WO2023282258A1 - Rebar tying robot - Google Patents

Rebar tying robot Download PDF

Info

Publication number
WO2023282258A1
WO2023282258A1 PCT/JP2022/026699 JP2022026699W WO2023282258A1 WO 2023282258 A1 WO2023282258 A1 WO 2023282258A1 JP 2022026699 W JP2022026699 W JP 2022026699W WO 2023282258 A1 WO2023282258 A1 WO 2023282258A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing bar
control unit
bar binding
wire
robot
Prior art date
Application number
PCT/JP2022/026699
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 長尾
大晴 野尻
瀛 楊
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021113074A external-priority patent/JP2023009634A/en
Priority claimed from JP2022101411A external-priority patent/JP2024002305A/en
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2023282258A1 publication Critical patent/WO2023282258A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F15/00Connecting wire to wire or other metallic material or objects; Connecting parts by means of wire
    • B21F15/02Connecting wire to wire or other metallic material or objects; Connecting parts by means of wire wire with wire
    • B21F15/06Connecting wire to wire or other metallic material or objects; Connecting parts by means of wire wire with wire with additional connecting elements or material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing

Definitions

  • the technology disclosed in this specification relates to a reinforcing bar binding robot.
  • Japanese Patent Application Laid-Open No. 2019-39174 discloses that a plurality of first reinforcing bars and a plurality of second reinforcing bars intersecting the plurality of first reinforcing bars are moved over the plurality of first reinforcing bars and the plurality of second reinforcing bars.
  • a rebar binding robot is disclosed that can repeatedly perform an action of pulling and an action of binding rebar intersections where the plurality of first rebars and the plurality of second rebars intersect.
  • the reinforcing bar binding path robot includes a robot control unit that controls the operation of the reinforcing bar binding robot, and a reinforcing bar binding device that performs a reinforcing bar binding operation using wires.
  • the robotic control unit is configured to send a trigger signal to the rebar tying device.
  • the reinforcing bar binding device is configured to perform the reinforcing bar binding work according to the trigger signal.
  • the reinforcing bar binding robot there are cases where it is desired to control the operation of the reinforcing bar binding robot according to the state of the reinforcing bar binding device, for example, by stopping the operation of the reinforcing bar binding robot in response to the shortage of wires in the reinforcing bar binding device.
  • the robot control unit cannot grasp the state of the reinforcing bar binding device (for example, the occurrence of wire shortage, the occurrence of malfunction, etc.). . Therefore, the operation of the reinforcing bar binding robot cannot be controlled according to the state of the reinforcing bar binding device.
  • This specification provides a technique capable of controlling the operation of a reinforcing bar binding robot according to the state of the reinforcing bar binding device.
  • the reinforcing bar binding robot disclosed in the present specification moves above the plurality of first reinforcing bars and the plurality of second reinforcing bars intersecting the plurality of first reinforcing bars and the plurality of second reinforcing bars intersecting the plurality of first reinforcing bars.
  • the operation of moving and the operation of binding reinforcing bar intersections where the plurality of first reinforcing bars and the plurality of second reinforcing bars intersect can be repeatedly performed.
  • the reinforcing bar binding robot includes a robot control unit that controls the operation of the reinforcing bar binding robot, and a reinforcing bar binding device that performs a reinforcing bar binding operation using wires.
  • the rebar tying device comprises a device control unit for controlling the operation of the rebar tying device.
  • the device control unit is configured to send a first signal to the robot control unit.
  • the robot control unit is configured to control operation of the rebar tying robot based on the first signal sent from the device control unit.
  • "reinforcing bar binding work" may be referred to as "reinforcing bar binding work”.
  • the device control unit can transmit the state of the reinforcing bar binding device to the robot control unit through the first signal.
  • the robot control unit can grasp the state of the reinforcing bar binding device based on the first signal. Therefore, the robot control unit can control the operation of the reinforcing bar binding robot according to the state of the reinforcing bar binding device.
  • FIG. Fig. 4 is a cross-sectional view of the reel holding mechanism 36 of the reinforcing bar binding device 2 according to the example.
  • FIG. Fig. 4 is a cross-sectional view of the reel holding mechanism 36 of the reinforcing bar binding device 2 according to the example.
  • FIG. 4 is a perspective view of the release lever 82 and the lock lever 86 of the reinforcing bar binding device 2 according to the embodiment, as seen from the left upper front;
  • Fig. 3 is a perspective view of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, as seen from the left upper rear.
  • Fig. 3 is a perspective view of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, as seen from the right upper rear side;
  • Fig. 11 is a perspective view of the internal structure of the first guide passage 94 of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, viewed from the left upper rear;
  • FIG. 10 is a perspective view of the internal structure of the second guide passage 96 of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, viewed from the left upper rear;
  • Fig. 10 is a perspective view of the internal structure of the reinforcing bar binding device 2 according to the embodiment when the lower curl guide 92 is closed, as viewed from the lower right front side;
  • Fig. 10 is a perspective view of the internal structure of the reinforcing bar binding device 2 according to the embodiment when the lower curl guide 92 is open, as viewed from the lower right front side;
  • FIG. 10 is a perspective view of the wire reel WR and the brake mechanism 40 viewed from the upper right and rear when the pull solenoid 146 is not energized in the reinforcing bar binding device 2 according to the embodiment;
  • FIG. 10 is a perspective view of the wire reel WR and the brake mechanism 40 viewed from the right upper rear side when the pull solenoid 146 is energized in the reinforcing bar binding device 2 according to the embodiment;
  • 4 is a block diagram showing an example of an electrical system of the device control unit 50 according to the embodiment;
  • 5 is a flowchart showing an example of device main processing executed by the device control unit 50 according to the embodiment; 5 is a flowchart showing an example of feeding operation state determination processing executed by the device control unit 50 according to the embodiment; 5 is a flowchart showing an example of plate state determination processing executed by the device control unit 50 according to the embodiment; 5 is a flowchart showing an example of supply voltage state determination processing executed by the device control unit 50 according to the embodiment; 5 is a flowchart showing an example of temperature state determination processing executed by the device control unit 50 according to the embodiment; 5 is a flowchart showing an example of a twisting motion state determination process executed by the device control unit 50 according to the embodiment; 5 is a flowchart showing an example of hardware state determination processing executed by the device control unit 50 according to the embodiment; Fig.
  • FIG. 10 is a perspective view of the side stepper 196 of the reinforcing bar binding robot 1 according to the embodiment, as seen from the rear right upper side;
  • Fig. 11 is a cross-sectional view of the front crank mechanism 276 of the reinforcing bar binding robot 1 according to the embodiment, as seen from the rear;
  • FIG. 10 is a perspective view of the rear part of the side stepper 196 of the reinforcing-bar binding robot 1 according to the embodiment, viewed from the front right upper side;
  • FIG. 10 is a front view of the step bars 272 and 274 raised in the reinforcing bar binding robot 1 according to the embodiment, as seen from the front.
  • FIG. 10 is a front view of the step bars 272 and 274 lowered in the reinforcing bar binding robot 1 according to the embodiment, as seen from the front.
  • FIG. 10 is a perspective view of the internal structure of the power transmission mechanism 402 in the reinforcing bar binding robot 1 according to the example, viewed from the front upper right side.
  • FIG. 10 is a perspective view of the lifting device 6 seen from the front and above when the slider crank mechanism 638 is at the top dead center position in the reinforcing bar binding robot 1 according to the embodiment; FIG.
  • FIG. 10 is a perspective view of the lifting device 6 seen from the front and above when the slider crank mechanism 638 is at the bottom dead center position in the reinforcing bar binding robot 1 according to the embodiment;
  • 6 is a diagram showing the positional relationship among a cam 666, a first photosensor 668, and a second photosensor 670 provided in the lifting device 6 in the reinforcing bar binding robot 1 according to the example.
  • FIG. 4 is a flowchart showing an example of robot main processing executed by the robot control unit 10 according to the embodiment;
  • FIG. 4 is a top view showing an example of the operation of the reinforcing bar binding robot 1 according to the embodiment;
  • FIG. 11 is a top view showing another example of the operation of the reinforcing bar binding robot 1 according to the embodiment;
  • the reinforcing bar binding robot performs the following operations on a plurality of first reinforcing bars and a plurality of second reinforcing bars intersecting the plurality of first reinforcing bars. and an operation of binding a reinforcing bar intersection where the plurality of first reinforcing bars and the plurality of second reinforcing bars intersect can be repeatedly performed.
  • the reinforcing bar binding robot may include a robot control unit that controls the operation of the reinforcing bar binding robot, and a reinforcing bar binding device that performs a reinforcing bar binding operation using wires.
  • the rebar tying device may comprise a device control unit for controlling operation of the rebar tying device.
  • the device control unit may be configured to send a first signal to the robot control unit.
  • the robot control unit may be configured to control operation of the rebar tying robot based on the first signal transmitted from the device control unit.
  • the device control unit can transmit the state of the reinforcing bar binding device to the robot control unit through the first signal.
  • the robot control unit can grasp the state of the reinforcing bar binding device based on the first signal. Therefore, the robot control unit can control the operation of the reinforcing bar binding robot according to the state of the reinforcing bar binding device.
  • the reinforcing bar binding device may be configured to be capable of executing the operation of feeding the wire.
  • the rebar binding device may further include a first state detector that detects a state related to the operation of feeding the wire.
  • the first signal may include information about the detection result of the first state detector.
  • state related to wire feed operation includes not only the state of the feed mechanism, but also the presence or absence of the wire, the state of the braking mechanism described later, and the like.
  • the wire feeding operation is the main operation in the rebar binding device. Therefore, the robot control unit may want to know the status of the wire feeding operation of the rebar binding device. According to the above configuration, the robot control unit can grasp the state of the operation of feeding the wire based on the first signal.
  • the first state detection section may include a wire detection section that detects the presence or absence of the wire.
  • the first signal may include information about the detection result of the wire detection section.
  • the robot control unit needs to grasp the presence or absence of wires. According to the above configuration, the robot control unit can grasp the presence or absence of the wire based on the first signal.
  • the reinforcing bar binding device may further include a wire reel around which the wire is wound, and a housing that rotatably holds the wire reel.
  • the wire detection section may detect the presence or absence of the wire wound around the wire reel.
  • the wire detection unit can indirectly detect the presence or absence of the wire by detecting whether the wire reel rotates as the wire is fed by the rebar binding device.
  • the reinforcing bar binding device includes a feed motor, and further includes a feed mechanism capable of feeding the wire. good too.
  • the first state detector may include a feed mechanism state detector that detects the state of the feed mechanism.
  • the first signal may include information about the detection result of the feeding mechanism state detection section.
  • the wire may get tangled in the feed mechanism and the feed mechanism may become inoperable.
  • the robot control unit needs to grasp the state of the feed mechanism (for example, whether the feed mechanism is operating smoothly). According to the above configuration, the robot control unit can grasp the state of the feed mechanism based on the first signal.
  • the reinforcing bar binding device includes a wire reel around which the wire is wound, a housing that rotatably holds the wire reel, A braking mechanism comprising a braking actuator and capable of performing an operation of braking the rotational motion of the wire reel may be further provided.
  • the first state detection section may include a braking mechanism state detection section that detects the state of the braking mechanism.
  • the first signal may include information regarding the detection result of the braking mechanism state detection section.
  • the electrical connection between the power supply and the braking actuator may be interrupted, rendering the braking mechanism inoperable.
  • the robot control unit needs to know the state of the braking mechanism (for example, whether the electrical connection between the power supply and the braking actuator is secured). There is a need to.
  • the robot control unit can grasp the state of the braking mechanism based on the first signal.
  • the reinforcing bar binding device is configured to be capable of twisting the wire wound around the reinforcing bar intersection. good too.
  • the reinforcing bar binding device may further include a second state detector that detects a state related to twisting of the wire.
  • the first signal may include information about the detection result of the second state detector.
  • the action of twisting the wire is the main action of the rebar binding device.
  • the robot control unit may want to grasp the state of the wire twisting operation of the reinforcing bar binding device. According to the above configuration, the robot control unit can grasp the state of the operation of twisting the wire based on the first signal.
  • the reinforcing bar binding device includes a twisting motor, and further includes a twisting mechanism capable of twisting the wire wound around the reinforcing bar intersection.
  • the second state detection section may include a torsion mechanism state detection section that detects the state of the torsion mechanism.
  • the first signal may include information regarding the detection result of the torsion mechanism state detection section.
  • the twisting mechanism may become inoperable due to tangling of wires in the twisting mechanism.
  • the robot control unit needs to grasp the state of the twisting mechanism (for example, whether the twisting mechanism is operating smoothly).
  • the robot control unit can grasp the state of the twisting mechanism (for example, whether the twisting mechanism is operating smoothly) based on the first signal.
  • the reinforcing bar binding device comprises: a wire reel around which the wire is wound or for guiding the wire; It may further include a reel holding portion that is detachably held, and a reel detection portion that detects whether or not the wire reel is held by the reel holding portion.
  • the first signal may include information regarding the detection result of the reel detection section.
  • the robot control unit needs to grasp whether the wire reel is held by the reel holding section. According to the above configuration, the robot control unit can grasp whether or not the wire reel is held by the reel holding section based on the first signal.
  • the rebar binding device includes a feed motor, a feed mechanism capable of executing an operation to feed the wire, and the feed motor. a first position that is attached to the housing and that guides the wire fed by the feed mechanism on a substantially annular guide track so as to circulate around the rebar intersection; A guide member movable between a position and a second position moved to the outside of the guide track, and a guide member position detection unit that detects the position of the guide member with respect to the housing. good.
  • the first signal may include information regarding the detection result of the guide member position detector.
  • the guide member in order to improve the maintenance performance of the parts provided around the guide track, the guide member may be provided movably with respect to the housing.
  • the reinforcing bar binding work is performed with the guide member moved to the second position, the reinforcing bar crossing points cannot be properly tied. Therefore, in the reinforcing bar binding robot, there are cases where it is desired to execute control (for example, switching between permission and prohibition of the reinforcing bar binding operation) according to the position of the guide member.
  • the robot control unit needs to know the position of the guide member relative to the housing. According to the above configuration, the robot control unit can grasp the position of the guide member with respect to the housing based on the first signal.
  • the reinforcing bar binding device may further include a temperature detection section that detects the temperature of the device control unit.
  • the first signal may include information regarding the detection result of the temperature detection unit.
  • the robot control unit needs to know the temperature of the device control unit. According to the above configuration, the robot control unit can grasp the temperature of the device control unit based on the first signal.
  • the reinforcing bar binding robot may further include a power supply device for supplying power to the reinforcing bar binding device.
  • the rebar binding device may further include a supply voltage detection unit that detects a voltage value of power supplied from the power supply to the rebar binding device.
  • the first signal may include information about a detection result of the supply voltage detector.
  • the reinforcing bar binding work may be forcibly interrupted due to power shortage.
  • control is performed according to the voltage value of the electric power supplied to the device control unit (for example, when the voltage value drops to an insufficient value, the user is notified of the fact). etc.).
  • the robot control unit needs to grasp the voltage value of the power supplied from the power supply to the reinforcing bar binding device.
  • the robot control unit can grasp the voltage value of the power supplied from the power supply device to the reinforcing bar binding device based on the first signal.
  • the reinforcing bar binding device is positioned so as to be able to contact the first reinforcing bar or the second reinforcing bar during the reinforcing bar binding operation.
  • the contact member may further include a contact member, a housing that holds the contact member in a swingable manner, and a contact member position detector that detects the position of the contact member with respect to the housing.
  • the first signal may include information regarding the detection result of the contact member position detector.
  • the robot control unit may want to detect that the reinforcing bar binding device has been set at the reinforcing bar intersection. According to the above configuration, the robot control unit can detect that the reinforcing bar binding device is set at the reinforcing bar intersection by determining whether or not the contact member has been swung based on the first signal.
  • the first signal may include information indicating that an abnormality has occurred in the rebar binding device.
  • the robot control unit can grasp that an abnormality has occurred in the reinforcing bar binding device based on the first signal. Therefore, the robot control unit can stop the operation of the reinforcing bar binding robot in response to the occurrence of an abnormality in the reinforcing bar binding device, or notify the user of the fact.
  • the robot control unit may be configured to transmit a call signal to the device control unit.
  • the device control unit may be configured to transmit the first signal to the robot control unit upon receiving the call signal.
  • the device control unit does not need to execute processing for specifying the timing of transmitting the first signal. Therefore, the device control unit can have a simple configuration. Furthermore, according to the above configuration, the robot control unit can grasp the state of the reinforcing bar binding device at a desired timing.
  • the robot control unit may be configured to transmit a bundling instruction signal to the device control unit.
  • the device control unit may be configured to cause the rebar tying device to perform the rebar tying operation when receiving the tying instruction signal.
  • the robot control unit may be configured to send the ringing signal to the device control unit prior to sending the bundling instruction signal.
  • the robot control unit can determine whether or not to continue the reinforcing bar binding work based on the state of the reinforcing bar binding device. According to the above configuration, the robot control unit can grasp the state of the reinforcing bar binding device at the timing when the reinforcing bar binding operation is started. Therefore, the robot control unit can determine whether or not to continue the reinforcing bar binding work based on the state of the reinforcing bar binding device.
  • the reinforcing bar binding robot 1 of this embodiment includes a plurality of first reinforcing bars R1 arranged parallel to each other along the horizontal direction, and a plurality of first reinforcing bars R1 arranged parallel to each other along the horizontal direction.
  • the robot is a robot that uses a reinforcing bar binding device 2 to bind the intersection of the first reinforcing bar R1 and the second reinforcing bar R2 while moving on the second reinforcing bar R2.
  • the direction in which the second reinforcing bar R2 extends is orthogonal to the direction in which the first reinforcing bar R1 extends.
  • the second reinforcing bar R2 is arranged above the first reinforcing bar R1.
  • the first reinforcing bars R1 are arranged at intervals of, for example, 100 mm to 300 mm
  • the second reinforcing bars R2 are arranged at intervals of, for example, 100 mm to 300 mm.
  • the reinforcing bar binding robot 1 has a longitudinal dimension of, for example, about 900 mm, and a lateral dimension of, for example, about 600 mm.
  • the reinforcing bar binding robot 1 mainly includes a reinforcing bar binding device 2, a transport device 4, an elevating device 6, a power supply device 8, a robot control unit 10, an independent reel 500, and a wire relay mechanism 550.
  • the reinforcing bar binding robot 1 is provided with a patrol lamp 183, a buzzer (not shown), an operation panel (not shown), and a plurality of reinforcing bar detection sensors (not shown).
  • the patrol lamp 183 can notify the user of an abnormality or the like of the reinforcing bar binding robot 1 by emitting light.
  • the buzzer can notify the user of an abnormality or the like in the reinforcing bar binding robot 1 by emitting a sound.
  • the operation panel includes a power switch (not shown) for turning on the power to the reinforcing bar binding robot 1, a setting switch (not shown) for setting the number of turns of the wire W around the reinforcing bar R, and the twisting torque for twisting the wire W.
  • the plurality of rebar detection sensors are, for example, TOF (Time-of-Flight) sensors capable of acquiring distance image data obtained by measuring the distance to the subject for each pixel.
  • the plurality of reinforcing bar detection sensors includes a reinforcing bar detecting sensor provided on the front connecting frame 215 (see FIG. 2), a reinforcing bar detecting sensor provided on the rear connecting frame 216 (see FIG. 2), and a center portion of the base plate 204. Including a rebar detection sensor provided.
  • the robot control unit 10 includes a CPU, memory, communication interface, and the like.
  • a robot control unit 10 is configured to control the movement of the transport device 4 and the lifting device 6 .
  • the robot control unit 10 can identify the relative arrangement of the first reinforcing bar R1 and the second reinforcing bar R2 with respect to the plurality of reinforcing bar detecting sensors based on the distance image data acquired by the plurality of reinforcing bar detecting sensors.
  • the memory of the robot control unit 10 stores map information (herein referred to as "reinforcement map”) indicating the positional relationship between the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2. .
  • the robot control unit 10 can also specify the placement of the reinforcing bar binding robot 1 with respect to the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2.
  • the robot control unit 10 can store information on the bundling state of reinforcing bar intersections in the memory at any time. As a result, the robot control unit 10 can distinguish between bound reinforcing bar crossing points and unbound reinforcing bar crossing points in the reinforcing bar map.
  • the power supply device 8 includes a right battery case 802 , a left battery case 804 , a transformer 806 and a power control board 808 .
  • Three battery packs B are detachably attached in the right battery case 802 .
  • Two battery packs B are detachably attached in the left battery case 804 .
  • these five battery packs B are collectively referred to as "a plurality of battery packs B".
  • the plurality of battery packs B are, for example, lithium ion batteries that can be charged by a charger (not shown).
  • the right battery case 802 is provided with a right battery remaining amount display section 812 that displays the remaining battery amount of each battery pack B attached inside the right battery case 802 .
  • the left battery case 804 is provided with a left battery remaining amount display section 814 that displays the remaining battery amount of each battery pack B attached in the left battery case 804 .
  • the plurality of battery packs B are electrically connected to a power control board 808 via transformers 806 .
  • the power control board 808 is electrically connected to each of the reinforcing bar binding device 2 , the transfer device 4 and the robot control unit 10 . Therefore, the power supply device 8 (specifically, the power control board 808 ) can supply power from the plurality of battery packs B to the reinforcing bar binding device 2 , the transfer device 4 and the robot control unit 10 .
  • the illustration of the power supply device 8 and the robot control unit 10 is omitted for simplification of explanation.
  • Independent reel 500 is fixed to base plate 204 .
  • a wire W used for the reinforcing bar binding work is pre-wound around the independent reel 500 .
  • the maximum length of the wire W that can be wound around the independent reel 500 of this embodiment is within the range of 600 m to 1000 m, for example 800 m.
  • the wire relay mechanism 550 includes a base portion 552 , guide rollers 554 , feed rollers 556 and 557 and an insertion member 558 .
  • the wire relay mechanism 550 is fixed to the base plate 204 via a pedestal portion 552 .
  • the wire W pulled out from the independent reel 500 passes through the insertion member 558 , is sandwiched between the feed rollers 556 and 557 , and is guided toward the reinforcing bar binding device 2 by the guide rollers 554 .
  • the independent reel 500 can be said to be a supply source of the wire W in the reinforcing bar binding robot 1 .
  • the reinforcing bar binding device 2 binds the mutually crossing reinforcing bars R (for example, the first reinforcing bar R1 and the second reinforcing bar R2) with the wire W.
  • the reinforcing bar binding device 2 has a housing 12 .
  • the housing 12 has a fitting portion 12a for fitting a base member 654 (see FIG. 30) of the lifting device 6.
  • the rear portion of the housing 12 is provided with a through hole 12b for receiving the wire W pulled out from the independent reel 500.
  • the through hole 12b opens toward the wire relay mechanism 550.
  • the rebar binding device 2 mainly includes a reel holding mechanism 36, a feed mechanism 38, a brake mechanism 40, a guide mechanism 42, a cutting mechanism 44, a twisting mechanism 46, A device control unit 50 is provided.
  • the reel holding mechanism 36 includes a cam member 54, a shaft member 56, and a compression spring 58.
  • Cam member 54 is rotatably retained by housing 12 .
  • the shaft member 56 is biased rightward (that is, toward the inside of the housing 12) by a compression spring 58 held in the housing 12.
  • the biasing force of the compression spring 58 causes the shaft member 56 to move rightward with respect to the housing 12 (that is, toward the inside of the housing 12). In this state, the right end of the shaft member 56 slidably enters the shaft receiving groove WRa of the wire reel WR.
  • the wire reel WR is rotatably held with respect to the shaft member 56 .
  • the shaft member 56 resists the biasing force of the compression spring 58 in the manner of a so-called cylindrical cam mechanism. Move to the left (ie, out of housing 12). As a result, the shaft member 56 is pulled out of the shaft receiving groove WRa of the wire reel WR. In this state, the user can put the wire reel WR in and out of the housing 12 .
  • the reel holding mechanism 36 further includes a turntable 60, an inner bearing 62, an outer bearing 64, and a reel rotation detection sensor 66 (see FIG. 4).
  • the turntable 60 is rotatably held by the housing 12 via an inner bearing 62 and an outer bearing 64 .
  • the turntable 60 is relatively non-rotatably engaged with the wire reel WR. Therefore, when the wire reel WR rotates, the turntable 60 also rotates together with the wire reel WR.
  • the reel rotation detection sensor 66 is fixed to the housing 12 .
  • the reel rotation detection sensor 66 is a Hall sensor having a Hall IC (not shown).
  • the reel rotation detection sensor 66 can detect the rotation of the wire reel WR from variations in magnetism from a plurality of magnets (not shown) provided on the turntable 60 .
  • the reel holding mechanism 36 detachably and rotatably holds the wire reel WR.
  • the wire W pulled out from the independent reel 500 is passed through the through hole 12b, wound around the wire reel WR, and supplied to the feed mechanism 38.
  • the wire W slides along the outer peripheral surface of the wire reel WR.
  • the sliding friction between the wire reel WR and the wire W generates a force that rotates the wire reel WR.
  • the wire reel WR is configured to rotate as the wire W is sent out.
  • the feed mechanism 38 feeds the wire W supplied from the wire reel WR of the reel holding mechanism 36 to the guide mechanism 42 in front of the reinforcing bar binding device 2 .
  • the feed mechanism 38 includes a guide member 68 , a feed motor 72 , a main drive gear 78 , a driven gear 80 , a release lever 82 , a compression spring 84 (see FIG. 7), and a lock lever 86 .
  • a wire W passes through the guide member 68 and is sandwiched between the main driving gear 78 and the driven gear 80 .
  • the main drive gear 78 is connected to the feed motor 72 via a speed reduction mechanism (not shown).
  • Feed motor 72 is a DC brushed motor.
  • the side surface of the main driving gear 78 is formed with a V-shaped groove 78a extending radially at the center in the height direction.
  • a side surface of the driven gear 80 is formed with a V-shaped groove 80a extending radially at the center in the height direction.
  • the driven gear 80 is rotatably supported by the gear arm 82a of the release lever 82.
  • the release lever 82 is a substantially L-shaped member that includes a gear arm 82a and an operating arm 82b.
  • the release lever 82 is swingably supported by the housing 12 via a swing shaft 82c.
  • the operating arm 82b of the release lever 82 is biased leftward, that is, outwardly by a compression spring 84 held in the housing 12.
  • the urging force of the compression spring 84 applies torque to the release lever 82 in a direction to bring the driven gear 80 closer to the main driving gear 78 , and the driven gear 80 is pressed against the main driving gear 78 .
  • the teeth (not shown) on the side surface of the driven gear 80 and the teeth (not shown) on the side surface of the main driving gear 78 are engaged, and the V-shaped groove 78a of the main driving gear 78 and the V-shaped groove 78a of the driven gear 80 are engaged.
  • a wire W is sandwiched between the shaped grooves 80a. In this state, when the feed motor 72 (see FIG.
  • the main drive gear 78 and the driven gear 80 can be called feed gears for feeding the wire W.
  • the feed mechanism 38 incorporates a gear rotation detection sensor 79 (see FIG. 16) for detecting the rotation angle of the main driving gear 78. As shown in FIG.
  • the lock lever 86 is a substantially L-shaped member that includes a lock arm 86a and a spring receiving arm (not shown).
  • the lock lever 86 is swingably supported by the housing 12 via a swing shaft 86c.
  • a spring receiving arm of the lock lever 86 is biased rightward by a compression spring (not shown) retained in the housing 12 . Due to the biasing force of this compression spring, a torque acts on the lock lever 86 in a direction to bring the lock arm 86a closer to the operation arm 82b of the release lever 82.
  • the lock arm 86a of the lock lever 86 is formed with an engagement projection 86d
  • the operating arm 82b of the release lever 82 is formed with an engagement recess 82d that engages with the engagement projection 86d.
  • the guide mechanism 42 is arranged in the front part of the reinforcing bar binding device 2, and guides the wire W sent from the feed mechanism 38 on a substantially annular guide track (see FIG. 3). ).
  • the guide mechanism 42 includes a guide pipe 88 , an upper curl guide 90 and a lower curl guide 92 .
  • the rear end of the guide pipe 88 opens between the main drive gear 78 and the driven gear 80 of the feed mechanism 38 .
  • the wire W fed from the feed mechanism 38 is fed into the guide pipe 88 .
  • the front end of the guide pipe 88 opens toward the inside of the upper curl guide 90 .
  • the upper curl guide 90 has a first guide passage 94 for guiding the wire W sent from the guide pipe 88 and a second guide passage 96 for guiding the wire W sent from the lower curl guide 92 (see FIG. 11). ) are provided.
  • the upper curl guide 90 includes a lead holder 98, a guide arm 100, a contact plate 102, a left guide plate 104, an inner guide plate 106, a right guide plate 108, and a guide plate. It has a member 110 and a top plate 112 (see FIG. 10).
  • the opening on the front side of the guide pipe 88 (see FIG. 10) is in the first guide passage 94 formed by the guide member 110, the right guide plate 108, the inner guide plate 106, and the top plate 112.
  • the guide pipe 88 is held so as to open toward it.
  • the guide member 110 is a member made of metal, and a wire passage 110a through which the wire W passes is formed therein.
  • a first guide pin 114 is arranged below the front end of the wire passage 110a.
  • the first guide pin 114 is a highly wear-resistant metal member such as tungsten, and is press-fitted into the right guide plate 108 .
  • the wire W sent out from the guide pipe 88 is guided toward the cutter 116 by the wire passage 110 a and the first guide pin 114 .
  • the cutter 116 has a fixed member 118 and a swing member 120 .
  • the fixing member 118 is a metal member having a cylindrical outer shape, and a wire passage 118a through which the wire W passes is formed inside.
  • the fixing member 118 is fitted to the inner guide plate 106 and sandwiched between the right guide plate 108 and the inner guide plate 106 .
  • the swinging member 120 is a metal member having a through hole 120a through which the fixing member 118 penetrates and a cut piece 120b for cutting the wire W. It is held swingably on the plate 108 .
  • the cutting piece 120b cuts the wire W by shearing when the swinging member 120 swings.
  • the top plate 112 is a metal member and fixed to the right guide plate 108 .
  • the wire W After passing through the cutter 116 , the wire W is further guided downward by the projecting portion 112 a of the top plate 112 and the second guide pin 122 .
  • the second guide pin 122 is a highly wear-resistant metal member such as tungsten, and is press-fitted into the right guide plate 108 .
  • the wire W When passing through the first guide passage 94, the wire W is curled by the inner upper surface of the wire passage 110a, the first guide pin 114, and the second guide pin 122, and is directed toward the lower curl guide 92. Sent.
  • a third guide passage 124 and a guard plate 126 are provided in the lower curl guide 92 .
  • the third guide passage 124 has a left guide wall 124a and a right guide wall 124b that guide the wire W fed from the front end of the upper curl guide 90.
  • the guard plate 126 is formed in a shape that extends upward on both sides of the third guide passage 124, prevents the plurality of reinforcing bars R from interfering with the twisting mechanism 46, and prevents foreign matter from entering the reinforcing bar binding device 2. to prevent In addition, the guard plate 126 prevents the wire W from swaying left and right when the twisting mechanism 46 twists the wire W wound in a substantially annular shape.
  • the wire W guided by the lower curl guide 92 is sent toward the second guide passage 96 of the upper curl guide 90 .
  • the wire W sent from the rear of the lower curl guide 92 to the rear of the upper curl guide 90 is sent to the second guide passage 96 formed by the guide arm 100, the left guide plate 104 and the inner guide plate 106.
  • an arc-shaped upper guide wall 100a for guiding the wire W is formed on the front lower surface of the guide arm 100.
  • the wire W sent from the lower curl guide 92 to the upper curl guide 90 is guided by the second guide passage 96 and sent from the front of the upper curl guide 90 to the front of the lower curl guide 92 again.
  • the contact plate 102 is a substantially U-shaped member and is arranged to straddle the lead holder 98 and the guide arm 100 .
  • the contact plate 102 includes a contact portion 102a, a pivot shaft 102b, and a connecting portion 102c.
  • the contact plate 102 is swingably supported by the lead holder 98 via a swing shaft 102b.
  • the connecting portion 102c of the contact plate 102 is urged upward by a compression spring 128 held by the lead holder 98.
  • the contact plate 102 has a magnet arm 132 to which a sensor magnet 130 is attached.
  • the sensor magnet 130 is made of a magnet having a strong magnetic force, such as a neodymium magnet.
  • a plate position detection sensor 134 is attached to the housing 12 . Normally, the sensor magnet 130 of the contact plate 102 is arranged at a position facing the plate position detection sensor 134 .
  • the reinforcing bar binding device 2 is set on a plurality of reinforcing bars R, when the plurality of reinforcing bars R are pressed against the contact portion 102a, the contact plate 102 swings against the urging force of the compression spring 128, and the magnet arm rotates.
  • a sensor magnet 130 at 132 is arranged at a position separated from the plate position detection sensor 134 .
  • the plate position detection sensor 134 can detect whether or not a plurality of reinforcing bars R are pressed against the contact portion 102a.
  • the lower curl guide 92 is swingably supported by the housing 12 via a swing shaft 92a.
  • the lower curl guide 92 can swing between the closed state shown in FIG. 12 and the open state shown in FIG.
  • the lower curl guide 92 in the open state is swung outward with respect to the wire W guide track.
  • the lower curl guide 92 is biased in the closing direction by a torsion spring 92b.
  • the reinforcing bar binding device 2 is normally used with the lower curl guide 92 closed. If the wire W is entangled with the twisting mechanism 46, the user can remove the wire W entangled with the twisting mechanism 46 by opening the lower curl guide 92 against the biasing force of the torsion spring 92b. can.
  • a guide position detection mechanism 136 for detecting the open/closed state of the lower curl guide 92 is provided at the lower front portion of the reinforcing bar binding device 2 .
  • the guide position detection mechanism 136 is attached to the housing 12 .
  • the guide position detection mechanism 136 includes a guide position detection member 138 , a compression spring 140 and a guide position detection sensor 142 .
  • the guide position detection member 138 has a contact arm 138a and a support arm 138c.
  • the guide position detection member 138 is swingably supported by the housing 12 via a swing shaft 138b. Further, the guide position detecting member 138 is urged by a compression spring 140 held by the housing 12 in a swinging direction in which the contact arm 138a is directed upward.
  • a sensor magnet 144 (see FIG. 13) is attached to the support arm 138c of the guide position detection member 138. As shown in FIG. The sensor magnet 144 is made of a magnet with strong magnetic force, such as a neodymium magnet.
  • the guide position detection sensor 142 is fixed to the housing 12 .
  • a rear lower part of the lower curl guide 92 is formed with a contact portion 92c projecting rearward. As shown in FIG. 12, when the lower curl guide 92 is closed by the biasing force of the torsion spring 92b, the contact portion 92c of the lower curl guide 92 pushes down the contact arm 138a of the guide position detecting member 138, thereby supporting the support.
  • the sensor magnet 144 of the arm 138 c is arranged at a position facing the guide position detection sensor 142 .
  • the contact portion 92c of the lower curl guide 92 separates from the contact arm 138a of the guide position detecting member 138. do.
  • the biasing force of the compression spring 140 swings the guide position detection member 138, and the sensor magnet 144 of the support arm 138c is arranged at a position separated from the guide position detection sensor 142.
  • the guide position detection sensor 142 can detect the open/closed state of the lower curl guide 92 .
  • the upper curl guide 90 feeds the wire W from above the plurality of reinforcing bars R to the lower side
  • the lower curl guide 92 feeds the wire W sent from the upper curling guide 90 to the rear of the plurality of reinforcing bars R. Send from bottom to top.
  • the wire W fed from the feeding mechanism 38 is wound around the plurality of reinforcing bars R in a substantially annular shape.
  • the feed mechanism 38 stops the feed motor 72 to stop feeding the wire W. As shown in FIG.
  • the brake mechanism 40 shown in FIG. 4 stops the rotation of the wire reel WR in conjunction with the stopping of the feeding of the wire W by the feeding mechanism 38 .
  • the brake mechanism 40 includes a pull solenoid 146, a compression spring 148, and a brake member 150.
  • Brake member 150 is a single member comprising drive arm 150a and brake arm 150c.
  • the brake member 150 is swingably attached to the housing 12 via a swing shaft 150b.
  • the drive arm 150a of the brake member 150 is connected to the output shaft of a pull solenoid 146 that moves up and down.
  • the brake member 150 is urged by the compression spring 148 in the swinging direction in which the brake arm 150c separates from the wire reel WR.
  • the brake arm 150c of the brake member 150 includes a wide plate-shaped plate portion 150d, a tip rib 150e projecting toward the wire reel WR at the tip of the plate portion 150d, and a wire reel WR at both ends of the plate portion 150d. It has side end ribs 150f that protrude to the side. Engagement portions WRc with which tip ribs 150e of brake arms 150c engage are formed on the wire reel WR at predetermined angular intervals in the circumferential direction. As shown in FIG.
  • the pull solenoid 146 when the pull solenoid 146 is not energized, the biasing force of the compression spring 148 keeps the brake arm 150c away from the engaging portion WRc of the wire reel WR. In this state, the wire reel WR can rotate freely, and the feed mechanism 38 can pull out the wire W from the wire reel WR.
  • the pull solenoid 146 when the pull solenoid 146 is energized, the pull solenoid 146 drives the drive arm 150a, and a torque around the swing shaft 150b acts on the brake member 150, causing the brake member 150 to rotate. swings around the swing shaft 150b, and the tip rib 150e of the brake arm 150c engages with the engaging portion WRc of the wire reel WR. In this state, rotation of the wire reel WR is prohibited. As a result, even after the feed mechanism 38 stops feeding the wire W, the wire reel WR continues to rotate due to inertia, and the wire W can be prevented from loosening between the wire reel WR and the feed mechanism 38.
  • feed operation the operation of feeding the wire W so that the wire W is wound around the plurality of reinforcing bars R by using the feed mechanism 38, the brake mechanism 40, and the guide mechanism 42 is simply referred to as "feeding operation".
  • feed operation is started by driving the feed motor 72 and terminated by stopping the pull solenoid 146 .
  • Cutting Mechanism 44 As shown in FIG. 5, the cutting mechanism 44 is arranged at the front part of the reinforcing bar binding device 2, and cuts the wire W in a state in which the wire W is wound around a plurality of reinforcing bars R. As shown in FIG. As shown in FIG. 10, the cutting mechanism 44 and the upper curl guide 90 of the guide mechanism 42 are unitized. Cutting mechanism 44 includes push plate 152 , pull plate 154 , first link arm 156 , second link arm 158 and cutter 116 . The push plate 152 , the pull plate 154 and the first link arm 156 are connected to each other via a swing shaft 160 so as to be swingable.
  • the push plate 152 and the pull plate 154 are swingably supported by the guide arm 100 via a swing shaft 162 .
  • the first link arm 156 is biased forward by a torsion spring 164 .
  • the first link arm 156 and the second link arm 158 are connected to each other via a swing shaft 166 so as to be swingable.
  • the second link arm 158 is connected to the swing member 120 of the cutter 116 through a swing shaft 168 so as to be swingable.
  • the twisting mechanism 46 shown in FIG. 5 binds the plurality of reinforcing bars R with the wires W by twisting the wires W wound around the plurality of reinforcing bars R.
  • the torsion mechanism 46 includes a torsion motor 170, a speed reduction mechanism 172, a sleeve 174, a screw shaft (not shown) arranged inside the sleeve 174, a pusher 176, a sleeve position detection sensor 177, and a hook 178.
  • the torsion motor 170 is a DC brushless motor.
  • the torsion motor 170 is provided with a torsion motor rotation detection sensor 55 (see FIG. 16) for detecting the rotation angle of the rotor (not shown). Rotation of the torsion motor 170 is transmitted to the screw shaft via a speed reduction mechanism 172 .
  • the torsion motor 170 is forward and reverse rotatable and the screw shaft is correspondingly forward and reverse rotatable.
  • a sleeve 174 is arranged to cover the periphery of the screw shaft. When the rotation of the sleeve 174 is prohibited, forward rotation of the screw shaft causes the sleeve 174 to move forward, and reverse rotation of the screw shaft causes the sleeve 174 to move backward.
  • the sleeve 174 rotates together with the screw shaft.
  • the pusher 176 moves forward when the sleeve 174 moves forward and moves rearward when the sleeve 174 moves rearward.
  • the pusher 176 pushes the lower portion of the push plate 152 of the cutting mechanism 44 forward, causing the swinging member 120 of the cutter 116 to move. It swings around the fixed member 118 .
  • a hook 178 is provided at the front end of the sleeve 174 and opens and closes according to the position of the sleeve 174 in the front-rear direction. As the sleeve 174 moves forward, the hook 178 closes and grips the wire W. Conversely, as the sleeve 174 moves rearwardly, the hook 178 opens and releases the wire W. As shown in FIG.
  • the sleeve position detection sensor 177 is fixed in position in the front-rear direction with respect to the housing 12, and by detecting magnetism from a magnet (not shown) provided on the pusher 176, It can be detected whether the sleeve 174 is in the initial position.
  • the sleeve 174 advances due to the rotation of the screw shaft, and the pusher 176 and the hook 178 advance. As the wire W is cut, the hook 178 closes and the wire W is gripped. Thereafter, when the sleeve 174 is allowed to rotate, the rotation of the screw shaft causes the sleeve 174 to rotate and the hook 178 to rotate. As a result, the wire W is twisted up to the set twisting torque, and the plurality of reinforcing bars R are bundled.
  • twisting operation the operation of cutting the wire W and twisting the wire W wound around the plurality of reinforcing bars R using the cutting mechanism 44 and the twisting mechanism 46 may be simply referred to as "twisting operation".
  • the twisting motion is initiated by activating the torsion motor 170 and terminated by deactivating the torsion motor 170 .
  • the device control unit 50 includes a control power supply circuit 20, a main microcomputer 21, driver circuits 22, 23, 24, voltage detection circuits 25, 26, 27, a current detection circuit 28, and the like.
  • the main microcomputer 21 includes a CPU, memory, communication interface, and the like.
  • the main microcomputer 21 is configured to communicate with the robot control unit 10 .
  • a communication method between the main microcomputer 21 and the robot control unit 10 is, for example, a wired serial communication method. Thereby, the robot control unit 10 and the device control unit 50 can communicate with each other.
  • the device control unit 50 is provided with a temperature detection sensor 32 capable of detecting the temperature of the device control unit 50 .
  • the control power supply circuit 20 adjusts the power supplied from the power control board 808 of the power supply device 8 to a predetermined voltage and supplies power to the main microcomputer 21 .
  • the driver circuit 22 drives the pull solenoid 146 according to instructions from the main microcomputer 21 .
  • the driver circuit 22 incorporates an FET as a switching element.
  • the main microcomputer 21 can control the operation of the pull solenoid 146 via the driver circuit 22 .
  • the voltage detection circuit 25 is provided corresponding to the driver circuit 22 .
  • the voltage detection circuit 25 can detect the voltage applied to the driver circuit 22 and the potential of the driver circuit 22 .
  • the driver circuit 23 drives the feed motor 72 according to instructions from the main microcomputer 21 .
  • the driver circuit 23 incorporates an FET as a switching element.
  • the main microcomputer 21 can control the operation of the feed motor 72 via the driver circuit 23 .
  • the voltage detection circuit 26 is provided corresponding to the driver circuit 23 .
  • the voltage detection circuit 26 can detect the voltage applied to the driver circuit 23 and the potential of the driver circuit 23 .
  • the driver circuit 24 drives the torsion motor 170 according to instructions from the main microcomputer 21 .
  • the driver circuit 24 incorporates an FET as a switching element.
  • the main microcomputer 21 can control the operation of the torsion motor 170 via the driver circuit 24 .
  • the voltage detection circuit 27 detects the voltage of the power supplied from the power control board 808 .
  • the main microcomputer 21 can obtain the voltage of the power supplied from the power control board 808 from the signal received from the voltage detection circuit 27 .
  • the current detection circuit 28 detects the current supplied from the power control board 808 to the driver circuits 22, 23, 24 and the like.
  • the main microcomputer 21 detects the current supplied from the power control board 808 to the driver circuits 22, 23, 24, etc. from the signal received from the current detection circuit 28, i. 146, etc., can be obtained.
  • a protection FET 31 is provided in the path for supplying power from the power control board 808 to the driver circuits 22 , 23 and 24 .
  • the protection FET 31 When the protection FET 31 is turned on, power is supplied from the power control board 808 to the driver circuits 22 , 23 , 24 .
  • the protection FET 31 When the protection FET 31 is turned off, power supply from the power control board 808 to the driver circuits 22, 23 and 24 is cut off.
  • the main microcomputer 21 can switch the protection FET 31 between an ON state and an OFF state.
  • the device control unit 50 executes hardware state determination processing. Details of the hardware state determination process will be described later. After S102, the process proceeds to S104.
  • the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not a binding device abnormality determination flag, which will be described later, is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of NO), the process proceeds to S106.
  • the device control unit 50 executes device initialization processing.
  • the device control unit 50 turns on the protection FET 31 .
  • the device control unit 50 rotates the torsion motor 170 in the forward and reverse directions to check the operation and return the sleeve 174 to the initial position.
  • the device control unit 50 turns off the protection FET 31 and terminates the device initialization process.
  • the process proceeds to S108.
  • the device control unit 50 determines whether or not the status call signal transmitted from the robot control unit 10 has been received. If the status call signal has not been received (NO), the process executes S108 again. If the status call signal has been received (if YES), the process proceeds to S110.
  • the device control unit 50 transmits a state notification signal to the robot control unit 10 .
  • the status notification signal includes various flags stored in memory, for example. After S110, the process proceeds to S112.
  • the device control unit 50 determines whether or not the binding instruction signal transmitted from the robot control unit 10 has been received. If the bundling instruction signal has not been received (NO), the process executes S112 again. If the bundling instruction signal has been received (YES), the process proceeds to S114.
  • the device control unit 50 executes hardware state determination processing. Details of the hardware state determination process will be described later. After S114, the process proceeds to S116.
  • the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not the binding device abnormality determination flag is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of NO), the process proceeds to S118.
  • the device control unit 50 starts the reinforcing bar binding work.
  • the device control unit 50 stores in the memory a binding flag indicating that the reinforcing bar binding device 2 is executing the reinforcing bar binding work, and turns on the protection FET 31 .
  • the process proceeds to S120.
  • the device control unit 50 instructs the driver circuit 23 to start driving the feed motor 72 . That is, the device control unit 50 instructs the start of the feeding operation. After S120, the process proceeds to S122.
  • the device control unit 50 executes a feeding operation state determination process. Details of the feeding operation state determination processing will be described later. After S122, the process proceeds to S124.
  • the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not the binding device abnormality determination flag is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of NO), the process proceeds to S126.
  • the device control unit 50 determines whether or not the feeding operation has ended. If the feeding operation has not ended (NO), the process returns to S122. If the feeding operation has ended (if YES), the process proceeds to S128.
  • the device control unit 50 instructs the driver circuit 24 to start driving the torsion motor 170. That is, the device control unit 50 instructs the start of the twisting motion. After S128, the process proceeds to S130.
  • the device control unit 50 executes a torsion motion state determination process. Details of the twisting motion state determination processing will be described later. After S130, the process proceeds to S132.
  • the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not the binding device abnormality determination flag is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (NO), the process proceeds to S134.
  • the device control unit 50 determines whether or not the twisting motion has ended. If the twisting motion has not ended (NO), the process returns to S130. If the twisting motion has ended (if YES), the process proceeds to S136.
  • the device control unit 50 ends the reinforcing bar binding work.
  • the device control unit 50 turns off the protection FET 31 and erases the bundling flag stored in the memory. After S136, the process returns to S108.
  • the process proceeds to S138.
  • the device control unit 50 determines whether or not the status call signal transmitted from the robot control unit 10 has been received. If the status call signal has not been received (NO), the process executes S138 again. If the status call signal has been received (YES), the process proceeds to S140.
  • the device control unit 50 transmits a state notification signal to the robot control unit 10 .
  • the status notification signal includes various flags stored in memory, for example.
  • the apparatus control unit 50 executes the feeding operation state determination process shown in FIG. 18 in S122 of the apparatus main process (see FIG. 17).
  • the device control unit 50 determines whether the wire reel WR is held by the reel holding mechanism 36 or not. Specifically, when the rotation of the wire reel WR is not detected by the reel rotation detection sensor 66 even once after S118 of the main processing of the device (see FIG. 17) is completed, the device control unit 50 determines that the wire reel WR is held by the reel. It is determined that the mechanism 36 is not held. If the reel rotation detection sensor 66 detects the rotation of the wire reel WR even once after S118 of the main processing of the device (see FIG. 17) is completed, the device control unit 50 holds the wire reel WR in the reel holding mechanism 36. It is determined that If the wire reel WR is held by the reel holding mechanism 36 (YES), the process proceeds to S3.
  • the device control unit 50 determines whether or not the feed motor FET (FET of the driver circuit 23) has an open failure. Specifically, if the device control unit 50 does not supply current to the driver circuit 23 for a predetermined period of time after S118 of the device main processing (see FIG. 17) ends, the feed motor It is determined that the FET has an open failure. The apparatus control unit 50 determines that the feed motor FET has an open failure when current flows through the driver circuit 23 even once during the period from the end of S118 of the main processing of the apparatus (see FIG. 17) to the elapse of a predetermined period of time. judge not. If the feed motor FET does not have an open failure (NO), the process proceeds to S4.
  • the feed motor FET does not have an open failure (NO)
  • the device control unit 50 determines whether an overload is detected in the feed motor 72. Specifically, when the current value detected by the current detection circuit 28 continues to exceed the first upper limit current value for a predetermined time or longer, the device control unit 50 causes the feed motor 72 to Determine that an overload has been detected. If no overload is detected in the feed motor 72 (NO), the process proceeds to S6.
  • the device control unit 50 determines whether or not an abnormality has occurred in the feed gears (main driving gear 78 and driven gear 80).
  • the device control unit 50 of this embodiment calculates the amount of rotation of the main driving gear 78 after S118 of the device main processing (see FIG. 17) is completed based on the gear rotation detection sensor 79.
  • the apparatus control unit 50 determines that the amount of rotation of the main driving gear 78 remains a predetermined value (for example, a wire speed set by the user) even after a predetermined period of time has elapsed since S118 of the apparatus main processing (see FIG. 17) was completed. If it does not reach the amount of rotation corresponding to the feed amount of W), it is determined that an abnormality has occurred in the feed gear. If no abnormality has occurred in the feed gear (in the case of NO), the process proceeds to S8.
  • the device control unit 50 determines whether wire shortage has occurred.
  • the device control unit 50 of this embodiment calculates the amount of rotation of the wire reel WR after S118 of the device main process (see FIG. 17) is completed based on the reel rotation detection sensor 66.
  • the apparatus control unit 50 determines that the amount of rotation of the wire reel WR remains a predetermined value (for example, the wire reel set by the user) even after a predetermined period of time has elapsed since S118 of the apparatus main processing (see FIG. 17) was completed. If the amount of rotation does not reach the amount of rotation corresponding to the feed amount of W), it is determined that a wire shortage has occurred. If it is determined that there is no shortage of wires (in the case of NO), the process proceeds to S9.
  • the device control unit 50 determines whether or not the solenoid FET (FET of the driver circuit 22) has an open failure. Specifically, if the device control unit 50 detects that no current flows through the driver circuit 22 for a predetermined period of time from the end of S118 of the device main processing (see FIG. 17), the solenoid FET has an open failure. The device control unit 50 determines that the solenoid FET is not open-failed if a current flows through the driver circuit 22 even once during a predetermined period of time from the end of S118 of the device main processing (see FIG. 17). I judge. If the solenoid FET does not have an open failure (NO), the process proceeds to S10.
  • the solenoid FET FET of the driver circuit 22
  • the device control unit 50 stores in the memory a feed operation normality determination flag indicating that the feed operation is normally performed. After S10, the process of FIG. 18 ends.
  • the device control unit 50 stores in the memory a reel dropout determination flag indicating that the wire reel WR is not held by the reel holding mechanism .
  • the device control unit 50 stores in the memory a feed motor FET open failure determination flag indicating that the feed motor FET has an open failure.
  • the apparatus control unit 50 stores in the memory a feed motor overload determination flag indicating that the feed motor 72 is overloaded.
  • the device control unit 50 stores in the memory a feed gear abnormality determination flag indicating that the feed gear is abnormal.
  • the device control unit 50 stores in the memory a wire shortage determination flag indicating that a wire shortage has occurred.
  • the device control unit 50 stores in the memory a solenoid FET open failure determination flag indicating that the solenoid FET has an open failure. After S12, the process proceeds to S14.
  • the device control unit 50 suspends the reinforcing bar binding work being performed. Specifically, the device control unit 50 turns off the protection FET 31 . As a result, the power supply from the power control board 808 to the driver circuits 22, 23, 24 is cut off. After S14, the process of FIG. 18 ends.
  • the feed operation normal determination flag stored in the memory in S10, the reel dropout determination flag, the feed motor FET open failure determination flag, the feed motor overload determination flag, the feed gear abnormality determination flag, and the wire The shortage determination flag and the solenoid FET open failure determination flag are held in the memory until the feed operation state determination process is started next time, and are deleted from the memory when the feed operation state determination process is started next time. . These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
  • the apparatus control unit 50 repeatedly executes the plate position state determination process shown in FIG. 19 while power is being supplied from the power control board 808 .
  • the device control unit 50 uses the plate position detection sensor 134 to determine whether or not a rebar contact state has been detected.
  • the rebar contact state here means a state in which a plurality of rebars R are pressed against the contact plate 102 . If the rebar contact state is detected (if YES), the process proceeds to S34. When the reinforcing bar contact state is not detected (in the case of NO), the process executes S32 again.
  • the device control unit 50 determines whether or not the rebar contact state has continued for a predetermined time (for example, 5 seconds) or longer.
  • the device control unit 50 makes the determination of S34 by continuing to monitor the plate position detection sensor 134 until a predetermined period of time has elapsed since the determination of YES was made in the process of S32. If the rebar contact state has not continued for the predetermined time or longer (NO), the process proceeds to S36.
  • the device control unit 50 stores in memory a plate normality determination flag indicating that the contact plate 102 is operating normally. After S36, the process of FIG. 19 ends.
  • S34 If it is determined in S34 that the rebar contact state has continued for a predetermined time or longer (YES), the process proceeds to S38.
  • device control unit 50 stores in memory a plate abnormality determination flag indicating that an abnormality has occurred in the operation of contact plate 102 . After S38, the process of FIG. 19 ends.
  • the plate normality determination flag stored in the memory in S36 or the plate abnormality determination flag stored in the memory in S38 is held in the memory until the next plate state determination process is started, and the plate state determination flag is stored in the memory next time. When the determination process is started, it is cleared from memory. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
  • the device control unit 50 repeatedly executes the supply voltage state determination process shown in FIG. 20 while power is being supplied from the power control board 808 .
  • the device control unit 50 determines whether the voltage value detected by the voltage detection circuit 27 is below a predetermined voltage lower limit value. If the voltage value detected by the voltage detection circuit 27 is below the voltage lower limit value (YES), the process proceeds to S44. If the voltage value detected by the voltage detection circuit 27 is equal to or higher than the voltage lower limit value (NO), the process proceeds to S46.
  • the device control unit 50 stores in memory a low voltage determination flag indicating that the voltage value of the power supplied from the power control board 808 to the device control unit 50 is insufficient. After S44, the process of FIG. 20 ends.
  • the device control unit 50 stores in memory a supply voltage normality determination flag indicating that the voltage value of the power supplied from the power control board 808 to the device control unit 50 is a sufficient value. After S46, the process of FIG. 20 ends.
  • the low voltage determination flag stored in the memory in S44 or the supply voltage normality determination flag stored in the memory in S46 is held in the memory until the supply voltage state determination process is started next time. It is cleared from memory when the supply voltage status determination process is started. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
  • the device control unit 50 repeatedly executes the temperature state determination process shown in FIG. 21 while power is being supplied from the power control board 808 .
  • the device control unit 50 determines whether or not the device control unit 50 is overheating. Specifically, the device control unit 50 determines whether or not the temperature of the device control unit 50 detected by the temperature detection sensor 32 has continued to exceed a predetermined upper temperature limit for a predetermined time or longer. do. If the device control unit 50 is overheating (YES), the process proceeds to S54.
  • the device control unit 50 stores in memory a temperature abnormality determination flag indicating that the device control unit 50 is overheating. After S54, the process proceeds to S56.
  • the device control unit 50 interrupts the reinforcing bar binding work in progress when the reinforcing bar binding work is being executed. Specifically, the device control unit 50 turns off the protection FET 31 . As a result, the power supply from the power control board 808 to the driver circuits 22, 23, 24 is cut off. After S56, the process of FIG. 21 ends.
  • the process proceeds to S58.
  • the device control unit 50 stores in memory a temperature normality determination flag indicating that the device control unit 50 is not overheating (that is, the temperature of the device control unit 50 is normal). After S58, the process of FIG. 21 ends.
  • the temperature abnormality determination flag stored in the memory in S54 or the temperature normality determination flag stored in the memory in S58 is held in the memory until the temperature state determination process is started next time. When the determination process is started, it is cleared from memory. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
  • the device control unit 50 executes the twisting motion state determination processing shown in FIG. 22 in S130 of the device main processing (see FIG. 17).
  • the device control unit 50 determines whether or not the torsion motor 170 is locked based on the detection result of the torsion motor rotation detection sensor 55.
  • the torsion motor rotation detection sensor 55 of this embodiment is a Hall sensor, and switches the signal output to the device control unit 50 between the H signal and the L signal each time the rotor of the torsion motor 170 rotates by a predetermined angle. is configured as The device control unit 50 detects the rotation of the torsion motor 170 based on the number of times the signal output from the torsion motor rotation detection sensor 55 is switched. Therefore, the device control unit 50 does not change the signal output from the torsion motor rotation detection sensor 55 even after a predetermined time has passed since S128 of the device main processing (see FIG. 17) is completed. If so, it is determined that the torsion motor 170 is locked. If the torsion motor 170 is not locked (NO), the process proceeds to S64.
  • the device control unit 50 determines whether or not the rotation abnormality of the torsion motor 170 has been detected. Specifically, the device control unit 50 compares the change pattern of the rotation angle of the torsion motor 170 detected by the torsion motor rotation detection sensor 55 with the ideal change pattern stored in the memory, thereby detecting the rotation angle of the torsion motor 170. is detected. If no abnormal rotation of torsion motor 170 is detected (NO), the process proceeds to S66.
  • the device control unit 50 determines whether or not an overload is detected in the torsion motor 170. Specifically, the device control unit 50 determines whether or not a state in which the current value detected by the current detection circuit 28 exceeds a predetermined second current upper limit value has been detected continuously for a predetermined time or longer. If no overload is detected in the torsion motor 170 (NO), the process proceeds to S68.
  • the device control unit 50 determines whether or not the torsion motor rotation detection sensor 55 has become abnormal. Specifically, the device control unit 50 continues to monitor the control output from the torsion motor rotation detection sensor 55 from the time the torsion motor 170 is driven until the torsion motor 170 is stopped. If the signal (H signal or L signal) output from the torsion motor rotation detection sensor 55 never changes, the device control unit 50 determines that the torsion motor rotation detection sensor 55 has become abnormal. If no abnormality has occurred in the torsion motor rotation detection sensor 55 (NO), the process proceeds to S70.
  • the device control unit 50 determines whether or not an abnormality has occurred in the torsion arm (sleeve 174 and hook 178). Specifically, the device control unit 50 determines that an abnormality has occurred in the torsion arm when the sleeve 174 is not in the initial position after a predetermined time has elapsed since S128 of the device main processing (see FIG. 17) has ended. do. If no abnormality has occurred in the torsion arm (NO), the process proceeds to S72.
  • the device control unit 50 determines whether or not overcurrent is detected in the current detection circuit 28 during execution of the twisting motion.
  • the current detection circuit 28 includes an overcurrent detection circuit that transmits an overcurrent detection signal to the device control unit 50 when the current value flowing through the current detection circuit 28 exceeds a predetermined third current upper limit value.
  • a circuit (not shown) is provided. Therefore, the device control unit 50 determines whether or not it has received an overcurrent detection signal from the overcurrent detection circuit.
  • the third upper limit current value is set to a value larger than the first upper limit current value in S4 of FIG. 18 and the second upper limit current value in S66 of FIG. If overcurrent is not detected (NO), the process proceeds to S74.
  • the device control unit 50 stores in memory a twisting motion normal determination flag indicating that the twisting motion is being performed normally. After S74, the process of FIG. 22 ends.
  • the device control unit 50 stores in the memory a torsion motor lock determination flag indicating that the torsion motor 170 is in a locked state.
  • the device control unit 50 stores in the memory a torsion motor rotation abnormality determination flag indicating that the torsion motor 170 has an abnormality in rotation.
  • the device control unit 50 stores in the memory a torsion motor overload determination flag indicating that an overload has been detected in the torsion motor 170.
  • the device control unit 50 stores in the memory a torsion motor rotation detection sensor abnormality determination flag indicating that the torsion motor rotation detection sensor 55 is abnormal.
  • the device control unit 50 stores in the memory a torsion arm abnormality determination flag indicating that an abnormality has occurred in the torsion arm.
  • the device control unit 50 stores in the memory an overcurrent determination flag indicating that an overcurrent has been detected. After S76, the process proceeds to S78.
  • the device control unit 50 suspends the reinforcing bar binding work being performed. Specifically, the device control unit 50 turns off the protection FET 31 . As a result, the power supply from the power control board 808 to the driver circuits 22, 23, 24 is cut off. After S78, the process of FIG. 22 ends.
  • the torsion operation normal determination flag stored in the memory in S74 the torsion motor lock determination flag, the torsion motor rotation abnormality determination flag, the torsion motor overload determination flag, and the torsion motor rotation detection sensor abnormality determination stored in the memory in S76.
  • the flag, the torsion arm abnormality determination flag, and the overcurrent determination flag are held in the memory until the torsion motion state determination process is started next time, and are deleted from the memory when the torsion motion state determination process is started next time. be done.
  • These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
  • the device control unit 50 executes the hardware state determination processing shown in FIG. 23 in S102 and S114 of the device main processing (see FIG. 17).
  • the device control unit 50 determines whether or not the lower curl guide 92 is open based on the guide position detection sensor 142. If it is determined that the lower curl guide 92 is not open (that is, closed) (NO), the process proceeds to S84.
  • the device control unit 50 identifies the voltage value of the protection FET 31 based on the respective detection values of the voltage detection circuits 25, 26, and 27. Then, the device control unit 50 determines whether or not the voltage value of the protection FET 31 is abnormal.
  • the abnormal value here is, for example, a value below the gate threshold value of the protection FET 31 . If the voltage value of protection FET 31 is normal (NO), the process proceeds to S86.
  • the device control unit 50 uses the voltage detection circuit 25 to determine whether the voltage value of the solenoid FET is an abnormal value.
  • the abnormal value here is, for example, a value below the gate threshold value of the solenoid FET. If the voltage value of the solenoid FET is normal (NO), the process proceeds to S88.
  • the device control unit 50 uses the voltage detection circuit 26 to determine whether the voltage value of the feed motor FET is an abnormal value.
  • the abnormal value here is, for example, a value below the gate threshold of the feed motor FET. If the voltage value of the feed motor FET is normal (NO), the process proceeds to S90.
  • the device control unit 50 stores in memory a hardware normality determination flag indicating that the hardware state is normal. After S90, the process of FIG. 23 ends.
  • the device control unit 50 stores in the memory a protection FET voltage abnormality determination flag indicating that the voltage value of the protection FET 31 is an abnormal value.
  • the device control unit 50 stores in the memory a solenoid FET voltage abnormality determination flag indicating that the voltage value of the solenoid FET is an abnormal value.
  • the device control unit 50 stores in the memory a feed motor FET voltage abnormality determination flag indicating that the voltage value of the feed motor FET is an abnormal value.
  • the hardware normality determination flag stored in the memory in S90, the guide position abnormality determination flag, the protection FET voltage abnormality determination flag, the solenoid FET voltage abnormality determination flag, and the feed motor FET voltage abnormality determination flag stored in the memory in S92. is held in the memory until the hardware state determination process is started next time, and is deleted from the memory when the hardware state determination process is started next time. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
  • a reel dropout determination flag, a feed motor FET open failure determination flag, a feed motor overload determination flag, a feed gear abnormality determination flag, a wire shortage determination flag, a solenoid FET open failure determination flag, a plate abnormality determination flag, a low voltage determination flag, Temperature abnormality determination flag, torsion motor lock determination flag, torsion motor rotation abnormality determination flag, torsion motor overload determination flag, torsion motor rotation detection sensor abnormality determination flag, torsion arm abnormality determination flag, overcurrent determination flag, guide position abnormality determination flag , the protection FET voltage abnormality determination flag, the solenoid FET voltage abnormality determination flag, and the feed motor FET voltage abnormality determination flag are collectively referred to as "binding device abnormality determination flag".
  • the transport device 4 includes a chassis 190 , a right crawler 192 , a left crawler 194 , a side stepper 196 and a power transmission mechanism 402 .
  • Right crawler 192 , left crawler 194 , side stepper 196 , and power transmission mechanism 402 are each supported by undercarriage 190 .
  • the chassis 190 includes a base plate 204 , a right plate 210 , a left plate 212 , a plurality of base frames 214 , a front connecting frame 215 and a rear connecting frame 216 .
  • the base plate 204 is arranged along the front-back direction and the left-right direction (that is, the horizontal direction).
  • the reinforcement binding robot 1 is provided with a through-hole 204a formed by penetrating the base plate 204 in the vertical direction at the central portion in the front-rear and left-right directions.
  • the through hole 204a is provided with a size that allows the reinforcing bar binding device 2 to pass therethrough substantially along the vertical direction.
  • the plurality of base frames 214 are fixed to the lower surface of the base plate 204 .
  • the right plate 210 is fixed to the right surface of one of the plurality of base frames 214 that extends in the front-rear direction along the right end of the base plate 204 .
  • the right plate 210 is arranged along the front-back direction and the up-down direction.
  • the left plate 212 is fixed to the left surface of one of the plurality of base frames 214 that extends in the front-rear direction along the left end of the base plate 204 .
  • the left plate 212 is arranged along the front-back direction and the up-down direction.
  • the upper end of the right plate 210 and the upper end of the left plate 212 are at the same position as the lower surface of the base plate 204 .
  • the front end of the right plate 210 and the front end of the left plate 212 protrude forward from the front end of the base plate 204
  • the rear end of the right plate 210 and the rear end of the left plate 212 protrude behind the base plate 204 . It protrudes backward beyond the edge.
  • the front connecting frame 215 is forward of the front end of the base plate 204 and connects the vicinity of the front end of the right side plate 210 and the vicinity of the front end of the left side plate 212 .
  • the rear connecting frame 216 is behind the rear end of the base plate 204 and connects the vicinity of the rear end of the right side plate 210 and the vicinity of the rear end of the left side plate 212 .
  • the front connecting frame 215 and the rear connecting frame 216 extend in the left-right direction.
  • the front connecting frame 215 and the rear connecting frame 216 are arranged below the plurality of base frames 214 in the vertical direction.
  • the right crawler 192 includes a front pulley 218 , a rear pulley 220 , a plurality of auxiliary pulleys 222 , a tensioner pulley 224 , a rubber belt 226 , a right crawler motor 228 and a gearbox 230 .
  • the outer surface of the front pulley 218, the outer surface of the rear pulley 220, the outer surfaces of the plurality of auxiliary pulleys 222, and the outer surface of the tensioner pulley 224 are each formed with a tooth profile that meshes with the rubber belt 226.
  • a rubber belt 226 is stretched over a front pulley 218 , a rear pulley 220 , a plurality of auxiliary pulleys 222 and a tensioner pulley 224 .
  • the front pulley 218 is rotatably supported by the right plate 210 via a bearing 232 near the front end of the right plate 210 .
  • the rear pulley 220 is rotatably supported by the right plate 210 via a bearing 234 near the rear end of the right plate 210 .
  • a plurality of auxiliary pulleys 222 are rotatably supported on the right plate 210 via corresponding bearings 236 between the front pulley 218 and the rear pulley 220 .
  • the plurality of auxiliary pulleys 222 are arranged side by side in the front-rear direction.
  • the outer diameter of the front pulley 218 and the rear pulley 220 are substantially the same, and the outer diameters of the plurality of auxiliary pulleys 222 are smaller than the outer diameters of the front pulley 218 and the rear pulley 220 .
  • the lower end of the front pulley 218, the lower end of the rear pulley 220, and the lower ends of the plurality of auxiliary pulleys 222 are located at substantially the same position.
  • Tensioner pulley 224 is rotatably supported by movable bearing 237 .
  • the movable bearing 237 is supported by the right plate 210 so as to be vertically movable. By adjusting the vertical position of the movable bearing 237 with respect to the right plate 210 while the rubber belt 226 is stretched over the tensioner pulley 224, the tension of the rubber belt 226 can be adjusted.
  • Right crawler motor 228 is supported by right plate 210 via bearing 232 and gearbox 230 .
  • Right crawler motor 228 is, for example, a DC brushless motor.
  • the right crawler motor 228 is connected to the front pulley 218 via a reduction gear (not shown) built into the gearbox 230 .
  • the front pulley 218 rotates in the forward or reverse direction, thereby moving the rubber belt 226 through the front pulley 218, the rear pulley 220, the plurality of auxiliary pulleys 222, Rotate forward or reverse on the outside of the tensioner pulley 224 .
  • the left crawler 194 includes a front pulley 244 , a rear pulley 246 , a plurality of auxiliary pulleys 248 , a tensioner pulley 250 , a rubber belt 252 , a left crawler motor 254 and a gearbox 256 .
  • the outer surface of the front pulley 244, the outer surface of the rear pulley 246, the outer surfaces of the plurality of auxiliary pulleys 248, and the outer surface of the tensioner pulley 250 are each formed with a tooth profile that meshes with the rubber belt 252.
  • a rubber belt 252 is stretched over a front pulley 244 , a rear pulley 246 , a plurality of auxiliary pulleys 248 and a tensioner pulley 250 .
  • the front pulley 244 is rotatably supported by the left plate 212 via a bearing 258 near the front end of the left plate 212 .
  • the rear pulley 246 is rotatably supported by the left plate 212 via a bearing 260 near the rear end of the left plate 212 .
  • a plurality of auxiliary pulleys 248 are rotatably supported on left plate 212 via corresponding bearings 262 between front pulley 244 and rear pulley 246 .
  • the plurality of auxiliary pulleys 248 are arranged side by side in the front-rear direction.
  • the outer diameter of the front pulley 244 and the rear pulley 246 are substantially the same, and the outer diameters of the plurality of auxiliary pulleys 248 are smaller than the outer diameters of the front pulley 244 and the rear pulley 246 .
  • the lower end of the front pulley 244, the lower end of the rear pulley 246, and the lower ends of the plurality of auxiliary pulleys 248 are located at approximately the same position.
  • Tensioner pulley 250 is rotatably supported on movable bearing 264 .
  • the movable bearing 264 is supported by the left plate 212 so as to be vertically movable.
  • the tension of the rubber belt 252 can be adjusted by adjusting the vertical position of the movable bearing 264 with respect to the left plate 212 while the rubber belt 252 is stretched over the tensioner pulley 250 .
  • Left crawler motor 254 is supported by left plate 212 via bearing 258 and gearbox 256 .
  • Left crawler motor 254 is, for example, a DC brushless motor.
  • Left crawler motor 254 is connected to front pulley 244 via a reduction gear (not shown) built into gear box 256 .
  • the front pulley 244 rotates forward or reverse, thereby moving the rubber belt 252 through the front pulley 244, the rear pulley 246, a plurality of auxiliary pulleys 248, Rotate forward or reverse on the outside of the tensioner pulley 250 .
  • the side stepper 196 includes step bars 272 and 274, a front crank mechanism 276 and a rear crank mechanism 277.
  • the step bars 272 and 274 are rod-shaped members having substantially rectangular cross sections and extend in the front-rear direction.
  • the step bar 272 is arranged between the center and the right end of the base plate 204, and the step bar 274 is arranged between the center and the left end of the base plate 204 in the horizontal direction.
  • the front crank mechanism 276 includes a support plate 278, pulleys 280, 282, a tensioner pulley 283, a belt 284, crank arms 286, 288, and crank pins 290, 292 (see FIG. 25). , a crank plate 294 , rollers 296 and 298 and a guide plate 300 .
  • Support plate 278 is fixed to the lower surface of base plate 204 near the front end of base plate 204 .
  • the support plate 278 is arranged along the left-right direction and the up-down direction.
  • the pulley 280 is arranged near the right end of the support plate 278 behind the support plate 278 .
  • the pulley 282 is arranged behind the support plate 278 near the left end of the support plate 278 .
  • Pulleys 280 and 282 are each rotatably supported by support plate 278 .
  • the diameter of pulley 280 is substantially the same as the diameter of pulley 282 .
  • a belt 284 is stretched over pulleys 280 and 282 . Therefore, when one of the pulleys 280 and 282 rotates in the forward or reverse direction, the other also rotates in the forward or reverse direction at approximately the same number of rotations.
  • the tensioner pulley 283 is rotatably supported by the base plate 204 (see FIG. 2) via a movable bearing (not shown) provided so as to be vertically movable.
  • the tensioner pulley 283 is arranged to contact the belt 284 from above. Therefore, the tension of the belt 284 can be adjusted by adjusting the vertical position of the movable bearing that supports the tensioner pulley 283 with respect to the base plate 204 .
  • crank arms 286, 288, crank pins 290, 292 (see FIG. 25), crank plate 294, rollers 296, 298, and guide plate 300 are arranged forward of the support plate 278.
  • the crank arms 286, 288 have fitting holes 286a, 288a into which the shafts 280a, 282a of the pulleys 280, 282 are fitted, and long holes 286b, 288b extending in the longitudinal direction of the crank arms 286, 288. I have.
  • Crank arms 286, 288 rotate together with pulleys 280, 282 about axes 280a, 282a as pulleys 280, 282 rotate.
  • Crank pins 290 and 292 are slidably inserted into the long holes 286b and 288b. Crank pins 290 , 292 are fixed to crank plate 294 while passing through crank plate 294 .
  • the crank plate 294 is arranged forward of the crank arms 286 and 288 .
  • the crank plate 294 extends along the left-right direction and the up-down direction.
  • Rollers 296 , 298 are attached to crank pins 290 , 292 forward of crank plate 294 .
  • the rollers 296, 298 enter guide grooves 302, 304 formed on the rear surface of the guide plate 300.
  • the guide plate 300 is fixed to the lower surface of the base plate 204 ahead of the crank plate 294 .
  • the guide plate 300 extends along the left-right direction and the up-down direction. As shown in FIG. 25, guide grooves 302 and 304 of guide plate 300 are formed in a substantially rectangular shape with rounded corners.
  • the guide grooves 302, 304 define a side step track S indicated by broken lines in FIG.
  • the side step track S has a substantially rectangular shape with rounded corners, and has upper and lower sides extending in the horizontal direction and right and left sides extending in the vertical direction.
  • crank pins 290, 292 In the front side crank mechanism 276, when the pulleys 280, 282 rotate, the rotation of the crank arms 286, 288 causes the crank pins 290, 292 to move in the rotational direction of the crank arms 286, 288. At this time, since the rollers 296 and 298 are in the guide grooves 302 and 304, the crank pins 290 and 292 slide inside the elongated holes 286b and 288b, and slide along the sides defined by the guide grooves 302 and 304. It moves along the step trajectory S. As a result, the crank plate 294 to which the crank pins 290 and 292 are fixed also moves along the side step track S defined by the guide grooves 302 and 304 .
  • the rear crank mechanism 277 includes a support plate 306, pulleys 308 and 310, a tensioner pulley 311, a belt 312, crank arms 314 and 316, and crank pins 318 and 320 (see FIG. 25). ), a crank plate 322 , rollers 324 and 326 and a guide plate 328 .
  • the support plate 306 is fixed to the lower surface of the base plate 204 near the rear end of the base plate 204 (see FIG. 2).
  • the support plate 306 is arranged along the left-right direction and the up-down direction.
  • the pulley 308 is arranged near the right end of the support plate 306 and forward of the support plate 306 .
  • the pulley 310 is arranged near the left end of the support plate 306 and forward of the support plate 306 .
  • Pulleys 308 and 310 are each rotatably supported by support plate 306 .
  • the diameter of pulley 308 is approximately the same as the diameter of pulley 310 and approximately the same as the diameter of pulleys 280 and 282 of front crank mechanism 276 .
  • a belt 312 is stretched over pulleys 308 and 310 . Therefore, when one of the pulleys 308 and 310 rotates in the forward direction or the reverse direction, the other also rotates in the forward direction or the reverse direction at approximately the same number of rotations.
  • the tensioner pulley 311 is rotatably supported by the base plate 204 via a movable bearing (not shown) provided so as to be movable in the vertical direction.
  • the tensioner pulley 311 is arranged to contact the belt 312 from above. Therefore, the tension of the belt 312 can be adjusted by adjusting the vertical position of the movable bearing that supports the tensioner pulley 311 with respect to the base plate 204 .
  • crank arms 314 , 316 , crank pins 318 , 320 (see FIG. 25), crank plate 322 , rollers 324 , 326 and guide plate 328 are arranged behind the support plate 306 .
  • the crank arms 314, 316 have fitting holes 314a, 316a into which the shafts 308a, 310a of the pulleys 308, 310 are fitted, and long holes 314b, 316b extending in the longitudinal direction of the crank arms 314, 316. I have.
  • Crank arms 314, 316 rotate together with pulleys 308, 310 about axes 308a, 310a as pulleys 308, 310 rotate.
  • Crank pins 318 and 320 are slidably inserted into the long holes 314b and 316b. Crank pins 318 , 320 are fixed to crank plate 322 while passing through crank plate 322 .
  • the crank plate 322 is arranged rearwardly of the crank arms 314 and 316 .
  • the crank plate 322 extends along the left-right direction and the up-down direction.
  • Rollers 324 , 326 are attached to crankpins 318 , 320 behind crank plate 322 . As shown in FIG. 26, the rollers 324, 326 enter guide grooves 330, 332 formed on the front surface of the guide plate 328. As shown in FIG.
  • the guide plate 328 is fixed to the lower surface of the base plate 204 behind the crank plate 322 .
  • the guide plate 328 extends along the left-right direction and the up-down direction.
  • the guide grooves 330 and 332 of the guide plate 328 are formed in a substantially rectangular shape with rounded corners.
  • the guide grooves 330, 332 define a side step track S indicated by broken lines in FIG.
  • the side step track S has a substantially rectangular shape with rounded corners, and has upper and lower sides extending in the horizontal direction and right and left sides extending in the vertical direction.
  • Side step trajectory S defined by guide grooves 330 and 332 is the same as side step trajectory S defined by guide grooves 302 and 304 .
  • crank pins 318, 320 move in the rotational direction of the crank arms 314, 316.
  • the crank pins 318 and 320 slide inside the elongated holes 314b and 316b, and slide along the sides defined by the guide grooves 330 and 332. It moves along the step trajectory S.
  • the crank plate 322 to which the crank pins 318 and 320 are fixed also moves along the side step track S defined by the guide grooves 330 and 332 .
  • the step bars 272 and 274 have their front ends fixed to the crank plate 294 of the front crank mechanism 276 and their rear ends fixed to the crank plate 322 of the rear crank mechanism 277 .
  • pulley 282 of front crank mechanism 276 and pulley 310 of rear crank mechanism 277 are each connected to rotation transmission shaft 428 of power transmission mechanism 402 . Therefore, when the rotation transmission shaft 428 rotates, the pulleys 280 and 282 of the front crank mechanism 276 and the pulleys 308 and 310 of the rear crank mechanism 277 rotate in synchronization with each other, and the crank plate 294 of the front crank mechanism 276 rotates.
  • the step bars 272 and 274 also move clockwise or counterclockwise along the side step track S.
  • One of the front crank mechanism 276 and the rear crank mechanism 277 (for example, the front crank mechanism 276) is provided with a zero point detection sensor (not shown).
  • the zero point detection sensor includes, for example, a permanent magnet (not shown) fixed to the crank plate 294 and a Hall element (not shown) fixed to the guide plate 300 .
  • the zero point detection sensor can detect whether or not the crank plates 294 and 322 are at the zero point position with the center of the upper side of the side step track S in the horizontal direction as the zero point position.
  • crank plates 294, 322 are on the upper side of the side step track S (see FIG. 25) and the step bars 272, 274 are moving upward, the crank plates 294, 322 and the step bars 272, 274 are separated from the first reinforcing bar R1 and the second reinforcing bar R2.
  • the right crawler 192 and the left crawler 194 are in contact with the first reinforcing bar R1 and the second reinforcing bar R2. It can be moved forward and backward.
  • the reinforcing bar binding robot 1 can change the direction of the chassis 190 with respect to the first reinforcing bar R1 and the second reinforcing bar R2 by giving a speed difference between the right crawler 192 and the left crawler 194 .
  • the chassis 190 moves rightward or leftward by a step width corresponding to the lateral width of the side step track S, and then the crank plates 294, 322 and the step bars 272, 274 Moving upward, the right crawler 192 and the left crawler 194 contact the first reinforcing bar R1 and the second reinforcing bar R2 again, and the crank plates 294, 322 and the step bars 272, 274 separate from the second reinforcing bar R2.
  • the reinforcing bar binding robot 1 can move the chassis 190 rightward or leftward by a predetermined step width by driving the side stepper 196 .
  • the side step track S defined by the guide grooves 302, 304, 330, 332 is not limited to the substantially rectangular shape as described above, and can have various shapes.
  • the side step track S when the step bars 272 and 274 move along the side step track S, the lower ends of the step bars 272 and 274 move below the lower ends of the right crawler 192 and the left crawler 194, and then Any shape can be used as long as the lower ends of the step bars 272 and 274 move in the horizontal direction and then the lower ends of the step bars 272 and 274 move higher than the lower ends of the right crawler 192 and the left crawler 194.
  • the side step track S may be circular, elliptical, triangular with a lower base, or polygonal with pentagons or more.
  • the power transmission mechanism 402 includes a planetary gear mechanism 406, a first output shaft 414, a second output shaft 416, a first spur gear 418, a second spur gear 420, and a third spur gear.
  • a gear 422 , a worm shaft 424 , a worm wheel 426 , a rotation transmission shaft 428 , a universal joint 430 and a switching actuator 432 are provided.
  • Planetary gear mechanism 406, first output shaft 414, second output shaft 416, first spur gear 418, second spur gear 420, third spur gear 422, worm shaft 424, and worm wheel 426 are housed in a gear box 438 (see FIG. 24).
  • a dual-purpose motor 400 is connected to the planetary gear mechanism 406 from the left. Dual-purpose motor 400 is coupled to a sun gear (not shown) of planetary gear mechanism 406 .
  • the dual-purpose motor 400 is, for example, a DC brushless motor.
  • the planetary carrier 410 of the planetary gear mechanism 406 is connected to the worm shaft 636 (see FIG. 30) of the lifting device 6 via the first output shaft 414 and the universal joint 430 .
  • the internal gear 412 of the planetary gear mechanism 406 passes through a first spur gear 418, a second output shaft 416, a second spur gear 420, a third spur gear 422, a worm shaft 424, a worm wheel 426, and a rotation transmission shaft 428 in order. , is connected to the side stepper 196 .
  • An inner engaging recess 440 is formed on the outer surface of the planetary carrier 410 .
  • the inner engaging recesses 440 are arranged side by side in the circumferential direction and have a plurality of inner recessed grooves 440a recessed from the radially outer side to the radially inner side.
  • an outer recessed groove 442a is formed on the inner surface of the internal gear 412. As shown in FIG.
  • the outer recessed grooves 442a are arranged side by side in the circumferential direction and have a plurality of outer recessed grooves 442a recessed from the radially inner side to the radially outer side.
  • the switching actuator 432 includes a locking member 434 , a position detection mechanism 436 , a pull solenoid 452 and a cap 456 .
  • the locking member 434 has a locking pin 446 extending in the left-right direction in the vicinity of the front end.
  • the locking member 434 is held by a cap 456 so as to be slidable in the front-rear direction.
  • Locking member 434 is connected to the output shaft of pull solenoid 452 within cap 456 .
  • a compression spring (not shown) is provided in the cap 456 to bias the output shaft of the pull solenoid 452 forward.
  • the robot control unit 10 can switch the pull solenoid 452 between an energized state and a non-energized state.
  • the pull solenoid 452 is energized.
  • the output shaft of the pull solenoid 452 is moved rearward against the biasing force of the compression spring by the attractive force of the pull solenoid 452 .
  • the locking member 434 is moved rearward in conjunction with the output shaft of the pull solenoid 452 .
  • the locking pin 446 of the locking member 434 engages with the outer engaging recess 442 of the internal gear 412 to prohibit rotation of the internal gear 412 .
  • the power of the dual-purpose motor 400 is transmitted to the lifting device 6 (see FIG. 30) through the planetary gear mechanism 406, the first output shaft 414, and the universal joint 430 in this order.
  • the state in which the power of the dual-purpose motor 400 is transmitted to the lifting device 6 may be referred to as the "first transmission state".
  • the locking member 434 When the pull solenoid 452 is switched from the state shown in FIG. 29 to the non-energized state, the locking member 434 is moved forward by the biasing force of the compression spring. The locking member 434 is moved forward in conjunction with the output shaft of the pull solenoid 452 . The locking pin 446 of the locking member 434 thereby engages the inner engagement recess 440 of the planet carrier 410 . Rotation of the internal gear 412 is prohibited when the locking pin 446 is engaged with the inner engagement recess 440 .
  • the power of the dual-purpose motor 400 is the planetary gear mechanism 406, the first spur gear 418, the second output shaft 416, the second spur gear 420, the third spur gear 422, the worm shaft 424, the worm wheel 426, and the rotation transmission. It is transmitted to the side stepper 196 through the shaft 428 in turn.
  • the state in which the power of dual-purpose motor 400 is transmitted to side stepper 196 is sometimes referred to as the "second transmission state.”
  • the position detection mechanism 436 is attached above the cap 456 .
  • the position detection mechanism 436 is a slide switch interlocked with the movement of the locking member 434 and can detect the position of the locking member 434 . Therefore, based on the signal transmitted from the position detection mechanism 436, the robot control unit 10 determines whether the power transmission mechanism 402 is in the first transmission state or the power transmission mechanism 402 is in the second transmission state. can be detected.
  • the lifting device 6 includes a worm gear case 632, a lifting arm 634, and a slider crank mechanism 638.
  • Worm gear case 632 is fixed to base plate 204 (see FIG. 2).
  • the lift arm 634 is fixed to the worm gear case 632 by screws.
  • the lifting arm 634 extends from the worm gear case 632 forward and leftward.
  • the worm gear case 632 has a worm shaft 636 .
  • Slider-crank mechanism 638 includes crankshaft 642 , crank arm 644 , crank pin 646 , crank rod 648 , slider pin 650 , slider 652 , rail 653 and base member 654 .
  • crankshaft 642 is connected to the worm shaft 636 via a worm gear (not shown) built into the worm gear case 632 .
  • Crank arm 644 is fixed to crankshaft 642 .
  • Crank pin 646 is rotatably held on each of crank arm 644 and crank rod 648 .
  • Slider pin 650 is rotatably held on crank rod 648 .
  • Slider pin 650 is fixed to slider 652 .
  • the slider 652 is slidably held by a rail 653 provided on the elevating arm 634 .
  • the base member 654 is rotatably provided on the slider pin 650 .
  • the base member 654 is fixed to the housing 12 by a screw (not shown) while being fitted in the fitting portion 12a (see FIG.
  • the lifting device 6 holds the reinforcing bar binding device 2 via the base member 654 .
  • the front direction of the reinforcing bar binding device 2 faces downward of the reinforcing bar binding robot 1, and the rear direction of the reinforcing bar binding device 2 faces the reinforcing bar. It faces above the bundling robot 1 .
  • the slider crank mechanism 638 In the state shown in FIG. 30, the slider crank mechanism 638 is at the top dead center position. At this time, the reinforcing bar binding device 2 (see FIG. 3) is held at a position separated from the first reinforcing bar R1 and the second reinforcing bar R2. In this specification, the position of the reinforcing bar binding device 2 in this state may be referred to as the "upper limit position".
  • the worm shaft 636 rotates forward or reverse from the state shown in FIG. move around the circle.
  • the slider pin 650 and slider 652 which are connected to the crank pin 646 via the crank rod 648 , move downward along the rail 653 while keeping a constant distance from the crank pin 646 .
  • the reinforcing bar binding device 2 fixed to the base member 654 descends with respect to the chassis 190 .
  • the crank arm 644 is rotated so that the crank pin 646 passes from the position shown in FIG. 30 to the position shown in FIG. .
  • the slider crank mechanism 638 In the state shown in FIG. 31, the slider crank mechanism 638 is at the bottom dead center position. At this time, the reinforcing bar binding device 2 (see FIG. 3) is held at a position that enables binding of the reinforcing bar intersections. In this specification, the position of the reinforcing bar binding device 2 in this state may be referred to as the "lower limit position".
  • the worm shaft 636 rotates forward or reverse from the state shown in FIG. move around the circle.
  • the slider pin 650 and slider 652 which are connected to the crank pin 646 via the crank rod 648 , move upward along the rail 653 while keeping a constant distance from the crank pin 646 .
  • the reinforcing bar binding device 2 fixed to the base member 654 rises with respect to the chassis 190 .
  • the crank arm 644 is rotated so that the crank pin 646 passes through the lower side of the crank shaft 642 from the position shown in FIG. 31 and reaches the position shown in FIG. .
  • the slider 652 has a first interference pin 656 protruding toward the base member 654 along the rotation axis A1 of the slider pin 650, and an elongated hole 658 cut out along the circumferential direction of the rotation axis A1.
  • the base member 654 has a second interference pin 660 that protrudes toward the slider 652 along the rotation axis A1 and is inserted into the slot 658 .
  • the long hole 658 receives the second interference pin 660 so as to be slidable in the circumferential direction of the rotation axis A1.
  • a torsion spring 662 is attached to the slider pin 650 so as to urge the second interference pin 660 against the first interference pin 656 in the first circumferential direction of the rotation axis A1. .
  • the biasing force of the torsion spring 662 keeps the second interference pin 660 in contact with the end side surface of the long hole 658 from the first circumferential direction, and resists the biasing force of the torsion spring 662 . can swing in the second circumferential direction opposite to the first circumferential direction. That is, the reinforcing bar binding device 2 fixed to the base member 654 is held swingably in the second circumferential direction of the rotation axis A1. As a result, for example, when the reinforcing bar binding device 2 collides with the first reinforcing bar R1, the second reinforcing bar R2, or other obstacles, the reinforcing bar binding device 2 and the reinforcing bar binding device 2 swing in the second circumferential direction. The impact on the lifting device 6 is mitigated.
  • the lifting device 6 is fixed to a crankshaft 642 (see FIG. 30), and has a cam formed with a first fin 663 and a second fin 664 protruding radially outward of the crankshaft 642. 666 is further provided. One end of the first fin 663 and one end of the second fin 664 overlap each other in the circumferential direction of the rotation axis of the crankshaft 642 . On the other hand, the other end of the first fin 663 and the other end of the second fin 664 are separated from each other in the circumferential direction of the rotation axis of the crankshaft 642 .
  • the lifting device 6 further includes a first photosensor 668 and a second photosensor 670 each having a light emitting portion and a light receiving portion.
  • Each of the first photosensor 668 and the second photosensor 670 transmits an ON signal to the robot control unit 10 when the space between the light emitting unit and the light receiving unit is not blocked, and the space between the light emitting unit and the light receiving unit is blocked. If so, it sends an off signal to the robot control unit 10 .
  • the first photosensor 668 and the second photosensor 670 are fixed to the worm gear case 632 so as to be aligned along the rotational axis of the crankshaft 642 .
  • one of the first fin 663 or the second fin 664 is the light emitting part and the light receiving part of one of the first photosensor 668 or the second photosensor 670. It is in a position to block between The other of the first fin 663 and the second fin 664 is positioned so as not to block the light-emitting portion and the light-receiving portion of either the first photosensor 668 or the second photosensor 670 .
  • the overlapping portions of the first fin 663 and the second fin 664 are moved in the circumferential direction of the rotation axis of the crankshaft 642 by the first photosensor 668 and the first photo sensor 668 .
  • 2 photosensor 670 is moved to substantially the same position. That is, when the reinforcing bar binding device 2 is at the lower limit position, the first fin 663 blocks the space between the light emitting portion and the light receiving portion of the first photosensor 668, and the second light emitting portion and the light receiving portion of the second photosensor 670 do not have a space between the light emitting portion and the light receiving portion. It is blocked by two fins 664 .
  • the rebar binding device 2 when the rebar binding device 2 is moved to the upper limit position, the parts of the first fin 663 and the second fin 664 that are spaced apart from each other move in the circumferential direction of the rotation axis of the crankshaft 642 to the first photosensor 668 and It is moved to substantially the same position as the second photosensor 670 . That is, when the reinforcing bar binding device 2 is at the upper limit position, the light-emitting portion and the light-receiving portion of the first photosensor 668 are not blocked, and the light-emitting portion and the light-receiving portion of the second photosensor 670 are not blocked.
  • the robot control unit 10 detects that the reinforcing bar binding device 2 has reached the upper limit position and that the reinforcing bar binding device 2 has reached the lower limit position. It is possible to detect such things as having been reached.
  • robot initialization processing When the reinforcing bar binding robot 1 is powered on via the power switch, the robot control unit 10 executes robot initialization processing.
  • "turning on the power” means that power supply from the power control board 808 to the reinforcing bar binding device 2, the transport device 4, and the robot control unit 10 is started.
  • the robot control unit 10 transmits a status call signal to the device control unit 50 .
  • a status notification signal is transmitted from the device control unit 50 to the robot control unit 10 .
  • the robot control unit 10 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the transmitted status notification signal.
  • the robot control unit 10 determines whether or not the state notification signal includes a binding device abnormality determination flag. If it is determined that no abnormality has occurred in the reinforcing bar binding device 2, the robot control unit 10 terminates the robot initialization process. When it is determined that an abnormality has occurred in the reinforcing bar binding device 2, the robot control unit 10 executes an abnormality occurrence process, which will be described later. After that, the robot control unit 10 ends the robot initialization process.
  • robot main processing When the execution of the operation of the reinforcing bar binding robot 1 is instructed via an operation execution button or the like (not shown), the robot control unit 10 executes the robot main processing shown in FIG. 33 .
  • the movement of the chassis 190 of the reinforcing-bar binding robot 1 is regarded as the movement of the reinforcing-bar binding robot 1 for the sake of simplicity.
  • the robot control unit 10 transmits a status call signal to the device control unit 50.
  • a status notification signal is transmitted from the device control unit 50 to the robot control unit 10 .
  • the process proceeds to S204.
  • the robot control unit 10 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the status notification signal sent from the device control unit 50 . Specifically, the robot control unit 10 determines whether or not the state notification signal includes a binding device abnormality determination flag. If no abnormality has occurred in the reinforcing bar binding device 2 (if YES), the process proceeds to S206.
  • the robot control unit 10 drives at least one of the right crawler 192, the left crawler 194, and the side stepper 196 to cause the reinforcing bar binding robot 1 to move the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2. move up.
  • the robot control unit 10 moves the reinforcing bar binding robot 1 with the reinforcing bar intersection RC' as the target point of the reinforcing bar binding work.
  • the robot control unit 10 controls the right crawler 192, the left crawler 194, and the side crawler 192, the left crawler 194, and the side crawler 192 based on the relative arrangement of the first reinforcing bar R1 and the second reinforcing bar R2 detected by the plurality of reinforcing bar detection sensors and the reinforcing bar map. Controls the operation of stepper 196 . If the pull solenoid 452 is in the energized state at the start of S206, the robot control unit 10 switches the pull solenoid 452 to the non-energized state. As a result, the power transmission mechanism 402 is switched from the first transmission state to the second transmission state, and the side stepper 196 can be driven by the dual-purpose motor 400 . After S206, the process proceeds to S208.
  • the robot control unit 10 determines whether the horizontal position of the reinforcing bar intersection RC' detected by the plurality of reinforcing bar detection sensors is within a predetermined position range from the reference position.
  • the reference position is the position where the reinforcing bar intersection point RC' should exist when the reinforcing bar binding device 2 at the lower limit position performs the reinforcing bar binding operation.
  • the reference position is positioned at the center of the base plate 204 in the front-rear direction and the left-right direction.
  • the predetermined position range referred to here is a range in which it is determined that lateral movement by the side stepper 196 is necessary when the lateral position of the reinforcing bar intersection RC' is out of that range.
  • the process returns to S206. If the position of the reinforcing bar intersection RC' is within the predetermined position range (if YES), the process proceeds to S210.
  • the robot control unit 10 determines that the angle of the first reinforcing bar R1 detected by the plurality of reinforcing bar detection sensors at the reinforcing bar intersection RC' (hereinafter simply referred to as "the angle of the reinforcing bar intersection RC'") is It is determined whether or not the angle is within a predetermined angle range from the reference angle.
  • the reference angle here means the angle that the first reinforcing bar R1 should take at the reinforcing bar crossing point RC' when the reinforcing bar binding device 2 at the lower limit position performs the reinforcing bar binding operation.
  • the reference angle is zero degrees.
  • the predetermined angle range referred to here is a range in which the reinforcing bar binding operation can be performed by the reinforcing bar binding device 2 as long as the angle of the reinforcing bar intersection RC' is within that range. If the angle of the reinforcing bar intersection point RC' is not within the predetermined angle range (NO), the process proceeds to S212. If the angle of the reinforcing bar intersection RC' is within the predetermined angle range (YES), the process proceeds to S214.
  • the robot control unit 10 executes reinforcing bar tracing control.
  • the robot control unit 10 advances or retreats the reinforcing bar binding robot 1 while giving a speed difference between the right crawler 192 and the left crawler 194, and adjusts the horizontal position and angle of the reinforcing bar intersection RC'. , approaches the reference position and reference angle.
  • the robot control unit 10 first matches the angle of the reinforcing bar intersection point RC' with the reference angle. Thereafter, as shown in FIG. 35, the robot control unit 10 matches the horizontal position of the reinforcing bar intersection RC' with the reference position. 34 and 35, the reference position and reference angle of the reinforcing bar binding robot 1 are represented by a cross cursor C.
  • the process proceeds to S214.
  • the robot control unit 10 first switches the pull solenoid 452 to an energized state. As a result, the power transmission mechanism 402 is switched from the second transmission state to the first transmission state, and the dual-purpose motor 400 can be driven to drive the lifting device 6 . After that, the robot control unit 10 drives the lifting device 6 to lower the reinforcing bar binding device 2 to the lower limit position. As a result, the reinforcing bar binding device 2 is set at the reinforcing bar intersection RC'. After S214, the process proceeds to S216.
  • the robot control unit 10 transmits a status call signal to the device control unit 50 .
  • a status notification signal is transmitted from the device control unit 50 to the robot control unit 10 .
  • the process proceeds to S218.
  • the robot control unit 10 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the status notification signal transmitted from the device control unit 50 . Specifically, the robot control unit 10 determines whether or not the state notification signal includes a binding device abnormality determination flag. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of YES), the process proceeds to S220.
  • the robot control unit 10 transmits a bundling instruction signal to the device control unit 50 . After S220, the process proceeds to S222.
  • the robot control unit 10 determines whether or not the reinforcing bar binding operation in the reinforcing bar binding device 2 has been completed. If the state notification signal received in S216 includes the bundling flag, the robot control unit 10 determines that the reinforcing rod bundling device 2 has not completed the bundling operation. If the status notification signal received in S216 does not include the tying flag, the robot control unit 10 determines that the reinforcing bar tying device 2 has completed the tying work. If the reinforcing bar binding operation has not been completed in the reinforcing bar binding device 2 (NO), the process returns to S216. When the reinforcing bar binding operation is completed in the reinforcing bar binding device 2 (in the case of YES), the process proceeds to S224.
  • the robot control unit 10 drives the lifting device 6 to raise the reinforcing bar binding device 2 to the upper limit position. After S224, the process proceeds to S226.
  • the robot control unit 10 refers to the reinforcing bar map and determines whether or not the reinforcing bar binding work has been completed for all reinforcing bar intersections. If it is determined that the reinforcing bar binding work has been completed for all reinforcing bar intersections (YES), the process of FIG. 33 ends. If it is determined that the process has not been completed yet (NO), the process proceeds to S228.
  • the robot control unit 10 changes the reinforcing bar crossing point RC' targeted for the reinforcing bar binding work to another reinforcing bar crossing point for which the reinforcing bar binding work has not yet been completed. After S228, the process returns to S206.
  • the robot control unit 10 When the abnormality occurrence process is started, the robot control unit 10 first stops driving the right crawler 192 , the left crawler 194 and the side stepper 196 . After that, the robot control unit 10 activates the patrol lamp 183 to notify that the reinforcing bar binding device 2 is abnormal. In addition, the robot control unit 10 notifies that an abnormality has occurred in the reinforcing bar binding device 2 using a buzzer. If the reinforcing bar binding robot 1 is equipped with an external controller (not shown), the robot control unit 10 notifies the external controller that an abnormality has occurred in the reinforcing bar binding device 2. . After that, the robot control unit 10 terminates the processing when an abnormality occurs.
  • the external controller referred to here may be a controller dedicated to the reinforcing rod binding robot 1, or may be a general-purpose communication terminal such as a smart phone or a tablet terminal.
  • the reinforcing bar binding robot 1 has the independent reel 500 and the independent reel 500 serves as the wire W supply source has been described.
  • the reinforcing bar binding robot 1 may not have the independent reel 500 .
  • the reinforcing bar binding device 2 may include a wire reel WR around which the wire W is wound in advance, and the wire reel WR may serve as the wire W supply source.
  • the wire W guided into the housing 12 from the through-hole 12b is wound around the wire reel WR and then supplied to the feed mechanism 38.
  • the wire W guided into the housing 12 from the through hole 12b is stretched along the outer peripheral surface of the wire reel WR without being wound around the wire reel WR. It may be supplied to the feed mechanism 38 .
  • the wire reel WR may guide the wire W by rotating as the wire W is sent out.
  • the configuration in which the wire reel WR is detachably attached to the housing 12 has been described.
  • the wire reel WR may be non-removably attached to the housing 12 .
  • the power supply device 8 includes a plurality of battery packs B, and the power control board 808 of the power source device 8 distributes power from the plurality of battery packs B to the reinforcing bar binding device 2 and the conveying device 4. , the configuration for supplying to the robot control unit 10 has been described.
  • power supply 8 may include a power cord that connects to an external power source.
  • the power control board 808 may be configured to supply power from an external power source to the rebar binding device 2 , the transport device 4 and the robot control unit 10 .
  • the configuration in which the communication method between the device control unit 50 and the robot control unit 10 is the wired serial communication method has been described.
  • the communication method between the device control unit 50 and the robot control unit 10 may be a wired parallel communication method.
  • the communication method between device control unit 50 and robot control unit 10 may be a wireless communication method.
  • the device control unit 50 may further include a voltage detection circuit provided corresponding to the driver circuit 24 .
  • the device control unit 50 may directly detect the voltage applied to the driver circuit 24 and the potential of the driver circuit 24 via this voltage detection circuit.
  • the reel rotation detection sensor 66 (hall sensor) detects the presence or absence of the wire W wound around the wire reel WR.
  • sensors other than Hall sensors eg, pressure sensors, photoelectric sensors, or microswitches
  • the pressure sensor may be provided to detect the pressure of the cylindrical portion (the portion around which the wire W is wound) of the wire reel WR.
  • the photoelectric sensor may include a light-emitting portion provided on one of a pair of flanges (a portion that prevents the wire W from coming off) of the wire reel WR, and a light-receiving portion provided on the other of the pair of flanges.
  • the microswitch may be provided so as to be pressed by a wire W wound around the wire reel WR.
  • the reel rotation detection sensor 66 (hall sensor) is configured to detect whether the wire reel WR is held by the reel holding mechanism 36 or not.
  • a sensor for example, a microswitch
  • the microswitch may be provided to be depressed when the wire reel WR is held by the reel holding mechanism 36 .
  • the reinforcing bar binding robot 1 may be equipped with a commercially available hand-held reinforcing bar binding machine (for example, TR180D sold by Makita Corporation) instead of the dedicated reinforcing bar binding device 2.
  • a control unit built into a commercially available rebar binding machine may have the same configuration as the device control unit 50 .
  • a control unit built into a commercially available reinforcing bar binding machine may be configured to be able to execute various processes executed by the device control unit 50 .
  • the robot control unit 10 may transmit a status call signal to the device control unit 50 each time a predetermined period of time elapses.
  • the device control unit 50 may transmit a state notification signal to the robot control unit 10 in response to a state call signal periodically transmitted from the robot control unit 10 .
  • the robot control unit 10 may always determine whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the latest state notification signal. .
  • the robot control unit 10 determines that an abnormality has occurred in the reinforcing bar binding device 2 when the status notification signal sent from the device control unit 50 includes the binding device abnormality determination. I explained the configuration. In another embodiment, the robot control unit 10 sends the binding instruction signal to the device control unit 50, and if a predetermined time elapses without receiving the binding completion signal from the device control unit 50, the rebar binding device 2 It can be determined that an abnormality has occurred.
  • the device control unit 50 controls the reel rotation detection sensor 66, the gear rotation detection sensor 79, the plate position detection sensor 134, the guide position detection sensor 142, the sleeve position detection sensor 177, the torsion detection sensor 177, and the torsion detection sensor 177 during execution of the reinforcing bar binding operation. Transitions of detected values of the motor rotation detection sensor 55, the voltage detection circuits 25, 26, 27, the current detection circuit 28, and the temperature detection sensor 32 may be stored in a memory. Then, the device control unit 50 may transmit a binding completion signal including transitions of the above detection values to the robot control unit 10 when the reinforcing bar binding work by the reinforcing bar binding device 2 is normally completed. In this case, the robot control unit 10 may specify the performance of the reinforcing bar binding work (for example, whether the wire W is loose) based on the transition of each detection value.
  • the reinforcing bar binding robot 1 performs the following operations on the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2 intersecting the plurality of first reinforcing bars R1.
  • the operation of moving on R1 and the plurality of second reinforcing bars R2 and the operation of binding the reinforcing bar intersections where the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2 intersect can be repeatedly performed.
  • the reinforcing bar binding robot 1 includes a robot control unit 10 that controls the operation of the reinforcing bar binding robot 1 and a reinforcing bar binding device 2 that uses a wire W to perform a reinforcing bar binding operation.
  • the reinforcing bar binding device 2 includes a device control unit 50 that controls the operation of the reinforcing bar binding device 2 .
  • the device control unit 50 is configured to send a state notification signal (example of first signal) to the robot control unit 10 .
  • the robot control unit 10 is configured to control the operation of the reinforcing bar binding robot 1 based on the status notification signal sent from the device control unit 50 .
  • the device control unit 50 can transmit the state of the reinforcing bar binding device 2 to the robot control unit 10 through the state notification signal.
  • the robot control unit 10 can grasp the state of the reinforcing bar binding device 2 based on the state notification signal. Therefore, the robot control unit 10 can control the operation of the reinforcing bar binding robot 1 according to the state of the reinforcing bar binding device 2 .
  • the reinforcing bar binding device 2 is configured to be able to perform the operation of feeding the wire W.
  • the rebar binding device 2 includes a reel rotation detection sensor 66, a gear rotation detection sensor 79, a voltage detection circuit 25, a voltage detection circuit 26, and a current detection circuit 28 (of the first state detection section) that detect the state related to the wire W feeding operation.
  • Example) is further provided.
  • the status notification signal includes a feed operation normality determination flag, a hardware normality determination flag, a wire shortage determination flag, a feed motor overload determination flag, a feed gear abnormality determination flag, a feed motor FET open failure determination flag, and a feed motor overload determination flag.
  • the operation of feeding the wire W is the main operation in the reinforcing bar binding device 2. Therefore, the robot control unit 10 may want to grasp the state of the wire W feeding operation of the reinforcing bar binding device 2 . According to the above configuration, the robot control unit 10 can grasp the state regarding the operation of sending the wire W based on the state notification signal.
  • the first state detection section includes a reel rotation detection sensor 66 (an example of a wire detection section) that detects the presence or absence of the wire W.
  • the state notification signal includes a wire shortage determination flag and a detection value of the reel rotation detection sensor 66 (an example of information regarding the detection result of the wire detection section).
  • the robot control unit 10 needs to know whether the wire W is present. According to the above configuration, the robot control unit 10 can grasp the presence or absence of the wire W based on the state notification signal.
  • the reinforcing bar binding device 2 further includes a wire reel WR around which the wire W is wound, and a housing 12 that rotatably holds the wire reel WR.
  • a reel rotation detection sensor 66 detects the presence or absence of the wire W wound around the wire reel WR.
  • the reel rotation detection sensor 66 can indirectly detect the presence or absence of the wire W by detecting whether or not the wire reel WR rotates as the wire W is fed by the rebar binding device 2. can.
  • the reinforcing bar binding device 2 includes a feed motor 72 and further includes a feed mechanism 38 capable of feeding the wire W. ing.
  • the first state detection section includes a gear rotation detection sensor 79 that detects the state of the feed mechanism 38, a voltage detection circuit 26, and a current detection circuit 28 (an example of a feed mechanism state detection section).
  • the state notification signal includes a feed motor overload determination flag, a feed gear abnormality determination flag, a feed motor FET open failure determination flag, a feed motor FET voltage abnormality determination flag, a gear rotation detection sensor 79, a voltage detection circuit 26, and a It includes the detection value of the current detection circuit 28 (an example of information on the detection result of the feeding mechanism state detection section).
  • the wire W may become entangled in the feed mechanism 38 and the feed mechanism 38 may become inoperable.
  • the robot control unit 10 needs to grasp the state of the feed mechanism 38 .
  • the robot control unit 10 can grasp the state of the feeding mechanism 38 based on the state notification signal.
  • the reinforcing bar binding device 2 includes a wire reel WR around which the wire W is wound, and a housing 12 that rotatably holds the wire reel WR. and a brake mechanism 40 (an example of a braking mechanism) that includes a pull solenoid 146 (an example of a braking actuator) and is capable of braking the rotational motion of the wire reel WR.
  • the first state detection section includes a voltage detection circuit 25 and a current detection circuit 28 (an example of a braking mechanism state detection section) that detect the state of the brake mechanism 40 .
  • the state notification signal includes a solenoid FET open failure determination flag, a solenoid FET voltage abnormality determination flag, and values detected by the voltage detection circuit 25 and the current detection circuit 28 (an example of information regarding detection results of the braking mechanism state detection section).
  • the brake mechanism 40 may become inoperable due to an open failure of the solenoid FET (an example of disconnection of the electrical connection between the power supply and the brake actuator).
  • the robot control unit 10 needs to grasp the state of the brake mechanism 40 .
  • the robot control unit 10 can grasp the state of the brake mechanism 40 based on the state notification signal.
  • the reinforcing bar binding device 2 is configured to be capable of twisting the wire W wound around the reinforcing bar intersection.
  • the rebar binding device 2 further includes a twist motor rotation detection sensor 55 for detecting the state of twisting the wire W, a sleeve position detection sensor 177, and a current detection circuit 28 (an example of a second state detector).
  • the state notification signal includes a torsion operation normality determination flag, a hardware normality determination flag, a torsion motor lock determination flag, a torsion motor rotation abnormality determination flag, a torsion motor overload determination flag, and a torsion motor rotation detection sensor abnormality determination flag.
  • the torsion arm abnormality determination flag, the detection values of the torsion motor rotation detection sensor 55, the sleeve position detection sensor 177, and the current detection circuit 28 an example of information regarding the detection result of the second state detection section).
  • the operation of twisting the wire W is the main operation in the reinforcing bar binding device 2. Therefore, the robot control unit 10 may want to grasp the state of the operation of twisting the wire W of the reinforcing bar binding device 2 . According to the above configuration, the robot control unit 10 can grasp the state of the motion of twisting the wire W based on the state notification signal.
  • the reinforcing bar binding device 2 further includes a twisting mechanism 46 that includes a twisting motor 170 and is capable of twisting the wire W wound around the intersection of the reinforcing bars.
  • the second state detector includes a torsion motor rotation detection sensor 55 that detects the state of the torsion mechanism 46, a sleeve position detection sensor 177, and a current detection circuit 28 (an example of a torsion mechanism state detector).
  • the state notification signal includes a torsion motor lock determination flag, a torsion motor rotation abnormality determination flag, a torsion motor overload determination flag, a torsion motor rotation detection sensor abnormality determination flag, a torsion arm abnormality determination flag, and a torsion motor rotation detection sensor. 55, the sleeve position detection sensor 177, and the detection values of the current detection circuit 28 (an example of information regarding the detection result of the torsion mechanism state detection section).
  • the wire W may become entangled in the twisting mechanism 46 and the twisting mechanism 46 may become inoperable.
  • the robot control unit 10 needs to grasp the state of the twisting mechanism 46 . According to the above configuration, the robot control unit 10 can grasp the state of the twisting mechanism 46 based on the state notification signal.
  • the reinforcing bar binding device 2 includes a wire reel WR around which the wire W is wound or for guiding the wire W, and a wire reel WR
  • a reel holding mechanism 36 (an example of a reel holding portion) that detachably holds a reel rotation detection sensor 66 (an example of a reel detecting portion) that detects whether or not the wire reel WR is held by the reel holding mechanism 36.
  • the state notification signal includes a reel dropout determination flag (an example of information regarding the detection result of the reel detection unit).
  • the robot control unit 10 needs to know whether the wire reel WR is held by the reel holding mechanism 36 or not. According to the above configuration, the robot control unit 10 can grasp whether or not the wire reel WR is held by the reel holding mechanism 36 based on the state notification signal.
  • the reinforcing bar binding device 2 includes a feed motor 72, a feed mechanism 38 capable of executing an operation to feed the wire W, and a feed A housing 12 that houses a motor 72, and a closed position (first position) in which the wire W attached to the housing 12 and fed by the feed mechanism 38 is guided on a substantially annular guide track to be routed around the intersection of reinforcing bars.
  • a lower curl guide 92 (an example of a guide member) movable between an open state position (example of a second position) moved outside the guide track with respect to the closed state position.
  • the state notification signal includes a guide position abnormality determination flag and a detection value of the guide position detection sensor 142 (an example of information regarding the detection result of the guide member position detection section).
  • the lower curl guide 92 may be provided movably with respect to the housing 12 in order to improve the maintenance performance of parts provided around the guide track.
  • the reinforcing bar binding work is performed with the lower curl guide 92 moved to the open position, the reinforcing bar crossing points cannot be properly tied. Therefore, in the reinforcing bar binding robot 1, there are cases where it is desired to execute control according to the position of the lower curl guide 92.
  • the robot control unit 10 needs to know the position of the lower curl guide 92 with respect to the housing 12 . According to the above configuration, the robot control unit 10 can grasp the position of the lower curl guide 92 with respect to the housing 12 based on the state notification signal.
  • the reinforcing bar binding device 2 further includes a temperature detection sensor 32 (an example of a temperature detection section) that detects the temperature of the device control unit 50. ing.
  • the status notification signal includes a temperature normality determination flag, a temperature abnormality determination flag, and a detection value of the temperature detection sensor 32 (an example of information regarding the detection result of the temperature detection unit).
  • the robot control unit 10 needs to know the temperature of the device control unit 50 . According to the above configuration, the robot control unit 10 can grasp the temperature of the device control unit 50 based on the state notification signal.
  • the reinforcing bar binding robot 1 further includes a power supply device 8 for supplying electric power to the reinforcing bar binding device 2 .
  • the rebar binding device 2 further includes a voltage detection circuit 27 (an example of a supply voltage detection section) that detects the voltage value of the power supplied from the power supply device 8 to the rebar binding device 2 .
  • the state notification signal includes a low voltage determination flag, a normal supply voltage determination flag, and a detection value of the voltage detection circuit 27 (an example of information regarding the detection result of the supply voltage detection unit).
  • the robot control unit 10 needs to grasp the voltage value of the power supplied from the power supply device 8 to the reinforcing bar binding device 2 . According to the above configuration, the robot control unit 10 can grasp the voltage value of the power supplied from the power supply device 8 to the reinforcing bar binding device 2 based on the state notification signal.
  • the reinforcing bar binding device 2 is arranged at a position capable of coming into contact with the first reinforcing bar R1 or the second reinforcing bar R2 during the reinforcing bar binding operation.
  • contact plate 102 (example of contact member), housing 12 holding contact plate 102 in a swingable manner, and plate position detection sensor 134 (contact member position detection unit) for detecting the position of contact plate 102 with respect to housing 12.
  • the state notification signal includes a plate normality determination flag, a plate abnormality determination flag, and a detection value of the plate position detection sensor 134 (an example of information regarding the detection result of the contact member position detection section).
  • the robot control unit 10 may want to detect that the reinforcing bar binding device 2 has been set at the reinforcing bar intersection. According to the above configuration, the robot control unit 10 determines whether or not the contact plate 102 has been swung based on the state notification signal, thereby indicating that the reinforcing bar binding device 2 has been set at the reinforcing bar intersection. detectable.
  • the state notification signal includes a binding device abnormality determination flag (an example of information indicating that an abnormality has occurred in the reinforcing bar binding device).
  • the robot control unit 10 can grasp that an abnormality has occurred in the reinforcing bar binding device 2 based on the state notification signal. Therefore, the robot control unit 10 can stop the operation of the reinforcing bar binding robot 1 in response to the occurrence of an abnormality in the reinforcing bar binding device 2, or notify the user of the fact.
  • the robot control unit 10 is configured to send a status call signal (an example of a call signal) to the device control unit 50.
  • the device control unit 50 is configured to send a status notification signal to the robot control unit 10 when it receives the status call signal.
  • the device control unit 50 does not need to execute processing for specifying the timing of transmitting the state notification signal. Therefore, the device control unit 50 can have a simple configuration. Furthermore, according to the above configuration, the robot control unit 10 can grasp the state of the reinforcing bar binding device 2 at desired timing.
  • the robot control unit 10 is configured to transmit a bundling instruction signal to the device control unit 50 .
  • the device control unit 50 is configured to cause the reinforcing bar binding device 2 to perform the reinforcing bar binding operation when receiving the binding instruction signal.
  • the robot control unit 10 is configured to send a status call signal to the device control unit 50 prior to sending the bundling instruction signal.
  • the robot control unit 10 can determine whether or not the subsequent reinforcing bar binding work can be continued based on the state of the reinforcing bar binding device 2. can be done. According to the above configuration, the robot control unit 10 can grasp the state of the reinforcing bar binding device 2 at the timing when the reinforcing bar binding work is started. Therefore, the robot control unit 10 can determine whether or not to continue the reinforcing bar binding work based on the state of the reinforcing bar binding device 2 .

Abstract

A rebar tying robot disclosed in the present specification is able to repeatedly execute, for a plurality of first rebars and a plurality of second rebars intersecting with the plurality of first rebars, an operation for travelling on the plurality of first rebars and the plurality of second rebars and an operation for tying rebar intersection locations where the plurality of first rebars and the plurality of second rebars intersect with each another. The rebar tying robot is provided with a robot control unit for controlling the operations of the rebar tying robot, and a rebar tying device for using a wire to execute rebar tying work. The rebar tying device is provided with a device control unit for controlling the operation of the rebar tying device. The device control unit is configured to transmit a first signal to the robot control unit. The robot control unit is configured to control the operation of the rebar tying robot on the basis of the first signal transmitted from the device control unit.

Description

鉄筋結束ロボットRebar binding robot
 本明細書で開示する技術は、鉄筋結束ロボットに関する。 The technology disclosed in this specification relates to a reinforcing bar binding robot.
 特開2019-39174号公報には、複数の第1鉄筋と、前記複数の第1鉄筋と交差する複数の第2鉄筋について、前記複数の第1鉄筋と前記複数の第2鉄筋の上を移動する動作と、前記複数の第1鉄筋と前記複数の第2鉄筋が交差する鉄筋交差箇所を結束する動作と、を繰り返し実行可能な鉄筋結束ロボットが開示されている。前記鉄筋結束路ロボットは、前記鉄筋結束ロボットの動作を制御するロボット制御ユニットと、ワイヤを用いて鉄筋結束作業を実行する鉄筋結束装置と、を備えている。前記ロボット制御ユニットは、前記鉄筋結束装置にトリガ信号を送信するように構成されている。前記鉄筋結束装置は、前記トリガ信号に応じて前記鉄筋結束作業を実行するように構成されている。 Japanese Patent Application Laid-Open No. 2019-39174 discloses that a plurality of first reinforcing bars and a plurality of second reinforcing bars intersecting the plurality of first reinforcing bars are moved over the plurality of first reinforcing bars and the plurality of second reinforcing bars. A rebar binding robot is disclosed that can repeatedly perform an action of pulling and an action of binding rebar intersections where the plurality of first rebars and the plurality of second rebars intersect. The reinforcing bar binding path robot includes a robot control unit that controls the operation of the reinforcing bar binding robot, and a reinforcing bar binding device that performs a reinforcing bar binding operation using wires. The robotic control unit is configured to send a trigger signal to the rebar tying device. The reinforcing bar binding device is configured to perform the reinforcing bar binding work according to the trigger signal.
 鉄筋結束ロボットでは、例えば、鉄筋結束装置におけるワイヤ不足の発生に応じて鉄筋結束ロボットの動作を停止するなど、鉄筋結束装置の状態に応じて鉄筋結束ロボットの動作を制御したい場合がある。しかしながら、特開2019-39174号公報の鉄筋結束ロボットでは、ロボット制御ユニットは、鉄筋結束装置の状態(例えば、ワイヤ不足が発生したことや、動作不良が発生したことなど)を把握することはできない。このため、鉄筋結束装置の状態に応じて鉄筋結束ロボットの動作を制御することができない。本明細書では、鉄筋結束装置の状態に応じて鉄筋結束ロボットの動作を制御することが可能な技術を提供する。 In the reinforcing bar binding robot, there are cases where it is desired to control the operation of the reinforcing bar binding robot according to the state of the reinforcing bar binding device, for example, by stopping the operation of the reinforcing bar binding robot in response to the shortage of wires in the reinforcing bar binding device. However, in the reinforcing bar binding robot disclosed in Japanese Patent Application Laid-Open No. 2019-39174, the robot control unit cannot grasp the state of the reinforcing bar binding device (for example, the occurrence of wire shortage, the occurrence of malfunction, etc.). . Therefore, the operation of the reinforcing bar binding robot cannot be controlled according to the state of the reinforcing bar binding device. This specification provides a technique capable of controlling the operation of a reinforcing bar binding robot according to the state of the reinforcing bar binding device.
 本明細書が開示する鉄筋結束ロボットは、複数の第1鉄筋と、前記複数の第1鉄筋と交差する複数の第2鉄筋について、前記複数の第1鉄筋と前記複数の第2鉄筋の上を移動する動作と、前記複数の第1鉄筋と前記複数の第2鉄筋が交差する鉄筋交差箇所を結束する動作と、を繰り返し実行可能である。前記鉄筋結束ロボットは、前記鉄筋結束ロボットの動作を制御するロボット制御ユニットと、ワイヤを用いて鉄筋結束作業を実行する鉄筋結束装置と、を備えている。前記鉄筋結束装置は、前記鉄筋結束装置の動作を制御する装置制御ユニットを備えている。前記装置制御ユニットは、前記ロボット制御ユニットに第1信号を送信するように構成されている。前記ロボット制御ユニットは、前記装置制御ユニットから送信された前記第1信号に基づいて前記鉄筋結束ロボットの動作を制御するように構成されている。なお、本明細書では、「複数の第1鉄筋と前記複数の第2鉄筋が交差する鉄筋交差箇所を結束する作業」を「鉄筋結束作業」と呼ぶことがある。 The reinforcing bar binding robot disclosed in the present specification moves above the plurality of first reinforcing bars and the plurality of second reinforcing bars intersecting the plurality of first reinforcing bars and the plurality of second reinforcing bars intersecting the plurality of first reinforcing bars. The operation of moving and the operation of binding reinforcing bar intersections where the plurality of first reinforcing bars and the plurality of second reinforcing bars intersect can be repeatedly performed. The reinforcing bar binding robot includes a robot control unit that controls the operation of the reinforcing bar binding robot, and a reinforcing bar binding device that performs a reinforcing bar binding operation using wires. The rebar tying device comprises a device control unit for controlling the operation of the rebar tying device. The device control unit is configured to send a first signal to the robot control unit. The robot control unit is configured to control operation of the rebar tying robot based on the first signal sent from the device control unit. In this specification, "the work of binding the reinforcing bar intersections where the plurality of first reinforcing bars and the plurality of second reinforcing bars intersect" may be referred to as "reinforcing bar binding work".
 上記の構成によれば、装置制御ユニットは、第1信号を通じて、鉄筋結束装置の状態をロボット制御ユニットに伝達することができる。ロボット制御ユニットは、第1信号に基づいて、鉄筋結束装置の状態を把握することができる。このため、ロボット制御ユニットは、鉄筋結束装置の状態に応じて鉄筋結束ロボットの動作を制御することができる。 According to the above configuration, the device control unit can transmit the state of the reinforcing bar binding device to the robot control unit through the first signal. The robot control unit can grasp the state of the reinforcing bar binding device based on the first signal. Therefore, the robot control unit can control the operation of the reinforcing bar binding robot according to the state of the reinforcing bar binding device.
実施例に係る鉄筋結束ロボット1を上方から見た図である。It is the figure which looked at the reinforcement binding robot 1 which concerns on an Example from upper direction. 実施例に係る鉄筋結束ロボット1を前方右方下方から見た斜視図である。It is the perspective view which looked at the reinforcement binding robot 1 which concerns on an Example from the front right lower part. 実施例に係る鉄筋結束装置2を後方左方上方から見た斜視図である。It is the perspective view which looked at the reinforcing-bar binding apparatus 2 which concerns on an Example from the back left upper part. 実施例に係る鉄筋結束装置2の内部構造を後方右方上方から見た斜視図である。It is the perspective view which looked at the internal structure of the reinforcing-bar binding apparatus 2 which concerns on an Example from the back right upper part. 実施例に係る鉄筋結束装置2の内部構造を前方左方上方から見た斜視図である。It is the perspective view which looked at the internal structure of the reinforcing-bar binding apparatus 2 which concerns on an Example from the upper front left. 実施例に係る鉄筋結束装置2のリール保持機構36の断面図である。4 is a cross-sectional view of the reel holding mechanism 36 of the reinforcing bar binding device 2 according to the example. FIG. 実施例に係る鉄筋結束装置2のリリースレバー82およびロックレバー86を左方上方前方から見た斜視図である。Fig. 4 is a perspective view of the release lever 82 and the lock lever 86 of the reinforcing bar binding device 2 according to the embodiment, as seen from the left upper front; 実施例に係る鉄筋結束装置2の上側カールガイド90を左方上方後方から見た斜視図である。Fig. 3 is a perspective view of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, as seen from the left upper rear. 実施例に係る鉄筋結束装置2の上側カールガイド90を右方上方後方から見た斜視図である。Fig. 3 is a perspective view of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, as seen from the right upper rear side; 実施例に係る鉄筋結束装置2の上側カールガイド90の第1案内通路94の内部構造を左方上方後方から見た斜視図である。Fig. 11 is a perspective view of the internal structure of the first guide passage 94 of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, viewed from the left upper rear; 実施例に係る鉄筋結束装置2の上側カールガイド90の第2案内通路96の内部構造を左方上方後方から見た斜視図である。Fig. 10 is a perspective view of the internal structure of the second guide passage 96 of the upper curl guide 90 of the reinforcing bar binding device 2 according to the embodiment, viewed from the left upper rear; 実施例に係る鉄筋結束装置2の、下側カールガイド92が閉じている場合の内部構造を右方下方前方から見た斜視図である。Fig. 10 is a perspective view of the internal structure of the reinforcing bar binding device 2 according to the embodiment when the lower curl guide 92 is closed, as viewed from the lower right front side; 実施例に係る鉄筋結束装置2の、下側カールガイド92が開いている場合の内部構造を右方下方前方から見た斜視図である。Fig. 10 is a perspective view of the internal structure of the reinforcing bar binding device 2 according to the embodiment when the lower curl guide 92 is open, as viewed from the lower right front side; 実施例に係る鉄筋結束装置2において、プルソレノイド146に通電がなされていない場合の、ワイヤリールWRおよびブレーキ機構40を右方上方後方から見た斜視図である。FIG. 10 is a perspective view of the wire reel WR and the brake mechanism 40 viewed from the upper right and rear when the pull solenoid 146 is not energized in the reinforcing bar binding device 2 according to the embodiment; 実施例に係る鉄筋結束装置2において、プルソレノイド146に通電がなされている場合の、ワイヤリールWRおよびブレーキ機構40を右方上方後方から見た斜視図である。FIG. 10 is a perspective view of the wire reel WR and the brake mechanism 40 viewed from the right upper rear side when the pull solenoid 146 is energized in the reinforcing bar binding device 2 according to the embodiment; 実施例に係る装置制御ユニット50の電気系統の例を示すブロック図である。4 is a block diagram showing an example of an electrical system of the device control unit 50 according to the embodiment; FIG. 実施例に係る装置制御ユニット50が実行する装置メイン処理の例を示すフローチャートである。5 is a flowchart showing an example of device main processing executed by the device control unit 50 according to the embodiment; 実施例に係る装置制御ユニット50が実行する送り動作状態判定処理の例を示すフローチャートである。5 is a flowchart showing an example of feeding operation state determination processing executed by the device control unit 50 according to the embodiment; 実施例に係る装置制御ユニット50が実行するプレート状態判定処理の例を示すフローチャートである。5 is a flowchart showing an example of plate state determination processing executed by the device control unit 50 according to the embodiment; 実施例に係る装置制御ユニット50が実行する供給電圧状態判定処理の例を示すフローチャートである。5 is a flowchart showing an example of supply voltage state determination processing executed by the device control unit 50 according to the embodiment; 実施例に係る装置制御ユニット50が実行する温度状態判定処理の例を示すフローチャートである。5 is a flowchart showing an example of temperature state determination processing executed by the device control unit 50 according to the embodiment; 実施例に係る装置制御ユニット50が実行する捩り動作状態判定処理の例を示すフローチャートである。5 is a flowchart showing an example of a twisting motion state determination process executed by the device control unit 50 according to the embodiment; 実施例に係る装置制御ユニット50が実行するハードウェア状態判定処理の例を示すフローチャートである。5 is a flowchart showing an example of hardware state determination processing executed by the device control unit 50 according to the embodiment; 実施例に係る鉄筋結束ロボット1のサイドステッパ196を後方右方上方から見た斜視図である。Fig. 10 is a perspective view of the side stepper 196 of the reinforcing bar binding robot 1 according to the embodiment, as seen from the rear right upper side; 実施例に係る鉄筋結束ロボット1の前側クランク機構276を後方から見た断面図である。Fig. 11 is a cross-sectional view of the front crank mechanism 276 of the reinforcing bar binding robot 1 according to the embodiment, as seen from the rear; 実施例に係る鉄筋結束ロボット1のサイドステッパ196の後方の部分を前方右方上方から見た斜視図である。FIG. 10 is a perspective view of the rear part of the side stepper 196 of the reinforcing-bar binding robot 1 according to the embodiment, viewed from the front right upper side; 実施例に係る鉄筋結束ロボット1において、ステップバー272、274が上昇した状態を前方から見た正面図である。FIG. 10 is a front view of the step bars 272 and 274 raised in the reinforcing bar binding robot 1 according to the embodiment, as seen from the front. 実施例に係る鉄筋結束ロボット1において、ステップバー272、274が下降した状態を前方から見た正面図である。FIG. 10 is a front view of the step bars 272 and 274 lowered in the reinforcing bar binding robot 1 according to the embodiment, as seen from the front. 実施例に係る鉄筋結束ロボット1において、動力伝達機構402の内部構造を前方上方右方から見た斜視図である。FIG. 10 is a perspective view of the internal structure of the power transmission mechanism 402 in the reinforcing bar binding robot 1 according to the example, viewed from the front upper right side. 実施例に係る鉄筋結束ロボット1において、スライダクランク機構638が上死点位置にある場合の昇降装置6を前方上方から見た斜視図である。FIG. 10 is a perspective view of the lifting device 6 seen from the front and above when the slider crank mechanism 638 is at the top dead center position in the reinforcing bar binding robot 1 according to the embodiment; 実施例に係る鉄筋結束ロボット1において、スライダクランク機構638が下死点位置にある場合の昇降装置6を前方上方から見た斜視図である。FIG. 10 is a perspective view of the lifting device 6 seen from the front and above when the slider crank mechanism 638 is at the bottom dead center position in the reinforcing bar binding robot 1 according to the embodiment; 実施例に係る鉄筋結束ロボット1において、昇降装置6が備えるカム666、第1フォトセンサ668、および第2フォトセンサ670の位置関係を示す図である。6 is a diagram showing the positional relationship among a cam 666, a first photosensor 668, and a second photosensor 670 provided in the lifting device 6 in the reinforcing bar binding robot 1 according to the example. FIG. 実施例に係るロボット制御ユニット10が実行するロボットメイン処理の例を示すフローチャートである。4 is a flowchart showing an example of robot main processing executed by the robot control unit 10 according to the embodiment; 実施例に係る鉄筋結束ロボット1の動作の例を示す上面図である。FIG. 4 is a top view showing an example of the operation of the reinforcing bar binding robot 1 according to the embodiment; 実施例に係る鉄筋結束ロボット1の別の動作の例を示す上面図である。FIG. 11 is a top view showing another example of the operation of the reinforcing bar binding robot 1 according to the embodiment;
 本発明の代表的かつ非限定的な具体例について、図面を参照して以下に詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本発明の範囲を限定することを意図したものではない。また、開示された追加的な特徴ならびに発明は、さらに改善された鉄筋結束ロボットを提供するために、他の特徴や発明とは別に、又は共に用いることができる。 A representative and non-limiting specific example of the present invention will be described in detail below with reference to the drawings. This detailed description is merely intended to provide those skilled in the art with details for implementing a preferred embodiment of the invention, and is not intended to limit the scope of the invention. Also, the additional features and inventions disclosed can be used separately or in conjunction with other features and inventions to provide further improved rebar tie-down robots.
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本発明の代表的な具体例を説明するためにのみ記載されるものである。さらに、以下の代表的な具体例の様々な特徴、ならびに、請求の範囲に記載されるものの様々な特徴は、本発明の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 Moreover, any combination of features and steps disclosed in the following detailed description are not required to practice the invention in its broadest sense, but are specifically intended to illustrate representative embodiments of the invention only. is described. In addition, various features of the representative embodiments below, as well as various features of those that are claimed, may be used in conjunction with the specific embodiments described herein to provide additional and useful embodiments of the invention. They do not have to be combined exactly as shown or in the order listed.
 本明細書及び/又は請求の範囲に記載された全ての特徴は、実施例及び/又は請求の範囲に記載された特徴の構成とは別に、出願当初の開示ならびに請求の範囲に記載された特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびに請求の範囲に記載された特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。 All features set forth in this specification and/or claims, apart from the examples and/or configuration of the features set forth in the claims, are subject to the disclosure and claims as set forth in the original application. As limitations on the matter, they are intended to be disclosed individually and independently of each other. Further, all numerical ranges and groups or populations are intended to disclose intermediate configurations as limitations on the original disclosure as well as the specific subject matter recited in the claims.
 本技術の第1の態様では、鉄筋結束ロボットは、複数の第1鉄筋と、前記複数の第1鉄筋と交差する複数の第2鉄筋について、前記複数の第1鉄筋と前記複数の第2鉄筋の上を移動する動作と、前記複数の第1鉄筋と前記複数の第2鉄筋が交差する鉄筋交差箇所を結束する動作と、を繰り返し実行可能である。前記鉄筋結束ロボットは、前記鉄筋結束ロボットの動作を制御するロボット制御ユニットと、ワイヤを用いて鉄筋結束作業を実行する鉄筋結束装置と、を備えていてもよい。前記鉄筋結束装置は、前記鉄筋結束装置の動作を制御する装置制御ユニットを備えていてもよい。前記装置制御ユニットは、前記ロボット制御ユニットに第1信号を送信するように構成されていてもよい。前記ロボット制御ユニットは、前記装置制御ユニットから送信された前記第1信号に基づいて前記鉄筋結束ロボットの動作を制御するように構成されていてもよい。 In a first aspect of the present technology, the reinforcing bar binding robot performs the following operations on a plurality of first reinforcing bars and a plurality of second reinforcing bars intersecting the plurality of first reinforcing bars. and an operation of binding a reinforcing bar intersection where the plurality of first reinforcing bars and the plurality of second reinforcing bars intersect can be repeatedly performed. The reinforcing bar binding robot may include a robot control unit that controls the operation of the reinforcing bar binding robot, and a reinforcing bar binding device that performs a reinforcing bar binding operation using wires. The rebar tying device may comprise a device control unit for controlling operation of the rebar tying device. The device control unit may be configured to send a first signal to the robot control unit. The robot control unit may be configured to control operation of the rebar tying robot based on the first signal transmitted from the device control unit.
 上記の構成によれば、装置制御ユニットは、第1信号を通じて、鉄筋結束装置の状態をロボット制御ユニットに伝達することができる。ロボット制御ユニットは、第1信号に基づいて、鉄筋結束装置の状態を把握することができる。このため、ロボット制御ユニットは、鉄筋結束装置の状態に応じて鉄筋結束ロボットの動作を制御することができる。 According to the above configuration, the device control unit can transmit the state of the reinforcing bar binding device to the robot control unit through the first signal. The robot control unit can grasp the state of the reinforcing bar binding device based on the first signal. Therefore, the robot control unit can control the operation of the reinforcing bar binding robot according to the state of the reinforcing bar binding device.
 第2の態様では、上記第1の態様において、前記鉄筋結束装置は、前記ワイヤを送る動作を実行可能に構成されていてもよい。前記鉄筋結束装置は、前記ワイヤを送る動作に関する状態を検出する第1状態検出部をさらに備えていてもよい。前記第1信号は、前記第1状態検出部の検出結果に関する情報を含んでもよい。なお、ここでいう「ワイヤを送る動作に関する状態」は、送り機構の状態だけでなく、ワイヤの有無や、後述する制動機構の状態なども含む。 In a second aspect, in the first aspect, the reinforcing bar binding device may be configured to be capable of executing the operation of feeding the wire. The rebar binding device may further include a first state detector that detects a state related to the operation of feeding the wire. The first signal may include information about the detection result of the first state detector. Note that the "state related to wire feed operation" as used herein includes not only the state of the feed mechanism, but also the presence or absence of the wire, the state of the braking mechanism described later, and the like.
 ワイヤを送る動作は、鉄筋結束装置における主要な動作である。このため、ロボット制御ユニットは、鉄筋結束装置のワイヤを送る動作に関する状態を把握したい場合がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、ワイヤを送る動作に関する状態を把握することができる。 The wire feeding operation is the main operation in the rebar binding device. Therefore, the robot control unit may want to know the status of the wire feeding operation of the rebar binding device. According to the above configuration, the robot control unit can grasp the state of the operation of feeding the wire based on the first signal.
 第3の態様では、上記第2の態様において、前記第1状態検出部は、前記ワイヤの有無を検出するワイヤ検出部を備えていてもよい。前記第1信号は、前記ワイヤ検出部の検出結果に関する情報を含んでもよい。 In a third aspect, in the second aspect, the first state detection section may include a wire detection section that detects the presence or absence of the wire. The first signal may include information about the detection result of the wire detection section.
 鉄筋結束装置においてワイヤ不足が発生した場合、鉄筋結束装置は鉄筋結束作業を実行不可能となる。このような状況に応じて鉄筋結束ロボットの動作を制御するためには、ロボット制御ユニットは、ワイヤの有無を把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、ワイヤの有無を把握することができる。  If there is a shortage of wires in the reinforcing bar binding device, the reinforcing bar binding device will not be able to perform the reinforcing bar binding work. In order to control the operation of the reinforcing bar binding robot in such a situation, the robot control unit needs to grasp the presence or absence of wires. According to the above configuration, the robot control unit can grasp the presence or absence of the wire based on the first signal.
 第4の態様では、上記第3の態様において、前記鉄筋結束装置は、前記ワイヤが巻回されるワイヤリールと、前記ワイヤリールを回転可能に保持するハウジングをさらに備えていてもよい。前記ワイヤ検出部は、前記ワイヤリールに巻回された前記ワイヤの有無を検出してもよい。 In a fourth aspect, in the third aspect, the reinforcing bar binding device may further include a wire reel around which the wire is wound, and a housing that rotatably holds the wire reel. The wire detection section may detect the presence or absence of the wire wound around the wire reel.
 上記の構成によれば、ワイヤがワイヤリールに巻回されている場合、ワイヤリールは鉄筋結束装置のワイヤを送る動作に伴って回転する。ワイヤリールに巻回されたワイヤが無くなると、ワイヤリールは鉄筋結束装置のワイヤを送る動作に伴って回転しなくなる。このため、ワイヤ検出部は、ワイヤリールが鉄筋結束装置のワイヤを送る動作に伴って回転するか否かを検出することで、間接的にワイヤの有無を検出することができる。 According to the above configuration, when the wire is wound around the wire reel, the wire reel rotates as the wire is fed by the rebar binding device. When the wire wound around the wire reel runs out, the wire reel stops rotating as the wire is fed by the rebar binding device. Therefore, the wire detection unit can indirectly detect the presence or absence of the wire by detecting whether the wire reel rotates as the wire is fed by the rebar binding device.
 第5の態様では、上記第2から第4の態様のいずれか一つにおいて、前記鉄筋結束装置は、送りモータを備えており、前記ワイヤを送る動作を実行可能な送り機構をさらに備えていてもよい。前記第1状態検出部は、前記送り機構の状態を検出する送り機構状態検出部を備えていてもよい。前記第1信号は、前記送り機構状態検出部の検出結果に関する情報を含んでもよい。 In a fifth aspect, in any one of the second to fourth aspects, the reinforcing bar binding device includes a feed motor, and further includes a feed mechanism capable of feeding the wire. good too. The first state detector may include a feed mechanism state detector that detects the state of the feed mechanism. The first signal may include information about the detection result of the feeding mechanism state detection section.
 例えば、送り機構においてワイヤが絡まるなどして、送り機構が動作不可能となる場合がある。このような状況に応じて鉄筋結束ロボットの動作を制御するためには、ロボット制御ユニットは、送り機構の状態(例えば、送り機構がスムーズに動作しているかなど)を把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、送り機構の状態を把握することができる。 For example, the wire may get tangled in the feed mechanism and the feed mechanism may become inoperable. In order to control the operation of the reinforcing bar binding robot in such a situation, the robot control unit needs to grasp the state of the feed mechanism (for example, whether the feed mechanism is operating smoothly). According to the above configuration, the robot control unit can grasp the state of the feed mechanism based on the first signal.
 第6の態様では、上記第2から第5の態様のいずれか一つにおいて、前記鉄筋結束装置は、前記ワイヤが巻回されるワイヤリールと、前記ワイヤリールを回転可能に保持するハウジングと、制動アクチュエータを備えており、前記ワイヤリールの回転運動を制動する動作を実行可能な制動機構と、をさらに備えていてもよい。前記第1状態検出部は、前記制動機構の状態を検出する制動機構状態検出部を備えていてもよい。前記第1信号は、前記制動機構状態検出部の検出結果に関する情報を含んでもよい。 In a sixth aspect, in any one of the second to fifth aspects, the reinforcing bar binding device includes a wire reel around which the wire is wound, a housing that rotatably holds the wire reel, A braking mechanism comprising a braking actuator and capable of performing an operation of braking the rotational motion of the wire reel may be further provided. The first state detection section may include a braking mechanism state detection section that detects the state of the braking mechanism. The first signal may include information regarding the detection result of the braking mechanism state detection section.
 例えば、電源と制動アクチュエータの間の電気的接続が遮断されるなどして、制動機構が動作不可能となる場合がある。このような状況に応じて鉄筋結束ロボットの動作を制御するためには、ロボット制御ユニットは、制動機構の状態(例えば、電源と制動アクチュエータの間の電気的接続が確保されているかなど)を把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、制動機構の状態を把握することができる。 For example, the electrical connection between the power supply and the braking actuator may be interrupted, rendering the braking mechanism inoperable. In order to control the operation of the rebar binding robot in such situations, the robot control unit needs to know the state of the braking mechanism (for example, whether the electrical connection between the power supply and the braking actuator is secured). There is a need to. According to the above configuration, the robot control unit can grasp the state of the braking mechanism based on the first signal.
 第7の態様では、上記第1から第6の態様のいずれか一つにおいて、前記鉄筋結束装置は、前記鉄筋交差箇所の周りに周回された前記ワイヤを捩る動作を実行可能に構成されていてもよい。前記鉄筋結束装置は、前記ワイヤを捩る動作に関する状態を検出する第2状態検出部をさらに備えていてもよい。前記第1信号は、前記第2状態検出部の検出結果に関する情報を含んでもよい。 In a seventh aspect, in any one of the first to sixth aspects, the reinforcing bar binding device is configured to be capable of twisting the wire wound around the reinforcing bar intersection. good too. The reinforcing bar binding device may further include a second state detector that detects a state related to twisting of the wire. The first signal may include information about the detection result of the second state detector.
 ワイヤを捩る動作は、鉄筋結束装置における主要な動作である。このため、ロボット制御ユニットは、鉄筋結束装置のワイヤを捩る動作に関する状態を把握したい場合がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、ワイヤを捩る動作に関する状態を把握することができる。 The action of twisting the wire is the main action of the rebar binding device. For this reason, the robot control unit may want to grasp the state of the wire twisting operation of the reinforcing bar binding device. According to the above configuration, the robot control unit can grasp the state of the operation of twisting the wire based on the first signal.
 第8の態様では、上記第7の態様において、前記鉄筋結束装置は、捩りモータを備えており、前記鉄筋交差箇所の周りに周回された前記ワイヤを捩る動作を実行可能な捩り機構をさらに備えていてもよい。前記第2状態検出部は、前記捩り機構の状態を検出する捩り機構状態検出部を備えていてもよい。前記第1信号は、前記捩り機構状態検出部の検出結果に関する情報を含んでもよい。 In an eighth aspect according to the seventh aspect, the reinforcing bar binding device includes a twisting motor, and further includes a twisting mechanism capable of twisting the wire wound around the reinforcing bar intersection. may be The second state detection section may include a torsion mechanism state detection section that detects the state of the torsion mechanism. The first signal may include information regarding the detection result of the torsion mechanism state detection section.
 例えば、捩り機構においてワイヤが絡まるなどして、捩り機構が動作不可能となる場合がある。このような状況に応じて鉄筋結束ロボットの動作を制御するためには、ロボット制御ユニットは、捩り機構の状態(例えば、捩り機構がスムーズに動作しているかなど)を把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、捩り機構の状態(例えば、捩り機構がスムーズに動作しているかなど)を把握することができる。 For example, the twisting mechanism may become inoperable due to tangling of wires in the twisting mechanism. In order to control the operation of the reinforcing bar binding robot in such a situation, the robot control unit needs to grasp the state of the twisting mechanism (for example, whether the twisting mechanism is operating smoothly). According to the above configuration, the robot control unit can grasp the state of the twisting mechanism (for example, whether the twisting mechanism is operating smoothly) based on the first signal.
 第9の態様では、上記第1から第8の態様のいずれか一つにおいて、前記鉄筋結束装置は、前記ワイヤが巻回されるか、または前記ワイヤを案内するワイヤリールと、前記ワイヤリールを着脱可能に保持するリール保持部と、前記リール保持部に前記ワイヤリールが保持されているか否かを検出するリール検出部と、をさらに備えていてもよい。前記第1信号は、前記リール検出部の検出結果に関する情報を含んでもよい。 In a ninth aspect, in any one of the first to eighth aspects, the reinforcing bar binding device comprises: a wire reel around which the wire is wound or for guiding the wire; It may further include a reel holding portion that is detachably held, and a reel detection portion that detects whether or not the wire reel is held by the reel holding portion. The first signal may include information regarding the detection result of the reel detection section.
 リール保持部にワイヤリールが保持されていない場合、ワイヤ不足と実質的に等しい状況であるため、鉄筋結束装置は鉄筋結束作業を実行できない。このような状況に応じて鉄筋結束ロボットの動作を制御するためには、ロボット制御ユニットは、リール保持部にワイヤリールが保持されているか否かを把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、リール保持部にワイヤリールが保持されているか否かを把握することができる。 When the wire reel is not held by the reel holding part, the situation is substantially equivalent to wire shortage, so the reinforcing bar binding device cannot perform the reinforcing bar binding work. In order to control the operation of the reinforcing bar binding robot in such a situation, the robot control unit needs to grasp whether the wire reel is held by the reel holding section. According to the above configuration, the robot control unit can grasp whether or not the wire reel is held by the reel holding section based on the first signal.
 第10の態様では、上記第1から第9の態様のいずれか一つにおいて、前記鉄筋結束装置は、送りモータを備えており、前記ワイヤを送る動作を実行可能な送り機構と、前記送りモータを収容するハウジングと、前記ハウジングに取り付けられ、前記送り機構によって送られた前記ワイヤを略円環状の案内軌道上に案内して前記鉄筋交差箇所の周りに周回させる第1位置と、前記第1位置に対して前記案内軌道の外側に移動した第2位置との間で移動可能な案内部材と、前記案内部材の前記ハウジングに対する位置を検出する案内部材位置検出部と、をさらに備えていてもよい。前記第1信号は、前記案内部材位置検出部の検出結果に関する情報を含んでもよい。 In a tenth aspect, in any one of the first to ninth aspects, the rebar binding device includes a feed motor, a feed mechanism capable of executing an operation to feed the wire, and the feed motor. a first position that is attached to the housing and that guides the wire fed by the feed mechanism on a substantially annular guide track so as to circulate around the rebar intersection; A guide member movable between a position and a second position moved to the outside of the guide track, and a guide member position detection unit that detects the position of the guide member with respect to the housing. good. The first signal may include information regarding the detection result of the guide member position detector.
 鉄筋結束装置では、案内軌道周辺に設けられた部品のメンテナンス性能を向上させるため、案内部材をハウジングに対して移動可能に設けることがある。しかしながら、案内部材が第2位置に移動された状態で鉄筋結束作業が実行されると、鉄筋交差箇所を適切に結束することができない。このため、鉄筋結束ロボットでは、案内部材の位置に応じた制御(例えば、鉄筋結束作業の許容・禁止の切り換え)を実行したい場合がある。この場合、ロボット制御ユニットは、案内部材のハウジングに対する位置を把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、案内部材のハウジングに対する位置を把握することができる。 In the reinforcing bar binding device, in order to improve the maintenance performance of the parts provided around the guide track, the guide member may be provided movably with respect to the housing. However, if the reinforcing bar binding work is performed with the guide member moved to the second position, the reinforcing bar crossing points cannot be properly tied. Therefore, in the reinforcing bar binding robot, there are cases where it is desired to execute control (for example, switching between permission and prohibition of the reinforcing bar binding operation) according to the position of the guide member. In this case, the robot control unit needs to know the position of the guide member relative to the housing. According to the above configuration, the robot control unit can grasp the position of the guide member with respect to the housing based on the first signal.
 第11の態様では、上記第1から第10の態様のいずれか一つにおいて、前記鉄筋結束装置は、前記装置制御ユニットの温度を検出する温度検出部をさらに備えていてもよい。前記第1信号は、前記温度検出部の検出結果に関する情報を含んでもよい。 In an eleventh aspect, in any one of the first to tenth aspects, the reinforcing bar binding device may further include a temperature detection section that detects the temperature of the device control unit. The first signal may include information regarding the detection result of the temperature detection unit.
 装置制御ユニットの温度が非常に高温となる場合、装置制御ユニットの故障に繋がる可能性がある。このため、鉄筋結束ロボットでは、装置制御ユニットの温度に応じた制御(例えば、装置制御ユニットの温度が非常に高温となることに応じて鉄筋結束作業を中断するなど)を実行したい場合がある。この場合、ロボット制御ユニットは、装置制御ユニットの温度を把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、装置制御ユニットの温度を把握することができる。 If the temperature of the device control unit becomes extremely high, it may lead to a failure of the device control unit. For this reason, in a reinforcing bar binding robot, there are cases where it is desired to perform control according to the temperature of the device control unit (for example, interrupt the reinforcing bar binding operation when the temperature of the device control unit becomes extremely high). In this case, the robot control unit needs to know the temperature of the device control unit. According to the above configuration, the robot control unit can grasp the temperature of the device control unit based on the first signal.
 第12の態様では、上記第1から第11の態様のいずれか一つにおいて、前記鉄筋結束ロボットは、前記鉄筋結束装置に電力を供給するための電源装置をさらに備えていてもよい。前記鉄筋結束装置は、前記電源装置から前記鉄筋結束装置に供給される電力の電圧値を検出する供給電圧検出部をさらに備えていてもよい。前記第1信号は、前記供給電圧検出部の検出結果に関する情報を含んでもよい。 In a twelfth aspect, in any one of the first to eleventh aspects, the reinforcing bar binding robot may further include a power supply device for supplying power to the reinforcing bar binding device. The rebar binding device may further include a supply voltage detection unit that detects a voltage value of power supplied from the power supply to the rebar binding device. The first signal may include information about a detection result of the supply voltage detector.
 電源装置から鉄筋結束装置に供給される電力の電圧値が低下して不十分な値となる場合、鉄筋結束作業が電力不足により強制的に中断されてしまう可能性がある。このため、鉄筋結束ロボットでは、装置制御ユニットに供給される電力の電圧値に応じた制御(例えば、電圧値が低下して不十分な値となったことに応じてその旨をユーザに報知するなど)を実行したい場合がある。この場合、ロボット制御ユニットは、電源装置から鉄筋結束装置に供給される電力の電圧値を把握する必要がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、電源装置から鉄筋結束装置に供給される電力の電圧値を把握することができる。 If the voltage value of the power supplied from the power supply to the reinforcing bar binding device drops to an insufficient value, the reinforcing bar binding work may be forcibly interrupted due to power shortage. For this reason, in the reinforcing rod binding robot, control is performed according to the voltage value of the electric power supplied to the device control unit (for example, when the voltage value drops to an insufficient value, the user is notified of the fact). etc.). In this case, the robot control unit needs to grasp the voltage value of the power supplied from the power supply to the reinforcing bar binding device. According to the above configuration, the robot control unit can grasp the voltage value of the power supplied from the power supply device to the reinforcing bar binding device based on the first signal.
 第13の態様では、上記第1から第12の態様のいずれか一つにおいて、前記鉄筋結束装置は、前記鉄筋結束作業の際に前記第1鉄筋または前記第2鉄筋に当接可能な位置に配置されたコンタクト部材と、前記コンタクト部材を揺動可能に保持するハウジングと、前記コンタクト部材の前記ハウジングに対する位置を検出するコンタクト部材位置検出部と、をさらに備えていてもよい。前記第1信号は、前記コンタクト部材位置検出部の検出結果に関する情報を含んでもよい。 In a thirteenth aspect, in any one of the first to twelfth aspects, the reinforcing bar binding device is positioned so as to be able to contact the first reinforcing bar or the second reinforcing bar during the reinforcing bar binding operation. The contact member may further include a contact member, a housing that holds the contact member in a swingable manner, and a contact member position detector that detects the position of the contact member with respect to the housing. The first signal may include information regarding the detection result of the contact member position detector.
 鉄筋結束作業を確実に実行する上で、ロボット制御ユニットは、鉄筋結束装置が鉄筋交差箇所にセットされたことを検出したい場合がある。上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、コンタクト部材が揺動されたか否かを判断することで、鉄筋結束装置が鉄筋交差箇所にセットされたことを検出できる。 In order to reliably perform the reinforcing bar binding work, the robot control unit may want to detect that the reinforcing bar binding device has been set at the reinforcing bar intersection. According to the above configuration, the robot control unit can detect that the reinforcing bar binding device is set at the reinforcing bar intersection by determining whether or not the contact member has been swung based on the first signal.
 第14の態様では、上記第1から第13の態様のいずれか一つにおいて、前記第1信号は、前記鉄筋結束装置に異常が発生したことを示す情報を含んでもよい。 In a fourteenth aspect, in any one of the first to thirteenth aspects, the first signal may include information indicating that an abnormality has occurred in the rebar binding device.
 上記の構成によれば、ロボット制御ユニットは、第1信号に基づいて、鉄筋結束装置に異常が発生したことを把握することができる。このため、ロボット制御ユニットは、鉄筋結束装置に異常が発生したことに応じて鉄筋結束ロボットの動作を停止したり、その旨をユーザに報知したりすることができる。 According to the above configuration, the robot control unit can grasp that an abnormality has occurred in the reinforcing bar binding device based on the first signal. Therefore, the robot control unit can stop the operation of the reinforcing bar binding robot in response to the occurrence of an abnormality in the reinforcing bar binding device, or notify the user of the fact.
 第15の態様では、上記第1から第14の態様のいずれか一つにおいて、前記ロボット制御ユニットは、前記装置制御ユニットに呼出信号を送信するように構成されていてもよい。前記装置制御ユニットは、前記呼出信号を受信した時に、前記ロボット制御ユニットに前記第1信号を送信するように構成されていてもよい。 In a fifteenth aspect, in any one of the first to fourteenth aspects, the robot control unit may be configured to transmit a call signal to the device control unit. The device control unit may be configured to transmit the first signal to the robot control unit upon receiving the call signal.
 上記の構成によれば、装置制御ユニットは、第1信号を送信するタイミングを特定するための処理を実行する必要がない。このため、装置制御ユニットを簡素な構成とすることができる。さらに上記の構成によれば、ロボット制御ユニットは、所望のタイミングで、鉄筋結束装置の状態を把握することができる。 According to the above configuration, the device control unit does not need to execute processing for specifying the timing of transmitting the first signal. Therefore, the device control unit can have a simple configuration. Furthermore, according to the above configuration, the robot control unit can grasp the state of the reinforcing bar binding device at a desired timing.
 第16の態様では、上記第1から第15の態様のいずれか一つにおいて、前記ロボット制御ユニットは、前記装置制御ユニットに結束指示信号を送信するように構成されていてもよい。前記装置制御ユニットは、前記結束指示信号を受信した時に、前記鉄筋結束装置に前記鉄筋結束作業を実行させるように構成されていてもよい。前記ロボット制御ユニットは、前記結束指示信号を送信することに先立って、前記装置制御ユニットに前記呼出信号を送信するように構成されていてもよい。 In a sixteenth aspect, in any one of the first to fifteenth aspects, the robot control unit may be configured to transmit a bundling instruction signal to the device control unit. The device control unit may be configured to cause the rebar tying device to perform the rebar tying operation when receiving the tying instruction signal. The robot control unit may be configured to send the ringing signal to the device control unit prior to sending the bundling instruction signal.
 鉄筋結束作業が開始されるタイミングで鉄筋結束装置の状態を把握することができれば、ロボット制御ユニットは、鉄筋結束装置の状態に基づいて、その後の鉄筋結束作業の継続可否を判断することができる。上記の構成によれば、ロボット制御ユニットは、鉄筋結束作業が開始されるタイミングで鉄筋結束装置の状態を把握することができる。このため、ロボット制御ユニットは、鉄筋結束装置の状態に基づいて鉄筋結束作業の継続可否を判断することができる。 If the state of the reinforcing bar binding device can be grasped at the timing when the reinforcing bar binding work is started, the robot control unit can determine whether or not to continue the reinforcing bar binding work based on the state of the reinforcing bar binding device. According to the above configuration, the robot control unit can grasp the state of the reinforcing bar binding device at the timing when the reinforcing bar binding operation is started. Therefore, the robot control unit can determine whether or not to continue the reinforcing bar binding work based on the state of the reinforcing bar binding device.
(実施例)
 図1に示すように、本実施例の鉄筋結束ロボット1は、水平方向に沿って互いに平行に配筋された複数の第1鉄筋R1と、水平方向に沿って互いに平行に配筋された第2鉄筋R2の上を移動しながら、第1鉄筋R1と第2鉄筋R2が交差する箇所を、鉄筋結束装置2を使用して結束するロボットである。第1鉄筋R1と第2鉄筋R2を上方から見た時に、第2鉄筋R2が延びる方向は第1鉄筋R1が延びる方向に対して直交している。また、第2鉄筋R2は第1鉄筋R1の上方に配置されている。第1鉄筋R1は、例えば、100mm-300mmの間隔で配筋されており、第2鉄筋R2は、例えば、100mm-300mmの間隔で配筋されている。鉄筋結束ロボット1は、前後方向の寸法が、例えば、900mm程度であり、左右方向の寸法が、例えば、600mm程度である。
(Example)
As shown in FIG. 1, the reinforcing bar binding robot 1 of this embodiment includes a plurality of first reinforcing bars R1 arranged parallel to each other along the horizontal direction, and a plurality of first reinforcing bars R1 arranged parallel to each other along the horizontal direction. The robot is a robot that uses a reinforcing bar binding device 2 to bind the intersection of the first reinforcing bar R1 and the second reinforcing bar R2 while moving on the second reinforcing bar R2. When the first reinforcing bar R1 and the second reinforcing bar R2 are viewed from above, the direction in which the second reinforcing bar R2 extends is orthogonal to the direction in which the first reinforcing bar R1 extends. Also, the second reinforcing bar R2 is arranged above the first reinforcing bar R1. The first reinforcing bars R1 are arranged at intervals of, for example, 100 mm to 300 mm, and the second reinforcing bars R2 are arranged at intervals of, for example, 100 mm to 300 mm. The reinforcing bar binding robot 1 has a longitudinal dimension of, for example, about 900 mm, and a lateral dimension of, for example, about 600 mm.
 鉄筋結束ロボット1は、主に、鉄筋結束装置2と、搬送装置4と、昇降装置6と、電源装置8と、ロボット制御ユニット10と、独立リール500と、ワイヤ中継機構550を備えている。 The reinforcing bar binding robot 1 mainly includes a reinforcing bar binding device 2, a transport device 4, an elevating device 6, a power supply device 8, a robot control unit 10, an independent reel 500, and a wire relay mechanism 550.
 また、鉄筋結束ロボット1には、パトランプ183と、ブザー(図示せず)と、操作パネル(図示せず)と、複数の鉄筋検出センサ(図示せず)が設けられている。パトランプ183は、発光することによって、ユーザに対して鉄筋結束ロボット1の異常等を報知することができる。ブザーは、音を発することによって、ユーザに対して鉄筋結束ロボット1の異常等を報知することができる。操作パネルには、鉄筋結束ロボット1に電源を投入するための電源スイッチ(図示せず)、鉄筋RへのワイヤWの巻き数や、ワイヤWを捩る際の捩りトルクを設定する設定スイッチ(図示せず)、鉄筋結束ロボット1を緊急停止させるための緊急停止ボタン(図示せず)、および現在の設定内容を表示する表示用LED(図示せず)等が設けられている。複数の鉄筋検出センサは、例えば被写体までの距離を画素毎に計測した距離画像データを取得可能なTOF(Time-of-Flight)センサである。複数の鉄筋検出センサは、前側連結フレーム215(図2参照)に設けられた鉄筋検出センサと、後側連結フレーム216(図2参照)に設けられた鉄筋検出センサと、ベースプレート204の中央部分に設けられた鉄筋検出センサを含む。 In addition, the reinforcing bar binding robot 1 is provided with a patrol lamp 183, a buzzer (not shown), an operation panel (not shown), and a plurality of reinforcing bar detection sensors (not shown). The patrol lamp 183 can notify the user of an abnormality or the like of the reinforcing bar binding robot 1 by emitting light. The buzzer can notify the user of an abnormality or the like in the reinforcing bar binding robot 1 by emitting a sound. The operation panel includes a power switch (not shown) for turning on the power to the reinforcing bar binding robot 1, a setting switch (not shown) for setting the number of turns of the wire W around the reinforcing bar R, and the twisting torque for twisting the wire W. (not shown), an emergency stop button (not shown) for stopping the reinforcing bar binding robot 1 in an emergency, and a display LED (not shown) for displaying the current settings. The plurality of rebar detection sensors are, for example, TOF (Time-of-Flight) sensors capable of acquiring distance image data obtained by measuring the distance to the subject for each pixel. The plurality of reinforcing bar detection sensors includes a reinforcing bar detecting sensor provided on the front connecting frame 215 (see FIG. 2), a reinforcing bar detecting sensor provided on the rear connecting frame 216 (see FIG. 2), and a center portion of the base plate 204. Including a rebar detection sensor provided.
(ロボット制御ユニット10の構成)
 ロボット制御ユニット10は、CPU、メモリ、および通信インタフェース等を含んでいる。ロボット制御ユニット10は、搬送装置4と昇降装置6の動作を制御するように構成されている。ロボット制御ユニット10は、複数の鉄筋検出センサで取得される距離画像データに基づいて、複数の鉄筋検出センサに対する、第1鉄筋R1および第2鉄筋R2の相対的な配置を特定することができる。例えば、ロボット制御ユニット10のメモリには、複数の第1鉄筋R1および複数の第2鉄筋R2の位置関係を示すマップ情報(本明細書では、「鉄筋マップ」と呼ぶ。)が記憶されている。これにより、ロボット制御ユニット10は、複数の第1鉄筋R1および複数の第2鉄筋R2に対する鉄筋結束ロボット1の配置を特定することもできる。また、ロボット制御ユニット10は、鉄筋交差箇所の結束状態に係る情報を随時メモリに記憶することができる。これにより、ロボット制御ユニット10は、鉄筋マップにおいて、結束済みの鉄筋交差箇所と、未結束の鉄筋交差箇所を区別することができる。
(Configuration of robot control unit 10)
The robot control unit 10 includes a CPU, memory, communication interface, and the like. A robot control unit 10 is configured to control the movement of the transport device 4 and the lifting device 6 . The robot control unit 10 can identify the relative arrangement of the first reinforcing bar R1 and the second reinforcing bar R2 with respect to the plurality of reinforcing bar detecting sensors based on the distance image data acquired by the plurality of reinforcing bar detecting sensors. For example, the memory of the robot control unit 10 stores map information (herein referred to as "reinforcement map") indicating the positional relationship between the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2. . Thereby, the robot control unit 10 can also specify the placement of the reinforcing bar binding robot 1 with respect to the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2. In addition, the robot control unit 10 can store information on the bundling state of reinforcing bar intersections in the memory at any time. As a result, the robot control unit 10 can distinguish between bound reinforcing bar crossing points and unbound reinforcing bar crossing points in the reinforcing bar map.
(電源装置8の構成)
 電源装置8は、右側バッテリケース802と、左側バッテリケース804と、変圧器806と、電力制御基板808を備えている。右側バッテリケース802内には、3つのバッテリパックBがそれぞれ着脱可能に取り付けられる。左側バッテリケース804内には、2つのバッテリパックBがそれぞれ着脱可能に取り付けられる。本明細書では、これら5つのバッテリパックBを総称して、「複数のバッテリパックB」と呼ぶ。複数のバッテリパックBは、例えば、図示しない充電器によって充電可能な、リチウムイオンバッテリである。右側バッテリケース802には、右側バッテリケース802内に取り付けられた各バッテリパックBのバッテリ残量を表示する右側バッテリ残量表示部812が設けられている。左側バッテリケース804には、左側バッテリケース804内に取り付けられた各バッテリパックBのバッテリ残量を表示する左側バッテリ残量表示部814が設けられている。また、複数のバッテリパックBは、変圧器806を介して、電力制御基板808と電気的に接続している。電力制御基板808は、鉄筋結束装置2と、搬送装置4と、ロボット制御ユニット10のそれぞれに電気的に接続されている。このため、電源装置8(具体的には、電力制御基板808)は、複数のバッテリパックBからの電力を、鉄筋結束装置2と、搬送装置4と、ロボット制御ユニット10に供給可能である。なお、図2以降では、説明の簡略化のため、電源装置8およびロボット制御ユニット10の図示を省略している。
(Configuration of power supply device 8)
The power supply device 8 includes a right battery case 802 , a left battery case 804 , a transformer 806 and a power control board 808 . Three battery packs B are detachably attached in the right battery case 802 . Two battery packs B are detachably attached in the left battery case 804 . In this specification, these five battery packs B are collectively referred to as "a plurality of battery packs B". The plurality of battery packs B are, for example, lithium ion batteries that can be charged by a charger (not shown). The right battery case 802 is provided with a right battery remaining amount display section 812 that displays the remaining battery amount of each battery pack B attached inside the right battery case 802 . The left battery case 804 is provided with a left battery remaining amount display section 814 that displays the remaining battery amount of each battery pack B attached in the left battery case 804 . Also, the plurality of battery packs B are electrically connected to a power control board 808 via transformers 806 . The power control board 808 is electrically connected to each of the reinforcing bar binding device 2 , the transfer device 4 and the robot control unit 10 . Therefore, the power supply device 8 (specifically, the power control board 808 ) can supply power from the plurality of battery packs B to the reinforcing bar binding device 2 , the transfer device 4 and the robot control unit 10 . In FIG. 2 and subsequent figures, the illustration of the power supply device 8 and the robot control unit 10 is omitted for simplification of explanation.
(独立リール500およびワイヤ中継機構550の構成)
 独立リール500は、ベースプレート204に固定されている。独立リール500には、鉄筋結束作業に用いられるワイヤWが予め巻回されている。本実施例の独立リール500に巻回可能なワイヤWの最大長は、600mから1000mの範囲内であって、例えば800mである。ワイヤ中継機構550は、台座部552と、ガイドローラ554と、送りローラ556、557と、挿通部材558を備えている。ワイヤ中継機構550は、台座部552を介して、ベースプレート204に固定されている。独立リール500から引き出されたワイヤWは、挿通部材558を通過して、送りローラ556、557の間に挟持されるとともに、ガイドローラ554によって鉄筋結束装置2に向けてガイドされる。独立リール500は、鉄筋結束ロボット1におけるワイヤWの供給源ということができる。
(Configuration of Independent Reel 500 and Wire Relay Mechanism 550)
Independent reel 500 is fixed to base plate 204 . A wire W used for the reinforcing bar binding work is pre-wound around the independent reel 500 . The maximum length of the wire W that can be wound around the independent reel 500 of this embodiment is within the range of 600 m to 1000 m, for example 800 m. The wire relay mechanism 550 includes a base portion 552 , guide rollers 554 , feed rollers 556 and 557 and an insertion member 558 . The wire relay mechanism 550 is fixed to the base plate 204 via a pedestal portion 552 . The wire W pulled out from the independent reel 500 passes through the insertion member 558 , is sandwiched between the feed rollers 556 and 557 , and is guided toward the reinforcing bar binding device 2 by the guide rollers 554 . The independent reel 500 can be said to be a supply source of the wire W in the reinforcing bar binding robot 1 .
(鉄筋結束装置2の構成)
 以下では、鉄筋結束装置2の構成について説明する。なお、図3から図15までの説明における前後方向、左右方向および上下方向は、鉄筋結束ロボット1を基準とした前後方向、左右方向および上下方向ではなく、鉄筋結束装置2を基準とした前後方向、左右方向および上下方向を意味することに留意されたい。
(Configuration of reinforcing bar binding device 2)
Below, the structure of the reinforcing-bar binding apparatus 2 is demonstrated. 3 to 15, the front-rear direction, the left-right direction, and the up-down direction are not the front-rear direction, the left-right direction, and the up-down direction based on the reinforcing bar binding robot 1, but the front-back direction based on the reinforcing bar binding device 2. , means left-right and up-down.
 図3に示すように、鉄筋結束装置2は、互いに交差する鉄筋R(例えば第1鉄筋R1と第2鉄筋R2)を、ワイヤWによって結束する。鉄筋結束装置2は、ハウジング12を備えている。ハウジング12は、昇降装置6のベース部材654(図30参照)を嵌合するための嵌合部12aを備えている。図4に示すように、ハウジング12の後部には、独立リール500から引き出されたワイヤWを受け入れるための貫通孔12bが設けられている。図1に示すように、貫通孔12bは、ワイヤ中継機構550に向かって開口している。 As shown in FIG. 3, the reinforcing bar binding device 2 binds the mutually crossing reinforcing bars R (for example, the first reinforcing bar R1 and the second reinforcing bar R2) with the wire W. The reinforcing bar binding device 2 has a housing 12 . The housing 12 has a fitting portion 12a for fitting a base member 654 (see FIG. 30) of the lifting device 6. As shown in FIG. As shown in FIG. 4, the rear portion of the housing 12 is provided with a through hole 12b for receiving the wire W pulled out from the independent reel 500. As shown in FIG. As shown in FIG. 1, the through hole 12b opens toward the wire relay mechanism 550. As shown in FIG.
 図4、図5に示すように、鉄筋結束装置2は、主に、リール保持機構36と、送り機構38と、ブレーキ機構40と、案内機構42と、切断機構44と、捩り機構46と、装置制御ユニット50を備えている。 As shown in FIGS. 4 and 5, the rebar binding device 2 mainly includes a reel holding mechanism 36, a feed mechanism 38, a brake mechanism 40, a guide mechanism 42, a cutting mechanism 44, a twisting mechanism 46, A device control unit 50 is provided.
(リール保持機構36の構成)
 図6に示すように、リール保持機構36は、カム部材54と、シャフト部材56と、圧縮バネ58を備えている。カム部材54は、ハウジング12によって回転可能に保持されている。シャフト部材56は、ハウジング12に保持された圧縮バネ58によって、右方向へ(すなわち、ハウジング12の内側へ)付勢されている。通常時は、圧縮バネ58の付勢力によって、シャフト部材56はハウジング12に対して右側に(すなわちハウジング12の内側に)移動している。この状態では、シャフト部材56の右端がワイヤリールWRのシャフト受け溝WRaに対して相対的に摺動可能に入り込む。この際、ワイヤリールWRはシャフト部材56に対して回転可能に保持される。この状態から、ユーザがカム部材54の回動レバー54a(図3参照)を前方から後方に移動させると、いわゆる円筒カム機構の要領で、シャフト部材56は圧縮バネ58の付勢力に抗して左方向へ(すなわち、ハウジング12の外側へ)移動する。これにより、シャフト部材56はワイヤリールWRのシャフト受け溝WRaから抜け出る。この状態で、ユーザは、ワイヤリールWRをハウジング12から出し入れすることができる。
(Configuration of Reel Holding Mechanism 36)
As shown in FIG. 6, the reel holding mechanism 36 includes a cam member 54, a shaft member 56, and a compression spring 58. As shown in FIG. Cam member 54 is rotatably retained by housing 12 . The shaft member 56 is biased rightward (that is, toward the inside of the housing 12) by a compression spring 58 held in the housing 12. As shown in FIG. Normally, the biasing force of the compression spring 58 causes the shaft member 56 to move rightward with respect to the housing 12 (that is, toward the inside of the housing 12). In this state, the right end of the shaft member 56 slidably enters the shaft receiving groove WRa of the wire reel WR. At this time, the wire reel WR is rotatably held with respect to the shaft member 56 . From this state, when the user moves the rotating lever 54a (see FIG. 3) of the cam member 54 from the front to the rear, the shaft member 56 resists the biasing force of the compression spring 58 in the manner of a so-called cylindrical cam mechanism. Move to the left (ie, out of housing 12). As a result, the shaft member 56 is pulled out of the shaft receiving groove WRa of the wire reel WR. In this state, the user can put the wire reel WR in and out of the housing 12 .
 リール保持機構36は、回転台60と、内側ベアリング62と、外側ベアリング64と、リール回転検出センサ66(図4参照)をさらに備えている。回転台60は、内側ベアリング62と外側ベアリング64を介して、回転可能にハウジング12に保持されている。回転台60は、ワイヤリールWRと、相対的に回転不能に係合する。従って、ワイヤリールWRが回転すると、回転台60もワイヤリールWRと一体となって回転する。図4に示すように、リール回転検出センサ66は、ハウジング12に固定されている。リール回転検出センサ66は、ホールIC(図示せず)を備えたホールセンサである。リール回転検出センサ66は、回転台60に設けられた複数のマグネット(図示せず)からの磁気の変動から、ワイヤリールWRの回転を検出することができる。 The reel holding mechanism 36 further includes a turntable 60, an inner bearing 62, an outer bearing 64, and a reel rotation detection sensor 66 (see FIG. 4). The turntable 60 is rotatably held by the housing 12 via an inner bearing 62 and an outer bearing 64 . The turntable 60 is relatively non-rotatably engaged with the wire reel WR. Therefore, when the wire reel WR rotates, the turntable 60 also rotates together with the wire reel WR. As shown in FIG. 4, the reel rotation detection sensor 66 is fixed to the housing 12 . The reel rotation detection sensor 66 is a Hall sensor having a Hall IC (not shown). The reel rotation detection sensor 66 can detect the rotation of the wire reel WR from variations in magnetism from a plurality of magnets (not shown) provided on the turntable 60 .
 以上のように、リール保持機構36は、ワイヤリールWRを着脱可能かつ回転可能に保持している。本実施例では、独立リール500から引き出されたワイヤWは、貫通孔12bに通され、ワイヤリールWRの周りに巻回された上で、送り機構38に供給される。このため、送り機構38によってワイヤWが送り出される際、ワイヤWはワイヤリールWRの外周面に沿って摺動する。この際、ワイヤリールWRとワイヤWの間の摺動摩擦によって、ワイヤリールWRを回転させるような力が生じる。これにより、ワイヤリールWRは、ワイヤWの送り出しに伴って回転するように構成されている。 As described above, the reel holding mechanism 36 detachably and rotatably holds the wire reel WR. In this embodiment, the wire W pulled out from the independent reel 500 is passed through the through hole 12b, wound around the wire reel WR, and supplied to the feed mechanism 38. As shown in FIG. Therefore, when the wire W is sent out by the sending mechanism 38, the wire W slides along the outer peripheral surface of the wire reel WR. At this time, the sliding friction between the wire reel WR and the wire W generates a force that rotates the wire reel WR. Thus, the wire reel WR is configured to rotate as the wire W is sent out.
(送り機構38の構成)
 図4に示すように、送り機構38は、リール保持機構36のワイヤリールWRから供給されるワイヤWを、鉄筋結束装置2の前方の案内機構42へと送り出す。送り機構38は、ガイド部材68と、送りモータ72と、主動ギヤ78と、従動ギヤ80と、リリースレバー82と、圧縮バネ84(図7参照)と、ロックレバー86を備えている。ワイヤWは、ガイド部材68を通って、主動ギヤ78と、従動ギヤ80の間に挟持される。主動ギヤ78は、減速機構(図示せず)を介して、送りモータ72に連結されている。送りモータ72は、直流ブラシ付きモータである。
(Structure of feed mechanism 38)
As shown in FIG. 4 , the feed mechanism 38 feeds the wire W supplied from the wire reel WR of the reel holding mechanism 36 to the guide mechanism 42 in front of the reinforcing bar binding device 2 . The feed mechanism 38 includes a guide member 68 , a feed motor 72 , a main drive gear 78 , a driven gear 80 , a release lever 82 , a compression spring 84 (see FIG. 7), and a lock lever 86 . A wire W passes through the guide member 68 and is sandwiched between the main driving gear 78 and the driven gear 80 . The main drive gear 78 is connected to the feed motor 72 via a speed reduction mechanism (not shown). Feed motor 72 is a DC brushed motor.
 図7に示すように、主動ギヤ78の側面には、高さ方向中央で径方向に伸びるV字形状溝78aが形成されている。従動ギヤ80の側面には、高さ方向中央で径方向に伸びるV字形状溝80aが形成されている。従動ギヤ80は、リリースレバー82のギヤアーム82aに回転可能に支持されている。リリースレバー82は、ギヤアーム82aと、操作アーム82bを備える、略L字型の部材である。リリースレバー82は、揺動軸82cを介してハウジング12に揺動可能に支持されている。リリースレバー82の操作アーム82bは、ハウジング12に保持された圧縮バネ84によって、左方向に向けて、すなわち外側に向けて付勢されている。通常時は、圧縮バネ84の付勢力によって、リリースレバー82に従動ギヤ80を主動ギヤ78に近づける方向のトルクが作用し、従動ギヤ80が主動ギヤ78に押し当てられている。これによって、従動ギヤ80の側面の歯(図示せず)と主動ギヤ78の側面の歯(図示せず)が係合するとともに、主動ギヤ78のV字形状溝78aと従動ギヤ80のV字形状溝80aの間に、ワイヤWが挟持される。この状態で、送りモータ72(図4参照)が主動ギヤ78を回転させると、従動ギヤ80が逆方向に回転するとともに、主動ギヤ78と従動ギヤ80により挟持されたワイヤWが案内機構42(図4参照)へと送り出され、ワイヤリールWRからワイヤWが引き出される。主動ギヤ78や従動ギヤ80は、ワイヤWを送り出す送りギヤということができる。なお、送り機構38は、主動ギヤ78の回転角度を検出するギヤ回転検出センサ79(図16参照)を内蔵している。 As shown in FIG. 7, the side surface of the main driving gear 78 is formed with a V-shaped groove 78a extending radially at the center in the height direction. A side surface of the driven gear 80 is formed with a V-shaped groove 80a extending radially at the center in the height direction. The driven gear 80 is rotatably supported by the gear arm 82a of the release lever 82. As shown in FIG. The release lever 82 is a substantially L-shaped member that includes a gear arm 82a and an operating arm 82b. The release lever 82 is swingably supported by the housing 12 via a swing shaft 82c. The operating arm 82b of the release lever 82 is biased leftward, that is, outwardly by a compression spring 84 held in the housing 12. As shown in FIG. Normally, the urging force of the compression spring 84 applies torque to the release lever 82 in a direction to bring the driven gear 80 closer to the main driving gear 78 , and the driven gear 80 is pressed against the main driving gear 78 . As a result, the teeth (not shown) on the side surface of the driven gear 80 and the teeth (not shown) on the side surface of the main driving gear 78 are engaged, and the V-shaped groove 78a of the main driving gear 78 and the V-shaped groove 78a of the driven gear 80 are engaged. A wire W is sandwiched between the shaped grooves 80a. In this state, when the feed motor 72 (see FIG. 4) rotates the main driving gear 78, the driven gear 80 rotates in the opposite direction, and the wire W sandwiched between the main driving gear 78 and the driven gear 80 moves toward the guide mechanism 42 (see FIG. 4). 4), and the wire W is pulled out from the wire reel WR. The main drive gear 78 and the driven gear 80 can be called feed gears for feeding the wire W. As shown in FIG. The feed mechanism 38 incorporates a gear rotation detection sensor 79 (see FIG. 16) for detecting the rotation angle of the main driving gear 78. As shown in FIG.
 ロックレバー86は、ロックアーム86aと、バネ受けアーム(図示せず)を備える、略L字型の部材である。ロックレバー86は、揺動軸86cを介してハウジング12に揺動可能に支持されている。ロックレバー86のバネ受けアームは、ハウジング12に保持された図示しない圧縮バネによって、右方向に向けて付勢されている。この圧縮バネの付勢力によって、ロックレバー86には、ロックアーム86aをリリースレバー82の操作アーム82bに近づける方向のトルクが作用している。ロックレバー86のロックアーム86aには係合凸部86dが形成されており、リリースレバー82の操作アーム82bには係合凸部86dと係合する係合凹部82dが形成されている。 The lock lever 86 is a substantially L-shaped member that includes a lock arm 86a and a spring receiving arm (not shown). The lock lever 86 is swingably supported by the housing 12 via a swing shaft 86c. A spring receiving arm of the lock lever 86 is biased rightward by a compression spring (not shown) retained in the housing 12 . Due to the biasing force of this compression spring, a torque acts on the lock lever 86 in a direction to bring the lock arm 86a closer to the operation arm 82b of the release lever 82. As shown in FIG. The lock arm 86a of the lock lever 86 is formed with an engagement projection 86d, and the operating arm 82b of the release lever 82 is formed with an engagement recess 82d that engages with the engagement projection 86d.
 ユーザが圧縮バネ84の付勢力に抗して操作アーム82bを押し込むと、リリースレバー82が揺動軸82cの周りで揺動して、従動ギヤ80が主動ギヤ78から離反する。この際に、操作アーム82bの係合凹部82dがロックアーム86aの係合凸部86dと対向する位置まで操作アーム82bが押し込まれると、ロックレバー86が揺動軸86cの周りで揺動して、ロックアーム86aの係合凸部86dが操作アーム82bの係合凹部82dに係合する。これによって、操作アーム82bは押し込まれた状態で保持される。ワイヤリールWRから伸びるワイヤWを送り機構38にセットする際には、ユーザは、操作アーム82bを押し込んで従動ギヤ80を主動ギヤ78から離反させ、その状態でワイヤリールWRから引き出したワイヤWの先端をガイド部材68の挿通孔68aを通して主動ギヤ78と従動ギヤ80の間に配置させる。そして、ユーザが圧縮バネの付勢力に抗してロックレバー86のロックアーム86aを操作アーム82bから離反する方向に揺動させると、ロックアーム86aの係合凸部86dと操作アーム82bの係合凹部82dの係合が解除されて、圧縮バネ84の付勢力によってリリースレバー82が揺動軸82cの周りで揺動して、従動ギヤ80が主動ギヤ78に係合するとともに、主動ギヤ78のV字形状溝78aと従動ギヤ80のV字形状溝80aの間にワイヤWが挟持される。 When the user pushes the operating arm 82 b against the biasing force of the compression spring 84 , the release lever 82 swings around the swing shaft 82 c and the driven gear 80 separates from the main driving gear 78 . At this time, when the operating arm 82b is pushed to a position where the engaging concave portion 82d of the operating arm 82b faces the engaging convex portion 86d of the lock arm 86a, the lock lever 86 swings around the swing shaft 86c. , the engagement projection 86d of the lock arm 86a engages with the engagement recess 82d of the operating arm 82b. As a result, the operation arm 82b is held in a pushed state. When setting the wire W extending from the wire reel WR to the feeding mechanism 38, the user pushes the operation arm 82b to separate the driven gear 80 from the main driving gear 78, and in this state, the wire W pulled out from the wire reel WR is fed. The tip is inserted between the main drive gear 78 and the driven gear 80 through the insertion hole 68 a of the guide member 68 . Then, when the user swings the lock arm 86a of the lock lever 86 in the direction away from the operation arm 82b against the biasing force of the compression spring, the engagement projection 86d of the lock arm 86a and the operation arm 82b are engaged. The engagement of the recessed portion 82d is released, and the release lever 82 swings around the swing shaft 82c by the biasing force of the compression spring 84, and the driven gear 80 engages with the main driving gear 78. A wire W is sandwiched between the V-shaped groove 78 a and the V-shaped groove 80 a of the driven gear 80 .
(案内機構42の構成)
 図5に示すように、案内機構42は、鉄筋結束装置2の前部に配置されており、送り機構38から送られたワイヤWを、略円環状の案内軌道上に案内する(図3参照)。図4に示すように、案内機構42は、案内パイプ88と、上側カールガイド90と、下側カールガイド92を備えている。案内パイプ88の後方側の端部は、送り機構38の主動ギヤ78と従動ギヤ80の間に向けて開口している。送り機構38から送られたワイヤWは、案内パイプ88の内部へと送り込まれる。図10に示すように、案内パイプ88の前方側の端部は、上側カールガイド90の内部に向けて開口している。上側カールガイド90には、案内パイプ88から送られるワイヤWを案内するための第1案内通路94と、下側カールガイド92から送られるワイヤWを案内するための第2案内通路96(図11参照)が設けられている。
(Configuration of guide mechanism 42)
As shown in FIG. 5, the guide mechanism 42 is arranged in the front part of the reinforcing bar binding device 2, and guides the wire W sent from the feed mechanism 38 on a substantially annular guide track (see FIG. 3). ). As shown in FIG. 4 , the guide mechanism 42 includes a guide pipe 88 , an upper curl guide 90 and a lower curl guide 92 . The rear end of the guide pipe 88 opens between the main drive gear 78 and the driven gear 80 of the feed mechanism 38 . The wire W fed from the feed mechanism 38 is fed into the guide pipe 88 . As shown in FIG. 10 , the front end of the guide pipe 88 opens toward the inside of the upper curl guide 90 . The upper curl guide 90 has a first guide passage 94 for guiding the wire W sent from the guide pipe 88 and a second guide passage 96 for guiding the wire W sent from the lower curl guide 92 (see FIG. 11). ) are provided.
 図8、図9に示すように、上側カールガイド90は、リードホルダ98と、ガイドアーム100と、コンタクトプレート102と、左ガイドプレート104と、インナガイドプレート106と、右ガイドプレート108と、ガイド部材110と、トッププレート112(図10参照)を備えている。 As shown in FIGS. 8 and 9, the upper curl guide 90 includes a lead holder 98, a guide arm 100, a contact plate 102, a left guide plate 104, an inner guide plate 106, a right guide plate 108, and a guide plate. It has a member 110 and a top plate 112 (see FIG. 10).
 リードホルダ98は、案内パイプ88(図10参照)の前方側の開口が、ガイド部材110と、右ガイドプレート108と、インナガイドプレート106と、トッププレート112により形成される第1案内通路94に向けて開口するように、案内パイプ88を保持する。図10に示すように、ガイド部材110は、金属製の部材であって、その内部にワイヤWが通過するワイヤ通路110aが形成されている。ワイヤ通路110aの前端下方には、第1案内ピン114が配置されている。第1案内ピン114は、例えばタングステン等の耐摩耗性の高い金属製の部材であって、右ガイドプレート108に圧入されている。案内パイプ88から送り出されるワイヤWは、ワイヤ通路110aと第1案内ピン114によって、カッタ116へ向けて案内される。 In the lead holder 98, the opening on the front side of the guide pipe 88 (see FIG. 10) is in the first guide passage 94 formed by the guide member 110, the right guide plate 108, the inner guide plate 106, and the top plate 112. The guide pipe 88 is held so as to open toward it. As shown in FIG. 10, the guide member 110 is a member made of metal, and a wire passage 110a through which the wire W passes is formed therein. A first guide pin 114 is arranged below the front end of the wire passage 110a. The first guide pin 114 is a highly wear-resistant metal member such as tungsten, and is press-fitted into the right guide plate 108 . The wire W sent out from the guide pipe 88 is guided toward the cutter 116 by the wire passage 110 a and the first guide pin 114 .
 カッタ116は、固定部材118と、揺動部材120を備えている。固定部材118は、外形が円筒形状である金属製の部材であって、その内部にワイヤWが通過するワイヤ通路118aが形成されている。固定部材118は、インナガイドプレート106に嵌合して、右ガイドプレート108とインナガイドプレート106に挟持されている。揺動部材120は、固定部材118が貫通する貫通孔120aと、ワイヤWを切断する切断片120bが形成された金属製の部材であって、固定部材118を介してインナガイドプレート106と右ガイドプレート108に揺動可能に保持されている。切断片120bは、揺動部材120が揺動したときに、ワイヤWを剪断により切断する。トッププレート112は、金属製の部材であって、右ガイドプレート108に固定されている。カッタ116を通過したワイヤWは、さらにトッププレート112の突出部112aと第2案内ピン122によって下方に向けて案内される。第2案内ピン122は、例えばタングステン等の耐摩耗性の高い金属製の部材であって、右ガイドプレート108に圧入されている。ワイヤWは、第1案内通路94を通過する際に、ワイヤ通路110aの内側の上面と第1案内ピン114と第2案内ピン122によって巻きぐせをつけられながら、下側カールガイド92に向けて送られる。 The cutter 116 has a fixed member 118 and a swing member 120 . The fixing member 118 is a metal member having a cylindrical outer shape, and a wire passage 118a through which the wire W passes is formed inside. The fixing member 118 is fitted to the inner guide plate 106 and sandwiched between the right guide plate 108 and the inner guide plate 106 . The swinging member 120 is a metal member having a through hole 120a through which the fixing member 118 penetrates and a cut piece 120b for cutting the wire W. It is held swingably on the plate 108 . The cutting piece 120b cuts the wire W by shearing when the swinging member 120 swings. The top plate 112 is a metal member and fixed to the right guide plate 108 . After passing through the cutter 116 , the wire W is further guided downward by the projecting portion 112 a of the top plate 112 and the second guide pin 122 . The second guide pin 122 is a highly wear-resistant metal member such as tungsten, and is press-fitted into the right guide plate 108 . When passing through the first guide passage 94, the wire W is curled by the inner upper surface of the wire passage 110a, the first guide pin 114, and the second guide pin 122, and is directed toward the lower curl guide 92. Sent.
 下側カールガイド92には、第3案内通路124とガード板126が設けられている。第3案内通路124は、上側カールガイド90の前端から送られたワイヤWを案内する左案内壁124aおよび右案内壁124bを備えている。ガード板126は、第3案内通路124の両側で上方に伸びる形状に形成されており、複数の鉄筋Rが捩り機構46と干渉することを防止するとともに、鉄筋結束装置2の内部に異物が侵入することを防止する。また、ガード板126は、略円環状に巻回されたワイヤWを捩り機構46が捩る際に、ワイヤWが左右に暴れることを防止する。下側カールガイド92によって案内されたワイヤWは、上側カールガイド90の第2案内通路96に向けて送られる。 A third guide passage 124 and a guard plate 126 are provided in the lower curl guide 92 . The third guide passage 124 has a left guide wall 124a and a right guide wall 124b that guide the wire W fed from the front end of the upper curl guide 90. As shown in FIG. The guard plate 126 is formed in a shape that extends upward on both sides of the third guide passage 124, prevents the plurality of reinforcing bars R from interfering with the twisting mechanism 46, and prevents foreign matter from entering the reinforcing bar binding device 2. to prevent In addition, the guard plate 126 prevents the wire W from swaying left and right when the twisting mechanism 46 twists the wire W wound in a substantially annular shape. The wire W guided by the lower curl guide 92 is sent toward the second guide passage 96 of the upper curl guide 90 .
 下側カールガイド92の後方から上側カールガイド90の後方に送られたワイヤWは、ガイドアーム100と、左ガイドプレート104と、インナガイドプレート106によって形成される第2案内通路96に送られる。図11に示すように、ガイドアーム100の前方の下面には、ワイヤWを案内する円弧状の上案内壁100aが形成されている。下側カールガイド92から上側カールガイド90に送られたワイヤWは、第2案内通路96によって案内されて、再び上側カールガイド90の前方から下側カールガイド92の前方に向けて送られる。 The wire W sent from the rear of the lower curl guide 92 to the rear of the upper curl guide 90 is sent to the second guide passage 96 formed by the guide arm 100, the left guide plate 104 and the inner guide plate 106. As shown in FIG. 11, an arc-shaped upper guide wall 100a for guiding the wire W is formed on the front lower surface of the guide arm 100. As shown in FIG. The wire W sent from the lower curl guide 92 to the upper curl guide 90 is guided by the second guide passage 96 and sent from the front of the upper curl guide 90 to the front of the lower curl guide 92 again.
 図8、図9に示すように、コンタクトプレート102は、略U字形状の部材であって、リードホルダ98およびガイドアーム100を跨ぐように配置されている。コンタクトプレート102は、コンタクト部102aと、揺動軸102bと、連結部102cを備えている。コンタクトプレート102は、揺動軸102bを介してリードホルダ98に揺動可能に支持されている。コンタクトプレート102の連結部102cは、リードホルダ98に保持された圧縮バネ128によって上方向に向けて付勢されている。図9に示すように、コンタクトプレート102は、センサ用マグネット130が取り付けられたマグネットアーム132を備えている。センサ用マグネット130は、例えばネオジム磁石等の、磁力の強い磁石からなる。図4に示すように、ハウジング12には、プレート位置検出センサ134が取り付けられている。通常時は、コンタクトプレート102のセンサ用マグネット130は、プレート位置検出センサ134と対向する位置に配置されている。鉄筋結束装置2が複数の鉄筋Rにセットされた時に、コンタクト部102aに複数の鉄筋Rが押し当てられると、圧縮バネ128の付勢力に抗して、コンタクトプレート102が揺動し、マグネットアーム132のセンサ用マグネット130がプレート位置検出センサ134から外れた位置に配置される。プレート位置検出センサ134は、コンタクト部102aに複数の鉄筋Rが押し当てられているか否かを検出することができる。 As shown in FIGS. 8 and 9, the contact plate 102 is a substantially U-shaped member and is arranged to straddle the lead holder 98 and the guide arm 100 . The contact plate 102 includes a contact portion 102a, a pivot shaft 102b, and a connecting portion 102c. The contact plate 102 is swingably supported by the lead holder 98 via a swing shaft 102b. The connecting portion 102c of the contact plate 102 is urged upward by a compression spring 128 held by the lead holder 98. As shown in FIG. As shown in FIG. 9, the contact plate 102 has a magnet arm 132 to which a sensor magnet 130 is attached. The sensor magnet 130 is made of a magnet having a strong magnetic force, such as a neodymium magnet. As shown in FIG. 4, a plate position detection sensor 134 is attached to the housing 12 . Normally, the sensor magnet 130 of the contact plate 102 is arranged at a position facing the plate position detection sensor 134 . When the reinforcing bar binding device 2 is set on a plurality of reinforcing bars R, when the plurality of reinforcing bars R are pressed against the contact portion 102a, the contact plate 102 swings against the urging force of the compression spring 128, and the magnet arm rotates. A sensor magnet 130 at 132 is arranged at a position separated from the plate position detection sensor 134 . The plate position detection sensor 134 can detect whether or not a plurality of reinforcing bars R are pressed against the contact portion 102a.
 図5に示すように、下側カールガイド92は、ハウジング12に、揺動軸92aを介して揺動可能に支持されている。下側カールガイド92は、図12に示す閉じた状態と、図13に示す開いた状態の間で、揺動可能である。開いた状態の下側カールガイド92は、ワイヤWの案内軌道に対して外側に揺動されている。図5に示すように、下側カールガイド92は、捩りバネ92bによって、閉じる方向に付勢されている。鉄筋結束装置2は、通常、下側カールガイド92を閉じた状態で使用される。ワイヤWが捩り機構46に絡まってしまった場合には、ユーザは、捩りバネ92bの付勢力に抗して下側カールガイド92を開くことで、捩り機構46に絡まったワイヤWを取り除くことができる。 As shown in FIG. 5, the lower curl guide 92 is swingably supported by the housing 12 via a swing shaft 92a. The lower curl guide 92 can swing between the closed state shown in FIG. 12 and the open state shown in FIG. The lower curl guide 92 in the open state is swung outward with respect to the wire W guide track. As shown in FIG. 5, the lower curl guide 92 is biased in the closing direction by a torsion spring 92b. The reinforcing bar binding device 2 is normally used with the lower curl guide 92 closed. If the wire W is entangled with the twisting mechanism 46, the user can remove the wire W entangled with the twisting mechanism 46 by opening the lower curl guide 92 against the biasing force of the torsion spring 92b. can.
 図12、図13に示すように、鉄筋結束装置2の前方下部には、下側カールガイド92の開閉状態を検出するガイド位置検出機構136が設けられている。ガイド位置検出機構136は、ハウジング12に取り付けられている。ガイド位置検出機構136は、ガイド位置検出部材138と、圧縮バネ140と、ガイド位置検出センサ142を備えている。ガイド位置検出部材138は、コンタクトアーム138aと、サポートアーム138cを備えている。ガイド位置検出部材138は、揺動軸138bを介してハウジング12に揺動可能に支持されている。また、ガイド位置検出部材138は、ハウジング12に保持された圧縮バネ140によって、コンタクトアーム138aが上方に向かう揺動方向に付勢されている。ガイド位置検出部材138のサポートアーム138cには、センサ用マグネット144(図13参照)が取り付けられている。センサ用マグネット144は、例えばネオジム磁石等の、磁力の強い磁石からなる。ガイド位置検出センサ142は、ハウジング12に固定されている。下側カールガイド92の後方下部には、後方に向けて突出するコンタクト部92cが形成されている。図12に示すように、捩りバネ92bの付勢力によって下側カールガイド92が閉じた状態では、下側カールガイド92のコンタクト部92cがガイド位置検出部材138のコンタクトアーム138aを押し下げており、サポートアーム138cのセンサ用マグネット144は、ガイド位置検出センサ142と対向する位置に配置される。図13に示すように、ユーザが、捩りバネ92bの付勢力に抗して下側カールガイド92を開くと、下側カールガイド92のコンタクト部92cがガイド位置検出部材138のコンタクトアーム138aから離反する。これによって、圧縮バネ140の付勢力によってガイド位置検出部材138が揺動し、サポートアーム138cのセンサ用マグネット144は、ガイド位置検出センサ142から外れた位置に配置される。ガイド位置検出センサ142は、下側カールガイド92の開閉状態を検出することができる。 As shown in FIGS. 12 and 13, a guide position detection mechanism 136 for detecting the open/closed state of the lower curl guide 92 is provided at the lower front portion of the reinforcing bar binding device 2 . The guide position detection mechanism 136 is attached to the housing 12 . The guide position detection mechanism 136 includes a guide position detection member 138 , a compression spring 140 and a guide position detection sensor 142 . The guide position detection member 138 has a contact arm 138a and a support arm 138c. The guide position detection member 138 is swingably supported by the housing 12 via a swing shaft 138b. Further, the guide position detecting member 138 is urged by a compression spring 140 held by the housing 12 in a swinging direction in which the contact arm 138a is directed upward. A sensor magnet 144 (see FIG. 13) is attached to the support arm 138c of the guide position detection member 138. As shown in FIG. The sensor magnet 144 is made of a magnet with strong magnetic force, such as a neodymium magnet. The guide position detection sensor 142 is fixed to the housing 12 . A rear lower part of the lower curl guide 92 is formed with a contact portion 92c projecting rearward. As shown in FIG. 12, when the lower curl guide 92 is closed by the biasing force of the torsion spring 92b, the contact portion 92c of the lower curl guide 92 pushes down the contact arm 138a of the guide position detecting member 138, thereby supporting the support. The sensor magnet 144 of the arm 138 c is arranged at a position facing the guide position detection sensor 142 . As shown in FIG. 13, when the user opens the lower curl guide 92 against the biasing force of the torsion spring 92b, the contact portion 92c of the lower curl guide 92 separates from the contact arm 138a of the guide position detecting member 138. do. As a result, the biasing force of the compression spring 140 swings the guide position detection member 138, and the sensor magnet 144 of the support arm 138c is arranged at a position separated from the guide position detection sensor 142. FIG. The guide position detection sensor 142 can detect the open/closed state of the lower curl guide 92 .
 図3に示すように、上側カールガイド90は複数の鉄筋Rの前方上方から下方へワイヤWを送り出し、下側カールガイド92は上側カールガイド90から送られたワイヤWを複数の鉄筋Rの後方下方から上方へ送り出す。これによって、送り機構38から送られたワイヤWは、複数の鉄筋Rの周囲に略円環状に巻回される。送り機構38は、ユーザによって設定されたワイヤWの送り出し量だけワイヤWを送り出すと、送りモータ72を停止してワイヤWの送り出しを停止する。 As shown in FIG. 3, the upper curl guide 90 feeds the wire W from above the plurality of reinforcing bars R to the lower side, and the lower curl guide 92 feeds the wire W sent from the upper curling guide 90 to the rear of the plurality of reinforcing bars R. Send from bottom to top. As a result, the wire W fed from the feeding mechanism 38 is wound around the plurality of reinforcing bars R in a substantially annular shape. When the wire W is fed by the wire W feed amount set by the user, the feed mechanism 38 stops the feed motor 72 to stop feeding the wire W. As shown in FIG.
(ブレーキ機構40の構成)
 図4に示すブレーキ機構40は、送り機構38がワイヤWの送り出しを停止するのと連動して、ワイヤリールWRの回転を停止する。図14、図15に示すように、ブレーキ機構40は、プルソレノイド146と、圧縮バネ148と、ブレーキ部材150を備えている。ブレーキ部材150は、駆動アーム150aと、ブレーキアーム150cを備える単一の部材である。ブレーキ部材150は、揺動軸150bを介してハウジング12に揺動可能に取り付けられている。ブレーキ部材150の駆動アーム150aには、上下方向に進退するプルソレノイド146の出力軸が連結されている。また、ブレーキ部材150は、圧縮バネ148によって、ブレーキアーム150cがワイヤリールWRから離反する揺動方向に付勢されている。ブレーキ部材150のブレーキアーム150cは、幅広の板状に形成されたプレート部150dと、プレート部150dの先端においてワイヤリールWR側に突出する先端リブ150eと、プレート部150dの両側端においてワイヤリールWR側に突出する側端リブ150fを備えている。ワイヤリールWRには、ブレーキアーム150cの先端リブ150eが係合する係合部WRcが、周方向に所定の角度間隔で形成されている。図14に示すように、プルソレノイド146への通電がされていない状態では、圧縮バネ148の付勢力によって、ブレーキアーム150cはワイヤリールWRの係合部WRcから離反している。この状態では、ワイヤリールWRは自由に回転することができ、送り機構38はワイヤリールWRからワイヤWを引き出すことができる。図15に示すように、プルソレノイド146への通電がされた状態では、プルソレノイド146が駆動アーム150aを駆動し、ブレーキ部材150に揺動軸150b周りのトルクが作用することで、ブレーキ部材150が揺動軸150b周りに揺動して、ブレーキアーム150cの先端リブ150eがワイヤリールWRの係合部WRcに係合する。この状態では、ワイヤリールWRの回転が禁止される。これにより、送り機構38がワイヤWの送り出しを停止した後も、ワイヤリールWRが慣性により回転し続け、ワイヤリールWRと送り機構38の間でワイヤWが弛緩してしまうことを防ぐことができる。
(Configuration of Brake Mechanism 40)
The brake mechanism 40 shown in FIG. 4 stops the rotation of the wire reel WR in conjunction with the stopping of the feeding of the wire W by the feeding mechanism 38 . As shown in FIGS. 14 and 15, the brake mechanism 40 includes a pull solenoid 146, a compression spring 148, and a brake member 150. As shown in FIGS. Brake member 150 is a single member comprising drive arm 150a and brake arm 150c. The brake member 150 is swingably attached to the housing 12 via a swing shaft 150b. The drive arm 150a of the brake member 150 is connected to the output shaft of a pull solenoid 146 that moves up and down. Also, the brake member 150 is urged by the compression spring 148 in the swinging direction in which the brake arm 150c separates from the wire reel WR. The brake arm 150c of the brake member 150 includes a wide plate-shaped plate portion 150d, a tip rib 150e projecting toward the wire reel WR at the tip of the plate portion 150d, and a wire reel WR at both ends of the plate portion 150d. It has side end ribs 150f that protrude to the side. Engagement portions WRc with which tip ribs 150e of brake arms 150c engage are formed on the wire reel WR at predetermined angular intervals in the circumferential direction. As shown in FIG. 14, when the pull solenoid 146 is not energized, the biasing force of the compression spring 148 keeps the brake arm 150c away from the engaging portion WRc of the wire reel WR. In this state, the wire reel WR can rotate freely, and the feed mechanism 38 can pull out the wire W from the wire reel WR. As shown in FIG. 15, when the pull solenoid 146 is energized, the pull solenoid 146 drives the drive arm 150a, and a torque around the swing shaft 150b acts on the brake member 150, causing the brake member 150 to rotate. swings around the swing shaft 150b, and the tip rib 150e of the brake arm 150c engages with the engaging portion WRc of the wire reel WR. In this state, rotation of the wire reel WR is prohibited. As a result, even after the feed mechanism 38 stops feeding the wire W, the wire reel WR continues to rotate due to inertia, and the wire W can be prevented from loosening between the wire reel WR and the feed mechanism 38. .
 本明細書では、送り機構38、ブレーキ機構40および案内機構42を用いて、複数の鉄筋Rの周囲にワイヤWが巻回されるようにワイヤWを送り出す動作を、単に「送り動作」と呼ぶことがある。送り動作は、送りモータ72が駆動されることによって開始され、プルソレノイド146が停止されることによって終了する。 In this specification, the operation of feeding the wire W so that the wire W is wound around the plurality of reinforcing bars R by using the feed mechanism 38, the brake mechanism 40, and the guide mechanism 42 is simply referred to as "feeding operation". Sometimes. The feed operation is started by driving the feed motor 72 and terminated by stopping the pull solenoid 146 .
(切断機構44の構成)
 図5に示すように、切断機構44は、鉄筋結束装置2の前部に配置されており、ワイヤWを複数の鉄筋Rの周囲に巻回した状態で、ワイヤWを切断する。図10に示すように、切断機構44は、案内機構42の上側カールガイド90と、ユニット化されている。切断機構44は、プッシュプレート152と、プルプレート154と、第1リンクアーム156と、第2リンクアーム158と、カッタ116を備えている。プッシュプレート152と、プルプレート154と、第1リンクアーム156は、揺動軸160を介して、互いに揺動可能に連結されている。また、プッシュプレート152とプルプレート154は、揺動軸162を介して、ガイドアーム100に揺動可能に支持されている。第1リンクアーム156は、捩りバネ164によって、前方に向けて付勢されている。第1リンクアーム156と第2リンクアーム158は、揺動軸166を介して、互いに揺動可能に連結されている。第2リンクアーム158は、揺動軸168を介してカッタ116の揺動部材120に、互いに揺動可能に連結されている。
(Configuration of Cutting Mechanism 44)
As shown in FIG. 5, the cutting mechanism 44 is arranged at the front part of the reinforcing bar binding device 2, and cuts the wire W in a state in which the wire W is wound around a plurality of reinforcing bars R. As shown in FIG. As shown in FIG. 10, the cutting mechanism 44 and the upper curl guide 90 of the guide mechanism 42 are unitized. Cutting mechanism 44 includes push plate 152 , pull plate 154 , first link arm 156 , second link arm 158 and cutter 116 . The push plate 152 , the pull plate 154 and the first link arm 156 are connected to each other via a swing shaft 160 so as to be swingable. Also, the push plate 152 and the pull plate 154 are swingably supported by the guide arm 100 via a swing shaft 162 . The first link arm 156 is biased forward by a torsion spring 164 . The first link arm 156 and the second link arm 158 are connected to each other via a swing shaft 166 so as to be swingable. The second link arm 158 is connected to the swing member 120 of the cutter 116 through a swing shaft 168 so as to be swingable.
 後述する捩り機構46の動作によって、プッシュプレート152の下部が前方に向けて押されると、第1リンクアーム156と第2リンクアーム158が後方に移動することで、カッタ116の揺動部材120が固定部材118の周りで揺動する。これによって、固定部材118のワイヤ通路118aの前端において、揺動部材120の切断片120bによる剪断によりワイヤWが切断される。この状態から、捩り機構46の動作によって、プルプレート154の下部が後方に向けて押されると、第1リンクアーム156と第2リンクアーム158が前方に移動することで、カッタ116の揺動部材120が固定部材118の周りで揺動して、カッタ116は初期の状態に戻る。 When the lower portion of the push plate 152 is pushed forward by the operation of the torsion mechanism 46, which will be described later, the first link arm 156 and the second link arm 158 move rearward, causing the swinging member 120 of the cutter 116 to move. It swings around the fixed member 118 . As a result, the wire W is cut at the front end of the wire passage 118a of the fixing member 118 by being sheared by the cutting piece 120b of the swinging member 120. As shown in FIG. From this state, when the lower portion of the pull plate 154 is pushed rearward by the operation of the torsion mechanism 46, the first link arm 156 and the second link arm 158 move forward, and the swinging member of the cutter 116 is moved forward. 120 swings around fixed member 118 and cutter 116 returns to its initial state.
(捩り機構46の構成)
 図5に示す捩り機構46は、複数の鉄筋Rの周囲に巻回されたワイヤWを捩ることで、複数の鉄筋RをワイヤWで結束する。捩り機構46は、捩りモータ170と、減速機構172と、スリーブ174と、スリーブ174の内部に配置された図示しないスクリューシャフトと、プッシャ176と、スリーブ位置検出センサ177と、フック178を備えている。
(Configuration of twisting mechanism 46)
The twisting mechanism 46 shown in FIG. 5 binds the plurality of reinforcing bars R with the wires W by twisting the wires W wound around the plurality of reinforcing bars R. As shown in FIG. The torsion mechanism 46 includes a torsion motor 170, a speed reduction mechanism 172, a sleeve 174, a screw shaft (not shown) arranged inside the sleeve 174, a pusher 176, a sleeve position detection sensor 177, and a hook 178. .
 捩りモータ170は、直流ブラシレスモータである。捩りモータ170には、ロータ(図示せず)の回転角度を検出する捩りモータ回転検出センサ55(図16参照)が設けられている。捩りモータ170の回転は、減速機構172を介して、スクリューシャフトに伝達される。捩りモータ170は、順方向および逆方向に回転可能であり、それに応じて、スクリューシャフトも、順方向および逆方向に回転可能である。スリーブ174はスクリューシャフトの周囲を覆うように配置されている。スリーブ174の回転が禁止されている状態では、スクリューシャフトが順方向に回転すると、スリーブ174が前方に向けて移動し、スクリューシャフトが逆方向に回転すると、スリーブ174が後方に向けて移動する。また、スリーブ174の回転が許容されている状態で、スクリューシャフトが回転すると、スリーブ174はスクリューシャフトと共に回転する。プッシャ176は、スリーブ174が前方へ移動する際には前方へ移動し、スリーブ174が後方へ移動する際には後方へ移動する。図10に示すように、スリーブ174が初期位置から所定の位置まで前進すると、プッシャ176が切断機構44のプッシュプレート152の下部を前方に向けて押圧することで、カッタ116の揺動部材120が固定部材118の周りで揺動する。逆に、スリーブ174が前進した位置から所定の位置まで後退すると、プッシャ176が切断機構44のプルプレート154の下部を後方に向けて押圧することで、カッタ116の揺動部材120が固定部材118の周りで揺動する。フック178はスリーブ174の前端に設けられており、スリーブ174の前後方向の位置に応じて開閉する。スリーブ174が前方に移動すると、フック178が閉じて、ワイヤWを把持する。逆に、スリーブ174が後方に移動すると、フック178が開いて、ワイヤWを解放する。図5に示すように、スリーブ位置検出センサ177は、ハウジング12に対して前後方向の位置が固定されており、プッシャ176に設けられたマグネット(図示せず)からの磁気を検出することで、スリーブ174が初期位置にあるか否かを検出することができる。 The torsion motor 170 is a DC brushless motor. The torsion motor 170 is provided with a torsion motor rotation detection sensor 55 (see FIG. 16) for detecting the rotation angle of the rotor (not shown). Rotation of the torsion motor 170 is transmitted to the screw shaft via a speed reduction mechanism 172 . The torsion motor 170 is forward and reverse rotatable and the screw shaft is correspondingly forward and reverse rotatable. A sleeve 174 is arranged to cover the periphery of the screw shaft. When the rotation of the sleeve 174 is prohibited, forward rotation of the screw shaft causes the sleeve 174 to move forward, and reverse rotation of the screw shaft causes the sleeve 174 to move backward. When the screw shaft rotates while the sleeve 174 is allowed to rotate, the sleeve 174 rotates together with the screw shaft. The pusher 176 moves forward when the sleeve 174 moves forward and moves rearward when the sleeve 174 moves rearward. As shown in FIG. 10, when the sleeve 174 advances from the initial position to a predetermined position, the pusher 176 pushes the lower portion of the push plate 152 of the cutting mechanism 44 forward, causing the swinging member 120 of the cutter 116 to move. It swings around the fixed member 118 . Conversely, when the sleeve 174 retreats from the advanced position to the predetermined position, the pusher 176 pushes the lower portion of the pull plate 154 of the cutting mechanism 44 rearward, causing the swinging member 120 of the cutter 116 to move toward the fixed member 118 . oscillate around. A hook 178 is provided at the front end of the sleeve 174 and opens and closes according to the position of the sleeve 174 in the front-rear direction. As the sleeve 174 moves forward, the hook 178 closes and grips the wire W. Conversely, as the sleeve 174 moves rearwardly, the hook 178 opens and releases the wire W. As shown in FIG. 5, the sleeve position detection sensor 177 is fixed in position in the front-rear direction with respect to the housing 12, and by detecting magnetism from a magnet (not shown) provided on the pusher 176, It can be detected whether the sleeve 174 is in the initial position.
 複数の鉄筋Rの周囲にワイヤWが巻回された状態で、捩りモータ170が回転されると、スクリューシャフトの回転によってスリーブ174が前進するとともにプッシャ176とフック178が前進し、切断機構44によってワイヤWが切断されるとともに、フック178が閉じてワイヤWが把持される。その後、スリーブ174の回転が許容されると、スクリューシャフトの回転によってスリーブ174が回転するとともにフック178が回転する。これによって、設定された捩りトルクまでワイヤWが捩られ、複数の鉄筋Rが結束される。この状態から、捩りモータ170が逆方向に回転されると、スクリューシャフトの回転によってスリーブ174が後退するとともにフック178が開きながら後退して、ワイヤWが解放される。また、スリーブ174が後退するとともに、プッシャ176が後退して、切断機構44が初期の状態に戻る。その後、初期位置までプッシャ176とフック178が後退するとともに、スリーブ174の回転が許容されて、フック178が初期角度に戻る。 When the torsion motor 170 is rotated with the wire W wound around the plurality of reinforcing bars R, the sleeve 174 advances due to the rotation of the screw shaft, and the pusher 176 and the hook 178 advance. As the wire W is cut, the hook 178 closes and the wire W is gripped. Thereafter, when the sleeve 174 is allowed to rotate, the rotation of the screw shaft causes the sleeve 174 to rotate and the hook 178 to rotate. As a result, the wire W is twisted up to the set twisting torque, and the plurality of reinforcing bars R are bundled. From this state, when the torsion motor 170 is rotated in the opposite direction, the rotation of the screw shaft retracts the sleeve 174 and retracts the hook 178 while opening it, and the wire W is released. Further, as the sleeve 174 retreats, the pusher 176 retreats and the cutting mechanism 44 returns to its initial state. After that, the pusher 176 and the hook 178 are retracted to the initial position, and the rotation of the sleeve 174 is allowed to return the hook 178 to the initial angle.
 本明細書では、切断機構44および捩り機構46を用いて、ワイヤWを切断するとともに、複数の鉄筋Rに巻回されたワイヤWを捩る動作を、単に「捩り動作」と呼ぶことがある。捩り動作は、捩りモータ170が駆動されることによって開始され、捩りモータ170が停止されることによって終了する。 In this specification, the operation of cutting the wire W and twisting the wire W wound around the plurality of reinforcing bars R using the cutting mechanism 44 and the twisting mechanism 46 may be simply referred to as "twisting operation". The twisting motion is initiated by activating the torsion motor 170 and terminated by deactivating the torsion motor 170 .
(装置制御ユニット50の構成)
 図16に示すように、装置制御ユニット50は、制御電源回路20、メインマイコン21、ドライバ回路22、23、24、電圧検出回路25、26、27、電流検出回路28等を備えている。メインマイコン21は、CPU、メモリ、および通信インタフェース等を含んでいる。メインマイコン21は、ロボット制御ユニット10と通信可能に構成されている。メインマイコン21とロボット制御ユニット10の間の通信方式は、例えば有線シリアル通信方式である。これにより、ロボット制御ユニット10と装置制御ユニット50は、互いに通信可能となっている。また、装置制御ユニット50には、装置制御ユニット50の温度を検出可能な温度検出センサ32が設けられている。
(Configuration of device control unit 50)
As shown in FIG. 16, the device control unit 50 includes a control power supply circuit 20, a main microcomputer 21, driver circuits 22, 23, 24, voltage detection circuits 25, 26, 27, a current detection circuit 28, and the like. The main microcomputer 21 includes a CPU, memory, communication interface, and the like. The main microcomputer 21 is configured to communicate with the robot control unit 10 . A communication method between the main microcomputer 21 and the robot control unit 10 is, for example, a wired serial communication method. Thereby, the robot control unit 10 and the device control unit 50 can communicate with each other. Further, the device control unit 50 is provided with a temperature detection sensor 32 capable of detecting the temperature of the device control unit 50 .
 制御電源回路20は、電源装置8の電力制御基板808から供給される電力を所定の電圧に調整して、メインマイコン21に電力を供給する。 The control power supply circuit 20 adjusts the power supplied from the power control board 808 of the power supply device 8 to a predetermined voltage and supplies power to the main microcomputer 21 .
 ドライバ回路22は、メインマイコン21からの指示に応じて、プルソレノイド146を駆動する。図示はしていないが、ドライバ回路22は、スイッチング素子としてFETを内蔵している。メインマイコン21は、ドライバ回路22を介して、プルソレノイド146の動作を制御することができる。 The driver circuit 22 drives the pull solenoid 146 according to instructions from the main microcomputer 21 . Although not shown, the driver circuit 22 incorporates an FET as a switching element. The main microcomputer 21 can control the operation of the pull solenoid 146 via the driver circuit 22 .
 電圧検出回路25は、ドライバ回路22に対応して設けられている。電圧検出回路25は、ドライバ回路22に印可される電圧や、ドライバ回路22の電位を検出可能となっている。 The voltage detection circuit 25 is provided corresponding to the driver circuit 22 . The voltage detection circuit 25 can detect the voltage applied to the driver circuit 22 and the potential of the driver circuit 22 .
 ドライバ回路23は、メインマイコン21からの指示に応じて、送りモータ72を駆動する。図示はしていないが、ドライバ回路23は、スイッチング素子としてFETを内蔵している。メインマイコン21は、ドライバ回路23を介して、送りモータ72の動作を制御することができる。 The driver circuit 23 drives the feed motor 72 according to instructions from the main microcomputer 21 . Although not shown, the driver circuit 23 incorporates an FET as a switching element. The main microcomputer 21 can control the operation of the feed motor 72 via the driver circuit 23 .
 電圧検出回路26は、ドライバ回路23に対応して設けられている。電圧検出回路26は、ドライバ回路23に印可される電圧や、ドライバ回路23の電位を検出可能となっている。 The voltage detection circuit 26 is provided corresponding to the driver circuit 23 . The voltage detection circuit 26 can detect the voltage applied to the driver circuit 23 and the potential of the driver circuit 23 .
 ドライバ回路24は、メインマイコン21からの指示に応じて、捩りモータ170を駆動する。図示はしていないが、ドライバ回路24は、スイッチング素子としてFETを内蔵している。メインマイコン21は、ドライバ回路24を介して、捩りモータ170の動作を制御することができる。 The driver circuit 24 drives the torsion motor 170 according to instructions from the main microcomputer 21 . Although not shown, the driver circuit 24 incorporates an FET as a switching element. The main microcomputer 21 can control the operation of the torsion motor 170 via the driver circuit 24 .
 電圧検出回路27は、電力制御基板808から供給される電力の電圧を検出する。メインマイコン21は、電圧検出回路27から受信する信号から、電力制御基板808から供給される電力の電圧を取得することができる。 The voltage detection circuit 27 detects the voltage of the power supplied from the power control board 808 . The main microcomputer 21 can obtain the voltage of the power supplied from the power control board 808 from the signal received from the voltage detection circuit 27 .
 電流検出回路28は、電力制御基板808からドライバ回路22、23、24等に供給される電流を検出する。メインマイコン21は、電流検出回路28より受信する信号より、電力制御基板808からドライバ回路22、23、24等に供給される電流、すなわち電力制御基板808から捩りモータ170、送りモータ72、プルソレノイド146等に供給される電流を取得することができる。 The current detection circuit 28 detects the current supplied from the power control board 808 to the driver circuits 22, 23, 24 and the like. The main microcomputer 21 detects the current supplied from the power control board 808 to the driver circuits 22, 23, 24, etc. from the signal received from the current detection circuit 28, i. 146, etc., can be obtained.
 電力制御基板808からドライバ回路22、23、24へ電力を供給する経路には、保護FET31が設けられている。保護FET31がオンになると、電力制御基板808からドライバ回路22、23、24への電力供給が行われる。保護FET31がオフになると、電力制御基板808からドライバ回路22、23、24への電力供給が遮断される。メインマイコン21は、保護FET31をオン状態とオフの状態の間で切り換えることができる。 A protection FET 31 is provided in the path for supplying power from the power control board 808 to the driver circuits 22 , 23 and 24 . When the protection FET 31 is turned on, power is supplied from the power control board 808 to the driver circuits 22 , 23 , 24 . When the protection FET 31 is turned off, power supply from the power control board 808 to the driver circuits 22, 23 and 24 is cut off. The main microcomputer 21 can switch the protection FET 31 between an ON state and an OFF state.
 以下では、装置制御ユニット50が実行する各種の処理(具体的には、メインマイコン21が実行する処理)について説明する。 Various processes executed by the device control unit 50 (specifically, processes executed by the main microcomputer 21) will be described below.
(装置メイン処理)
 電力制御基板808から鉄筋結束装置2への電力供給が開始されると、装置制御ユニット50は、図17に示す装置メイン処理を実行する。
(equipment main processing)
When power supply from the power control board 808 to the reinforcing bar binding device 2 is started, the device control unit 50 executes the device main processing shown in FIG.
 S102では、装置制御ユニット50は、ハードウェア状態判定処理を実行する。ハードウェア状態判定処理の詳細は後述する。S102の後、処理はS104へ進む。 At S102, the device control unit 50 executes hardware state determination processing. Details of the hardware state determination process will be described later. After S102, the process proceeds to S104.
 S104では、装置制御ユニット50は、鉄筋結束装置2に異常が発生したか否かを判断する。具体的には、装置制御ユニット50は、後述する結束装置異常判定フラグがメモリに記憶されているか否かを判断する。鉄筋結束装置2に異常が発生していない場合(NOの場合)、処理はS106へ進む。 In S104, the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not a binding device abnormality determination flag, which will be described later, is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of NO), the process proceeds to S106.
 S106では、装置制御ユニット50は、装置イニシャライズ処理を実行する。装置イニシャライズ処理が開始されると、装置制御ユニット50は、保護FET31をオンにする。その後、装置制御ユニット50は、捩りモータ170を順方向および逆方向に回転させて、動作確認を行うとともに、スリーブ174を初期位置に復帰させる。その後、装置制御ユニット50は、保護FET31をオフにし、装置イニシャライズ処理を終了する。S106の後、処理はS108へ進む。 At S106, the device control unit 50 executes device initialization processing. When the device initialization process is started, the device control unit 50 turns on the protection FET 31 . After that, the device control unit 50 rotates the torsion motor 170 in the forward and reverse directions to check the operation and return the sleeve 174 to the initial position. After that, the device control unit 50 turns off the protection FET 31 and terminates the device initialization process. After S106, the process proceeds to S108.
 S108では、装置制御ユニット50は、ロボット制御ユニット10から送信される状態呼出信号を受信したか否かを判断する。状態呼出信号を受信していない場合(NOの場合)、処理はS108を再度実行する。状態呼出信号を受信した場合(YESの場合)、処理はS110へ進む。 At S108, the device control unit 50 determines whether or not the status call signal transmitted from the robot control unit 10 has been received. If the status call signal has not been received (NO), the process executes S108 again. If the status call signal has been received (if YES), the process proceeds to S110.
 S110では、装置制御ユニット50は、ロボット制御ユニット10に対して、状態通知信号を送信する。状態通知信号は、例えばメモリに記憶された各種フラグを含んでいる。S110の後、処理はS112へ進む。 At S<b>110 , the device control unit 50 transmits a state notification signal to the robot control unit 10 . The status notification signal includes various flags stored in memory, for example. After S110, the process proceeds to S112.
 S112では、装置制御ユニット50は、ロボット制御ユニット10から送信される結束指示信号を受信したか否かを判断する。結束指示信号を受信していない場合(NOの場合)、処理はS112を再度実行する。結束指示信号を受信した場合(YESの場合)、処理はS114へ進む。 At S112, the device control unit 50 determines whether or not the binding instruction signal transmitted from the robot control unit 10 has been received. If the bundling instruction signal has not been received (NO), the process executes S112 again. If the bundling instruction signal has been received (YES), the process proceeds to S114.
 S114では、装置制御ユニット50は、ハードウェア状態判定処理を実行する。ハードウェア状態判定処理の詳細は後述する。S114の後、処理はS116へ進む。 At S114, the device control unit 50 executes hardware state determination processing. Details of the hardware state determination process will be described later. After S114, the process proceeds to S116.
 S116では、装置制御ユニット50は、鉄筋結束装置2に異常が発生したか否かを判断する。具体的には、装置制御ユニット50は、結束装置異常判定フラグがメモリに記憶されているか否かを判断する。鉄筋結束装置2に異常が発生していない場合(NOの場合)、処理はS118へ進む。 At S116, the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not the binding device abnormality determination flag is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of NO), the process proceeds to S118.
 S118では、装置制御ユニット50は、鉄筋結束作業を開始する。装置制御ユニット50は、鉄筋結束装置2が鉄筋結束作業を実行中であることを示す結束作業中フラグをメモリに記憶するとともに、保護FET31をオンにする。S118の後、処理はS120へ進む。 At S118, the device control unit 50 starts the reinforcing bar binding work. The device control unit 50 stores in the memory a binding flag indicating that the reinforcing bar binding device 2 is executing the reinforcing bar binding work, and turns on the protection FET 31 . After S118, the process proceeds to S120.
 S120では、装置制御ユニット50は、ドライバ回路23に対して送りモータ72の駆動開始を指示する。すなわち、装置制御ユニット50は、送り動作の開始を指示する。S120の後、処理はS122へ進む。 At S<b>120 , the device control unit 50 instructs the driver circuit 23 to start driving the feed motor 72 . That is, the device control unit 50 instructs the start of the feeding operation. After S120, the process proceeds to S122.
 S122では、装置制御ユニット50は、送り動作状態判定処理を実行する。送り動作状態判定処理の詳細は後述する。S122の後、処理はS124へ進む。 At S122, the device control unit 50 executes a feeding operation state determination process. Details of the feeding operation state determination processing will be described later. After S122, the process proceeds to S124.
 S124では、装置制御ユニット50は、鉄筋結束装置2に異常が発生したか否かを判断する。具体的には、装置制御ユニット50は、結束装置異常判定フラグがメモリに記憶されているか否かを判断する。鉄筋結束装置2に異常が発生していない場合(NOの場合)、処理はS126へ進む。 At S124, the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not the binding device abnormality determination flag is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of NO), the process proceeds to S126.
 S126では、装置制御ユニット50は、送り動作が終了したか否かを判断する。送り動作が終了していない場合(NOの場合)、処理はS122に戻る。送り動作が終了した場合(YESの場合)、処理はS128へ進む。 At S126, the device control unit 50 determines whether or not the feeding operation has ended. If the feeding operation has not ended (NO), the process returns to S122. If the feeding operation has ended (if YES), the process proceeds to S128.
 S128では、装置制御ユニット50は、ドライバ回路24に対して捩りモータ170の駆動開始を指示する。すなわち、装置制御ユニット50は、捩り動作の開始を指示する。S128の後、処理はS130へ進む。 At S128, the device control unit 50 instructs the driver circuit 24 to start driving the torsion motor 170. That is, the device control unit 50 instructs the start of the twisting motion. After S128, the process proceeds to S130.
 S130では、装置制御ユニット50は、捩り動作状態判定処理を実行する。捩り動作状態判定処理の詳細は後述する。S130の後、処理はS132へ進む。 At S130, the device control unit 50 executes a torsion motion state determination process. Details of the twisting motion state determination processing will be described later. After S130, the process proceeds to S132.
 S132では、装置制御ユニット50は、鉄筋結束装置2に異常が発生したか否かを判断する。具体的には、装置制御ユニット50は、結束装置異常判定フラグがメモリに記憶されているか否かを判断する。鉄筋結束装置2に異常が発生していない場合(NOの場合)、処理はS134へ進む。 At S132, the device control unit 50 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2. Specifically, the device control unit 50 determines whether or not the binding device abnormality determination flag is stored in the memory. If no abnormality has occurred in the reinforcing bar binding device 2 (NO), the process proceeds to S134.
 S134では、装置制御ユニット50は、捩り動作が終了したか否かを判断する。捩り動作が終了していない場合(NOの場合)、処理はS130に戻る。捩り動作が終了した場合(YESの場合)、処理はS136へ進む。 At S134, the device control unit 50 determines whether or not the twisting motion has ended. If the twisting motion has not ended (NO), the process returns to S130. If the twisting motion has ended (if YES), the process proceeds to S136.
 S136では、装置制御ユニット50は、鉄筋結束作業を終了する。装置制御ユニット50は、保護FET31をオフにするとともに、メモリに記憶された結束作業中フラグを消去する。S136の後、処理はS108に戻る。 At S136, the device control unit 50 ends the reinforcing bar binding work. The device control unit 50 turns off the protection FET 31 and erases the bundling flag stored in the memory. After S136, the process returns to S108.
 S104、S116、S124、またはS132において、鉄筋結束装置2に異常が発生していると判断される場合(YESの場合)、処理はS138へ進む。S138では、装置制御ユニット50は、ロボット制御ユニット10から送信される状態呼出信号を受信したか否かを判断する。状態呼出信号を受信していない場合(NOの場合)、処理はS138を再度実行する。状態呼出信号を受信した場合(YESの場合)、処理はS140へ進む。 If it is determined in S104, S116, S124, or S132 that an abnormality has occurred in the reinforcing bar binding device 2 (YES), the process proceeds to S138. At S138, the device control unit 50 determines whether or not the status call signal transmitted from the robot control unit 10 has been received. If the status call signal has not been received (NO), the process executes S138 again. If the status call signal has been received (YES), the process proceeds to S140.
 S140では、装置制御ユニット50は、ロボット制御ユニット10に対して、状態通知信号を送信する。状態通知信号は、例えばメモリに記憶された各種フラグを含んでいる。S140の後、図17に示す処理は終了する。 At S<b>140 , the device control unit 50 transmits a state notification signal to the robot control unit 10 . The status notification signal includes various flags stored in memory, for example. After S140, the process shown in FIG. 17 ends.
(送り動作状態判定処理)
 装置制御ユニット50は、装置メイン処理(図17参照)のS122において、図18に示す送り動作状態判定処理を実行する。
(Feeding operation state determination processing)
The apparatus control unit 50 executes the feeding operation state determination process shown in FIG. 18 in S122 of the apparatus main process (see FIG. 17).
 S2では、装置制御ユニット50は、ワイヤリールWRがリール保持機構36に保持されているか否かを判断する。具体的には、装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから一度もリール回転検出センサ66でワイヤリールWRの回転が検出されない場合、ワイヤリールWRがリール保持機構36に保持されていないと判断する。装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから一度でもリール回転検出センサ66でワイヤリールWRの回転が検出された場合、ワイヤリールWRがリール保持機構36に保持されていると判断する。ワイヤリールWRがリール保持機構36に保持されている場合(YESの場合)、処理はS3へ進む。 In S2, the device control unit 50 determines whether the wire reel WR is held by the reel holding mechanism 36 or not. Specifically, when the rotation of the wire reel WR is not detected by the reel rotation detection sensor 66 even once after S118 of the main processing of the device (see FIG. 17) is completed, the device control unit 50 determines that the wire reel WR is held by the reel. It is determined that the mechanism 36 is not held. If the reel rotation detection sensor 66 detects the rotation of the wire reel WR even once after S118 of the main processing of the device (see FIG. 17) is completed, the device control unit 50 holds the wire reel WR in the reel holding mechanism 36. It is determined that If the wire reel WR is held by the reel holding mechanism 36 (YES), the process proceeds to S3.
 S3では、装置制御ユニット50は、送りモータFET(ドライバ回路23のFET)がオープン故障したか否かを判断する。具体的には、装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから所定時間が経過するまでの間に一度もドライバ回路23に電流が流れていない場合、送りモータFETがオープン故障したと判断する。装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから所定時間が経過するまでの間に一度でもドライバ回路23に電流が流れた場合、送りモータFETがオープン故障していないと判断する。送りモータFETがオープン故障していない場合(NOの場合)、処理はS4へ進む。 In S3, the device control unit 50 determines whether or not the feed motor FET (FET of the driver circuit 23) has an open failure. Specifically, if the device control unit 50 does not supply current to the driver circuit 23 for a predetermined period of time after S118 of the device main processing (see FIG. 17) ends, the feed motor It is determined that the FET has an open failure. The apparatus control unit 50 determines that the feed motor FET has an open failure when current flows through the driver circuit 23 even once during the period from the end of S118 of the main processing of the apparatus (see FIG. 17) to the elapse of a predetermined period of time. judge not. If the feed motor FET does not have an open failure (NO), the process proceeds to S4.
 S4では、装置制御ユニット50は、送りモータ72で過負荷が検出されたか否かを判断する。具体的には、装置制御ユニット50は、電流検出回路28で検出される電流値が所定の第1電流上限値を上回っている状態が所定時間以上継続して検出される場合、送りモータ72で過負荷が検出されたと判断する。送りモータ72で過負荷が検出されない場合(NOの場合)、処理はS6へ進む。 In S4, the device control unit 50 determines whether an overload is detected in the feed motor 72. Specifically, when the current value detected by the current detection circuit 28 continues to exceed the first upper limit current value for a predetermined time or longer, the device control unit 50 causes the feed motor 72 to Determine that an overload has been detected. If no overload is detected in the feed motor 72 (NO), the process proceeds to S6.
 S6では、装置制御ユニット50は、送りギヤ(主動ギヤ78と従動ギヤ80)に異常が発生したか否かを判断する。本実施例の装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してからの主動ギヤ78の回転量をギヤ回転検出センサ79に基づいて算出している。そして、装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから所定時間が経過してもなお、主動ギヤ78の回転量が所定値(例えば、ユーザによって設定されたワイヤWの送り出し量に相当する回転量)に到達しない場合、送りギヤに異常が発生したと判断する。送りギヤに異常が発生していない場合、(NOの場合)、処理はS8へ進む。 In S6, the device control unit 50 determines whether or not an abnormality has occurred in the feed gears (main driving gear 78 and driven gear 80). The device control unit 50 of this embodiment calculates the amount of rotation of the main driving gear 78 after S118 of the device main processing (see FIG. 17) is completed based on the gear rotation detection sensor 79. FIG. Then, the apparatus control unit 50 determines that the amount of rotation of the main driving gear 78 remains a predetermined value (for example, a wire speed set by the user) even after a predetermined period of time has elapsed since S118 of the apparatus main processing (see FIG. 17) was completed. If it does not reach the amount of rotation corresponding to the feed amount of W), it is determined that an abnormality has occurred in the feed gear. If no abnormality has occurred in the feed gear (in the case of NO), the process proceeds to S8.
 S8では、装置制御ユニット50は、ワイヤ不足が発生したか否かを判断する。本実施例の装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してからのワイヤリールWRの回転量をリール回転検出センサ66に基づいて算出している。そして、装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから所定時間が経過してもなお、ワイヤリールWRの回転量が所定値(例えば、ユーザによって設定されたワイヤWの送り出し量に相当する回転量)に到達しない場合、ワイヤ不足が発生したと判断する。ワイヤ不足が発生していないと判断される場合、(NOの場合)、処理はS9へ進む。 In S8, the device control unit 50 determines whether wire shortage has occurred. The device control unit 50 of this embodiment calculates the amount of rotation of the wire reel WR after S118 of the device main process (see FIG. 17) is completed based on the reel rotation detection sensor 66. FIG. Then, the apparatus control unit 50 determines that the amount of rotation of the wire reel WR remains a predetermined value (for example, the wire reel set by the user) even after a predetermined period of time has elapsed since S118 of the apparatus main processing (see FIG. 17) was completed. If the amount of rotation does not reach the amount of rotation corresponding to the feed amount of W), it is determined that a wire shortage has occurred. If it is determined that there is no shortage of wires (in the case of NO), the process proceeds to S9.
 S9では、装置制御ユニット50は、ソレノイドFET(ドライバ回路22のFET)がオープン故障したか否かを判断する。具体的には、装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから所定時間が経過するまでの間に一度もドライバ回路22に電流が流れていない場合、ソレノイドFETがオープン故障したと判断する。装置制御ユニット50は、装置メイン処理(図17参照)のS118が終了してから所定時間が経過するまでの間に一度でもドライバ回路22に電流が流れた場合、ソレノイドFETがオープン故障していないと判断する。ソレノイドFETがオープン故障していない場合(NOの場合)、処理はS10へ進む。 In S9, the device control unit 50 determines whether or not the solenoid FET (FET of the driver circuit 22) has an open failure. Specifically, if the device control unit 50 detects that no current flows through the driver circuit 22 for a predetermined period of time from the end of S118 of the device main processing (see FIG. 17), the solenoid FET has an open failure. The device control unit 50 determines that the solenoid FET is not open-failed if a current flows through the driver circuit 22 even once during a predetermined period of time from the end of S118 of the device main processing (see FIG. 17). I judge. If the solenoid FET does not have an open failure (NO), the process proceeds to S10.
 S10では、装置制御ユニット50は、送り動作が正常に実行されていることを示す送り動作正常判定フラグをメモリに記憶する。S10の後、図18の処理は終了する。 In S10, the device control unit 50 stores in the memory a feed operation normality determination flag indicating that the feed operation is normally performed. After S10, the process of FIG. 18 ends.
 S2でワイヤリールWRがリール保持機構36に保持されていないと判断される場合(NOの場合)、S3で送りモータFETがオープン故障していると判断される場合(YESの場合)、S4において送りモータ72で過負荷が検出されたと判断される場合(YESの場合)、S6で送りギヤに異常が発生していると判断される場合(YESの場合)、S8でワイヤ不足が発生していると判断される場合(YESの場合)、またはS9でソレノイドFETがオープン故障していると判断される場合(YESの場合)、処理はS12へ進む。S2でNOとなった場合に実行されるS12では、装置制御ユニット50は、ワイヤリールWRがリール保持機構36に保持されていないことを示すリール脱落判定フラグをメモリに記憶する。S3でYESとなった場合に実行されるS12では、装置制御ユニット50は、送りモータFETがオープン故障していることを示す送りモータFETオープン故障判定フラグをメモリに記憶する。S4でYESとなった場合に実行されるS12では、装置制御ユニット50は、送りモータ72で過負荷が検出されたことを示す送りモータ過負荷判定フラグをメモリに記憶する。S6でYESとなった場合に実行されるS12では、装置制御ユニット50は、送りギヤに異常が発生していることを示す送りギヤ異常判定フラグをメモリに記憶する。S8でYESとなった場合に実行されるS12では、装置制御ユニット50は、ワイヤ不足が発生していることを示すワイヤ不足判定フラグをメモリに記憶する。S9でYESとなった場合に実行されるS12では、装置制御ユニット50は、ソレノイドFETがオープン故障していることを示すソレノイドFETオープン故障判定フラグをメモリに記憶する。S12の後、処理はS14へ進む。 If it is determined in S2 that the wire reel WR is not held by the reel holding mechanism 36 (if NO), if it is determined that the feed motor FET has an open failure in S3 (if YES), then in S4 If it is determined that an overload has been detected in the feed motor 72 (if YES), if it is determined that an abnormality has occurred in the feed gear in S6 (if YES), a wire shortage has occurred in S8. If it is determined that there is an open failure in the solenoid FET (if YES), or if it is determined in S9 that the solenoid FET has an open failure (if YES), the process proceeds to S12. In S12, which is executed when S2 is NO, the device control unit 50 stores in the memory a reel dropout determination flag indicating that the wire reel WR is not held by the reel holding mechanism . In S12, which is executed when S3 is YES, the device control unit 50 stores in the memory a feed motor FET open failure determination flag indicating that the feed motor FET has an open failure. In S12, which is executed when S4 is YES, the apparatus control unit 50 stores in the memory a feed motor overload determination flag indicating that the feed motor 72 is overloaded. In S12, which is executed when the result of S6 is YES, the device control unit 50 stores in the memory a feed gear abnormality determination flag indicating that the feed gear is abnormal. In S12, which is executed when the result of S8 is YES, the device control unit 50 stores in the memory a wire shortage determination flag indicating that a wire shortage has occurred. In S12, which is executed when S9 is YES, the device control unit 50 stores in the memory a solenoid FET open failure determination flag indicating that the solenoid FET has an open failure. After S12, the process proceeds to S14.
 S14では、装置制御ユニット50は、実行中の鉄筋結束作業を中断する。具体的には、装置制御ユニット50は、保護FET31をオフにする。これによって、ドライバ回路22、23、24への電力制御基板808からの電力供給が遮断される。S14の後、図18の処理は終了する。 At S14, the device control unit 50 suspends the reinforcing bar binding work being performed. Specifically, the device control unit 50 turns off the protection FET 31 . As a result, the power supply from the power control board 808 to the driver circuits 22, 23, 24 is cut off. After S14, the process of FIG. 18 ends.
 なお、S10でメモリに記憶された送り動作正常判定フラグや、S12でメモリに記憶されたリール脱落判定フラグ、送りモータFETオープン故障判定フラグ、送りモータ過負荷判定フラグ、送りギヤ異常判定フラグ、ワイヤ不足判定フラグ、ソレノイドFETオープン故障判定フラグは、次回に送り動作状態判定処理が開始されるまでの間、メモリに保持され、次回に送り動作状態判定処理が開始される際、メモリから消去される。また、これらの判定フラグは、電力制御基板808から装置制御ユニット50への電力供給が遮断される際にも、メモリから消去される。 The feed operation normal determination flag stored in the memory in S10, the reel dropout determination flag, the feed motor FET open failure determination flag, the feed motor overload determination flag, the feed gear abnormality determination flag, and the wire The shortage determination flag and the solenoid FET open failure determination flag are held in the memory until the feed operation state determination process is started next time, and are deleted from the memory when the feed operation state determination process is started next time. . These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
(プレート状態判定処理)
 装置制御ユニット50は、電力制御基板808から電力が供給されている間、図19に示すプレート位置状態判定処理を繰り返し実行する。
(Plate state determination processing)
The apparatus control unit 50 repeatedly executes the plate position state determination process shown in FIG. 19 while power is being supplied from the power control board 808 .
 S32では、装置制御ユニット50は、プレート位置検出センサ134を用いて鉄筋当接状態が検出されたか否かを判断する。ここでいう鉄筋当接状態とは、コンタクトプレート102に複数の鉄筋Rが押し当てられている状態を意味する。鉄筋当接状態が検出された場合(YESの場合)、処理はS34へ進む。鉄筋当接状態が検出されない場合(NOの場合)、処理は再度S32を実行する。 In S32, the device control unit 50 uses the plate position detection sensor 134 to determine whether or not a rebar contact state has been detected. The rebar contact state here means a state in which a plurality of rebars R are pressed against the contact plate 102 . If the rebar contact state is detected (if YES), the process proceeds to S34. When the reinforcing bar contact state is not detected (in the case of NO), the process executes S32 again.
 S34では、装置制御ユニット50は、装置制御ユニット50は、鉄筋当接状態が所定時間(例えば5秒)以上継続されたか否かを判断する。装置制御ユニット50は、S32の処理でYESと判断されてから所定時間が経過するまでの間、プレート位置検出センサ134を監視し続けることで、S34の判断を行う。鉄筋当接状態が所定時間以上継続されなかった場合(NOの場合)、処理はS36へ進む。 In S34, the device control unit 50 determines whether or not the rebar contact state has continued for a predetermined time (for example, 5 seconds) or longer. The device control unit 50 makes the determination of S34 by continuing to monitor the plate position detection sensor 134 until a predetermined period of time has elapsed since the determination of YES was made in the process of S32. If the rebar contact state has not continued for the predetermined time or longer (NO), the process proceeds to S36.
 S36では、装置制御ユニット50は、コンタクトプレート102が正常に動作していることを示すプレート正常判定フラグをメモリに記憶する。S36の後、図19の処理は終了する。 In S36, the device control unit 50 stores in memory a plate normality determination flag indicating that the contact plate 102 is operating normally. After S36, the process of FIG. 19 ends.
 S34で鉄筋当接状態が所定時間以上継続されたと判断される場合(YESの場合)、処理はS38へ進む。S38では、装置制御ユニット50は、コンタクトプレート102の動作に異常が発生していることを示すプレート異常判定フラグをメモリに記憶する。S38の後、図19の処理は終了する。 If it is determined in S34 that the rebar contact state has continued for a predetermined time or longer (YES), the process proceeds to S38. In S38, device control unit 50 stores in memory a plate abnormality determination flag indicating that an abnormality has occurred in the operation of contact plate 102 . After S38, the process of FIG. 19 ends.
 なお、S36でメモリに記憶されたプレート正常判定フラグまたはS38でメモリに記憶されたプレート異常判定フラグは、次回にプレート状態判定処理が開始されるまでの間、メモリに保持され、次回にプレート状態判定処理が開始される際、メモリから消去される。また、これらの判定フラグは、電力制御基板808から装置制御ユニット50への電力供給が遮断される際にも、メモリから消去される。 The plate normality determination flag stored in the memory in S36 or the plate abnormality determination flag stored in the memory in S38 is held in the memory until the next plate state determination process is started, and the plate state determination flag is stored in the memory next time. When the determination process is started, it is cleared from memory. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
(供給電圧状態判定処理)
 装置制御ユニット50は、電力制御基板808から電力が供給されている間、図20に示す供給電圧状態判定処理を繰り返し実行する。
(Supply voltage state determination processing)
The device control unit 50 repeatedly executes the supply voltage state determination process shown in FIG. 20 while power is being supplied from the power control board 808 .
 S42では、装置制御ユニット50は、電圧検出回路27で検出される電圧値が所定の電圧下限値を下回っているか否かを判断する。電圧検出回路27で検出される電圧値が電圧下限値を下回っている場合(YESの場合)、処理はS44へ進む。電圧検出回路27で検出される電圧値が電圧下限値以上である場合(NOの場合)、処理はS46へ進む。 In S42, the device control unit 50 determines whether the voltage value detected by the voltage detection circuit 27 is below a predetermined voltage lower limit value. If the voltage value detected by the voltage detection circuit 27 is below the voltage lower limit value (YES), the process proceeds to S44. If the voltage value detected by the voltage detection circuit 27 is equal to or higher than the voltage lower limit value (NO), the process proceeds to S46.
 S44では、装置制御ユニット50は、電力制御基板808から装置制御ユニット50に供給される電力の電圧値が不十分な値であることを示す低電圧判定フラグをメモリに記憶する。S44の後、図20の処理は終了する。 In S44, the device control unit 50 stores in memory a low voltage determination flag indicating that the voltage value of the power supplied from the power control board 808 to the device control unit 50 is insufficient. After S44, the process of FIG. 20 ends.
 S46では、装置制御ユニット50は、電力制御基板808から装置制御ユニット50に供給される電力の電圧値が十分な値であることを示す供給電圧正常判定フラグをメモリに記憶する。S46の後、図20の処理は終了する。 In S46, the device control unit 50 stores in memory a supply voltage normality determination flag indicating that the voltage value of the power supplied from the power control board 808 to the device control unit 50 is a sufficient value. After S46, the process of FIG. 20 ends.
 なお、S44でメモリに記憶された低電圧判定フラグまたはS46でメモリに記憶された供給電圧正常判定フラグは、次回に供給電圧状態判定処理が開始されるまでの間、メモリに保持され、次回に供給電圧状態判定処理が開始される際、メモリから消去される。また、これらの判定フラグは、電力制御基板808から装置制御ユニット50への電力供給が遮断される際にも、メモリから消去される。 The low voltage determination flag stored in the memory in S44 or the supply voltage normality determination flag stored in the memory in S46 is held in the memory until the supply voltage state determination process is started next time. It is cleared from memory when the supply voltage status determination process is started. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
(温度状態判定処理)
 装置制御ユニット50は、電力制御基板808から電力が供給されている間、図21に示す温度状態判定処理を繰り返し実行する。
(Temperature state determination processing)
The device control unit 50 repeatedly executes the temperature state determination process shown in FIG. 21 while power is being supplied from the power control board 808 .
 S52では、装置制御ユニット50は、装置制御ユニット50がオーバーヒートしているか否かを判断する。具体的には、装置制御ユニット50は、温度検出センサ32で検出される装置制御ユニット50の温度が所定の温度上限値を上回っている状態が所定時間以上継続して検出されたか否かを判断する。装置制御ユニット50がオーバーヒートしている場合(YESの場合)、処理はS54へ進む。 At S52, the device control unit 50 determines whether or not the device control unit 50 is overheating. Specifically, the device control unit 50 determines whether or not the temperature of the device control unit 50 detected by the temperature detection sensor 32 has continued to exceed a predetermined upper temperature limit for a predetermined time or longer. do. If the device control unit 50 is overheating (YES), the process proceeds to S54.
 S54では、装置制御ユニット50は、装置制御ユニット50がオーバーヒートしていることを示す温度異常判定フラグをメモリに記憶する。S54の後、処理はS56へ進む。 In S54, the device control unit 50 stores in memory a temperature abnormality determination flag indicating that the device control unit 50 is overheating. After S54, the process proceeds to S56.
 S56では、装置制御ユニット50は、鉄筋結束作業を実行中である場合には、実行中の鉄筋結束作業を中断する。具体的には、装置制御ユニット50は、保護FET31をオフにする。これによって、ドライバ回路22、23、24への電力制御基板808からの電力供給が遮断される。S56の後、図21の処理は終了する。 In S56, the device control unit 50 interrupts the reinforcing bar binding work in progress when the reinforcing bar binding work is being executed. Specifically, the device control unit 50 turns off the protection FET 31 . As a result, the power supply from the power control board 808 to the driver circuits 22, 23, 24 is cut off. After S56, the process of FIG. 21 ends.
 S52において、装置制御ユニット50がオーバーヒートしていないと判断される場合(NOの場合)、処理はS58へ進む。S58では、装置制御ユニット50は、装置制御ユニット50がオーバーヒートしていない(すなわち、装置制御ユニット50の温度が正常である)ことを示す温度正常判定フラグをメモリに記憶する。S58の後、図21の処理は終了する。 If it is determined in S52 that the device control unit 50 is not overheating (NO), the process proceeds to S58. In S58, the device control unit 50 stores in memory a temperature normality determination flag indicating that the device control unit 50 is not overheating (that is, the temperature of the device control unit 50 is normal). After S58, the process of FIG. 21 ends.
 なお、S54でメモリに記憶された温度異常判定フラグまたはS58でメモリに記憶された温度正常判定フラグは、次回に温度状態判定処理が開始されるまでの間、メモリに保持され、次回に温度状態判定処理が開始される際、メモリから消去される。また、これらの判定フラグは、電力制御基板808から装置制御ユニット50への電力供給が遮断される際にも、メモリから消去される。 The temperature abnormality determination flag stored in the memory in S54 or the temperature normality determination flag stored in the memory in S58 is held in the memory until the temperature state determination process is started next time. When the determination process is started, it is cleared from memory. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
(捩り動作状態判定処理)
 装置制御ユニット50は、装置メイン処理(図17参照)のS130において、図22に示す捩り動作状態判定処理を実行する。
(Twisting operation state determination processing)
The device control unit 50 executes the twisting motion state determination processing shown in FIG. 22 in S130 of the device main processing (see FIG. 17).
 S62では、装置制御ユニット50は、捩りモータ回転検出センサ55の検出結果に基づいて、捩りモータ170がロック状態であるか否かを判断する。本実施例の捩りモータ回転検出センサ55はホールセンサであり、捩りモータ170のロータが所定角度だけ回転する度に、装置制御ユニット50に対して出力する信号をH信号とL信号の間で切り換えるように構成されている。装置制御ユニット50は、捩りモータ回転検出センサ55から出力される信号の切り換え回数に基づいて、捩りモータ170の回転を検出している。このため、装置制御ユニット50は、装置メイン処理(図17参照)のS128が終了してから所定時間が経過してもなお、捩りモータ回転検出センサ55から出力される信号が一度も切り換わらない場合、捩りモータ170がロック状態であると判断する。捩りモータ170がロック状態でない場合(NOの場合)、処理はS64へ進む。 In S62, the device control unit 50 determines whether or not the torsion motor 170 is locked based on the detection result of the torsion motor rotation detection sensor 55. The torsion motor rotation detection sensor 55 of this embodiment is a Hall sensor, and switches the signal output to the device control unit 50 between the H signal and the L signal each time the rotor of the torsion motor 170 rotates by a predetermined angle. is configured as The device control unit 50 detects the rotation of the torsion motor 170 based on the number of times the signal output from the torsion motor rotation detection sensor 55 is switched. Therefore, the device control unit 50 does not change the signal output from the torsion motor rotation detection sensor 55 even after a predetermined time has passed since S128 of the device main processing (see FIG. 17) is completed. If so, it is determined that the torsion motor 170 is locked. If the torsion motor 170 is not locked (NO), the process proceeds to S64.
 S64では、装置制御ユニット50は、捩りモータ170の回転異常が検出されたか否かを判断する。具体的には、装置制御ユニット50は、捩りモータ回転検出センサ55で検出される捩りモータ170の回転角度の変化パターンと、メモリに記憶された理想の変化パターンを比較することで、捩りモータ170の回転異常が検出されたか否かを判断する。捩りモータ170の回転異常が検出されない場合(NOの場合)、処理はS66へ進む。 At S64, the device control unit 50 determines whether or not the rotation abnormality of the torsion motor 170 has been detected. Specifically, the device control unit 50 compares the change pattern of the rotation angle of the torsion motor 170 detected by the torsion motor rotation detection sensor 55 with the ideal change pattern stored in the memory, thereby detecting the rotation angle of the torsion motor 170. is detected. If no abnormal rotation of torsion motor 170 is detected (NO), the process proceeds to S66.
 S66では、装置制御ユニット50は、捩りモータ170で過負荷が検出されたか否かを判断する。具体的には、装置制御ユニット50は、電流検出回路28で検出される電流値が所定の第2電流上限値を上回っている状態が所定時間以上継続して検出されたか否かを判断する。捩りモータ170で過負荷が検出されない場合(NOの場合)、処理はS68へ進む。 At S66, the device control unit 50 determines whether or not an overload is detected in the torsion motor 170. Specifically, the device control unit 50 determines whether or not a state in which the current value detected by the current detection circuit 28 exceeds a predetermined second current upper limit value has been detected continuously for a predetermined time or longer. If no overload is detected in the torsion motor 170 (NO), the process proceeds to S68.
 S68では、装置制御ユニット50は、捩りモータ回転検出センサ55に異常が発生したか否かを判断する。具体的には、装置制御ユニット50は、捩りモータ170を駆動してから捩りモータ170を停止するまでの間、捩りモータ回転検出センサ55からの制御出力を監視し続ける。そして、捩りモータ回転検出センサ55から出力される信号(H信号またはL信号)が一度も切り換わらなかった場合、装置制御ユニット50は捩りモータ回転検出センサ55に異常が発生したと判断する。捩りモータ回転検出センサ55に異常が発生していない場合(NOの場合)、処理はS70へ進む。 At S68, the device control unit 50 determines whether or not the torsion motor rotation detection sensor 55 has become abnormal. Specifically, the device control unit 50 continues to monitor the control output from the torsion motor rotation detection sensor 55 from the time the torsion motor 170 is driven until the torsion motor 170 is stopped. If the signal (H signal or L signal) output from the torsion motor rotation detection sensor 55 never changes, the device control unit 50 determines that the torsion motor rotation detection sensor 55 has become abnormal. If no abnormality has occurred in the torsion motor rotation detection sensor 55 (NO), the process proceeds to S70.
 S70では、装置制御ユニット50は、捩りアーム(スリーブ174およびフック178)に異常が発生したか否かを判断する。具体的には、装置制御ユニット50は、装置メイン処理(図17参照)のS128が終了してから所定時間が経過した後にスリーブ174が初期位置にない場合、捩りアームに異常が発生したと判断する。捩りアームに異常が発生していない場合(NOの場合)、処理はS72へ進む。 At S70, the device control unit 50 determines whether or not an abnormality has occurred in the torsion arm (sleeve 174 and hook 178). Specifically, the device control unit 50 determines that an abnormality has occurred in the torsion arm when the sleeve 174 is not in the initial position after a predetermined time has elapsed since S128 of the device main processing (see FIG. 17) has ended. do. If no abnormality has occurred in the torsion arm (NO), the process proceeds to S72.
 S72では、装置制御ユニット50は、捩り動作の実行中に、電流検出回路28において過電流が検出されたか否かを判断する。本実施例では、電流検出回路28には、電流検出回路28に流れる電流値が所定の第3電流上限値を上回ることに応じて装置制御ユニット50に過電流検出信号を送信する、過電流検出回路(図示せず)が設けられている。このため、装置制御ユニット50は、過電流検出回路から過電流検出信号を受信したか否かを判断する。なお、第3電流上限値は、図18のS4における第1電流上限値や、図22のS66における第2電流上限値よりも大きい値に設定されている。過電流が検出されない場合(NOの場合)、処理はS74へ進む。 In S72, the device control unit 50 determines whether or not overcurrent is detected in the current detection circuit 28 during execution of the twisting motion. In this embodiment, the current detection circuit 28 includes an overcurrent detection circuit that transmits an overcurrent detection signal to the device control unit 50 when the current value flowing through the current detection circuit 28 exceeds a predetermined third current upper limit value. A circuit (not shown) is provided. Therefore, the device control unit 50 determines whether or not it has received an overcurrent detection signal from the overcurrent detection circuit. The third upper limit current value is set to a value larger than the first upper limit current value in S4 of FIG. 18 and the second upper limit current value in S66 of FIG. If overcurrent is not detected (NO), the process proceeds to S74.
 S74では、装置制御ユニット50は、捩り動作が正常に実行されていることを示す捩り動作正常判定フラグをメモリに記憶する。S74の後、図22の処理は終了する。 In S74, the device control unit 50 stores in memory a twisting motion normal determination flag indicating that the twisting motion is being performed normally. After S74, the process of FIG. 22 ends.
 S62で捩りモータ170のロック状態が検出されたと判断される場合(YESの場合)、S64で捩りモータ170の回転異常が検出されたと判断される場合(YESの場合)、S66において捩りモータ170で過負荷が検出されたと判断される場合(YESの場合)、S68で捩りモータ回転検出センサ55に異常が発生していると判断される場合(YESの場合)、S70で捩りアームに異常が発生していると判断される場合(YESの場合)、またはS72で過電流が検出されたと判断される場合(YESの場合)、処理はS76へ進む。S62でYESとなった場合に実行されるS76では、装置制御ユニット50は、捩りモータ170がロック状態となっていることを示す捩りモータロック判定フラグをメモリに記憶する。S64でYESとなった場合に実行されるS76では、装置制御ユニット50は、捩りモータ170が回転異常していることを示す捩りモータ回転異常判定フラグをメモリに記憶する。S66でYESとなった場合に実行されるS76では、装置制御ユニット50は、捩りモータ170で過負荷が検出されたことを示す捩りモータ過負荷判定フラグをメモリに記憶する。S68でYESとなった場合に実行されるS76では、装置制御ユニット50は、捩りモータ回転検出センサ55に異常が発生していることを示す捩りモータ回転検出センサ異常判定フラグをメモリに記憶する。S70でYESとなった場合に実行されるS76では、装置制御ユニット50は、捩りアームに異常が発生していることを示す捩りアーム異常判定フラグをメモリに記憶する。S72でYESとなった場合に実行されるS76では、装置制御ユニット50は、過電流が検出されたことを示す過電流判定フラグをメモリに記憶する。S76の後、処理はS78へ進む。 If it is determined in S62 that the locked state of the torsion motor 170 has been detected (if YES), if it is determined that an abnormal rotation of the torsion motor 170 has been detected in S64 (if YES), the torsion motor 170 is turned on in S66. If it is determined that an overload has been detected (if YES), if it is determined that an abnormality has occurred in the torsion motor rotation detection sensor 55 in S68 (if YES), an abnormality has occurred in the torsion arm in S70. If it is determined that the overcurrent is detected in S72 (YES), the process proceeds to S76. In S76, which is executed when S62 is YES, the device control unit 50 stores in the memory a torsion motor lock determination flag indicating that the torsion motor 170 is in a locked state. In S76, which is executed when S64 is YES, the device control unit 50 stores in the memory a torsion motor rotation abnormality determination flag indicating that the torsion motor 170 has an abnormality in rotation. In S76, which is executed when S66 is YES, the device control unit 50 stores in the memory a torsion motor overload determination flag indicating that an overload has been detected in the torsion motor 170. FIG. In S76, which is executed when S68 is YES, the device control unit 50 stores in the memory a torsion motor rotation detection sensor abnormality determination flag indicating that the torsion motor rotation detection sensor 55 is abnormal. In S76, which is executed when the result of S70 is YES, the device control unit 50 stores in the memory a torsion arm abnormality determination flag indicating that an abnormality has occurred in the torsion arm. In S76, which is executed when the result of S72 is YES, the device control unit 50 stores in the memory an overcurrent determination flag indicating that an overcurrent has been detected. After S76, the process proceeds to S78.
 S78では、装置制御ユニット50は、実行中の鉄筋結束作業を中断する。具体的には、装置制御ユニット50は、保護FET31をオフにする。これによって、ドライバ回路22、23、24への電力制御基板808からの電力供給が遮断される。S78の後、図22の処理は終了する。 At S78, the device control unit 50 suspends the reinforcing bar binding work being performed. Specifically, the device control unit 50 turns off the protection FET 31 . As a result, the power supply from the power control board 808 to the driver circuits 22, 23, 24 is cut off. After S78, the process of FIG. 22 ends.
 なお、S74でメモリに記憶された捩り動作正常判定フラグや、S76でメモリに記憶された捩りモータロック判定フラグ、捩りモータ回転異常判定フラグ、捩りモータ過負荷判定フラグ、捩りモータ回転検出センサ異常判定フラグ、捩りアーム異常判定フラグ、過電流判定フラグは、次回に捩り動作状態判定処理が開始されるまでの間、メモリに保持され、次回に捩り動作状態判定処理が開始される際、メモリから消去される。また、これらの判定フラグは、電力制御基板808から装置制御ユニット50への電力供給が遮断される際にも、メモリから消去される。 Note that the torsion operation normal determination flag stored in the memory in S74, the torsion motor lock determination flag, the torsion motor rotation abnormality determination flag, the torsion motor overload determination flag, and the torsion motor rotation detection sensor abnormality determination stored in the memory in S76. The flag, the torsion arm abnormality determination flag, and the overcurrent determination flag are held in the memory until the torsion motion state determination process is started next time, and are deleted from the memory when the torsion motion state determination process is started next time. be done. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
(ハードウェア状態判定処理)
 装置制御ユニット50は、装置メイン処理(図17参照)のS102およびS114において、図23に示すハードウェア状態判定処理を実行する。
(Hardware state determination processing)
The device control unit 50 executes the hardware state determination processing shown in FIG. 23 in S102 and S114 of the device main processing (see FIG. 17).
 S82では、装置制御ユニット50は、ガイド位置検出センサ142に基づいて、下側カールガイド92が開状態であるか否かを判断する。下側カールガイド92が開状態でない(すなわち、閉状態である)と判断される場合(NOの場合)、処理はS84へ進む。 In S82, the device control unit 50 determines whether or not the lower curl guide 92 is open based on the guide position detection sensor 142. If it is determined that the lower curl guide 92 is not open (that is, closed) (NO), the process proceeds to S84.
 S84では、装置制御ユニット50は、電圧検出回路25、26、27のそれぞれの検出値に基づいて、保護FET31の電圧値を特定する。そして、装置制御ユニット50は、保護FET31の電圧値が異常な値であるか否かを判断する。ここでいう異常な値とは、例えば、保護FET31のゲートしきい値を下回る値である。保護FET31の電圧値が正常な値である場合(NOの場合)、処理はS86へ進む。 At S84, the device control unit 50 identifies the voltage value of the protection FET 31 based on the respective detection values of the voltage detection circuits 25, 26, and 27. Then, the device control unit 50 determines whether or not the voltage value of the protection FET 31 is abnormal. The abnormal value here is, for example, a value below the gate threshold value of the protection FET 31 . If the voltage value of protection FET 31 is normal (NO), the process proceeds to S86.
 S86では、装置制御ユニット50は、電圧検出回路25を用いて、ソレノイドFETの電圧値が異常な値であるか否かを判断する。ここでいう異常な値とは、例えば、ソレノイドFETのゲートしきい値を下回る値である。ソレノイドFETの電圧値が正常な値である場合(NOの場合)、処理はS88へ進む。 At S86, the device control unit 50 uses the voltage detection circuit 25 to determine whether the voltage value of the solenoid FET is an abnormal value. The abnormal value here is, for example, a value below the gate threshold value of the solenoid FET. If the voltage value of the solenoid FET is normal (NO), the process proceeds to S88.
 S88では、装置制御ユニット50は、電圧検出回路26を用いて、送りモータFETの電圧値が異常な値であるか否かを判断する。ここでいう異常な値とは、例えば、送りモータFETのゲートしきい値を下回る値である。送りモータFETの電圧値が正常な値である場合(NOの場合)、処理はS90へ進む。 At S88, the device control unit 50 uses the voltage detection circuit 26 to determine whether the voltage value of the feed motor FET is an abnormal value. The abnormal value here is, for example, a value below the gate threshold of the feed motor FET. If the voltage value of the feed motor FET is normal (NO), the process proceeds to S90.
 S90では、装置制御ユニット50は、ハードウェア状態が正常であることを示すハードウェア正常判定フラグをメモリに記憶する。S90の後、図23の処理は終了する。 In S90, the device control unit 50 stores in memory a hardware normality determination flag indicating that the hardware state is normal. After S90, the process of FIG. 23 ends.
 S82で下側カールガイド92が開状態であると判断される場合(YESの場合)、S84で保護FET31の電圧値が異常な値であると判断される場合(YESの場合)、S86でソレノイドFETの電圧値が異常な値であると判断される場合(YESの場合)、S88で送りモータFETの電圧値が異常な値であると判断される場合(YESの場合)、処理はS92へ進む。S82でYESとなった場合に実行されるS92では、装置制御ユニット50は、下側カールガイド92の位置が適切な位置にないことを示すガイド位置異常判定フラグをメモリに記憶する。S84でYESとなった場合に実行されるS92では、装置制御ユニット50は、保護FET31の電圧値が異常な値であることを示す保護FET電圧異常判定フラグをメモリに記憶する。S86でYESとなった場合に実行されるS92では、装置制御ユニット50は、ソレノイドFETの電圧値が異常な値であることを示すソレノイドFET電圧異常判定フラグをメモリに記憶する。S88でYESとなった場合に実行されるS92では、装置制御ユニット50は、送りモータFETの電圧値が異常な値であることを示す送りモータFET電圧異常判定フラグをメモリに記憶する。S92の後、図23の処理は終了する。 If it is determined in S82 that the lower curl guide 92 is open (if YES), if it is determined that the voltage value of the protection FET 31 is abnormal in S84 (if YES), the solenoid If the voltage value of the FET is determined to be abnormal (YES), or if the voltage value of the feed motor FET is determined to be abnormal in S88 (YES), the process proceeds to S92. move on. In S92, which is executed when YES in S82, the device control unit 50 stores in the memory a guide position abnormality determination flag indicating that the position of the lower curl guide 92 is not at an appropriate position. In S92, which is executed when S84 is YES, the device control unit 50 stores in the memory a protection FET voltage abnormality determination flag indicating that the voltage value of the protection FET 31 is an abnormal value. In S92, which is executed when YES in S86, the device control unit 50 stores in the memory a solenoid FET voltage abnormality determination flag indicating that the voltage value of the solenoid FET is an abnormal value. In S92, which is executed when YES in S88, the device control unit 50 stores in the memory a feed motor FET voltage abnormality determination flag indicating that the voltage value of the feed motor FET is an abnormal value. After S92, the process of FIG. 23 ends.
 なお、S90でメモリに記憶されたハードウェア正常判定フラグや、S92でメモリに記憶されたガイド位置異常判定フラグ、保護FET電圧異常判定フラグ、ソレノイドFET電圧異常判定フラグ、送りモータFET電圧異常判定フラグは、次回にハードウェア状態判定処理が開始されるまでの間、メモリに保持され、次回にハードウェア状態判定処理が開始される際、メモリから消去される。また、これらの判定フラグは、電力制御基板808から装置制御ユニット50への電力供給が遮断される際にも、メモリから消去される。 The hardware normality determination flag stored in the memory in S90, the guide position abnormality determination flag, the protection FET voltage abnormality determination flag, the solenoid FET voltage abnormality determination flag, and the feed motor FET voltage abnormality determination flag stored in the memory in S92. is held in the memory until the hardware state determination process is started next time, and is deleted from the memory when the hardware state determination process is started next time. These determination flags are also erased from the memory when the power supply from the power control board 808 to the device control unit 50 is interrupted.
(各種判定フラグの類別)
 本明細書では、前述した各種判定フラグのうち、送り動作正常判定フラグ、プレート正常判定フラグ、供給電圧正常判定フラグ、温度正常判定フラグ、捩り動作正常判定フラグ、ハードウェア正常判定フラグを総称して「結束装置正常判定フラグ」と呼ぶ。また、リール脱落判定フラグ、送りモータFETオープン故障判定フラグ、送りモータ過負荷判定フラグ、送りギヤ異常判定フラグ、ワイヤ不足判定フラグ、ソレノイドFETオープン故障判定フラグ、プレート異常判定フラグ、低電圧判定フラグ、温度異常判定フラグ、捩りモータロック判定フラグ、捩りモータ回転異常判定フラグ、捩りモータ過負荷判定フラグ、捩りモータ回転検出センサ異常判定フラグ、捩りアーム異常判定フラグ、過電流判定フラグ、ガイド位置異常判定フラグ、保護FET電圧異常判定フラグ、ソレノイドFET電圧異常判定フラグ、送りモータFET電圧異常判定フラグを総称して「結束装置異常判定フラグ」と呼ぶ。
(Classification of various judgment flags)
In this specification, of the various determination flags described above, the feed operation normality determination flag, the plate normality determination flag, the supply voltage normality determination flag, the temperature normality determination flag, the torsion operation normality determination flag, and the hardware normality determination flag are collectively used. This is called a "binding device normality determination flag". In addition, a reel dropout determination flag, a feed motor FET open failure determination flag, a feed motor overload determination flag, a feed gear abnormality determination flag, a wire shortage determination flag, a solenoid FET open failure determination flag, a plate abnormality determination flag, a low voltage determination flag, Temperature abnormality determination flag, torsion motor lock determination flag, torsion motor rotation abnormality determination flag, torsion motor overload determination flag, torsion motor rotation detection sensor abnormality determination flag, torsion arm abnormality determination flag, overcurrent determination flag, guide position abnormality determination flag , the protection FET voltage abnormality determination flag, the solenoid FET voltage abnormality determination flag, and the feed motor FET voltage abnormality determination flag are collectively referred to as "binding device abnormality determination flag".
(搬送装置4の構成)
 図2に示すように、搬送装置4は、車台190と、右側クローラ192と、左側クローラ194と、サイドステッパ196と、動力伝達機構402を備えている。右側クローラ192と、左側クローラ194と、サイドステッパ196と、動力伝達機構402は、それぞれ車台190に支持されている。
(Structure of Conveying Device 4)
As shown in FIG. 2 , the transport device 4 includes a chassis 190 , a right crawler 192 , a left crawler 194 , a side stepper 196 and a power transmission mechanism 402 . Right crawler 192 , left crawler 194 , side stepper 196 , and power transmission mechanism 402 are each supported by undercarriage 190 .
(車台190の構成)
 図2に示すように、車台190は、ベースプレート204と、右側プレート210と、左側プレート212と、複数のベースフレーム214と、前側連結フレーム215と、後側連結フレーム216を備えている。ベースプレート204は、前後方向および左右方向(すなわち、水平方向)に沿って配置されている。鉄筋結束ロボット1には、前後左右方向の中央部において、ベースプレート204を上下方向に貫通させて形成される貫通孔204aが設けられている。貫通孔204aは、鉄筋結束装置2が略上下方向に沿って通過可能なサイズで設けられている。また、複数のベースフレーム214は、ベースプレート204の下面に固定されている。右側プレート210は、複数のベースフレーム214のうち、ベースプレート204の右端に沿って前後方向に延びるものの右面に固定されている。右側プレート210は、前後方向および上下方向に沿って配置されている。左側プレート212は、複数のベースフレーム214のうち、ベースプレート204の左端に沿って前後方向に延びるものの左面に固定されている。左側プレート212は、前後方向および上下方向に沿って配置されている。上下方向に関して、右側プレート210の上端と、左側プレート212の上端は、ベースプレート204の下面と同じ位置にある。前後方向に関して、右側プレート210の前端と、左側プレート212の前端は、ベースプレート204の前端よりも前方に突出しており、右側プレート210の後端と、左側プレート212の後端は、ベースプレート204の後端よりも後方に突出している。前側連結フレーム215は、ベースプレート204の前端よりも前方で、右側プレート210の前端近傍と左側プレート212の前端近傍を連結している。後側連結フレーム216は、ベースプレート204の後端よりも後方で、右側プレート210の後端近傍と左側プレート212の後端近傍を連結している。前側連結フレーム215と後側連結フレーム216は、左右方向に延びている。上下方向に関して、前側連結フレーム215と後側連結フレーム216は、複数のベースフレーム214よりも下方に配置されている。
(Configuration of Chassis 190)
As shown in FIG. 2 , the chassis 190 includes a base plate 204 , a right plate 210 , a left plate 212 , a plurality of base frames 214 , a front connecting frame 215 and a rear connecting frame 216 . The base plate 204 is arranged along the front-back direction and the left-right direction (that is, the horizontal direction). The reinforcement binding robot 1 is provided with a through-hole 204a formed by penetrating the base plate 204 in the vertical direction at the central portion in the front-rear and left-right directions. The through hole 204a is provided with a size that allows the reinforcing bar binding device 2 to pass therethrough substantially along the vertical direction. Also, the plurality of base frames 214 are fixed to the lower surface of the base plate 204 . The right plate 210 is fixed to the right surface of one of the plurality of base frames 214 that extends in the front-rear direction along the right end of the base plate 204 . The right plate 210 is arranged along the front-back direction and the up-down direction. The left plate 212 is fixed to the left surface of one of the plurality of base frames 214 that extends in the front-rear direction along the left end of the base plate 204 . The left plate 212 is arranged along the front-back direction and the up-down direction. With respect to the vertical direction, the upper end of the right plate 210 and the upper end of the left plate 212 are at the same position as the lower surface of the base plate 204 . With respect to the front-rear direction, the front end of the right plate 210 and the front end of the left plate 212 protrude forward from the front end of the base plate 204 , and the rear end of the right plate 210 and the rear end of the left plate 212 protrude behind the base plate 204 . It protrudes backward beyond the edge. The front connecting frame 215 is forward of the front end of the base plate 204 and connects the vicinity of the front end of the right side plate 210 and the vicinity of the front end of the left side plate 212 . The rear connecting frame 216 is behind the rear end of the base plate 204 and connects the vicinity of the rear end of the right side plate 210 and the vicinity of the rear end of the left side plate 212 . The front connecting frame 215 and the rear connecting frame 216 extend in the left-right direction. The front connecting frame 215 and the rear connecting frame 216 are arranged below the plurality of base frames 214 in the vertical direction.
(右側クローラ192の構成)
 右側クローラ192は、前側プーリ218と、後側プーリ220と、複数の補助プーリ222と、テンショナプーリ224と、ゴムベルト226と、右側クローラモータ228と、ギヤボックス230を備えている。前側プーリ218の外面と、後側プーリ220の外面と、複数の補助プーリ222の外面と、テンショナプーリ224の外面には、それぞれ、ゴムベルト226と噛み合う歯形が形成されている。ゴムベルト226は、前側プーリ218と、後側プーリ220と、複数の補助プーリ222と、テンショナプーリ224に掛け渡されている。前側プーリ218は、右側プレート210の前端近傍において、ベアリング232を介して右側プレート210に回転可能に支持されている。後側プーリ220は、右側プレート210の後端近傍において、ベアリング234を介して右側プレート210に回転可能に支持されている。複数の補助プーリ222は、前側プーリ218と後側プーリ220の間で、対応するベアリング236を介して右側プレート210に回転可能に支持されている。複数の補助プーリ222は、前後方向に並んで配置されている。前側プーリ218の外径と後側プーリ220の外径は略同じであり、複数の補助プーリ222の外径は、前側プーリ218および後側プーリ220の外径よりも小さい。上下方向に関して、前側プーリ218の下端と、後側プーリ220の下端と、複数の補助プーリ222の下端は、略同じ位置にある。テンショナプーリ224は、可動ベアリング237に回転可能に支持されている。可動ベアリング237は、上下方向に移動可能に、右側プレート210に支持されている。ゴムベルト226がテンショナプーリ224に掛け渡されている状態で、可動ベアリング237の右側プレート210に対する上下方向の位置を調整することで、ゴムベルト226の張り具合いを調整することができる。右側クローラモータ228は、ベアリング232と、ギヤボックス230を介して、右側プレート210に支持されている。右側クローラモータ228は、例えば直流ブラシレスモータである。右側クローラモータ228は、ギヤボックス230に内蔵された減速ギヤ(図示せず)を介して、前側プーリ218に連結されている。右側クローラモータ228が順方向または逆方向に回転すると、前側プーリ218が順方向または逆方向に回転し、それによってゴムベルト226が前側プーリ218と、後側プーリ220と、複数の補助プーリ222と、テンショナプーリ224の外側で順方向または逆方向に回転する。
(Configuration of Right Crawler 192)
The right crawler 192 includes a front pulley 218 , a rear pulley 220 , a plurality of auxiliary pulleys 222 , a tensioner pulley 224 , a rubber belt 226 , a right crawler motor 228 and a gearbox 230 . The outer surface of the front pulley 218, the outer surface of the rear pulley 220, the outer surfaces of the plurality of auxiliary pulleys 222, and the outer surface of the tensioner pulley 224 are each formed with a tooth profile that meshes with the rubber belt 226. A rubber belt 226 is stretched over a front pulley 218 , a rear pulley 220 , a plurality of auxiliary pulleys 222 and a tensioner pulley 224 . The front pulley 218 is rotatably supported by the right plate 210 via a bearing 232 near the front end of the right plate 210 . The rear pulley 220 is rotatably supported by the right plate 210 via a bearing 234 near the rear end of the right plate 210 . A plurality of auxiliary pulleys 222 are rotatably supported on the right plate 210 via corresponding bearings 236 between the front pulley 218 and the rear pulley 220 . The plurality of auxiliary pulleys 222 are arranged side by side in the front-rear direction. The outer diameter of the front pulley 218 and the rear pulley 220 are substantially the same, and the outer diameters of the plurality of auxiliary pulleys 222 are smaller than the outer diameters of the front pulley 218 and the rear pulley 220 . With respect to the vertical direction, the lower end of the front pulley 218, the lower end of the rear pulley 220, and the lower ends of the plurality of auxiliary pulleys 222 are located at substantially the same position. Tensioner pulley 224 is rotatably supported by movable bearing 237 . The movable bearing 237 is supported by the right plate 210 so as to be vertically movable. By adjusting the vertical position of the movable bearing 237 with respect to the right plate 210 while the rubber belt 226 is stretched over the tensioner pulley 224, the tension of the rubber belt 226 can be adjusted. Right crawler motor 228 is supported by right plate 210 via bearing 232 and gearbox 230 . Right crawler motor 228 is, for example, a DC brushless motor. The right crawler motor 228 is connected to the front pulley 218 via a reduction gear (not shown) built into the gearbox 230 . As the right crawler motor 228 rotates in the forward or reverse direction, the front pulley 218 rotates in the forward or reverse direction, thereby moving the rubber belt 226 through the front pulley 218, the rear pulley 220, the plurality of auxiliary pulleys 222, Rotate forward or reverse on the outside of the tensioner pulley 224 .
(左側クローラ194の構成)
 左側クローラ194は、前側プーリ244と、後側プーリ246と、複数の補助プーリ248と、テンショナプーリ250と、ゴムベルト252と、左側クローラモータ254と、ギヤボックス256を備えている。前側プーリ244の外面と、後側プーリ246の外面と、複数の補助プーリ248の外面と、テンショナプーリ250の外面には、それぞれ、ゴムベルト252と噛み合う歯形が形成されている。ゴムベルト252は、前側プーリ244と、後側プーリ246と、複数の補助プーリ248と、テンショナプーリ250に掛け渡されている。前側プーリ244は、左側プレート212の前端近傍において、ベアリング258を介して左側プレート212に回転可能に支持されている。後側プーリ246は、左側プレート212の後端近傍において、ベアリング260を介して左側プレート212に回転可能に支持されている。複数の補助プーリ248は、前側プーリ244と後側プーリ246の間で、対応するベアリング262を介して左側プレート212に回転可能に支持されている。複数の補助プーリ248は、前後方向に並んで配置されている。前側プーリ244の外径と後側プーリ246の外径は略同じであり、複数の補助プーリ248の外径は、前側プーリ244および後側プーリ246の外径よりも小さい。上下方向に関して、前側プーリ244の下端と、後側プーリ246の下端と、複数の補助プーリ248の下端は、略同じ位置にある。テンショナプーリ250は、可動ベアリング264に回転可能に支持されている。可動ベアリング264は、上下方向に移動可能に、左側プレート212に支持されている。ゴムベルト252がテンショナプーリ250に掛け渡されている状態で、可動ベアリング264の左側プレート212に対する上下方向の位置を調整することで、ゴムベルト252の張り具合いを調整することができる。左側クローラモータ254は、ベアリング258と、ギヤボックス256を介して、左側プレート212に支持されている。左側クローラモータ254は、例えば直流ブラシレスモータである。左側クローラモータ254は、ギヤボックス256に内蔵された減速ギヤ(図示せず)を介して、前側プーリ244に連結されている。左側クローラモータ254が順方向または逆方向に回転すると、前側プーリ244が順方向または逆方向に回転し、それによってゴムベルト252が前側プーリ244と、後側プーリ246と、複数の補助プーリ248と、テンショナプーリ250の外側で順方向または逆方向に回転する。
(Configuration of Left Crawler 194)
The left crawler 194 includes a front pulley 244 , a rear pulley 246 , a plurality of auxiliary pulleys 248 , a tensioner pulley 250 , a rubber belt 252 , a left crawler motor 254 and a gearbox 256 . The outer surface of the front pulley 244, the outer surface of the rear pulley 246, the outer surfaces of the plurality of auxiliary pulleys 248, and the outer surface of the tensioner pulley 250 are each formed with a tooth profile that meshes with the rubber belt 252. A rubber belt 252 is stretched over a front pulley 244 , a rear pulley 246 , a plurality of auxiliary pulleys 248 and a tensioner pulley 250 . The front pulley 244 is rotatably supported by the left plate 212 via a bearing 258 near the front end of the left plate 212 . The rear pulley 246 is rotatably supported by the left plate 212 via a bearing 260 near the rear end of the left plate 212 . A plurality of auxiliary pulleys 248 are rotatably supported on left plate 212 via corresponding bearings 262 between front pulley 244 and rear pulley 246 . The plurality of auxiliary pulleys 248 are arranged side by side in the front-rear direction. The outer diameter of the front pulley 244 and the rear pulley 246 are substantially the same, and the outer diameters of the plurality of auxiliary pulleys 248 are smaller than the outer diameters of the front pulley 244 and the rear pulley 246 . With respect to the vertical direction, the lower end of the front pulley 244, the lower end of the rear pulley 246, and the lower ends of the plurality of auxiliary pulleys 248 are located at approximately the same position. Tensioner pulley 250 is rotatably supported on movable bearing 264 . The movable bearing 264 is supported by the left plate 212 so as to be vertically movable. The tension of the rubber belt 252 can be adjusted by adjusting the vertical position of the movable bearing 264 with respect to the left plate 212 while the rubber belt 252 is stretched over the tensioner pulley 250 . Left crawler motor 254 is supported by left plate 212 via bearing 258 and gearbox 256 . Left crawler motor 254 is, for example, a DC brushless motor. Left crawler motor 254 is connected to front pulley 244 via a reduction gear (not shown) built into gear box 256 . As the left crawler motor 254 rotates forward or reverse, the front pulley 244 rotates forward or reverse, thereby moving the rubber belt 252 through the front pulley 244, the rear pulley 246, a plurality of auxiliary pulleys 248, Rotate forward or reverse on the outside of the tensioner pulley 250 .
(サイドステッパ196の構成)
 図24に示すように、サイドステッパ196は、ステップバー272、274と、前側クランク機構276と、後側クランク機構277を備えている。ステップバー272、274は、断面が略矩形の棒状部材であって、前後方向に延びている。図2に示すように、左右方向に関して、ステップバー272はベースプレート204の中央と右端の間に配置されており、ステップバー274はベースプレート204の中央と左端の間に配置されている。
(Structure of side stepper 196)
As shown in FIG. 24, the side stepper 196 includes step bars 272 and 274, a front crank mechanism 276 and a rear crank mechanism 277. As shown in FIG. The step bars 272 and 274 are rod-shaped members having substantially rectangular cross sections and extend in the front-rear direction. As shown in FIG. 2, the step bar 272 is arranged between the center and the right end of the base plate 204, and the step bar 274 is arranged between the center and the left end of the base plate 204 in the horizontal direction.
 図24に示すように、前側クランク機構276は、支持プレート278と、プーリ280、282と、テンショナプーリ283と、ベルト284と、クランクアーム286、288と、クランクピン290、292(図25参照)と、クランクプレート294と、ローラ296、298と、ガイドプレート300を備えている。支持プレート278は、ベースプレート204の前端近傍で、ベースプレート204の下面に固定されている。支持プレート278は、左右方向および上下方向に沿って配置されている。プーリ280は、支持プレート278の右端近傍で、支持プレート278よりも後方に配置されている。プーリ282は、支持プレート278の左端近傍で、支持プレート278よりも後方に配置されている。プーリ280、282は、それぞれ、支持プレート278に回転可能に支持されている。プーリ280の径は、プーリ282の径と略同じである。ベルト284は、プーリ280、282に掛け渡されている。このため、プーリ280、282は、一方が順方向または逆方向に回転した時に、他方も順方向または逆方向に略同じ回転数で回転する。また、テンショナプーリ283は、上下方向に移動可能に設けられた可動ベアリング(図示せず)を介して、ベースプレート204(図2参照)に回転可能に支持されている。テンショナプーリ283は、上方からベルト284に当接するように配置されている。このため、テンショナプーリ283を支持する可動ベアリングの、ベースプレート204に対する上下方向の位置を調整することで、ベルト284の張り具合いを調整することができる。 As shown in FIG. 24, the front crank mechanism 276 includes a support plate 278, pulleys 280, 282, a tensioner pulley 283, a belt 284, crank arms 286, 288, and crank pins 290, 292 (see FIG. 25). , a crank plate 294 , rollers 296 and 298 and a guide plate 300 . Support plate 278 is fixed to the lower surface of base plate 204 near the front end of base plate 204 . The support plate 278 is arranged along the left-right direction and the up-down direction. The pulley 280 is arranged near the right end of the support plate 278 behind the support plate 278 . The pulley 282 is arranged behind the support plate 278 near the left end of the support plate 278 . Pulleys 280 and 282 are each rotatably supported by support plate 278 . The diameter of pulley 280 is substantially the same as the diameter of pulley 282 . A belt 284 is stretched over pulleys 280 and 282 . Therefore, when one of the pulleys 280 and 282 rotates in the forward or reverse direction, the other also rotates in the forward or reverse direction at approximately the same number of rotations. Also, the tensioner pulley 283 is rotatably supported by the base plate 204 (see FIG. 2) via a movable bearing (not shown) provided so as to be vertically movable. The tensioner pulley 283 is arranged to contact the belt 284 from above. Therefore, the tension of the belt 284 can be adjusted by adjusting the vertical position of the movable bearing that supports the tensioner pulley 283 with respect to the base plate 204 .
 クランクアーム286、288と、クランクピン290、292(図25参照)と、クランクプレート294と、ローラ296、298と、ガイドプレート300は、支持プレート278よりも前方に配置されている。図25に示すように、クランクアーム286、288は、プーリ280、282の軸280a、282aが嵌め込まれる嵌合孔286a、288aと、クランクアーム286、288の長手方向に延びる長孔286b、288bを備えている。クランクアーム286、288は、プーリ280、282が回転する時に、軸280a、282aを中心としてプーリ280、282と一体となって回転する。長孔286b、288bには、クランクピン290、292が摺動可能に挿入されている。クランクピン290、292は、クランクプレート294を貫通した状態で、クランクプレート294に固定されている。クランクプレート294は、クランクアーム286、288よりも前方側に配置されている。クランクプレート294は、左右方向および上下方向に沿って延びている。ローラ296、298(図24参照)は、クランクプレート294よりも前方側で、クランクピン290、292に取り付けられている。図24に示すように、ローラ296、298は、ガイドプレート300の後面に形成されたガイド溝302、304に入り込んでいる。ガイドプレート300は、クランクプレート294よりも前方で、ベースプレート204の下面に固定されている。ガイドプレート300は、左右方向および上下方向に沿って延びている。図25に示すように、ガイドプレート300のガイド溝302、304は、角部が丸められた略矩形の形状に形成されている。ガイド溝302、304は、図25に破線で示すサイドステップ軌道Sを規定している。サイドステップ軌道Sは、角部が丸められた略矩形の形状を有しており、左右方向に沿った上辺および下辺と、上下方向に沿った右辺および左辺を有する。 The crank arms 286, 288, crank pins 290, 292 (see FIG. 25), crank plate 294, rollers 296, 298, and guide plate 300 are arranged forward of the support plate 278. As shown in FIG. 25, the crank arms 286, 288 have fitting holes 286a, 288a into which the shafts 280a, 282a of the pulleys 280, 282 are fitted, and long holes 286b, 288b extending in the longitudinal direction of the crank arms 286, 288. I have. Crank arms 286, 288 rotate together with pulleys 280, 282 about axes 280a, 282a as pulleys 280, 282 rotate. Crank pins 290 and 292 are slidably inserted into the long holes 286b and 288b. Crank pins 290 , 292 are fixed to crank plate 294 while passing through crank plate 294 . The crank plate 294 is arranged forward of the crank arms 286 and 288 . The crank plate 294 extends along the left-right direction and the up-down direction. Rollers 296 , 298 (see FIG. 24 ) are attached to crank pins 290 , 292 forward of crank plate 294 . As shown in FIG. 24, the rollers 296, 298 enter guide grooves 302, 304 formed on the rear surface of the guide plate 300. As shown in FIG. The guide plate 300 is fixed to the lower surface of the base plate 204 ahead of the crank plate 294 . The guide plate 300 extends along the left-right direction and the up-down direction. As shown in FIG. 25, guide grooves 302 and 304 of guide plate 300 are formed in a substantially rectangular shape with rounded corners. The guide grooves 302, 304 define a side step track S indicated by broken lines in FIG. The side step track S has a substantially rectangular shape with rounded corners, and has upper and lower sides extending in the horizontal direction and right and left sides extending in the vertical direction.
 前側クランク機構276において、プーリ280、282が回転すると、クランクアーム286、288の回転によって、クランクピン290、292がクランクアーム286、288の回転方向に移動する。この際に、ローラ296、298がガイド溝302、304に入り込んでいるため、クランクピン290、292は、長孔286b、288bの内部を摺動しつつ、ガイド溝302、304によって規定されるサイドステップ軌道Sに沿って移動する。これによって、クランクピン290、292が固定されたクランクプレート294も、ガイド溝302、304によって規定されるサイドステップ軌道Sに沿って移動する。 In the front side crank mechanism 276, when the pulleys 280, 282 rotate, the rotation of the crank arms 286, 288 causes the crank pins 290, 292 to move in the rotational direction of the crank arms 286, 288. At this time, since the rollers 296 and 298 are in the guide grooves 302 and 304, the crank pins 290 and 292 slide inside the elongated holes 286b and 288b, and slide along the sides defined by the guide grooves 302 and 304. It moves along the step trajectory S. As a result, the crank plate 294 to which the crank pins 290 and 292 are fixed also moves along the side step track S defined by the guide grooves 302 and 304 .
 図26に示すように、後側クランク機構277は、支持プレート306と、プーリ308、310と、テンショナプーリ311と、ベルト312と、クランクアーム314、316と、クランクピン318、320(図25参照)と、クランクプレート322と、ローラ324、326と、ガイドプレート328を備えている。支持プレート306は、ベースプレート204(図2参照)の後端近傍で、ベースプレート204の下面に固定されている。支持プレート306は、左右方向および上下方向に沿って配置されている。プーリ308は、支持プレート306の右端近傍で、支持プレート306よりも前方に配置されている。プーリ310は、支持プレート306の左端近傍で、支持プレート306よりも前方に配置されている。プーリ308、310は、それぞれ、支持プレート306に回転可能に支持されている。プーリ308の径は、プーリ310の径と略同じであり、前側クランク機構276のプーリ280、282の径と略同じである。ベルト312は、プーリ308、310に掛け渡されている。このため、プーリ308、310は、一方が順方向または逆方向に回転した時に、他方も順方向または逆方向に略同じ回転数で回転する。また、テンショナプーリ311は、上下方向に移動可能に設けられた可動ベアリング(図示せず)を介して、ベースプレート204に回転可能に支持されている。テンショナプーリ311は、上方からベルト312に当接するように配置されている。このため、テンショナプーリ311を支持する可動ベアリングの、ベースプレート204に対する上下方向の位置を調整することで、ベルト312の張り具合いを調整することができる。 As shown in FIG. 26, the rear crank mechanism 277 includes a support plate 306, pulleys 308 and 310, a tensioner pulley 311, a belt 312, crank arms 314 and 316, and crank pins 318 and 320 (see FIG. 25). ), a crank plate 322 , rollers 324 and 326 and a guide plate 328 . The support plate 306 is fixed to the lower surface of the base plate 204 near the rear end of the base plate 204 (see FIG. 2). The support plate 306 is arranged along the left-right direction and the up-down direction. The pulley 308 is arranged near the right end of the support plate 306 and forward of the support plate 306 . The pulley 310 is arranged near the left end of the support plate 306 and forward of the support plate 306 . Pulleys 308 and 310 are each rotatably supported by support plate 306 . The diameter of pulley 308 is approximately the same as the diameter of pulley 310 and approximately the same as the diameter of pulleys 280 and 282 of front crank mechanism 276 . A belt 312 is stretched over pulleys 308 and 310 . Therefore, when one of the pulleys 308 and 310 rotates in the forward direction or the reverse direction, the other also rotates in the forward direction or the reverse direction at approximately the same number of rotations. In addition, the tensioner pulley 311 is rotatably supported by the base plate 204 via a movable bearing (not shown) provided so as to be movable in the vertical direction. The tensioner pulley 311 is arranged to contact the belt 312 from above. Therefore, the tension of the belt 312 can be adjusted by adjusting the vertical position of the movable bearing that supports the tensioner pulley 311 with respect to the base plate 204 .
 クランクアーム314、316と、クランクピン318、320(図25参照)と、クランクプレート322と、ローラ324、326と、ガイドプレート328は、支持プレート306よりも後方に配置されている。図25に示すように、クランクアーム314、316は、プーリ308、310の軸308a、310aが嵌め込まれる嵌合孔314a、316aと、クランクアーム314、316の長手方向に延びる長孔314b、316bを備えている。クランクアーム314、316は、プーリ308、310が回転する時に、軸308a、310aを中心としてプーリ308、310と一体となって回転する。長孔314b、316bには、クランクピン318、320が摺動可能に挿入されている。クランクピン318、320は、クランクプレート322を貫通した状態で、クランクプレート322に固定されている。クランクプレート322は、クランクアーム314、316よりも後方側に配置されている。クランクプレート322は、左右方向および上下方向に沿って延びている。ローラ324、326(図26参照)は、クランクプレート322よりも後方側で、クランクピン318、320に取り付けられている。図26に示すように、ローラ324、326は、ガイドプレート328の前面に形成されたガイド溝330、332に入り込んでいる。ガイドプレート328は、クランクプレート322よりも後方で、ベースプレート204の下面に固定されている。ガイドプレート328は、左右方向および上下方向に沿って延びている。図25に示すように、ガイドプレート328のガイド溝330、332は、角部が丸められた略矩形の形状に形成されている。ガイド溝330、332は、図25に破線で示すサイドステップ軌道Sを規定している。サイドステップ軌道Sは、角部が丸められた略矩形の形状を有しており、左右方向に沿った上辺および下辺と、上下方向に沿った右辺および左辺を有する。ガイド溝330、332によって規定されるサイドステップ軌道Sは、ガイド溝302、304によって規定されるサイドステップ軌道Sと同一である。 The crank arms 314 , 316 , crank pins 318 , 320 (see FIG. 25), crank plate 322 , rollers 324 , 326 and guide plate 328 are arranged behind the support plate 306 . As shown in FIG. 25, the crank arms 314, 316 have fitting holes 314a, 316a into which the shafts 308a, 310a of the pulleys 308, 310 are fitted, and long holes 314b, 316b extending in the longitudinal direction of the crank arms 314, 316. I have. Crank arms 314, 316 rotate together with pulleys 308, 310 about axes 308a, 310a as pulleys 308, 310 rotate. Crank pins 318 and 320 are slidably inserted into the long holes 314b and 316b. Crank pins 318 , 320 are fixed to crank plate 322 while passing through crank plate 322 . The crank plate 322 is arranged rearwardly of the crank arms 314 and 316 . The crank plate 322 extends along the left-right direction and the up-down direction. Rollers 324 , 326 (see FIG. 26 ) are attached to crankpins 318 , 320 behind crank plate 322 . As shown in FIG. 26, the rollers 324, 326 enter guide grooves 330, 332 formed on the front surface of the guide plate 328. As shown in FIG. The guide plate 328 is fixed to the lower surface of the base plate 204 behind the crank plate 322 . The guide plate 328 extends along the left-right direction and the up-down direction. As shown in FIG. 25, the guide grooves 330 and 332 of the guide plate 328 are formed in a substantially rectangular shape with rounded corners. The guide grooves 330, 332 define a side step track S indicated by broken lines in FIG. The side step track S has a substantially rectangular shape with rounded corners, and has upper and lower sides extending in the horizontal direction and right and left sides extending in the vertical direction. Side step trajectory S defined by guide grooves 330 and 332 is the same as side step trajectory S defined by guide grooves 302 and 304 .
 後側クランク機構277において、プーリ308、310が回転すると、クランクアーム314、316の回転によって、クランクピン318、320がクランクアーム314、316の回転方向に移動する。この際に、ローラ324、326がガイド溝330、332に入り込んでいるため、クランクピン318、320は、長孔314b、316bの内部を摺動しつつ、ガイド溝330、332によって規定されるサイドステップ軌道Sに沿って移動する。これによって、クランクピン318、320が固定されたクランクプレート322も、ガイド溝330、332によって規定されるサイドステップ軌道Sに沿って移動する。 In the rear crank mechanism 277, when the pulleys 308, 310 rotate, the crank arms 314, 316 rotate, causing the crank pins 318, 320 to move in the rotational direction of the crank arms 314, 316. At this time, since the rollers 324 and 326 are in the guide grooves 330 and 332, the crank pins 318 and 320 slide inside the elongated holes 314b and 316b, and slide along the sides defined by the guide grooves 330 and 332. It moves along the step trajectory S. As a result, the crank plate 322 to which the crank pins 318 and 320 are fixed also moves along the side step track S defined by the guide grooves 330 and 332 .
 図2に示すように、ステップバー272、274は、それぞれ、前端が前側クランク機構276のクランクプレート294に固定されており、後端が後側クランク機構277のクランクプレート322に固定されている。図24に示すように、前側クランク機構276のプーリ282と後側クランク機構277のプーリ310のそれぞれは、動力伝達機構402の回転伝達シャフト428に連結されている。このため、回転伝達シャフト428が回転する場合、前側クランク機構276のプーリ280、282と後側クランク機構277のプーリ308、310は、互いに同期して回転するとともに、前側クランク機構276のクランクプレート294と後側クランク機構277のクランクプレート322は、互いに同期して動作する。すなわち、回転伝達シャフト428が順方向または逆方向に回転すると、プーリ280、282、308、310が順方向または逆方向に回転し、それによってクランクプレート294、322がサイドステップ軌道Sに沿って右回りまたは左回りに移動し、ステップバー272、274もサイドステップ軌道Sに沿って右回りまたは左回りに移動する。なお、前側クランク機構276および後側クランク機構277の一方(例えば前側クランク機構276)には、ゼロ点検知センサ(図示せず)が設けられている。ゼロ点検知センサは、例えば、クランクプレート294に固定された永久磁石(図示せず)と、ガイドプレート300に固定されたホール素子(図示せず)を備えている。ゼロ点検知センサは、サイドステップ軌道Sの上辺の左右方向の中央をゼロ点位置として、クランクプレート294、322がゼロ点位置にあるか否かを検出することができる。 As shown in FIG. 2 , the step bars 272 and 274 have their front ends fixed to the crank plate 294 of the front crank mechanism 276 and their rear ends fixed to the crank plate 322 of the rear crank mechanism 277 . As shown in FIG. 24 , pulley 282 of front crank mechanism 276 and pulley 310 of rear crank mechanism 277 are each connected to rotation transmission shaft 428 of power transmission mechanism 402 . Therefore, when the rotation transmission shaft 428 rotates, the pulleys 280 and 282 of the front crank mechanism 276 and the pulleys 308 and 310 of the rear crank mechanism 277 rotate in synchronization with each other, and the crank plate 294 of the front crank mechanism 276 rotates. and the crank plate 322 of the rear crank mechanism 277 operate in synchronization with each other. That is, when the rotation transmission shaft 428 rotates in the forward or reverse direction, the pulleys 280, 282, 308, 310 rotate in the forward or reverse direction, which causes the crank plates 294, 322 to move along the side step path S to the right. The step bars 272 and 274 also move clockwise or counterclockwise along the side step track S. One of the front crank mechanism 276 and the rear crank mechanism 277 (for example, the front crank mechanism 276) is provided with a zero point detection sensor (not shown). The zero point detection sensor includes, for example, a permanent magnet (not shown) fixed to the crank plate 294 and a Hall element (not shown) fixed to the guide plate 300 . The zero point detection sensor can detect whether or not the crank plates 294 and 322 are at the zero point position with the center of the upper side of the side step track S in the horizontal direction as the zero point position.
 図27に示すように、クランクプレート294、322がサイドステップ軌道S(図25参照)の上辺にあり、ステップバー272、274が上方に移動している状態では、クランクプレート294、322やステップバー272、274は、第1鉄筋R1および第2鉄筋R2から離反している。この状態では、右側クローラ192と左側クローラ194が、第1鉄筋R1および第2鉄筋R2に当接しているので、鉄筋結束ロボット1は、右側クローラ192と左側クローラ194を駆動して、車台190を前後方向に移動させることができる。また、鉄筋結束ロボット1は、右側クローラ192と左側クローラ194に速度差を与えることで、第1鉄筋R1および第2鉄筋R2に対する車台190の向きを変えることもできる。 As shown in FIG. 27, when the crank plates 294, 322 are on the upper side of the side step track S (see FIG. 25) and the step bars 272, 274 are moving upward, the crank plates 294, 322 and the step bars 272, 274 are separated from the first reinforcing bar R1 and the second reinforcing bar R2. In this state, the right crawler 192 and the left crawler 194 are in contact with the first reinforcing bar R1 and the second reinforcing bar R2. It can be moved forward and backward. Further, the reinforcing bar binding robot 1 can change the direction of the chassis 190 with respect to the first reinforcing bar R1 and the second reinforcing bar R2 by giving a speed difference between the right crawler 192 and the left crawler 194 .
 図27に示す状態から、回転伝達シャフト428(図24参照)が回転すると、クランクプレート294、322がサイドステップ軌道S(図25参照)に沿って移動し、それに伴ってステップバー272、274が下方に移動することで、クランクプレート294、322とステップバー272、274が第2鉄筋R2に当接する。この状態からさらに回転伝達シャフト428が回転すると、クランクプレート294、322とステップバー272、274がさらに下方に移動することで、図28に示すように、右側クローラ192と左側クローラ194は第2鉄筋R2から離反する。そのまま回転伝達シャフト428が回転すると、サイドステップ軌道Sの左右方向の幅に相当するステップ幅だけ、車台190が右方向または左方向に移動した後、クランクプレート294、322とステップバー272、274が上方に向けて移動し、右側クローラ192と左側クローラ194が再び第1鉄筋R1および第2鉄筋R2に当接するとともに、クランクプレート294、322とステップバー272、274が第2鉄筋R2から離反する。上記のように、鉄筋結束ロボット1は、サイドステッパ196を駆動することによって、車台190を、右方向または左方向に、所定のステップ幅だけ移動させることができる。 When the rotation transmission shaft 428 (see FIG. 24) rotates from the state shown in FIG. 27, the crank plates 294, 322 move along the side step track S (see FIG. 25), and accordingly the step bars 272, 274 move. By moving downward, the crank plates 294, 322 and the step bars 272, 274 come into contact with the second reinforcing bars R2. When the rotation transmission shaft 428 rotates further from this state, the crank plates 294, 322 and the step bars 272, 274 move further downward, and as shown in FIG. Move away from R2. When the rotation transmission shaft 428 rotates as it is, the chassis 190 moves rightward or leftward by a step width corresponding to the lateral width of the side step track S, and then the crank plates 294, 322 and the step bars 272, 274 Moving upward, the right crawler 192 and the left crawler 194 contact the first reinforcing bar R1 and the second reinforcing bar R2 again, and the crank plates 294, 322 and the step bars 272, 274 separate from the second reinforcing bar R2. As described above, the reinforcing bar binding robot 1 can move the chassis 190 rightward or leftward by a predetermined step width by driving the side stepper 196 .
 なお、ガイド溝302、304、330、332によって規定されるサイドステップ軌道Sは、上記のような略矩形の形状に限らず、種々の形状とすることができる。サイドステップ軌道Sは、ステップバー272、274がサイドステップ軌道Sに沿って移動する際に、ステップバー272、274の下端が右側クローラ192および左側クローラ194の下端よりも下方に移動し、その後にステップバー272、274の下端が左右方向に移動し、その後にステップバー272、274の下端が右側クローラ192および左側クローラ194の下端よりも上方に移動するものであれば、どのような形状であってもよい。例えば、サイドステップ軌道Sは、円形状としてもよいし、楕円形状としてもよいし、下方に底辺を有する三角形状としてもよいし、五角形以上の多角形状としてもよい。 Note that the side step track S defined by the guide grooves 302, 304, 330, 332 is not limited to the substantially rectangular shape as described above, and can have various shapes. In the side step track S, when the step bars 272 and 274 move along the side step track S, the lower ends of the step bars 272 and 274 move below the lower ends of the right crawler 192 and the left crawler 194, and then Any shape can be used as long as the lower ends of the step bars 272 and 274 move in the horizontal direction and then the lower ends of the step bars 272 and 274 move higher than the lower ends of the right crawler 192 and the left crawler 194. may For example, the side step track S may be circular, elliptical, triangular with a lower base, or polygonal with pentagons or more.
(動力伝達機構402の構成)
 図29に示すように、動力伝達機構402は、遊星歯車機構406と、第1出力シャフト414と、第2出力シャフト416と、第1平歯車418と、第2平歯車420と、第3平歯車422と、ウォームシャフト424と、ウォームホイール426と、回転伝達シャフト428と、ユニバーサルジョイント430と、切換アクチュエータ432を備えている。遊星歯車機構406と、第1出力シャフト414と、第2出力シャフト416と、第1平歯車418と、第2平歯車420と、第3平歯車422と、ウォームシャフト424と、ウォームホイール426は、ギヤボックス438(図24参照)に収容されている。
(Configuration of power transmission mechanism 402)
As shown in FIG. 29, the power transmission mechanism 402 includes a planetary gear mechanism 406, a first output shaft 414, a second output shaft 416, a first spur gear 418, a second spur gear 420, and a third spur gear. A gear 422 , a worm shaft 424 , a worm wheel 426 , a rotation transmission shaft 428 , a universal joint 430 and a switching actuator 432 are provided. Planetary gear mechanism 406, first output shaft 414, second output shaft 416, first spur gear 418, second spur gear 420, third spur gear 422, worm shaft 424, and worm wheel 426 are , are housed in a gear box 438 (see FIG. 24).
 遊星歯車機構406には、左方から兼用モータ400が連結されている。兼用モータ400は、遊星歯車機構406の太陽歯車(図示せず)に連結されている。兼用モータ400は、例えば直流ブラシレスモータである。また、遊星歯車機構406の遊星キャリヤ410は、第1出力シャフト414とユニバーサルジョイント430を介して、昇降装置6のウォームシャフト636(図30参照)に連結されている。遊星歯車機構406の内歯車412は、第1平歯車418、第2出力シャフト416、第2平歯車420、第3平歯車422、ウォームシャフト424、ウォームホイール426、回転伝達シャフト428を順に介して、サイドステッパ196に連結されている。 A dual-purpose motor 400 is connected to the planetary gear mechanism 406 from the left. Dual-purpose motor 400 is coupled to a sun gear (not shown) of planetary gear mechanism 406 . The dual-purpose motor 400 is, for example, a DC brushless motor. Also, the planetary carrier 410 of the planetary gear mechanism 406 is connected to the worm shaft 636 (see FIG. 30) of the lifting device 6 via the first output shaft 414 and the universal joint 430 . The internal gear 412 of the planetary gear mechanism 406 passes through a first spur gear 418, a second output shaft 416, a second spur gear 420, a third spur gear 422, a worm shaft 424, a worm wheel 426, and a rotation transmission shaft 428 in order. , is connected to the side stepper 196 .
 遊星キャリヤ410の外側面には、内側係合凹部440が形成されている。内側係合凹部440は、周方向に並んで配置されており、径方向外側から径方向内側に向けて陥凹する複数の内側陥凹溝440aを有する。また、内歯車412の内側面には、外側陥凹溝442aが形成されている。外側陥凹溝442aは、周方向に並んで配置されており、径方向内側から径方向外側に向けて陥凹する複数の外側陥凹溝442aを有する。 An inner engaging recess 440 is formed on the outer surface of the planetary carrier 410 . The inner engaging recesses 440 are arranged side by side in the circumferential direction and have a plurality of inner recessed grooves 440a recessed from the radially outer side to the radially inner side. In addition, an outer recessed groove 442a is formed on the inner surface of the internal gear 412. As shown in FIG. The outer recessed grooves 442a are arranged side by side in the circumferential direction and have a plurality of outer recessed grooves 442a recessed from the radially inner side to the radially outer side.
 切換アクチュエータ432は、係止部材434と、位置検出機構436と、プルソレノイド452と、キャップ456を備えている。係止部材434は、前端近傍において、左右方向に沿って延びるように配置された係止ピン446を備えている。係止部材434は、キャップ456によって前後方向にスライド可能に保持されている。係止部材434は、キャップ456内において、プルソレノイド452の出力軸に連結されている。また、キャップ456内には、プルソレノイド452の出力軸を前方向に付勢する圧縮バネ(図示せず)が設けられている。ロボット制御ユニット10は、プルソレノイド452を通電状態と非通電状態の間で切り換えることができる。 The switching actuator 432 includes a locking member 434 , a position detection mechanism 436 , a pull solenoid 452 and a cap 456 . The locking member 434 has a locking pin 446 extending in the left-right direction in the vicinity of the front end. The locking member 434 is held by a cap 456 so as to be slidable in the front-rear direction. Locking member 434 is connected to the output shaft of pull solenoid 452 within cap 456 . A compression spring (not shown) is provided in the cap 456 to bias the output shaft of the pull solenoid 452 forward. The robot control unit 10 can switch the pull solenoid 452 between an energized state and a non-energized state.
 図29に示す状態では、プルソレノイド452は通電状態である。プルソレノイド452の出力軸は、プルソレノイド452の吸引力によって、圧縮バネの付勢力に抗して後方向に移動されている。係止部材434は、プルソレノイド452の出力軸に連動して後方向に移動されている。この際、係止部材434の係止ピン446は、内歯車412の外側係合凹部442に係合し、内歯車412の回転を禁止している。この状態では、兼用モータ400の動力は、遊星歯車機構406、第1出力シャフト414、ユニバーサルジョイント430を順に介して、昇降装置6(図30参照)に伝達される。本明細書では、兼用モータ400の動力が昇降装置6に伝達される状態を、「第1伝達状態」と呼ぶことがある。 In the state shown in FIG. 29, the pull solenoid 452 is energized. The output shaft of the pull solenoid 452 is moved rearward against the biasing force of the compression spring by the attractive force of the pull solenoid 452 . The locking member 434 is moved rearward in conjunction with the output shaft of the pull solenoid 452 . At this time, the locking pin 446 of the locking member 434 engages with the outer engaging recess 442 of the internal gear 412 to prohibit rotation of the internal gear 412 . In this state, the power of the dual-purpose motor 400 is transmitted to the lifting device 6 (see FIG. 30) through the planetary gear mechanism 406, the first output shaft 414, and the universal joint 430 in this order. In this specification, the state in which the power of the dual-purpose motor 400 is transmitted to the lifting device 6 may be referred to as the "first transmission state".
 図29に示す状態から、プルソレノイド452を非通電状態に切り換えると、係止部材434は、圧縮バネの付勢力に前方向に移動される。係止部材434は、プルソレノイド452の出力軸に連動して前方向に移動される。これにより、係止部材434の係止ピン446は、遊星キャリヤ410の内側係合凹部440に係合する。係止ピン446が内側係合凹部440に係合した状態では、内歯車412の回転が禁止される。この状態では、兼用モータ400の動力は、遊星歯車機構406、第1平歯車418、第2出力シャフト416、第2平歯車420、第3平歯車422、ウォームシャフト424、ウォームホイール426、回転伝達シャフト428を順に介して、サイドステッパ196に伝達される。本明細書では、兼用モータ400の動力がサイドステッパ196に伝達される状態を、「第2伝達状態」と呼ぶことがある。 When the pull solenoid 452 is switched from the state shown in FIG. 29 to the non-energized state, the locking member 434 is moved forward by the biasing force of the compression spring. The locking member 434 is moved forward in conjunction with the output shaft of the pull solenoid 452 . The locking pin 446 of the locking member 434 thereby engages the inner engagement recess 440 of the planet carrier 410 . Rotation of the internal gear 412 is prohibited when the locking pin 446 is engaged with the inner engagement recess 440 . In this state, the power of the dual-purpose motor 400 is the planetary gear mechanism 406, the first spur gear 418, the second output shaft 416, the second spur gear 420, the third spur gear 422, the worm shaft 424, the worm wheel 426, and the rotation transmission. It is transmitted to the side stepper 196 through the shaft 428 in turn. In this specification, the state in which the power of dual-purpose motor 400 is transmitted to side stepper 196 is sometimes referred to as the "second transmission state."
 位置検出機構436は、キャップ456の上方に取り付けられている。位置検出機構436は、係止部材434の移動に連動するスライドスイッチであり、係止部材434の位置を検出することができる。このため、ロボット制御ユニット10は、位置検出機構436から送信される信号に基づいて、動力伝達機構402が第1伝達状態となっていることや、動力伝達機構402が第2伝達状態となっていることを検出できる。 The position detection mechanism 436 is attached above the cap 456 . The position detection mechanism 436 is a slide switch interlocked with the movement of the locking member 434 and can detect the position of the locking member 434 . Therefore, based on the signal transmitted from the position detection mechanism 436, the robot control unit 10 determines whether the power transmission mechanism 402 is in the first transmission state or the power transmission mechanism 402 is in the second transmission state. can be detected.
(昇降装置6の構成)
 図30に示すように、昇降装置6は、ウォームギヤケース632と、昇降アーム634と、スライダクランク機構638を備えている。ウォームギヤケース632は、ベースプレート204(図2参照)に固定されている。昇降アーム634は、ねじによってウォームギヤケース632に固定されている。昇降アーム634は、ウォームギヤケース632から前方左方上方に向かって延びている。ウォームギヤケース632は、ウォームシャフト636を備えている。スライダクランク機構638は、クランクシャフト642と、クランクアーム644と、クランクピン646と、クランクロッド648と、スライダピン650と、スライダ652と、レール653と、ベース部材654を備えている。
(Structure of lifting device 6)
As shown in FIG. 30, the lifting device 6 includes a worm gear case 632, a lifting arm 634, and a slider crank mechanism 638. As shown in FIG. Worm gear case 632 is fixed to base plate 204 (see FIG. 2). The lift arm 634 is fixed to the worm gear case 632 by screws. The lifting arm 634 extends from the worm gear case 632 forward and leftward. The worm gear case 632 has a worm shaft 636 . Slider-crank mechanism 638 includes crankshaft 642 , crank arm 644 , crank pin 646 , crank rod 648 , slider pin 650 , slider 652 , rail 653 and base member 654 .
 クランクシャフト642は、ウォームギヤケース632に内蔵されたウォームギヤ(図示せず)を介して、ウォームシャフト636に連結されている。クランクアーム644は、クランクシャフト642に固定されている。クランクピン646は、クランクアーム644およびクランクロッド648のそれぞれに回転可能に保持されている。スライダピン650は、クランクロッド648に回転可能に保持されている。スライダピン650は、スライダ652に固定されている。スライダ652は、昇降アーム634に設けられたレール653によって、スライド可能に保持されている。ベース部材654は、スライダピン650に回転可能に設けられている。ベース部材654は、鉄筋結束装置2のハウジング12が備える嵌合部12a(図3参照)に嵌合した状態で、ねじ(図示せず)によってハウジング12に固定される。すなわち、昇降装置6は、ベース部材654を介して鉄筋結束装置2を保持している。図2に示すように、昇降装置6に保持された状態の鉄筋結束装置2では、鉄筋結束装置2の前方向が鉄筋結束ロボット1の下方に向いており、鉄筋結束装置2の後方向が鉄筋結束ロボット1の上方に向いている。 The crankshaft 642 is connected to the worm shaft 636 via a worm gear (not shown) built into the worm gear case 632 . Crank arm 644 is fixed to crankshaft 642 . Crank pin 646 is rotatably held on each of crank arm 644 and crank rod 648 . Slider pin 650 is rotatably held on crank rod 648 . Slider pin 650 is fixed to slider 652 . The slider 652 is slidably held by a rail 653 provided on the elevating arm 634 . The base member 654 is rotatably provided on the slider pin 650 . The base member 654 is fixed to the housing 12 by a screw (not shown) while being fitted in the fitting portion 12a (see FIG. 3) of the housing 12 of the reinforcing bar binding device 2. As shown in FIG. That is, the lifting device 6 holds the reinforcing bar binding device 2 via the base member 654 . As shown in FIG. 2, in the reinforcing bar binding device 2 held by the lifting device 6, the front direction of the reinforcing bar binding device 2 faces downward of the reinforcing bar binding robot 1, and the rear direction of the reinforcing bar binding device 2 faces the reinforcing bar. It faces above the bundling robot 1 .
 図30に示す状態では、スライダクランク機構638は上死点位置にある。この時、鉄筋結束装置2(図3参照)は、第1鉄筋R1および第2鉄筋R2から離反した位置で保持される。本明細書では、この状態における鉄筋結束装置2の位置を「上限位置」と呼ぶことがある。図30に示す状態から、ウォームシャフト636が順方向または逆方向に回転すると、クランクシャフト642およびクランクアーム644が順方向または逆方向に回転し、クランクピン646がクランクシャフト642の回転軸を中心とした円周上を移動する。この時、クランクロッド648を介してクランクピン646と連結するスライダピン650およびスライダ652は、クランクピン646と一定の距離を保ちながら、レール653に沿って下方に移動する。この時、ベース部材654に固定された鉄筋結束装置2は、車台190に対して下降する。本実施例では、鉄筋結束装置2を下降させる場合、クランクピン646が図30に示す位置からクランクシャフト642の上方側を通過して図31に示す位置に至るように、クランクアーム644を回転させる。 In the state shown in FIG. 30, the slider crank mechanism 638 is at the top dead center position. At this time, the reinforcing bar binding device 2 (see FIG. 3) is held at a position separated from the first reinforcing bar R1 and the second reinforcing bar R2. In this specification, the position of the reinforcing bar binding device 2 in this state may be referred to as the "upper limit position". When the worm shaft 636 rotates forward or reverse from the state shown in FIG. move around the circle. At this time, the slider pin 650 and slider 652 , which are connected to the crank pin 646 via the crank rod 648 , move downward along the rail 653 while keeping a constant distance from the crank pin 646 . At this time, the reinforcing bar binding device 2 fixed to the base member 654 descends with respect to the chassis 190 . In this embodiment, when lowering the reinforcing bar binding device 2, the crank arm 644 is rotated so that the crank pin 646 passes from the position shown in FIG. 30 to the position shown in FIG. .
 図31に示す状態では、スライダクランク機構638は下死点位置にある。この時、鉄筋結束装置2(図3参照)は、鉄筋交差箇所の結束が可能となる位置で保持される。本明細書では、この状態における鉄筋結束装置2の位置を「下限位置」と呼ぶことがある。図31に示す状態から、ウォームシャフト636が順方向または逆方向に回転すると、クランクシャフト642およびクランクアーム644が順方向または逆方向に回転し、クランクピン646がクランクシャフト642の回転軸を中心とした円周上を移動する。この時、クランクロッド648を介してクランクピン646と連結するスライダピン650およびスライダ652は、クランクピン646と一定の距離を保ちながら、レール653に沿って上方に移動する。この時、ベース部材654に固定された鉄筋結束装置2は、車台190に対して上昇する。本実施例では、鉄筋結束装置2を上昇させる場合、クランクピン646が図31に示す位置からクランクシャフト642の下方側を通過して図30に示す位置に至るように、クランクアーム644を回転させる。 In the state shown in FIG. 31, the slider crank mechanism 638 is at the bottom dead center position. At this time, the reinforcing bar binding device 2 (see FIG. 3) is held at a position that enables binding of the reinforcing bar intersections. In this specification, the position of the reinforcing bar binding device 2 in this state may be referred to as the "lower limit position". When the worm shaft 636 rotates forward or reverse from the state shown in FIG. move around the circle. At this time, the slider pin 650 and slider 652 , which are connected to the crank pin 646 via the crank rod 648 , move upward along the rail 653 while keeping a constant distance from the crank pin 646 . At this time, the reinforcing bar binding device 2 fixed to the base member 654 rises with respect to the chassis 190 . In this embodiment, when the rebar binding device 2 is lifted, the crank arm 644 is rotated so that the crank pin 646 passes through the lower side of the crank shaft 642 from the position shown in FIG. 31 and reaches the position shown in FIG. .
 スライダ652は、スライダピン650の回転軸A1に沿ってベース部材654に向かって突出した第1干渉ピン656と、回転軸A1の周方向に沿って切り抜かれた長孔658を備えている。ベース部材654は、回転軸A1に沿ってスライダ652に向かって突出するとともに、長孔658に挿入される第2干渉ピン660を備えている。長孔658は、第2干渉ピン660を回転軸A1の周方向にスライド可能に受け入れている。そして、スライダピン650には、第1干渉ピン656に対して第2干渉ピン660を回転軸A1の周方向の第1周方向に付勢するように配置された捩りばね662が取り付けられている。このため、第2干渉ピン660は、捩りばね662の付勢力によって、長孔658の端部側面に第1周方向から当接した状態で保持されるとともに、捩りばね662の付勢力に抗して第1周方向の反対方向である第2周方向に揺動可能となっている。すなわち、ベース部材654に固定された鉄筋結束装置2は、回転軸A1の第2周方向に揺動可能に保持されている。これによって、例えば鉄筋結束装置2が第1鉄筋R1、第2鉄筋R2またはその他の障害物に衝突した際に、鉄筋結束装置2が第2周方向に揺動することによって、鉄筋結束装置2および昇降装置6への衝撃が緩和される。 The slider 652 has a first interference pin 656 protruding toward the base member 654 along the rotation axis A1 of the slider pin 650, and an elongated hole 658 cut out along the circumferential direction of the rotation axis A1. The base member 654 has a second interference pin 660 that protrudes toward the slider 652 along the rotation axis A1 and is inserted into the slot 658 . The long hole 658 receives the second interference pin 660 so as to be slidable in the circumferential direction of the rotation axis A1. A torsion spring 662 is attached to the slider pin 650 so as to urge the second interference pin 660 against the first interference pin 656 in the first circumferential direction of the rotation axis A1. . Therefore, the biasing force of the torsion spring 662 keeps the second interference pin 660 in contact with the end side surface of the long hole 658 from the first circumferential direction, and resists the biasing force of the torsion spring 662 . can swing in the second circumferential direction opposite to the first circumferential direction. That is, the reinforcing bar binding device 2 fixed to the base member 654 is held swingably in the second circumferential direction of the rotation axis A1. As a result, for example, when the reinforcing bar binding device 2 collides with the first reinforcing bar R1, the second reinforcing bar R2, or other obstacles, the reinforcing bar binding device 2 and the reinforcing bar binding device 2 swing in the second circumferential direction. The impact on the lifting device 6 is mitigated.
 図32に示すように、昇降装置6は、クランクシャフト642(図30参照)に固定されており、クランクシャフト642の径方向外側に突出した第1フィン663および第2フィン664が形成されたカム666をさらに備えている。第1フィン663の一端と第2フィン664の一端は、クランクシャフト642の回転軸の周方向において、互いに重なり合っている。一方で、第1フィン663の他端と第2フィン664の他端は、クランクシャフト642の回転軸の周方向において、互いに離間している。このため、第1フィン663の他端と第2フィン664の他端の間には、クランクシャフト642の回転軸の周方向に幅を有する隙間が形成されている。また、昇降装置6は、それぞれが発光部と受光部を有する第1フォトセンサ668と第2フォトセンサ670をさらに備えている。第1フォトセンサ668と第2フォトセンサ670のそれぞれは、発光部と受光部の間が遮られていない場合に、ロボット制御ユニット10にオン信号を送信し、発光部と受光部の間が遮られている場合に、ロボット制御ユニット10にオフ信号を送信する。第1フォトセンサ668と第2フォトセンサ670は、クランクシャフト642の回転軸に沿って並んだ状態で、ウォームギヤケース632に固定されている。 As shown in FIG. 32, the lifting device 6 is fixed to a crankshaft 642 (see FIG. 30), and has a cam formed with a first fin 663 and a second fin 664 protruding radially outward of the crankshaft 642. 666 is further provided. One end of the first fin 663 and one end of the second fin 664 overlap each other in the circumferential direction of the rotation axis of the crankshaft 642 . On the other hand, the other end of the first fin 663 and the other end of the second fin 664 are separated from each other in the circumferential direction of the rotation axis of the crankshaft 642 . Therefore, between the other end of the first fin 663 and the other end of the second fin 664, a gap having a width in the circumferential direction of the rotating shaft of the crankshaft 642 is formed. The lifting device 6 further includes a first photosensor 668 and a second photosensor 670 each having a light emitting portion and a light receiving portion. Each of the first photosensor 668 and the second photosensor 670 transmits an ON signal to the robot control unit 10 when the space between the light emitting unit and the light receiving unit is not blocked, and the space between the light emitting unit and the light receiving unit is blocked. If so, it sends an off signal to the robot control unit 10 . The first photosensor 668 and the second photosensor 670 are fixed to the worm gear case 632 so as to be aligned along the rotational axis of the crankshaft 642 .
 鉄筋結束装置2が下限位置と上限位置の間の位置にある場合、第1フィン663または第2フィン664の一方は、第1フォトセンサ668または第2フォトセンサ670の一方における発光部と受光部の間を遮る位置にある。第1フィン663または第2フィン664の他方は、第1フォトセンサ668または第2フォトセンサ670の一方における発光部と受光部の間を遮らない位置にある。この状態から、鉄筋結束装置2が下限位置に移動されると、第1フィン663と第2フィン664の互いに重なり合う部分が、クランクシャフト642の回転軸の周方向において、第1フォトセンサ668および第2フォトセンサ670と略同位置に移動される。すなわち、鉄筋結束装置2が下限位置にある場合、第1フォトセンサ668における発光部と受光部の間は第1フィン663によって遮られ、第2フォトセンサ670における発光部と受光部の間は第2フィン664よって遮られる。一方、鉄筋結束装置2が上限位置に移動されると、第1フィン663と第2フィン664の互いに離間している部分が、クランクシャフト642の回転軸の周方向において、第1フォトセンサ668および第2フォトセンサ670と略同位置に移動される。すなわち、鉄筋結束装置2が上限位置にある場合、第1フォトセンサ668における発光部と受光部の間は遮られず、第2フォトセンサ670における発光部と受光部の間も遮られない。このため、ロボット制御ユニット10は、第1フォトセンサ668および第2フォトセンサ670から送信される信号に基づいて、鉄筋結束装置2が上限位置に達したことや、鉄筋結束装置2が下限位置に達したこと等を検出することができる。 When the reinforcing bar binding device 2 is at a position between the lower limit position and the upper limit position, one of the first fin 663 or the second fin 664 is the light emitting part and the light receiving part of one of the first photosensor 668 or the second photosensor 670. It is in a position to block between The other of the first fin 663 and the second fin 664 is positioned so as not to block the light-emitting portion and the light-receiving portion of either the first photosensor 668 or the second photosensor 670 . From this state, when the reinforcing bar binding device 2 is moved to the lower limit position, the overlapping portions of the first fin 663 and the second fin 664 are moved in the circumferential direction of the rotation axis of the crankshaft 642 by the first photosensor 668 and the first photo sensor 668 . 2 photosensor 670 is moved to substantially the same position. That is, when the reinforcing bar binding device 2 is at the lower limit position, the first fin 663 blocks the space between the light emitting portion and the light receiving portion of the first photosensor 668, and the second light emitting portion and the light receiving portion of the second photosensor 670 do not have a space between the light emitting portion and the light receiving portion. It is blocked by two fins 664 . On the other hand, when the rebar binding device 2 is moved to the upper limit position, the parts of the first fin 663 and the second fin 664 that are spaced apart from each other move in the circumferential direction of the rotation axis of the crankshaft 642 to the first photosensor 668 and It is moved to substantially the same position as the second photosensor 670 . That is, when the reinforcing bar binding device 2 is at the upper limit position, the light-emitting portion and the light-receiving portion of the first photosensor 668 are not blocked, and the light-emitting portion and the light-receiving portion of the second photosensor 670 are not blocked. Therefore, based on the signals transmitted from the first photosensor 668 and the second photosensor 670, the robot control unit 10 detects that the reinforcing bar binding device 2 has reached the upper limit position and that the reinforcing bar binding device 2 has reached the lower limit position. It is possible to detect such things as having been reached.
(ロボットイニシャライズ処理)
 電源スイッチを介して、鉄筋結束ロボット1に電源が投入されるとロボット制御ユニット10は、ロボットイニシャライズ処理を実行する。なお、本明細書では、「電源の投入」とは、鉄筋結束装置2と、搬送装置4と、ロボット制御ユニット10に対して電力制御基板808からの電力供給が開始されること意味する。ロボットイニシャライズ処理が開始されると、ロボット制御ユニット10は、装置制御ユニット50に対して、状態呼出信号を送信する。これにより、装置制御ユニット50からロボット制御ユニット10に状態通知信号が送信される。その後、ロボット制御ユニット10は、送信された状態通知信号に基づいて、鉄筋結束装置2で異常が発生していないか否かを判断する。具体的には、ロボット制御ユニット10は、状態通知信号に結束装置異常判定フラグが含まれているか否かを判断する。鉄筋結束装置2で異常が発生していないと判断される場合、ロボット制御ユニット10は、ロボットイニシャライズ処理を終了する。鉄筋結束装置2で異常が発生していると判断される場合、ロボット制御ユニット10は、後述する異常発生時処理を実行する。その後、ロボット制御ユニット10は、ロボットイニシャライズ処理を終了する。
(robot initialization processing)
When the reinforcing bar binding robot 1 is powered on via the power switch, the robot control unit 10 executes robot initialization processing. In this specification, "turning on the power" means that power supply from the power control board 808 to the reinforcing bar binding device 2, the transport device 4, and the robot control unit 10 is started. When the robot initialization process is started, the robot control unit 10 transmits a status call signal to the device control unit 50 . As a result, a status notification signal is transmitted from the device control unit 50 to the robot control unit 10 . After that, the robot control unit 10 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the transmitted status notification signal. Specifically, the robot control unit 10 determines whether or not the state notification signal includes a binding device abnormality determination flag. If it is determined that no abnormality has occurred in the reinforcing bar binding device 2, the robot control unit 10 terminates the robot initialization process. When it is determined that an abnormality has occurred in the reinforcing bar binding device 2, the robot control unit 10 executes an abnormality occurrence process, which will be described later. After that, the robot control unit 10 ends the robot initialization process.
(ロボットメイン処理)
 図示しない動作実行ボタン等を介して、鉄筋結束ロボット1の動作の実行が指示されると、ロボット制御ユニット10は、図33に示すロボットメイン処理を実行する。以下では、説明の簡略化のため、鉄筋結束ロボット1における車台190の移動を、鉄筋結束ロボット1の移動とみなして説明を行っている。
(robot main processing)
When the execution of the operation of the reinforcing bar binding robot 1 is instructed via an operation execution button or the like (not shown), the robot control unit 10 executes the robot main processing shown in FIG. 33 . In the following description, the movement of the chassis 190 of the reinforcing-bar binding robot 1 is regarded as the movement of the reinforcing-bar binding robot 1 for the sake of simplicity.
 S202では、ロボット制御ユニット10は、装置制御ユニット50に対して、状態呼出信号を送信する。これにより、装置制御ユニット50からロボット制御ユニット10に状態通知信号が送信される。S202の後、処理はS204へ進む。 At S202, the robot control unit 10 transmits a status call signal to the device control unit 50. As a result, a status notification signal is transmitted from the device control unit 50 to the robot control unit 10 . After S202, the process proceeds to S204.
 S204では、ロボット制御ユニット10は、装置制御ユニット50から送信された状態通知信号に基づいて、鉄筋結束装置2で異常が発生していないか否かを判断する。具体的には、ロボット制御ユニット10は、状態通知信号に結束装置異常判定フラグが含まれているか否かを判断する。鉄筋結束装置2で異常が発生していない場合(YESの場合)、処理はS206へ進む。 At S<b>204 , the robot control unit 10 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the status notification signal sent from the device control unit 50 . Specifically, the robot control unit 10 determines whether or not the state notification signal includes a binding device abnormality determination flag. If no abnormality has occurred in the reinforcing bar binding device 2 (if YES), the process proceeds to S206.
 S206では、ロボット制御ユニット10は、右側クローラ192、左側クローラ194、およびサイドステッパ196のうち少なくとも1つを駆動して、鉄筋結束ロボット1を複数の第1鉄筋R1および複数の第2鉄筋R2の上で移動させる。ロボット制御ユニット10は、鉄筋結束作業の対象とする鉄筋交差箇所RC’を目標地点として、鉄筋結束ロボット1を移動させる。この時、ロボット制御ユニット10は、複数の鉄筋検出センサで検出される第1鉄筋R1および第2鉄筋R2の相対的な配置や、鉄筋マップに基づいて、右側クローラ192、左側クローラ194、およびサイドステッパ196の動作を制御する。なお、S206の開始時にプルソレノイド452が通電状態となっている場合には、ロボット制御ユニット10は、プルソレノイド452を非通電状態に切り換える。これにより、動力伝達機構402が第1伝達状態から第2伝達状態へ切り換えられ、兼用モータ400の駆動によりサイドステッパ196の駆動が可能となる。S206の後、処理はS208へ進む。 In S206, the robot control unit 10 drives at least one of the right crawler 192, the left crawler 194, and the side stepper 196 to cause the reinforcing bar binding robot 1 to move the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2. move up. The robot control unit 10 moves the reinforcing bar binding robot 1 with the reinforcing bar intersection RC' as the target point of the reinforcing bar binding work. At this time, the robot control unit 10 controls the right crawler 192, the left crawler 194, and the side crawler 192, the left crawler 194, and the side crawler 192 based on the relative arrangement of the first reinforcing bar R1 and the second reinforcing bar R2 detected by the plurality of reinforcing bar detection sensors and the reinforcing bar map. Controls the operation of stepper 196 . If the pull solenoid 452 is in the energized state at the start of S206, the robot control unit 10 switches the pull solenoid 452 to the non-energized state. As a result, the power transmission mechanism 402 is switched from the first transmission state to the second transmission state, and the side stepper 196 can be driven by the dual-purpose motor 400 . After S206, the process proceeds to S208.
 S208では、ロボット制御ユニット10は、鉄筋交差箇所RC’について、複数の鉄筋検出センサで検出される左右方向の位置が、基準位置から所定位置範囲内にあるか否かを判断する。ここでいう基準位置とは、下限位置にある鉄筋結束装置2が鉄筋結束作業を行う際に、鉄筋交差箇所RC’が存在すべき位置のことをいう。例えば、基準位置は、前後方向および左右方向に関して、ベースプレート204の前後方向および左右方向の中央に位置する。また、ここでいう所定位置範囲とは、鉄筋交差箇所RC’の左右方向の位置がその範囲から外れている場合には、サイドステッパ196による左右方向の移動が必要と判断される範囲である。鉄筋交差箇所RC’の位置が、所定位置範囲内にない場合(NOの場合)、処理はS206に戻る。鉄筋交差箇所RC’の位置が所定位置範囲内にある場合(YESの場合)、処理はS210へ進む。 In S208, the robot control unit 10 determines whether the horizontal position of the reinforcing bar intersection RC' detected by the plurality of reinforcing bar detection sensors is within a predetermined position range from the reference position. Here, the reference position is the position where the reinforcing bar intersection point RC' should exist when the reinforcing bar binding device 2 at the lower limit position performs the reinforcing bar binding operation. For example, the reference position is positioned at the center of the base plate 204 in the front-rear direction and the left-right direction. Further, the predetermined position range referred to here is a range in which it is determined that lateral movement by the side stepper 196 is necessary when the lateral position of the reinforcing bar intersection RC' is out of that range. If the position of the reinforcing bar intersection RC' is not within the predetermined position range (NO), the process returns to S206. If the position of the reinforcing bar intersection RC' is within the predetermined position range (if YES), the process proceeds to S210.
 S210では、ロボット制御ユニット10は、鉄筋交差箇所RC’において複数の鉄筋検出センサで検出される第1鉄筋R1の角度(以下では、単に「鉄筋交差箇所RC’の角度」と呼ぶ。)が、基準角度から所定角度範囲内にあるか否かを判断する。ここでいう基準角度とは、下限位置にある鉄筋結束装置2が鉄筋結束作業を行う際に、鉄筋交差箇所RC’において第1鉄筋R1が取るべき角度のことをいう。例えば、基準角度は、ゼロ度である。また、ここでいう所定角度範囲は、鉄筋交差箇所RC’の角度がその範囲内にあれば、鉄筋結束装置2による鉄筋結束作業を実行可能な範囲である。鉄筋交差箇所RC’の角度が、所定角度範囲内にない場合(NOの場合)、処理はS212へ進む。鉄筋交差箇所RC’の角度が所定角度範囲内にある場合(YESの場合)、処理はS214へ進む。 In S210, the robot control unit 10 determines that the angle of the first reinforcing bar R1 detected by the plurality of reinforcing bar detection sensors at the reinforcing bar intersection RC' (hereinafter simply referred to as "the angle of the reinforcing bar intersection RC'") is It is determined whether or not the angle is within a predetermined angle range from the reference angle. The reference angle here means the angle that the first reinforcing bar R1 should take at the reinforcing bar crossing point RC' when the reinforcing bar binding device 2 at the lower limit position performs the reinforcing bar binding operation. For example, the reference angle is zero degrees. Further, the predetermined angle range referred to here is a range in which the reinforcing bar binding operation can be performed by the reinforcing bar binding device 2 as long as the angle of the reinforcing bar intersection RC' is within that range. If the angle of the reinforcing bar intersection point RC' is not within the predetermined angle range (NO), the process proceeds to S212. If the angle of the reinforcing bar intersection RC' is within the predetermined angle range (YES), the process proceeds to S214.
 S212では、ロボット制御ユニット10は、鉄筋トレース制御を実行する。鉄筋トレース制御では、ロボット制御ユニット10は、右側クローラ192と左側クローラ194に速度差を与えた状態で鉄筋結束ロボット1を前進または後退させて、鉄筋交差箇所RC’の左右方向の位置および角度を、基準位置および基準角度に近付けていく。図34に示すように、ロボット制御ユニット10は、鉄筋トレース制御が開始されると、まず鉄筋交差箇所RC’の角度を基準角度に一致させる。その後、図35に示すように、ロボット制御ユニット10は、鉄筋交差箇所RC’の左右方向の位置を基準位置に一致させる。なお、図34、図35においては、鉄筋結束ロボット1の基準位置と基準角度を、十字カーソルCで表している。S212の後、処理はS214へ進む。 At S212, the robot control unit 10 executes reinforcing bar tracing control. In the reinforcing bar tracing control, the robot control unit 10 advances or retreats the reinforcing bar binding robot 1 while giving a speed difference between the right crawler 192 and the left crawler 194, and adjusts the horizontal position and angle of the reinforcing bar intersection RC'. , approaches the reference position and reference angle. As shown in FIG. 34, when the reinforcing bar trace control is started, the robot control unit 10 first matches the angle of the reinforcing bar intersection point RC' with the reference angle. Thereafter, as shown in FIG. 35, the robot control unit 10 matches the horizontal position of the reinforcing bar intersection RC' with the reference position. 34 and 35, the reference position and reference angle of the reinforcing bar binding robot 1 are represented by a cross cursor C. As shown in FIG. After S212, the process proceeds to S214.
 S214では、ロボット制御ユニット10は、まずプルソレノイド452を通電状態に切り換える。これにより、動力伝達機構402が第2伝達状態から第1伝達状態へ切り換えられ、兼用モータ400の駆動により昇降装置6の駆動が可能となる。その後、ロボット制御ユニット10は、昇降装置6を駆動して鉄筋結束装置2を下限位置まで下降させる。これにより、鉄筋交差箇所RC’に鉄筋結束装置2がセットされる。S214の後、処理はS216へ進む。 At S214, the robot control unit 10 first switches the pull solenoid 452 to an energized state. As a result, the power transmission mechanism 402 is switched from the second transmission state to the first transmission state, and the dual-purpose motor 400 can be driven to drive the lifting device 6 . After that, the robot control unit 10 drives the lifting device 6 to lower the reinforcing bar binding device 2 to the lower limit position. As a result, the reinforcing bar binding device 2 is set at the reinforcing bar intersection RC'. After S214, the process proceeds to S216.
 S216では、ロボット制御ユニット10は、装置制御ユニット50に対して、状態呼出信号を送信する。これにより、装置制御ユニット50からロボット制御ユニット10に状態通知信号が送信される。S216の後、処理はS218へ進む。 At S<b>216 , the robot control unit 10 transmits a status call signal to the device control unit 50 . As a result, a status notification signal is transmitted from the device control unit 50 to the robot control unit 10 . After S216, the process proceeds to S218.
 S218では、ロボット制御ユニット10は、装置制御ユニット50から送信された状態通知信号に基づいて、鉄筋結束装置2で異常が発生していないか否かを判断する。具体的には、ロボット制御ユニット10は、状態通知信号に結束装置異常判定フラグが含まれているか否かを判断する。鉄筋結束装置2で異常が発生していない場合(YESの場合)、処理はS220へ進む。 At S<b>218 , the robot control unit 10 determines whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the status notification signal transmitted from the device control unit 50 . Specifically, the robot control unit 10 determines whether or not the state notification signal includes a binding device abnormality determination flag. If no abnormality has occurred in the reinforcing bar binding device 2 (in the case of YES), the process proceeds to S220.
 S220では、ロボット制御ユニット10は、装置制御ユニット50に対して、結束指示信号を送信する。S220の後、処理はS222へ進む。 At S<b>220 , the robot control unit 10 transmits a bundling instruction signal to the device control unit 50 . After S220, the process proceeds to S222.
 S222では、ロボット制御ユニット10は、鉄筋結束装置2において鉄筋結束作業が完了したか否かを判断する。ロボット制御ユニット10は、S216で受信した状態通知信号に結束作業中フラグが含まれている場合、鉄筋結束装置2において鉄筋結束作業が完了していないと判断する。ロボット制御ユニット10は、S216で受信した状態通知信号に結束作業中フラグが含まれない場合、鉄筋結束装置2において鉄筋結束作業が完了したと判断する。鉄筋結束装置2において鉄筋結束作業が完了していない場合(NOの場合)、処理はS216に戻る。鉄筋結束装置2において鉄筋結束作業が完了した場合(YESの場合)、処理はS224へ進む。 At S222, the robot control unit 10 determines whether or not the reinforcing bar binding operation in the reinforcing bar binding device 2 has been completed. If the state notification signal received in S216 includes the bundling flag, the robot control unit 10 determines that the reinforcing rod bundling device 2 has not completed the bundling operation. If the status notification signal received in S216 does not include the tying flag, the robot control unit 10 determines that the reinforcing bar tying device 2 has completed the tying work. If the reinforcing bar binding operation has not been completed in the reinforcing bar binding device 2 (NO), the process returns to S216. When the reinforcing bar binding operation is completed in the reinforcing bar binding device 2 (in the case of YES), the process proceeds to S224.
 S224では、ロボット制御ユニット10は、昇降装置6を駆動して鉄筋結束装置2を上限位置まで上昇させる。S224の後、処理はS226へ進む。 At S224, the robot control unit 10 drives the lifting device 6 to raise the reinforcing bar binding device 2 to the upper limit position. After S224, the process proceeds to S226.
 S226では、ロボット制御ユニット10は、鉄筋マップを参照して、全ての鉄筋交差箇所について、鉄筋結束作業が完了したか否かを判断する。全ての鉄筋交差箇所について、鉄筋結束作業が完了したと判断される場合(YESの場合)、図33の処理は終了する。まだ完了していないと判断される場合(NOの場合)、処理はS228へ進む。 At S226, the robot control unit 10 refers to the reinforcing bar map and determines whether or not the reinforcing bar binding work has been completed for all reinforcing bar intersections. If it is determined that the reinforcing bar binding work has been completed for all reinforcing bar intersections (YES), the process of FIG. 33 ends. If it is determined that the process has not been completed yet (NO), the process proceeds to S228.
 S228では、ロボット制御ユニット10は、鉄筋結束作業の対象とする鉄筋交差箇所RC’を、未だ鉄筋結束作業が終了していない別の鉄筋交差箇所に変更する。S228の後、処理はS206に戻る。 In S228, the robot control unit 10 changes the reinforcing bar crossing point RC' targeted for the reinforcing bar binding work to another reinforcing bar crossing point for which the reinforcing bar binding work has not yet been completed. After S228, the process returns to S206.
 S204またはS218において、鉄筋結束装置2で異常が発生していると判断される場合(NOの場合)、処理はS230へ進む。S230では、ロボット制御ユニット10は、後述する異常発生時処理を実行する。S230の後、図33の処理は終了する。 If it is determined in S204 or S218 that an abnormality has occurred in the reinforcing bar binding device 2 (NO), the process proceeds to S230. At S230, the robot control unit 10 executes a process when an abnormality occurs, which will be described later. After S230, the process of FIG. 33 ends.
(異常発生時処理)
 異常発生時処理が開始されると、ロボット制御ユニット10は、まず右側クローラ192、左側クローラ194、およびサイドステッパ196の駆動を停止する。その後、ロボット制御ユニット10は、パトランプ183を動作させて、鉄筋結束装置2で異常が発生していることを報知する。また、ロボット制御ユニット10は、ブザーを用いて、鉄筋結束装置2で異常が発生していることを報知する。また、鉄筋結束ロボット1が外部のコントローラ(図示せず)を備えている場合には、ロボット制御ユニット10は、外部のコントローラに対して鉄筋結束装置2で異常が発生していることを通知する。その後、ロボット制御ユニット10は、異常発生時処理を終了する。なお、ここでいう外部のコントローラとは、鉄筋結束ロボット1専用のコントローラであってもよいし、スマートフォンや、タブレット端末などの汎用の通信端末であってもよい。
(Processing when abnormality occurs)
When the abnormality occurrence process is started, the robot control unit 10 first stops driving the right crawler 192 , the left crawler 194 and the side stepper 196 . After that, the robot control unit 10 activates the patrol lamp 183 to notify that the reinforcing bar binding device 2 is abnormal. In addition, the robot control unit 10 notifies that an abnormality has occurred in the reinforcing bar binding device 2 using a buzzer. If the reinforcing bar binding robot 1 is equipped with an external controller (not shown), the robot control unit 10 notifies the external controller that an abnormality has occurred in the reinforcing bar binding device 2. . After that, the robot control unit 10 terminates the processing when an abnormality occurs. The external controller referred to here may be a controller dedicated to the reinforcing rod binding robot 1, or may be a general-purpose communication terminal such as a smart phone or a tablet terminal.
(変形例)
 上記の実施例では、鉄筋結束ロボット1が独立リール500を備えており、独立リール500がワイヤWの供給源となっている構成について説明した。別の実施例では、鉄筋結束ロボット1は独立リール500を備えていなくてもよい。この場合、鉄筋結束装置2は、予めワイヤWが巻回されたワイヤリールWRを備えていてもよく、ワイヤリールWRがワイヤWの供給源となっていてもよい。
(Modification)
In the above embodiment, the configuration in which the reinforcing bar binding robot 1 has the independent reel 500 and the independent reel 500 serves as the wire W supply source has been described. In another embodiment, the reinforcing bar binding robot 1 may not have the independent reel 500 . In this case, the reinforcing bar binding device 2 may include a wire reel WR around which the wire W is wound in advance, and the wire reel WR may serve as the wire W supply source.
 上記の実施例では、貫通孔12bからハウジング12内に導かれたワイヤWが、ワイヤリールWRの周りに巻回された上で、送り機構38に供給される構成について説明した。別の実施例では、貫通孔12bからハウジング12内に導かれたワイヤWは、ワイヤリールWRの周りに巻回されることなく、ワイヤリールWRの外周面に沿って架け渡された上で、送り機構38に供給されてもよい。この場合、ワイヤリールWRは、ワイヤWの送り出しに伴って回転することで、ワイヤWをガイドしてもよい。 In the above embodiment, the wire W guided into the housing 12 from the through-hole 12b is wound around the wire reel WR and then supplied to the feed mechanism 38. In another embodiment, the wire W guided into the housing 12 from the through hole 12b is stretched along the outer peripheral surface of the wire reel WR without being wound around the wire reel WR. It may be supplied to the feed mechanism 38 . In this case, the wire reel WR may guide the wire W by rotating as the wire W is sent out.
 上記の実施例では、ワイヤリールWRがハウジング12に着脱可能に設けられている構成について説明した。別の実施例では、ワイヤリールWRは、ハウジング12に着脱不能に設けられていてもよい。 In the above embodiment, the configuration in which the wire reel WR is detachably attached to the housing 12 has been described. In another embodiment, the wire reel WR may be non-removably attached to the housing 12 .
 上記の実施例では、電源装置8が複数のバッテリパックBを備えており、電源装置8の電力制御基板808が、複数のバッテリパックBからの電力を、鉄筋結束装置2と、搬送装置4と、ロボット制御ユニット10に供給する構成について説明した。別の実施例では、電源装置8は、複数のバッテリパックBの代わりに、外部電源に接続する電源コードを備えていてもよい。電力制御基板808は、外部電源からの電力を、鉄筋結束装置2と、搬送装置4と、ロボット制御ユニット10に供給するように構成されていてもよい。 In the above embodiment, the power supply device 8 includes a plurality of battery packs B, and the power control board 808 of the power source device 8 distributes power from the plurality of battery packs B to the reinforcing bar binding device 2 and the conveying device 4. , the configuration for supplying to the robot control unit 10 has been described. In another embodiment, instead of multiple battery packs B, power supply 8 may include a power cord that connects to an external power source. The power control board 808 may be configured to supply power from an external power source to the rebar binding device 2 , the transport device 4 and the robot control unit 10 .
 上記の実施例では、装置制御ユニット50とロボット制御ユニット10の間の通信方式が有線シリアル通信方式である構成について説明した。別の実施例では、装置制御ユニット50とロボット制御ユニット10の間の通信方式は有線パラレル通信方式であってもよい。さらに別の実施例では、装置制御ユニット50とロボット制御ユニット10の間の通信方式は無線通信方式であってもよい。 In the above embodiment, the configuration in which the communication method between the device control unit 50 and the robot control unit 10 is the wired serial communication method has been described. In another embodiment, the communication method between the device control unit 50 and the robot control unit 10 may be a wired parallel communication method. In yet another embodiment, the communication method between device control unit 50 and robot control unit 10 may be a wireless communication method.
 上記の実施例において、装置制御ユニット50は、ドライバ回路24に対応して設けられる電圧検出回路をさらに備えていてもよい。装置制御ユニット50は、この電圧検出回路を介して、直接的に、ドライバ回路24に印可される電圧や、ドライバ回路24の電位を検出してもよい。 In the above embodiment, the device control unit 50 may further include a voltage detection circuit provided corresponding to the driver circuit 24 . The device control unit 50 may directly detect the voltage applied to the driver circuit 24 and the potential of the driver circuit 24 via this voltage detection circuit.
 上記の実施例では、リール回転検出センサ66(ホールセンサ)が、ワイヤリールWRに巻回されたワイヤWの有無を検出する構成について説明した。別の実施例では、ホールセンサ以外のセンサ(例えば、圧力センサ、光電センサまたはマイクロスイッチ)が、ワイヤリールWRに巻回されたワイヤWの有無を検出してもよい。例えば、圧力センサは、ワイヤリールWRの円筒部(ワイヤWが巻回される部分)の圧力を検出するように設けられていてもよい。光電センサは、ワイヤリールWRの一対の鍔部(ワイヤWの抜け出しを防止する部分)の一方に設けられる発光部と、一対の鍔部の他方に設けられる受光部を備えていてもよい。マイクロスイッチは、ワイヤリールWRに巻回されるワイヤWによって押下されるように設けられていてもよい。 In the above embodiment, the reel rotation detection sensor 66 (hall sensor) detects the presence or absence of the wire W wound around the wire reel WR. In another embodiment, sensors other than Hall sensors (eg, pressure sensors, photoelectric sensors, or microswitches) may detect the presence or absence of the wire W wound around the wire reel WR. For example, the pressure sensor may be provided to detect the pressure of the cylindrical portion (the portion around which the wire W is wound) of the wire reel WR. The photoelectric sensor may include a light-emitting portion provided on one of a pair of flanges (a portion that prevents the wire W from coming off) of the wire reel WR, and a light-receiving portion provided on the other of the pair of flanges. The microswitch may be provided so as to be pressed by a wire W wound around the wire reel WR.
 上記の実施例では、リール回転検出センサ66(ホールセンサ)が、ワイヤリールWRがリール保持機構36に保持されているか否かを検出する構成について説明した。別の実施例では、ホールセンサ以外のセンサ(例えば、マイクロスイッチ)が、ワイヤリールWRがリール保持機構36に保持されているか否かを検出してもよい。例えば、マイクロスイッチは、ワイヤリールWRがリール保持機構36に保持されている場合、押下されるように設けられていてもよい。 In the above embodiment, the reel rotation detection sensor 66 (hall sensor) is configured to detect whether the wire reel WR is held by the reel holding mechanism 36 or not. In another embodiment, a sensor (for example, a microswitch) other than a Hall sensor may detect whether the wire reel WR is held by the reel holding mechanism 36 or not. For example, the microswitch may be provided to be depressed when the wire reel WR is held by the reel holding mechanism 36 .
 上記の実施例では、鉄筋結束ロボット1には、専用の鉄筋結束装置2が取り付けられている構成について説明した。別の実施例では、鉄筋結束ロボット1には、専用の鉄筋結束装置2の代わりに、市販の手持ち式鉄筋結束機(例えば、株式会社マキタが販売しているTR180D)が取り付けられてもよい。この場合、市販の鉄筋結束機に内蔵された制御ユニットは、装置制御ユニット50と同様の構成を備えていてもよい。市販の鉄筋結束機に内蔵された制御ユニットは、装置制御ユニット50が実行する各種の処理を実行可能に構成されていてもよい。 In the above embodiment, the configuration in which the dedicated reinforcing bar binding device 2 is attached to the reinforcing bar binding robot 1 has been described. In another embodiment, the reinforcing bar binding robot 1 may be equipped with a commercially available hand-held reinforcing bar binding machine (for example, TR180D sold by Makita Corporation) instead of the dedicated reinforcing bar binding device 2. In this case, a control unit built into a commercially available rebar binding machine may have the same configuration as the device control unit 50 . A control unit built into a commercially available reinforcing bar binding machine may be configured to be able to execute various processes executed by the device control unit 50 .
 上記の実施例において、ロボット制御ユニット10は、所定時間が経過する度に、装置制御ユニット50に対して状態呼出信号を送信してもよい。装置制御ユニット50は、ロボット制御ユニット10から定期的に送信される状態呼出信号に応じて、ロボット制御ユニット10に状態通知信号を送信してもよい。この場合、図33に示す処理のS204またはS218において、ロボット制御ユニット10は、常に最新の状態通知信号に基づいて、鉄筋結束装置2で異常が発生していないか否かを判断してもよい。 In the above embodiment, the robot control unit 10 may transmit a status call signal to the device control unit 50 each time a predetermined period of time elapses. The device control unit 50 may transmit a state notification signal to the robot control unit 10 in response to a state call signal periodically transmitted from the robot control unit 10 . In this case, in S204 or S218 of the processing shown in FIG. 33, the robot control unit 10 may always determine whether or not an abnormality has occurred in the reinforcing bar binding device 2 based on the latest state notification signal. .
 上記の実施例では、ロボット制御ユニット10が、装置制御ユニット50から送信される状態通知信号に結束装置異常判定が含まれている場合に、鉄筋結束装置2で異常が発生していると判断する構成について説明した。別の実施例では、ロボット制御ユニット10は、装置制御ユニット50に結束指示信号を送信した後、装置制御ユニット50から結束完了信号を受信することなく所定時間が経過した場合に、鉄筋結束装置2で異常が発生していると判断してもよい。 In the above embodiment, the robot control unit 10 determines that an abnormality has occurred in the reinforcing bar binding device 2 when the status notification signal sent from the device control unit 50 includes the binding device abnormality determination. I explained the configuration. In another embodiment, the robot control unit 10 sends the binding instruction signal to the device control unit 50, and if a predetermined time elapses without receiving the binding completion signal from the device control unit 50, the rebar binding device 2 It can be determined that an abnormality has occurred.
 上記の実施例において、装置制御ユニット50は、鉄筋結束作業の実行中、リール回転検出センサ66、ギヤ回転検出センサ79、プレート位置検出センサ134、ガイド位置検出センサ142、スリーブ位置検出センサ177、捩りモータ回転検出センサ55、電圧検出回路25、26、27、電流検出回路28、温度検出センサ32における各検出値の推移をメモリに記憶していてもよい。そして、装置制御ユニット50は、鉄筋結束装置2による鉄筋結束作業が正常に完了する際、上記の各検出値の推移を含む結束完了信号をロボット制御ユニット10に対して送信してもよい。この場合、ロボット制御ユニット10は、上記の各検出値の推移に基づいて、鉄筋結束作業の出来栄え(例えば、ワイヤWが緩んでいないかなど)を特定してもよい。 In the above embodiment, the device control unit 50 controls the reel rotation detection sensor 66, the gear rotation detection sensor 79, the plate position detection sensor 134, the guide position detection sensor 142, the sleeve position detection sensor 177, the torsion detection sensor 177, and the torsion detection sensor 177 during execution of the reinforcing bar binding operation. Transitions of detected values of the motor rotation detection sensor 55, the voltage detection circuits 25, 26, 27, the current detection circuit 28, and the temperature detection sensor 32 may be stored in a memory. Then, the device control unit 50 may transmit a binding completion signal including transitions of the above detection values to the robot control unit 10 when the reinforcing bar binding work by the reinforcing bar binding device 2 is normally completed. In this case, the robot control unit 10 may specify the performance of the reinforcing bar binding work (for example, whether the wire W is loose) based on the transition of each detection value.
(対応関係)
 以上のように、本技術の第1の態様では、鉄筋結束ロボット1は、複数の第1鉄筋R1と、複数の第1鉄筋R1と交差する複数の第2鉄筋R2について、複数の第1鉄筋R1と複数の第2鉄筋R2の上を移動する動作と、複数の第1鉄筋R1と複数の第2鉄筋R2が交差する鉄筋交差箇所を結束する動作と、を繰り返し実行可能である。鉄筋結束ロボット1は、鉄筋結束ロボット1の動作を制御するロボット制御ユニット10と、ワイヤWを用いて鉄筋結束作業を実行する鉄筋結束装置2と、を備えている。鉄筋結束装置2は、鉄筋結束装置2の動作を制御する装置制御ユニット50を備えている。装置制御ユニット50は、ロボット制御ユニット10に状態通知信号(第1信号の例)を送信するように構成されている。ロボット制御ユニット10は、装置制御ユニット50から送信された状態通知信号に基づいて鉄筋結束ロボット1の動作を制御するように構成されている。
(correspondence relationship)
As described above, in the first aspect of the present technology, the reinforcing bar binding robot 1 performs the following operations on the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2 intersecting the plurality of first reinforcing bars R1. The operation of moving on R1 and the plurality of second reinforcing bars R2 and the operation of binding the reinforcing bar intersections where the plurality of first reinforcing bars R1 and the plurality of second reinforcing bars R2 intersect can be repeatedly performed. The reinforcing bar binding robot 1 includes a robot control unit 10 that controls the operation of the reinforcing bar binding robot 1 and a reinforcing bar binding device 2 that uses a wire W to perform a reinforcing bar binding operation. The reinforcing bar binding device 2 includes a device control unit 50 that controls the operation of the reinforcing bar binding device 2 . The device control unit 50 is configured to send a state notification signal (example of first signal) to the robot control unit 10 . The robot control unit 10 is configured to control the operation of the reinforcing bar binding robot 1 based on the status notification signal sent from the device control unit 50 .
 上記の構成によれば、装置制御ユニット50は、状態通知信号を通じて、鉄筋結束装置2の状態をロボット制御ユニット10に伝達することができる。ロボット制御ユニット10は、状態通知信号に基づいて、鉄筋結束装置2の状態を把握することができる。このため、ロボット制御ユニット10は、鉄筋結束装置2の状態に応じて鉄筋結束ロボット1の動作を制御することができる。 According to the above configuration, the device control unit 50 can transmit the state of the reinforcing bar binding device 2 to the robot control unit 10 through the state notification signal. The robot control unit 10 can grasp the state of the reinforcing bar binding device 2 based on the state notification signal. Therefore, the robot control unit 10 can control the operation of the reinforcing bar binding robot 1 according to the state of the reinforcing bar binding device 2 .
 第2の態様では、上記第1の態様において、鉄筋結束装置2は、ワイヤWを送る動作を実行可能に構成されている。鉄筋結束装置2は、ワイヤWを送る動作に関する状態を検出するリール回転検出センサ66、ギヤ回転検出センサ79、電圧検出回路25、電圧検出回路26、および電流検出回路28(第1状態検出部の例)をさらに備えている。状態通知信号は、送り動作正常判定フラグと、ハードウェア正常判定フラグと、ワイヤ不足判定フラグと、送りモータ過負荷判定フラグと、送りギヤ異常判定フラグと、送りモータFETオープン故障判定フラグと、送りモータFET電圧異常判定フラグと、ソレノイドFETオープン故障判定フラグと、ソレノイドFET電圧異常判定フラグと、リール回転検出センサ66、ギヤ回転検出センサ79、電圧検出回路25、電圧検出回路26、および電流検出回路28の検出値(第1状態検出部の検出結果に関する情報の例)を含む。 In the second aspect, in the first aspect, the reinforcing bar binding device 2 is configured to be able to perform the operation of feeding the wire W. The rebar binding device 2 includes a reel rotation detection sensor 66, a gear rotation detection sensor 79, a voltage detection circuit 25, a voltage detection circuit 26, and a current detection circuit 28 (of the first state detection section) that detect the state related to the wire W feeding operation. Example) is further provided. The status notification signal includes a feed operation normality determination flag, a hardware normality determination flag, a wire shortage determination flag, a feed motor overload determination flag, a feed gear abnormality determination flag, a feed motor FET open failure determination flag, and a feed motor overload determination flag. Motor FET voltage abnormality determination flag, solenoid FET open failure determination flag, solenoid FET voltage abnormality determination flag, reel rotation detection sensor 66, gear rotation detection sensor 79, voltage detection circuit 25, voltage detection circuit 26, and current detection circuit 28 detection values (an example of information about the detection result of the first state detection unit).
 ワイヤWを送る動作は、鉄筋結束装置2における主要な動作である。このため、ロボット制御ユニット10は、鉄筋結束装置2のワイヤWを送る動作に関する状態を把握したい場合がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、ワイヤWを送る動作に関する状態を把握することができる。 The operation of feeding the wire W is the main operation in the reinforcing bar binding device 2. Therefore, the robot control unit 10 may want to grasp the state of the wire W feeding operation of the reinforcing bar binding device 2 . According to the above configuration, the robot control unit 10 can grasp the state regarding the operation of sending the wire W based on the state notification signal.
 第3の態様では、上記第2の態様において、第1状態検出部は、ワイヤWの有無を検出するリール回転検出センサ66(ワイヤ検出部の例)を備えている。状態通知信号は、ワイヤ不足判定フラグと、リール回転検出センサ66の検出値(ワイヤ検出部の検出結果に関する情報の例)を含む。 In the third aspect, in the second aspect, the first state detection section includes a reel rotation detection sensor 66 (an example of a wire detection section) that detects the presence or absence of the wire W. The state notification signal includes a wire shortage determination flag and a detection value of the reel rotation detection sensor 66 (an example of information regarding the detection result of the wire detection section).
 鉄筋結束装置2においてワイヤ不足が発生した場合、鉄筋結束装置2は鉄筋結束作業を実行不可能となる。このような状況に応じて鉄筋結束ロボット1の動作を制御するためには、ロボット制御ユニット10は、ワイヤWの有無を把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、ワイヤWの有無を把握することができる。 When the wire shortage occurs in the reinforcing bar binding device 2, the reinforcing bar binding device 2 cannot perform the reinforcing bar binding work. In order to control the operation of the reinforcing bar binding robot 1 in such a situation, the robot control unit 10 needs to know whether the wire W is present. According to the above configuration, the robot control unit 10 can grasp the presence or absence of the wire W based on the state notification signal.
 第4の態様では、上記第3の態様において、鉄筋結束装置2は、ワイヤWが巻回されるワイヤリールWRと、ワイヤリールWRを回転可能に保持するハウジング12をさらに備えている。リール回転検出センサ66は、ワイヤリールWRに巻回されたワイヤWの有無を検出する。 In the fourth aspect, in the third aspect, the reinforcing bar binding device 2 further includes a wire reel WR around which the wire W is wound, and a housing 12 that rotatably holds the wire reel WR. A reel rotation detection sensor 66 detects the presence or absence of the wire W wound around the wire reel WR.
 上記の構成によれば、ワイヤWがワイヤリールWRに巻回されている場合、ワイヤリールWRは鉄筋結束装置2のワイヤWを送る動作に伴って回転する。ワイヤリールWRに巻回されたワイヤWが無くなると、ワイヤリールWRは鉄筋結束装置2のワイヤWを送る動作に伴って回転しなくなる。このため、リール回転検出センサ66は、ワイヤリールWRが鉄筋結束装置2のワイヤWを送る動作に伴って回転するか否かを検出することで、間接的にワイヤWの有無を検出することができる。 According to the above configuration, when the wire W is wound around the wire reel WR, the wire reel WR rotates as the wire W is fed by the rebar binding device 2 . When the wire W wound around the wire reel WR runs out, the wire reel WR stops rotating as the wire W is fed by the reinforcing bar binding device 2 . Therefore, the reel rotation detection sensor 66 can indirectly detect the presence or absence of the wire W by detecting whether or not the wire reel WR rotates as the wire W is fed by the rebar binding device 2. can.
 第5の態様では、上記第2から第4の態様のいずれか一つにおいて、鉄筋結束装置2は、送りモータ72を備えており、ワイヤWを送る動作を実行可能な送り機構38をさらに備えている。第1状態検出部は、送り機構38の状態を検出するギヤ回転検出センサ79、電圧検出回路26、および電流検出回路28(送り機構状態検出部の例)を備えている。状態通知信号は、送りモータ過負荷判定フラグと、送りギヤ異常判定フラグと、送りモータFETオープン故障判定フラグと、送りモータFET電圧異常判定フラグと、ギヤ回転検出センサ79、電圧検出回路26、および電流検出回路28の検出値(送り機構状態検出部の検出結果に関する情報の例)を含む。 In a fifth aspect, in any one of the second to fourth aspects, the reinforcing bar binding device 2 includes a feed motor 72 and further includes a feed mechanism 38 capable of feeding the wire W. ing. The first state detection section includes a gear rotation detection sensor 79 that detects the state of the feed mechanism 38, a voltage detection circuit 26, and a current detection circuit 28 (an example of a feed mechanism state detection section). The state notification signal includes a feed motor overload determination flag, a feed gear abnormality determination flag, a feed motor FET open failure determination flag, a feed motor FET voltage abnormality determination flag, a gear rotation detection sensor 79, a voltage detection circuit 26, and a It includes the detection value of the current detection circuit 28 (an example of information on the detection result of the feeding mechanism state detection section).
 例えば、送り機構38においてワイヤWが絡まるなどして、送り機構38が動作不可能となる場合がある。このような状況に応じて鉄筋結束ロボット1の動作を制御するためには、ロボット制御ユニット10は、送り機構38の状態を把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、送り機構38の状態を把握することができる。 For example, the wire W may become entangled in the feed mechanism 38 and the feed mechanism 38 may become inoperable. In order to control the operation of the reinforcing bar binding robot 1 in such a situation, the robot control unit 10 needs to grasp the state of the feed mechanism 38 . According to the above configuration, the robot control unit 10 can grasp the state of the feeding mechanism 38 based on the state notification signal.
 第6の態様では、上記第2から第5の態様のいずれか一つにおいて、鉄筋結束装置2は、ワイヤWが巻回されるワイヤリールWRと、ワイヤリールWRを回転可能に保持するハウジング12と、プルソレノイド146(制動アクチュエータの例)を備えており、ワイヤリールWRの回転運動を制動する動作を実行可能なブレーキ機構40(制動機構の例)と、をさらに備えている。第1状態検出部は、ブレーキ機構40の状態を検出する電圧検出回路25および電流検出回路28(制動機構状態検出部の例)を備えている。状態通知信号は、ソレノイドFETオープン故障判定フラグと、ソレノイドFET電圧異常判定フラグと、電圧検出回路25および電流検出回路28の検出値(制動機構状態検出部の検出結果に関する情報の例)を含む。 In a sixth aspect, in any one of the second to fifth aspects, the reinforcing bar binding device 2 includes a wire reel WR around which the wire W is wound, and a housing 12 that rotatably holds the wire reel WR. and a brake mechanism 40 (an example of a braking mechanism) that includes a pull solenoid 146 (an example of a braking actuator) and is capable of braking the rotational motion of the wire reel WR. The first state detection section includes a voltage detection circuit 25 and a current detection circuit 28 (an example of a braking mechanism state detection section) that detect the state of the brake mechanism 40 . The state notification signal includes a solenoid FET open failure determination flag, a solenoid FET voltage abnormality determination flag, and values detected by the voltage detection circuit 25 and the current detection circuit 28 (an example of information regarding detection results of the braking mechanism state detection section).
 例えば、ソレノイドFETがオープン故障する(電源と制動アクチュエータの間の電気的接続が遮断されることの例)などして、ブレーキ機構40が動作不可能となる場合がある。このような状況に応じて鉄筋結束ロボット1の動作を制御するためには、ロボット制御ユニット10は、ブレーキ機構40の状態を把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、ブレーキ機構40の状態を把握することができる。 For example, the brake mechanism 40 may become inoperable due to an open failure of the solenoid FET (an example of disconnection of the electrical connection between the power supply and the brake actuator). In order to control the operation of the reinforcing bar binding robot 1 in such a situation, the robot control unit 10 needs to grasp the state of the brake mechanism 40 . According to the above configuration, the robot control unit 10 can grasp the state of the brake mechanism 40 based on the state notification signal.
 第7の態様では、上記第1から第6の態様のいずれか一つにおいて、鉄筋結束装置2は、鉄筋交差箇所の周りに周回されたワイヤWを捩る動作を実行可能に構成されている。鉄筋結束装置2は、ワイヤWを捩る動作に関する状態を検出する捩りモータ回転検出センサ55、スリーブ位置検出センサ177、および電流検出回路28(第2状態検出部の例)をさらに備えている。状態通知信号は、捩り動作正常判定フラグと、ハードウェア正常判定フラグと、捩りモータロック判定フラグと、捩りモータ回転異常判定フラグと、捩りモータ過負荷判定フラグと、捩りモータ回転検出センサ異常判定フラグと、捩りアーム異常判定フラグと、捩りモータ回転検出センサ55、スリーブ位置検出センサ177、および電流検出回路28の検出値(第2状態検出部の検出結果に関する情報の例)を含む。 In the seventh aspect, in any one of the first to sixth aspects, the reinforcing bar binding device 2 is configured to be capable of twisting the wire W wound around the reinforcing bar intersection. The rebar binding device 2 further includes a twist motor rotation detection sensor 55 for detecting the state of twisting the wire W, a sleeve position detection sensor 177, and a current detection circuit 28 (an example of a second state detector). The state notification signal includes a torsion operation normality determination flag, a hardware normality determination flag, a torsion motor lock determination flag, a torsion motor rotation abnormality determination flag, a torsion motor overload determination flag, and a torsion motor rotation detection sensor abnormality determination flag. , the torsion arm abnormality determination flag, the detection values of the torsion motor rotation detection sensor 55, the sleeve position detection sensor 177, and the current detection circuit 28 (an example of information regarding the detection result of the second state detection section).
 ワイヤWを捩る動作は、鉄筋結束装置2における主要な動作である。このため、ロボット制御ユニット10は、鉄筋結束装置2のワイヤWを捩る動作に関する状態を把握したい場合がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、ワイヤWを捩る動作に関する状態を把握することができる。 The operation of twisting the wire W is the main operation in the reinforcing bar binding device 2. Therefore, the robot control unit 10 may want to grasp the state of the operation of twisting the wire W of the reinforcing bar binding device 2 . According to the above configuration, the robot control unit 10 can grasp the state of the motion of twisting the wire W based on the state notification signal.
 第8の態様では、上記第7の態様において、鉄筋結束装置2は、捩りモータ170を備えており、鉄筋交差箇所の周りに周回されたワイヤWを捩る動作を実行可能な捩り機構46をさらに備えている。第2状態検出部は、捩り機構46の状態を検出する捩りモータ回転検出センサ55、スリーブ位置検出センサ177、および電流検出回路28(捩り機構状態検出部の例)を備えている。状態通知信号は、捩りモータロック判定フラグと、捩りモータ回転異常判定フラグと、捩りモータ過負荷判定フラグと、捩りモータ回転検出センサ異常判定フラグと、捩りアーム異常判定フラグと、捩りモータ回転検出センサ55、スリーブ位置検出センサ177、および電流検出回路28の検出値(捩り機構状態検出部の検出結果に関する情報の例)を含む。 In an eighth aspect, in the seventh aspect, the reinforcing bar binding device 2 further includes a twisting mechanism 46 that includes a twisting motor 170 and is capable of twisting the wire W wound around the intersection of the reinforcing bars. I have. The second state detector includes a torsion motor rotation detection sensor 55 that detects the state of the torsion mechanism 46, a sleeve position detection sensor 177, and a current detection circuit 28 (an example of a torsion mechanism state detector). The state notification signal includes a torsion motor lock determination flag, a torsion motor rotation abnormality determination flag, a torsion motor overload determination flag, a torsion motor rotation detection sensor abnormality determination flag, a torsion arm abnormality determination flag, and a torsion motor rotation detection sensor. 55, the sleeve position detection sensor 177, and the detection values of the current detection circuit 28 (an example of information regarding the detection result of the torsion mechanism state detection section).
 例えば、捩り機構46においてワイヤWが絡まるなどして、捩り機構46が動作不可能となる場合がある。このような状況に応じて鉄筋結束ロボット1の動作を制御するためには、ロボット制御ユニット10は、捩り機構46の状態を把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、捩り機構46の状態を把握することができる。 For example, the wire W may become entangled in the twisting mechanism 46 and the twisting mechanism 46 may become inoperable. In order to control the operation of the reinforcing bar binding robot 1 in such a situation, the robot control unit 10 needs to grasp the state of the twisting mechanism 46 . According to the above configuration, the robot control unit 10 can grasp the state of the twisting mechanism 46 based on the state notification signal.
 第9の態様では、上記第1から第8の態様のいずれか一つにおいて、鉄筋結束装置2は、ワイヤWが巻回されるか、またはワイヤWを案内するワイヤリールWRと、ワイヤリールWRを着脱可能に保持するリール保持機構36(リール保持部の例)と、リール保持機構36にワイヤリールWRが保持されているか否かを検出するリール回転検出センサ66(リール検出部の例)と、をさらに備えている。状態通知信号は、リール脱落判定フラグ(リール検出部の検出結果に関する情報の例)を含む。 In a ninth aspect, in any one of the first to eighth aspects, the reinforcing bar binding device 2 includes a wire reel WR around which the wire W is wound or for guiding the wire W, and a wire reel WR A reel holding mechanism 36 (an example of a reel holding portion) that detachably holds a reel rotation detection sensor 66 (an example of a reel detecting portion) that detects whether or not the wire reel WR is held by the reel holding mechanism 36. , is further provided. The state notification signal includes a reel dropout determination flag (an example of information regarding the detection result of the reel detection unit).
 リール保持機構36にワイヤリールWRが保持されていない場合、ワイヤ不足と実質的に等しい状況であるため、鉄筋結束装置2は鉄筋結束作業を実行できない。このような状況に応じて鉄筋結束ロボット1の動作を制御するためには、ロボット制御ユニット10は、リール保持機構36にワイヤリールWRが保持されているか否かを把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、リール保持機構36にワイヤリールWRが保持されているか否かを把握することができる。 When the wire reel WR is not held by the reel holding mechanism 36, the situation is substantially the same as wire shortage, so the reinforcing bar binding device 2 cannot perform the reinforcing bar binding work. In order to control the operation of the reinforcing bar binding robot 1 in such a situation, the robot control unit 10 needs to know whether the wire reel WR is held by the reel holding mechanism 36 or not. According to the above configuration, the robot control unit 10 can grasp whether or not the wire reel WR is held by the reel holding mechanism 36 based on the state notification signal.
 第10の態様では、上記第1から第9の態様のいずれか一つにおいて、鉄筋結束装置2は、送りモータ72を備えており、ワイヤWを送る動作を実行可能な送り機構38と、送りモータ72を収容するハウジング12と、ハウジング12に取り付けられ、送り機構38によって送られたワイヤWを略円環状の案内軌道上に案内して鉄筋交差箇所の周りに周回させる閉状態の位置(第1位置の例)と、閉状態の位置に対して案内軌道の外側に移動した開状態の位置(第2位置の例)との間で移動可能な下側カールガイド92(案内部材の例)と、下側カールガイド92のハウジング12に対する位置を検出するガイド位置検出センサ142(案内部材位置検出部の例)と、をさらに備えている。状態通知信号は、ガイド位置異常判定フラグと、ガイド位置検出センサ142の検出値(案内部材位置検出部の検出結果に関する情報の例)を含む。 In a tenth aspect, in any one of the first to ninth aspects, the reinforcing bar binding device 2 includes a feed motor 72, a feed mechanism 38 capable of executing an operation to feed the wire W, and a feed A housing 12 that houses a motor 72, and a closed position (first position) in which the wire W attached to the housing 12 and fed by the feed mechanism 38 is guided on a substantially annular guide track to be routed around the intersection of reinforcing bars. A lower curl guide 92 (an example of a guide member) movable between an open state position (example of a second position) moved outside the guide track with respect to the closed state position. and a guide position detection sensor 142 (an example of a guide member position detector) that detects the position of the lower curl guide 92 with respect to the housing 12 . The state notification signal includes a guide position abnormality determination flag and a detection value of the guide position detection sensor 142 (an example of information regarding the detection result of the guide member position detection section).
 鉄筋結束装置2では、案内軌道周辺に設けられた部品のメンテナンス性能を向上させるため、下側カールガイド92をハウジング12に対して移動可能に設けることがある。しかしながら、下側カールガイド92が開状態の位置に移動された状態で鉄筋結束作業が実行されると、鉄筋交差箇所を適切に結束することができない。このため、鉄筋結束ロボット1では、下側カールガイド92の位置に応じた制御を実行したい場合がある。この場合、ロボット制御ユニット10は、下側カールガイド92のハウジング12に対する位置を把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、下側カールガイド92のハウジング12に対する位置を把握することができる。 In the reinforcing bar binding device 2, the lower curl guide 92 may be provided movably with respect to the housing 12 in order to improve the maintenance performance of parts provided around the guide track. However, if the reinforcing bar binding work is performed with the lower curl guide 92 moved to the open position, the reinforcing bar crossing points cannot be properly tied. Therefore, in the reinforcing bar binding robot 1, there are cases where it is desired to execute control according to the position of the lower curl guide 92. FIG. In this case, the robot control unit 10 needs to know the position of the lower curl guide 92 with respect to the housing 12 . According to the above configuration, the robot control unit 10 can grasp the position of the lower curl guide 92 with respect to the housing 12 based on the state notification signal.
 第11の態様では、上記第1から第10の態様のいずれか一つにおいて、鉄筋結束装置2は、装置制御ユニット50の温度を検出する温度検出センサ32(温度検出部の例)をさらに備えている。状態通知信号は、温度正常判定フラグと、温度異常判定フラグと、温度検出センサ32の検出値(温度検出部の検出結果に関する情報の例)を含む。 In an eleventh aspect, in any one of the first to tenth aspects, the reinforcing bar binding device 2 further includes a temperature detection sensor 32 (an example of a temperature detection section) that detects the temperature of the device control unit 50. ing. The status notification signal includes a temperature normality determination flag, a temperature abnormality determination flag, and a detection value of the temperature detection sensor 32 (an example of information regarding the detection result of the temperature detection unit).
 装置制御ユニット50の温度が非常に高温となる場合、装置制御ユニット50の故障に繋がる可能性がある。このため、鉄筋結束ロボット1では、装置制御ユニット50の温度に応じた制御を実行したい場合がある。この場合、ロボット制御ユニット10は、装置制御ユニット50の温度を把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、装置制御ユニット50の温度を把握することができる。 If the temperature of the device control unit 50 becomes extremely high, it may lead to a failure of the device control unit 50. Therefore, in the reinforcing bar binding robot 1, there are cases where it is desired to execute control according to the temperature of the device control unit 50. FIG. In this case, the robot control unit 10 needs to know the temperature of the device control unit 50 . According to the above configuration, the robot control unit 10 can grasp the temperature of the device control unit 50 based on the state notification signal.
 第12の態様では、上記第1から第11の態様のいずれか一つにおいて、鉄筋結束ロボット1は、鉄筋結束装置2に電力を供給するための電源装置8をさらに備えている。鉄筋結束装置2は、電源装置8から鉄筋結束装置2に供給される電力の電圧値を検出する電圧検出回路27(供給電圧検出部の例)をさらに備えている。状態通知信号は、低電圧判定フラグと、供給電圧正常判定フラグと、電圧検出回路27の検出値(供給電圧検出部の検出結果に関する情報の例)を含む。 In a twelfth aspect, in any one of the first to eleventh aspects, the reinforcing bar binding robot 1 further includes a power supply device 8 for supplying electric power to the reinforcing bar binding device 2 . The rebar binding device 2 further includes a voltage detection circuit 27 (an example of a supply voltage detection section) that detects the voltage value of the power supplied from the power supply device 8 to the rebar binding device 2 . The state notification signal includes a low voltage determination flag, a normal supply voltage determination flag, and a detection value of the voltage detection circuit 27 (an example of information regarding the detection result of the supply voltage detection unit).
 電源装置8から鉄筋結束装置2に供給される電力の電圧値が低下して不十分な値となる場合、鉄筋結束作業が電力不足により強制的に中断されてしまう可能性がある。このため、鉄筋結束ロボット1では、鉄筋結束装置2に供給される電力の電圧値に応じた制御を実行したい場合がある。この場合、ロボット制御ユニット10は、電源装置8から鉄筋結束装置2に供給される電力の電圧値を把握する必要がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、電源装置8から鉄筋結束装置2に供給される電力の電圧値を把握することができる。 If the voltage value of the power supplied from the power supply 8 to the reinforcing bar binding device 2 drops to an insufficient value, there is a possibility that the reinforcing bar binding work will be forcibly interrupted due to power shortage. Therefore, in the reinforcing bar binding robot 1, there are cases where it is desired to execute control according to the voltage value of the power supplied to the reinforcing bar binding device 2. FIG. In this case, the robot control unit 10 needs to grasp the voltage value of the power supplied from the power supply device 8 to the reinforcing bar binding device 2 . According to the above configuration, the robot control unit 10 can grasp the voltage value of the power supplied from the power supply device 8 to the reinforcing bar binding device 2 based on the state notification signal.
 第13の態様では、上記第1から第12の態様のいずれか一つにおいて、鉄筋結束装置2は、鉄筋結束作業の際に第1鉄筋R1または第2鉄筋R2に当接可能な位置に配置されたコンタクトプレート102(コンタクト部材の例)と、コンタクトプレート102を揺動可能に保持するハウジング12と、コンタクトプレート102のハウジング12に対する位置を検出するプレート位置検出センサ134(コンタクト部材位置検出部の例)と、をさらに備えている。状態通知信号は、プレート正常判定フラグと、プレート異常判定フラグと、プレート位置検出センサ134の検出値(コンタクト部材位置検出部の検出結果に関する情報の例)を含む。 In a thirteenth aspect, in any one of the first to twelfth aspects, the reinforcing bar binding device 2 is arranged at a position capable of coming into contact with the first reinforcing bar R1 or the second reinforcing bar R2 during the reinforcing bar binding operation. contact plate 102 (example of contact member), housing 12 holding contact plate 102 in a swingable manner, and plate position detection sensor 134 (contact member position detection unit) for detecting the position of contact plate 102 with respect to housing 12. Example) and are further provided. The state notification signal includes a plate normality determination flag, a plate abnormality determination flag, and a detection value of the plate position detection sensor 134 (an example of information regarding the detection result of the contact member position detection section).
 鉄筋結束作業を確実に実行する上で、ロボット制御ユニット10は、鉄筋結束装置2が鉄筋交差箇所にセットされたことを検出したい場合がある。上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、コンタクトプレート102が揺動されたか否かを判断することで、鉄筋結束装置2が鉄筋交差箇所にセットされたことを検出できる。 In order to reliably perform the reinforcing bar binding work, the robot control unit 10 may want to detect that the reinforcing bar binding device 2 has been set at the reinforcing bar intersection. According to the above configuration, the robot control unit 10 determines whether or not the contact plate 102 has been swung based on the state notification signal, thereby indicating that the reinforcing bar binding device 2 has been set at the reinforcing bar intersection. detectable.
 第14の態様では、上記第1から第13の態様のいずれか一つにおいて、状態通知信号は、結束装置異常判定フラグ(鉄筋結束装置に異常が発生したことを示す情報の例)を含む。 In a fourteenth aspect, in any one of the first to thirteenth aspects, the state notification signal includes a binding device abnormality determination flag (an example of information indicating that an abnormality has occurred in the reinforcing bar binding device).
 上記の構成によれば、ロボット制御ユニット10は、状態通知信号に基づいて、鉄筋結束装置2に異常が発生したことを把握することができる。このため、ロボット制御ユニット10は、鉄筋結束装置2に異常が発生したことに応じて鉄筋結束ロボット1の動作を停止したり、その旨をユーザに報知したりすることができる。 According to the above configuration, the robot control unit 10 can grasp that an abnormality has occurred in the reinforcing bar binding device 2 based on the state notification signal. Therefore, the robot control unit 10 can stop the operation of the reinforcing bar binding robot 1 in response to the occurrence of an abnormality in the reinforcing bar binding device 2, or notify the user of the fact.
 第15の態様では、上記第1から第14の態様のいずれか一つにおいて、ロボット制御ユニット10は、装置制御ユニット50に状態呼出信号(呼出信号の例)を送信するように構成されている。装置制御ユニット50は、状態呼出信号を受信した時に、ロボット制御ユニット10に状態通知信号を送信するように構成されている。 In a fifteenth aspect, in any one of the first to fourteenth aspects, the robot control unit 10 is configured to send a status call signal (an example of a call signal) to the device control unit 50. . The device control unit 50 is configured to send a status notification signal to the robot control unit 10 when it receives the status call signal.
 上記の構成によれば、装置制御ユニット50は、状態通知信号を送信するタイミングを特定するための処理を実行する必要がない。このため、装置制御ユニット50を簡素な構成とすることができる。さらに上記の構成によれば、ロボット制御ユニット10は、所望のタイミングで、鉄筋結束装置2の状態を把握することができる。 According to the above configuration, the device control unit 50 does not need to execute processing for specifying the timing of transmitting the state notification signal. Therefore, the device control unit 50 can have a simple configuration. Furthermore, according to the above configuration, the robot control unit 10 can grasp the state of the reinforcing bar binding device 2 at desired timing.
 第16の態様では、上記第1から第15の態様のいずれか一つにおいて、ロボット制御ユニット10は、装置制御ユニット50に結束指示信号を送信するように構成されている。装置制御ユニット50は、結束指示信号を受信した時に、鉄筋結束装置2に鉄筋結束作業を実行させるように構成されている。ロボット制御ユニット10は、結束指示信号を送信することに先立って、装置制御ユニット50に状態呼出信号を送信するように構成されている。 In a sixteenth aspect, in any one of the first to fifteenth aspects, the robot control unit 10 is configured to transmit a bundling instruction signal to the device control unit 50 . The device control unit 50 is configured to cause the reinforcing bar binding device 2 to perform the reinforcing bar binding operation when receiving the binding instruction signal. The robot control unit 10 is configured to send a status call signal to the device control unit 50 prior to sending the bundling instruction signal.
 鉄筋結束作業が開始されるタイミングで鉄筋結束装置2の状態を把握することができれば、ロボット制御ユニット10は、鉄筋結束装置2の状態に基づいて、その後の鉄筋結束作業の継続可否を判断することができる。上記の構成によれば、ロボット制御ユニット10は、鉄筋結束作業が開始されるタイミングで鉄筋結束装置2の状態を把握することができる。このため、ロボット制御ユニット10は、鉄筋結束装置2の状態に基づいて鉄筋結束作業の継続可否を判断することができる。 If the state of the reinforcing bar binding device 2 can be grasped at the timing when the reinforcing bar binding work is started, the robot control unit 10 can determine whether or not the subsequent reinforcing bar binding work can be continued based on the state of the reinforcing bar binding device 2. can be done. According to the above configuration, the robot control unit 10 can grasp the state of the reinforcing bar binding device 2 at the timing when the reinforcing bar binding work is started. Therefore, the robot control unit 10 can determine whether or not to continue the reinforcing bar binding work based on the state of the reinforcing bar binding device 2 .

Claims (16)

  1.  複数の第1鉄筋と、前記複数の第1鉄筋と交差する複数の第2鉄筋について、前記複数の第1鉄筋と前記複数の第2鉄筋の上を移動する動作と、前記複数の第1鉄筋と前記複数の第2鉄筋が交差する鉄筋交差箇所を結束する動作と、を繰り返し実行可能な鉄筋結束ロボットであって、
     前記鉄筋結束ロボットの動作を制御するロボット制御ユニットと、
     ワイヤを用いて鉄筋結束作業を実行する鉄筋結束装置と、を備えており、
     前記鉄筋結束装置は、前記鉄筋結束装置の動作を制御する装置制御ユニットを備えており、
     前記装置制御ユニットは、前記ロボット制御ユニットに第1信号を送信するように構成されており、
     前記ロボット制御ユニットは、前記装置制御ユニットから送信された前記第1信号に基づいて前記鉄筋結束ロボットの動作を制御するように構成されている、鉄筋結束ロボット。
    With respect to a plurality of first reinforcing bars and a plurality of second reinforcing bars that intersect with the plurality of first reinforcing bars, an action of moving over the plurality of first reinforcing bars and the plurality of second reinforcing bars; and an operation of binding the reinforcing bar intersections where the plurality of second reinforcing bars intersect, and a reinforcing bar binding robot capable of repeatedly executing,
    a robot control unit that controls the operation of the reinforcing bar binding robot;
    a reinforcing bar binding device that performs a reinforcing bar binding operation using a wire,
    The reinforcing bar binding device includes a device control unit that controls the operation of the reinforcing bar binding device,
    the device control unit is configured to send a first signal to the robot control unit;
    The rebar tying robot, wherein the robot control unit is configured to control operation of the rebar tying robot based on the first signal transmitted from the device control unit.
  2.  前記鉄筋結束装置は、前記ワイヤを送る動作を実行可能に構成されており、
     前記鉄筋結束装置は、前記ワイヤを送る動作に関する状態を検出する第1状態検出部をさらに備えており、
     前記第1信号は、前記第1状態検出部の検出結果に関する情報を含む、請求項1の鉄筋結束ロボット。
    The reinforcing bar binding device is configured to be able to execute the operation of feeding the wire,
    The reinforcing bar binding device further comprises a first state detection unit that detects a state related to the operation of feeding the wire,
    2. The reinforcing rod binding robot according to claim 1, wherein said first signal includes information regarding the detection result of said first state detection section.
  3.  前記第1状態検出部は、前記ワイヤの有無を検出するワイヤ検出部を備えており、
     前記第1信号は、前記ワイヤ検出部の検出結果に関する情報を含む、請求項2の鉄筋結束ロボット。
    The first state detection unit includes a wire detection unit that detects the presence or absence of the wire,
    3. The reinforcing bar binding robot according to claim 2, wherein said first signal includes information about a detection result of said wire detection unit.
  4.  前記鉄筋結束装置は、
     前記ワイヤが巻回されるワイヤリールと、
     前記ワイヤリールを回転可能に保持するハウジングをさらに備えており、
     前記ワイヤ検出部は、前記ワイヤリールに巻回された前記ワイヤの有無を検出する、請求項3の鉄筋結束ロボット。
    The reinforcing bar binding device is
    a wire reel around which the wire is wound;
    further comprising a housing that rotatably holds the wire reel,
    4. The reinforcing bar binding robot according to claim 3, wherein said wire detection unit detects the presence or absence of said wire wound around said wire reel.
  5.  前記鉄筋結束装置は、送りモータを備えており、前記ワイヤを送る動作を実行可能な送り機構をさらに備えており、
     前記第1状態検出部は、前記送り機構の状態を検出する送り機構状態検出部を備えており、
     前記第1信号は、前記送り機構状態検出部の検出結果に関する情報を含む、請求項2から4の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding device comprises a feed motor and further comprises a feed mechanism capable of executing the operation of feeding the wire,
    The first state detection unit includes a feed mechanism state detection unit that detects the state of the feed mechanism,
    The reinforcing bar binding robot according to any one of claims 2 to 4, wherein said first signal includes information about a detection result of said feeding mechanism state detection section.
  6.  前記鉄筋結束装置は、
     前記ワイヤが巻回されるワイヤリールと、
     前記ワイヤリールを回転可能に保持するハウジングと、
     制動アクチュエータを備えており、前記ワイヤリールの回転運動を制動する動作を実行可能な制動機構と、をさらに備えており、
     前記第1状態検出部は、前記制動機構の状態を検出する制動機構状態検出部を備えており、
     前記第1信号は、前記制動機構状態検出部の検出結果に関する情報を含む、請求項2から5の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding device is
    a wire reel around which the wire is wound;
    a housing that rotatably holds the wire reel;
    a braking mechanism that includes a braking actuator and is capable of performing an operation of braking the rotational motion of the wire reel;
    The first state detection unit includes a braking mechanism state detection unit that detects the state of the braking mechanism,
    The reinforcing bar binding robot according to any one of claims 2 to 5, wherein said first signal includes information about a detection result of said braking mechanism state detection section.
  7.  前記鉄筋結束装置は、前記鉄筋交差箇所の周りに周回された前記ワイヤを捩る動作を実行可能に構成されており、
     前記鉄筋結束装置は、前記ワイヤを捩る動作に関する状態を検出する第2状態検出部をさらに備えており、
     前記第1信号は、前記第2状態検出部の検出結果に関する情報を含む、請求項1から6の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding device is configured to be capable of twisting the wire wound around the reinforcing bar intersection,
    The reinforcing bar binding device further comprises a second state detection unit that detects a state related to an operation of twisting the wire,
    The reinforcing bar binding robot according to any one of claims 1 to 6, wherein said first signal includes information about a detection result of said second state detection section.
  8.  前記鉄筋結束装置は、捩りモータを備えており、前記鉄筋交差箇所の周りに周回された前記ワイヤを捩る動作を実行可能な捩り機構をさらに備えており、
     前記第2状態検出部は、前記捩り機構の状態を検出する捩り機構状態検出部を備えており、
     前記第1信号は、前記捩り機構状態検出部の検出結果に関する情報を含む、請求項7の鉄筋結束ロボット。
    The reinforcing bar binding device includes a twisting motor, and further includes a twisting mechanism capable of twisting the wire wound around the reinforcing bar intersection,
    The second state detection unit includes a torsion mechanism state detection unit that detects the state of the torsion mechanism,
    8. The reinforcing rod binding robot according to claim 7, wherein said first signal includes information on a detection result of said twisting mechanism state detection section.
  9.  前記鉄筋結束装置は、
     前記ワイヤが巻回されるか、または前記ワイヤを案内するワイヤリールと、
     前記ワイヤリールを着脱可能に保持するリール保持部と、
     前記リール保持部に前記ワイヤリールが保持されているか否かを検出するリール検出部と、をさらに備えており、
     前記第1信号は、前記リール検出部の検出結果に関する情報を含む、請求項1から8の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding device is
    a wire reel on which the wire is wound or on which the wire is guided;
    a reel holding portion that detachably holds the wire reel;
    a reel detection unit that detects whether or not the wire reel is held by the reel holding unit;
    The reinforcing bar binding robot according to any one of claims 1 to 8, wherein the first signal includes information about the detection result of the reel detection section.
  10.  前記鉄筋結束装置は、
     送りモータを備えており、前記ワイヤを送る動作を実行可能な送り機構と、
     前記送りモータを収容するハウジングと、
     前記ハウジングに取り付けられ、前記送り機構によって送られた前記ワイヤを略円環状の案内軌道上に案内して前記鉄筋交差箇所の周りに周回させる第1位置と、前記第1位置に対して前記案内軌道の外側に移動した第2位置との間で移動可能な案内部材と、
     前記案内部材の前記ハウジングに対する位置を検出する案内部材位置検出部と、をさらに備えており、
     前記第1信号は、前記案内部材位置検出部の検出結果に関する情報を含む、請求1から9の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding device is
    a feed mechanism having a feed motor and capable of executing an operation for feeding the wire;
    a housing that houses the feed motor;
    a first position attached to the housing and adapted to guide the wire fed by the feeding mechanism on a substantially annular guide track to circulate around the rebar intersection; and the guide relative to the first position. a guide member movable between a second position moved outside the track;
    a guide member position detector that detects the position of the guide member with respect to the housing,
    The reinforcing bar binding robot according to any one of claims 1 to 9, wherein said first signal includes information about a detection result of said guide member position detector.
  11.  前記鉄筋結束装置は、前記装置制御ユニットの温度を検出する温度検出部をさらに備えており、
     前記第1信号は、前記温度検出部の検出結果に関する情報を含む、請求項1から10の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding device further comprises a temperature detection unit that detects the temperature of the device control unit,
    The reinforcing bar binding robot according to any one of claims 1 to 10, wherein said first signal includes information about a detection result of said temperature detection unit.
  12.  前記鉄筋結束ロボットは、前記鉄筋結束装置に電力を供給するための電源装置をさらに備えており、
     前記鉄筋結束装置は、前記電源装置から前記鉄筋結束装置に供給される電力の電圧値を検出する供給電圧検出部をさらに備えており、
     前記第1信号は、前記供給電圧検出部の検出結果に関する情報を含む、請求項1から11の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding robot further comprises a power supply for supplying power to the reinforcing bar binding device,
    The reinforcing bar binding device further comprises a supply voltage detection unit that detects a voltage value of power supplied from the power supply device to the reinforcing bar binding device,
    The reinforcing bar binding robot according to any one of claims 1 to 11, wherein said first signal includes information about a detection result of said supply voltage detection section.
  13.  前記鉄筋結束装置は、
     前記鉄筋結束作業の際に前記第1鉄筋または前記第2鉄筋に当接可能な位置に配置されたコンタクト部材と、
     前記コンタクト部材を揺動可能に保持するハウジングと、
     前記コンタクト部材の前記ハウジングに対する位置を検出するコンタクト部材位置検出部と、をさらに備えており、
     前記第1信号は、前記コンタクト部材位置検出部の検出結果に関する情報を含む、請求項1から12の何れか一項の鉄筋結束ロボット。
    The reinforcing bar binding device is
    a contact member arranged at a position capable of coming into contact with the first reinforcing bar or the second reinforcing bar during the reinforcing bar binding operation;
    a housing that pivotably holds the contact member;
    a contact member position detector that detects the position of the contact member with respect to the housing,
    The reinforcing bar binding robot according to any one of claims 1 to 12, wherein said first signal includes information on a detection result of said contact member position detector.
  14.  前記第1信号は、前記鉄筋結束装置に異常が発生したことを示す情報を含む、請求項1から13の何れか一項の鉄筋結束ロボット。 The reinforcing bar binding robot according to any one of claims 1 to 13, wherein the first signal includes information indicating that an abnormality has occurred in the reinforcing bar binding device.
  15.  前記ロボット制御ユニットは、前記装置制御ユニットに呼出信号を送信するように構成されており、
     前記装置制御ユニットは、前記呼出信号を受信した時に、前記ロボット制御ユニットに前記第1信号を送信するように構成されている、請求項1から14の何れか一項の鉄筋結束ロボット。
    the robot control unit is configured to send a call signal to the device control unit;
    15. The rebar tying robot of any one of claims 1 to 14, wherein the device control unit is configured to transmit the first signal to the robot control unit upon receiving the call signal.
  16.  前記ロボット制御ユニットは、前記装置制御ユニットに結束指示信号を送信するように構成されており、
     前記装置制御ユニットは、前記結束指示信号を受信した時に、前記鉄筋結束装置に前記鉄筋結束作業を実行させるように構成されており、
     前記ロボット制御ユニットは、前記結束指示信号を送信することに先立って、前記装置制御ユニットに前記呼出信号を送信するように構成されている、請求項1から15の何れか一項の鉄筋結束ロボット。
    The robot control unit is configured to send a bundling instruction signal to the device control unit,
    The device control unit is configured to cause the reinforcing bar binding device to perform the reinforcing bar binding operation when receiving the binding instruction signal,
    Rebar tying robot according to any one of claims 1 to 15, wherein the robot control unit is arranged to transmit the call signal to the device control unit prior to transmitting the tying instruction signal. .
PCT/JP2022/026699 2021-07-07 2022-07-05 Rebar tying robot WO2023282258A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-113074 2021-07-07
JP2021113074A JP2023009634A (en) 2021-07-07 2021-07-07 Reinforcement binding robot
JP2022101411A JP2024002305A (en) 2022-06-23 2022-06-23 Reinforcement binding robot
JP2022-101411 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023282258A1 true WO2023282258A1 (en) 2023-01-12

Family

ID=84800662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026699 WO2023282258A1 (en) 2021-07-07 2022-07-05 Rebar tying robot

Country Status (1)

Country Link
WO (1) WO2023282258A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397632U (en) * 1990-01-26 1991-10-08
JP2001357481A (en) * 2000-06-12 2001-12-26 Hochiki Corp Tunnel disaster prevention equipment
JP2019039170A (en) * 2017-08-23 2019-03-14 大成建設株式会社 Self-traveling type reinforcing bar binding machine
JP2021076417A (en) * 2019-11-06 2021-05-20 株式会社東京精密 Correlation generation method, measurement force adjustment method, and surface property measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397632U (en) * 1990-01-26 1991-10-08
JP2001357481A (en) * 2000-06-12 2001-12-26 Hochiki Corp Tunnel disaster prevention equipment
JP2019039170A (en) * 2017-08-23 2019-03-14 大成建設株式会社 Self-traveling type reinforcing bar binding machine
JP2021076417A (en) * 2019-11-06 2021-05-20 株式会社東京精密 Correlation generation method, measurement force adjustment method, and surface property measuring device

Similar Documents

Publication Publication Date Title
US11346107B2 (en) Rebar tying tool
US20230094722A1 (en) Rebar tying robot
EP1070808B1 (en) Binding machine for reinforcing bars
JP6887760B2 (en) Reinforcing bar binding machine
JP7017926B2 (en) Reinforcing bar binding machine
US11332934B2 (en) Tying machine
JP2017206302A (en) Steel bar tying tool
WO2023282258A1 (en) Rebar tying robot
JP2024002305A (en) Reinforcement binding robot
JP6726988B2 (en) Rebar binding machine
JP6955340B2 (en) Cable ties
JP7100568B2 (en) Reinforcing bar binding machine
JP6730940B2 (en) Binding machine
JP2022110554A (en) Reinforcement binding robot
WO2023281823A1 (en) Reinforcing bar binding robot
WO2023002683A1 (en) Reinforcing bar binding robot
JP2013146195A (en) Walking-type mower
JP2022110555A (en) Reinforcement binding robot
JP2022110556A (en) Reinforcement binding robot
US20220298813A1 (en) Rebar tying tool
JP6894708B2 (en) Cable ties
KR101676801B1 (en) Wire tensioning device
TW202404860A (en) Bundling machine
JP2020125159A (en) Steel bar tying tool
JP2004331310A (en) Electric reel with irregular winding preventing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE