring thickness is 70 oz and the wiring width is 0.5 mm, it exceeds 0.55 A, which is the right side of the formula (1), so that the formula (1) is satisfied.
 ちなみに、配線厚み70ozに設計するためには、あまりに正極側電流取出層16、負極側電流取出層10、ひいてはこれを構成するプリント基板が薄いと、引出配線7,8自体の搭載が困難になる。このため、正極側電流取出層16、負極側電流取出層10、ひいてはこれを構成するプリント基板の厚みは100μ以上であることが望ましい。 Incidentally, in order to design the wiring with a thickness of 70 oz, if the positive electrode side current extraction layer 16, the negative electrode side current extraction layer 10, and the printed circuit board constituting these layers are too thin, it becomes difficult to mount the lead wires 7 and 8 themselves. . For this reason, it is desirable that the thickness of the positive current extraction layer 16, the negative current extraction layer 10, and the thickness of the printed circuit board constituting these layers be 100 μm or more.
 また区画数は、4以上40以下であることが望ましい。この区画数の下限は、単電池としての電池セル40における単電池の電極面積(cm)/400、区画数の上限は、単電池としての電池セル40の電極面積(cm)/400で計算されるものであってもよい。 Moreover, it is desirable that the number of partitions is 4 or more and 40 or less. The lower limit of the number of sections is the electrode area (cm 2 )/400 of the battery cell 40 as a single battery, and the upper limit of the number of sections is the electrode area (cm 2 ) /400 of the battery cell 40 as the single battery. It may be calculated.
 正極側電流取出層16に含まれる電流取出用端部36、正極導電線22、正極合流部26、並びに引出配線8は、金めっきを施すことにより、電池の電位によるプリント基板の腐食を抑えることができる。同様に、電流取出用端部35、負極導電線21、負極合流部25並びに引出配線7は、金めっきを施すことにより、電池の電位によるプリント基板の腐食を抑えることができる。 The current extraction end portion 36, the positive electrode conductive wire 22, the positive junction portion 26, and the lead wire 8 included in the positive electrode side current extraction layer 16 are plated with gold to suppress corrosion of the printed circuit board due to the potential of the battery. can be done. Similarly, the current extraction end portion 35, the negative electrode conductive wire 21, the negative electrode junction portion 25, and the lead wire 7 are plated with gold to suppress corrosion of the printed circuit board due to the potential of the battery.
 電流取出用端部36、正極導電線22、正極合流部26を構成する材料は、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料、並びに、焼成炭素、導電性高分子材料、導電性ガラス等が挙げられる。このとき、電流取出用端部36、正極導電線22、正極合流部26は、導電性高分子材料からなる樹脂集電体で構成されるものであってもよく、樹脂集電体を構成する導電性高分子材料としては、例えば、導電性高分子や、マトリックス樹脂に対して必要に応じて導電性フィラーからなる導電剤を添加したものを用いるようにしてもよい。電流取出用端部35、負極導電線21、負極合流部25を構成する材料も電流取出用端部36、正極導電線22、正極合流部26と同様である。 Materials constituting the current take-out end portion 36, the positive electrode conductive wire 22, and the positive electrode junction portion 26 include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof, baked carbon, and conductive polymers. material, conductive glass, and the like. At this time, the current extracting end portion 36, the positive electrode conductive wire 22, and the positive electrode junction portion 26 may be composed of a resin current collector made of a conductive polymer material, and constitute the resin current collector. As the conductive polymer material, for example, a conductive polymer or a matrix resin to which a conductive filler made of a conductive filler is added as needed may be used. The materials forming the current extracting end portion 35 , the negative electrode conductive wire 21 , and the negative electrode junction portion 25 are the same as those of the current extracting end portion 36 , the positive electrode conductive wire 22 , and the positive electrode junction portion 26 .
 枠部材9を構成する材料としては、負極集電体51及び正極集電体55との接着性を有し、電解液43に対して耐久性のある材料であれば特に限定されないが、高分子材料、特に熱硬化性樹脂が好ましい。枠部材9を構成する材料は、具体的には、エポキシ系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリフッ化ビニデン樹脂等が挙げられ、耐久性が高く取り扱いが容易であることからエポキシ系樹脂が好ましい。 The material constituting the frame member 9 is not particularly limited as long as it has adhesiveness to the negative electrode current collector 51 and the positive electrode current collector 55 and is durable to the electrolytic solution 43 . Materials, especially thermosetting resins, are preferred. Specific examples of the material forming the frame member 9 include epoxy-based resin, polyolefin-based resin, polyurethane-based resin, and polyvinylidene fluoride resin. preferable.
 上述した構成からなる単電池からなる電池セル40の製造方法としては、例えば、負極集電体51、負極活物質層52、セパレータ53、正極活物質層54、正極集電体55の順に重ね合わせた後、電解液43を注入し、負極活物質層52、セパレータ53及び正極活物質層54の外周を枠部材9で封止し、更に負極側電流取出層10及び正極側電流取出層16を積層させることで得ることができる。その際には、上述した電流取出用端部35、負極導電線21、負極合流部25、並びに電流取出用端部36、正極導電線22、正極合流部26も形成していくことになる。負極活物質層52及び正極活物質層54の外周を枠部材9で封止する方法としては、負極活物質層52及び正極活物質層54を一方の枠部材9の上面及び下面に接合して封止し、他方の枠部材9においてセパレータ53を挿入した状態で、一方の枠部材9と他方の枠部材9同士を接着して封止する方法で単電池からなるリチウムイオン二次電池の電池セル40を得ることができる。 As a method for manufacturing the battery cell 40 composed of the unit cell having the above-described configuration, for example, the negative electrode current collector 51, the negative electrode active material layer 52, the separator 53, the positive electrode active material layer 54, and the positive electrode current collector 55 are stacked in this order. After that, the electrolytic solution 43 is injected, the outer peripheries of the negative electrode active material layer 52, the separator 53 and the positive electrode active material layer 54 are sealed with the frame member 9, and further the negative electrode side current extraction layer 10 and the positive electrode side current extraction layer 16 are formed. It can be obtained by layering. At that time, the current extraction end portion 35, the negative electrode conductive wire 21, the negative electrode junction portion 25, the current extraction end portion 36, the positive electrode wire 22, and the positive electrode junction portion 26 are also formed. As a method for sealing the outer periphery of the negative electrode active material layer 52 and the positive electrode active material layer 54 with the frame member 9, the negative electrode active material layer 52 and the positive electrode active material layer 54 are bonded to the upper and lower surfaces of one of the frame members 9. A lithium-ion secondary battery consisting of a single cell by a method of bonding and sealing one frame member 9 and the other frame member 9 in a state where the separator 53 is inserted in the other frame member 9. A cell 40 can be obtained.
 なお、上述した形態からなる電池セル40では、液体状の電解液43の代わりに図16Bに示すような固体電解質46を用いた、いわゆる全固体リチウムイオン電池で構成した電池セル40´に代替させるようにしてもよい。電池セル40´では、セパレータ53の構成を省略し、負極2から正極3に至るまで固体電解質46で満たされた状態となる。負極活物質層52では、この固体電解質46内に負極活物質41が介在された状態となる。正極活物質層54では、この固体電解質46内に正極活物質42が介在された状態となる。この電池セル40´を構成する各構成要素の詳細や材料については、電池セル40を構成する各構成要素と同様であることから、これと同一の符号を付すことにより、以下での説明を省略する。 In addition, in the battery cell 40 having the above-described configuration, the battery cell 40' configured with a so-called all-solid lithium ion battery, which uses a solid electrolyte 46 as shown in FIG. 16B instead of the liquid electrolytic solution 43, is substituted. You may do so. In the battery cell 40 ′, the configuration of the separator 53 is omitted, and the entire area from the negative electrode 2 to the positive electrode 3 is filled with the solid electrolyte 46 . In the negative electrode active material layer 52 , the negative electrode active material 41 is interposed in the solid electrolyte 46 . In the cathode active material layer 54 , the cathode active material 42 is interposed in the solid electrolyte 46 . The details and materials of the components that make up the battery cell 40′ are the same as the components that make up the battery cell 40, so the same reference numerals are used to omit the description below. do.
 固体電解質46としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、これらの共重合体のような公知の固体高分子電解質が挙げられる。固体電解質46中には、イオン伝導性を確保するために支持塩(リチウム塩)が含まれる。支持塩としては、LiBF、LiPF、LiN(SOCF、LiN(SO、またはこれらの混合物等が使用できる。但し、固体電解質46を構成するPEO、PPOのようなポリアルキレンオキシド系高分子は、LiBF、LiPF、LiN(SOCF、LiN(SO等のリチウム塩をよく溶解し得る特質を備え、両者間で架橋構造を形成することによって、優れた機械的強度を発現させることができる。 The solid electrolyte 46 includes known solid polymer electrolytes such as polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. The solid electrolyte 46 contains a supporting salt (lithium salt) to ensure ionic conductivity. LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , or a mixture thereof can be used as the supporting salt. However, polyalkylene oxide polymers such as PEO and PPO that constitute the solid electrolyte 46 are lithium such as LiBF 4 , LiPF 6 , LiN(SO 2 CF 3 ) 2 and LiN(SO 2 C 2 F 5 ) 2 . It has the property of being able to dissolve salts well, and by forming a crosslinked structure between the two, excellent mechanical strength can be exhibited.
 上述した固体電解質46を電解質として用いる電池セル40´によれば、電解質の流動性がないので、電解質の流出を防止するためのシール構造が不要となり、二次電池モジュール1の構成を簡略化することが可能となる。これに加えて、電池セル40´によれば、電解質として固体を用いることで、漏液を防止することが可能となり、リチウムイオン二次電池特有の問題である液絡を防ぎ、信頼性をより向上させることが可能となる。 According to the battery cell 40' using the above-described solid electrolyte 46 as an electrolyte, since the electrolyte has no fluidity, a sealing structure for preventing the electrolyte from flowing out becomes unnecessary, and the configuration of the secondary battery module 1 is simplified. becomes possible. In addition, according to the battery cell 40', by using a solid electrolyte, it is possible to prevent liquid leakage, prevent liquid junction, which is a problem specific to lithium ion secondary batteries, and improve reliability. can be improved.
 なお、本発明を適用した二次電池モジュール1は、リチウムイオン二次電池の電池セル40を単電池で構成される場合に限定されるものではない。例えば図10、図17に示すように、電池セル40を複数に亘り積層させて接続した組電池50を形成するものであってもよい。 It should be noted that the secondary battery module 1 to which the present invention is applied is not limited to the case where the battery cells 40 of the lithium ion secondary battery are composed of single cells. For example, as shown in FIGS. 10 and 17, an assembled battery 50 may be formed by stacking and connecting a plurality of battery cells 40 .
 このような組電池50を形成する場合には、複数の電池セル40を直列接続することにより、最上段の電池セル40の正極側電流取出層16に設けられた引出配線8と最下段の電池セル40の負極側電流取出層10に設けられた引出配線7を介して電流を供給自在に構成するようにしてもよい。かかる場合には、互いに接続する電池セル40の負極側電流取出層10の下面と正極側電流取出層16の上面が隣接するように積層されている。更にこのような組電池50を形成する場合には、複数の電池セル40を並列接続するようにしてもよいし、直列接続と並列接続とを組み合わせてもよい。このような組電池50を構成することにより、高容量、高出力と得ることができる。これ以外には、個々の電池セル40の負極側電流取出層10及び正極側電流取出層16にそれぞれ接続された引出配線7,8から独立に電流を供給自在に構成するようにしてもよい。 When forming such an assembled battery 50, by connecting a plurality of battery cells 40 in series, the lead wiring 8 provided in the positive electrode side current extraction layer 16 of the battery cell 40 at the top and the battery at the bottom are connected. A current may be freely supplied through the extraction wiring 7 provided in the negative current extraction layer 10 of the cell 40 . In such a case, the battery cells 40 that are connected to each other are stacked such that the lower surface of the negative electrode current extraction layer 10 and the upper surface of the positive electrode current extraction layer 16 are adjacent to each other. Furthermore, when forming such an assembled battery 50, a plurality of battery cells 40 may be connected in parallel, or series connection and parallel connection may be combined. A high capacity and high output can be obtained by configuring the assembled battery 50 in this manner. Alternatively, the lead wires 7 and 8 connected to the negative current extraction layer 10 and the positive current extraction layer 16 of each battery cell 40 may be configured to independently supply current.
 次に、本発明を適用した二次電池モジュール1の動作について説明をする。 Next, the operation of the secondary battery module 1 to which the present invention is applied will be explained.
 放電時において二次電池モジュール1を図示しない外部の負荷を正極3と負極2との間に接続した場合には、負極活物質層52から負極集電体51へと到達した電子は、この負極集電体51に接続された電流取出用端部35に集められる。電流取出用端部35は、各領域31a~31dに設けられていることから、各区画に応じた電流取出部6´における各領域31a~31dにおける電子は、その領域31毎に設けられた電流取出用端部35に集まることになる。各電流取出用端部35に集められた電子は負極導電線21を介して負極合流部25へと集められ、引出配線7を介して外部回路へと送られる。同様に、正極集電体55上を伝搬しようとする電子は、外部回路から引出配線8を介して正極合流部26へと送られる。正極合流部26に送られた電子は、正極導電線22を介して電流取出用端部36へと送られる。電流取出用端部36は、各領域32a~32dに設けられていることから、各領域32a~32dにおける電子は、その領域32を構成する正極集電体55へと伝搬し、その領域32における正極活物質層54へ伝搬することとなる。 When an external load (not shown) of the secondary battery module 1 is connected between the positive electrode 3 and the negative electrode 2 during discharge, electrons reaching the negative electrode current collector 51 from the negative electrode active material layer 52 are transferred to the negative electrode. It is collected at the current extraction end 35 connected to the current collector 51 . Since the current extraction end 35 is provided in each of the regions 31a to 31d, the electrons in each of the regions 31a to 31d in the current extraction portion 6' corresponding to each section are transferred to the current provided for each region 31. They will gather at the extraction end 35 . The electrons collected at each current extracting end 35 are collected to the negative junction 25 via the negative conductive line 21 and sent to the external circuit via the lead wire 7 . Similarly, electrons trying to propagate on the positive electrode current collector 55 are sent from the external circuit to the positive electrode junction portion 26 via the lead wiring 8 . The electrons sent to the positive electrode junction portion 26 are sent to the current extraction end portion 36 via the positive electrode conductive wire 22 . Since the current extraction end 36 is provided in each of the regions 32a to 32d, the electrons in each of the regions 32a to 32d propagate to the positive electrode current collector 55 that constitutes the region 32, and the electrons in the region 32 It propagates to the positive electrode active material layer 54 .
 上述した動作を電子の流れではなく、電流の流れで説明するのであれば、正極側電流取出層16における各領域32a~32dにおける電流は、それぞれの領域32の中心に設けられた電流取出用端部36により電流取出部6´毎に独立して取り出される。各電流取出用端部36により取り出された電流は、正極導電線22を流れて正極合流部26へと送られ、この正極合流部26から引出配線8を介して外部回路を流れる。外部回路からの電流は、各電流取出部6´に設けられた引出配線7を介して負極合流部25へ流れ込み、ここから各負極導電線21へ分岐し、電流取出用端部35に到達する。電流取出用端部35は、領域31a~31d毎に設けられていることから当該領域31a~31dに電流を流すことができる。 If the above-described operation is explained in terms of current flow instead of electron flow, the current in each of the regions 32a to 32d in the positive electrode current extraction layer 16 is generated by the current extraction terminal provided in the center of each region 32. The current is extracted independently for each current extraction portion 6' by the portion 36. FIG. The current extracted by each current extraction end portion 36 flows through the positive electrode conductor wire 22 to the positive electrode junction portion 26, and flows from the positive electrode junction portion 26 through the lead wire 8 to the external circuit. A current from an external circuit flows into the negative junction 25 through the lead wire 7 provided in each current extraction portion 6', branches from here to each negative electrode conductive wire 21, and reaches the current extraction end portion 35. . Since the current extracting end portion 35 is provided for each of the regions 31a to 31d, the current can flow through the regions 31a to 31d.
 これに加えて、放電時には、負極活物質41内に吸蔵されたリチウムイオンが正極活物質42へ向けて移動することになる。このリチウムイオンは、正極活物質42に向けて極力最短距離で移動しようとすることは自明であることから、その移動経路は長手方向xに対して垂直方向となる、厚み方向zと平行方向で、かつ直線状となる。 In addition, during discharge, the lithium ions occluded in the negative electrode active material 41 move toward the positive electrode active material 42 . Since it is obvious that the lithium ions try to move toward the positive electrode active material 42 in the shortest possible distance, the movement path is perpendicular to the longitudinal direction x and parallel to the thickness direction z. , and linear.
 このような電流の流れとリチウムイオンの移動経路の前提の下で、正極側電流取出層16における各領域32a~32dにおける電流は、それぞれの領域32の中心に設けられた電流取出用端部36により取り出される。即ち、各領域32a~32d毎に電流が分散して電流取出用端部36に取り出され、取り出された電流は分散して正極導電線22を流れて正極合流部26へと送られる。同様に負極合流部25へ流れ込んだ電流は分散して各負極導電線21へ分岐し、電流取出用端部35に到達する。 Under the premise of such current flow and lithium ion migration path, the current in each of the regions 32a to 32d in the positive electrode-side current extraction layer 16 flows through the current extraction end 36 provided in the center of each region 32. is taken out by That is, the currents are dispersed in each of the regions 32 a to 32 d and extracted to the current extracting end portion 36 , and the extracted currents are dispersed and flow through the positive electrode conductor wire 22 to be sent to the positive electrode junction portion 26 . Similarly, the current that has flowed into the negative electrode confluence portion 25 is dispersed and branched to each of the negative electrode conductive wires 21 to reach the current extraction end portion 35 .
 同様に正極側電流取出層16における各電流取出部6における電流は、電流取出用端部36、正極導電線22、正極合流部26を介して取り出される。同様に負極に流れ込んだ電流は、各電流取出部6´に分散して各負極導電線21へ分岐し電流取出用端部35に到達する。 Similarly, the current in each current extraction portion 6 in the positive current extraction layer 16 is extracted via the current extraction end portion 36 , the positive electrode conductor wire 22 , and the positive electrode junction portion 26 . Similarly, the current that has flowed into the negative electrode is distributed to the respective current extraction portions 6 ′, branched to the respective negative electrode conductive wires 21 , and reaches the current extraction end portion 35 .
 負極においても同様に、外部回路からの電流は、負極合流部25へ流れ込み、ここから各負極導電線21において分散されて電流取出用端部35に到達する。電流取出用端部35は、領域31a~31d毎に設けられていることから当該領域31a~31dに電流を流すことができる。その結果、負極集電体51を流れる電流が一極集中することなく、分散させることができる。 Similarly, in the negative electrode, the current from the external circuit flows into the negative electrode confluence portion 25, and from there it is dispersed in each negative electrode conductive wire 21 and reaches the current extraction end portion 35. Since the current extracting end portion 35 is provided for each of the regions 31a to 31d, the current can flow through the regions 31a to 31d. As a result, the current flowing through the negative electrode current collector 51 can be distributed without being concentrated in one pole.
 その結果、負極集電体51へ供給する電流、正極集電体55から取り出す電流が負極側電流取出層10及び正極側電流取出層16において一極集中することなく、分散させることができる。その結果、各負極導電線21、各正極導電線22を流れる電流を下げることができ、抵抗を下げることができる。これに加えて、各負極導電線21、各正極導電線22を介して負極側電流取出層10、正極側電流取出層16を流れる電流の経路が何れも伝搬距離が等しくなることから、負極側電流取出層10、正極側電流取出層16内における抵抗の均一化を図ることができる。その結果、本発明によれば、負極側電流取出層10、正極側電流取出層16上に局所的な抵抗分布を発生させることなく、特定領域間において抵抗の均一化を図ることができ、電流を均一に流すことができる。このため、特定領域に対応する経路では、相対的に他の経路に比べて深度が高い充放電が繰り返されることがなくなり、電池の劣化を防止し、電池の高寿命化を実現できる。 As a result, the current supplied to the negative electrode current collector 51 and the current extracted from the positive electrode current collector 55 can be distributed without being concentrated in the negative electrode current extraction layer 10 and the positive electrode current extraction layer 16 . As a result, the current flowing through each negative electrode conductive line 21 and each positive electrode conductive line 22 can be reduced, and the resistance can be decreased. In addition to this, since the paths of the current flowing through the negative electrode current extraction layer 10 and the positive electrode current extraction layer 16 via the negative electrode conductive wires 21 and the positive electrode conductive wires 22 have the same propagation distance, The uniformity of the resistance in the current extraction layer 10 and the positive current extraction layer 16 can be achieved. As a result, according to the present invention, the resistance can be made uniform between the specific regions without generating a local resistance distribution on the negative current extraction layer 10 and the positive current extraction layer 16, and the current can be reduced. can flow evenly. Therefore, in the path corresponding to the specific area, charging and discharging with a relatively deep depth are not repeated compared to other paths, so that deterioration of the battery can be prevented and the life of the battery can be extended.
 このように、正極側において、各電流取出用端部36から正極合流部26までを電気的に接続するための複数本の正極導電線22を備えており、その正極導電線22の電気抵抗は、互いに略同一とされている。特に、正極側電流取出層16において互いに略均等となる位置に電流取出用端部36が設けられている。これにより、正極側電流取出層16において取り出されるべき電流を、複数の電流取出用端部36間でより均等に取り出すことができ、これを複数本の正極導電線22に分散させて流すことができ、電流が局所的に多く流れる部位が生じることが無くなる。このとき、正極側電流取出層16が互いに略均等な複数の領域32に分割され、各電流取出用端部36は、各領域32の略中心に設けられていることで、正極側電流取出層16において取り出されるべき電流を、複数の電流取出用端部36間で更に均等に取り出すことが可能となる。 In this way, on the positive electrode side, a plurality of positive electrode conductive wires 22 are provided for electrically connecting each current extraction end portion 36 to the positive electrode junction portion 26, and the electrical resistance of the positive electrode conductive wires 22 is , are substantially identical to each other. In particular, the current extraction end portions 36 are provided at substantially even positions in the positive electrode side current extraction layer 16 . As a result, the current to be extracted from the positive electrode current extraction layer 16 can be extracted more evenly between the plurality of current extraction end portions 36, and the current can be distributed and distributed to the plurality of positive electrode conductive wires 22. This eliminates the occurrence of a portion where a large amount of current flows locally. At this time, the positive current extraction layer 16 is divided into a plurality of regions 32 that are substantially equal to each other, and each current extraction end portion 36 is provided substantially at the center of each region 32, so that the positive current extraction layer The current to be tapped at 16 can be tapped more evenly between the plurality of current tapping ends 36 .
 同様に、負極側において、各電流取出用端部35から負極合流部25までを電気的に接続するための複数本の負極導電線21を備えており、その負極導電線21の電気抵抗は、互いに略同一とされている。特に、負極側電流取出層10において互いに略均等となる位置に電流取出用端部35が設けられている。これにより、負極集電体51に対して供給されるべき電流を、複数の電流取出用端部35間でより均等に供給することができ、この電流取出用端部35に対しては複数本の負極導電線21に分散させて流すことができ、電流が局所的に多く流れる部位が生じることが無くなる。このとき、負極側電流取出層10が互いに略均等な複数の領域31に分割され、各電流取出用端部35は、各領域31の略中心に設けられていることで、負極集電体51に対して供給されるべき電流を、複数の電流取出用端部35間で更に均等に供給することが可能となる。 Similarly, on the negative electrode side, a plurality of negative electrode conductive wires 21 are provided for electrically connecting each current extraction end portion 35 to the negative electrode junction portion 25, and the electrical resistance of the negative electrode conductive wire 21 is are substantially identical to each other. In particular, the current extraction end portions 35 are provided at substantially even positions in the negative electrode current extraction layer 10 . As a result, the current to be supplied to the negative electrode current collector 51 can be more evenly supplied among the plurality of current extraction end portions 35 , and a plurality of current extraction end portions 35 are connected to the current extraction end portions 35 . , the current can be dispersedly distributed to the negative electrode conductor 21, thereby eliminating the occurrence of a portion where a large amount of current flows locally. At this time, the negative electrode-side current extraction layer 10 is divided into a plurality of regions 31 that are substantially equal to each other, and each current extraction end portion 35 is provided substantially at the center of each region 31, so that the negative electrode current collector 51 It becomes possible to more evenly supply the current to be supplied to between the plurality of current extraction end portions 35 .
 なお、本発明では、少なくとも正極側又は負極側において、上述したメカニズムに基づいた動作が発現していればよく、常に正極側と負極側の双方においては上述したメカニズムに基づいた動作の発現は必須とはならない。このため、上述した正極側電流取出層16における電流取出用端部36、正極導電線22、正極合流部26の構成、負極側電流取出層10における電流取出用端部35、負極導電線21、負極合流部25の構成は、上述した動作を発現させる方のみに設けられていればよく、動作を発現させない側においては省略するようにしてもよい。 In the present invention, it suffices that at least the positive electrode side or the negative electrode side exhibits the operation based on the above-described mechanism, and it is essential that both the positive electrode side and the negative electrode side always exhibit the operation based on the above-described mechanism. does not become Therefore, the configuration of the current extraction end 36, the positive electrode conductive wire 22, and the positive electrode junction 26 in the positive electrode current extraction layer 16 described above, the current extraction end 35 in the negative electrode current extraction layer 10, the negative electrode conductive wire 21, The configuration of the negative junction part 25 may be provided only on the side that produces the above-described operation, and may be omitted on the side that does not produce the operation.
 なお、本発明は、上述した変形例に限定されるものでは無い。図18に示すように、各区画に応じた電流取出部6において、電流取出用端部36、複数の正極導電線22、正極合流部26から構成される電流取出ユニット61を複数に亘り設けるようにしてもよい。かかる場合には、一の電池セル40における正極側電流取出層16上に対して複数の電流取出ユニット61をそれぞれ配設するようにしてもよい。また、図19は、電池セル40を複数に亘り並列に配置することで二次電池モジュールを構成する例である。この図19の例では、並列に配置した4つの電池セル40で共通の正極合流部26を共有する例である。各電池セル40における正極側電流取出層16には、それぞれ一の電流取出用端部36が設けられている。一の正極合流部26を共有する4つの電池セル40の各電流取出用端部36a~36dから同様に正極導電線22a~22dがこの正極合流部26まで延長される構成となる。各正極導電線22a~22dの電気抵抗は互いに略同一となる。 It should be noted that the present invention is not limited to the modified examples described above. As shown in FIG. 18, in the current take-out portion 6 corresponding to each section, a plurality of current take-out units 61 each including a current take-out end portion 36, a plurality of positive electrode conductive wires 22, and a positive electrode junction portion 26 are provided. can be In such a case, a plurality of current extraction units 61 may be arranged on the positive electrode side current extraction layer 16 in one battery cell 40 . FIG. 19 shows an example of configuring a secondary battery module by arranging a plurality of battery cells 40 in parallel. The example of FIG. 19 is an example in which four battery cells 40 arranged in parallel share a common positive electrode junction portion 26 . The positive electrode side current extraction layer 16 in each battery cell 40 is provided with one current extraction end 36 . Similarly, positive electrode conductors 22a to 22d are extended to the positive electrode confluence portion 26 from respective current extraction end portions 36a to 36d of the four battery cells 40 sharing one positive electrode confluence portion 26. FIG. The electric resistances of the positive electrode conductors 22a to 22d are substantially the same.
 この図18、図19の例では、正極全体合流部72が別途設けられる。この正極全体合流部72は、各正極合流部26により取り出された電流を一箇所に集めるための部位である。各正極合流部26は、正極全体合流部72に対してユニット正極導電線92により電気的に接続されている。このユニット正極導電線92は、その材質等については、正極導電線22と同様であり、一端が正極合流部26に、また他端が正極全体合流部72に接続されている。  In the examples of Figs. 18 and 19, a positive electrode overall merging portion 72 is separately provided. The positive electrode general junction portion 72 is a portion for collecting the current taken out by each positive electrode junction portion 26 at one place. Each positive electrode junction 26 is electrically connected to the overall positive electrode junction 72 by a unit positive electrode conductor wire 92 . The unit positive electrode conductor wire 92 is similar in material and the like to the positive electrode conductor wire 22 , and has one end connected to the positive electrode junction portion 26 and the other end connected to the positive electrode overall junction portion 72 .
 このとき、各ユニット正極導電線92の長さは、互いに略同一とされている。この正極全体合流部72に対する各正極合流部26の位置は様々であることから、各ユニット正極導電線92の長さを略同一にするために、意図的に迂回をさせたり、ある領域を往復させたりするような導線形状にする等して調整されることとなる。 At this time, the lengths of the unit positive electrode conductors 92 are substantially the same. Since the positions of the positive electrode junctions 26 with respect to the overall positive electrode junction 72 are various, in order to make the lengths of the unit positive electrode conductive wires 92 approximately the same, the wires are intentionally detoured or reciprocated in a certain area. It will be adjusted by, for example, making a conductor shape that allows
 このように、正極合流部26から正極全体合流部72までを電気的に接続するための複数本のユニット正極導電線92を備えており、そのユニット正極導電線92の長さは、互いに略同一とされている。これにより、正極集電体55において取り出されるべき電流を、複数の正極合流部26間でより均等に取り出すことができ、これを複数本のユニット正極導電線92に分散させて流すことができ、電流が局所的に多く流れる部位が生じることが無くなる。これにより、電流分布の均一化を図ることができることから、電池セル40自体の劣化を抑えることができ、ひいては電池セル40の高寿命化を実現できる。 In this manner, a plurality of unit positive electrode conductor wires 92 are provided for electrically connecting from the positive electrode junction 26 to the positive electrode overall junction portion 72, and the lengths of the unit positive electrode conductor wires 92 are substantially the same. It is said that As a result, the current to be taken out from the positive electrode current collector 55 can be taken out more evenly between the plurality of positive electrode junction portions 26, and the current can be dispersed and flowed to the plurality of unit positive electrode conductive wires 92. This eliminates the occurrence of a portion where a large amount of current locally flows. As a result, since the current distribution can be made uniform, the deterioration of the battery cell 40 itself can be suppressed, and the life of the battery cell 40 can be extended.
 このとき、各ユニット正極導電線92の正極合流部26から正極全体合流部72までの電気抵抗が互いに略同一になっていれば、互いに材質や長さ、径が互いに異なるものであってもよい。この電気抵抗が互いに略同一とは、20%以下であれば好ましく、10%以下、或いは5%以下であれば更に好ましい。 At this time, as long as the electrical resistance from the positive electrode joining portion 26 of each unit positive electrode conductive wire 92 to the positive electrode overall joining portion 72 is substantially the same, the materials, lengths, and diameters may be different from each other. . It is preferable that the electrical resistances are approximately equal to each other if they are 20% or less, and more preferably 10% or less or 5% or less.
 なお、上述した説明において、ユニット正極導電線92は、正極合流部26を始点とし、正極全体合流部72を終点とする場合を例にとり説明をしたが、これに限定されるものでは無い。 In the above description, the unit positive electrode conductive wire 92 starts at the positive electrode junction 26 and ends at the overall positive electrode junction 72, but is not limited to this.
 図13Bに示すように、正極合流部26を設けない例の場合には、各ユニット正極導電線92は、一の電流取出用端部36から伸びる少なくとも1本の引出配線8が兼ねるものであってもよい。
 かかる場合には、この引出配線8も兼ねるユニット正極導電線92の、電流取出用端部36から正極全体合流部72まで電気抵抗が、互いに略同一であればよい。
As shown in FIG. 13B , in the case where the positive electrode merging portion 26 is not provided, each unit positive electrode conductive wire 92 is also served by at least one lead wire 8 extending from one current extraction end portion 36 . may
In such a case, the unit positive electrode conductor wire 92, which also serves as the lead wire 8, should have substantially the same electrical resistance from the current extracting end portion 36 to the entire positive electrode confluence portion 72. As shown in FIG.
 負極についても同様であり、この図18でいう正極全体合流部72に対応する図示しない負極全体合流部が別途設けられていてもよい。この図示しない負極全体合流部は、複数設けられた各負極合流部25により供給すべき電流を一箇所に集めるための部位である。各負極合流部25は、図示しない負極全体合流部に対して、ユニット正極導電線92に対応する図示しないユニット負極導電線により電気的に接続されている。これにより負極側においても電流分布の均一化を図ることができることから、電池セル40自体の劣化を抑えることができ、ひいては電池セル40の高寿命化を実現できる。 The same applies to the negative electrode, and a negative electrode general junction (not shown) corresponding to the positive electrode general junction 72 in FIG. 18 may be separately provided. This overall negative electrode junction portion (not shown) is a portion for collecting the current to be supplied from each of the plurality of negative electrode junction portions 25 at one point. Each negative electrode junction 25 is electrically connected to the entire negative electrode junction (not shown) by a unit negative electrode conductive line (not shown) corresponding to the unit positive electrode conductive line 92 . As a result, the current distribution can be made uniform even on the negative electrode side, so deterioration of the battery cell 40 itself can be suppressed, and the life of the battery cell 40 can be extended.
 また負極についても同様に、図19に示すように、電池セル40を複数に亘り並列に配置することで二次電池モジュールを構成してもよい。かかる場合には、並列に配置した4つの電池セル40で共通の負極合流部25を共有するようにしてもよい。各電池セル40における負極側電流取出層10には、それぞれ一の電流取出用端部35が設けられている。一の負極合流部25を共有する4つの電池セル40の各電流取出用端部35a~35dから同様に負極導電線21a~21dがこの負極合流部25まで延長される構成となる。各負極導電線21a~21dの長さは互いに略同一となる。 Similarly, for the negative electrode, as shown in FIG. 19, a secondary battery module may be configured by arranging a plurality of battery cells 40 in parallel. In such a case, the four battery cells 40 arranged in parallel may share the common negative electrode junction 25 . The negative current extraction layer 10 in each battery cell 40 is provided with one current extraction end 35 . Negative electrode conductive lines 21 a to 21 d are similarly extended to the negative electrode junction 25 from the respective current extraction end portions 35 a to 35 d of the four battery cells 40 sharing one negative electrode junction 25 . The lengths of the negative electrode conductors 21a to 21d are substantially the same.
 上述した変形例においては、各ユニット正極導電線92に対応する図示しないユニット負極導電線の、負極合流部25から正極全体合流部72に対応する図示しない負極全体合流部までの長さは、互いに略同一であるのは、各図示しないユニット負極導電線が同一の材質で同一の径で構成されている場合の例である。これにより、各図示しないユニット負極導電線間の電気抵抗は略同一となる。 In the modified example described above, the lengths of the unit negative electrode conductor wires (not shown) corresponding to the unit positive electrode conductor wires 92 from the negative electrode junction portion 25 to the negative electrode general junction portion (not shown) corresponding to the positive electrode general junction portion 72 are different from each other. Substantially the same is an example in which each unit negative electrode conductive wire (not shown) is made of the same material and has the same diameter. As a result, the electrical resistance between the unit negative electrode conductive lines (not shown) becomes substantially the same.
 このとき、各図示しないユニット負極導電線の正極合流部26から正極全体合流部72までの電気抵抗が互いに略同一になっていれば、互いに材質や長さ、径が互いに異なるものであってもよい。 At this time, as long as the electrical resistance from the positive electrode joining portion 26 of each unit negative electrode conductive wire (not shown) to the positive electrode overall joining portion 72 is substantially the same, even if the materials, lengths, and diameters are different from each other. good.
 また図15Bに示すように、負極合流部25を設けない例の場合には、各引出配線7が図示しないユニット負極導電線を兼ねることになるが、かかる場合においても、各引出配線7における正極全体合流部72までの電気抵抗が互いに略同一になっていれば、互いに材質や長さ、径が互いに異なるものであってもよい。図15Bに示すように、負極合流部25が形成されていない場合、各図示しないユニット負極導電線は、一の電流取出用端部35から伸びる少なくとも1本の引出配線7が兼ねるものであってもよい。かかる場合には、この引出配線7も兼ねる図示しないユニット負極導電線の、電流取出用端部35から正極全体合流部72に相当する図示しない負極全体合流部まで電気抵抗が、互いに略同一であればよい。 In addition, as shown in FIG. 15B, in the case of an example in which the negative electrode joining portion 25 is not provided, each lead wiring 7 also serves as a unit negative electrode conductive line (not shown). As long as the electrical resistance up to the overall confluence portion 72 is substantially the same, the materials, lengths, and diameters may be different from each other. As shown in FIG. 15B, when the negative electrode confluence portion 25 is not formed, at least one lead wire 7 extending from one current extraction end portion 35 also serves as each unit negative electrode conductive line (not shown). good too. In such a case, if the electric resistance of the unit negative electrode conductive wire (not shown), which also serves as the lead wire 7, from the current extraction end portion 35 to the negative electrode general junction (not shown) corresponding to the positive electrode general junction 72 is substantially the same. Just do it.
 なお、上述した変形例においては、放電時において負極側電流取出層10及び正極側電流取出層16における抵抗を均一化することで局所的な電流の集中を抑制できる点について説明をしたが、充電時においても同様である。充電時には、電流の向きが全て逆になるだけであり、負極側電流取出層10及び正極側電流取出層16における抵抗を均一化するメカニズムは放電時と同様である。このため本発明は、放電時のみならず充電時においても、局所的な電流の集中を抑制でき、電池の寿命を更に伸ばすことが可能となる。 In the modified example described above, it was explained that local concentration of current can be suppressed by equalizing the resistances of the negative electrode current extraction layer 10 and the positive electrode current extraction layer 16 during discharge. The same is true of time. During charging, the directions of the currents are all reversed, and the mechanism for equalizing the resistances of the negative current extraction layer 10 and the positive current extraction layer 16 is the same as during discharging. Therefore, according to the present invention, local current concentration can be suppressed not only during discharging but also during charging, and the life of the battery can be further extended.
 また、正極側電流取出層16について、図20A及び図20Bに示すように、上端から下端に至るまで貫通する小孔96が形成された材料で構成する場合、以下に説明する効果を奏することとなる。製造時において、正極側電流取出層16と正極集電体55との間に気泡81が形成される場合には、減圧環境下におくことで気泡81が小孔96を通過し、外部に放出されることで、これを除去することが可能となる。 20A and 20B, when the positive electrode-side current extraction layer 16 is made of a material in which a small hole 96 penetrating from the upper end to the lower end is formed, the following effects can be obtained. Become. If air bubbles 81 are formed between the positive electrode current extraction layer 16 and the positive electrode current collector 55 during manufacturing, the air bubbles 81 pass through the small holes 96 and are released to the outside by placing in a reduced pressure environment. By doing so, it becomes possible to remove this.
 このようにして気泡81が除去されることで、正極集電体55と正極側電流取出層16との間で密着性が向上することとなる。負極側電流取出層10においても同様に小孔96を形成させておくことにより、気泡81を同様に除去することで密着性を向上させることが可能となる。 By removing the air bubbles 81 in this way, the adhesion between the positive current collector 55 and the positive current extraction layer 16 is improved. By similarly forming the small holes 96 in the negative electrode-side current extraction layer 10 as well, it is possible to improve the adhesion by removing the air bubbles 81 in the same manner.
 本発明の一実施形態に係る二次電池モジュールは、
 複数の単電池が積層された組電池と、
 前記複数の単電池の各々に備えられた第1の光通信部と、
 前記複数の単電池に備えられ、前記第1の光通信部を制御する制御装置と、
 前記複数の単電池を各々に制御する外部制御装置と、
 前記外部制御装置に備えられた第2の光通信部と、
 前記第1の光通信部と前記第2の光通信部との間に設けられた光導波路と
 を備え、
 前記第1の光通信部と前記第2の光通信部とが前記光導波路を介して双方向通信を行うように構成され、
 前記外部制御装置が、前記制御装置をスレーブとして管理するマスターとして動作するように構成されている。
A secondary battery module according to an embodiment of the present invention includes
an assembled battery in which a plurality of single cells are stacked;
a first optical communication unit provided in each of the plurality of cells;
a control device provided in the plurality of cells and controlling the first optical communication unit;
an external control device that controls each of the plurality of cells;
a second optical communication unit provided in the external control device;
an optical waveguide provided between the first optical communication unit and the second optical communication unit,
The first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide,
The external control device is configured to operate as a master that manages the control device as a slave.
 上記一実施形態に係る二次電池モジュールでは、前記双方向通信は、半二重通信である。 In the secondary battery module according to the above embodiment, the two-way communication is half-duplex communication.
 上記一実施形態に係る二次電池モジュールでは、
 前記第1の光通信部の各々は、
 固有の発光タイミング及び固有の受光タイミングを有し、
 前記固有の受光タイミングで前記光導波路からの光を受光することにより光信号を受信し、
 前記受信した光信号が所定のコードに一致することを条件に、前記固有の発光タイミングで前記光導波路へ光を放射して光信号を送信するように構成されている。
In the secondary battery module according to the above embodiment,
Each of the first optical communication units
having a unique light emission timing and a unique light reception timing,
receiving an optical signal by receiving light from the optical waveguide at the unique light receiving timing;
On the condition that the received optical signal matches a predetermined code, the optical signal is transmitted by emitting light to the optical waveguide at the unique light emission timing.
 上記一実施形態に係る二次電池モジュールでは、
 前記第2の光通信部は、
 可変発光タイミング及び可変受光タイミングを有し、
 前記可変発光タイミングを前記第1の光通信部の前記固有の受光タイミングに一致させて前記光導波路へ光を放射することにより前記所定のコードを送信し、
 前記可変受光タイミングを前記第1の光通信部の前記固有の発光タイミングに一致させて前記光導波路からの光を受光することにより光信号を受信するように構成されている。
In the secondary battery module according to the above embodiment,
The second optical communication unit is
having variable light emission timing and variable light reception timing,
transmitting the predetermined code by radiating light to the optical waveguide by matching the variable light emission timing with the unique light reception timing of the first optical communication unit;
An optical signal is received by receiving the light from the optical waveguide by matching the variable light receiving timing with the unique light emitting timing of the first optical communication unit.
 上記一実施形態に係る二次電池モジュールでは、
 前記第2の光通信部は、前記複数の単電池の各々に対して、
 前記可変発光タイミングを順次変更して、前記光導波路へ光を放射することにより前記所定のコードを送信し、
 前記所定のコードを送信した前記可変発光タイミングに前記可変受光タイミングを一致させて前記光導波路からの光を受光することにより光信号を受信し、
 前記所定のコードを送信した前記可変発光タイミングに一致させた前記可変受光タイミングで、前記光信号を受信することを条件に、前記所定のコードを送信した前記可変発光タイミングが前記第1の光通信部の前記固有の受光タイミングであると決定するように更に構成されている。
In the secondary battery module according to the above embodiment,
The second optical communication unit, for each of the plurality of cells,
transmitting the predetermined code by sequentially changing the variable light emission timing and emitting light to the optical waveguide;
receiving an optical signal by receiving light from the optical waveguide by matching the variable light receiving timing with the variable light emitting timing at which the predetermined code is transmitted;
The variable light emission timing at which the predetermined code is transmitted is the first optical communication on condition that the optical signal is received at the variable light reception timing that coincides with the variable light emission timing at which the predetermined code is transmitted. It is further configured to determine that it is the unique light receiving timing of the part.
 上記一実施形態に係る二次電池モジュールでは、
 前記第2の光通信部は記憶部を有し、
 前記第2の光通信部は、決定した前記第1の光通信部の前記固有の受光タイミングを前記記憶部に記憶するように更に構成されている。
In the secondary battery module according to the above embodiment,
The second optical communication unit has a storage unit,
The second optical communication unit is further configured to store the determined specific light receiving timing of the first optical communication unit in the storage unit.
 上記一実施形態に係る二次電池モジュールでは、
 前記所定のコードは前記第1の光通信部の前記固有の発光タイミング及び前記固有の受光タイミングを設定する設定コードを含み、
 前記第1の光通信部の各々は、
 前記受信した光信号が前記所定のコードに一致することを条件に、前記所定のコードに含まれる前記設定コードに基づいて、当該第1の光通信部の前記固有の発光タイミング及び前記固有の受光タイミングを設定するように更に構成されている。
In the secondary battery module according to the above embodiment,
the predetermined code includes a setting code for setting the specific light emission timing and the specific light reception timing of the first optical communication unit;
Each of the first optical communication units
The specific light emission timing and the specific light reception of the first optical communication unit based on the setting code included in the predetermined code on condition that the received optical signal matches the predetermined code. It is further configured to set the timing.
 上記一実施形態に係る二次電池モジュールでは、前記設定コードがリセットコードである。 In the secondary battery module according to the above embodiment, the setting code is a reset code.
 上記一実施形態に係る二次電池モジュールでは、前記設定コードが前記固有の発光タイミング及び前記固有の受光タイミングのオフセットを示す。 In the secondary battery module according to the above embodiment, the setting code indicates the offset of the unique light emission timing and the unique light reception timing.
 上記一実施形態に係る二次電池モジュールでは、
 前記第1の光通信部の各々は固有の識別コードを有し、
 前記所定のコードは前記固有の識別コードを含む。
In the secondary battery module according to the above embodiment,
each of the first optical communication units has a unique identification code;
The predetermined code includes the unique identification code.
 上記一実施形態に係る二次電池モジュールでは、前記所定のコードは誤り検出符号を含む。 In the secondary battery module according to the above embodiment, the predetermined code includes an error detection code.
 上記一実施形態に係る二次電池モジュールでは、前記第1の光通信部が対応する単電池を電源とする。 In the secondary battery module according to the above embodiment, the unit cell corresponding to the first optical communication unit is used as a power source.
 上記一実施形態に係る二次電池モジュールでは、
 前記組電池における最外層の少なくとも一面には、電流取出層が接しており、
 前記電流取出層は、前記積層型電池から電流が流れる電流取出部を有し、
 前記電流取出部が前記電流取出層において複数の区画に分かれ、該区画に独立した電流取出線を有する。
In the secondary battery module according to the above embodiment,
A current extraction layer is in contact with at least one surface of the outermost layer in the assembled battery,
the current extraction layer has a current extraction part through which current flows from the laminated battery,
The current extraction portion is divided into a plurality of sections in the current extraction layer, and each section has an independent current extraction line.
 上記一実施形態に係る二次電池モジュールでは、前記電流取出部が前記電流取出層において4以上50以下の区画に分かれている。 In the secondary battery module according to the above embodiment, the current extraction portion is divided into 4 or more and 50 or less sections in the current extraction layer.
 上記一実施形態に係る二次電池モジュールでは、前記区画が前記電流取出層において略均等の形状及び位置に設けられている。 In the secondary battery module according to the above embodiment, the compartments are provided in substantially uniform shapes and positions in the current extraction layer.
 上記一実施形態に係る二次電池モジュールでは、
 前記電流取出層は、その上面が互いに略均等な複数の領域に分割され、
 前記各電流取出部は、前記各領域の略中心に設けられている。
In the secondary battery module according to the above embodiment,
the current extraction layer is divided into a plurality of regions having substantially equal top surfaces;
Each of the current extraction portions is provided substantially at the center of each of the regions.
 上記一実施形態に係る二次電池モジュールでは、
 1以上の前記電流取出用端部を含む電流取出ユニットを複数備え、
 前記電流取出用端部から電極全体合流部までを電気的に接続するためのユニット電極導電線が前記電流取出ユニット毎に設けられ、
 前記各ユニット電極導電線の電気抵抗は、互いに略同一である。
In the secondary battery module according to the above embodiment,
a plurality of current extraction units including one or more current extraction ends;
A unit electrode conductive wire for electrically connecting the current take-out end portion to the entire electrode confluence portion is provided for each current take-out unit,
The electric resistance of each unit electrode conductive line is substantially the same.
 上記一実施形態に係る二次電池モジュールでは、
 前記電流取出線は、複数の前記電流取出用端部と、前記各電流取出用端部から電極合流部までを電気的に接続するための複数本の電極導電線とを有し、
 前記各電極導電線の電気抵抗は、互いに略同一である。
In the secondary battery module according to the above embodiment,
The current extraction line has a plurality of current extraction end portions and a plurality of electrode conductive wires for electrically connecting the current extraction end portions to the electrode confluence portion,
The electrical resistance of each electrode conductive line is substantially the same.
 上記一実施形態に係る二次電池モジュールでは、
 前記電流取出層は、フレキシブルプリント基板から成り、
 前記フレキシブルプリント基板は、両面基板である。
In the secondary battery module according to the above embodiment,
The current extraction layer is made of a flexible printed circuit board,
The flexible printed circuit board is a double-sided board.
 上記一実施形態に係る二次電池モジュールでは、
 前記電流取出層は、フレキシブルプリント基板から成り、
 前記フレキシブルプリント基板は、前記積層型電池の正極側及び負極側に設けられ、
 前記電流取出部が前記フレキシブルプリント基板において複数の区画に分かれ、該区画に独立した電流取出線を有する。
In the secondary battery module according to the above embodiment,
The current extraction layer is made of a flexible printed circuit board,
The flexible printed circuit board is provided on the positive electrode side and the negative electrode side of the laminated battery,
The current take-out portion is divided into a plurality of sections on the flexible printed circuit board, and each section has an independent current take-out line.
 上記一実施形態に係る二次電池モジュールの制御方法は、
 複数の単電池が積層された組電池と、前記複数の単電池の各々に備えられた第1の光通信部と、前記複数の単電池に備えられ、前記第1の光通信部を制御する制御装置と、前記複数の単電池を各々に制御する外部制御装置と、前記外部制御装置に備えられた第2の光通信部と、前記第1の光通信部と前記第2の光通信部との間に設けられた光導波路とを備え、前記第1の光通信部と前記第2の光通信部とが前記光導波路を介して双方向通信を行うように構成され、前記外部制御装置は、前記制御装置をスレーブとして管理するマスターとして動作するように構成された二次電池モジュールにおいて実行する制御方法であって、
 前記第1の光通信部の各々は固有の発光タイミング及び固有の受光タイミングを有し、前記第2の光通信部は可変発光タイミング及び可変受光タイミングを有し、
 前記制御方法は、
 前記第2の光通信部が、前記可変発光タイミングを前記第1の光通信部の前記固有の受光タイミングに一致させて前記光導波路へ光を放射することにより所定のコードを送信することと、
 前記第1の光通信部の各々が、前記固有の受光タイミングで前記光導波路からの光を受光することにより光信号を受信することと、
 前記第1の光通信部の各々が、前記受信した光信号が前記所定のコードに一致することを条件に、前記固有の発光タイミングで前記光導波路へ光を放射することにより光信号を送信することと、
 前記第2の光通信部が、前記可変受光タイミングを前記第1の光通信部の前記固有の発光タイミングに一致させて前記光導波路からの光を受光することにより光信号を受信することと
 を含む。
The method for controlling the secondary battery module according to the above embodiment includes:
an assembled battery in which a plurality of unit cells are stacked; a first optical communication unit provided in each of the plurality of unit cells; and a first optical communication unit provided in the plurality of unit cells to control the first optical communication unit. a control device, an external control device for controlling each of the plurality of cells, a second optical communication unit provided in the external control device, the first optical communication unit and the second optical communication unit and an optical waveguide provided between, wherein the first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide, and the external control device is a control method executed in a secondary battery module configured to operate as a master that manages the control device as a slave,
Each of the first optical communication units has a unique light emission timing and a unique light reception timing, the second optical communication unit has a variable light emission timing and a variable light reception timing,
The control method is
the second optical communication unit transmitting a predetermined code by radiating light to the optical waveguide with the variable light emission timing matching the unique light reception timing of the first optical communication unit;
Each of the first optical communication units receives an optical signal by receiving light from the optical waveguide at the unique light receiving timing;
Each of the first optical communication units transmits an optical signal by emitting light to the optical waveguide at the unique light emission timing on condition that the received optical signal matches the predetermined code. and
The second optical communication unit receives an optical signal by receiving light from the optical waveguide with the variable light receiving timing matching the unique light emission timing of the first optical communication unit. include.
 以上説明した態様によれば、組電池を構成する複数の単電池の各々から光信号が、光導波路上で重ならずに、かつ任意のタイミングで送受信することができる、産業上の利用可能性の高い二次電池モジュールを提供することができる。 According to the aspect described above, it is possible to transmit and receive optical signals from each of the plurality of single cells constituting the assembled battery without overlapping on the optical waveguide at an arbitrary timing, which is industrial applicability. high secondary battery module can be provided.

Claims (21)

  1.  複数の単電池が積層された組電池と、
     前記複数の単電池の各々に備えられた第1の光通信部と、
     前記複数の単電池に備えられ、前記第1の光通信部を制御する制御装置と、
     前記複数の単電池を各々に制御する外部制御装置と、
     前記外部制御装置に備えられた第2の光通信部と、
     前記第1の光通信部と前記第2の光通信部との間に設けられた光導波路と
     を備え、
     前記第1の光通信部と前記第2の光通信部とが前記光導波路を介して双方向通信を行うように構成され、
     前記外部制御装置が、前記制御装置をスレーブとして管理するマスターとして動作するように構成された、二次電池モジュール。
    an assembled battery in which a plurality of single cells are stacked;
    a first optical communication unit provided in each of the plurality of cells;
    a control device provided in the plurality of cells and controlling the first optical communication unit;
    an external control device that controls each of the plurality of cells;
    a second optical communication unit provided in the external control device;
    an optical waveguide provided between the first optical communication unit and the second optical communication unit,
    The first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide,
    A secondary battery module, wherein the external control device is configured to operate as a master that manages the control device as a slave.
  2.  前記双方向通信は、半二重通信である、請求項1に記載の二次電池モジュール。 The secondary battery module according to claim 1, wherein said two-way communication is half-duplex communication.
  3.  前記第1の光通信部の各々は、
     固有の発光タイミング及び固有の受光タイミングを有し、
     前記固有の受光タイミングで前記光導波路からの光を受光することにより光信号を受信し、
     前記受信した光信号が所定のコードに一致することを条件に、前記固有の発光タイミングで前記光導波路へ光を放射して光信号を送信するように構成された、請求項1又は2に記載の二次電池モジュール。
    Each of the first optical communication units
    having a unique light emission timing and a unique light reception timing,
    receiving an optical signal by receiving light from the optical waveguide at the unique light receiving timing;
    3. The apparatus according to claim 1, wherein, on condition that the received optical signal matches a predetermined code, the optical signal is transmitted by emitting light to the optical waveguide at the unique light emission timing. secondary battery module.
  4.  前記第2の光通信部は、
     可変発光タイミング及び可変受光タイミングを有し、
     前記可変発光タイミングを前記第1の光通信部の前記固有の受光タイミングに一致させて前記光導波路へ光を放射することにより前記所定のコードを送信し、
     前記可変受光タイミングを前記第1の光通信部の前記固有の発光タイミングに一致させて前記光導波路からの光を受光することにより光信号を受信するように構成された、請求項3に記載の二次電池モジュール。
    The second optical communication unit is
    having variable light emission timing and variable light reception timing,
    transmitting the predetermined code by radiating light to the optical waveguide by matching the variable light emission timing with the unique light reception timing of the first optical communication unit;
    4. The device according to claim 3, wherein an optical signal is received by receiving light from said optical waveguide with said variable light receiving timing matching said unique light emitting timing of said first optical communication unit. Secondary battery module.
  5.  前記第2の光通信部は、前記複数の単電池の各々に対して、
     前記可変発光タイミングを順次変更して、前記光導波路へ光を放射することにより前記所定のコードを送信し、
     前記所定のコードを送信した前記可変発光タイミングに前記可変受光タイミングを一致させて前記光導波路からの光を受光することにより光信号を受信し、
     前記所定のコードを送信した前記可変発光タイミングに一致させた前記可変受光タイミングで、前記光信号を受信することを条件に、前記所定のコードを送信した前記可変発光タイミングが前記第1の光通信部の前記固有の受光タイミングであると決定するように更に構成された、請求項4に記載の二次電池モジュール。
    The second optical communication unit, for each of the plurality of cells,
    transmitting the predetermined code by sequentially changing the variable light emission timing and emitting light to the optical waveguide;
    receiving an optical signal by receiving light from the optical waveguide by matching the variable light receiving timing with the variable light emitting timing at which the predetermined code is transmitted;
    The variable light emission timing at which the predetermined code is transmitted is the first optical communication on condition that the optical signal is received at the variable light reception timing that coincides with the variable light emission timing at which the predetermined code is transmitted. 5. The secondary battery module of claim 4, further configured to determine that it is the unique light receiving timing of a part.
  6.  前記第2の光通信部は記憶部を有し、
     前記第2の光通信部は、決定した前記第1の光通信部の前記固有の受光タイミングを前記記憶部に記憶するように更に構成された、請求項5に記載の二次電池モジュール。
    The second optical communication unit has a storage unit,
    6. The secondary battery module according to claim 5, wherein said second optical communication unit is further configured to store said determined specific light receiving timing of said first optical communication unit in said storage unit.
  7.  前記所定のコードは前記第1の光通信部の前記固有の発光タイミング及び前記固有の受光タイミングを設定する設定コードを含み、
     前記第1の光通信部の各々は、
     前記受信した光信号が前記所定のコードに一致することを条件に、前記所定のコードに含まれる前記設定コードに基づいて、当該第1の光通信部の前記固有の発光タイミング及び前記固有の受光タイミングを設定するように更に構成された、請求項3に記載の二次電池モジュール。
    the predetermined code includes a setting code for setting the specific light emission timing and the specific light reception timing of the first optical communication unit;
    Each of the first optical communication units
    The specific light emission timing and the specific light reception of the first optical communication unit based on the setting code included in the predetermined code on condition that the received optical signal matches the predetermined code. 4. The secondary battery module of claim 3, further configured to set timing.
  8.  前記設定コードがリセットコードである、請求項7に記載の二次電池モジュール。 The secondary battery module according to claim 7, wherein said setting code is a reset code.
  9.  前記設定コードが前記固有の発光タイミング及び前記固有の受光タイミングのオフセットを示す、請求項7に記載の二次電池モジュール。 The secondary battery module according to claim 7, wherein said setting code indicates an offset of said unique light emission timing and said unique light reception timing.
  10.  前記第1の光通信部の各々は固有の識別コードを有し、
     前記所定のコードは前記固有の識別コードを含む、請求項3~9のいずれか1項に記載の二次電池モジュール。
    each of the first optical communication units has a unique identification code;
    The secondary battery module according to any one of claims 3 to 9, wherein said predetermined code includes said unique identification code.
  11.  前記所定のコードは誤り検出符号を含む、請求項10に記載の二次電池モジュール。 The secondary battery module according to claim 10, wherein said predetermined code includes an error detection code.
  12.  前記第1の光通信部が対応する単電池を電源とする、請求項1~11のいずれか1項に記載の二次電池モジュール。 The secondary battery module according to any one of claims 1 to 11, wherein the unit battery corresponding to the first optical communication unit is used as a power supply.
  13.  前記組電池における最外層の少なくとも一面には、電流取出層が接しており、
     前記電流取出層は、前記積層型電池から電流が流れる電流取出部を有し、
     前記電流取出部が前記電流取出層において複数の区画に分かれ、該区画に独立した電流取出線を有する、
     請求項1~12のいずれか1項に記載の二次電池モジュール。
    A current extraction layer is in contact with at least one surface of the outermost layer in the assembled battery,
    the current extraction layer has a current extraction part through which current flows from the laminated battery,
    wherein the current extraction portion is divided into a plurality of sections in the current extraction layer, and each section has an independent current extraction line;
    The secondary battery module according to any one of claims 1-12.
  14.  前記電流取出部が前記電流取出層において4以上50以下の区画に分かれていること
     を特徴とする請求項13に記載の二次電池モジュール。
    The secondary battery module according to claim 13, wherein the current extraction portion is divided into 4 or more and 50 or less sections in the current extraction layer.
  15.  前記区画が前記電流取出層において略均等の形状及び位置に設けられていること
     を特徴とする請求項14に記載の二次電池モジュール。
    15. The secondary battery module according to claim 14, wherein the partitions are provided in substantially uniform shapes and positions in the current extraction layer.
  16.  前記電流取出層は、その上面が互いに略均等な複数の領域に分割され、
     前記各電流取出部は、前記各領域の略中心に設けられていること
     を特徴とする請求項15に記載の二次電池モジュール。
    the current extraction layer is divided into a plurality of regions having substantially equal top surfaces;
    16. The secondary battery module according to claim 15, wherein each current extraction portion is provided substantially at the center of each region.
  17.  1以上の電流取出用端部を含む電流取出ユニットを複数備え、
     前記電流取出用端部から電極全体合流部までを電気的に接続するためのユニット電極導電線が前記電流取出ユニット毎に設けられ、
     前記各ユニット電極導電線の電気抵抗は、互いに略同一であること
     を特徴とする請求項13~16のいずれか1項に記載の二次電池モジュール。
    A plurality of current extraction units including one or more current extraction ends,
    A unit electrode conductive wire for electrically connecting the current take-out end portion to the entire electrode confluence portion is provided for each current take-out unit,
    The secondary battery module according to any one of claims 13 to 16, wherein electrical resistances of the unit electrode conductive lines are substantially the same.
  18.  前記電流取出線は、複数の電流取出用端部と、前記各電流取出用端部から電極合流部までを電気的に接続するための複数本の電極導電線とを有し、
     前記各電極導電線の電気抵抗は、互いに略同一であること
     を特徴とする請求項13~17のいずれか1項に記載の二次電池モジュール。
    The current extraction line has a plurality of current extraction ends and a plurality of electrode conductive wires for electrically connecting the current extraction ends to the electrode confluence,
    The secondary battery module according to any one of claims 13 to 17, wherein electrical resistances of the respective electrode conductive lines are substantially the same.
  19.  前記電流取出層は、フレキシブルプリント基板から成り、
     前記フレキシブルプリント基板は、両面基板である、
     請求項13~18のいずれか1項に記載の二次電池モジュール。
    The current extraction layer is made of a flexible printed circuit board,
    The flexible printed circuit board is a double-sided board,
    The secondary battery module according to any one of claims 13-18.
  20.  前記電流取出層は、フレキシブルプリント基板から成り、
     前記フレキシブルプリント基板は、前記積層型電池の正極側及び負極側に設けられ、
     前記電流取出部が前記フレキシブルプリント基板において複数の区画に分かれ、該区画に独立した電流取出線を有する、
     請求項13~19のいずれか1項に記載の二次電池モジュール。
    The current extraction layer is made of a flexible printed circuit board,
    The flexible printed circuit board is provided on the positive electrode side and the negative electrode side of the laminated battery,
    wherein the current extraction part is divided into a plurality of sections on the flexible printed circuit board, and each section has an independent current extraction line;
    The secondary battery module according to any one of claims 13-19.
  21.  複数の単電池が積層された組電池と、前記複数の単電池の各々に備えられた第1の光通信部と、前記複数の単電池に備えられ、前記第1の光通信部を制御する制御装置と、前記複数の単電池を各々に制御する外部制御装置と、前記外部制御装置に備えられた第2の光通信部と、前記第1の光通信部と前記第2の光通信部との間に設けられた光導波路とを備え、前記第1の光通信部と前記第2の光通信部とが前記光導波路を介して双方向通信を行うように構成され、前記外部制御装置は、前記制御装置をスレーブとして管理するマスターとして動作するように構成された二次電池モジュールにおいて実行する制御方法であって、
     前記第1の光通信部の各々は固有の発光タイミング及び固有の受光タイミングを有し、前記第2の光通信部は可変発光タイミング及び可変受光タイミングを有し、
     前記制御方法は、
     前記第2の光通信部が、前記可変発光タイミングを前記第1の光通信部の前記固有の受光タイミングに一致させて前記光導波路へ光を放射することにより所定のコードを送信することと、
     前記第1の光通信部の各々が、前記固有の受光タイミングで前記光導波路からの光を受光することにより光信号を受信することと、
     前記第1の光通信部の各々が、前記受信した光信号が前記所定のコードに一致することを条件に、前記固有の発光タイミングで前記光導波路へ光を放射することにより光信号を送信することと、
     前記第2の光通信部が、前記可変受光タイミングを前記第1の光通信部の前記固有の発光タイミングに一致させて前記光導波路からの光を受光することにより光信号を受信することと
     を含む、二次電池モジュールの制御方法。
     
    an assembled battery in which a plurality of unit cells are stacked; a first optical communication unit provided in each of the plurality of unit cells; and a first optical communication unit provided in the plurality of unit cells to control the first optical communication unit. a control device, an external control device for controlling each of the plurality of cells, a second optical communication unit provided in the external control device, the first optical communication unit and the second optical communication unit and an optical waveguide provided between, wherein the first optical communication unit and the second optical communication unit are configured to perform two-way communication via the optical waveguide, and the external control device is a control method executed in a secondary battery module configured to operate as a master that manages the control device as a slave,
    Each of the first optical communication units has a unique light emission timing and a unique light reception timing, the second optical communication unit has a variable light emission timing and a variable light reception timing,
    The control method is
    the second optical communication unit transmitting a predetermined code by radiating light to the optical waveguide with the variable light emission timing matching the unique light reception timing of the first optical communication unit;
    Each of the first optical communication units receives an optical signal by receiving light from the optical waveguide at the unique light receiving timing;
    Each of the first optical communication units transmits an optical signal by emitting light to the optical waveguide at the unique light emission timing on condition that the received optical signal matches the predetermined code. and
    The second optical communication unit receives an optical signal by receiving light from the optical waveguide with the variable light receiving timing matching the unique light emission timing of the first optical communication unit. A control method for a secondary battery module, comprising:
PCT/JP2022/027268 2021-07-09 2022-07-11 Secondary battery module and control method therefor WO2023282358A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021114269A JP7208309B1 (en) 2021-07-09 2021-07-09 Secondary battery module
JP2021-114106 2021-07-09
JP2021-114269 2021-07-09
JP2021114106A JP2023010166A (en) 2021-07-09 2021-07-09 Secondary battery module and method executed by the same

Publications (1)

Publication Number Publication Date
WO2023282358A1 true WO2023282358A1 (en) 2023-01-12

Family

ID=84800789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027268 WO2023282358A1 (en) 2021-07-09 2022-07-11 Secondary battery module and control method therefor

Country Status (1)

Country Link
WO (1) WO2023282358A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345604A (en) * 1998-06-03 1999-12-14 Hitachi Ltd Lithium secondary battery and battery module
JP2004096429A (en) * 2002-08-30 2004-03-25 Denso Corp Wireless communication system
JP2007157403A (en) * 2005-12-01 2007-06-21 Sanyo Electric Co Ltd Power supply device
WO2021045222A1 (en) * 2019-09-06 2021-03-11 三洋化成工業株式会社 Secondary battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345604A (en) * 1998-06-03 1999-12-14 Hitachi Ltd Lithium secondary battery and battery module
JP2004096429A (en) * 2002-08-30 2004-03-25 Denso Corp Wireless communication system
JP2007157403A (en) * 2005-12-01 2007-06-21 Sanyo Electric Co Ltd Power supply device
WO2021045222A1 (en) * 2019-09-06 2021-03-11 三洋化成工業株式会社 Secondary battery module

Similar Documents

Publication Publication Date Title
US9331324B2 (en) Connector assembly and battery pack having the same
US7479786B2 (en) Member for measurement of cell voltage and temperature in battery pack
US8329326B2 (en) Electrochemical device
JP2021182556A (en) Lithium ion battery, and method for making judgement about the degradation of lithium ion battery
CN114342152B (en) Secondary battery module
JP5939871B2 (en) Secondary battery, secondary battery system, and control method thereof
KR20160032930A (en) Secondary Battery
JPWO2018143465A1 (en) Battery pack, holder
KR20170037157A (en) Pouch-typed secondary battery comprising modified leads and battery module comprising the same
KR20120120675A (en) Battery having Sensing Assembly Structure for Processing Signal of Cell
WO2023282358A1 (en) Secondary battery module and control method therefor
KR20210061619A (en) Electrode Assembly having Electrode Lead Combined with Multiple Metal Sheets and Method thereof
KR101680755B1 (en) Battery cell
CN112154566A (en) Battery pack
US10205331B2 (en) Battery pack
CN112366404B (en) Battery pack
KR102278443B1 (en) Rechargeable battery
JP7161504B2 (en) cell unit
US11799143B2 (en) Battery pack
JP2008243410A (en) Sealed secondary battery and battery module
KR101577186B1 (en) Battery Cell Having Position-changeable Electrode Lead
JP7208309B1 (en) Secondary battery module
KR102525606B1 (en) Battery mode with minimized cell voltage measurement error
US20230318094A1 (en) Battery Cell
JP2023000661A (en) Secondary battery module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE