WO2023282287A1 - Cleaning agent composition for post-cmp step - Google Patents

Cleaning agent composition for post-cmp step Download PDF

Info

Publication number
WO2023282287A1
WO2023282287A1 PCT/JP2022/026835 JP2022026835W WO2023282287A1 WO 2023282287 A1 WO2023282287 A1 WO 2023282287A1 JP 2022026835 W JP2022026835 W JP 2022026835W WO 2023282287 A1 WO2023282287 A1 WO 2023282287A1
Authority
WO
WIPO (PCT)
Prior art keywords
post
cleaning composition
group
cmp
acid
Prior art date
Application number
PCT/JP2022/026835
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 殿谷
千帆 水島
尊子 張替
裕大 藤井
スリャデバラ ヴィ. バブ
ジフーン ソ
スリ シヴァ ラマ クリシュナ ハヌップ ヴェギ
アリ オスマン
ゴラハリー アルンクマール ベンカタロナパ
Original Assignee
株式会社日本触媒
クラークソン ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021113727A external-priority patent/JP2023009993A/en
Priority claimed from JP2021113728A external-priority patent/JP2023009994A/en
Application filed by 株式会社日本触媒, クラークソン ユニバーシティ filed Critical 株式会社日本触媒
Publication of WO2023282287A1 publication Critical patent/WO2023282287A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/30Amines; Substituted amines ; Quaternized amines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a cleaning composition after the CMP step in semiconductor manufacturing processes. More specifically, the present invention relates to a post-CMP cleaning composition that is excellent in removing metal residues and organic residues and suppressing their adhesion, as well as in corrosion suppression.
  • CMP Chemical-Mechanical-Planarization/Polishing
  • CMP is a type of wafer surface planarization technology in the semiconductor manufacturing process, using chemical abrasives and polishing pads, chemical action and mechanical polishing It is a polishing technology that grinds the unevenness of the wafer surface and flattens it by the combined action of Metal residues such as abrasive grains and polishing dust remain on the flattened wafer surface after polishing.
  • a protective film is formed with an anticorrosive agent, and the components of the protective film may remain as organic residues after polishing. Since these residues adversely affect the electrical properties of semiconductors, etc., post-CMP cleaning is performed to remove the residues.
  • Post-CMP cleaning is usually performed by combining chemical cleaning using a cleaning agent and physical cleaning using a brush or the like.
  • a cleaning agent a cleaning composition containing a main component, a chelating agent, a surfactant and the like is usually used.
  • Patent Document 1 discloses a working liquid useful for modifying a wafer surface, which contains water, a pH buffering agent containing a basic pH adjuster and an acidic complexing agent, and a surfactant, and has a pH of 7 to 12.
  • Patent Document 2 describes a cleaning agent for substrates having metal wiring, which contains an aqueous solution having a pH of 10 or more and containing a carboxylic acid having a nitrogen-containing heterocycle and an alkylhydroxylamine.
  • Patent Document 3 one or more kinds of basic compounds and one or more kinds of heterocyclic monocyclic aromatic compounds containing a nitrogen atom are included, and the hydrogen ion concentration (pH) is 8 to 11, and Patent Document 4 describes a semiconductor containing a compound having an amine group and a carboxyl group, adenine, purine, uric acid, derivatives thereof, etc., a pH adjuster, and water. A substrate cleaning solution for devices is described.
  • Patent Document 5 a specific organic quaternary ammonium hydroxide, a surfactant, a chelating agent, an amino acid having a sulfur atom and/or a derivative thereof, benzotriazole, imidazole, triazole, A semiconductor device substrate cleaning liquid containing at least one selected from the group consisting of tetrazole and derivatives thereof and having a pH of 9 or more is disclosed.
  • Patent Document 6 describes a cleaning liquid that can reduce cerium compounds remaining on a substrate more safely and easily than the conventional technique, comprising water, sugars exhibiting reducing properties in an alkaline atmosphere, and an alkaline component. and has a pH of 7 or higher at 25°C.
  • Patent Document 7 describes at least one selected from the group consisting of alkanolamine compounds and heterocyclic amine compounds, and a quaternary ammonium
  • a cleaning solution for cleaning semiconductor wafers is described that includes hydroxide, citric acid, and ascorbic acid.
  • a polishing slurry containing ceria (cerium oxide: CeO 2 ) particles is used to perform CMP on a SiO 2 substrate, Si—O—Ce bonds are formed on the substrate, leaving ceria particles on the substrate.
  • ceria cerium oxide: CeO 2
  • a component such as hydrogen peroxide that requires careful handling.
  • a semiconductor wafer has deposited layers such as a metal film and an insulating film that become wiring on a substrate, and various metal compound materials including copper, cobalt, tantalum, tungsten, titanium, etc. are used for these.
  • the post-CMP cleaning composition can exhibit excellent cleaning function and corrosion inhibiting function for these metal compound materials as well. is desirable. Furthermore, in recent years, semiconductor devices have become increasingly faster and more highly integrated, and there is a demand for even more advanced CMP processing characteristics. Thus, there has been a need for a post-cleaning composition for CMP processes that can simultaneously solve these problems as well as the CMP processing properties.
  • the present invention has been made in view of the above-mentioned current situation, and is a post-CMP cleaning composition that is excellent in removing and inhibiting adhesion of metal residues and organic residues remaining on a polished surface of a flattened substrate, and is also excellent in inhibiting corrosion.
  • the purpose is to provide goods.
  • the present inventors have conducted various studies on post-cleaning compositions for the CMP process, and found that a specific nonionic surfactant and/or N-vinyllactam polymer and an aliphatic amine , and a specific corrosion inhibitor, the removal of metal residues and organic residues and the adhesion-inhibiting action are remarkably improved, and the corrosion-inhibiting action is also excellent. Further, by using a combination of a specific nonionic surfactant and/or N-vinyllactam polymer, an organic acid compound, and a pH adjuster, it is possible to perform the CMP process using ceria as polishing abrasive grains. It was found that the removal and adhesion suppression of metal residues and organic residues on the surface of the wafer that was carried out were remarkably improved, and the corrosion suppression was also excellent. Based on these findings, the inventors have made intensive studies and completed the present invention.
  • the first present invention provides (1A) at least one selected from the group consisting of a nonionic surfactant containing an alkylene oxide adduct of an alcohol having 6 or more carbon atoms, and an N-vinyl lactam polymer. , (1B) aliphatic amines, and (1C) at least one corrosion inhibitor selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds. is a post-cleaning composition for the CMP process in.
  • the above aliphatic amines preferably have a molecular weight of 2000 or less.
  • the aliphatic amines preferably contain an amine compound represented by the following general formula (1) and/or a polyalkyleneimine.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or —R 4 —(NH—R 5 ) n —NH 2.
  • R 4 and R 5 is the same or different and represents an alkylene group having 1 to 6 carbon atoms, and n represents an integer of 0 to 100.
  • the nitrogen-containing heterocyclic compound preferably contains at least one selected from the group consisting of pyrrole, pyridine, triazole, triazine, purine, and derivatives thereof.
  • the carboxylate compound preferably contains a fatty acid salt.
  • the post-CMP cleaning composition is suitable for use on wafer surfaces where a compound containing at least one selected from the group consisting of cobalt, copper, aluminum, ruthenium, titanium nitride, silicon nitride, and silicon oxide is exposed. It is preferably used for washing.
  • the second aspect of the present invention provides (2A) at least one compound selected from the group consisting of a nonionic surfactant having an alkylene oxide adduct structure of an aliphatic alcohol, and an N-vinyllactam polymer. , (2B) an organic acid compound, and (2C) a pH adjuster.
  • the content of the oxidizing agent in the post-CMP cleaning composition is preferably 1.0% by mass or less with respect to 100% by mass of the post-CMP cleaning composition.
  • the aliphatic alcohol alkylene oxide adduct structure preferably has an alkylene oxide adduct structure of an aliphatic alcohol having 6 or more carbon atoms, and includes block polymer structures of two or more alkylene oxides.
  • the aliphatic alcohol is preferably a secondary or tertiary alkyl alcohol having 6 or more carbon atoms.
  • the pH adjuster is preferably a basic pH adjuster.
  • the basic pH adjuster preferably contains at least one compound selected from the group consisting of hydroxides, organic amines, organic amine salts, and ammonium salts.
  • the organic acid compound preferably contains at least one compound selected from the group consisting of carboxylic acid compounds and ascorbic acid.
  • the post-CMP cleaning composition is preferably a post-CMP cleaning composition using ceria as abrasive grains.
  • the post-CMP cleaning composition is preferably used for cleaning the surface of a film containing silicon oxide and/or silicon nitride in a semiconductor manufacturing process.
  • the post-cleaning composition for the CMP process of the present invention is excellent in removing and preventing adhesion of metal residues and organic residues on the wafer surface, and is also excellent in suppressing corrosion.
  • the post-CMP cleaning composition of the present invention can be suitably used as a post-CMP cleaning composition in semiconductor manufacturing processes.
  • FIG. 1 is an AFM observation image of the surface of a substrate for cleaning evaluation when cleaning performance evaluation of the cleaning compositions of Examples 1 to 3 and Comparative Examples 1 and 2 is performed.
  • cleaning compositions of Examples 11 to 12, 17 to 18, and Comparative Examples 4 and 5 cleaning treatment of SiO 2 substrates A-1 and A-2 for cleaning performance evaluation and non-cleaning.
  • 4 is an AFM image showing the surface condition of the substrate.
  • FIG. 10 is an AFM image showing the surface state of the SiO 2 substrates A-1 and A-2 for evaluating cleaning performance when the cleaning compositions of Examples 13 to 15 and Comparative Example 6 were used to clean the substrates.
  • FIG. An AFM showing the surface state of the SiN substrates B-1 and B-2 for cleaning performance evaluation with and without cleaning using the cleaning compositions of Examples 11, 13 and 16. It is an image.
  • a first aspect of the present invention provides (1A) at least one compound selected from the group consisting of a nonionic surfactant containing an alkylene oxide adduct of an alcohol having 6 or more carbon atoms, and an N-vinyllactam polymer. , (1B) aliphatic amines, and (1C) at least one corrosion inhibitor selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds in a semiconductor manufacturing process, A post-cleaning composition for a CMP process.
  • the second aspect of the present invention provides (2A) at least one compound selected from the group consisting of a nonionic surfactant having an alkylene oxide adduct structure of an aliphatic alcohol, and an N-vinyllactam polymer. , (2B) an organic acid compound, and (2C) a pH adjuster.
  • a nonionic surfactant having an alkylene oxide adduct structure of an aliphatic alcohol, and an N-vinyllactam polymer.
  • (2B) an organic acid compound an organic acid compound
  • (2C) a pH adjuster a pH adjuster.
  • the first post-CMP cleaning composition of the present invention contains the above-described three specific components (1A), (1B) and (1C) to remove and suppress adhesion of metal residues and organic residues. It is also excellent in corrosion control.
  • the first post-cleaning composition for the CMP process of the present invention is excellent in removing and inhibiting the adhesion of metal residues and organic residues, and is also excellent in inhibiting corrosion.
  • the nonionic surfactant or N-vinyllactam polymer contained in the surfactant permeates the surface of the substrate and the interface of the abrasive residue and dirt, causing it to float in the water, which is the main component of the cleaning liquid, while the aliphatic amines are highly distributed to the heavy metal ions. This is presumed to be due to the ability to reduce the adsorptive power of the polishing residue to the fresh metal surface exposed in the CMP process.
  • the adsorption of the nitrogen-containing heterocyclic compound and the carboxylate compound on the surface of the deposited metal film allows the electrochemical interaction between the chemical components coexisting in the cleaning composition to be in an equilibrium state, thereby forming the deposited metal film. It is presumed that the corrosion potential and corrosion current value of the metal species constituting the can be reduced.
  • the components contained in the first post-CMP cleaning composition will be described.
  • the first post-cleaning composition for the CMP step is a nonionic surfactant containing an alkylene oxide adduct of an alcohol having 6 or more carbon atoms. , and at least one compound selected from the group consisting of N-vinyllactam polymers (hereinafter also referred to as “compound (1A)” or “component (1A)”).
  • compound (1A) N-vinyllactam polymers
  • Ionic surfactants such as cationic or anionic surfactants are ionic, and are remarkably adsorbed due to electrostatic interaction with the cleaned substrate. It may become a contaminant when commercialized.
  • nonionic surfactants and N-vinyllactam polymers have little electrostatic interaction due to their lack of ionicity, and are rinsed with pure water even when they are adsorbed on the cleaned substrate surface after the CMP process. can be easily removed by Therefore, in the present invention, nonionic surfactants and/or N-vinyllactam polymers are used.
  • Nonionic surfactants there are polyhydric alcohol types in which polyhydric alcohols and fatty acids are ester-bonded, and compounds having hydroxyl groups such as higher alcohols, alkylphenols, and propylene glycol, and alkylene oxides.
  • Known nonionic surfactants such as adduct ether type surfactants can be used, and in the present invention, at least nonionic surfactants containing alkylene oxide adducts of alcohols having 6 or more carbon atoms are included.
  • the alkylene oxide adduct of an alcohol having 6 or more carbon atoms is a compound obtained by adding an alkylene oxide to an alcohol having 6 or more carbon atoms.
  • alcohols having 6 or more carbon atoms include hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, tridecanol, tetradecanol, pentadecanol, hexadecanol, and heptadeca.
  • alkyl alcohols such as nol, octadecanol, nonadecanol, eicosanol, 1,2-hexanediol, 1,6-hexanediol, 1,10-decanediol; cyclohexyl alcohol, cycloheptyl alcohol, 1,4-cyclohexanedimethanol, cycloalkyl alcohols such as 1,4-cyclohexanediol; allyl alcohol; alkylphenyl alcohols such as octylphenol and nonylphenol; Of these, alkyl alcohols are preferable as the alcohol having 6 or more carbon atoms, from the viewpoints of relatively easy adjustment of the hydrophobicity depending on the structure and the addition position and environmental toxicity.
  • the above alkyl alcohol may be linear or branched.
  • the carbon number of the alcohol is preferably 10 or more, preferably 20 or less, and more preferably 18 or less.
  • the alcohol having 6 or more carbon atoms is preferably a secondary or tertiary alcohol, more preferably a secondary alcohol, in that it can achieve both high penetrating power to the solid residue interface and metal corrosion inhibition performance.
  • the alcohol having 6 or more carbon atoms may be monovalent, divalent, or polyvalent, but monovalent alcohol is preferable from the viewpoint of ease of production and cost.
  • alkylene oxide to be added to the alcohol having 6 or more carbon atoms examples include ethylene oxide, propylene oxide, butylene oxide, etc. Among them, at least one selected from the group consisting of ethylene oxide and propylene oxide is preferable, A mixed type of ethylene oxide and propylene oxide is more preferred.
  • alkylene oxide adducts of alcohols having 6 or more carbon atoms examples include primary alcohol ethoxylate, secondary alcohol ethoxylate, tertiary alcohol ethoxylate, octylphenyl ethoxylate, nonylphenyl ethoxylate, benzylphenyl ethoxylate, and acetylene.
  • ethoxylate Primary alcohol ethoxylate, acetylenic primary dialcohol ethoxylate, acetylenic secondary alcohol ethoxylate, acetylenic secondary dialcohol ethoxylate, acetylenic tertiary alcohol ethoxylate, acetylenic tertiary dialcohol ethoxylate, etc. be done.
  • the above ethoxylates are those to which at least ethylene oxide (EO) is added, and those to which ethylene oxide (EO) and other alkylene oxides (eg, propylene oxide (PO)) are added are also included.
  • the alkylene oxide adduct of the alcohol having 6 or more carbon atoms preferably has a clouding point of 25° C. or higher, and a clouding point of 40° C. or higher, because it can form a uniform solution without separating in the detergent composition. is more preferable.
  • the above cloud point can be obtained by a method of lowering the temperature of a 1% aqueous solution of a nonionic surfactant while stirring and monitoring the temperature, and observing the temperature at which the solution becomes transparent visually.
  • nonionic surfactant examples include, for example, a polyalkylene oxide alkyl ether surfactant, a block polymer system composed of polyethylene oxide and polypropylene oxide, a polyalkylene oxide alkylphenyl ether surfactant, polyoxy Alkylene distyrenated phenyl ether-based surfactants, polyalkylene tribenzylphenyl ether-based surfactants, acetylene polyalkylene oxide-based surfactants, and the like are included.
  • polyalkylene oxide alkyl ether-based surfactants and block polymer-based surfactants composed of polyethylene oxide and polypropylene oxide are preferable because they can suppress corrosion of the metal laminated film due to the detergent composition.
  • the alkylene oxide adduct of alcohol having 6 or more carbon atoms is preferably a compound represented by the following general formula (2) or (3).
  • R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an alkyl group.
  • R 9 and R 10 are the same or different and represent an alkylene group.
  • x and y are the same or different and represent an integer of 0 to 50.
  • (x+y) is an integer of 1 or more.
  • R 11 , R 12 , R 13 and R 14 are the same or different and represent a hydrogen atom or an alkyl group.
  • R 15 , R 16 , R 17 , R 18 and R 19 are the same or different and represent an alkylene group or an alkynylene group.
  • x and y are the same or different and represent an integer of 0 to 50; (x+y) is an integer of 1 or more. )
  • the alkyl groups represented by R 6 , R 7 and R 8 may be linear or branched.
  • the number of carbon atoms in the alkyl group is preferably 1-20, more preferably 1-18, even more preferably 1-16.
  • Examples of the alkyl group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2 , 2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group,
  • R 6 , R 7 and R 8 are preferably alkyl groups in that the molecular structure is compact and high permeability can be exhibited.
  • the total number of carbon atoms in R 6 , R 7 and R 8 is preferably 5 to 19, more preferably 7 to 17, even more preferably 9 to 15.
  • 11-13 is most preferred.
  • the alkylene group represented by R 9 and R 10 may be linear or branched.
  • the alkylene group include methylene group, ethylene group, n-propylene group, 2-propylene group, n-butylene group, pentamethylene group, hexamethylene group, neopentylene group, heptamethylene group, octamethylene group and nonamethylene group.
  • decamethylene group methylmethylene group, methylethylene group, 1-methylpentylene group, 1,4-dimethylbutylene group and the like.
  • an alkylene group having 2 or 3 carbon atoms is preferable in terms of ease of production and ability to control hydrophilicity and hydrophobicity.
  • —(R 9 O) x (R 10 O) y H is —(CH 2 CH 2 O) x H, -(CH 2 CH 2 O) x (CH 2 CH(CH 3 )O) y H, preferably -(CH 2 CH 2 O) x (CH 2 CH(CH 3 ) O) yH is more preferred.
  • x and y are the same or different and are an integer of 0 to 50, preferably an integer of 0 to 30, more preferably an integer of 0 to 24, 0 An integer of ⁇ 16 is even more preferred.
  • x represents the average number of added moles of alkylene oxide (R 9 O)
  • y represents the average number of added moles of alkylene oxide (R 10 O).
  • x and y may be the same or different in any alkylene oxide.
  • x is preferably an integer of 1-20, more preferably an integer of 3-18, even more preferably an integer of 5-16.
  • y is preferably an integer of 0-20, more preferably an integer of 0-15, even more preferably an integer of 1-10.
  • (x+y) is an integer of 1 or more. That is, at least one of x and y is an integer of 1 or more.
  • (x+y) is preferably an integer of 1-50, more preferably an integer of 3-30.
  • the alkyl groups represented by R 11 , R 12 , R 13 and R 14 are the same as the alkyl groups represented by R 6 , R 7 and R 8 described above. be done.
  • the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, and a tert-butyl group in that the molecular structure becomes compact and high permeability can be expressed.
  • sec-butyl or iso-butyl groups are preferred.
  • the total number of carbon atoms of R 11 , R 12 , R 13 and R 14 is preferably 5 to 20 from the viewpoint of the balance between hydrophilicity and hydrophobicity of the surfactant, It is more preferably 6-16, and even more preferably 8-12.
  • examples of the alkylene group represented by R 15 , R 16 , R 17 , R 18 and R 19 include the same alkylene groups represented by R 9 and R 10 described above. be done. Among them, R 15 , R 16 , R 17 and R 18 are preferably an alkylene group, more preferably an alkylene group having 2 or 2 carbon atoms.
  • examples of the alkynylene group represented by R 15 , R 16 , R 17 , R 18 and R 19 include an ethynylene group (-C ⁇ C-), a propynylene group (-C ⁇ C —CH 2 —), 1-butynylene group (—C ⁇ C—CH 2 —CH 2 —), 2-butynylene group (—CH 2 —C ⁇ C—CH 2 —), and the like.
  • R 19 is preferably an alkynylene group, more preferably an ethynylene group, a propynylene group, a 1-butynylene group, or a 2-butynylene group, and an alkynylene group having 2 or 3 carbon atoms. is more preferred, and an alkylene group having 2 carbon atoms is most preferred.
  • —(R 15 O) x (R 16 O) y —H and —(R 17 O) x (R 18 O) y —H are the above-mentioned —(R 9 O ) x (R 10 O) y H and the same groups are preferably mentioned.
  • x and y are the same or different and are an integer of 0 to 50, preferably an integer of 0 to 30, more preferably an integer of 0 to 24, 0 An integer of 0 to 20 is more preferred, an integer of 0 to 16 is even more preferred, an integer of 0 to 15 is particularly preferred, and an integer of 0 to 10 is most preferred.
  • x represents the average number of added moles of alkylene oxide (R 15 O) and (R 17 O)
  • y represents the average number of added moles of alkylene oxide (R 16 O) and (R 18 O).
  • x and y may be the same or different in any alkylene oxide.
  • x is preferably an integer of 1-20, more preferably an integer of 1-12, and even more preferably an integer of 2-8.
  • y is preferably an integer of 0 to 20, more preferably an integer of 0 to 10, still more preferably an integer of 0 to 8, and even more preferably an integer of 0 to 5 .
  • (x+y) is an integer of 1 or more. That is, at least one of x and y is an integer of 1 or more.
  • (x+y) is preferably an integer of 1-50, more preferably an integer of 2-30, and even more preferably an integer of 3-30.
  • N-Vinyllactam Polymer The N-vinyllactam polymer is obtained by polymerizing a monomer component containing an N-vinyllactam monomer which is a monomer having a lactam ring. It is a polymer that can be Specific examples of the N-vinyllactam monomers include N-vinylpyrrolidone, N-vinylcaprolactam, 3-methyl-N-vinylpyrrolidone, 4-methyl-N-vinylpyrrolidone, 5-methyl-N -vinylpyrrolidone, N-vinylpiperidone, 1-(2-propenyl)-2-pyrrolidone, N-vinyl-4-butylpyrrolidone, N-vinyl-4-propylpyrrolidone, N-vinyl-4-ethylpyrrolidone, N-vinyl -4-methylpyrrolidone, N-vinyl-4-methyl-5-ethylpyrroli
  • the weight average molecular weight of the N-vinyllactam polymer is preferably 500 to 50,000, more preferably 1,000 to 40,000, even more preferably 2,000 to 30,000.
  • the weight average molecular weight can be obtained by measuring by a gel permeation chromatography (GPC) method (in terms of PEO).
  • the above nonionic surfactant and N-vinyllactam polymer may be used alone or in combination of two or more.
  • the content of the compound (1A) (component (1A)) is preferably 0.5 to 65% by mass with respect to 100% by mass of the active ingredient in the first post-CMP step cleaning composition. , more preferably 1 to 60% by mass, even more preferably 2 to 55% by mass.
  • active ingredient refers to all ingredients other than the solvent in the post-cleaning composition for the CMP process.
  • the content of the compound (1A) (component (1A)) is preferably 0.001 to 5% by mass with respect to 100% by mass of the first post-CMP step cleaning composition. 005 to 2% by mass, and even more preferably 0.01 to 1% by mass.
  • the first post-cleaning composition for the CMP step contains aliphatic amines (hereinafter also referred to as “aliphatic amines (1B)” or “component (1B)”). .
  • aliphatic amines (1B) aliphatic amines
  • component (1B) component
  • Examples of the aliphatic amines (1B) include primary aliphatic amines, secondary aliphatic amines, and tertiary aliphatic amines.
  • the aliphatic amines (1B) preferably contain an amine compound represented by the following general formula (1) and/or a polyalkyleneimine.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or —R 4 —(NH—R 5 ) n —NH 2.
  • R 4 and R 5 is the same or different and represents an alkylene group having 1 to 6 carbon atoms, and n represents an integer of 0 to 100.
  • R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or —R 4 —(NH—R 5 ) n —NH 2 .
  • the number of carbon atoms in the alkyl group represented by R 1 , R 2 and R 3 is preferably 1 to 6, more preferably 1 to 5, and 1 to 4, from the viewpoint of water solubility. is more preferred.
  • n --NH 2 represented by R 1 , R 2 and R 3 , R 4 and R 5 are the same or different and represent an alkylene group having 1 to 6 carbon atoms. . Also, n represents an integer of 0-100. n represents the number of repetitions of -(NH-R 5 )-, preferably an integer of 0 to 50, more preferably an integer of 0 to 30, still more preferably an integer of 0 to 20, particularly preferably Represents an integer from 0 to 10.
  • Specific examples of the compound represented by the general formula (1) include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, diethylenetriamine, N-ethylbutylamine, 1,2-bis-(3 -aminopropylamino)ethane, tributylamine, 3-(diethylamino)propylamine, triethylenetetramine, tetraethylenepentamine and the like.
  • polyalkyleneimine examples include polyethyleneimine, polypropyleneimine, polybutyleneimine, polypentyleneimine, and the like.
  • the above polyalkyleneimine may be linear or branched. Among them, a branched shape is preferable in terms of ease of production.
  • the molecular weight of the aliphatic amines (1B) is preferably 2000 or less. When the molecular weight is 2000 or less, the viscosity of the post-cleaning composition for the CMP process is favorable.
  • the molecular weight of the aliphatic amines is more preferably 300 or less, still more preferably 250 or less, and even more preferably 220 or less.
  • the molecular weight of the above-mentioned aliphatic amine (1B) is preferably 50 or more because of its low boiling point.
  • the aliphatic amines (1B) may be used alone or in combination of two or more.
  • the content of the aliphatic amine (1B) (component (1B)) is 30 to 95% by mass with respect to 100% by mass of the active ingredients in the first post-CMP step cleaning composition. It is preferably from 35 to 93% by mass, and even more preferably from 40 to 90% by mass.
  • the content of the aliphatic amine (1B) (component (1B)) is preferably 0.01 to 5% by mass with respect to 100% by mass of the first post-cleaning composition for the CMP step. , more preferably 0.05 to 2% by mass, and even more preferably 0.1 to 1% by mass.
  • the post-cleaning composition for the first CMP step contains a corrosion inhibitor (hereinafter also referred to as “corrosion inhibitor (1C)” or “component (1C)”), As an inhibitor, at least one selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds is included.
  • a corrosion inhibitor hereinafter also referred to as “corrosion inhibitor (1C)” or “component (1C)
  • As an inhibitor at least one selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds is included.
  • the nitrogen-containing heterocyclic compound is not particularly limited as long as it is a compound having a heterocyclic ring having at least one nitrogen atom. It may contain atoms.
  • the nitrogen-containing heterocyclic ring may be either saturated or unsaturated, but is preferably a nitrogen-containing unsaturated heterocyclic ring in terms of high adsorption performance with respect to the transition metal film.
  • the above nitrogen-containing heterocyclic compound may be a heteromonocyclic compound or a condensed heterocyclic compound.
  • heteromonocyclic compounds include five-membered ring compounds such as pyrrole, pyrazoline, pyrazole, imidazole, triazole, imidazoline, oxazoline, oxazole, and isoxazole; piperidine, pyridine, pyrazine, piperazine, pyrimidine, pyridazine, triazine, morpholine 6-membered ring compounds such as; and derivatives thereof.
  • five-membered ring compounds such as pyrrole, pyrazoline, pyrazole, imidazole, triazole, imidazoline, oxazoline, oxazole, and isoxazole
  • piperidine pyridine, pyrazine, piperazine, pyrimidine, pyridazine, triazine, morpholine 6-membered ring compounds such as; and derivatives thereof.
  • Examples of the derivative include compounds in which at least one atom in the nitrogen-containing heterocyclic ring is substituted with an alkyl group, an aryl group, an amino group, a carboxyl group, a hydroxy group, a ketone group, or a group combining these. be done.
  • heteromonocyclic compounds include 1H-pyrrole, 1-pyrroline, 2-pyrroline, 3-pyrroline, pyrrolidine, pyrrolidone, ⁇ -butyrolactam, ⁇ -valerolactam, proline, prolyl, 1H-pyrazole, 1-pyrazoline, 2-pyrazoline, pyrazolidine, pyrarizolidone, 3-pyrazolone, 4-pyrazolone, 5-pyrazolone, 1H-pyrazole-4-carboxylic acid, ethyl pyrazole-4-carboxylate, 1-methyl-1H-pyrazole-5 -carboxylic acid, 5-methyl-1H-pyrazole-3-carboxylic acid, 3,5-pyrazoledicarboxylic acid, 3-amino-5-hydroxypyrazole, 1H-imidazole, 2-imidazoline, 3-imidazoline, 4-imidazoline, imidazolidine, imidazolidone, ethyleneurea, hydantoin, all
  • condensed heterocyclic compound examples include indole, isoindole, benzimidazole, benzotriazole, triazine, quinoline, isoquinoline, quinazoline, purine, cinnoline, phthalazine, quinoxaline, acridine, phenanthridine, and derivatives thereof. be done.
  • condensed heterocyclic compound examples include benzotriazole and uric acid.
  • the nitrogen-containing heterocyclic compound may contain at least one selected from the group consisting of pyrrole, pyridine, triazole, triazine, purine, and derivatives thereof, because of its high adsorption performance to transition metal films.
  • Uric acid, nicotinic acid, triazole, or melamine is more preferred, and uric acid is even more preferred.
  • the above nitrogen-containing heterocyclic compounds may be used alone or in combination of two or more.
  • the carboxylate compound is not particularly limited as long as it is a salt of a compound having a carboxy group, but fatty acid salts are preferred.
  • the fatty acid salt may be either a saturated fatty acid salt or an unsaturated fatty acid salt.
  • the number of carbon atoms in the fatty acid salt is preferably 6 to 50, more preferably 8 to 40, even more preferably 10 to 30, from the viewpoint of improving the corrosion resistance of the adsorbed metal film. , 14-24.
  • fatty acid salts include saturated butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, and arachidic acid.
  • Salts of fatty acids salts of unsaturated fatty acids such as crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, eicosenoic acid, linoleic acid and linolenic acid.
  • the fatty acid salts improve the corrosion resistance of the adsorbed metal film, and include capric acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, margaric acid, stearic acid, arachidic acid, myristoleic acid, It is preferably a salt of at least one fatty acid selected from the group consisting of palmitoleic acid, oleic acid, eicosenoic acid, linoleic acid and linolenic acid.
  • Examples of the above salts include alkali metal salts such as potassium salts and cesium salts; alkaline earth metal salts such as magnesium salts, calcium salts, strontium salts and barium salts; ammonium salts; quaternary ammonium salts; Examples include organic amine salts such as salts. Among these salts, alkali metal salts, ammonium salts, quaternary ammonium salts and organic amine salts are preferred, alkali metal salts and ammonium salts are more preferred, and potassium salts and ammonium salts are even more preferred.
  • the carboxylate compound is palmitate, stearate, arachidate, palmitoleate, oleate, or eicosenoic acid from the viewpoint of improving corrosion resistance due to the balance of polar groups and hydrophobic groups. It is preferably a salt, more preferably an alkali metal salt or ammonium salt of palmitic acid, stearic acid, arachidic acid, palmitoleic acid, oleic acid or eicosenoic acid, and even more preferably an alkali metal salt of oleic acid. , and potassium oleate.
  • the above carboxylate compounds may be used alone or in combination of two or more.
  • the post-cleaning composition for the first CMP step may further contain other corrosion inhibitors in addition to the nitrogen-containing heterocyclic compound and the carboxylate compound.
  • Other corrosion inhibitors include known corrosion inhibitors such as rust inhibitors and anticorrosive agents.
  • Specific examples of the corrosion inhibitor include oxide-coated corrosion inhibitors such as chromates, molybdates, tungstates, and nitrites; precipitation of polymerized phosphates, zinc salts, sulfur-containing organic compounds, and the like; Coating type corrosion inhibitors, adsorption coating type corrosion inhibitors such as alkanolamines, alkyleneamine ethylene oxide adducts, alkyl phosphate ester salts, various surfactants, and the like can be mentioned.
  • the total content of (1C-1) nitrogen-containing heterocyclic compound and (1C-2) carboxylate compound in the corrosion inhibitor is 50% by mass or more with respect to 100% by mass of the total amount of corrosion inhibitor. It is preferably 55% by mass or more, more preferably 60% by mass or more, and particularly preferably 100% by mass.
  • the content ratio [(1C-1)/(1C-2)] of (1C-1) nitrogen-containing heterocyclic compound and (1C-2) carboxylate compound is 0/100 to 100 in mass ratio. /0 is preferable, and either compound may be used alone or may be used by mixing at any ratio.
  • the content of the corrosion inhibitor (1C) is 0.2 to 35% by mass with respect to 100% by mass of the active ingredients in the first post-CMP step cleaning composition. is preferred, 0.5 to 30 mass % is more preferred, and 1 to 25 mass % is even more preferred.
  • the content of the corrosion inhibitor (1C) is preferably 0.001 to 3% by mass with respect to 100% by mass of the first post-CMP step cleaning composition. It is more preferably 0.003 to 2% by mass, even more preferably 0.005 to 1% by mass.
  • the first post-cleaning composition for the CMP process of the present invention may include other optional components (1D) in addition to the components (1A), (1B), and (1C) described above. may contain Examples of the component (1D) include pH adjusters, chelating agents, solvents, surfactants, and the like.
  • the pH adjuster is not particularly limited as long as it is a component capable of adjusting the pH to a target, and examples thereof include acid compounds and alkali compounds.
  • the acid compound include inorganic acids such as sulfuric acid and nitric acid and salts thereof, and organic acids such as acetic acid and lactic acid and salts thereof.
  • the alkali compound include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide; alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and monoisopropanolamine; tetramethylammonium hydroxide.
  • tetraethylammonium hydroxide tetrapropylammonium hydroxide, trimethyl-2-hydroxyethylammonium hydroxide (choline), triethyl(hydroxyethyl)ammonium hydroxide and the like; quaternary ammonium salts;
  • the above pH adjusters may be used alone or in combination of two or more.
  • the chelating agent examples include oxalic acid, citric acid, tartaric acid, malic acid, picolinic acid, glycine and the like.
  • Phosphonic acid chelating agents such as N,N,N',N'-ethylenediaminetetrakis (methylene phosphonic acid), glycine-N,N-bis (methylene phosphonic acid), nitrilotris (methylene phosphonic acid) and the like can also be mentioned.
  • sulfur-containing amino acids such as cysteine and methionine are preferably used as the chelating agent.
  • the above chelating agents may be used alone or in combination of two or more.
  • the solvent examples include water, aprotic polar organic solvents such as water, N-methyl-2-pyrrolidinone, N,N-dimethylacetamide and dimethylsulfoxide, protic organic solvents such as lower alcohols, aromatic alcohols and glycols. is mentioned. Especially, it is preferable that the said solvent contains water.
  • the solvent may be a mixed liquid containing two or more kinds.
  • surfactant examples include anionic surfactants and cationic surfactants other than the nonionic surfactants described above.
  • anionic surfactant examples include aliphatic monocarboxylates, polyoxyethylene alkyl ether carboxylates, N-acylsarcosine salts, N-acylglutamate carboxylate anionic surfactants; dialkyl sulfosuccinates; sulfonate type anions such as acid salts, alkanesulfonates, alpha-olefinsulfonates, alkylbenzenesulfonates, naphthalenesulfonates-formaldehyde condensates, alkylnaphthalenesulfonates, N-methyl-N-acyl taurates, etc.
  • Surfactants sulfuric acid ester type anionic surfactants such as alkyl sulfates, polyoxyethylene alkyl ether sulfates, oil sulfates; and alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene Phosphate ester type anionic surfactants of alkylphenyl ether phosphates can be mentioned.
  • cationic surfactant examples include alkylamine salt-type cationic surfactants such as monoalkylamine salts, dialkylamine salts, and trialkylamine salts; and dialkyldimethylammonium chloride, dialkyldimethylammonium bromide, dialkyldimethyl Quaternary ammonium salt type cationic surfactants such as ammonium iodide, alkyltrimethylammonium chloride, alkyltrimethylammonium bromide, alkyltrimethylammonium iodide, alkylbenzyldimethylammonium chloride and the like.
  • alkylamine salt-type cationic surfactants such as monoalkylamine salts, dialkylamine salts, and trialkylamine salts
  • dialkyldimethylammonium chloride dialkyldimethylammonium bromide
  • dialkyldimethyl Quaternary ammonium salt type cationic surfactants such as ammonium io
  • the first post-CMP cleaning composition is preferably an aqueous solution having a pH (hydrogen ion concentration) of 7.5 or higher at 25°C.
  • the pH (25°C) of the first post-CMP cleaning composition is preferably 8.0 or higher, still more preferably 8.5 or higher, and even more preferably 10.0 or higher.
  • the pH of the first post-CMP cleaning composition can be adjusted by adjusting the content of the alkali compound described above. The above pH can be determined using a pH meter (eg, F71S, manufactured by Horiba Ltd.).
  • the first post-CMP cleaning composition preferably has a corrosion current value of 10 ⁇ A/cm 2 or less and a corrosion potential difference at the interface of dissimilar metals of 60 mV or less. When the corrosion current value and the corrosion potential difference are within the above ranges, corrosion of the substrate to be cleaned can be suppressed. More preferably, the first post-CMP cleaning composition has a corrosion current value of 5 ⁇ A/cm 2 or less and a corrosion potential difference at the interface of different metals of 30 mV or less.
  • the corrosion potential difference at the dissimilar metal interface is 2 or less and the corrosion potential difference at the dissimilar metal interface is 25 mV or less, and it is particularly preferable that the corrosion current value is 1 ⁇ A/cm 2 or less and the dissimilar metal interface corrosion potential difference is 20 mV or less.
  • the corrosion current value and the corrosion potential difference can be obtained by measuring by the method described in Examples below.
  • the second post-CMP cleaning composition of the present invention contains the three specific components (2A), (2B), and (2C) described above, thereby removing metal residue and organic residue from the wafer surface. Excellent removal and adhesion prevention, and excellent corrosion control. In particular, when ceria is used as abrasive grains to clean the surface of a wafer subjected to a CMP process, the effect is further exhibited. In addition, the second post-CMP cleaning composition of the present invention exhibits the above effects even more when used for cleaning the surface of a film containing silicon oxide and/or silicon nitride in a semiconductor manufacturing process. .
  • the second post-CMP cleaning composition is excellent in removing and preventing adhesion of metal residue, ceria abrasive residue and organic residue, and is also excellent in corrosion inhibition, because of the second post-CMP step cleaning composition.
  • the nonionic surfactant and/or N-vinyllactam polymer contained in the cleaning composition permeate the substrate surface and the interface between the abrasive residue and dirt, and float in water, which is the main component of the cleaning liquid, while the organic acid compound It is presumed that the contaminants can be removed from the substrate surface by cutting the covalent bond formed at the interface between the contaminants and the substrate by the pH adjuster, the oxidizing agent, or the like.
  • the adsorption of organic acid compounds, nonionic surfactants, and/or N-vinyllactam polymers on the surface of the deposited metal film that appears after the CMP process causes an electrochemical reaction between chemical components coexisting in the cleaning solution. It is presumed that the corrosion potential and the corrosion current value of the metal species constituting the deposited metal film can be reduced by setting the interaction to an equilibrium state.
  • the post-cleaning composition for the second CMP step comprises a nonionic surfactant having an aliphatic alcohol alkylene oxide adduct structure, and , and N-vinyllactam polymers (hereinafter also referred to as "compound (2A)” or “component (2A)”).
  • compound (2A) or “component (2A)”
  • the alkylene oxide adduct structure of the fatty alcohol is a structure in which an alkylene oxide is added to the fatty alcohol.
  • aliphatic alcohol examples include methanol, ethanol, propanol, isopropanol, butanol, isobutyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, tridecanol, tetra decanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, eicosanol, methanediol, ethylene glycol, 1,4-butanediol, 1,2-hexanediol, 1,6-hexanediol, Alkyl alcohols such as 1,10-decanediol; cycloalkyl alcohols such as cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl
  • the number of carbon atoms in the aliphatic alcohol is preferably 6 or more, more preferably 10 or more.
  • the number of carbon atoms in the alcohol is preferably 18 or less, more preferably 16 or less.
  • the above-mentioned aliphatic alcohol is preferably a secondary or tertiary alcohol, more preferably a secondary alcohol, in terms of high penetrating power to the solid residue interface and excellent suppression of metal corrosion.
  • the aliphatic alcohol is preferably a secondary or tertiary alkyl alcohol having 6 or more carbon atoms.
  • the aliphatic alcohol may be monohydric, dihydric, or polyhydric, but monohydric alcohols are preferred in terms of ease of production and cost.
  • alkylene oxide added to the aliphatic alcohol examples include ethylene oxide, propylene oxide and butylene oxide. Among them, at least one selected from the group consisting of ethylene oxide and propylene oxide is preferable, and a mixed type of ethylene oxide and propylene oxide is more preferable.
  • the alkylene oxide adduct structure of the fatty alcohol preferably contains two or more alkylene oxides.
  • the alkylene oxide adduct structure of the aliphatic alcohol has an alkylene oxide adduct structure of an alcohol having 6 or more carbon atoms, and preferably includes block polymer structures of two or more alkylene oxides.
  • alkylene oxide adduct structure of the aliphatic alcohol examples include primary alcohol ethoxylate, secondary alcohol ethoxylate, tertiary alcohol ethoxylate, acetylenic primary alcohol ethoxylate, acetylenic primary dialcohol ethoxylate, acetylenic di-alcohol ethoxylate, Examples include primary alcohol ethoxylates, acetylenic secondary dialcohol ethoxylates, acetylenic tertiary alcohol ethoxylates, acetylenic tertiary dialcohol ethoxylates, and the like.
  • the above ethoxylates are those to which at least ethylene oxide (EO) is added, and those to which ethylene oxide (EO) and other alkylene oxides (eg, propylene oxide (PO)) are added are also included.
  • the alkylene oxide adduct structure of the above-mentioned aliphatic alcohol preferably has a clouding point of 25° C. or higher, more preferably 40° C. or higher, in that a uniform solution can be formed without separating in the detergent composition. is more preferable.
  • the above cloud point can be obtained by a method of lowering the temperature of a 1% aqueous solution of a nonionic surfactant while stirring and monitoring the temperature, and observing the temperature at which the solution becomes transparent visually.
  • nonionic surfactant (2A-1) examples include, for example, a polyalkylene oxide alkyl ether surfactant, a block polymer system composed of polyethylene oxide and polypropylene oxide, and an acetylene polyalkylene oxide surfactant. agents and the like.
  • polyalkylene oxide alkyl ether-based surfactants and block polymer-based surfactants composed of polyethylene oxide and polypropylene oxide are preferable because they can suppress corrosion of the metal laminated film due to the detergent composition.
  • the nonionic surfactant (2A-1) is represented by general formula (2) or (3) described in the section “Compound (1A)” of the first post-cleaning composition for the CMP step. Compounds similar to the represented compounds are more preferred.
  • N-Vinyllactam Polymer As the N-vinyllactam polymer (2A-2), the same compounds as the above N-vinyllactam polymer (1A-2) can be mentioned. Among them, polyvinylpyrrolidone obtained by polymerizing a monomer component containing N-vinylpyrrolidone is preferable as the N-vinyllactam polymer (2A-2).
  • the weight average molecular weight of the N-vinyllactam polymer (2A-2) is preferably 500 to 50,000, more preferably 1,000 to 40,000, even more preferably 2,000 to 30,000.
  • the weight average molecular weight can be obtained by measuring by a gel permeation chromatography (GPC) method (in terms of PEO).
  • the above nonionic surfactant and N-vinyllactam polymer may be used alone or in combination of two or more.
  • the content of the compound (2A) (component (2A)) is preferably 0.005 to 3% by mass with respect to 100% by mass of the second post-CMP step cleaning composition. It is more preferably from 01 to 1% by mass, and even more preferably from 0.1 to 0.5% by mass.
  • the second post-CMP cleaning composition preferably contains an organic acid compound (hereinafter also referred to as “organic acid compound (2B)” or “component (2B)”). .
  • organic acid compound By further including the organic acid compound, it is believed that the organic acid compound can break the covalent bond formed at the interface between the contaminant and the substrate and remove the contaminant from the substrate surface.
  • the adsorption of the organic acid compound on the surface of the deposited metal film that appears after the CMP process brings the electrochemical interaction between the chemical components coexisting in the cleaning solution into an equilibrium state, and the metal species that compose the deposited metal film are eliminated. It is thought that the corrosion potential and corrosion current value can be reduced.
  • organic acid compound (2B) examples include carboxylic acid compounds, ascorbic acid, phenol compounds, phosphonic acids, boronic acids, and the like.
  • carboxylic acid compounds and ascorbic acid are preferable in that organic acid compound residues can be easily removed by rinsing with pure water or alcohol after the process, and the adverse effect on the next process can be minimized. more preferred.
  • carboxylic acid compound examples include organic acid compounds having a carboxyl group. , monocarboxylic acid compounds such as stearic acid; dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, tartaric acid, malic acid, maleic acid, gluconic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, 5-norbornene dicarboxylic acid acid compounds; tricarboxylic acid compounds such as citric acid; aspartic acid, glutamic acid, glycine, alanine, phenylalanine, leucine, isoleucine, cysteine, methionine, tyrosine, valine, threonine, serine, proline, tryptophan, asparagine, glutamine, lysine, arginine, amino acids such as histidine; aminopolycarboxylic acids such as ethylenediaminetetraacetic acid and propyl
  • the carboxylic acid compound is preferably a dicarboxylic acid compound, a tricarboxylic acid compound, an aminopolycarboxylic acid, more preferably citric acid, oxalic acid, 5-norbornene dicarboxylic acid, ethylenediaminetetraacetic acid, citric acid, Acids, oxalic acid, 5-norbornenedicarboxylic acid, and ethylenediaminetetraacetic acid are more preferred.
  • the above organic acid compounds may be used alone or in combination of two or more.
  • the content of the organic acid compound (2B) (component (2B)) is preferably 0.05 to 10% by mass with respect to 100% by mass of the second post-CMP step cleaning composition. It is more preferably 0.1 to 7% by mass, even more preferably 0.5 to 4% by mass.
  • the post-cleaning composition for the second CMP step contains a pH adjuster (hereinafter also referred to as “pH adjuster (2C)” or “component (2C)”), It can improve the stability of chemical species in the unoxidized state in water.
  • the pH adjuster (2C) used in the second aspect of the present invention is not particularly limited as long as it is a compound capable of adjusting the pH to a desired value, and examples thereof include known acidic compounds and basic compounds.
  • the pH adjuster (2C) is preferably a basic pH adjuster because it can suppress the generation of oxygen due to the decomposition of water and the generation of hydrogen due to dissolution of the metal component in the cleaning liquid.
  • Examples of the acidic compound include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and boric acid.
  • Examples of the basic compound include inorganic hydroxides such as sodium hydroxide and potassium hydroxide; alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and monoisopropanolamine; methylamine, dimethylamine, trimethylamine; Alkylamines such as ethylamine, diethylamine, triethylamine, ethylenediamine, N,N-diisopropylethylamine, tetramethylethylenediamine, and hexamethylenediamine; aromatic amines such as aniline and toluidine; and nitrogen-containing complexes such as pyrrole, pyridine, picoline, and lutidine.
  • alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and monoisopropanolamine
  • methylamine dimethylamine, trimethylamine
  • Alkylamines such as ethylamine, diethylamine, triethylamine, ethylenediamine, N
  • organic amines such as cyclic compounds; salts of the above-mentioned organic amines (organic amine salts); tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, trimethyl-2-hydroxyethylammonium hydroxide (choline), quaternary ammonium salts such as triethyl(hydroxyethyl)ammonium hydroxide and dimethylbis(2-hydroxyethyl)ammonium hydroxide; ammonium salts such as ammonium carbonate, ammonium hydrogencarbonate and ammonium carbamate; and ammonia.
  • hydroxides, organic amines, organic amine salts, quaternary ammonium salts, and ammonium salts are preferable because etching of the film surface containing silicon oxide and/or silicon nitride can be suppressed, and hydroxides, organic amines, Quaternary ammonium salts and ammonium salts are more preferred.
  • the pH adjuster (2C) may be used alone or in combination of two or more.
  • the content of the pH adjuster (2C) (component (2C)) is preferably 0.01 to 15% by mass with respect to 100% by mass of the second post-CMP step cleaning composition. It is more preferably 0.1 to 10% by mass, even more preferably 0.5 to 5% by mass.
  • the second post-CMP cleaning composition may further contain an oxidizing agent, but preferably does not contain an oxidizing agent from the viewpoint of suppressing metal corrosion.
  • the oxidizing agent (2D) include hydrogen peroxide, ozone, nitric acid, nitrous acid, persulfuric acid, dichromic acid, permanganic acid, and salts thereof. Among them, hydrogen peroxide is preferable from the viewpoint of easy availability of high-purity products required in the field of semiconductors and ease of disposal.
  • the content of the oxidizing agent (2D) (component (2D)) is preferably 1.0% by mass or less with respect to 100% by mass of the second post-CMP step cleaning composition.
  • the content of the oxidizing agent is more preferably 0.5% by mass or less with respect to 100% by mass of the second post-CMP cleaning composition, from the viewpoint of causing corrosion of the metal film. It is preferably 0.1% by mass or less, even more preferably 0.05% by mass or less, particularly preferably 0.03% by mass or less, and most preferably 0% by mass. preferable.
  • the post-cleaning composition for the second CMP process may optionally contain other components in addition to the components (2A), (2B), (2C) and (2D) described above.
  • Component (2E) may also be included.
  • examples of the other component (2E) include solvents, chelating agents, anionic surfactants, cationic surfactants, corrosion inhibitors, and the like. These contents can be set appropriately.
  • solvents used in the second post-CMP cleaning composition include water, aprotic polar organic solvents such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, and dimethylsulfoxide; Examples include protic organic solvents such as lower alcohols, aromatic alcohols and glycols. Especially, it is preferable that the said solvent contains water.
  • the solvent may be a mixed liquid or the like containing water and another solvent such as alcohol.
  • One of the above solvents may be used alone, or two or more thereof may be used in combination.
  • Examples of the chelating agent used in the second post-cleaning composition for the CMP step include N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid), glycine-N,N-bis(methylene phosphonic acid), phosphonic acid-based chelating agents such as nitrilotris (methylene phosphonic acid), thiol-based chelating agents such as methanethiol, thiophenol, glutathione, triphenylphosphine, 1,2-bis(diphenylphosphino)ethane, etc. mentioned.
  • the above chelating agents may be used alone or in combination of two or more.
  • anionic surfactant and the cationic surfactant used in the second post-cleaning composition for the CMP process are described in the section on the post-cleaning composition for the first CMP process.
  • An anionic surfactant similar to the cationic surfactant, an anionic surfactant similar to the cationic surfactant, and a cationic surfactant are described in the section on the post-cleaning composition for the first CMP process.
  • corrosion inhibitors used in the second post-CMP process cleaning composition include nitrogen-containing organic compounds such as benzotriazole, 3-aminotriazole, trialkylamine, ammonia, uric acid, melamine, urea and thiourea.
  • the corrosion inhibitor is preferably a benzotriazole-based compound, and particularly preferably benzotriazole.
  • the second post-CMP cleaning composition is preferably an aqueous solution having a pH (hydrogen ion concentration) of 7.5 or higher at 25°C.
  • the pH (25° C.) of the second post-CMP cleaning composition is more preferably 8.0 or higher, and even more preferably 8.5 or higher.
  • the adjustment of the pH of the second post-CMP cleaning composition can be carried out by appropriately adjusting the content of the pH adjusting agent described above.
  • the above pH can be determined using a pH meter (eg, F71S, manufactured by Horiba Ltd.).
  • the first post-cleaning composition for the CMP process of the present invention is prepared by mixing the component (1A), component (1B), component (1C), and optionally component (1D) described above. be able to.
  • the second post-CMP cleaning composition of the present invention contains the components (2A), (2B), (2C) and, if necessary, components (2D) and (2E). It can be prepared by mixing.
  • the above-mentioned mixing is not particularly limited, and can be performed by mixing/dispersing means using a known stirrer, mixer, disperser, or the like.
  • the post-CMP cleaning composition of the present invention is used in the post-CMP cleaning step in the semiconductor manufacturing process. More specifically, the post-CMP cleaning composition of the present invention is preferably used in a step of cleaning a semiconductor substrate (wafer) after a CMP step in a semiconductor manufacturing process.
  • the post-CMP cleaning method using the post-CMP cleaning composition of the present invention preferably includes the step of cleaning the surface of the semiconductor substrate after CMP using the post-CMP cleaning composition.
  • Examples of the semiconductor substrate include substrates made of silicon, silicon carbide, silicon nitride, gallium arsenide, gallium nitride, gallium phosphide, or indium phosphide.
  • the semiconductor substrate may have metal wiring, and the metal wiring includes, for example, copper wiring, tungsten wiring, aluminum wiring, cobalt wiring, ruthenium wiring, or alloy wiring of these metals and other metals. etc.
  • Other metals include metals such as tungsten, titanium, tantalum, and chromium.
  • the semiconductor substrate may include a barrier metal layer.
  • a barrier metal layer is formed to prevent diffusion of copper.
  • the barrier metal layer include layers made of tantalum, cobalt, titanium, ruthenium, and compounds containing these metals.
  • the semiconductor substrate may be anticorrosion treated.
  • the anticorrosive treatment includes a method of treating the surface of the semiconductor substrate with an anticorrosive agent.
  • the anticorrosive agent is not particularly limited, and includes compounds known as anticorrosive agents such as benzotriazoles, imidazoles, quinaldines, and quinolines.
  • an azole anticorrosive agent is preferably used because of its high anticorrosion effect.
  • azole-based anticorrosive agents examples include azole-based, triazole-based, tetrazole-based, oxazole-based, isoxazole-based, oxadiazole-based, thiazole-based, isothiazole-based, and thiadiazole-based anticorrosives.
  • the treatment method is not particularly limited, and includes known methods such as coating the surface of the semiconductor substrate with an anticorrosive agent and drying or heating to form a coating (protective film).
  • the semiconductor substrate may include an insulating film.
  • the insulating film include p-TEOS thermal oxide film, silicon nitride (SiN), silicon nitride carbide (SiCN), low dielectric constant film Low-k (SiOC, SiC), cobalt silicide (CoSi 2 ), and the like. be done.
  • polishing dust and organic residues such as the metal wiring, protective film, and insulating film described above remain on the surface of the semiconductor substrate.
  • the chemical polishing agent used in the CMP process may remain on the semiconductor substrate after the CMP process.
  • the chemical polishing agent is a slurry of abrasive grains, and metal oxides such as CeO 2 , Fe 2 O 3 , SnO 2 , MnO and SiO 2 are used as the abrasive grains. Therefore, residues of these metal oxides may exist on the surface of the semiconductor substrate after the CMP process. Further, on the surface of the semiconductor substrate, organic residues such as organometallic complexes resulting from the reaction between the metal in the slurry and the anticorrosive agent may remain on the surface of the semiconductor substrate.
  • the CMP process can be performed by a known method.
  • the post-CMP cleaning composition of the present invention is suitably used for cleaning the surface of a semiconductor substrate (wafer) after a CMP process on which the metal residue or organic residue described above is present.
  • the residue can be removed by cleaning the surface of the semiconductor substrate on which such residue is present using the post-CMP cleaning composition of the present invention.
  • it is possible to prevent the residue from redepositing on the surface of the semiconductor substrate. Furthermore, corrosion of the surface of the semiconductor substrate can be suppressed.
  • the post-CMP cleaning composition of the present invention can be suitably used for cleaning semiconductor substrates after the CMP process on which the above-mentioned metal residue and organic residue are present.
  • the first post-CMP cleaning composition of the present invention is a compound containing at least one selected from the group consisting of cobalt, copper, aluminum, ruthenium, titanium nitride, silicon nitride, and silicon oxide.
  • the second post-CMP cleaning composition of the present invention is preferably a post-CMP cleaning composition using ceria as abrasive grains.
  • the second post-CMP cleaning composition is preferably used for cleaning the surface of a film containing silicon oxide and/or silicon nitride in a semiconductor manufacturing process.
  • the post-CMP cleaning composition is particularly effective in removing the above-mentioned residues and preventing redeposition when used to clean a film surface (substrate surface) containing silicon oxide and/or silicon nitride. It can be done suitably. Furthermore, corrosion of the surface of the semiconductor substrate can be suppressed.
  • the method for cleaning the substrate (wafer) surface after CMP using the post-CMP cleaning composition of the present invention is not particularly limited, and may be performed by a known method. Wafers) may be cleaned by immersing them in the post-CMP cleaning composition, or may be cleaned by spinning, spraying, brush cleaning, or ultrasonic cleaning. Also, a batch type in which a plurality of substrates are processed at once, or a single substrate type in which substrates are processed one by one may be used.
  • the cleaning time is not particularly limited, and a conventional method may be used. 10 to 300 seconds, preferably 15 to 250 seconds.
  • the cleaning time means the contact time between the post-CMP cleaning composition and the substrate surface.
  • the temperature for the above washing is not particularly limited, and is, for example, 5 to 80.degree. C., preferably 10 to 70.degree. C., more preferably 10 to 65.degree.
  • the atmosphere is preferably an inert atmosphere in which nitrogen gas, argon gas, or the like is circulated in order to reduce dissolved oxygen in the cleaning composition.
  • Example 1 A nonionic surfactant, an aliphatic amine, and a carboxylate compound are mixed with water so as to have the formulation shown in Table 1, and then potassium hydroxide is added so that the pH (25 ° C.) becomes 11. was added to prepare the cleaning composition of Example 1.
  • the "ratio" in the table indicates the mass ratio of each component in the active ingredients (all components other than water). The obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation, which will be described later.
  • Example 2 A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation.
  • electrochemical evaluation Co E CORR : -640 mV, Co I CORR : 8 ⁇ A/cm 2 , TiN E CORR : -650 mV, TiN I CORR : ND, and ⁇ E CORR at the Co/TiN interface: 10 mV.
  • Example 3 A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation.
  • electrochemical evaluation Co E CORR : -660 mV, Co I CORR : 3 ⁇ A/cm 2 , TiN E CORR : -690 mV, TiN I CORR : ND, and ⁇ E CORR at the Co/TiN interface: 30 mV.
  • Example 4 A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation.
  • electrochemical evaluation Co E CORR : -490 mV, Co I CORR : ND, TiN E CORR : -470 mV, TiN I CORR : ND, and ⁇ E CORR at the Co/TiN interface: 20 mV.
  • Example 5 A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation.
  • electrochemical evaluation Co E CORR : -600 mV, Co I CORR : 4 ⁇ A/cm 2 , TiN E CORR : -640 mV, TiN I CORR : ND, and ⁇ E CORR at the Co/TiN interface: 40 mV.
  • Nonionic surfactants, aliphatic amines, nitrogen-containing heterocyclic compounds, and other additives are mixed with water so as to have the formulation shown in Table 1, and then the pH (25 ° C.) is 11.
  • a detergent composition was prepared by adding trimethyl-2-hydroxyethylammonium hydroxide (“choline”, 46% aqueous solution) so that Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition.
  • Nonionic surfactants, aliphatic amines, nitrogen-containing heterocyclic compounds, and other additives are mixed with water so as to have the formulation shown in Table 1, and then the pH (25 ° C.) is 11.
  • Ammonia (28% aqueous solution) was added to prepare a cleaning composition.
  • Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition.
  • Co E CORR ⁇ 500 mV
  • Co I CORR 2 ⁇ A/cm 2
  • ⁇ E CORR at the Co/Cu interface 60 mV.
  • Example 8 The N-vinyllactam polymer, aliphatic amines, nitrogen-containing heterocyclic compound, and other additives were mixed with water so as to obtain the formulation shown in Table 1, and then the pH (25°C) was adjusted. A detergent composition was prepared by adding potassium hydroxide so as to obtain 11. Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition. Electrochemical evaluation showed Co E CORR : ⁇ 440 mV, Co I CORR : ⁇ 1 ⁇ A/cm 2 , Cu E CORR : ⁇ 460 mV, Cu I CORR : 5 ⁇ A/cm 2 , and ⁇ E CORR at the Co/Cu interface: 20 mV. .
  • Example 9 The N-vinyllactam polymer, aliphatic amines, nitrogen-containing heterocyclic compound, and other additives were mixed with water so as to obtain the formulation shown in Table 1, and then the pH (25°C) was adjusted.
  • a detergent composition was prepared by adding trimethyl-2-hydroxyethylammonium hydroxide (“choline”, 46% aqueous solution) to 11. Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition.
  • Co E CORR ⁇ 490 mV
  • Co I CORR 10 ⁇ A/cm 2
  • Cu E CORR ⁇ 460 mV
  • Cu I CORR 5 ⁇ A/cm 2
  • ⁇ E CORR at the Co/Cu interface 30 mV.
  • Example 10 The N-vinyllactam polymer, aliphatic amines, nitrogen-containing heterocyclic compound, and other additives were mixed with water so as to obtain the formulation shown in Table 1, and then the pH (25°C) was adjusted. Ammonia (28% aqueous solution) was added to give a detergent composition of 11. Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition. Electrochemical evaluation showed Co E CORR : ⁇ 440 mV, Co I CORR : ⁇ 1 ⁇ A/cm 2 , Cu E CORR : ⁇ 460 mV, Cu I CORR : 5 ⁇ A/cm 2 , and ⁇ E CORR at the Co/Cu interface: 20 mV. .
  • Comparative example 1 A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation.
  • electrochemical evaluation Co E CORR : ⁇ 800 mV, Co I CORR : 306 ⁇ A/cm 2 , TiN E CORR : ⁇ 670 mV, TiN I CORR : 0.9 ⁇ A/cm 2 , and ⁇ E CORR at the Co/TiN interface: 130 mV. rice field.
  • Comparative example 2 A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation.
  • electrochemical evaluation Co E CORR : ⁇ 65 mV, Co I CORR : 54 ⁇ A/cm 2 , TiN E CORR : ⁇ 415 mV, TiN I CORR : 0.55 ⁇ A/cm 2 , and ⁇ E CORR at the Co/TiN interface: 320 mV. rice field.
  • Comparative example 3 A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation.
  • electrochemical evaluation Co E CORR : -700 mV, Co I CORR : 15 ⁇ A/cm 2 , TiN E CORR : -720 mV, TiN I CORR : ND, and ⁇ E CORR at the Co/TiN interface: 20 mV.
  • R 6 is H. Both R 7 and R 8 are linear alkyl groups having 1 to 12 carbon atoms, and the total number of carbon atoms of R 7 and R 8 is 11 to 13.
  • R 9 represents —C 2 H 4 —
  • Nonionic surfactant A-2 is N-(2-aminoethyl)-2-aminoethyl amine
  • R 11 and R 12 represent a methyl group
  • R 13 and R 14 represent an isobutyl group
  • R 19 represents -C ⁇ C-
  • Nonionic surfactant A-3 is N-(2-aminoethyl)-2-aminoethyl amine
  • R 20 represents —C 2 H 4 —
  • N-vinyllactam polymer A-4 polyvinylpyrrolidone (weight average molecular weight 7200)
  • N-vinyllactam polymer A-5 polyvinylpyrrolidone (weight average molecular weight 22000)
  • N-vinyl lactam polymer A-6 polyvinylpyrrolidone (weight average molecular weight 3000)
  • ⁇ Washing performance evaluation> (Preparation of Co-BTA particle dispersion) Prepare 1 L of a solution of 200 ⁇ mol/L cobalt (II) nitrate in a 0.01 mol/L pure nitric acid aqueous solution and 1 L of a solution of 200 ⁇ mol/L benzotriazole in a 0.01 mol/L nitric acid pure aqueous solution. Then, the two were mixed at room temperature to obtain 2 L of an aqueous solution in which insoluble aggregates of cobalt (II) ions and benzotriazole (hereinafter referred to as "Co-BTA particles”) were dispersed. Potassium hydroxide powder was added to the resulting aqueous solution to adjust the pH of the aqueous solution to 8.0 to obtain a Co-BTA particle dispersion.
  • a 1 cm square test piece was prepared by depositing Co, TiN, SiN, or SiO 2 to a thickness of about 5 to 200 nm, respectively, on a silicon wafer. 100 mL of the Co-BTA particle dispersion obtained above was placed in a beaker, and the test piece was immersed in the dispersion for 1 minute while stirring at 300 rpm using a magnetic rotor. After the immersion, the test piece taken out was rinsed with pure water and air-dried to remove moisture, thereby obtaining a substrate for cleaning evaluation.
  • the substrate for cleaning evaluation was immersed in 100 mL of the cleaning composition of the example or comparative example obtained above, and subjected to ultrasonic waves for 1 minute using an ultrasonic cleaner (8895, manufactured by Cole-Parmer).
  • a cleaning treatment was performed by irradiation (treatment conditions: output 115 W, 40 KHz, beaker internal temperature: 25°C).
  • the substrate for cleaning evaluation was taken out and rinsed with pure water, and the surface state of the substrate for cleaning evaluation was observed in the same manner as described above.
  • FIG. 1 shows an AFM observation image of the obtained substrate surface for cleaning evaluation.
  • a 1 cm square test piece was prepared by depositing Co, Cu, TiN, SiN, or SiO 2 with a thickness of about 5 to 1500 nm on a silicon wafer.
  • a detergent composition that does not corrode must simultaneously satisfy a corrosion current value of 10 ⁇ A/cm 2 or less and a corrosion potential difference of 60 mV or less at the interface of dissimilar metals.
  • this evaluation criterion was satisfied at the same time, and it can be judged that the occurrence of corrosion can be suppressed extremely well.
  • the detergent compositions of Comparative Examples 1 to 3 were used, at least one of the evaluation criteria was not satisfied.
  • Nonionic surfactant A The same compound as the nonionic surfactant A-1 used in Example 1 above.
  • Nonionic surfactant B The same compound as the nonionic surfactant A-1 used in Example 1 above.
  • Nonionic surfactant B The same compound as the nonionic surfactant A-1 used in Example 1 above.
  • N-vinyllactam polymer polyvinylpyrrolidone (weight average molecular weight 7200)
  • EDTA ethylenediaminetetraacetic acid
  • Preparation Example 5 Preparation of SiO 2 substrate for cleaning performance evaluation
  • a 1 cm square test piece was prepared by depositing SiO 2 to a thickness of about 10 to 50 nm on a silicon wafer, and 100 mL of the positively charged ceria nanoparticle dispersion was prepared.
  • A-1 or A-2 was placed in a beaker, and the test piece was immersed for 1 minute while stirring at 300 rpm with a magnetic rotor. The removed test pieces were rinsed with pure water and dried at room temperature to obtain cleaning performance evaluation substrates A-1 and A-2.
  • the surface state of the substrate was observed using an atomic force microscope (AFM).
  • the equipment used was XE-300P (manufactured by Park Systems), and a PPP-NCHR AFM probe was used in non-contact mode (observation conditions: scan rate 0.5 Hz, observation area 5 ⁇ m ⁇ 5 ⁇ m).
  • Preparation Example 6 Preparation of SiN substrate for cleaning performance evaluation
  • a 1 cm square test piece was prepared by depositing SiN to a thickness of about 10 to 50 nm on a silicon wafer, and 100 mL of the negatively charged ceria nanoparticle dispersion B- was prepared. 1 or B-2 was placed in a beaker and the test piece was immersed for 1 minute while stirring at 300 rpm with a magnetic rotor. The removed test pieces were rinsed with pure water and dried at room temperature to obtain cleaning performance evaluation substrates B-1 and B-2. The surface state of the substrate was observed using an atomic force microscope (AFM). The equipment used was XE-300P (manufactured by Park Systems), and a PPP-NCHR AFM probe was used in non-contact mode (observation conditions: scan rate 0.5 Hz, observation area 5 ⁇ m ⁇ 5 ⁇ m).
  • washing treatment 100 mL of the cleaning composition of the above example or comparative example was weighed into a beaker, the cleaning performance evaluation board was immersed in the cleaning composition, and an ultrasonic cleaner (8895, manufactured by Cole-Parmer) was used. Then, cleaning treatment was performed by ultrasonic irradiation for 1 minute (treatment conditions: output 115 W, 40 kHz, temperature in beaker: 25°C). After the ultrasonic wave irradiation, the cleaning performance evaluation substrate taken out was rinsed with pure water, and the surface state of the cleaning performance evaluation substrate was observed in the same manner as described above.
  • FIG. 2 shows cleaning treatment of SiO 2 substrates for cleaning performance evaluation (evaluation substrates A-1 and A-2) using the cleaning compositions of Examples 11-12, 17-18 and Comparative Examples 4-5.
  • 2 shows AFM images showing the surface condition of the substrate with and without cleaning. These cleaning compositions do not contain hydrogen peroxide. From the surface state of the unwashed cleaning performance evaluation substrate, when contaminated with 90 nm colloidal ceria (ceria nanoparticle dispersion liquid A-1), white foreign matter was confirmed, and 30 nm colloidal ceria (ceria nanoparticle dispersion liquid A It can be seen that in the case of contamination in -2), the size of the foreign matter is reduced and the density is increased.
  • FIG. 3 shows the results of cleaning the cleaning performance evaluation SiO 2 substrates (evaluation substrates A-1 and A-2) using the cleaning compositions of Examples 13 to 15 and Comparative Example 6.
  • 2 shows an AFM image representing the surface state.
  • These cleaning compositions contain hydrogen peroxide.
  • the cleaning compositions of Examples 13 to 15 were used, good cleaning performance was confirmed, and even when the colloidal ceria had a fine particle size of 30 nm, it was possible to cleanly remove the particles, demonstrating excellent cleaning performance. confirmed.
  • the cleaning composition of Comparative Example 6 containing the nonionic surfactant B was used, cleaning residues were observed even when the colloidal ceria had a particle size of 90 nm.
  • FIG. 4 shows the case where the cleaning performance evaluation SiN substrates (evaluation substrates B-1 and B-2) were cleaned using the cleaning compositions of Examples 11, 13, and 16, and when they were not cleaned. 4 shows an AFM image showing the surface condition of the substrate.
  • the cleaning compositions of Examples exhibited excellent cleaning performance when compared with uncleaned substrates, both when the particle size of colloidal ceria was 90 nm and when the particle size of colloidal ceria was 30 nm. It was confirmed to have
  • component (2A) a nonionic surfactant or N-vinyllactam polymer having an alkylene oxide adduct structure of an aliphatic alcohol
  • component (2B) an organic acid compound
  • (2C) a pH adjuster.
  • the high cleaning performance of the cleaning composition for cleaning was shown. Cleaner compositions containing an oxidizing agent such as hydrogen peroxide also showed excellent cleaning performance, but the performance levels were comparable to those without. It was determined that the use of oxidizing agents was not necessary due to concerns about corrosion of metal parts and health hazards to the human body.
  • Examples 19-21 After mixing a nonionic surfactant, an organic acid compound, and ammonium carbamate with water so that the mass % of each component in 100 mass % of the cleaning composition as shown in Table 4, the pH is 12 (25 ° C.), tetramethylammonium hydroxide (25% aqueous solution), trimethyl-2-hydroxyethylammonium hydroxide (“choline”, 50% aqueous solution), or dimethylbis(2-hydroxyethyl)ammonium hydroxide (50% aqueous solution) was added to prepare a detergent composition.
  • tetramethylammonium hydroxide (25% aqueous solution)
  • trimethyl-2-hydroxyethylammonium hydroxide (“choline”, 50% aqueous solution)
  • dimethylbis(2-hydroxyethyl)ammonium hydroxide 50% aqueous solution
  • Examples 22-23 After mixing the nonionic surfactant and the organic acid compound with water so that the mass % of each component in 100 mass % of the cleaning composition as shown in Table 4, the pH becomes 12 (25 ° C.).
  • a detergent composition was prepared by adding dimethylbis(2-hydroxyethyl)ammonium hydroxide (50% aqueous solution) as follows.
  • Comparative example 7 Hydrogen peroxide (30% aqueous solution) and ammonia (29% aqueous solution) were mixed with water so that the mass % of each component in 100% by mass of the cleaning composition as shown in Table 4 was mixed to obtain a cleaning composition. prepared the product.
  • the obtained cleaning composition and the cleaning composition of Example 11 were evaluated for etching rate by the following method.
  • Table 4 shows the results. ⁇ Evaluation of etching grade> 5 mL of each cleaning composition was placed in a bottle, and a 1.5 cm 2 silicon oxide (SiO 2 ) film-coated wafer was immersed therein and left at room temperature for 6 days. Thereafter, the treated body was taken out from the cleaning agent composition, washed with water, and then the cross section was observed with an SEM to measure the film thickness of the silicon oxide film. The etching rate was calculated from the silicon oxide film thickness before and after the treatment.
  • component (2A) a nonionic surfactant and / or N-vinyl lactam polymer having an alkylene oxide adduct structure of an aliphatic alcohol
  • (2C) a pH adjuster It was confirmed that the cleaning composition containing and is excellent in the etching rate for silicon oxide films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The purpose of the present invention is to provide a cleaning agent composition that is for a post-CMP step and that exhibits excellent removal performance and attachment inhibition for metal residues or organic residues remaining on a polished surface obtained by flattening a substrate, and that has excellent corrosion inhibition. The present invention relates to: a cleaning agent composition for a post-CMP step in a semiconductor production process, the composition including (1A) at least one compound selected from the group consisting of N-vinyllactam-based polymers and nonionic surfactants including an alkylene oxide adduct of an alcohol having 6 or more carbon atoms, (1B) an aliphatic amine, and (1C) at least one corrosion inhibitor selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds; and a cleaning agent composition for a post-CMP step, the composition including (2A) at least one compound selected from the group consisting of N-vinyllactam-based polymers and nonionic surfactants having an alkylene oxide adduct structure of an aliphatic alcohol, (2B) an organic acid compound, and (2C) a pH conditioner.

Description

CMP工程用後洗浄剤組成物Post-cleaning composition for CMP process
本発明は、半導体製造プロセスにおけるCMP工程後の洗浄剤組成物に関する。より詳しくは、金属残渣や有機残渣の除去及び付着抑制に優れ、かつ、腐食抑制に優れたCMP工程用後洗浄剤組成物に関する。 The present invention relates to a cleaning composition after the CMP step in semiconductor manufacturing processes. More specifically, the present invention relates to a post-CMP cleaning composition that is excellent in removing metal residues and organic residues and suppressing their adhesion, as well as in corrosion suppression.
CMP(Chemical-Mechanical-Planarization/Polishing、化学機械平坦化/研磨)とは、半導体製造プロセスにおけるウェハ表面の平坦化技術の一種で、化学研磨剤、研磨パッドを使用し、化学作用と機械的研磨の複合作用で、ウェハ表面の凹凸を削って平坦化する研磨技術である。研磨後の平坦化したウェハ表面には、砥粒や研磨屑の金属残渣が残留する。また、ウェハ表面は、金属活性が高く、腐食(酸化)しやすいため、防食剤により保護膜を形成することが行われ、研磨後に上記保護膜の成分が、有機残渣として残留することがある。これらの残留物は、半導体の電気特性等に悪影響を及ぼすため、残留物を除去するためにCMP後洗浄が行われる。 CMP (Chemical-Mechanical-Planarization/Polishing) is a type of wafer surface planarization technology in the semiconductor manufacturing process, using chemical abrasives and polishing pads, chemical action and mechanical polishing It is a polishing technology that grinds the unevenness of the wafer surface and flattens it by the combined action of Metal residues such as abrasive grains and polishing dust remain on the flattened wafer surface after polishing. In addition, since the wafer surface has high metal activity and is easily corroded (oxidized), a protective film is formed with an anticorrosive agent, and the components of the protective film may remain as organic residues after polishing. Since these residues adversely affect the electrical properties of semiconductors, etc., post-CMP cleaning is performed to remove the residues.
CMP後洗浄は、通常、洗浄剤を用いた化学洗浄と、ブラシ等を用いた物理洗浄とを組み合わせて行われる。上記洗浄剤としては、通常、主成分、キレート剤、界面活性剤等を含む洗浄剤組成物が使用される。 Post-CMP cleaning is usually performed by combining chemical cleaning using a cleaning agent and physical cleaning using a brush or the like. As the cleaning agent, a cleaning composition containing a main component, a chelating agent, a surfactant and the like is usually used.
CMP工程用後洗浄剤組成物については、これまでに広く研究されている(特許文献1~10)。
例えば、特許文献1には、水と、塩基性pH調整剤と酸性錯化剤を含むpH緩衝剤と、界面活性剤を含む、pH7~12の、ウェハ表面の改質に有用な作動液が記載され、特許文献2には、含窒素複素環を有するカルボン酸及びアルキルヒドロキシルアミンを含有し、pHが10以上の水溶液を含んでなる、金属配線を有する基板用洗浄剤が記載されている。
Post-cleaning compositions for CMP processes have been extensively studied (Patent Documents 1 to 10).
For example, Patent Document 1 discloses a working liquid useful for modifying a wafer surface, which contains water, a pH buffering agent containing a basic pH adjuster and an acidic complexing agent, and a surfactant, and has a pH of 7 to 12. Patent Document 2 describes a cleaning agent for substrates having metal wiring, which contains an aqueous solution having a pH of 10 or more and containing a carboxylic acid having a nitrogen-containing heterocycle and an alkylhydroxylamine.
また、特許文献3には、塩基性化合物を1種又は2種以上と、窒素原子を含む複素環式単環芳香族化合物を1種又は2種以上とを含み、水素イオン濃度(pH)が8~11である洗浄剤組成物が記載され、特許文献4には、アミン基とカルボキシル基を有する化合物と、アデニン、プリン、尿酸、これらの誘導体等と、pH調整剤と、水を含む半導体デバイス用基板洗浄液が記載されている。 Further, in Patent Document 3, one or more kinds of basic compounds and one or more kinds of heterocyclic monocyclic aromatic compounds containing a nitrogen atom are included, and the hydrogen ion concentration (pH) is 8 to 11, and Patent Document 4 describes a semiconductor containing a compound having an amine group and a carboxyl group, adenine, purine, uric acid, derivatives thereof, etc., a pH adjuster, and water. A substrate cleaning solution for devices is described.
また、例えば、特許文献5には、特定の有機第4級アンモニウム水酸化物と、界面活性剤と、キレート剤と、硫黄原子を有するアミノ酸及び/又はその誘導体と、ベンゾトリアゾール、イミダゾール、トリアゾール、テトラゾール及びその誘導体からなる群から選ばれる少なくとも1種とを含み、pHが9以上である半導体デバイス用基板洗浄液が記載されている。 Further, for example, in Patent Document 5, a specific organic quaternary ammonium hydroxide, a surfactant, a chelating agent, an amino acid having a sulfur atom and/or a derivative thereof, benzotriazole, imidazole, triazole, A semiconductor device substrate cleaning liquid containing at least one selected from the group consisting of tetrazole and derivatives thereof and having a pH of 9 or more is disclosed.
また、特許文献6には、基体上に残存するセリウム化合物を従来技術よりも安全で容易に減少させることが可能な洗浄液として、水と、アルカリ性雰囲気下で還元性を示す糖類と、アルカリ性成分とを含有し、25℃におけるpHが7以上であるCMP後洗浄液が記載され、特許文献7には、アルカノールアミン化合物及び複素環含有アミン化合物からなる群より選ばれる少なくとも1種と、第4級アンモニウム水酸化物と、クエン酸と、アスコルビン酸を含む、半導体ウェハを洗浄する洗浄液が記載されている。 In addition, Patent Document 6 describes a cleaning liquid that can reduce cerium compounds remaining on a substrate more safely and easily than the conventional technique, comprising water, sugars exhibiting reducing properties in an alkaline atmosphere, and an alkaline component. and has a pH of 7 or higher at 25°C. Patent Document 7 describes at least one selected from the group consisting of alkanolamine compounds and heterocyclic amine compounds, and a quaternary ammonium A cleaning solution for cleaning semiconductor wafers is described that includes hydroxide, citric acid, and ascorbic acid.
特表2010-537404号公報Japanese Patent Publication No. 2010-537404 国際公開第2014/168166号WO2014/168166 特開2014-212262号公報JP 2014-212262 A 特開2016-86094号公報JP 2016-86094 A 特開2014-154625号公報JP 2014-154625 A 特開2014-225503号公報JP 2014-225503 A 特開2020-96053号公報JP 2020-96053 A 特開2012-216690号公報JP 2012-216690 A 特開2018-107353号公報JP 2018-107353 A 国際公開第2019/073931号WO2019/073931
しかしながら、従来のCMP工程用後洗浄剤組成物では、CMP工程後のウェハ表面に存在する、研磨剤に由来する砥粒又は研磨屑等の金属残渣や防食剤由来の有機残渣の除去や、付着防止機能が未だ充分とは言えず、改善の余地があった。また、半導体ウェハは、基板上に配線となる金属膜や絶縁膜等の堆積層が形成され、これらには各種金属材料が使用されるが、いずれの材料に対しても優れた腐食抑制機能を発揮できることが必要とされる。 However, conventional post-cleaning compositions for the CMP process remove metal residues such as abrasive grains or polishing shavings derived from abrasives and organic residues derived from anticorrosives existing on the wafer surface after the CMP process. It cannot be said that the preventive function is still sufficient, and there is room for improvement. In addition, semiconductor wafers have deposited layers such as metal films and insulating films that become wiring on the substrate, and various metal materials are used for these. You need to be able to perform.
特に、近年、半導体ロジックデバイスは微細化の進展による高集積化がますます進む中、ウェハ表面に形成される金属堆積層は従来のアルミニウムや銅とともにコバルトやルテニウムの採用が期待される。CMP工程において一層高度な平面性を求められているため、従来よりも粒径の小さくかつ球形度の高い研磨砥粒が採用されることから、研磨基材上でのファウンデルワールス力や静電的相互作用の影響が大きくなり、従来の洗浄液では砥粒を完全に洗い落とすことが難しくなっている。また、CMP工程後に発生する研磨残渣は、金属堆積層最表面に保護層として存在する有機防錆剤とコバルトイオンなどの遷移金属イオンとの複合体となることから新たな洗浄メカニズムが求められる。加えて、新たな金属膜が採用されることで、金属多層膜界面において従来用いられているCMP後洗浄液を用いると金属腐食が引き起こされるという新たな課題が発生している。 In particular, in recent years, as semiconductor logic devices have become more and more highly integrated due to progress in miniaturization, it is expected that cobalt and ruthenium will be used for the metal deposit layer formed on the wafer surface as well as conventional aluminum and copper. Since a higher level of flatness is required in the CMP process, abrasive grains with a smaller grain size and a higher degree of sphericity than conventional ones are adopted, so that van der Waals forces and electrostatics on the polishing substrate are used. It becomes difficult to completely wash off the abrasive grains with conventional cleaning liquids. In addition, a new cleaning mechanism is required because the polishing residue generated after the CMP process becomes a complex of the organic antirust agent present as a protective layer on the outermost surface of the deposited metal layer and transition metal ions such as cobalt ions. In addition, with the adoption of new metal films, a new problem arises in that metal corrosion is caused when conventionally used post-CMP cleaning solutions are used at the interfaces of metal multilayer films.
また、セリア(酸化セリウム:CeO)粒子を含む研磨スラリーを使用して、SiO基板上でCMPを行うと、基板上でSi-O-Ce結合が形成され、基板上にセリア粒子が残留し易くなるといった問題があった。また、これらの残留物を除去するためには過酸化水素等の取り扱いに注意を要する成分を使用する必要があった。
また、半導体ウェハは、基板上に配線となる金属膜や絶縁膜等の堆積層が形成され、これらには銅、コバルト、タンタル、タングステン、チタン等を含む各種金属化合物材料が使用される。CMP後には、これらの各種金属化合物材料がウェハ表面に露出するため、CMP工程用後洗浄剤組成物は、これらの金属化合物材料に対しても優れた洗浄機能と腐食抑制機能を発揮しうることが望ましい。更に、近年は、半導体デバイスの高速化、高集積化がますます進み、より一層高度なCMP加工特性が求められている。
このように、CMP加工特性だけでなくこれらの課題を同時に解決できるCMP工程用後洗浄剤組成物が求められていた。
In addition, when a polishing slurry containing ceria (cerium oxide: CeO 2 ) particles is used to perform CMP on a SiO 2 substrate, Si—O—Ce bonds are formed on the substrate, leaving ceria particles on the substrate. There was a problem that it became easier to Also, in order to remove these residues, it was necessary to use a component such as hydrogen peroxide that requires careful handling.
In addition, a semiconductor wafer has deposited layers such as a metal film and an insulating film that become wiring on a substrate, and various metal compound materials including copper, cobalt, tantalum, tungsten, titanium, etc. are used for these. Since these various metal compound materials are exposed on the wafer surface after CMP, the post-CMP cleaning composition can exhibit excellent cleaning function and corrosion inhibiting function for these metal compound materials as well. is desirable. Furthermore, in recent years, semiconductor devices have become increasingly faster and more highly integrated, and there is a demand for even more advanced CMP processing characteristics.
Thus, there has been a need for a post-cleaning composition for CMP processes that can simultaneously solve these problems as well as the CMP processing properties.
本発明は、上記現状に鑑みてなされたものであり、基板を平坦化した研磨面上に残る金属残渣や有機残渣の除去及び付着抑制に優れ、腐食抑制にも優れるCMP工程用後洗浄剤組成物を提供することを目的とする。 The present invention has been made in view of the above-mentioned current situation, and is a post-CMP cleaning composition that is excellent in removing and inhibiting adhesion of metal residues and organic residues remaining on a polished surface of a flattened substrate, and is also excellent in inhibiting corrosion. The purpose is to provide goods.
本発明者は、上記課題を解決すべく、CMP工程用後洗浄剤組成物について種々検討したところ、特定のノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体と、脂肪族アミン類と、特定の腐食抑制剤とを組み合わせることにより、金属残渣や有機残渣の除去及び付着抑制作用が格段に向上し、かつ、腐食抑制作用にも優れることを見いだした。また、特定のノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体と、有機酸化合物と、pH調整剤とを組み合わせて使用することにより、特にセリアを研磨砥粒として用いてCMP工程を行ったウェハ表面上の金属残渣や有機残渣の除去及び付着抑制が格段に向上し、かつ、腐食抑制にも優れることを見いだした。これらの知見に基づいて鋭意検討することにより、本発明を完成するに至った。 In order to solve the above problems, the present inventors have conducted various studies on post-cleaning compositions for the CMP process, and found that a specific nonionic surfactant and/or N-vinyllactam polymer and an aliphatic amine , and a specific corrosion inhibitor, the removal of metal residues and organic residues and the adhesion-inhibiting action are remarkably improved, and the corrosion-inhibiting action is also excellent. Further, by using a combination of a specific nonionic surfactant and/or N-vinyllactam polymer, an organic acid compound, and a pH adjuster, it is possible to perform the CMP process using ceria as polishing abrasive grains. It was found that the removal and adhesion suppression of metal residues and organic residues on the surface of the wafer that was carried out were remarkably improved, and the corrosion suppression was also excellent. Based on these findings, the inventors have made intensive studies and completed the present invention.
すなわち、第1の本発明は、(1A)炭素数6以上のアルコールのアルキレンオキシド付加体を含むノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも1種の化合物と、(1B)脂肪族アミン類と、(1C)含窒素複素環化合物及びカルボン酸塩化合物からなる群より選択される少なくとも一種の腐食抑制剤とを含むことを特徴とする半導体製造プロセスにおけるCMP工程用後洗浄剤組成物である。 That is, the first present invention provides (1A) at least one selected from the group consisting of a nonionic surfactant containing an alkylene oxide adduct of an alcohol having 6 or more carbon atoms, and an N-vinyl lactam polymer. , (1B) aliphatic amines, and (1C) at least one corrosion inhibitor selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds. is a post-cleaning composition for the CMP process in.
上記脂肪族アミン類は、分子量が2000以下であることが好ましい。 The above aliphatic amines preferably have a molecular weight of 2000 or less.
上記脂肪族アミン類は、下記一般式(1)で表されるアミン化合物、及び/又は、ポリアルキレンイミンを含むことが好ましい。 The aliphatic amines preferably contain an amine compound represented by the following general formula (1) and/or a polyalkyleneimine.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R、R及びRは、同一又は異なって、水素原子、アルキル基、又は、-R-(NH-R-NHを表す。R及びRは、同一又は異なって、炭素数1~6のアルキレン基を表す。nは0~100の整数を表す。) (In Formula (1), R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or —R 4 —(NH—R 5 ) n —NH 2. R 4 and R 5 is the same or different and represents an alkylene group having 1 to 6 carbon atoms, and n represents an integer of 0 to 100.)
上記含窒素複素環化合物は、ピロール、ピリジン、トリアゾール、トリアジン、プリン、及び、これらの誘導体からなる群より選択される少なくとも一種を含むことが好ましい。 The nitrogen-containing heterocyclic compound preferably contains at least one selected from the group consisting of pyrrole, pyridine, triazole, triazine, purine, and derivatives thereof.
上記カルボン酸塩化合物は、脂肪酸塩を含むことが好ましい。 The carboxylate compound preferably contains a fatty acid salt.
上記CMP工程用後洗浄剤組成物は、コバルト、銅、アルミニウム、ルテニウム、窒化チタン、窒化ケイ素、及び、酸化ケイ素からなる群より選択される少なくとも1種を含む化合物が露出しているウェハ表面の洗浄に用いられることが好ましい。 The post-CMP cleaning composition is suitable for use on wafer surfaces where a compound containing at least one selected from the group consisting of cobalt, copper, aluminum, ruthenium, titanium nitride, silicon nitride, and silicon oxide is exposed. It is preferably used for washing.
また、第2の本発明は、(2A)脂肪族アルコールのアルキレンオキシド付加体構造を有するノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも1種の化合物と、(2B)有機酸化合物と、(2C)pH調整剤とを含むことを特徴とする、CMP工程用後洗浄剤組成物である。 The second aspect of the present invention provides (2A) at least one compound selected from the group consisting of a nonionic surfactant having an alkylene oxide adduct structure of an aliphatic alcohol, and an N-vinyllactam polymer. , (2B) an organic acid compound, and (2C) a pH adjuster.
上記CMP工程用後洗浄剤組成物は、酸化剤の含有量が、上記CMP工程用後洗浄剤組成物100質量%に対して、1.0質量%以下であることが好ましい。 The content of the oxidizing agent in the post-CMP cleaning composition is preferably 1.0% by mass or less with respect to 100% by mass of the post-CMP cleaning composition.
上記脂肪族アルコールのアルキレンオキシド付加体構造は、炭素数6以上の脂肪族アルコールのアルキレンオキシド付加体構造を有し、2種以上のアルキレンオキシドのブロックポリマー構造を含むことが好ましい。 The aliphatic alcohol alkylene oxide adduct structure preferably has an alkylene oxide adduct structure of an aliphatic alcohol having 6 or more carbon atoms, and includes block polymer structures of two or more alkylene oxides.
上記脂肪族アルコールは、炭素数6以上の、二級又は三級アルキルアルコールであることが好ましい。 The aliphatic alcohol is preferably a secondary or tertiary alkyl alcohol having 6 or more carbon atoms.
上記pH調整剤は、塩基性pH調整剤であることが好ましい。 The pH adjuster is preferably a basic pH adjuster.
上記塩基性pH調整剤は、水酸化物、有機アミン、有機アミン塩、及び、アンモニウム塩からなる群より選択される少なくとも一種の化合物を含むことが好ましい。 The basic pH adjuster preferably contains at least one compound selected from the group consisting of hydroxides, organic amines, organic amine salts, and ammonium salts.
上記有機酸化合物は、カルボン酸化合物、及び、アスコルビン酸からなる群より選択される少なくとも一種の化合物を含むことが好ましい。 The organic acid compound preferably contains at least one compound selected from the group consisting of carboxylic acid compounds and ascorbic acid.
上記CMP工程用後洗浄剤組成物は、セリアを研磨砥粒として用いるCMP工程用後洗浄剤組成物であることが好ましい。 The post-CMP cleaning composition is preferably a post-CMP cleaning composition using ceria as abrasive grains.
上記CMP工程用後洗浄剤組成物は、半導体製造プロセスにおいて、酸化ケイ素及び/又は窒化ケイ素を含む膜表面の洗浄に用いることが好ましい。 The post-CMP cleaning composition is preferably used for cleaning the surface of a film containing silicon oxide and/or silicon nitride in a semiconductor manufacturing process.
本発明のCMP工程用後洗浄剤組成物は、ウェハ表面上の金属残渣や有機残渣の除去及び付着防止に優れ、かつ、腐食抑制にも優れる。本発明のCMP工程用後洗浄剤組成物は、半導体製造プロセスにおけるCMP工程用後洗浄剤組成物として好適に使用することができる。 The post-cleaning composition for the CMP process of the present invention is excellent in removing and preventing adhesion of metal residues and organic residues on the wafer surface, and is also excellent in suppressing corrosion. The post-CMP cleaning composition of the present invention can be suitably used as a post-CMP cleaning composition in semiconductor manufacturing processes.
実施例1~3、比較例1~2の洗浄剤組成物の洗浄性能評価を行った際の洗浄評価用基板表面のAFM観察画像である。1 is an AFM observation image of the surface of a substrate for cleaning evaluation when cleaning performance evaluation of the cleaning compositions of Examples 1 to 3 and Comparative Examples 1 and 2 is performed. 実施例11~12、17~18、比較例4~5の洗浄剤組成物を用いて、洗浄性能評価用SiO基板A-1、A-2を洗浄処理した場合と、未洗浄の場合の、上記基板の表面状態を表すAFM画像である。Using the cleaning compositions of Examples 11 to 12, 17 to 18, and Comparative Examples 4 and 5, cleaning treatment of SiO 2 substrates A-1 and A-2 for cleaning performance evaluation and non-cleaning. 4 is an AFM image showing the surface condition of the substrate. 実施例13~15、比較例6の洗浄剤組成物を用いて、洗浄性能評価用SiO基板A-1、A-2を洗浄処理した場合の、上記基板の表面状態を表すAFM画像である。FIG. 10 is an AFM image showing the surface state of the SiO 2 substrates A-1 and A-2 for evaluating cleaning performance when the cleaning compositions of Examples 13 to 15 and Comparative Example 6 were used to clean the substrates. FIG. . 実施例11、13、16の洗浄剤組成物を用いて、洗浄性能評価用SiN基板B-1、B-2を洗浄処理した場合と、未洗浄の場合の、上記基板の表面状態を表すAFM画像である。An AFM showing the surface state of the SiN substrates B-1 and B-2 for cleaning performance evaluation with and without cleaning using the cleaning compositions of Examples 11, 13 and 16. It is an image.
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
The present invention will be described in detail below.
A combination of two or more of the individual preferred embodiments of the invention described below is also a preferred embodiment of the invention.
<CMP工程用後洗浄剤組成物>
第1の本発明は、(1A)炭素数6以上のアルコールのアルキレンオキシド付加体を含むノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも1種の化合物と、(1B)脂肪族アミン類と、(1C)含窒素複素環化合物及びカルボン酸塩化合物からなる群より選択される少なくとも一種の腐食抑制剤とを含むことを特徴とする、半導体製造プロセスにおけるCMP工程用後洗浄剤組成物である。
また、第2の本発明は、(2A)脂肪族アルコールのアルキレンオキシド付加体構造を有するノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも1種の化合物と、(2B)有機酸化合物と、(2C)pH調整剤とを含むことを特徴とする、CMP工程用後洗浄剤組成物である。
以下に、各発明について説明する。また、本明細書において、上記第1の本発明を「第1のCMP工程用後洗浄剤組成物」とも称し、第2の本発明を「第2のCMP工程用後洗浄剤組成物」とも称する。また、これらを合わせて、「本発明のCMP工程用後洗浄剤組成物」とも称する。
<Post-cleaning composition for CMP process>
A first aspect of the present invention provides (1A) at least one compound selected from the group consisting of a nonionic surfactant containing an alkylene oxide adduct of an alcohol having 6 or more carbon atoms, and an N-vinyllactam polymer. , (1B) aliphatic amines, and (1C) at least one corrosion inhibitor selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds in a semiconductor manufacturing process, A post-cleaning composition for a CMP process.
The second aspect of the present invention provides (2A) at least one compound selected from the group consisting of a nonionic surfactant having an alkylene oxide adduct structure of an aliphatic alcohol, and an N-vinyllactam polymer. , (2B) an organic acid compound, and (2C) a pH adjuster.
Each invention will be described below. In the present specification, the first invention is also referred to as the "first post-cleaning composition for the CMP process", and the second invention is also referred to as the "second post-CMP cleaning composition". called. In addition, these are also collectively referred to as "the post-cleaning composition for the CMP process of the present invention".
<第1のCMP工程用後洗浄剤組成物>
本発明の第1のCMP工程用後洗浄剤組成物は、上述した(1A)、(1B)及び(1C)の3つの特定の成分を含むことにより、金属残渣や有機残渣の除去及び付着抑制に優れ、かつ、腐食抑制にも優れる。本発明の第1のCMP工程用後洗浄剤組成物が金属残渣や有機残渣の除去及び付着抑制に優れ、腐食抑制にも優れるのは、上記第1のCMP工程用後洗浄剤組成物に含まれるノニオン系界面活性剤又はN-ビニルラクタム系重合体が基板表面及び砥粒残渣や汚れの界面に浸透して洗浄液主成分の水中に浮き上がらせつつ、脂肪族アミン類の重金属イオンへの高い配位能により、CMP工程で露出したフレッシュな金属表面への研磨残渣の吸着力を低下させるためと推測される。加えて、含窒素複素環化合物やカルボン酸塩化合物が金属堆積膜の表面に吸着することで、洗浄剤組成物中に共存する化学成分間の電気化学的相互作用を平衡状態として、金属堆積膜を構成する金属種の腐食電位や腐食電流値を低減させることができるためと推測される。
<First post-cleaning composition for CMP process>
The first post-CMP cleaning composition of the present invention contains the above-described three specific components (1A), (1B) and (1C) to remove and suppress adhesion of metal residues and organic residues. It is also excellent in corrosion control. The first post-cleaning composition for the CMP process of the present invention is excellent in removing and inhibiting the adhesion of metal residues and organic residues, and is also excellent in inhibiting corrosion. The nonionic surfactant or N-vinyllactam polymer contained in the surfactant permeates the surface of the substrate and the interface of the abrasive residue and dirt, causing it to float in the water, which is the main component of the cleaning liquid, while the aliphatic amines are highly distributed to the heavy metal ions. This is presumed to be due to the ability to reduce the adsorptive power of the polishing residue to the fresh metal surface exposed in the CMP process. In addition, the adsorption of the nitrogen-containing heterocyclic compound and the carboxylate compound on the surface of the deposited metal film allows the electrochemical interaction between the chemical components coexisting in the cleaning composition to be in an equilibrium state, thereby forming the deposited metal film. It is presumed that the corrosion potential and corrosion current value of the metal species constituting the can be reduced.
上記第1のCMP工程用後洗浄剤組成物に含まれる成分について、説明する。 The components contained in the first post-CMP cleaning composition will be described.
(1A)ノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体
上記第1のCMP工程用後洗浄剤組成物は、炭素数6以上のアルコールのアルキレンオキシド付加体を含むノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも1種の化合物(以下、「化合物(1A)」又は「成分(1A)」とも称する。)を含む。上記化合物(1A)を含むことにより、基板表面及び砥粒残渣や汚れの界面に浸透して、洗浄液主成分の水中に残渣等を浮き上がらせた状態を安定的に保持することができる。
カチオン性あるいはアニオン性等のイオン性界面活性剤は、イオン性であり、洗浄基板との静電的相互作用による吸着が顕著であるため、CMP工程後の清浄化した基板表面に残存しやすく最終製品化した際に汚染物質となる場合がある。一方、ノニオン系界面活性剤及びN-ビニルラクタム系重合体は、イオン性がないために静電的相互作用が小さく、CMP工程後の清浄化した基板表面に吸着した場合も純水でリンスすることで容易に除去できる。このため、本発明では、ノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体を使用する。
(1A) Nonionic Surfactant and/or N-Vinyllactam Polymer The first post-cleaning composition for the CMP step is a nonionic surfactant containing an alkylene oxide adduct of an alcohol having 6 or more carbon atoms. , and at least one compound selected from the group consisting of N-vinyllactam polymers (hereinafter also referred to as “compound (1A)” or “component (1A)”). By including the above compound (1A), it can penetrate into the interface between the substrate surface and the abrasive residue and dirt, and stably maintain the state in which the residue and the like float in water, which is the main component of the cleaning liquid.
Ionic surfactants such as cationic or anionic surfactants are ionic, and are remarkably adsorbed due to electrostatic interaction with the cleaned substrate. It may become a contaminant when commercialized. On the other hand, nonionic surfactants and N-vinyllactam polymers have little electrostatic interaction due to their lack of ionicity, and are rinsed with pure water even when they are adsorbed on the cleaned substrate surface after the CMP process. can be easily removed by Therefore, in the present invention, nonionic surfactants and/or N-vinyllactam polymers are used.
(1A-1)ノニオン系界面活性剤
ノニオン系界面活性剤としては、多価アルコールと脂肪酸がエステル結合した多価アルコール型や、高級アルコールやアルキルフェノール、プロピレングリコール等の水酸基を有する化合物にアルキレンオキシドを付加させたエーテル型等の、公知のノニオン系界面活性剤が挙げられるが、本発明では、炭素数6以上のアルコールのアルキレンオキシド付加体を含むノニオン系界面活性剤を少なくとも含む。
(1A-1) Nonionic Surfactants As nonionic surfactants, there are polyhydric alcohol types in which polyhydric alcohols and fatty acids are ester-bonded, and compounds having hydroxyl groups such as higher alcohols, alkylphenols, and propylene glycol, and alkylene oxides. Known nonionic surfactants such as adduct ether type surfactants can be used, and in the present invention, at least nonionic surfactants containing alkylene oxide adducts of alcohols having 6 or more carbon atoms are included.
上記炭素数6以上のアルコールのアルキレンオキシド付加体とは、炭素数6以上のアルコールに、アルキレンオキシドが付加された化合物である。 The alkylene oxide adduct of an alcohol having 6 or more carbon atoms is a compound obtained by adding an alkylene oxide to an alcohol having 6 or more carbon atoms.
上記炭素数6以上のアルコールとしては、例えば、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、1,10-デカンジオール等のアルキルアルコール;シクロヘキシルアルコール、シクロヘプチルアルコール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール等のシクロアルキルアルコール;アリルアルコール;オクチルフェノール、ノニルフェノール等のアルキルフェニルアルコール;等が挙げられる。
なかでも、上記炭素数6以上のアルコールとしては、構造や付加位置による疎水性の調整が比較的容易かつ環境有害性の観点から、アルキルアルコールが好ましい。上記アルキルアルコールは、直鎖状、分岐状のいずれであってもよい。
Examples of alcohols having 6 or more carbon atoms include hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, tridecanol, tetradecanol, pentadecanol, hexadecanol, and heptadeca. alkyl alcohols such as nol, octadecanol, nonadecanol, eicosanol, 1,2-hexanediol, 1,6-hexanediol, 1,10-decanediol; cyclohexyl alcohol, cycloheptyl alcohol, 1,4-cyclohexanedimethanol, cycloalkyl alcohols such as 1,4-cyclohexanediol; allyl alcohol; alkylphenyl alcohols such as octylphenol and nonylphenol;
Of these, alkyl alcohols are preferable as the alcohol having 6 or more carbon atoms, from the viewpoints of relatively easy adjustment of the hydrophobicity depending on the structure and the addition position and environmental toxicity. The above alkyl alcohol may be linear or branched.
上記アルコールの炭素数は、10以上であることが好ましく、20以下であることが好ましく、18以下であることがより好ましい。
また、上記炭素数6以上のアルコールは、固体残渣界面への高い浸透力と金属腐食抑止性能を両立できる点で、二級又は三級アルコールであることが好ましく、二級アルコールであることがより好ましい。
また、上記炭素数6以上のアルコールは、1価であっても、2価や多価であってもよいが、製造の容易さやコストの点で、1価アルコールが好ましい。
The carbon number of the alcohol is preferably 10 or more, preferably 20 or less, and more preferably 18 or less.
In addition, the alcohol having 6 or more carbon atoms is preferably a secondary or tertiary alcohol, more preferably a secondary alcohol, in that it can achieve both high penetrating power to the solid residue interface and metal corrosion inhibition performance. preferable.
The alcohol having 6 or more carbon atoms may be monovalent, divalent, or polyvalent, but monovalent alcohol is preferable from the viewpoint of ease of production and cost.
上記炭素数6以上のアルコールに付加されるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が挙げられるが、なかでも、エチレンオキシド、及び、プロピレンオキシドからなる群より選択される少なくとも一種が好ましく、エチレンオキシド、及び、プロピレンオキシドの混合型がより好ましい。 Examples of the alkylene oxide to be added to the alcohol having 6 or more carbon atoms include ethylene oxide, propylene oxide, butylene oxide, etc. Among them, at least one selected from the group consisting of ethylene oxide and propylene oxide is preferable, A mixed type of ethylene oxide and propylene oxide is more preferred.
上記炭素数6以上のアルコールのアルキレンオキシド付加体としては、例えば、一級アルコールエトキシレート、二級アルコールエトキシレート、三級アルコールエトキシレート、オクチルフェニルエトキシレート、ノニルフェニルエトキシレート、ベンジルフェニルエトキシレート、アセチレン系一級アルコールエトキシレート、アセチレン系一級ジアルコールエトキシレート、アセチレン系二級アルコールエトキシレート、アセチレン系二級ジアルコールエトキシレート、アセチレン系三級アルコールエトキシレート、アセチレン系三級ジアルコールエトキシレート等が挙げられる。
上記エトキシレートは、少なくともエチレンオキシド(EO)が付加されたものであり、エチレンオキシド(EO)と他のアルキレンオキシド(例えば、プロピレンオキシド(PO))が付加されたものも含む。
Examples of the alkylene oxide adducts of alcohols having 6 or more carbon atoms include primary alcohol ethoxylate, secondary alcohol ethoxylate, tertiary alcohol ethoxylate, octylphenyl ethoxylate, nonylphenyl ethoxylate, benzylphenyl ethoxylate, and acetylene. Primary alcohol ethoxylate, acetylenic primary dialcohol ethoxylate, acetylenic secondary alcohol ethoxylate, acetylenic secondary dialcohol ethoxylate, acetylenic tertiary alcohol ethoxylate, acetylenic tertiary dialcohol ethoxylate, etc. be done.
The above ethoxylates are those to which at least ethylene oxide (EO) is added, and those to which ethylene oxide (EO) and other alkylene oxides (eg, propylene oxide (PO)) are added are also included.
上記炭素数6以上のアルコールのアルキレンオキシド付加体は、洗浄剤組成物中で分離しないで均一溶液を形成し得る点で、曇点が25℃以上であることが好ましく、曇点が40℃以上であることがより好ましい。上記曇点は、1%水溶液としたノニオン系界面活性剤を攪拌・温度監視しながら降温させ、目視で透明になる温度を観測する方法により求めることができる。 The alkylene oxide adduct of the alcohol having 6 or more carbon atoms preferably has a clouding point of 25° C. or higher, and a clouding point of 40° C. or higher, because it can form a uniform solution without separating in the detergent composition. is more preferable. The above cloud point can be obtained by a method of lowering the temperature of a 1% aqueous solution of a nonionic surfactant while stirring and monitoring the temperature, and observing the temperature at which the solution becomes transparent visually.
上記ノニオン系界面活性剤としては、具体的には、例えば、ポリアルキレンオキサイドアルキルエーテル系界面活性剤、ポリエチレンオキサイドとポリプロピレンオキサイドからなるブロックポリマー系、ポリアルキレンオキサイドアルキルフェニルエーテル系界面活性剤、ポリオキシアルキレンジスチレン化フェニルエーテル系界面活性剤、ポリアルキレントリベンジルフェニルエーテル系界面活性剤、アセチレンポリアルキレンオキサイド系の界面活性剤等が挙げられる。
なかでも、洗浄剤組成物による金属積層膜の腐食を抑制しうる点で、ポリアルキレンオキサイドアルキルエーテル系界面活性剤、ポリエチレンオキサイドとポリプロピレンオキサイドからなるブロックポリマー系界面活性剤が好ましい。
Specific examples of the nonionic surfactant include, for example, a polyalkylene oxide alkyl ether surfactant, a block polymer system composed of polyethylene oxide and polypropylene oxide, a polyalkylene oxide alkylphenyl ether surfactant, polyoxy Alkylene distyrenated phenyl ether-based surfactants, polyalkylene tribenzylphenyl ether-based surfactants, acetylene polyalkylene oxide-based surfactants, and the like are included.
Among them, polyalkylene oxide alkyl ether-based surfactants and block polymer-based surfactants composed of polyethylene oxide and polypropylene oxide are preferable because they can suppress corrosion of the metal laminated film due to the detergent composition.
上記炭素数6以上のアルコールのアルキレンオキシド付加体は、具体的には、下記一般式(2)又は(3)で表される化合物であることが好ましい。 Specifically, the alkylene oxide adduct of alcohol having 6 or more carbon atoms is preferably a compound represented by the following general formula (2) or (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(2)中、R、R及びRは、同一又は異なって、水素原子、又は、アルキル基を表す。R及びR10は、同一又は異なって、アルキレン基を表す。x及びyは、同一又は異なって、0~50の整数を表す。(x+y)は1以上の整数である。
式(3)中、R11、R12、R13及びR14は、同一又は異なって、水素原子、又は、アルキル基を表す。R15、R16、R17、R18及びR19は、同一又は異なって、アルキレン基、又は、アルキニレン基を表す。x及びyは、同一又は異なって、0~50の整数を表す。(x+y)は1以上の整数である。)
(In Formula (2), R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or an alkyl group. R 9 and R 10 are the same or different and represent an alkylene group. x and y are the same or different and represent an integer of 0 to 50. (x+y) is an integer of 1 or more.
In formula (3), R 11 , R 12 , R 13 and R 14 are the same or different and represent a hydrogen atom or an alkyl group. R 15 , R 16 , R 17 , R 18 and R 19 are the same or different and represent an alkylene group or an alkynylene group. x and y are the same or different and represent an integer of 0 to 50; (x+y) is an integer of 1 or more. )
上記一般式(2)において、R、R及びRで表されるアルキル基は、直鎖状であってもよいし、分岐状であってもよい。
上記アルキル基の炭素数は、1~20であることが好ましく、1~18であることがより好ましく、1~16であることが更に好ましい。
上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、iso-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、ヘプチル基、2-メチルヘキシル基、3-メチルヘキシル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3-エチルペンチル基、2,2,3-トリメチルブチル基、オクチル基、メチルヘプチル基、ジメチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、トリメチルペンチル基、3-エチル-2-メチルペンチル基、2-エチル-3-メチルペンチル基、2,2,3,3-テトラメチルブチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等の直鎖状又は分岐状のアルキル基等が挙げられる。
In the general formula (2), the alkyl groups represented by R 6 , R 7 and R 8 may be linear or branched.
The number of carbon atoms in the alkyl group is preferably 1-20, more preferably 1-18, even more preferably 1-16.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, 2-methylpentyl group, 3-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, heptyl group, 2-methylhexyl group, 3-methylhexyl group, 2 , 2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3-ethylpentyl group, 2,2,3-trimethylbutyl group, octyl group, methylheptyl group, dimethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, trimethylpentyl group, 3-ethyl-2-methylpentyl group, 2-ethyl-3-methylpentyl group, 2,2,3,3-tetramethylbutyl group, nonyl group, Examples include linear or branched alkyl groups such as decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, and icosyl groups.
上記一般式(2)において、分子構造がコンパクトになり高い浸透性が発現しうる点で、R、R及びRのうち2つ以上がアルキル基であることが好ましい。 In general formula (2) above, two or more of R 6 , R 7 and R 8 are preferably alkyl groups in that the molecular structure is compact and high permeability can be exhibited.
上記一般式(2)において、R、R及びRの炭素数の合計は、5~19であることが好ましく、7~17であることがより好ましく、9~15であることが更に好ましく、11~13であることが最も好ましい。 In general formula (2) above, the total number of carbon atoms in R 6 , R 7 and R 8 is preferably 5 to 19, more preferably 7 to 17, even more preferably 9 to 15. Preferably, 11-13 is most preferred.
上記一般式(2)において、R及びR10で表されるアルキレン基は、直鎖状であってもよいし、分岐状であってもよい。
上記アルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、2-プロピレン基、n-ブチレン基、ペンタメチレン基、ヘキサメチレン基、ネオペンチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、メチルメチレン基、メチルエチレン基、1-メチルペンチレン基、1,4-ジメチルブチレン基等が挙げられる。なかでも、製造が容易で、かつ親水性と疎水性を制御できる点で、炭素数2又は3のアルキレン基が好ましい。
In general formula (2) above, the alkylene group represented by R 9 and R 10 may be linear or branched.
Examples of the alkylene group include methylene group, ethylene group, n-propylene group, 2-propylene group, n-butylene group, pentamethylene group, hexamethylene group, neopentylene group, heptamethylene group, octamethylene group and nonamethylene group. , decamethylene group, methylmethylene group, methylethylene group, 1-methylpentylene group, 1,4-dimethylbutylene group and the like. Among them, an alkylene group having 2 or 3 carbon atoms is preferable in terms of ease of production and ability to control hydrophilicity and hydrophobicity.
上記一般式(2)において、-(RO)(R10O)Hは、ノニオン系界面活性剤の製造が容易かつ親水性と疎水性を制御できる点で、-(CHCHO)H、-(CHCHO)(CHCH(CH)O)Hであることが好ましく、-(CHCHO)(CHCH(CH)O)Hであることがより好ましい。 In the above general formula (2), —(R 9 O) x (R 10 O) y H is —(CH 2 CH 2 O) x H, -(CH 2 CH 2 O) x (CH 2 CH(CH 3 )O) y H, preferably -(CH 2 CH 2 O) x (CH 2 CH(CH 3 ) O) yH is more preferred.
上記一般式(2)において、x及びyは、同一又は異なって、0~50の整数であり、0~30の整数であることが好ましく、0~24の整数であることがより好ましく、0~16の整数であることが更に好ましい。
xは、アルキレンオキシド(RO)の平均付加モル数を表し、yは、アルキレンオキシド(R10O)の平均付加モル数を表す。x及びyは、いずれのアルキレンオキシドにおいて同一であってもよいし、異なっていてもよい。
xは、1~20の整数であることが好ましく、3~18の整数であることがより好ましく、5~16の整数であることが更に好ましい。
yは、0~20の整数であることが好ましく、0~15の整数であることがより好ましく、1~10の整数であることが更に好ましい。
(x+y)は1以上の整数である。すなわち、xとyの少なくとも一方は1以上の整数である。
(x+y)は、1~50の整数であることが好ましく、3~30の整数であることがより好ましい。
In the general formula (2), x and y are the same or different and are an integer of 0 to 50, preferably an integer of 0 to 30, more preferably an integer of 0 to 24, 0 An integer of ˜16 is even more preferred.
x represents the average number of added moles of alkylene oxide (R 9 O), and y represents the average number of added moles of alkylene oxide (R 10 O). x and y may be the same or different in any alkylene oxide.
x is preferably an integer of 1-20, more preferably an integer of 3-18, even more preferably an integer of 5-16.
y is preferably an integer of 0-20, more preferably an integer of 0-15, even more preferably an integer of 1-10.
(x+y) is an integer of 1 or more. That is, at least one of x and y is an integer of 1 or more.
(x+y) is preferably an integer of 1-50, more preferably an integer of 3-30.
上記一般式(3)において、R11、R12、R13及びR14で表されるアルキル基としては、上述したR、R及びRで表されるアルキル基と同様のものが挙げられる。
なかでも、分子構造がコンパクトになり高い浸透性が発現しうる点で、上記アルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、又は、iso-ブチル基が好ましい。
In the above general formula (3), the alkyl groups represented by R 11 , R 12 , R 13 and R 14 are the same as the alkyl groups represented by R 6 , R 7 and R 8 described above. be done.
Among them, the alkyl group includes a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, and a tert-butyl group in that the molecular structure becomes compact and high permeability can be expressed. , sec-butyl or iso-butyl groups are preferred.
上記一般式(3)において、R11、R12、R13及びR14の炭素数の合計は、界面活性剤の親水性と疎水性のバランスの観点から、5~20であることが好ましく、6~16であることがより好ましく、8~12であることが更に好ましい。 In general formula (3) above, the total number of carbon atoms of R 11 , R 12 , R 13 and R 14 is preferably 5 to 20 from the viewpoint of the balance between hydrophilicity and hydrophobicity of the surfactant, It is more preferably 6-16, and even more preferably 8-12.
上記一般式(3)において、R15、R16、R17、R18及びR19で表されるアルキレン基としては、上述したR及びR10で表されるアルキレン基と同様のものが挙げられる。なかでも、R15、R16、R17及びR18は、アルキレン基であることが好ましく、炭素数2又は2のアルキレン基であることがより好ましい。
上記一般式(3)において、R15、R16、R17、R18及びR19で表されるアルキニレン基としては、例えば、エチニレン基(-C≡C-)、プロピニレン基(-C≡C-CH-)、1-ブチニレン基(-C≡C-CH-CH-)、2-ブチニレン基(-CH-C≡C-CH-)等が挙げられる。なかでも、R19は、アルキニレン基であることが好ましく、エチニレン基、プロピニレン基、1-ブチニレン基、又は、2-ブチニレン基であることがより好ましく、炭素数2又は3のアルキニレン基であることが更に好ましく、炭素数2のアルキレン基であることが最も好ましい。
In the general formula (3), examples of the alkylene group represented by R 15 , R 16 , R 17 , R 18 and R 19 include the same alkylene groups represented by R 9 and R 10 described above. be done. Among them, R 15 , R 16 , R 17 and R 18 are preferably an alkylene group, more preferably an alkylene group having 2 or 2 carbon atoms.
In the general formula (3), examples of the alkynylene group represented by R 15 , R 16 , R 17 , R 18 and R 19 include an ethynylene group (-C≡C-), a propynylene group (-C≡C —CH 2 —), 1-butynylene group (—C≡C—CH 2 —CH 2 —), 2-butynylene group (—CH 2 —C≡C—CH 2 —), and the like. Among them, R 19 is preferably an alkynylene group, more preferably an ethynylene group, a propynylene group, a 1-butynylene group, or a 2-butynylene group, and an alkynylene group having 2 or 3 carbon atoms. is more preferred, and an alkylene group having 2 carbon atoms is most preferred.
上記一般式(3)において、-(R15O)(R16O)-H、及び、-(R17O)(R18O)-Hは、上述した-(RO)(R10O)Hと同様の基が好ましく挙げられる。 In the general formula (3), —(R 15 O) x (R 16 O) y —H and —(R 17 O) x (R 18 O) y —H are the above-mentioned —(R 9 O ) x (R 10 O) y H and the same groups are preferably mentioned.
上記一般式(3)において、x及びyは、同一又は異なって、0~50の整数であり、0~30の整数であることが好ましく、0~24の整数であることがより好ましく、0~20の整数であることが更に好ましく、0~16の整数であることが更により好ましく、0~15の整数であることが特に好ましく、0~10の整数であることが最も好ましい。
xは、アルキレンオキシド(R15O)、(R17O)の平均付加モル数を表し、yは、アルキレンオキシド(R16O)、(R18O)の平均付加モル数を表す。x及びyは、いずれのアルキレンオキシドにおいて同一であってもよいし、異なっていてもよい。
xは、1~20の整数であることが好ましく、1~12の整数であることがより好ましく、2~8の整数であることが更に好ましい。
yは、0~20の整数であることが好ましく、0~10の整数であることがより好ましく、0~8の整数であることが更に好ましく、0~5の整数であることがより更に好ましい。
(x+y)は1以上の整数である。すなわち、xとyの少なくとも一方は1以上の整数である。
(x+y)は、1~50の整数であることが好ましく、2~30の整数であることがより好ましく、3~30の整数であることが更に好ましい。
In the general formula (3), x and y are the same or different and are an integer of 0 to 50, preferably an integer of 0 to 30, more preferably an integer of 0 to 24, 0 An integer of 0 to 20 is more preferred, an integer of 0 to 16 is even more preferred, an integer of 0 to 15 is particularly preferred, and an integer of 0 to 10 is most preferred.
x represents the average number of added moles of alkylene oxide (R 15 O) and (R 17 O), and y represents the average number of added moles of alkylene oxide (R 16 O) and (R 18 O). x and y may be the same or different in any alkylene oxide.
x is preferably an integer of 1-20, more preferably an integer of 1-12, and even more preferably an integer of 2-8.
y is preferably an integer of 0 to 20, more preferably an integer of 0 to 10, still more preferably an integer of 0 to 8, and even more preferably an integer of 0 to 5 .
(x+y) is an integer of 1 or more. That is, at least one of x and y is an integer of 1 or more.
(x+y) is preferably an integer of 1-50, more preferably an integer of 2-30, and even more preferably an integer of 3-30.
(1A-2)N-ビニルラクタム系重合体
上記N-ビニルラクタム系重合体は、ラクタム環を有する単量体であるN-ビニルラクタム系単量体を含む単量体成分を重合して得られる重合体である。上記N-ビニルラクタム系単量体の具体例としては、例えば、N-ビニルピロリドン、N-ビニルカプロラクタム、3-メチル-N-ビニルピロリドン、4-メチル-N-ビニルピロリドン、5-メチル-N-ビニルピロリドン、N-ビニルピペリドン、1-(2-プロペニル)-2-ピロリドン、N-ビニル-4-ブチルピロリドン、N-ビニル-4-プロピルピロリドン、N-ビニル-4-エチルピロリドン、N-ビニル-4-メチルピロリドン、N-ビニル-4-メチル-5-エチルピロリドン、N-ビニル-4-メチル-5-プロピルピロリドン、N-ビニル-5-メチル-5-エチルピロリドン、N-ビニル-5-プロピルピロリドン、N-ビニル-5-ブチルピロリドン、N-ビニル-4-メチルカプロラクタム、N-ビニル-6-メチルカプロラクタム、N-ビニル-6-プロピルカプロラクタム、N-ビニル-7-ブチルカプロラクタム等が挙げられる。なかでも、上記N-ビニルラクタム系重合体としては、N-ビニルピロリドンを含む単量体成分を重合して得られるポリビニルピロリドンが好ましい。
(1A-2) N-Vinyllactam Polymer The N-vinyllactam polymer is obtained by polymerizing a monomer component containing an N-vinyllactam monomer which is a monomer having a lactam ring. It is a polymer that can be Specific examples of the N-vinyllactam monomers include N-vinylpyrrolidone, N-vinylcaprolactam, 3-methyl-N-vinylpyrrolidone, 4-methyl-N-vinylpyrrolidone, 5-methyl-N -vinylpyrrolidone, N-vinylpiperidone, 1-(2-propenyl)-2-pyrrolidone, N-vinyl-4-butylpyrrolidone, N-vinyl-4-propylpyrrolidone, N-vinyl-4-ethylpyrrolidone, N-vinyl -4-methylpyrrolidone, N-vinyl-4-methyl-5-ethylpyrrolidone, N-vinyl-4-methyl-5-propylpyrrolidone, N-vinyl-5-methyl-5-ethylpyrrolidone, N-vinyl-5 -propylpyrrolidone, N-vinyl-5-butylpyrrolidone, N-vinyl-4-methylcaprolactam, N-vinyl-6-methylcaprolactam, N-vinyl-6-propylcaprolactam, N-vinyl-7-butylcaprolactam and the like mentioned. Among them, polyvinylpyrrolidone obtained by polymerizing a monomer component containing N-vinylpyrrolidone is preferable as the N-vinyllactam polymer.
上記N-ビニルラクタム系重合体の重量平均分子量は、500~50000であることが好ましく、1000~40000であることがより好ましく、2000~30000であることが更に好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(PEO換算)により測定して求めることができる。
The weight average molecular weight of the N-vinyllactam polymer is preferably 500 to 50,000, more preferably 1,000 to 40,000, even more preferably 2,000 to 30,000.
The weight average molecular weight can be obtained by measuring by a gel permeation chromatography (GPC) method (in terms of PEO).
上記ノニオン系界面活性剤及びN-ビニルラクタム系重合体は、1種のみ使用してもよいし、2種以上を併用してもよい。 The above nonionic surfactant and N-vinyllactam polymer may be used alone or in combination of two or more.
上記化合物(1A)(成分(1A))の含有量は、上記第1のCMP工程用後洗浄剤組成物の有効成分100質量%に対して、0.5~65質量%であることが好ましく、1~60質量%であることがより好ましく、2~55質量%であることが更に好ましい。
本明細書において、「有効成分」とは、CMP工程用後洗浄剤組成物中の溶媒以外の全ての成分をいう。
The content of the compound (1A) (component (1A)) is preferably 0.5 to 65% by mass with respect to 100% by mass of the active ingredient in the first post-CMP step cleaning composition. , more preferably 1 to 60% by mass, even more preferably 2 to 55% by mass.
As used herein, the term “active ingredient” refers to all ingredients other than the solvent in the post-cleaning composition for the CMP process.
上記化合物(1A)(成分(1A))の含有量は、上記第1のCMP工程用後洗浄剤組成物100質量%に対して、0.001~5質量%であることが好ましく、0.005~2質量%であることがより好ましく、0.01~1質量%であることが更に好ましい。 The content of the compound (1A) (component (1A)) is preferably 0.001 to 5% by mass with respect to 100% by mass of the first post-CMP step cleaning composition. 005 to 2% by mass, and even more preferably 0.01 to 1% by mass.
(1B)脂肪族アミン類
上記第1のCMP工程用後洗浄剤組成物は、脂肪族アミン類(以下、「脂肪族アミン類(1B)」又は「成分(1B)」とも称する。)を含む。脂肪族アミン類を含むことにより、脂肪族アミンの重金属イオンへの高い配位能によりCMP工程で露出したフレッシュな金属表面への研磨残渣の吸着力を低下させることができる。
(1B) Aliphatic Amines The first post-cleaning composition for the CMP step contains aliphatic amines (hereinafter also referred to as "aliphatic amines (1B)" or "component (1B)"). . By including aliphatic amines, the ability of the aliphatic amines to coordinate heavy metal ions is high, so that the adsorption power of polishing residues to fresh metal surfaces exposed in the CMP process can be reduced.
上記脂肪族アミン類(1B)としては、第一級脂肪族アミン、第二級脂肪族アミン、及び、第三級脂肪族アミンが挙げられる。 Examples of the aliphatic amines (1B) include primary aliphatic amines, secondary aliphatic amines, and tertiary aliphatic amines.
上記脂肪族アミン類(1B)は、下記一般式(1)で表されるアミン化合物、及び/又は、ポリアルキレンイミンを含むことが好ましい。 The aliphatic amines (1B) preferably contain an amine compound represented by the following general formula (1) and/or a polyalkyleneimine.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R、R及びRは、同一又は異なって、水素原子、アルキル基、又は、-R-(NH-R-NHを表す。R及びRは、同一又は異なって、炭素数1~6のアルキレン基を表す。nは0~100の整数を表す。) (In Formula (1), R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or —R 4 —(NH—R 5 ) n —NH 2. R 4 and R 5 is the same or different and represents an alkylene group having 1 to 6 carbon atoms, and n represents an integer of 0 to 100.)
上記一般式(1)においてR、R及びRは、同一又は異なって、水素原子、アルキル基、又は、-R-(NH-R-NHを表す。
、R及びRで表されるアルキル基の炭素数は、水溶性である点で、1~6であることが好ましく、1~5であることがより好ましく、1~4であることが更に好ましい。
In general formula (1) above, R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or —R 4 —(NH—R 5 ) n —NH 2 .
The number of carbon atoms in the alkyl group represented by R 1 , R 2 and R 3 is preferably 1 to 6, more preferably 1 to 5, and 1 to 4, from the viewpoint of water solubility. is more preferred.
、R及びRで表される-R-(NH-R-NHにおいて、R及びRは、同一又は異なって、炭素数1~6のアルキレン基を表す。
また、nは、0~100の整数を表す。nは、-(NH-R)-の繰り返し数を表し、好ましくは0~50の整数を表し、より好ましくは0~30の整数を表し、更に好ましくは0~20の整数、特に好ましくは0~10の整数を表す。
In --R 4 --(NH--R 5 ) n --NH 2 represented by R 1 , R 2 and R 3 , R 4 and R 5 are the same or different and represent an alkylene group having 1 to 6 carbon atoms. .
Also, n represents an integer of 0-100. n represents the number of repetitions of -(NH-R 5 )-, preferably an integer of 0 to 50, more preferably an integer of 0 to 30, still more preferably an integer of 0 to 20, particularly preferably Represents an integer from 0 to 10.
上記一般式(1)で表される化合物の具体例としては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、ジエチレントリアミン、N-エチルブチルアミン、1,2-ビス-(3-アミノプロピルアミノ)エタン、トリブチルアミン、3-(ジエチルアミノ)プロピルアミン、トリエチレンテトラミン、テトラエチレンペンタミン等が挙げられる。なかでも、低毒性である点で、エチレンジアミン、ジエチレントリアミン、N-エチルブチルアミン、3-(ジエチルアミノ)プロピルアミン、1,2-ビス-(3-アミノプロピルアミノ)エタンからなる群より選択される少なくとも一種が好ましい。 Specific examples of the compound represented by the general formula (1) include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, diethylenetriamine, N-ethylbutylamine, 1,2-bis-(3 -aminopropylamino)ethane, tributylamine, 3-(diethylamino)propylamine, triethylenetetramine, tetraethylenepentamine and the like. Among them, at least one selected from the group consisting of ethylenediamine, diethylenetriamine, N-ethylbutylamine, 3-(diethylamino)propylamine, and 1,2-bis-(3-aminopropylamino)ethane in terms of low toxicity. is preferred.
上記ポリアルキレンイミンとしては、ポリエチレンイミン、ポリプロピレンイミン、ポリブチレンイミン、ポリペンチレンイミン等が挙げられる。
上記ポリアルキレンイミンは、鎖状であっても、分枝状であってもよい。なかでも、製造が容易である点で、分枝状が好ましい。
Examples of the polyalkyleneimine include polyethyleneimine, polypropyleneimine, polybutyleneimine, polypentyleneimine, and the like.
The above polyalkyleneimine may be linear or branched. Among them, a branched shape is preferable in terms of ease of production.
上記脂肪族アミン類(1B)の分子量は、2000以下であることが好ましい。分子量が2000以下であると、CMP工程用後洗浄剤組成物の粘性が好適になる。上記脂肪族アミン類の分子量は、300以下であることがより好ましく、250以下であることが更に好ましく、220以下であることが更により好ましい。
上記脂肪族アミン類(1B)の分子量は、低沸点である点で、50以上であることが好ましい。
The molecular weight of the aliphatic amines (1B) is preferably 2000 or less. When the molecular weight is 2000 or less, the viscosity of the post-cleaning composition for the CMP process is favorable. The molecular weight of the aliphatic amines is more preferably 300 or less, still more preferably 250 or less, and even more preferably 220 or less.
The molecular weight of the above-mentioned aliphatic amine (1B) is preferably 50 or more because of its low boiling point.
上記脂肪族アミン類(1B)は、1種のみ使用してもよいし、2種以上を併用してもよい。 The aliphatic amines (1B) may be used alone or in combination of two or more.
上記脂肪族アミン類(1B)(成分(1B))の含有量は、上記第1のCMP工程用後洗浄剤組成物の有効成分100質量%に対して、30~95質量%であることが好ましく、35~93質量%であることがより好ましく、40~90質量%であることが更に好ましい。 The content of the aliphatic amine (1B) (component (1B)) is 30 to 95% by mass with respect to 100% by mass of the active ingredients in the first post-CMP step cleaning composition. It is preferably from 35 to 93% by mass, and even more preferably from 40 to 90% by mass.
上記脂肪族アミン類(1B)(成分(1B))の含有量は、上記第1のCMP工程用後洗浄剤組成物100質量%に対して、0.01~5質量%であることが好ましく、0.05~2質量%であることがより好ましく、0.1~1質量%であることが更に好ましい。 The content of the aliphatic amine (1B) (component (1B)) is preferably 0.01 to 5% by mass with respect to 100% by mass of the first post-cleaning composition for the CMP step. , more preferably 0.05 to 2% by mass, and even more preferably 0.1 to 1% by mass.
(1C)腐食抑制剤
上記第1のCMP工程用後洗浄剤組成物は、腐食抑制剤(以下、「腐食抑制剤(1C)」又は「成分(1C)」とも称する。)を含み、上記腐食抑制剤として、含窒素複素環化合物及びカルボン酸塩化合物からなる群より選択される少なくとも一種を含む。
(1C) Corrosion inhibitor The post-cleaning composition for the first CMP step contains a corrosion inhibitor (hereinafter also referred to as "corrosion inhibitor (1C)" or "component (1C)"), As an inhibitor, at least one selected from the group consisting of nitrogen-containing heterocyclic compounds and carboxylate compounds is included.
(1C-1)含窒素複素環化合物
上記含窒素複素環化合物は、少なくとも1つの窒素原子を有する複素環を有する化合物であれば特に限定されず、酸素原子、硫黄原子等の窒素原子以外のヘテロ原子を含んでいてもよい。また、上記含窒素複素環は、飽和であっても、不飽和であってもよいが、遷移金属膜に対する吸着性能が高い点で、含窒素不飽和複素環であることが好ましい。
また、上記含窒素複素環化合物は、複素単環化合物であっても、縮合複素環化合物であってもよい。
(1C-1) Nitrogen-Containing Heterocyclic Compound The nitrogen-containing heterocyclic compound is not particularly limited as long as it is a compound having a heterocyclic ring having at least one nitrogen atom. It may contain atoms. The nitrogen-containing heterocyclic ring may be either saturated or unsaturated, but is preferably a nitrogen-containing unsaturated heterocyclic ring in terms of high adsorption performance with respect to the transition metal film.
In addition, the above nitrogen-containing heterocyclic compound may be a heteromonocyclic compound or a condensed heterocyclic compound.
上記複素単環化合物としては、例えば、ピロール、ピラゾリン、ピラゾール、イミダゾール、トリアゾール、イミダゾリン、オキサゾリン、オキサゾール、イソオキサゾール等の五員環化合物;ピペリジン、ピリジン、ピラジン、ピペラジン、ピリミジン、ピリダジン、トリアジン、モルホリン等の六員環化合物;及び、これらの誘導体が挙げられる。
上記誘導体としては、上記含窒素複素環中の少なくとも1の原子が、アルキル基、アリール基、アミノ基、カルボキシル基、ヒドロキシ基、ケトン基、又は、これらを組み合わせた基に置換された化合物が挙げられる。
Examples of the heteromonocyclic compounds include five-membered ring compounds such as pyrrole, pyrazoline, pyrazole, imidazole, triazole, imidazoline, oxazoline, oxazole, and isoxazole; piperidine, pyridine, pyrazine, piperazine, pyrimidine, pyridazine, triazine, morpholine 6-membered ring compounds such as; and derivatives thereof.
Examples of the derivative include compounds in which at least one atom in the nitrogen-containing heterocyclic ring is substituted with an alkyl group, an aryl group, an amino group, a carboxyl group, a hydroxy group, a ketone group, or a group combining these. be done.
上記複素単環化合物の具体例としては、例えば、1H-ピロール、1-ピロリン、2-ピロリン、3-ピロリン、ピロリジン、ピロリドン、γ-ブチロラクタム、γ-バレロラクタム、プロリン、プロリル、1H-ピラゾール、1-ピラゾリン、2-ピラゾリン、ピラゾリジン、ピラリゾリドン、3-ピラゾロン、4-ピラゾロン、5-ピラゾロン、1H-ピラゾール-4-カルボン酸、ピラゾール-4-カルボン酸エチル、1-メチル-1H-ピラゾール-5-カルボン酸、5-メチル-1H-ピラゾール-3-カルボン酸、3,5-ピラゾールジカルボン酸、3-アミノ-5-ヒドロキシピラゾール、1H-イミダゾール、2-イミダゾリン、3-イミダゾリン、4-イミダゾリン、イミダゾリジン、イミダゾリドン、エチレン尿素、ヒダントイン、アラントイン、ヒスチジン、ヒスチジル、ヒスタミン、1,2,3-トリアゾール、1,2,4-トリアゾール、1-ヒドロキシベンゾトリアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール、ピペリジン、ピペリジル、ピペリジリデン、ピペリジレン、ピペリドン、ピペコリン酸、ピペコロイル、ピペコルアミド、ニペコチン酸、イソニペコトイル、イソニペコトアミド、ペレチエリン、イソペレチエリン、ピペリン、イソピペリン、カビシン、イソカビシン、ピリジン、ピリジル、ピリジリデン、ピリジレン、ピリジレン、2-ピリドン、4-ピリドン、ピコリン、α-コリジン、β-コリジン、γ-コリジン、ピコリン、ニコチン酸、ニコチン酸アミド、イソニコチン酸、イソニコチノイル、シトラジン酸、キノリン酸、ルチジン酸、イソシンコメロン酸、ジピコリン酸、シンコメロン酸、ジニコチン酸、ベルベロン酸、フサル酸、エチオナミド、ニコチン、コチニン、アナバシン、アナタビン、ホマリン、アミノヒドロキシピラゾール、ジヒドロキシピリジン、ピラジン、ピラジン酸、ピラジノイル、ピラジンアミド、ピペラジン、ピリミジン、シトシン、ウラシル、チミン、オロト酸、ウラミル、チアミン、ピリタジン、マレイン酸ヒドラジド、メラミン、シアヌル酸等が挙げられる。 Specific examples of the heteromonocyclic compounds include 1H-pyrrole, 1-pyrroline, 2-pyrroline, 3-pyrroline, pyrrolidine, pyrrolidone, γ-butyrolactam, γ-valerolactam, proline, prolyl, 1H-pyrazole, 1-pyrazoline, 2-pyrazoline, pyrazolidine, pyrarizolidone, 3-pyrazolone, 4-pyrazolone, 5-pyrazolone, 1H-pyrazole-4-carboxylic acid, ethyl pyrazole-4-carboxylate, 1-methyl-1H-pyrazole-5 -carboxylic acid, 5-methyl-1H-pyrazole-3-carboxylic acid, 3,5-pyrazoledicarboxylic acid, 3-amino-5-hydroxypyrazole, 1H-imidazole, 2-imidazoline, 3-imidazoline, 4-imidazoline, imidazolidine, imidazolidone, ethyleneurea, hydantoin, allantoin, histidine, histidyl, histamine, 1,2,3-triazole, 1,2,4-triazole, 1-hydroxybenzotriazole, 3-amino-1,2,4- triazole, 4-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, piperidine, piperidyl, piperidylidene, piperidylene, piperidone, pipecolic acid, pipecoloyl, pipecolamide, nipecotic acid, isonipecotoyl, isonipecotoamide, peretieline, isoperetieline, piperine, isopiperine, moldicine, isocavicin, pyridine, pyridyl, pyridylidene, pyridylene, pyridylene, 2-pyridone, 4-pyridone, picoline, α-collidine, β-collidine, γ-collidine, picoline , nicotinic acid, nicotinamide, isonicotinic acid, isonicotinoyl, citrazinic acid, quinolinic acid, rutidic acid, isocincomeronic acid, dipicolinic acid, cincomeronic acid, dinicotinic acid, berberic acid, fusaric acid, ethionamide, nicotine, cotinine, anabasine , Anatabine, Homarin, Aminohydroxypyrazole, Dihydroxypyridine, Pyrazine, Pyrazinoic acid, Pyrazinoyl, Pyrazinamide, Piperazine, Pyrimidine, Cytosine, Uracil, Thymine, Orotic acid, Uramyl, Thiamine, Pyritadin, Maleic hydrazide, Melamine, Cyanuric acid, etc. is mentioned.
上記縮合複素環化合物としては、例えば、インドール、イソインドール、ベンゾイミダゾール、ベンゾトリアゾール、トリアジン、キノリン、イソキノリン、キナゾリン、プリン、シンノリン、フタラジン、キノキサリン、アクリジン、フェナントリジン、及び、これらの誘導体が挙げられる。 Examples of the condensed heterocyclic compound include indole, isoindole, benzimidazole, benzotriazole, triazine, quinoline, isoquinoline, quinazoline, purine, cinnoline, phthalazine, quinoxaline, acridine, phenanthridine, and derivatives thereof. be done.
上記縮合複素環化合物の具体例としては、例えば、ベンゾトリアゾール、尿酸等が挙げられる。 Specific examples of the condensed heterocyclic compound include benzotriazole and uric acid.
なかでも、上記含窒素複素環化合物は、遷移金属膜に対する吸着性能が高い点で、ピロール、ピリジン、トリアゾール、トリアジン、プリン、及び、これらの誘導体からなる群より選択される少なくとも一種を含むことが好ましく、尿酸、ニコチン酸、トリアゾール、又は、メラミンであることがより好ましく、尿酸であることが更に好ましい。
上記含窒素複素環化合物は、1種のみ使用してもよいし、2種以上を併用してもよい。
Among them, the nitrogen-containing heterocyclic compound may contain at least one selected from the group consisting of pyrrole, pyridine, triazole, triazine, purine, and derivatives thereof, because of its high adsorption performance to transition metal films. Uric acid, nicotinic acid, triazole, or melamine is more preferred, and uric acid is even more preferred.
The above nitrogen-containing heterocyclic compounds may be used alone or in combination of two or more.
(1C-2)カルボン酸塩化合物
上記カルボン酸塩化合物としては、カルボキシ基を有する化合物の塩であれば特に限定されないが、脂肪酸塩であることが好ましい。
上記脂肪酸塩は、飽和脂肪酸、不飽和脂肪酸のいずれの塩であってもよい。
上記脂肪酸塩の炭素数は、吸着した金属膜の耐腐食性を向上させる点で、6~50であることが好ましく、8~40であることがより好ましく、10~30であることが更に好ましく、14~24であることが最も好ましい。
(1C-2) Carboxylate Compound The carboxylate compound is not particularly limited as long as it is a salt of a compound having a carboxy group, but fatty acid salts are preferred.
The fatty acid salt may be either a saturated fatty acid salt or an unsaturated fatty acid salt.
The number of carbon atoms in the fatty acid salt is preferably 6 to 50, more preferably 8 to 40, even more preferably 10 to 30, from the viewpoint of improving the corrosion resistance of the adsorbed metal film. , 14-24.
上記脂肪酸塩としては、具体的には、例えば、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸等の飽和脂肪酸の塩;クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、エイコセン酸、リノール酸、リノレン酸等の不飽和脂肪酸の塩が挙げられる。なかでも、上記脂肪酸塩は、吸着した金属膜の耐腐食性を向上させる点で、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エイコセン酸、リノール酸、及び、リノレン酸からなる群より選択される少なくとも一種の脂肪酸の塩であることが好ましい。 Specific examples of the fatty acid salts include saturated butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, and arachidic acid. Salts of fatty acids; salts of unsaturated fatty acids such as crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, eicosenoic acid, linoleic acid and linolenic acid. Among them, the fatty acid salts improve the corrosion resistance of the adsorbed metal film, and include capric acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, margaric acid, stearic acid, arachidic acid, myristoleic acid, It is preferably a salt of at least one fatty acid selected from the group consisting of palmitoleic acid, oleic acid, eicosenoic acid, linoleic acid and linolenic acid.
上記塩としては、カリウム塩、セシウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩;アンモニウム塩;第四級アンモニウム塩;アルキルアミン塩、アルカノールアミン塩等の有機アミン塩等が挙げられる。なかでも、上記塩としては、アルカリ金属塩、アンモニウム塩、第四級アンモニウム塩、有機アミン塩が好ましく、アルカリ金属塩、アンモニウム塩がより好ましく、カリウム塩、アンモニウム塩が更に好ましい。 Examples of the above salts include alkali metal salts such as potassium salts and cesium salts; alkaline earth metal salts such as magnesium salts, calcium salts, strontium salts and barium salts; ammonium salts; quaternary ammonium salts; Examples include organic amine salts such as salts. Among these salts, alkali metal salts, ammonium salts, quaternary ammonium salts and organic amine salts are preferred, alkali metal salts and ammonium salts are more preferred, and potassium salts and ammonium salts are even more preferred.
なかでも、上記カルボン酸塩化合物は、極性基と疎水基のバランスによる耐腐食性向上の観点から、パルミチン酸塩、ステアリン酸塩、アラキジン酸塩、パルミトレイン酸塩、オレイン酸塩、又は、エイコセン酸塩であることが好ましく、パルミチン酸、ステアリン酸、アラキジン酸、パルミトレイン酸、オレイン酸若しくはエイコセン酸のアルカリ金属塩又はアンモニウム塩であることがより好ましく、オレイン酸のアルカリ金属塩であることが更に好ましく、オレイン酸カリウムであることが特に好ましい。 Among them, the carboxylate compound is palmitate, stearate, arachidate, palmitoleate, oleate, or eicosenoic acid from the viewpoint of improving corrosion resistance due to the balance of polar groups and hydrophobic groups. It is preferably a salt, more preferably an alkali metal salt or ammonium salt of palmitic acid, stearic acid, arachidic acid, palmitoleic acid, oleic acid or eicosenoic acid, and even more preferably an alkali metal salt of oleic acid. , and potassium oleate.
上記カルボン酸塩化合物は、1種のみ使用してもよいし、2種以上を併用してもよい。 The above carboxylate compounds may be used alone or in combination of two or more.
上記第1のCMP工程用後洗浄剤組成物は、上記含窒素複素環化合物及び上記カルボン酸塩化合物以外に、他の腐食抑制剤を更に含んでいてもよい。
上記他の腐食抑制剤としては、防錆剤、防食剤等の、公知の腐食抑制剤が挙げられる。
上記腐食抑制剤としては、具体的には、クロム酸塩、モリブデン酸塩、タングステン酸塩、亜硝酸塩等の酸化被覆型腐食抑制剤、重合リン酸塩、亜鉛塩、含硫黄有機化合物等の沈殿被覆型腐食抑制剤、アルカノールアミン、アルキレンアミンエチレンオキシド付加物、アルキルリン酸エステル塩、各種界面活性剤等の吸着被覆型腐食抑制剤等が挙げられる。
The post-cleaning composition for the first CMP step may further contain other corrosion inhibitors in addition to the nitrogen-containing heterocyclic compound and the carboxylate compound.
Other corrosion inhibitors include known corrosion inhibitors such as rust inhibitors and anticorrosive agents.
Specific examples of the corrosion inhibitor include oxide-coated corrosion inhibitors such as chromates, molybdates, tungstates, and nitrites; precipitation of polymerized phosphates, zinc salts, sulfur-containing organic compounds, and the like; Coating type corrosion inhibitors, adsorption coating type corrosion inhibitors such as alkanolamines, alkyleneamine ethylene oxide adducts, alkyl phosphate ester salts, various surfactants, and the like can be mentioned.
上記腐食抑制剤における、(1C-1)含窒素複素環化合物、及び、(1C-2)カルボン酸塩化合物の合計含有量は、腐食抑制剤総量100質量%に対して、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、100質量%であることが特に好ましい。 The total content of (1C-1) nitrogen-containing heterocyclic compound and (1C-2) carboxylate compound in the corrosion inhibitor is 50% by mass or more with respect to 100% by mass of the total amount of corrosion inhibitor. It is preferably 55% by mass or more, more preferably 60% by mass or more, and particularly preferably 100% by mass.
また、上記(1C-1)含窒素複素環化合物と(1C-2)カルボン酸塩化合物の含有比[(1C-1)/(1C-2)]は、質量比で、0/100~100/0であることが好ましく、どちらかの化合物が単独で用いられても任意の比率で混合して用いられてもよい。 In addition, the content ratio [(1C-1)/(1C-2)] of (1C-1) nitrogen-containing heterocyclic compound and (1C-2) carboxylate compound is 0/100 to 100 in mass ratio. /0 is preferable, and either compound may be used alone or may be used by mixing at any ratio.
上記腐食抑制剤(1C)(成分(1C))の含有量は、上記第1のCMP工程用後洗浄剤組成物の有効成分100質量%に対して、0.2~35質量%であることが好ましく、0.5~30質量%であることがより好ましく、1~25質量%であることが更に好ましい。 The content of the corrosion inhibitor (1C) (component (1C)) is 0.2 to 35% by mass with respect to 100% by mass of the active ingredients in the first post-CMP step cleaning composition. is preferred, 0.5 to 30 mass % is more preferred, and 1 to 25 mass % is even more preferred.
上記腐食抑制剤(1C)(成分(1C))の含有量は、上記第1のCMP工程用後洗浄剤組成物100質量%に対して、0.001~3質量%であることが好ましく、0.003~2質量%であることがより好ましく、0.005~1質量%であることが更に好ましい。 The content of the corrosion inhibitor (1C) (component (1C)) is preferably 0.001 to 3% by mass with respect to 100% by mass of the first post-CMP step cleaning composition. It is more preferably 0.003 to 2% by mass, even more preferably 0.005 to 1% by mass.
(1D)他の成分
本発明の第1のCMP工程用後洗浄剤組成物は、上述した成分(1A)、成分(1B)、及び成分(1C)以外に、他の任意の成分(1D)を含んでいてもよい。
上記成分(1D)としては、例えば、pH調整剤、キレート剤、溶媒、界面活性剤等が挙げられる。
(1D) Other Components The first post-cleaning composition for the CMP process of the present invention may include other optional components (1D) in addition to the components (1A), (1B), and (1C) described above. may contain
Examples of the component (1D) include pH adjusters, chelating agents, solvents, surfactants, and the like.
上記pH調整剤としては、目的とするpHに調整することができる成分であれば特に限定されず、例えば、酸化合物、又は、アルカリ化合物が挙げられる。
上記酸化合物としては、硫酸、硝酸等の無機酸及びその塩や、酢酸、乳酸等の有機酸及びその塩等が挙げられる。
上記アルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン等のアルカノールアミン;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化トリメチル-2-ヒドロキシエチルアンモニウム(コリン)、水酸化トリエチル(ヒドロキシエチル)アンモニウム等の第四級アンモニウム塩;アンモニア等が挙げられる。
上記pH調整剤は、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
The pH adjuster is not particularly limited as long as it is a component capable of adjusting the pH to a target, and examples thereof include acid compounds and alkali compounds.
Examples of the acid compound include inorganic acids such as sulfuric acid and nitric acid and salts thereof, and organic acids such as acetic acid and lactic acid and salts thereof.
Examples of the alkali compound include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide; alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and monoisopropanolamine; tetramethylammonium hydroxide. , tetraethylammonium hydroxide, tetrapropylammonium hydroxide, trimethyl-2-hydroxyethylammonium hydroxide (choline), triethyl(hydroxyethyl)ammonium hydroxide and the like; quaternary ammonium salts;
The above pH adjusters may be used alone or in combination of two or more.
上記キレート剤としては、例えば、シュウ酸、クエン酸、酒石酸、リンゴ酸、ピコリン酸、グリシン等が挙げられる。また、N,N,N’,N’-エチレンジアミンテトラキス(メチレンホスホン酸)、グリシン-N,N-ビス(メチレンホスホン酸)、ニトリロトリス(メチレンホスホン酸)等のホスホン酸系キレート剤が挙げられる。また、上記キレート剤として、システイン、メチオニン等の硫黄含有アミノ酸が好ましく挙げられる。
上記キレート剤は、1種のみ用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the chelating agent include oxalic acid, citric acid, tartaric acid, malic acid, picolinic acid, glycine and the like. Phosphonic acid chelating agents such as N,N,N',N'-ethylenediaminetetrakis (methylene phosphonic acid), glycine-N,N-bis (methylene phosphonic acid), nitrilotris (methylene phosphonic acid) and the like can also be mentioned. . Moreover, sulfur-containing amino acids such as cysteine and methionine are preferably used as the chelating agent.
The above chelating agents may be used alone or in combination of two or more.
上記溶媒としては、例えば、水、N-メチル-2-ピロリジノンやN,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性有機溶媒、低級アルコール、芳香族アルコールやグリコール等のプロトン性有機溶媒等が挙げられる。なかでも、上記溶媒は、水を含むことが好ましい。上記溶媒は、2種以上を含む混合液であってもよい。 Examples of the solvent include water, aprotic polar organic solvents such as water, N-methyl-2-pyrrolidinone, N,N-dimethylacetamide and dimethylsulfoxide, protic organic solvents such as lower alcohols, aromatic alcohols and glycols. is mentioned. Especially, it is preferable that the said solvent contains water. The solvent may be a mixed liquid containing two or more kinds.
上記界面活性剤としては、上述したノニオン系界面活性剤以外の、アニオン系界面活性剤やカチオン系界面活性剤が挙げられる。
上記アニオン系界面活性剤としては、例えば、脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン塩、N-アシルグルタミン酸塩のカルボン酸型アニオン系界面活性剤;ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファオレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、N-メチル-N-アシルタウリン塩等のスルホン酸型アニオン系界面活性剤;アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、油脂硫酸エステル塩等の硫酸エステル型アニオン系界面活性剤;及び、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンアルキルフェニルエーテルリン酸塩のリン酸エステル型アニオン系界面活性剤が挙げられる。
Examples of the surfactant include anionic surfactants and cationic surfactants other than the nonionic surfactants described above.
Examples of the anionic surfactant include aliphatic monocarboxylates, polyoxyethylene alkyl ether carboxylates, N-acylsarcosine salts, N-acylglutamate carboxylate anionic surfactants; dialkyl sulfosuccinates; sulfonate type anions such as acid salts, alkanesulfonates, alpha-olefinsulfonates, alkylbenzenesulfonates, naphthalenesulfonates-formaldehyde condensates, alkylnaphthalenesulfonates, N-methyl-N-acyl taurates, etc. Surfactants; sulfuric acid ester type anionic surfactants such as alkyl sulfates, polyoxyethylene alkyl ether sulfates, oil sulfates; and alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene Phosphate ester type anionic surfactants of alkylphenyl ether phosphates can be mentioned.
上記カチオン系界面活性剤としては、例えば、モノアルキルアミン塩、ジアルキルアミン塩、トリアルキルアミン塩等のアルキルアミン塩型カチオン系界面活性剤;及び、ジアルキルジメチルアンモニウムクロライド、ジアルキルジメチルアンモニウムブロミド、ジアルキルジメチルアンモニウムアイオダイド、アルキルトリメチルアンモニウムクロライド、アルキルトリメチルアンモニウムブロミド、アルキルトリメチルアンモニウムアイオダイド、アルキルベンジルジメチルアンモニウムクロライド等の第四級アンモニウム塩型カチオン系界面活性剤等が挙げられる。 Examples of the cationic surfactant include alkylamine salt-type cationic surfactants such as monoalkylamine salts, dialkylamine salts, and trialkylamine salts; and dialkyldimethylammonium chloride, dialkyldimethylammonium bromide, dialkyldimethyl Quaternary ammonium salt type cationic surfactants such as ammonium iodide, alkyltrimethylammonium chloride, alkyltrimethylammonium bromide, alkyltrimethylammonium iodide, alkylbenzyldimethylammonium chloride and the like.
上記第1のCMP工程用後洗浄剤組成物は、25℃におけるpH(水素イオン濃度)が7.5以上の水溶液であることが好ましい。上記第1のCMP工程用後洗浄剤組成物のpHが上述の範囲であると、洗浄液中の有効成分が所定量含まれていなくとも金属膜の腐食速度を抑制することができる。
上記第1のCMP工程用後洗浄剤組成物のpH(25℃)は、8.0以上であることがより好ましく、8.5以上であることが更に好ましく、10.0以上が更により好ましい。
上記第1のCMP工程用後洗浄剤組成物のpHの調整は、上述したアルカリ化合物の含有量を調整することにより、行うことができる。
上記pHは、pHメータ(例えば、F71S、堀場製作所製)を用いて求めることができる。
The first post-CMP cleaning composition is preferably an aqueous solution having a pH (hydrogen ion concentration) of 7.5 or higher at 25°C. When the pH of the first post-CMP cleaning composition is within the above range, the corrosion rate of the metal film can be suppressed even if the cleaning solution does not contain a predetermined amount of the active ingredient.
The pH (25°C) of the first post-CMP cleaning composition is preferably 8.0 or higher, still more preferably 8.5 or higher, and even more preferably 10.0 or higher. .
The pH of the first post-CMP cleaning composition can be adjusted by adjusting the content of the alkali compound described above.
The above pH can be determined using a pH meter (eg, F71S, manufactured by Horiba Ltd.).
上記第1のCMP工程用後洗浄剤組成物は、腐食電流値が10μA/cm以下であり、かつ異種金属界面の腐食電位差が60mV以下であることが好ましい。上記腐食電流値と腐食電位差が上述の範囲であると、洗浄する基板の腐食を抑制することができる。
上記第1のCMP工程用後洗浄剤組成物は、腐食電流値が5μA/cm以下であり、かつ異種金属界面の腐食電位差が30mV以下であることがより好ましく、腐食電流値が3μA/cm以下であり、かつ異種金属界面の腐食電位差が25mV以下であることが更に好ましく、腐食電流値が1μA/cm以下であり、かつ異種金属界面の腐食電位差が20mV以下であることが特に好ましい。
本明細書において、上記腐食電流値、及び、腐食電位差は、後述する実施例に記載の方法で測定して求めることができる。
The first post-CMP cleaning composition preferably has a corrosion current value of 10 μA/cm 2 or less and a corrosion potential difference at the interface of dissimilar metals of 60 mV or less. When the corrosion current value and the corrosion potential difference are within the above ranges, corrosion of the substrate to be cleaned can be suppressed.
More preferably, the first post-CMP cleaning composition has a corrosion current value of 5 μA/cm 2 or less and a corrosion potential difference at the interface of different metals of 30 mV or less. More preferably, the corrosion potential difference at the dissimilar metal interface is 2 or less and the corrosion potential difference at the dissimilar metal interface is 25 mV or less, and it is particularly preferable that the corrosion current value is 1 μA/cm 2 or less and the dissimilar metal interface corrosion potential difference is 20 mV or less. .
In the present specification, the corrosion current value and the corrosion potential difference can be obtained by measuring by the method described in Examples below.
<第2のCMP工程用後洗浄剤組成物>
本発明の第2のCMP工程用後洗浄剤組成物は、上述した(2A)、(2B)、(2C)の3つの特定の成分を含むことにより、ウェハ表面上の金属残渣や有機残渣の除去及び付着防止に優れ、かつ、腐食抑制にも優れる。特に、セリアを研磨砥粒として用いてCMP工程を行ったウェハ表面の洗浄に使用することにより、その効果がより一層発揮される。また、本発明の第2のCMP工程用後洗浄剤組成物は、半導体製造プロセスにおいて、酸化ケイ素及び/又は窒化ケイ素を含む膜表面の洗浄に用いる場合に、上述した効果がより一層発揮される。
<Second post-cleaning composition for CMP process>
The second post-CMP cleaning composition of the present invention contains the three specific components (2A), (2B), and (2C) described above, thereby removing metal residue and organic residue from the wafer surface. Excellent removal and adhesion prevention, and excellent corrosion control. In particular, when ceria is used as abrasive grains to clean the surface of a wafer subjected to a CMP process, the effect is further exhibited. In addition, the second post-CMP cleaning composition of the present invention exhibits the above effects even more when used for cleaning the surface of a film containing silicon oxide and/or silicon nitride in a semiconductor manufacturing process. .
上記第2のCMP工程用後洗浄剤組成物が、金属残渣、セリア砥粒残渣や有機残渣の除去及び付着防止に優れ、かつ、腐食抑制にも優れるのは、上記第2のCMP工程用後洗浄剤組成物に含まれるノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体が基板表面及び砥粒残渣や汚れの界面に浸透して洗浄液主成分の水中に浮き上がらせつつ、有機酸化合物やpH調整剤や酸化剤が汚染物質と基板の界面に形成された共有結合を切断することで汚染物を基板表面から除去できるためと推測される。加えて、CMP工程後に現れた金属堆積膜表面に有機酸化合物やノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体が吸着することで、洗浄液中に共存する化学成分間の電気化学的相互作用を平衡状態として、金属堆積膜を構成する金属種の腐食電位や腐食電流値を低減させることができるためと推測される。 The second post-CMP cleaning composition is excellent in removing and preventing adhesion of metal residue, ceria abrasive residue and organic residue, and is also excellent in corrosion inhibition, because of the second post-CMP step cleaning composition. The nonionic surfactant and/or N-vinyllactam polymer contained in the cleaning composition permeate the substrate surface and the interface between the abrasive residue and dirt, and float in water, which is the main component of the cleaning liquid, while the organic acid compound It is presumed that the contaminants can be removed from the substrate surface by cutting the covalent bond formed at the interface between the contaminants and the substrate by the pH adjuster, the oxidizing agent, or the like. In addition, the adsorption of organic acid compounds, nonionic surfactants, and/or N-vinyllactam polymers on the surface of the deposited metal film that appears after the CMP process causes an electrochemical reaction between chemical components coexisting in the cleaning solution. It is presumed that the corrosion potential and the corrosion current value of the metal species constituting the deposited metal film can be reduced by setting the interaction to an equilibrium state.
上記第2のCMP工程用後洗浄剤組成物に含まれる各成分について、説明する。
(2A)ノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体
上記第2のCMP工程用後洗浄剤組成物は、脂肪族アルコールのアルキレンオキシド付加体構造を有するノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも1種の化合物(以下、「化合物(2A)」又は「成分(2A)」とも称する。)を含む。このような特定の化合物を含むことにより、基板表面及び砥粒残渣や汚れの界面に浸透して洗浄剤組成物主成分の水中に浮き上がらせた状態を安定的に保持することができる。
Each component contained in the second post-CMP cleaning composition will be described.
(2A) Nonionic Surfactant and/or N-Vinyllactam Polymer The post-cleaning composition for the second CMP step comprises a nonionic surfactant having an aliphatic alcohol alkylene oxide adduct structure, and , and N-vinyllactam polymers (hereinafter also referred to as "compound (2A)" or "component (2A)"). By including such a specific compound, it is possible to stably maintain the state of being suspended in water, which is the main component of the cleaning composition, by penetrating into the interface between the substrate surface and the abrasive residue and dirt.
(2A-1)ノニオン系界面活性剤
上記脂肪族アルコールのアルキレンオキシド付加体構造とは、脂肪族アルコールにアルキレンオキシドが付加した構造である。
(2A-1) Nonionic Surfactant The alkylene oxide adduct structure of the fatty alcohol is a structure in which an alkylene oxide is added to the fatty alcohol.
上記脂肪族アルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、メタンジオール、エチレングリコール、1,4-ブタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、1,10-デカンジオール等のアルキルアルコール;シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール等のシクロアルキルアルコール;アリルアルコール等が挙げられる。
なかでも、構造や付加位置による疎水性の調整が比較的容易であることから、アルキルアルコールが好ましい。上記アルキルアルコールは、直鎖状、分岐状のいずれであってもよい。
Examples of the aliphatic alcohol include methanol, ethanol, propanol, isopropanol, butanol, isobutyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, tridecanol, tetra decanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, eicosanol, methanediol, ethylene glycol, 1,4-butanediol, 1,2-hexanediol, 1,6-hexanediol, Alkyl alcohols such as 1,10-decanediol; cycloalkyl alcohols such as cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl alcohol, 1,4-cyclohexanedimethanol and 1,4-cyclohexanediol; and allyl alcohol.
Of these, alkyl alcohols are preferred because the hydrophobicity can be adjusted relatively easily by adjusting the structure or the position of addition. The above alkyl alcohol may be linear or branched.
上記脂肪族アルコールの炭素数は、6以上であることが好ましく、10以上であることがより好ましい。また、上記アルコールの炭素数は、18以下であることが好ましく、16以下であることがより好ましい。 The number of carbon atoms in the aliphatic alcohol is preferably 6 or more, more preferably 10 or more. The number of carbon atoms in the alcohol is preferably 18 or less, more preferably 16 or less.
上記脂肪族アルコールは、固体残渣界面への高い浸透力と金属腐食抑制に優れる点で、二級又は三級アルコールであることが好ましく、二級アルコールであることがより好ましい。
上記脂肪族アルコールは、炭素数6以上の、二級又は三級アルキルアルコールであることが好ましい。
上記脂肪族アルコールは、1価であっても、2価や多価であってもよいが、製造の容易さ・コスト面で有利である点で、1価アルコールが好ましい。
The above-mentioned aliphatic alcohol is preferably a secondary or tertiary alcohol, more preferably a secondary alcohol, in terms of high penetrating power to the solid residue interface and excellent suppression of metal corrosion.
The aliphatic alcohol is preferably a secondary or tertiary alkyl alcohol having 6 or more carbon atoms.
The aliphatic alcohol may be monohydric, dihydric, or polyhydric, but monohydric alcohols are preferred in terms of ease of production and cost.
上記脂肪族アルコールに付加されるアルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が挙げられる。なかでも、エチレンオキシド、及び、プロピレンオキシドからなる群より選択される少なくとも一種が好ましく、エチレンオキシド、及び、プロピレンオキシドの混合型がより好ましい。 Examples of the alkylene oxide added to the aliphatic alcohol include ethylene oxide, propylene oxide and butylene oxide. Among them, at least one selected from the group consisting of ethylene oxide and propylene oxide is preferable, and a mixed type of ethylene oxide and propylene oxide is more preferable.
上記脂肪族アルコールのアルキレンオキシド付加体構造は、2種以上のアルキレンオキシドを含むことが好ましい。上記脂肪族アルコールのアルキレンオキシド付加体構造は、炭素数6以上のアルコールのアルキレンオキシド付加体構造を有し、2種以上のアルキレンオキシドのブロックポリマー構造を含むことが好ましい。 The alkylene oxide adduct structure of the fatty alcohol preferably contains two or more alkylene oxides. The alkylene oxide adduct structure of the aliphatic alcohol has an alkylene oxide adduct structure of an alcohol having 6 or more carbon atoms, and preferably includes block polymer structures of two or more alkylene oxides.
上記脂肪族アルコールのアルキレンオキシド付加体構造としては、例えば、一級アルコールエトキシレート、二級アルコールエトキシレート、三級アルコールエトキシレート、アセチレン系一級アルコールエトキシレート、アセチレン系一級ジアルコールエトキシレート、アセチレン系二級アルコールエトキシレート、アセチレン系二級ジアルコールエトキシレート、アセチレン系三級アルコールエトキシレート、アセチレン系三級ジアルコールエトキシレート等が挙げられる。
上記エトキシレートは、少なくともエチレンオキシド(EO)が付加されたものであり、エチレンオキシド(EO)と他のアルキレンオキシド(例えば、プロピレンオキシド(PO))が付加されたものも含む。
Examples of the alkylene oxide adduct structure of the aliphatic alcohol include primary alcohol ethoxylate, secondary alcohol ethoxylate, tertiary alcohol ethoxylate, acetylenic primary alcohol ethoxylate, acetylenic primary dialcohol ethoxylate, acetylenic di-alcohol ethoxylate, Examples include primary alcohol ethoxylates, acetylenic secondary dialcohol ethoxylates, acetylenic tertiary alcohol ethoxylates, acetylenic tertiary dialcohol ethoxylates, and the like.
The above ethoxylates are those to which at least ethylene oxide (EO) is added, and those to which ethylene oxide (EO) and other alkylene oxides (eg, propylene oxide (PO)) are added are also included.
上記脂肪族アルコールのアルキレンオキシド付加体構造は、洗浄剤組成物中で分離しないで均一溶液を形成し得る点で、曇点が25℃以上であることが好ましく、曇点が40℃以上であることがより好ましい。上記曇点は、1%水溶液としたノニオン系界面活性剤を攪拌・温度監視しながら降温させ、目視で透明になる温度を観測する方法により求めることができる。 The alkylene oxide adduct structure of the above-mentioned aliphatic alcohol preferably has a clouding point of 25° C. or higher, more preferably 40° C. or higher, in that a uniform solution can be formed without separating in the detergent composition. is more preferable. The above cloud point can be obtained by a method of lowering the temperature of a 1% aqueous solution of a nonionic surfactant while stirring and monitoring the temperature, and observing the temperature at which the solution becomes transparent visually.
上記ノニオン系界面活性剤(2A-1)としては、具体的には、例えば、ポリアルキレンオキサイドアルキルエーテル系界面活性剤、ポリエチレンオキサイドとポリプロピレンオキサイドからなるブロックポリマー系、アセチレンポリアルキレンオキサイド系の界面活性剤等が挙げられる。なかでも、洗浄剤組成物による金属積層膜の腐食を抑制しうる点で、ポリアルキレンオキサイドアルキルエーテル系界面活性剤、ポリエチレンオキサイドとポリプロピレンオキサイドからなるブロックポリマー系界面活性剤が好ましい。 Specific examples of the nonionic surfactant (2A-1) include, for example, a polyalkylene oxide alkyl ether surfactant, a block polymer system composed of polyethylene oxide and polypropylene oxide, and an acetylene polyalkylene oxide surfactant. agents and the like. Among them, polyalkylene oxide alkyl ether-based surfactants and block polymer-based surfactants composed of polyethylene oxide and polypropylene oxide are preferable because they can suppress corrosion of the metal laminated film due to the detergent composition.
上記ノニオン系界面活性剤(2A-1)としては、上述の第1のCMP工程用後洗浄剤組成物の「化合物(1A)」の項において記載される一般式(2)又は(3)で表される化合物と同様の化合物がより好ましく挙げられる。 The nonionic surfactant (2A-1) is represented by general formula (2) or (3) described in the section “Compound (1A)” of the first post-cleaning composition for the CMP step. Compounds similar to the represented compounds are more preferred.
(2A-2)N-ビニルラクタム系重合体
上記N-ビニルラクタム系重合体(2A-2)としては、上述したN-ビニルラクタム系重合体(1A-2)と同様の化合物が挙げられる。なかでも、上記N-ビニルラクタム系重合体(2A-2)としては、N-ビニルピロリドンを含む単量体成分を重合して得られるポリビニルピロリドンが好ましい。
(2A-2) N-Vinyllactam Polymer As the N-vinyllactam polymer (2A-2), the same compounds as the above N-vinyllactam polymer (1A-2) can be mentioned. Among them, polyvinylpyrrolidone obtained by polymerizing a monomer component containing N-vinylpyrrolidone is preferable as the N-vinyllactam polymer (2A-2).
上記N-ビニルラクタム系重合体(2A-2)の重量平均分子量は、500~50000であることが好ましく、1000~40000であることがより好ましく、2000~30000であることが更に好ましい。
上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(PEO換算)により測定して求めることができる。
The weight average molecular weight of the N-vinyllactam polymer (2A-2) is preferably 500 to 50,000, more preferably 1,000 to 40,000, even more preferably 2,000 to 30,000.
The weight average molecular weight can be obtained by measuring by a gel permeation chromatography (GPC) method (in terms of PEO).
上記ノニオン系界面活性剤及びN-ビニルラクタム系重合体は、1種のみ使用してもよいし、2種以上を併用してもよい。 The above nonionic surfactant and N-vinyllactam polymer may be used alone or in combination of two or more.
上記化合物(2A)(成分(2A))の含有量は、上記第2のCMP工程用後洗浄剤組成物100質量%に対して、0.005~3質量%であることが好ましく、0.01~1質量%であることがより好ましく、0.1~0.5質量%であることが更に好ましい。 The content of the compound (2A) (component (2A)) is preferably 0.005 to 3% by mass with respect to 100% by mass of the second post-CMP step cleaning composition. It is more preferably from 01 to 1% by mass, and even more preferably from 0.1 to 0.5% by mass.
(2B)有機酸化合物
上記第2のCMP工程用後洗浄剤組成物は、有機酸化合物(以下、「有機酸化合物(2B)」又は「成分(2B)」とも称する。)を含むことが好ましい。有機酸化合物を更に含むことにより、有機酸化合物が汚染物質と基板の界面に形成された共有結合を切断し、汚染物を基板表面から除去できると考えられる。加えて、CMP工程後に現れた金属堆積膜表面に有機酸化合物が吸着することで、洗浄液中に共存する化学成分間の電気化学的相互作用を平衡状態とし、金属堆積膜を構成する金属種の腐食電位や腐食電流値を低減させることができると考えられる。
(2B) Organic Acid Compound The second post-CMP cleaning composition preferably contains an organic acid compound (hereinafter also referred to as “organic acid compound (2B)” or “component (2B)”). . By further including the organic acid compound, it is believed that the organic acid compound can break the covalent bond formed at the interface between the contaminant and the substrate and remove the contaminant from the substrate surface. In addition, the adsorption of the organic acid compound on the surface of the deposited metal film that appears after the CMP process brings the electrochemical interaction between the chemical components coexisting in the cleaning solution into an equilibrium state, and the metal species that compose the deposited metal film are eliminated. It is thought that the corrosion potential and corrosion current value can be reduced.
上記有機酸化合物(2B)としては、カルボン酸化合物、アスコルビン酸、フェノール化合物、ホスホン酸、ボロン酸等が好ましく挙げられる。なかでも、工程後に有機酸化合物残渣を純水やアルコールのリンスで容易に除去でき、次工程への悪影響を極力小さくすることができる点で、カルボン酸化合物、アスコルビン酸が好ましく、カルボン酸化合物がより好ましい。 Preferred examples of the organic acid compound (2B) include carboxylic acid compounds, ascorbic acid, phenol compounds, phosphonic acids, boronic acids, and the like. Among them, carboxylic acid compounds and ascorbic acid are preferable in that organic acid compound residues can be easily removed by rinsing with pure water or alcohol after the process, and the adverse effect on the next process can be minimized. more preferred.
上記カルボン酸化合物としては、カルボキシル基を有する有機酸化合物が挙げられ、例えば、酢酸、安息香酸、酪酸、吉草酸、カプロン酸、エナント酸、ヘプチル酸、オクタン酸、ラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸等のモノカルボン酸化合物;シュウ酸、マロン酸、コハク酸、酒石酸、リンゴ酸、マレイン酸、グルコン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、5-ノルボルネンジカルボン酸等のジカルボン酸化合物;クエン酸等のトリカルボン酸化合物;アスパラギン酸、グルタミン酸、グリシン、アラニン、フェニルアラニン、ロイシン、イソロイシン、システイン、メチオニン、チロシン、バリン、トレオニン、セリン、プロリン、トリプトファン、アスパラギン、グルタミン、リシン、アルギニン、ヒスチジン等のアミノ酸;エチレンジアミン四酢酸、プロピレンジアミン四酢酸等のアミノポリカルボン酸;等が挙げられる。また、これらの誘導体を含んでもよい。 Examples of the carboxylic acid compound include organic acid compounds having a carboxyl group. , monocarboxylic acid compounds such as stearic acid; dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, tartaric acid, malic acid, maleic acid, gluconic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, 5-norbornene dicarboxylic acid acid compounds; tricarboxylic acid compounds such as citric acid; aspartic acid, glutamic acid, glycine, alanine, phenylalanine, leucine, isoleucine, cysteine, methionine, tyrosine, valine, threonine, serine, proline, tryptophan, asparagine, glutamine, lysine, arginine, amino acids such as histidine; aminopolycarboxylic acids such as ethylenediaminetetraacetic acid and propylenediaminetetraacetic acid; and the like. Moreover, these derivatives may also be included.
なかでも、上記カルボン酸化合物は、ジカルボン酸化合物、トリカルボン酸化合物、アミノポリカルボン酸であることが好ましく、クエン酸、シュウ酸、5-ノルボルネンジカルボン酸、エチレンジアミン四酢酸であることがより好ましく、クエン酸、シュウ酸、5-ノルボルネンジカルボン酸、エチレンジアミン四酢酸であることが更に好ましい。 Among them, the carboxylic acid compound is preferably a dicarboxylic acid compound, a tricarboxylic acid compound, an aminopolycarboxylic acid, more preferably citric acid, oxalic acid, 5-norbornene dicarboxylic acid, ethylenediaminetetraacetic acid, citric acid, Acids, oxalic acid, 5-norbornenedicarboxylic acid, and ethylenediaminetetraacetic acid are more preferred.
上記有機酸化合物は、1種のみ用いてもよいし、2種以上併用してもよい。 The above organic acid compounds may be used alone or in combination of two or more.
上記有機酸化合物(2B)(成分(2B))の含有量は、上記第2のCMP工程用後洗浄剤組成物100質量%に対して、0.05~10質量%であることが好ましく、0.1~7質量%であることがより好ましく、0.5~4質量%であることが更に好ましい。 The content of the organic acid compound (2B) (component (2B)) is preferably 0.05 to 10% by mass with respect to 100% by mass of the second post-CMP step cleaning composition. It is more preferably 0.1 to 7% by mass, even more preferably 0.5 to 4% by mass.
(2C)pH調整剤
上記第2のCMP工程用後洗浄剤組成物は、pH調整剤(以下、「pH調整剤(2C)」又は「成分(2C)」とも称する。)を含むことにより、水中において未酸化状態での化学種の安定性を向上させることができる。
第2の本発明において使用するpH調整剤(2C)としては、所望のpHに調整することができる化合物であれば特に限定されず、公知の酸性化合物、又は、塩基性化合物が挙げられる。なかでも、水の分解による酸素の発生や金属成分の洗浄液への溶解に伴う水素の発生を抑制できる点で、上記pH調整剤(2C)は、塩基性pH調整剤であることが好ましい。上記第2のCMP工程用後洗浄剤組成物を塩基性に調整することで、ウェハ表面の腐食抑制効果をより一層高めることができる。
(2C) pH adjuster The post-cleaning composition for the second CMP step contains a pH adjuster (hereinafter also referred to as “pH adjuster (2C)” or “component (2C)”), It can improve the stability of chemical species in the unoxidized state in water.
The pH adjuster (2C) used in the second aspect of the present invention is not particularly limited as long as it is a compound capable of adjusting the pH to a desired value, and examples thereof include known acidic compounds and basic compounds. Among them, the pH adjuster (2C) is preferably a basic pH adjuster because it can suppress the generation of oxygen due to the decomposition of water and the generation of hydrogen due to dissolution of the metal component in the cleaning liquid. By adjusting the second post-CMP cleaning composition to be basic, the effect of suppressing corrosion on the wafer surface can be further enhanced.
上記酸性化合物としては、例えば、硝酸、硫酸、塩酸、リン酸、ホウ酸等が挙げられる。 Examples of the acidic compound include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and boric acid.
上記塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機水酸化物;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン等のアルカノールアミンや、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、N,N-ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミン等のアルキルアミンや、アニリン、トルイジン等の芳香族アミンや、ピロール、ピリジン、ピコリン、ルチジン等の含窒素複素環式化合物等の有機アミン;上述した有機アミンの塩(有機アミン塩);水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化トリメチル-2-ヒドロキシエチルアンモニウム(コリン)、水酸化トリエチル(ヒドロキシエチル)アンモニウム、水酸化ジメチルビス(2-ヒドロキシエチル)アンモニウム等の第4級アンモニウム塩;炭酸アンモニウム、炭酸水素アンモニウム、カルバミン酸アンモニウム等のアンモニウム塩;アンモニア等が挙げられる。なかでも、酸化ケイ素及び/又は窒化ケイ素を含む膜表面のエッチングが抑制できることから、水酸化物、有機アミン、有機アミン塩、第四級アンモニウム塩、アンモニウム塩が好ましく、水酸化物、有機アミン、第四級アンモニウム塩、アンモニウム塩がより好ましい。 Examples of the basic compound include inorganic hydroxides such as sodium hydroxide and potassium hydroxide; alkanolamines such as monoethanolamine, diethanolamine, triethanolamine and monoisopropanolamine; methylamine, dimethylamine, trimethylamine; Alkylamines such as ethylamine, diethylamine, triethylamine, ethylenediamine, N,N-diisopropylethylamine, tetramethylethylenediamine, and hexamethylenediamine; aromatic amines such as aniline and toluidine; and nitrogen-containing complexes such as pyrrole, pyridine, picoline, and lutidine. organic amines such as cyclic compounds; salts of the above-mentioned organic amines (organic amine salts); tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, trimethyl-2-hydroxyethylammonium hydroxide (choline), quaternary ammonium salts such as triethyl(hydroxyethyl)ammonium hydroxide and dimethylbis(2-hydroxyethyl)ammonium hydroxide; ammonium salts such as ammonium carbonate, ammonium hydrogencarbonate and ammonium carbamate; and ammonia. Among them, hydroxides, organic amines, organic amine salts, quaternary ammonium salts, and ammonium salts are preferable because etching of the film surface containing silicon oxide and/or silicon nitride can be suppressed, and hydroxides, organic amines, Quaternary ammonium salts and ammonium salts are more preferred.
上記pH調整剤(2C)は、1種のみ用いてもよいし、2種以上併用してもよい。 The pH adjuster (2C) may be used alone or in combination of two or more.
上記pH調整剤(2C)(成分(2C))の含有量は、上記第2のCMP工程用後洗浄剤組成物100質量%に対して、0.01~15質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.5~5質量%であることが更に好ましい。 The content of the pH adjuster (2C) (component (2C)) is preferably 0.01 to 15% by mass with respect to 100% by mass of the second post-CMP step cleaning composition. It is more preferably 0.1 to 10% by mass, even more preferably 0.5 to 5% by mass.
(2D)酸化剤
上記第2のCMP工程用後洗浄剤組成物は、更に、酸化剤を含んでもよいが、金属腐食を抑制する観点では、酸化剤を含まないことが好ましい。
上記酸化剤(2D)としては、例えば、過酸化水素、オゾン、硝酸、亜硝酸、過硫酸、重クロム酸、過マンガン酸、それらの塩等が挙げられる。なかでも、半導体分野で求められる高純度品の入手の容易性や廃棄の容易性の点で、過酸化水素が好ましい。
(2D) Oxidizing Agent The second post-CMP cleaning composition may further contain an oxidizing agent, but preferably does not contain an oxidizing agent from the viewpoint of suppressing metal corrosion.
Examples of the oxidizing agent (2D) include hydrogen peroxide, ozone, nitric acid, nitrous acid, persulfuric acid, dichromic acid, permanganic acid, and salts thereof. Among them, hydrogen peroxide is preferable from the viewpoint of easy availability of high-purity products required in the field of semiconductors and ease of disposal.
上記酸化剤(2D)(成分(2D))の含有量は、上記第2のCMP工程用後洗浄剤組成物100質量%に対して、1.0質量%以下であることが好ましい。上記酸化剤の含有量は、金属膜の腐食原因となるおそれの観点から、上記第2のCMP工程用後洗浄剤組成物100質量%に対して、0.5質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましく、0.05質量%以下であることが更により好ましく、0.03質量%以下であることが特に好ましく、0質量%であることが最も好ましい。 The content of the oxidizing agent (2D) (component (2D)) is preferably 1.0% by mass or less with respect to 100% by mass of the second post-CMP step cleaning composition. The content of the oxidizing agent is more preferably 0.5% by mass or less with respect to 100% by mass of the second post-CMP cleaning composition, from the viewpoint of causing corrosion of the metal film. It is preferably 0.1% by mass or less, even more preferably 0.05% by mass or less, particularly preferably 0.03% by mass or less, and most preferably 0% by mass. preferable.
(2E)他の成分
上記第2のCMP工程用後洗浄剤組成物は、上述した成分(2A)、成分(2B)、成分(2C)及び成分(2D)以外に、必要に応じて他の成分(2E)を含んでもよい。上記他の成分(2E)としては、例えば、溶媒、キレート剤、アニオン系界面活性剤、カチオン系界面活性剤、腐食抑制剤等が挙げられる。これらの含有量は、適宜設定することができる。
(2E) Other components The post-cleaning composition for the second CMP process may optionally contain other components in addition to the components (2A), (2B), (2C) and (2D) described above. Component (2E) may also be included. Examples of the other component (2E) include solvents, chelating agents, anionic surfactants, cationic surfactants, corrosion inhibitors, and the like. These contents can be set appropriately.
上記第2のCMP工程用後洗浄剤組成物において使用される溶媒としては、例えば、水、N-メチル-2-ピロリジノンやN,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性有機溶剤、低級アルコール、芳香族アルコールやグリコール等のプロトン性有機溶剤等が挙げられる。なかでも、上記溶媒は、水を含むことが好ましい。上記溶媒は、水と、アルコール等の他の溶剤とを含む混合液等であってもよい。
上記溶媒は1種のみ使用してもよく、2種以上併用してもよい。
Examples of solvents used in the second post-CMP cleaning composition include water, aprotic polar organic solvents such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, and dimethylsulfoxide; Examples include protic organic solvents such as lower alcohols, aromatic alcohols and glycols. Especially, it is preferable that the said solvent contains water. The solvent may be a mixed liquid or the like containing water and another solvent such as alcohol.
One of the above solvents may be used alone, or two or more thereof may be used in combination.
上記第2のCMP工程用後洗浄剤組成物において使用されるキレート剤としては、例えば、N,N,N’,N’-エチレンジアミンテトラキス(メチレンホスホン酸)、グリシン-N,N-ビス(メチレンホスホン酸)、ニトリロトリス(メチレンホスホン酸)等のホスホン酸系キレート剤、メタンチオール、チオフェノール、グルタチオン等のチオール系キレート剤、トリフェニルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン等が挙げられる。上記キレート剤は1種のみ使用してもよく、2種以上併用してもよい。 Examples of the chelating agent used in the second post-cleaning composition for the CMP step include N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid), glycine-N,N-bis(methylene phosphonic acid), phosphonic acid-based chelating agents such as nitrilotris (methylene phosphonic acid), thiol-based chelating agents such as methanethiol, thiophenol, glutathione, triphenylphosphine, 1,2-bis(diphenylphosphino)ethane, etc. mentioned. The above chelating agents may be used alone or in combination of two or more.
上記第2のCMP工程用後洗浄剤組成物において使用されるアニオン系界面活性剤、及び、カチオン系界面活性剤としては、上述の第1のCMP工程用後洗浄剤組成物の項において記載されるアニオン系界面活性剤、カチオン系界面活性剤と同様のアニオン系界面活性剤、カチオン系界面活性剤が挙げられる。 The anionic surfactant and the cationic surfactant used in the second post-cleaning composition for the CMP process are described in the section on the post-cleaning composition for the first CMP process. An anionic surfactant similar to the cationic surfactant, an anionic surfactant similar to the cationic surfactant, and a cationic surfactant.
上記第2のCMP工程用後洗浄剤組成物において使用される腐食抑制剤としては、例えば、ベンゾトリアゾール、3-アミノトリアゾール、トリアルキルアミン、アンモニア、尿酸、メラミン、ウレア及びチオウレア等の含窒素有機化合物、ポリエチレングリコール、ポリビニルアルコール等の水溶性ポリマー、炭素数4以下のアルキルアルコール系化合物、クロム酸塩、モリブデン酸塩、タングステン酸塩、亜硝酸塩等の酸化被膜型防錆剤、重合リン酸塩、亜鉛塩、含硫黄有機化合物等の沈澱被膜型防錆剤、アルカノールアミン、アルキレンアミンエチレンオキシド付加物、アルキルリン酸エステル塩、各種界面活性剤等の吸着被膜型防錆剤等が挙げられ、なかでも、含窒素有機化合物が好ましく、アゾール系化合物がより好ましく、ジアゾール系化合物、イミダゾール系化合物、トリアゾール系化合物、テトラゾール系化合物、チアゾール系化合物、ベンゾトリアゾール系化合物、及びそれらの誘導体が更に好ましい。
上記腐食抑制剤は、1種のみ用いてもよいし、2種以上併用してもよい。なかでも、上記腐食抑制剤は、ベンゾトリアゾール系化合物が好ましく、ベンゾトリアゾールが特に好ましい。
Examples of corrosion inhibitors used in the second post-CMP process cleaning composition include nitrogen-containing organic compounds such as benzotriazole, 3-aminotriazole, trialkylamine, ammonia, uric acid, melamine, urea and thiourea. compounds, polyethylene glycol, water-soluble polymers such as polyvinyl alcohol, alkyl alcohol compounds with 4 or less carbon atoms, oxide film type rust inhibitors such as chromates, molybdates, tungstates, nitrites, polymerized phosphates , zinc salts, sulfur-containing organic compounds, and other precipitation film-type rust inhibitors; However, nitrogen-containing organic compounds are preferred, azole compounds are more preferred, and diazole compounds, imidazole compounds, triazole compounds, tetrazole compounds, thiazole compounds, benzotriazole compounds, and derivatives thereof are more preferred.
The above corrosion inhibitors may be used alone or in combination of two or more. Among them, the corrosion inhibitor is preferably a benzotriazole-based compound, and particularly preferably benzotriazole.
上記第2のCMP工程用後洗浄剤組成物は、25℃におけるpH(水素イオン濃度)が7.5以上の水溶液であることが好ましい。上記第2のCMP工程用後洗浄剤組成物のpHが上述の範囲であると、金属膜の腐食化を抑制することができる。
上記第2のCMP工程用後洗浄剤組成物のpH(25℃)は、8.0以上であることがより好ましく、8.5以上であることが更に好ましい。
上記第2のCMP工程用後洗浄剤組成物のpHの調整は、上述したpH調整剤の含有量を適宜調整することにより、行うことができる。
上記pHは、pHメータ(例えば、F71S、堀場製作所製)を用いて求めることができる。
The second post-CMP cleaning composition is preferably an aqueous solution having a pH (hydrogen ion concentration) of 7.5 or higher at 25°C. When the pH of the second post-CMP cleaning composition is within the above range, corrosion of the metal film can be suppressed.
The pH (25° C.) of the second post-CMP cleaning composition is more preferably 8.0 or higher, and even more preferably 8.5 or higher.
The adjustment of the pH of the second post-CMP cleaning composition can be carried out by appropriately adjusting the content of the pH adjusting agent described above.
The above pH can be determined using a pH meter (eg, F71S, manufactured by Horiba Ltd.).
<調製方法>
本発明の第1のCMP工程用後洗浄剤組成物は、上述した成分(1A)、成分(1B)、成分(1C)、及び、必要に応じて成分(1D)を混合することにより調製することができる。また、本発明の第2のCMP工程用後洗浄剤組成物は、上述した成分(2A)、成分(2B)、成分(2C)、及び、必要に応じて成分(2D)や(2E)を混合することにより調製することができる。
上記混合は、特に限定されず、公知の撹拌機、混合機、分散機等を用いた混合・分散手段により行うことができる。
<Preparation method>
The first post-cleaning composition for the CMP process of the present invention is prepared by mixing the component (1A), component (1B), component (1C), and optionally component (1D) described above. be able to. Further, the second post-CMP cleaning composition of the present invention contains the components (2A), (2B), (2C) and, if necessary, components (2D) and (2E). It can be prepared by mixing.
The above-mentioned mixing is not particularly limited, and can be performed by mixing/dispersing means using a known stirrer, mixer, disperser, or the like.
<使用方法>
本発明のCMP工程用後洗浄剤組成物は、半導体製造プロセスにおけるCMP後洗浄の工程において使用されるものである。より具体的には、本発明のCMP工程用後洗浄剤組成物は、半導体製造プロセスにおけるCMP工程後の半導体基板(ウェハ)を洗浄する工程において使用されることが好ましい。
本発明のCMP工程用後洗浄剤組成物を用いたCMP後洗浄方法は、上記CMP工程用後洗浄剤組成物を用いてCMP後の半導体基板の表面を洗浄する工程を含むことが好ましい。
<How to use>
The post-CMP cleaning composition of the present invention is used in the post-CMP cleaning step in the semiconductor manufacturing process. More specifically, the post-CMP cleaning composition of the present invention is preferably used in a step of cleaning a semiconductor substrate (wafer) after a CMP step in a semiconductor manufacturing process.
The post-CMP cleaning method using the post-CMP cleaning composition of the present invention preferably includes the step of cleaning the surface of the semiconductor substrate after CMP using the post-CMP cleaning composition.
上記半導体基板としては、例えば、シリコン、炭化シリコン、窒化シリコン、ガリウム砒素、窒化ガリウム、ガリウムリン、又は、インジウムリン等からなる基板が挙げられる。 Examples of the semiconductor substrate include substrates made of silicon, silicon carbide, silicon nitride, gallium arsenide, gallium nitride, gallium phosphide, or indium phosphide.
上記半導体基板は、金属配線がなされていてもよく、上記金属配線としては、例えば、銅配線、タングステン配線、アルミニウム配線、コバルト配線、ルテニウム配線、又は、これらの金属と他の金属との合金配線等が挙げられる。上記他の金属としては、タングステン、チタン、タンタル、クロム等の金属が挙げられる。 The semiconductor substrate may have metal wiring, and the metal wiring includes, for example, copper wiring, tungsten wiring, aluminum wiring, cobalt wiring, ruthenium wiring, or alloy wiring of these metals and other metals. etc. Other metals include metals such as tungsten, titanium, tantalum, and chromium.
上記半導体基板は、バリアメタル層を含んでいてもよい。例えば、上記半導体基板が銅配線を含む場合、銅の拡散防止のためにバリアメタル層が形成される。上記バリアメタル層としては、タンタル、コバルト、チタン、ルテニウム、及び、これらの金属を含む化合物からなる層が挙げられる。 The semiconductor substrate may include a barrier metal layer. For example, when the semiconductor substrate includes copper wiring, a barrier metal layer is formed to prevent diffusion of copper. Examples of the barrier metal layer include layers made of tantalum, cobalt, titanium, ruthenium, and compounds containing these metals.
また、上記半導体基板は、防食処理されたものであってもよい。防食処理としては、半導体基板の表面を防食剤で処理する方法等が挙げられる。上記防食剤としては、特に限定されず、ベンゾトリアゾール類、イミダゾール類、キナルジン類、キノリン類等の、防食剤として公知の化合物が挙げられる。特に上記第2のCMP工程用後洗浄剤組成物においては、防食効果が高い点で、アゾール系防食剤が好適に用いられる。上記アゾール系防食剤としては、アゾール系、トリアゾール系、テトラゾール系、オキサゾール系、イソオキサゾール系、オキサジアゾール系、チアゾール系、イソチアゾール系、チアジアゾール系等が挙げられる。
上記処理方法としては、特に限定されず、上記半導体基板の表面に防食剤を塗布して乾燥又は加熱して、被膜(保護膜)を形成する等の公知の方法が挙げられる。
Further, the semiconductor substrate may be anticorrosion treated. The anticorrosive treatment includes a method of treating the surface of the semiconductor substrate with an anticorrosive agent. The anticorrosive agent is not particularly limited, and includes compounds known as anticorrosive agents such as benzotriazoles, imidazoles, quinaldines, and quinolines. In particular, in the second post-CMP cleaning composition, an azole anticorrosive agent is preferably used because of its high anticorrosion effect. Examples of the azole-based anticorrosive agents include azole-based, triazole-based, tetrazole-based, oxazole-based, isoxazole-based, oxadiazole-based, thiazole-based, isothiazole-based, and thiadiazole-based anticorrosives.
The treatment method is not particularly limited, and includes known methods such as coating the surface of the semiconductor substrate with an anticorrosive agent and drying or heating to form a coating (protective film).
上記半導体基板は、絶縁膜を含んでいてもよい。上記絶縁膜としては、例えば、p-TEOS熱酸化膜、窒化シリコン(SiN)、窒化炭化シリコン(SiCN)、低誘電率膜Low-k(SiOC、SiC)、コバルトシリサイド(CoSi)等が挙げられる。 The semiconductor substrate may include an insulating film. Examples of the insulating film include p-TEOS thermal oxide film, silicon nitride (SiN), silicon nitride carbide (SiCN), low dielectric constant film Low-k (SiOC, SiC), cobalt silicide (CoSi 2 ), and the like. be done.
CMP工程後の半導体基板の表面には、上述した金属配線や保護膜、絶縁膜等の研磨屑や有機残渣が残留している。 After the CMP process, polishing dust and organic residues such as the metal wiring, protective film, and insulating film described above remain on the surface of the semiconductor substrate.
更に、CMP工程後の半導体基板には、CMP工程において使用される化学研磨剤が残留している場合がある。上記化学研磨剤は、砥粒のスラリーであり、砥粒には、CeO、Fe、SnO、MnO、SiO等の金属酸化物が使用される。従って、CMP工程後の半導体基板の表面には、これらの金属酸化物の残留物が存在する場合がある。
また、上記半導体基板表面には、研磨屑やスラリー中の金属と防食剤とが反応した有機金属錯体等の有機残渣が残留する場合もある。
上記CMP工程は、公知の方法で行うことができる。
Furthermore, the chemical polishing agent used in the CMP process may remain on the semiconductor substrate after the CMP process. The chemical polishing agent is a slurry of abrasive grains, and metal oxides such as CeO 2 , Fe 2 O 3 , SnO 2 , MnO and SiO 2 are used as the abrasive grains. Therefore, residues of these metal oxides may exist on the surface of the semiconductor substrate after the CMP process.
Further, on the surface of the semiconductor substrate, organic residues such as organometallic complexes resulting from the reaction between the metal in the slurry and the anticorrosive agent may remain on the surface of the semiconductor substrate.
The CMP process can be performed by a known method.
本発明のCMP工程用後洗浄剤組成物は、上述した金属残渣や有機残渣が存在するCMP工程後の半導体基板(ウェハ)表面の洗浄に好適に用いられる。本発明のCMP工程用後洗浄剤組成物を用いてこのような残渣が存在する半導体基板の表面を洗浄することにより、上記残渣を除去することができる。また、上記残渣が半導体基板の表面に再付着するのを防ぐことができる。更に、半導体基板の表面が腐食するのを抑制することができる。 The post-CMP cleaning composition of the present invention is suitably used for cleaning the surface of a semiconductor substrate (wafer) after a CMP process on which the metal residue or organic residue described above is present. The residue can be removed by cleaning the surface of the semiconductor substrate on which such residue is present using the post-CMP cleaning composition of the present invention. In addition, it is possible to prevent the residue from redepositing on the surface of the semiconductor substrate. Furthermore, corrosion of the surface of the semiconductor substrate can be suppressed.
このように、本発明のCMP工程用後洗浄剤組成物は、上述した金属残渣や有機残渣が存在する、CMP工程後の半導体基板の洗浄に好適に用いることができる。なかでも、本発明の第1のCMP工程用後洗浄剤組成物は、コバルト、銅、アルミニウム、ルテニウム、窒化チタン、窒化ケイ素、及び、酸化ケイ素からなる群より選択される少なくとも1種を含む化合物が露出しているウェハ表面の洗浄に好適に用いることができ、コバルト、銅、及び、窒化チタンからなる群より選択される少なくとも1種を含む化合物が露出しているウェハ表面の洗浄により好適に用いることができ、コバルト化合物が露出しているウェハ表面の洗浄に更に好適に用いることができる。 Thus, the post-CMP cleaning composition of the present invention can be suitably used for cleaning semiconductor substrates after the CMP process on which the above-mentioned metal residue and organic residue are present. In particular, the first post-CMP cleaning composition of the present invention is a compound containing at least one selected from the group consisting of cobalt, copper, aluminum, ruthenium, titanium nitride, silicon nitride, and silicon oxide. can be suitably used for cleaning the exposed wafer surface, and is more suitable for cleaning the wafer surface exposed to the compound containing at least one selected from the group consisting of cobalt, copper, and titanium nitride. It can be used more preferably for cleaning the wafer surface where the cobalt compound is exposed.
また、特に、セリアを研磨砥粒として用いたCMP工程を行ったウェハ表面では、Si-O-Ce結合が形成され、その結果、セリア(CeO)粒子が残留し易くなるといった問題があった。そのため、過酸化水素水等の取り扱いに注意を要する成分を使用して酸化させることにより、セリア粒子の残留を抑制する方法が用いられていた。しかしながら、本発明の第2のCMP工程用後洗浄剤組成物を用いると、過酸化水素を含まなくても、セリア粒子を良好に除去することができる。このように、上記第2のCMP工程用後洗浄剤組成物は、セリアを研磨砥粒として用いるCMP工程用後洗浄剤組成物であることが好ましい。 In particular, there is a problem that Si--O--Ce bonds are formed on a wafer surface that has undergone a CMP process using ceria as abrasive grains, and as a result, ceria (CeO 2 ) particles tend to remain. . Therefore, there has been used a method of suppressing residual ceria particles by oxidizing with a component such as a hydrogen peroxide solution that requires careful handling. However, when the second post-CMP cleaning composition of the present invention is used, the ceria particles can be satisfactorily removed without containing hydrogen peroxide. Thus, the second post-CMP cleaning composition is preferably a post-CMP cleaning composition using ceria as abrasive grains.
また、上記第2のCMP工程用後洗浄剤組成物は、半導体製造プロセスにおいて、酸化ケイ素及び/又は窒化ケイ素を含む膜表面の洗浄に用いることが好ましい。上記CMP工程用後洗浄剤組成物は、特に、酸化ケイ素及び/又は窒化ケイ素を含む膜表面(基板表面)の洗浄に使用される場合に、上述した残渣の除去や再付着の防止をより一層好適に行うことができる。更に、半導体基板の表面が腐食するのを抑制することができる。 Moreover, the second post-CMP cleaning composition is preferably used for cleaning the surface of a film containing silicon oxide and/or silicon nitride in a semiconductor manufacturing process. The post-CMP cleaning composition is particularly effective in removing the above-mentioned residues and preventing redeposition when used to clean a film surface (substrate surface) containing silicon oxide and/or silicon nitride. It can be done suitably. Furthermore, corrosion of the surface of the semiconductor substrate can be suppressed.
本発明のCMP工程用後洗浄剤組成物を用いてCMP後の基板(ウェハ)表面を洗浄する方法としては、特に限定されず、公知の方法で行えばよく、例えば、CMP工程後の基板(ウェハ)を上記CMP工程用後洗浄剤組成物に浸漬して洗浄する方法や、スピン式やスプレー式、ブラシ洗浄、更には超音波洗浄で洗浄する方法等が挙げられる。また複数の基板を一度に処理するバッチ式であってもよいし、基板を一枚ずつ処理する枚葉式であってもよい。 The method for cleaning the substrate (wafer) surface after CMP using the post-CMP cleaning composition of the present invention is not particularly limited, and may be performed by a known method. Wafers) may be cleaned by immersing them in the post-CMP cleaning composition, or may be cleaned by spinning, spraying, brush cleaning, or ultrasonic cleaning. Also, a batch type in which a plurality of substrates are processed at once, or a single substrate type in which substrates are processed one by one may be used.
本発明のCMP工程用後洗浄剤組成物を用いて基板(ウェハ)表面を洗浄する方法において、洗浄時間は特に限定されず、通常の方法であればよいが、効率性の観点から、例えば、10~300秒、好ましくは15~250秒である。上記洗浄時間とは、上記CMP工程用後洗浄剤組成物と基板表面との接触時間を意味する。
また、上記洗浄を行う場合の温度としては、特に限定されず、例えば、5~80℃が挙げられ、好ましくは10~70℃、より好ましくは10~65℃が挙げられる。雰囲気としては、洗浄剤組成物中の溶存酸素を低減させる点で、窒素ガス、アルゴンガス等の流通による不活性雰囲気下とすることが好ましい。
In the method of cleaning a substrate (wafer) surface using the post-CMP cleaning composition of the present invention, the cleaning time is not particularly limited, and a conventional method may be used. 10 to 300 seconds, preferably 15 to 250 seconds. The cleaning time means the contact time between the post-CMP cleaning composition and the substrate surface.
The temperature for the above washing is not particularly limited, and is, for example, 5 to 80.degree. C., preferably 10 to 70.degree. C., more preferably 10 to 65.degree. The atmosphere is preferably an inert atmosphere in which nitrogen gas, argon gas, or the like is circulated in order to reduce dissolved oxygen in the cleaning composition.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を、それぞれ意味するものとする。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited only to these examples. Unless otherwise specified, "part" means "part by mass" and "%" means "% by mass".
<洗浄剤組成物の調製>
実施例1
表1に示す配合となるように、水に、ノニオン系界面活性剤、脂肪族アミン類、カルボン酸塩化合物を混合し、その後、pH(25℃)が11となるように、水酸化カリウムを添加して、実施例1の洗浄剤組成物を調製した。なお、表中の「比率」は、有効成分(水以外の全成分)中の各成分の質量割合を示す。得られた洗浄剤組成物について、後述する洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co膜の腐食電位(Co ECORR):-640mV、Co膜の腐食電流値(Co ICORR):1μA/cm、TiN膜の腐食電位(TiN ECORR):-620mV、TiN膜の腐食電流値(TiN ICORR):ND(電流値が測定下限以下)、Co/TiN界面の腐食電位差(ΔECORR):20mVであった。
<Preparation of detergent composition>
Example 1
A nonionic surfactant, an aliphatic amine, and a carboxylate compound are mixed with water so as to have the formulation shown in Table 1, and then potassium hydroxide is added so that the pH (25 ° C.) becomes 11. was added to prepare the cleaning composition of Example 1. The "ratio" in the table indicates the mass ratio of each component in the active ingredients (all components other than water). The obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation, which will be described later. In the electrochemical evaluation, corrosion potential of Co film (Co E CORR ): -640 mV, corrosion current value of Co film (Co I CORR ): 1 μA/cm 2 , corrosion potential of TiN film (TiN E CORR ): -620 mV, Corrosion current value of TiN film (TiN I CORR ): ND (current value is below the lower limit of measurement), corrosion potential difference (ΔE CORR ) of Co/TiN interface: 20 mV.
実施例2
表1に示す配合となるように、実施例1と同様にして洗浄剤組成物を調製し、得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-640mV、Co ICORR:8μA/cm、TiN ECORR:-650mV、TiN ICORR:ND、Co/TiN界面のΔECORR:10mVであった。
Example 2
A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation. In the electrochemical evaluation, Co E CORR : -640 mV, Co I CORR : 8 μA/cm 2 , TiN E CORR : -650 mV, TiN I CORR : ND, and ΔE CORR at the Co/TiN interface: 10 mV.
実施例3
表1に示す配合となるように、実施例1と同様にして洗浄剤組成物を調製し、得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-660mV、Co ICORR:3μA/cm、TiN ECORR:-690mV、TiN ICORR:ND、Co/TiN界面のΔECORR:30mVであった。
Example 3
A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation. In electrochemical evaluation, Co E CORR : -660 mV, Co I CORR : 3 μA/cm 2 , TiN E CORR : -690 mV, TiN I CORR : ND, and ΔE CORR at the Co/TiN interface: 30 mV.
実施例4
表1に示す配合となるように、実施例1と同様にして洗浄剤組成物を調製し、得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-490mV、Co ICORR:ND、TiN ECORR:-470mV、TiN ICORR:ND、Co/TiN界面のΔECORR:20mVであった。
Example 4
A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation. In the electrochemical evaluation, Co E CORR : -490 mV, Co I CORR : ND, TiN E CORR : -470 mV, TiN I CORR : ND, and ΔE CORR at the Co/TiN interface: 20 mV.
実施例5
表1に示す配合となるように、実施例1と同様にして洗浄剤組成物を調製し、得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-600mV、Co ICORR:4μA/cm、TiN ECORR:-640mV、TiN ICORR:ND、Co/TiN界面のΔECORR:40mVであった。
Example 5
A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation. In electrochemical evaluation, Co E CORR : -600 mV, Co I CORR : 4 μA/cm 2 , TiN E CORR : -640 mV, TiN I CORR : ND, and ΔE CORR at the Co/TiN interface: 40 mV.
実施例6
表1に示す配合となるように、水に、ノニオン系界面活性剤、脂肪族アミン類、含窒素複素環化合物、及び、他の添加剤を混合し、その後、pH(25℃)が11となるように、水酸化トリメチル-2-ヒドロキシエチルアンモニウム(「コリン」、46%水溶液)を添加して、洗浄剤組成物を調製した。得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co膜の腐食電位(Co ECORR):-500mV、Co膜の腐食電流値(Co ICORR):2μA/cm、Cu膜の腐食電位(Cu ECORR):-440mV、Cu膜の腐食電流値(Cu ICORR):10μA/cm、Co/Cu界面の腐食電位差(ΔECORR):60mVであった。
Example 6
Nonionic surfactants, aliphatic amines, nitrogen-containing heterocyclic compounds, and other additives are mixed with water so as to have the formulation shown in Table 1, and then the pH (25 ° C.) is 11. A detergent composition was prepared by adding trimethyl-2-hydroxyethylammonium hydroxide (“choline”, 46% aqueous solution) so that Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition. In electrochemical evaluation, corrosion potential of Co film (Co E CORR ): -500 mV, corrosion current value of Co film (Co I CORR ): 2 μA/cm 2 , corrosion potential of Cu film (Cu E CORR ): -440 mV, Corrosion current value of Cu film (Cu I CORR ): 10 μA/cm 2 Corrosion potential difference (ΔE CORR ) of Co/Cu interface: 60 mV.
実施例7
表1に示す配合となるように、水に、ノニオン系界面活性剤、脂肪族アミン類、含窒素複素環化合物、及び、他の添加剤を混合し、その後、pH(25℃)が11となるように、アンモニア(28%水溶液)を添加して、洗浄剤組成物を調製した。得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-500mV、Co ICORR:2μA/cm、Cu ECORR:-440mV、Cu ICORR:10μA/cm、Co/Cu界面のΔECORR:60mVであった。
Example 7
Nonionic surfactants, aliphatic amines, nitrogen-containing heterocyclic compounds, and other additives are mixed with water so as to have the formulation shown in Table 1, and then the pH (25 ° C.) is 11. Ammonia (28% aqueous solution) was added to prepare a cleaning composition. Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition. In the electrochemical evaluation, Co E CORR : −500 mV, Co I CORR : 2 μA/cm 2 , Cu E CORR : −440 mV, Cu I CORR : 10 μA/cm 2 , and ΔE CORR at the Co/Cu interface: 60 mV.
実施例8
表1に示す配合となるように、水に、N-ビニルラクタム系重合体、脂肪族アミン類、含窒素複素環化合物、及び、他の添加剤を混合し、その後、pH(25℃)が11となるように、水酸化カリウムを添加して、洗浄剤組成物を調製した。得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-440mV、Co ICORR:<1μA/cm、Cu ECORR:-460mV、Cu ICORR:5μA/cm、Co/Cu界面のΔECORR:20mVであった。
Example 8
The N-vinyllactam polymer, aliphatic amines, nitrogen-containing heterocyclic compound, and other additives were mixed with water so as to obtain the formulation shown in Table 1, and then the pH (25°C) was adjusted. A detergent composition was prepared by adding potassium hydroxide so as to obtain 11. Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition. Electrochemical evaluation showed Co E CORR : −440 mV, Co I CORR : <1 μA/cm 2 , Cu E CORR : −460 mV, Cu I CORR : 5 μA/cm 2 , and ΔE CORR at the Co/Cu interface: 20 mV. .
実施例9
表1に示す配合となるように、水に、N-ビニルラクタム系重合体、脂肪族アミン類、含窒素複素環化合物、及び、他の添加剤を混合し、その後、pH(25℃)が11となるように、水酸化トリメチル-2-ヒドロキシエチルアンモニウム(「コリン」、46%水溶液)を添加して、洗浄剤組成物を調製した。得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-490mV、Co ICORR:10μA/cm、Cu ECORR:-460mV、Cu ICORR:5μA/cm、Co/Cu界面のΔECORR:30mVであった。
Example 9
The N-vinyllactam polymer, aliphatic amines, nitrogen-containing heterocyclic compound, and other additives were mixed with water so as to obtain the formulation shown in Table 1, and then the pH (25°C) was adjusted. A detergent composition was prepared by adding trimethyl-2-hydroxyethylammonium hydroxide (“choline”, 46% aqueous solution) to 11. Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition. In the electrochemical evaluation, Co E CORR : −490 mV, Co I CORR : 10 μA/cm 2 , Cu E CORR : −460 mV, Cu I CORR : 5 μA/cm 2 , and ΔE CORR at the Co/Cu interface: 30 mV.
実施例10
表1に示す配合となるように、水に、N-ビニルラクタム系重合体、脂肪族アミン類、含窒素複素環化合物、及び、他の添加剤を混合し、その後、pH(25℃)が11となるように、アンモニア(28%水溶液)を添加して、洗浄剤組成物を調製した。得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-440mV、Co ICORR:<1μA/cm、Cu ECORR:-460mV、Cu ICORR:5μA/cm、Co/Cu界面のΔECORR:20mVであった。
Example 10
The N-vinyllactam polymer, aliphatic amines, nitrogen-containing heterocyclic compound, and other additives were mixed with water so as to obtain the formulation shown in Table 1, and then the pH (25°C) was adjusted. Ammonia (28% aqueous solution) was added to give a detergent composition of 11. Detergency performance evaluation and electrochemical evaluation were performed on the obtained detergent composition. Electrochemical evaluation showed Co E CORR : −440 mV, Co I CORR : <1 μA/cm 2 , Cu E CORR : −460 mV, Cu I CORR : 5 μA/cm 2 , and ΔE CORR at the Co/Cu interface: 20 mV. .
比較例1
表1に示す配合となるように、実施例1と同様にして洗浄剤組成物を調製し、得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-800mV、Co ICORR:306μA/cm、TiN ECORR:-670mV、TiN ICORR:0.9μA/cm、Co/TiN界面のΔECORR:130mVであった。
Comparative example 1
A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation. In the electrochemical evaluation, Co E CORR : −800 mV, Co I CORR : 306 μA/cm 2 , TiN E CORR : −670 mV, TiN I CORR : 0.9 μA/cm 2 , and ΔE CORR at the Co/TiN interface: 130 mV. rice field.
比較例2
表1に示す配合となるように、実施例1と同様にして洗浄剤組成物を調製し、得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-65mV、Co ICORR:54μA/cm、TiN ECORR:-415mV、TiN ICORR:0.55μA/cm、Co/TiN界面のΔECORR:320mVであった。
Comparative example 2
A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation. In the electrochemical evaluation, Co E CORR : −65 mV, Co I CORR : 54 μA/cm 2 , TiN E CORR : −415 mV, TiN I CORR : 0.55 μA/cm 2 , and ΔE CORR at the Co/TiN interface: 320 mV. rice field.
比較例3
表1に示す配合となるように、実施例1と同様にして洗浄剤組成物を調製し、得られた洗浄剤組成物について、洗浄性能評価及び電気化学評価を行った。電気化学評価において、Co ECORR:-700mV、Co ICORR:15μA/cm、TiN ECORR:-720mV、TiN ICORR:ND、Co/TiN界面のΔECORR:20mVであった。
Comparative example 3
A cleaning composition was prepared in the same manner as in Example 1 so as to have the formulation shown in Table 1, and the obtained cleaning composition was subjected to cleaning performance evaluation and electrochemical evaluation. In the electrochemical evaluation, Co E CORR : -700 mV, Co I CORR : 15 μA/cm 2 , TiN E CORR : -720 mV, TiN I CORR : ND, and ΔE CORR at the Co/TiN interface: 20 mV.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
なお、表1中の化合物は、具体的には下記のとおりである。
DEAP:3-(ジエチルアミノ)プロピルアミン
EN:エチレンジアミン
TEP:テトラエチレンペンタミン
PO:オレイン酸カリウム
EDTA:エチレンジアミン四酢酸
ノニオン系界面活性剤A-1:
In addition, the compounds in Table 1 are specifically as follows.
DEAP: 3-(diethylamino)propylamine EN: ethylenediamine TEP: tetraethylenepentamine PO: potassium oleate EDTA: ethylenediaminetetraacetic acid nonionic surfactant A-1:
Figure JPOXMLDOC01-appb-C000006
(式中、RはHである。R及びRはいずれも炭素数1~12の直鎖アルキル基であり、RとRの炭素数の合計が11~13である。Rは-C-、R10は-CHCH(CH)-を表し、x=12、y=3であり、xとyは平均付加モル数を表す。)を満たす複数の化合物の混合物。
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 6 is H. Both R 7 and R 8 are linear alkyl groups having 1 to 12 carbon atoms, and the total number of carbon atoms of R 7 and R 8 is 11 to 13. R 9 represents —C 2 H 4 —, R 10 represents —CH 2 CH(CH 3 )—, x=12, y=3, and x and y represent the average number of added moles. A mixture of compounds.
ノニオン系界面活性剤A-2: Nonionic surfactant A-2:
Figure JPOXMLDOC01-appb-C000007
(式中、R11及びR12はメチル基を表し、R13及びR14はイソブチル基を表し、R19は-C≡C-を表し、R15及びR17は-C-を表し、x=4、y=0である。)
Figure JPOXMLDOC01-appb-C000007
(wherein R 11 and R 12 represent a methyl group, R 13 and R 14 represent an isobutyl group, R 19 represents -C≡C-, R 15 and R 17 represent -C 2 H 4 - where x=4 and y=0.)
ノニオン系界面活性剤A-3: Nonionic surfactant A-3:
Figure JPOXMLDOC01-appb-C000008
(式中、R20は-C-を表し、R21は-CHCH(CH)-を表し、x=23、y=0、n=11である。)
Figure JPOXMLDOC01-appb-C000008
(Wherein, R 20 represents —C 2 H 4 —, R 21 represents —CH 2 CH(CH 3 )—, x=23, y=0, n=11.)
N-ビニルラクタム系重合体A-4:ポリビニルピロリドン(重量平均分子量7200)
N-ビニルラクタム系重合体A-5:ポリビニルピロリドン(重量平均分子量22000)
N-ビニルラクタム系重合体A-6:ポリビニルピロリドン(重量平均分子量3000)
N-vinyllactam polymer A-4: polyvinylpyrrolidone (weight average molecular weight 7200)
N-vinyllactam polymer A-5: polyvinylpyrrolidone (weight average molecular weight 22000)
N-vinyl lactam polymer A-6: polyvinylpyrrolidone (weight average molecular weight 3000)
<洗浄性能評価> 
(Co-BTA粒子分散液の調製)
0.01mol/L硝酸純水溶液中に200μmol/Lの硝酸コバルト(II)を溶かした溶液1Lと、0.01mol/L硝酸純水溶液中に200μmol/Lのベンゾトリアゾールを溶かした溶液1Lをそれぞれ用意し、室温で両者を混合してコバルト(II)イオンとベンゾトリアゾールの不溶性会合体(以下「Co-BTA粒子」と称する。)が分散した水溶液2Lを得た。得られた水溶液に、水酸化カリウム粉末を添加して水溶液のpHを8.0に調整して、Co-BTA粒子分散液を得た。
<Washing performance evaluation>
(Preparation of Co-BTA particle dispersion)
Prepare 1 L of a solution of 200 μmol/L cobalt (II) nitrate in a 0.01 mol/L pure nitric acid aqueous solution and 1 L of a solution of 200 μmol/L benzotriazole in a 0.01 mol/L nitric acid pure aqueous solution. Then, the two were mixed at room temperature to obtain 2 L of an aqueous solution in which insoluble aggregates of cobalt (II) ions and benzotriazole (hereinafter referred to as "Co-BTA particles") were dispersed. Potassium hydroxide powder was added to the resulting aqueous solution to adjust the pH of the aqueous solution to 8.0 to obtain a Co-BTA particle dispersion.
(洗浄評価用基板の作製)
シリコンウエハ上に、Co、TiN、SiN、又はSiOをそれぞれ約5~200nmの厚みで堆積させた、1cm四方の試験片を準備した。上記で得られたCo-BTA粒子分散液100mLをビーカーに入れ、磁気回転子を用いて300rpmにて攪拌しながら、上記試験片を上記分散液中に1分間浸漬した。浸漬後、取り出した試験片を純水ですすぎ洗いした後、空気乾燥により水分を除去し、洗浄評価用基板を得た。
(Preparation of cleaning evaluation substrate)
A 1 cm square test piece was prepared by depositing Co, TiN, SiN, or SiO 2 to a thickness of about 5 to 200 nm, respectively, on a silicon wafer. 100 mL of the Co-BTA particle dispersion obtained above was placed in a beaker, and the test piece was immersed in the dispersion for 1 minute while stirring at 300 rpm using a magnetic rotor. After the immersion, the test piece taken out was rinsed with pure water and air-dried to remove moisture, thereby obtaining a substrate for cleaning evaluation.
(顕微鏡観察)
上記で得られた洗浄評価用基板の表面状態を、原子間力顕微鏡(AFM)を用いて観察した。使用機器として、XE-300P(Park Systems社製)を用い、PPP-NCHR AFMプローブを用いて非接触モード(観察条件:スキャンレート0.5Hz、観察エリア5μm×5μm)で観察した。
(Microscopic observation)
The surface state of the cleaning evaluation substrate obtained above was observed using an atomic force microscope (AFM). XE-300P (manufactured by Park Systems) was used as the equipment, and observation was performed in a non-contact mode (observation conditions: scan rate 0.5 Hz, observation area 5 μm×5 μm) using a PPP-NCHR AFM probe.
(洗浄処理)
上記で得られた実施例又は比較例の洗浄剤組成物100mL中に、上記洗浄評価用基板を浸漬し、超音波洗浄装置(8895、Cole-Parmer社製)を用いて、1分間の超音波照射(処理条件:出力115W、40KHz、ビーカー内温度:25℃)による洗浄処理を行った。超音波照射後、取り出した洗浄評価用基板を純水ですすぎ洗いして、上記と同様の方法で洗浄評価用基板の表面状態を観察した。得られた洗浄評価用基板表面のAFM観察画像を図1に示す。
(washing treatment)
The substrate for cleaning evaluation was immersed in 100 mL of the cleaning composition of the example or comparative example obtained above, and subjected to ultrasonic waves for 1 minute using an ultrasonic cleaner (8895, manufactured by Cole-Parmer). A cleaning treatment was performed by irradiation (treatment conditions: output 115 W, 40 KHz, beaker internal temperature: 25°C). After ultrasonic irradiation, the substrate for cleaning evaluation was taken out and rinsed with pure water, and the surface state of the substrate for cleaning evaluation was observed in the same manner as described above. FIG. 1 shows an AFM observation image of the obtained substrate surface for cleaning evaluation.
図1より、洗浄処理前のAFM観察においてはCo膜、TiN膜、SiN膜、SiO膜のいずれも白色異物が付着しており、種々の粒径のCo-BTA粒子による汚染が起きていることが確認できた。実施例1~3の洗浄剤組成物を用いて洗浄処理を行った場合、Co膜、TiN膜、SiN膜、SiO膜のいずれの場合もCo-BTA粒子をきれいに除去でき、洗浄力に優れることがわかった。一方、比較例1~2の洗浄剤組成物を用いた場合は、Co膜上に顕著な白色異物残存が確認され、洗浄力が不十分であることがわかった。 From FIG. 1, in the AFM observation before the cleaning treatment, white foreign matter adhered to all of the Co film, TiN film, SiN film, and SiO 2 film, and contamination with Co-BTA particles of various particle sizes occurred. I was able to confirm that. When the cleaning compositions of Examples 1 to 3 were used for cleaning, the Co—BTA particles could be completely removed from any of the Co film, TiN film, SiN film, and SiO 2 film, and the cleaning power was excellent. I understood it. On the other hand, when the cleaning compositions of Comparative Examples 1 and 2 were used, significant white foreign matter remained on the Co film, indicating insufficient cleaning power.
<電気化学評価>
シリコンウエハ上に、Co、Cu、TiN、SiN、又はSiOをそれぞれ約5~1500nmの厚みで堆積させた、1cm四方の試験片を準備した。準備した試験片を、pH=10.0に調整した10mmol/Lのベンゾトリアゾールの純水溶液を100mL入れたビーカーに入れて、磁気回転子で300rpmにて攪拌しながら上記試験片を1分間放置した後、取り出して純水で注ぎ洗いして電気化学評価用試験片を得た。
プラチナカウンター電極とSCE標準電極を付属した3電極ガラスセル中の作用電極として上記電気化学評価用試験片を取り付け、ポテンシオスタットに接続後に、ガラスセルを実施例又は比較例の洗浄剤組成物で満たし、5mV/sのスキャンレートで掃引して、±0.5Vのオープンサーキットポテンシャルでの電位幅で動的分極曲線を取得した。更にターフェル外挿法により腐食電位と腐食電流値を算出した。また、得られた値から、下記の基準にて、電気化学評価を行った。結果を表2に示す。
腐食電流値(ICORR
〇:10μA/cm以下
×:10μA/cm
腐食電位差(ΔECORR
〇:60mV以下
×:60mV超
<Electrochemical evaluation>
A 1 cm square test piece was prepared by depositing Co, Cu, TiN, SiN, or SiO 2 with a thickness of about 5 to 1500 nm on a silicon wafer. The prepared test piece was placed in a beaker containing 100 mL of a 10 mmol/L pure aqueous solution of benzotriazole adjusted to pH=10.0, and the test piece was left for 1 minute while stirring at 300 rpm with a magnetic rotor. After that, it was taken out and washed with pure water to obtain a test piece for electrochemical evaluation.
After attaching the above test piece for electrochemical evaluation as a working electrode in a three-electrode glass cell equipped with a platinum counter electrode and an SCE standard electrode and connecting it to a potentiostat, the glass cell was treated with the detergent composition of the example or comparative example. Dynamic polarization curves were acquired over a voltage range with an open circuit potential of ±0.5 V by filling and sweeping at a scan rate of 5 mV/s. Furthermore, the corrosion potential and corrosion current values were calculated by the Tafel extrapolation method. Also, based on the obtained values, electrochemical evaluation was performed according to the following criteria. Table 2 shows the results.
Corrosion current value (I CORR )
○: 10 μA/cm 2 or less ×: 10 μA/cm 2 super corrosion potential difference (ΔE CORR )
○: 60 mV or less ×: over 60 mV
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
腐食が起こらない洗浄剤組成物としては、腐食電流値が10μA/cm以下であること、及び、異種金属界面の腐食電位差が60mV以下であることを同時に満たすことが必要である。実施例1~10の洗浄剤組成物を用いた場合では、この評価基準が同時に満たされ、腐食の発生を極めて良好に抑制することができると判断できる。これに対して比較例1~3の洗浄剤組成物を用いた場合は、評価基準の少なくとも一方の基準を満たさなかった。 A detergent composition that does not corrode must simultaneously satisfy a corrosion current value of 10 μA/cm 2 or less and a corrosion potential difference of 60 mV or less at the interface of dissimilar metals. When the detergent compositions of Examples 1 to 10 were used, this evaluation criterion was satisfied at the same time, and it can be judged that the occurrence of corrosion can be suppressed extremely well. On the other hand, when the detergent compositions of Comparative Examples 1 to 3 were used, at least one of the evaluation criteria was not satisfied.
実施例11~18、比較例4~6
<洗浄剤組成物の調製>
表3に示すような、洗浄剤組成物100質量%における各成分の質量%となるように、水に、ノニオン系界面活性剤、N-ビニルラクタム系重合体、有機酸化合物、カルバミン酸アンモニウム、炭酸アンモニウム、及び、酸化剤を混合した後、pHが12(25℃)となるように水酸化カリウムを添加して、実施例及び比較例の洗浄剤組成物を調製した。
Examples 11-18, Comparative Examples 4-6
<Preparation of detergent composition>
Nonionic surfactant, N-vinyllactam polymer, organic acid compound, ammonium carbamate, After mixing ammonium carbonate and an oxidizing agent, potassium hydroxide was added to adjust the pH to 12 (25° C.) to prepare detergent compositions of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
なお、表3中の化合物は、具体的には下記のとおりである。
ノニオン系界面活性剤A:上記実施例1で使用のノニオン系界面活性剤A-1と同じ化合物である。
ノニオン系界面活性剤B:
In addition, the compounds in Table 3 are specifically as follows.
Nonionic surfactant A: The same compound as the nonionic surfactant A-1 used in Example 1 above.
Nonionic surfactant B:
Figure JPOXMLDOC01-appb-C000011
(式中、nはエチレンオキサイドの平均付加モル数を表し、n=9.5。)
Figure JPOXMLDOC01-appb-C000011
(Wherein, n represents the average number of added moles of ethylene oxide, n=9.5.)
N-ビニルラクタム系重合体:ポリビニルピロリドン(重量平均分子量7200)
EDTA:エチレンジアミン四酢酸
N-vinyllactam polymer: polyvinylpyrrolidone (weight average molecular weight 7200)
EDTA: ethylenediaminetetraacetic acid
得られた実施例及び比較例の洗浄剤組成物について、下記の洗浄性能評価を行った。
<洗浄性能評価>
(調製例1)正帯電型セリアナノ粒子分散液A-1の調製
平均粒径90nmのコロイダルセリア(製品名HC90、ソルベイ社製)を0.05質量%の濃度で超純水中に分散させながら、プロリン(シグマアルドリッチ社製)を0.025質量%の濃度になるように添加して攪拌し、最後に硝酸でpH=4.0に調整することで正帯電型セリアナノ粒子分散液A-1を得た。
The following cleaning performance evaluation was performed on the obtained cleaning compositions of Examples and Comparative Examples.
<Washing performance evaluation>
(Preparation Example 1) Preparation of positively charged ceria nanoparticle dispersion A-1 Colloidal ceria (product name: HC90, manufactured by Solvay) having an average particle diameter of 90 nm was dispersed in ultrapure water at a concentration of 0.05% by mass. , Proline (manufactured by Sigma-Aldrich) was added to a concentration of 0.025% by mass, stirred, and finally adjusted to pH = 4.0 with nitric acid to prepare a positively charged ceria nanoparticle dispersion liquid A-1. got
(調製例2)正帯電型セリアナノ粒子分散液A-2の調製
平均粒径30nmのコロイダルセリア(製品名HC30、ソルベイ社製)を0.05質量%の濃度で超純水中に分散させながら、プロリン(シグマアルドリッチ社製)を0.025質量%の濃度になるように添加して攪拌し、最後に硝酸でpH=4.0に調整することで正帯電型セリアナノ粒子分散液A-2を得た。
(Preparation Example 2) Preparation of Positively Charged Ceria Nanoparticle Dispersion Liquid A-2 Colloidal ceria (product name: HC30, manufactured by Solvay) having an average particle diameter of 30 nm was dispersed in ultrapure water at a concentration of 0.05% by mass. , Proline (manufactured by Sigma-Aldrich) was added to a concentration of 0.025% by mass, stirred, and finally adjusted to pH = 4.0 with nitric acid to obtain a positively charged ceria nanoparticle dispersion liquid A-2. got
(調製例3)負帯電型セリアナノ粒子分散液B-1の調製
平均粒径90nmのコロイダルセリア(製品名HC90、ソルベイ社製)を0.05質量%の濃度で超純水中に分散させながら、クエン酸(シグマアルドリッチ社製)を0.025質量%の濃度になるように添加して攪拌し、最後に硝酸でpH=5.0に調整することで負帯電型セリアナノ粒子分散液B-1を得た。
(Preparation Example 3) Preparation of Negatively Charged Ceria Nanoparticle Dispersion B-1 Colloidal ceria (product name: HC90, manufactured by Solvay) having an average particle diameter of 90 nm was dispersed in ultrapure water at a concentration of 0.05% by mass. , citric acid (manufactured by Sigma-Aldrich) was added to a concentration of 0.025% by mass, stirred, and finally adjusted to pH = 5.0 with nitric acid to prepare a negatively charged ceria nanoparticle dispersion liquid B-. got 1.
(調製例4)負帯電型セリアナノ粒子分散液B-2の調製
平均粒径30nmのコロイダルセリア(製品名HC30、ソルベイ社製)を0.05質量%の濃度で超純水中に分散させながら、クエン酸(シグマアルドリッチ社製)を0.025質量%の濃度になるように添加して攪拌し、最後に硝酸でpH=5.0に調整することで負帯電型セリアナノ粒子分散液B-2を得た。
(Preparation Example 4) Preparation of Negatively Charged Ceria Nanoparticle Dispersion B-2 Colloidal ceria (product name: HC30, manufactured by Solvay) having an average particle diameter of 30 nm was dispersed in ultrapure water at a concentration of 0.05% by mass. , citric acid (manufactured by Sigma-Aldrich) was added to a concentration of 0.025% by mass, stirred, and finally adjusted to pH = 5.0 with nitric acid to prepare a negatively charged ceria nanoparticle dispersion liquid B-. got 2.
(調製例5)洗浄性能評価用SiO基板の作製
シリコンウエハ上にSiOを約10~50nmの厚みで堆積させた1cm四方の試験片を準備し、100mLの上記正帯電型セリアナノ粒子分散液A-1又はA-2をビーカー中に入れて、磁気回転子で300rpmにて攪拌しながら、試験片を1分間浸漬した。取り出した試験片を純水ですすぎ洗いして室温乾燥して、洗浄性能評価基板A-1、A-2とした。基板の表面状態は原子間力顕微鏡(AFM)を用いて観察した。使用機器はXE-300P(Park Systems社製)で、PPP-NCHR AFMプローブを用いて非接触モード(観察条件:スキャンレート0.5Hz、観察エリア5μm×5μm)とした。
(Preparation Example 5) Preparation of SiO 2 substrate for cleaning performance evaluation A 1 cm square test piece was prepared by depositing SiO 2 to a thickness of about 10 to 50 nm on a silicon wafer, and 100 mL of the positively charged ceria nanoparticle dispersion was prepared. A-1 or A-2 was placed in a beaker, and the test piece was immersed for 1 minute while stirring at 300 rpm with a magnetic rotor. The removed test pieces were rinsed with pure water and dried at room temperature to obtain cleaning performance evaluation substrates A-1 and A-2. The surface state of the substrate was observed using an atomic force microscope (AFM). The equipment used was XE-300P (manufactured by Park Systems), and a PPP-NCHR AFM probe was used in non-contact mode (observation conditions: scan rate 0.5 Hz, observation area 5 μm×5 μm).
(調製例6)洗浄性能評価用SiN基板の作製
シリコンウエハ上にSiNを約10~50nmの厚みで堆積させた1cm四方の試験片を準備し、100mLの上記負帯電型セリアナノ粒子分散液B-1又はB-2をビーカー中に入れて、磁気回転子で300rpmにて攪拌しながら、試験片を1分間浸漬した。取り出した試験片を純水ですすぎ洗いして室温乾燥して、洗浄性能評価基板B-1、B-2とした。基板の表面状態は原子間力顕微鏡(AFM)を用いて観察した。使用機器はXE-300P(Park Systems社製)で、PPP-NCHR AFMプローブを用いて非接触モード(観察条件:スキャンレート0.5Hz、観察エリア5μm×5μm)とした。
(Preparation Example 6) Preparation of SiN substrate for cleaning performance evaluation A 1 cm square test piece was prepared by depositing SiN to a thickness of about 10 to 50 nm on a silicon wafer, and 100 mL of the negatively charged ceria nanoparticle dispersion B- was prepared. 1 or B-2 was placed in a beaker and the test piece was immersed for 1 minute while stirring at 300 rpm with a magnetic rotor. The removed test pieces were rinsed with pure water and dried at room temperature to obtain cleaning performance evaluation substrates B-1 and B-2. The surface state of the substrate was observed using an atomic force microscope (AFM). The equipment used was XE-300P (manufactured by Park Systems), and a PPP-NCHR AFM probe was used in non-contact mode (observation conditions: scan rate 0.5 Hz, observation area 5 μm×5 μm).
(洗浄処理)
上記実施例又は比較例の洗浄剤組成物100mLをビーカー中に秤量し、上記洗浄性能評価基板を洗浄剤組成物中に浸漬して、超音波洗浄装置(8895、Cole-Parmer社製)を用いて、1分間の超音波照射(処理条件:出力115W、40KHz、ビーカー内温度:25℃)による洗浄処理を行った。超音波照射後、取り出した洗浄性能評価基板を純水ですすぎ洗いして、上記と同様の方法で洗浄性能評価基板の表面状態を観察した。
(washing treatment)
100 mL of the cleaning composition of the above example or comparative example was weighed into a beaker, the cleaning performance evaluation board was immersed in the cleaning composition, and an ultrasonic cleaner (8895, manufactured by Cole-Parmer) was used. Then, cleaning treatment was performed by ultrasonic irradiation for 1 minute (treatment conditions: output 115 W, 40 kHz, temperature in beaker: 25°C). After the ultrasonic wave irradiation, the cleaning performance evaluation substrate taken out was rinsed with pure water, and the surface state of the cleaning performance evaluation substrate was observed in the same manner as described above.
図2に、実施例11~12、17~18と、比較例4~5の洗浄剤組成物を用いて、洗浄性能評価用SiO基板(評価基板A-1、A-2)を洗浄処理した場合と、未洗浄の場合の、上記基板の表面状態を表すAFM画像を示す。これらの洗浄剤組成物は、過酸化水素を含まない。
未洗浄の洗浄性能評価基板の表面状態からは、90nmのコロイダルセリア(セリアナノ粒子分散液A-1)で汚染された場合は、白色の異物が確認され、30nmのコロイダルセリア(セリアナノ粒子分散液A-2)で汚染された場合では異物のサイズが細かくなり、且つ密度が増していることが分かり、粒径の細かいコロイダルセリアほど吸着しやすいことがうかがえる。
ノニオン系界面活性剤A又はN-ビニルラクタム系重合体と、有機酸化合物と、pH調整剤との3種類を全て含有する実施例11~12、17~18の洗浄剤組成物を用いて洗浄処理を行った場合では、コロイダルセリアの粒径が30nmの細かい場合であってもきれいに除去できることが確認できた。ノニオン系界面活性剤A又はN-ビニルラクタム系重合体、有機酸化合物、pH調整剤の1つ以上が欠けた比較例4~5の洗浄剤組成物を用いた場合では、コロイダルセリアの粒径が90nmの場合でも洗浄残渣が確認された。
FIG. 2 shows cleaning treatment of SiO 2 substrates for cleaning performance evaluation (evaluation substrates A-1 and A-2) using the cleaning compositions of Examples 11-12, 17-18 and Comparative Examples 4-5. 2 shows AFM images showing the surface condition of the substrate with and without cleaning. These cleaning compositions do not contain hydrogen peroxide.
From the surface state of the unwashed cleaning performance evaluation substrate, when contaminated with 90 nm colloidal ceria (ceria nanoparticle dispersion liquid A-1), white foreign matter was confirmed, and 30 nm colloidal ceria (ceria nanoparticle dispersion liquid A It can be seen that in the case of contamination in -2), the size of the foreign matter is reduced and the density is increased.
Washing using the detergent compositions of Examples 11 to 12 and 17 to 18 containing all three types of nonionic surfactant A or N-vinyllactam polymer, organic acid compound, and pH adjuster. It was confirmed that even if the colloidal ceria had a fine particle size of 30 nm, it could be removed cleanly when the treatment was performed. When using the detergent compositions of Comparative Examples 4 and 5 lacking one or more of the nonionic surfactant A, the N-vinyllactam polymer, the organic acid compound, and the pH adjuster, the particle size of the colloidal ceria was 90 nm, cleaning residues were observed.
図3に、実施例13~15、比較例6の洗浄剤組成物を用いて、洗浄性能評価用SiO基板(評価基板A-1、A-2)を洗浄処理した場合の、上記基板の表面状態を表すAFM画像を示す。これらの洗浄剤組成物は、過酸化水素を含む。実施例13~15の洗浄剤組成物を使用した場合は、良好な洗浄性能が確認され、コロイダルセリアの粒径が30nmの細かい場合であってもきれいに除去でき、優れた洗浄性能を有することが確認された。
一方、ノニオン系界面活性剤Bを含む比較例6の洗浄剤組成物を使用した場合は、コロイダルセリアの粒径が90nmの場合でも洗浄残渣が確認された。
FIG. 3 shows the results of cleaning the cleaning performance evaluation SiO 2 substrates (evaluation substrates A-1 and A-2) using the cleaning compositions of Examples 13 to 15 and Comparative Example 6. 2 shows an AFM image representing the surface state. These cleaning compositions contain hydrogen peroxide. When the cleaning compositions of Examples 13 to 15 were used, good cleaning performance was confirmed, and even when the colloidal ceria had a fine particle size of 30 nm, it was possible to cleanly remove the particles, demonstrating excellent cleaning performance. confirmed.
On the other hand, when the cleaning composition of Comparative Example 6 containing the nonionic surfactant B was used, cleaning residues were observed even when the colloidal ceria had a particle size of 90 nm.
図4に、実施例11、13、16の洗浄剤組成物を用いて、洗浄性能評価用SiN基板(評価基板B-1、B-2)を洗浄処理した場合と、未洗浄の場合の、上記基板の表面状態を表すAFM画像を示す。
実施例の洗浄剤組成物は、未洗浄基板と比較して、コロイダルセリアの粒径が90nmの場合であっても、コロイダルセリアの粒径が30nmの場合であっても、共に優れた洗浄性能を有することが確認された。
FIG. 4 shows the case where the cleaning performance evaluation SiN substrates (evaluation substrates B-1 and B-2) were cleaned using the cleaning compositions of Examples 11, 13, and 16, and when they were not cleaned. 4 shows an AFM image showing the surface condition of the substrate.
The cleaning compositions of Examples exhibited excellent cleaning performance when compared with uncleaned substrates, both when the particle size of colloidal ceria was 90 nm and when the particle size of colloidal ceria was 30 nm. It was confirmed to have
以上より、成分(2A)脂肪族アルコールのアルキレンオキシド付加体構造を有するノニオン系界面活性剤又はN-ビニルラクタム系重合体と、(2B)有機酸化合物と、(2C)pH調整剤とを含有する洗浄剤組成物の高い洗浄性能が示された。過酸化水素などの酸化剤を含有する洗浄剤組成物も優れた洗浄性能を示すが、性能水準は含有しないものと同等であった。酸化剤の使用は、金属部品の腐食や人体への健康被害が懸念されることから、含有する必要はないと判断できた。 From the above, it contains component (2A) a nonionic surfactant or N-vinyllactam polymer having an alkylene oxide adduct structure of an aliphatic alcohol, (2B) an organic acid compound, and (2C) a pH adjuster. The high cleaning performance of the cleaning composition for cleaning was shown. Cleaner compositions containing an oxidizing agent such as hydrogen peroxide also showed excellent cleaning performance, but the performance levels were comparable to those without. It was determined that the use of oxidizing agents was not necessary due to concerns about corrosion of metal parts and health hazards to the human body.
実施例19~21
表4に示すような洗浄剤組成物100質量%における各成分の質量%となるように、水に、ノニオン系界面活性剤、有機酸化合物、カルバミン酸アンモニウムを混合した後、pHが12(25℃)となるように、水酸化テトラメチルアンモニウム(25%水溶液)、水酸化トリメチル-2-ヒドロキシエチルアンモニウム(「コリン」、50%水溶液)、又は、水酸化ジメチルビス(2-ヒドロキシエチル)アンモニウム(50%水溶液)を添加して、洗浄剤組成物を調製した。
Examples 19-21
After mixing a nonionic surfactant, an organic acid compound, and ammonium carbamate with water so that the mass % of each component in 100 mass % of the cleaning composition as shown in Table 4, the pH is 12 (25 ° C.), tetramethylammonium hydroxide (25% aqueous solution), trimethyl-2-hydroxyethylammonium hydroxide (“choline”, 50% aqueous solution), or dimethylbis(2-hydroxyethyl)ammonium hydroxide (50% aqueous solution) was added to prepare a detergent composition.
実施例22~23
表4に示すような洗浄剤組成物100質量%における各成分の質量%となるように、水に、ノニオン系界面活性剤、有機酸化合物を混合した後、pHが12(25℃)となるように、水酸化ジメチルビス(2-ヒドロキシエチル)アンモニウム(50%水溶液)を添加して、洗浄剤組成物を調製した。
Examples 22-23
After mixing the nonionic surfactant and the organic acid compound with water so that the mass % of each component in 100 mass % of the cleaning composition as shown in Table 4, the pH becomes 12 (25 ° C.). A detergent composition was prepared by adding dimethylbis(2-hydroxyethyl)ammonium hydroxide (50% aqueous solution) as follows.
比較例7
表4に示すような洗浄剤組成物100質量%における各成分の質量%となるように、水に、過酸化水素(30%水溶液)、アンモニア(29%水溶液)を混合して、洗浄剤組成物を調製した。
Comparative example 7
Hydrogen peroxide (30% aqueous solution) and ammonia (29% aqueous solution) were mixed with water so that the mass % of each component in 100% by mass of the cleaning composition as shown in Table 4 was mixed to obtain a cleaning composition. prepared the product.
得られた洗浄剤組成物と上記実施例11の洗浄剤組成物について、下記の方法でエッチングレートの評価を行った。結果を表4に示す。
<エッチンググレートの評価>
各洗浄剤組成物5mLをボトルに入れ、これに酸化ケイ素(SiO)膜付きウエハ1.5cmを浸漬し、室温で6日間放置した。その後、処理体を洗浄剤組成物中から取り出し、水で洗浄後、断面をSEM観察し、酸化ケイ素膜の膜厚を計測した。処理前後の酸化ケイ素膜厚からエッチングレートを算出した。
The obtained cleaning composition and the cleaning composition of Example 11 were evaluated for etching rate by the following method. Table 4 shows the results.
<Evaluation of etching grade>
5 mL of each cleaning composition was placed in a bottle, and a 1.5 cm 2 silicon oxide (SiO 2 ) film-coated wafer was immersed therein and left at room temperature for 6 days. Thereafter, the treated body was taken out from the cleaning agent composition, washed with water, and then the cross section was observed with an SEM to measure the film thickness of the silicon oxide film. The etching rate was calculated from the silicon oxide film thickness before and after the treatment.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
表4より、成分(2A)脂肪族アルコールのアルキレンオキシド付加体構造を有するノニオン系界面活性剤及び/又はN-ビニルラクタム系重合体と、(2B)有機酸化合物と、(2C)pH調整剤とを含有する洗浄剤組成物は、酸化ケイ素膜に対するエッチングレートに優れることが認められた。
 
From Table 4, component (2A) a nonionic surfactant and / or N-vinyl lactam polymer having an alkylene oxide adduct structure of an aliphatic alcohol, (2B) an organic acid compound, and (2C) a pH adjuster It was confirmed that the cleaning composition containing and is excellent in the etching rate for silicon oxide films.

Claims (15)

  1. (1A)炭素数6以上のアルコールのアルキレンオキシド付加体を含むノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも1種の化合物と、
    (1B)脂肪族アミン類と、
    (1C)含窒素複素環化合物及びカルボン酸塩化合物からなる群より選択される少なくとも一種の腐食抑制剤とを含む
    ことを特徴とする半導体製造プロセスにおけるCMP工程用後洗浄剤組成物。
    (1A) at least one compound selected from the group consisting of a nonionic surfactant containing an alkylene oxide adduct of an alcohol having 6 or more carbon atoms, and an N-vinyl lactam polymer;
    (1B) aliphatic amines;
    (1C) A post-CMP cleaning composition for a semiconductor manufacturing process, comprising at least one corrosion inhibitor selected from the group consisting of a nitrogen-containing heterocyclic compound and a carboxylate compound.
  2. 前記脂肪族アミン類は、分子量が2000以下であることを特徴とする請求項1に記載のCMP工程用後洗浄剤組成物。 2. The post-CMP cleaning composition according to claim 1, wherein the aliphatic amine has a molecular weight of 2000 or less.
  3. 前記脂肪族アミン類は、下記一般式(1)で表されるアミン化合物、及び/又は、ポリアルキレンイミンを含むことを特徴とする請求項1又は2に記載のCMP工程用後洗浄剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、R及びRは、同一又は異なって、水素原子、アルキル基、又は、-R-(NH-R-NHを表す。R及びRは、同一又は異なって、炭素数1~6のアルキレン基を表す。nは0~100の整数を表す。)
    3. The post-CMP cleaning composition according to claim 1, wherein the aliphatic amines comprise an amine compound represented by the following general formula (1) and/or a polyalkyleneimine. .
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 , R 2 and R 3 are the same or different and represent a hydrogen atom, an alkyl group, or —R 4 —(NH—R 5 ) n —NH 2. R 4 and R 5 is the same or different and represents an alkylene group having 1 to 6 carbon atoms, and n represents an integer of 0 to 100.)
  4. 前記含窒素複素環化合物は、ピロール、ピリジン、トリアゾール、トリアジン、プリン、及び、これらの誘導体からなる群より選択される少なくとも一種を含むことを特徴とする請求項1~3のいずれかに記載のCMP工程用後洗浄剤組成物。 4. The nitrogen-containing heterocyclic compound according to any one of claims 1 to 3, characterized in that it contains at least one selected from the group consisting of pyrrole, pyridine, triazole, triazine, purine, and derivatives thereof. A post-cleaning composition for a CMP process.
  5. 前記カルボン酸塩化合物は、脂肪酸塩を含むことを特徴とする請求項1~4のいずれかに記載のCMP工程用後洗浄剤組成物。 The post-CMP cleaning composition according to any one of claims 1 to 4, wherein the carboxylate compound contains a fatty acid salt.
  6. 前記CMP工程用後洗浄剤組成物は、コバルト、銅、アルミニウム、ルテニウム、窒化チタン、窒化ケイ素、及び、酸化ケイ素からなる群より選択される少なくとも1種を含む化合物が露出しているウェハ表面の洗浄に用いられることを特徴とする請求項1~5のいずれかに記載のCMP工程用後洗浄剤組成物。 The post-CMP cleaning composition is applied to the wafer surface where a compound containing at least one selected from the group consisting of cobalt, copper, aluminum, ruthenium, titanium nitride, silicon nitride, and silicon oxide is exposed. The post-cleaning composition for a CMP process according to any one of claims 1 to 5, which is used for cleaning.
  7. (2A)脂肪族アルコールのアルキレンオキシド付加体構造を有するノニオン系界面活性剤、及び、N-ビニルラクタム系重合体からなる群より選択される少なくとも一種の化合物と、
    (2B)有機酸化合物と、
    (2C)pH調整剤とを含む
    ことを特徴とする、CMP工程用後洗浄剤組成物。
    (2A) at least one compound selected from the group consisting of a nonionic surfactant having an alkylene oxide adduct structure of an aliphatic alcohol, and an N-vinyl lactam polymer;
    (2B) an organic acid compound;
    (2C) A post-cleaning composition for a CMP process, comprising a pH adjuster.
  8. 酸化剤の含有量が、前記CMP工程用後洗浄剤組成物100質量%に対して、1.0質量%以下であることを特徴とする請求項7に記載のCMP工程用後洗浄剤組成物。 8. The post-CMP cleaning composition according to claim 7, wherein the content of the oxidizing agent is 1.0% by mass or less with respect to 100% by mass of the post-CMP cleaning composition. .
  9. 前記脂肪族アルコールのアルキレンオキシド付加体構造は、炭素数6以上の脂肪族アルコールのアルキレンオキシド付加体構造を有し、2種以上のアルキレンオキシドのブロックポリマー構造を含むことを特徴とする請求項7又は8に記載のCMP工程用後洗浄剤組成物。 8. The alkylene oxide adduct structure of the aliphatic alcohol has an alkylene oxide adduct structure of an aliphatic alcohol having 6 or more carbon atoms and includes block polymer structures of two or more alkylene oxides. 9. or the post-cleaning composition for CMP process according to 8.
  10. 前記脂肪族アルコールは、炭素数6以上の、二級又は三級アルキルアルコールであることを特徴とする請求項7~9のいずれかに記載のCMP工程用後洗浄剤組成物。 The post-CMP cleaning composition according to any one of claims 7 to 9, wherein the aliphatic alcohol is a secondary or tertiary alkyl alcohol having 6 or more carbon atoms.
  11. 前記pH調整剤は、塩基性pH調整剤であることを特徴とする請求項7~10のいずれかに記載のCMP工程用後洗浄剤組成物。 The post-CMP cleaning composition according to any one of claims 7 to 10, wherein the pH adjuster is a basic pH adjuster.
  12. 前記塩基性pH調整剤は、水酸化物、有機アミン、有機アミン塩、及び、アンモニウム塩からなる群より選択される少なくとも一種の化合物を含むことを特徴とする請求項11に記載のCMP工程用後洗浄剤組成物。 12. The CMP process according to claim 11, wherein the basic pH adjuster comprises at least one compound selected from the group consisting of hydroxides, organic amines, organic amine salts, and ammonium salts. Post cleanser composition.
  13. 前記有機酸化合物は、カルボン酸化合物、及び、アスコルビン酸からなる群より選択される少なくとも一種の化合物を含むことを特徴とする請求項7~12のいずれかに記載のCMP工程用後洗浄剤組成物。 The post-CMP cleaning composition according to any one of claims 7 to 12, wherein the organic acid compound contains at least one compound selected from the group consisting of a carboxylic acid compound and ascorbic acid. thing.
  14. セリアを研磨砥粒として用いるCMP工程用後洗浄剤組成物であることを特徴とする、請求項7~13のいずれかに記載のCMP工程用後洗浄剤組成物。 14. The post-CMP cleaning composition according to any one of claims 7 to 13, which is a post-CMP cleaning composition using ceria as abrasive grains.
  15. 半導体製造プロセスにおいて、酸化ケイ素及び/又は窒化ケイ素を含む膜表面の洗浄に用いることを特徴とする請求項7~14のいずれかに記載のCMP工程用後洗浄剤組成物。

     
    15. The post-CMP cleaning composition according to any one of claims 7 to 14, which is used for cleaning the surface of a film containing silicon oxide and/or silicon nitride in a semiconductor manufacturing process.

PCT/JP2022/026835 2021-07-08 2022-07-06 Cleaning agent composition for post-cmp step WO2023282287A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021113727A JP2023009993A (en) 2021-07-08 2021-07-08 Composition of post cleaning agent for cmp process
JP2021-113727 2021-07-08
JP2021113728A JP2023009994A (en) 2021-07-08 2021-07-08 Composition of post cleaning agent for cmp process
JP2021-113728 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282287A1 true WO2023282287A1 (en) 2023-01-12

Family

ID=84801748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026835 WO2023282287A1 (en) 2021-07-08 2022-07-06 Cleaning agent composition for post-cmp step

Country Status (2)

Country Link
TW (1) TW202311514A (en)
WO (1) WO2023282287A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526070A (en) * 2013-05-17 2016-09-01 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Compositions and methods for removing ceria particles from surfaces
JP2017120844A (en) * 2015-12-28 2017-07-06 花王株式会社 Acid detergent composition for semiconductor device substrate
JP2018503723A (en) * 2015-01-05 2018-02-08 インテグリス・インコーポレーテッド Chemical mechanical polishing formulation and method of use
WO2019073931A1 (en) * 2017-10-10 2019-04-18 三菱ケミカル株式会社 Cleaning fluids, cleaning method, and production method for semiconductor wafer
WO2019171790A1 (en) * 2018-03-08 2019-09-12 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing surface treatment composition, surface treatment method and method for producing semiconductor substrate
JP2020504460A (en) * 2017-01-18 2020-02-06 インテグリス・インコーポレーテッド Compositions and methods for removing ceria particles from surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526070A (en) * 2013-05-17 2016-09-01 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Compositions and methods for removing ceria particles from surfaces
JP2018503723A (en) * 2015-01-05 2018-02-08 インテグリス・インコーポレーテッド Chemical mechanical polishing formulation and method of use
JP2017120844A (en) * 2015-12-28 2017-07-06 花王株式会社 Acid detergent composition for semiconductor device substrate
JP2020504460A (en) * 2017-01-18 2020-02-06 インテグリス・インコーポレーテッド Compositions and methods for removing ceria particles from surfaces
WO2019073931A1 (en) * 2017-10-10 2019-04-18 三菱ケミカル株式会社 Cleaning fluids, cleaning method, and production method for semiconductor wafer
WO2019171790A1 (en) * 2018-03-08 2019-09-12 株式会社フジミインコーポレーテッド Surface treatment composition, method for producing surface treatment composition, surface treatment method and method for producing semiconductor substrate

Also Published As

Publication number Publication date
TW202311514A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
EP3588535B1 (en) Post chemical mechanical planarization (cmp) cleaning
JP6488740B2 (en) Substrate cleaning liquid for semiconductor device and method for cleaning semiconductor device
JP6203525B2 (en) Cleaning liquid composition
KR20080025697A (en) Copper passivating post-chemical mechanical polishing cleaning composition and method of use
WO2014123126A1 (en) Cleaning liquid for substrate for semiconductor devices and method for cleaning substrate for semiconductor devices
JP2008529280A (en) Novel polishing slurry and non-abrasive solution containing a multifunctional activator
CN103228775A (en) Substrate cleaner for copper wiring, and method for cleaning copper wiring semiconductor substrate
JP2015165562A (en) Substrate cleaning liquid for semiconductor devices and method for cleaning substrate for semiconductor devices
TW201704441A (en) Treatment composition for chemical mechanical polishing, chemical mechanical polishing method, and cleaning method
JP2017524249A (en) Post-CMP cleaning composition and related methods
US11066627B2 (en) Cleaning agent composition for semiconductor device substrate, method of cleaning semiconductor device substrate, method of manufacturing semiconductor device substrate, and semiconductor device substrate
KR20230171453A (en) cleaning composition
WO2023282287A1 (en) Cleaning agent composition for post-cmp step
JP2014036136A (en) Substrate cleaning liquid for semiconductor device and cleaning method of substrate for semiconductor device
JP2013035935A (en) Cleaning liquid and cleaning method of substrate for semiconductor device
JP2023009993A (en) Composition of post cleaning agent for cmp process
TWI787225B (en) Cleaning liquid composition
WO2020255603A1 (en) Polishing liquid and chemical-mechanical polishing method
JP2023009994A (en) Composition of post cleaning agent for cmp process
TW202140765A (en) Cleaning liquid and method for cleaning semiconductor substrate
JP2016086094A (en) Cleaning liquid for semiconductor device substrate and cleaning method for semiconductor device substrate
JP2020174083A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
WO2020255581A1 (en) Polishing fluid and chemical mechanical polishing method
JP7271776B1 (en) Aqueous cleaning solution and method for cleaning electronic device
JP6635213B2 (en) Semiconductor device substrate cleaning liquid and method for cleaning semiconductor device substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837701

Country of ref document: EP

Kind code of ref document: A1