WO2023282078A1 - タービン静翼およびガスタービン - Google Patents

タービン静翼およびガスタービン Download PDF

Info

Publication number
WO2023282078A1
WO2023282078A1 PCT/JP2022/025110 JP2022025110W WO2023282078A1 WO 2023282078 A1 WO2023282078 A1 WO 2023282078A1 JP 2022025110 W JP2022025110 W JP 2022025110W WO 2023282078 A1 WO2023282078 A1 WO 2023282078A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling hole
opening
cavity
blade
Prior art date
Application number
PCT/JP2022/025110
Other languages
English (en)
French (fr)
Inventor
朋子 森川
哲 羽田
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to US18/567,254 priority Critical patent/US20240263561A1/en
Priority to KR1020237040486A priority patent/KR20230169386A/ko
Priority to CN202280037399.3A priority patent/CN117377813A/zh
Publication of WO2023282078A1 publication Critical patent/WO2023282078A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/183Blade walls being porous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • a gas turbine mixes combustion of compressed air and fuel to generate high-temperature combustion gas.
  • Turbine stator vanes that form a part of the gas turbine are arranged in the generated hot combustion gas, so they may be thermally damaged by the hot combustion gas.
  • the turbine stator blade receives part of the compressed air from the outside as cooling air to cool the blade body and the shroud.
  • An example of a cooling structure using cooling air for turbine stationary blades is shown in Patent Document 1.
  • Patent Literature 1 discloses an example in which cooling holes necessary for the high temperature region and the low temperature region of the blade body and the shroud are arranged in each region to perform proper cooling.
  • the present disclosure applies a more appropriate cooling means to the suction surface side leading edge region of the shroud, which has a particularly high heat load, among the shrouds of the turbine stator blades, and is capable of further reducing the amount of cooling air. Intended to provide wings.
  • At least one embodiment according to the present disclosure is a turbine stator vane comprising a blade body, a shroud formed at an end portion of the blade body in a blade height direction, and a fillet portion joining the blade body and the shroud.
  • the shroud includes a bottom plate in contact with the combustion gas flow path, a peripheral wall extending in the blade height direction along the peripheral edge of the bottom plate, and a recess forming a space surrounded by the peripheral wall and the bottom plate, wherein the peripheral wall includes a leading edge end extending to the leading edge side of the wing body and a suction side end extending from the leading edge on the suction side of the wing body to the trailing edge, and the shroud is formed in the suction side leading edge region of the shroud and includes a plurality of the cooling holes formed in the bottom plate, said plurality of cooling holes having a first end connected to an inlet opening formed in said bottom plate; a second end connected to an outlet opening formed in the gas path surface of the bottom plate
  • an appropriate cooling structure is formed in the suction side leading edge region of the shroud to evenly cool the gas path side of the bottom plate. Also, the amount of cooling air is reduced, improving the efficiency of the gas turbine.
  • FIG. 1 is a configuration diagram of a gas turbine in one embodiment according to the present disclosure.
  • 2 is a perspective view of a gas turbine stator vane in one embodiment according to the present disclosure;
  • FIG. 3 is a plan view of an embodiment shroud according to the present disclosure;
  • FIG. 4 is a cross-sectional view of the shroud along line AA of FIG. 3.
  • FIG. 5 shows a planar cross-section of the gas path surface of the shroud along line BB of FIG.
  • FIG. 6 shows a plan cross-section of another embodiment of the gas path surface of the shroud along line BB of FIG.
  • FIG. 7 is a detail view showing part of a planar cross-section of the gas path surface of the shroud shown in FIG. 6;
  • 8A and 8B are a plan view and a cross-sectional view of a cooling hole showing the details of the portion C in FIG.
  • FIG. 9 is a flow chart showing a cooling method for turbine stator blades.
  • FIG. 1 is a schematic configuration diagram showing a gas turbine 1 of an embodiment to which a turbine stator blade 24 is applied.
  • a gas turbine 1 includes a compressor 2 for generating compressed air, a combustor 4 for generating combustion gas G using the compressed air and fuel, and a combustion a turbine 6 that is rotationally driven by the gas G.
  • a generator (not shown) is connected to the turbine 6 so that rotational energy of the turbine 6 is used to generate power.
  • the compressor 2 is provided in a compressor casing 10 and an inlet side of the compressor casing 10, and is provided so as to pass through both the compressor casing 10 and a turbine casing 22, which will be described later, and an intake chamber 12 for taking in air. and various blades arranged in the compressor casing 10 .
  • the various vanes are an inlet guide vane 14 provided on the intake chamber 12 side, a plurality of compressor stator vanes 16 fixed on the compressor casing 10 side, and axially alternate with respect to the compressor stator vanes 16. a plurality of compressor rotor blades 18 implanted in the rotor 8 in an array.
  • the compressor 2 may include other components such as an air bleed chamber (not shown).
  • air taken from the intake chamber 12 passes through a plurality of compressor stator blades 16 and a plurality of compressor rotor blades 18 and is compressed to generate compressed air.
  • Compressed air is sent axially downstream from the compressor 2 to a combustor 4 .
  • the combustor 4 is arranged inside the casing 20 . As shown in FIG. 1 , a plurality of combustors 4 are annularly arranged around a rotor 8 in a casing 20 .
  • the combustor 4 is supplied with fuel and compressed air generated by the compressor 2 , and combusts the fuel to generate a high-temperature, high-pressure combustion gas G, which is a working fluid for the turbine 6 .
  • the generated combustion gas G is sent from the combustor 4 to the turbine 6 on the downstream side in the axial direction.
  • the turbine 6 includes a turbine casing (casing) 22 and various turbine blades arranged within the turbine casing 22 .
  • the various turbine blades are composed of a plurality of turbine stator vanes 24 fixed on the turbine casing 22 side and a plurality of turbines implanted in the rotor 8 so as to be alternately arranged in the axial direction with respect to the turbine stator vanes 24.
  • the rotor 8 extends in the axial direction, and the combustion gas G discharged from the turbine casing 22 is discharged to the exhaust casing 28 on the downstream side in the axial direction.
  • the left side of the drawing is the axial upstream side
  • the right side of the drawing is the axial downstream side.
  • a radial direction means a direction perpendicular to the rotor 8 .
  • the circumferential direction it represents the rotation direction of the rotor 8 .
  • the radial direction may also be referred to as the wing height direction.
  • the turbine rotor blades 24 are configured to generate rotational driving force from the high-temperature, high-pressure combustion gas G flowing inside the turbine casing 22 together with the turbine stator blades 24 . This rotational driving force is transmitted to the rotor 8 to drive a generator (not shown) connected to the rotor 8 .
  • An exhaust chamber 29 is connected to an axially downstream side of the turbine casing 22 via an exhaust casing 28 .
  • the combustion gas G after driving the turbine 6 is discharged to the outside through the exhaust vehicle chamber 28 and the exhaust chamber 29 .
  • FIG. 2 shows a perspective view of the turbine stator vane 24 .
  • the stationary blade 24 of the turbine 6 has a blade body 40 extending in the blade height direction and shrouds 60 on both outer and inner ends of the blade body 40 in the blade height direction.
  • the shroud 60 includes an outer shroud 60a formed on the outer side of the wing body 40 in the wing height direction, and an inner shroud 60b formed on the inner side of the wing body 40 in the wing height direction.
  • the blade body 40 is arranged in a combustion gas flow path 47 through which the combustion gas G flows.
  • the outer shroud 60 a defines the outer position in the blade height direction of the combustion gas flow path 47 annularly formed around the rotor 8 .
  • the inner shroud 60b defines the inner position of the annular combustion gas flow path 47 in the blade height direction.
  • a hook 76 for supporting the turbine stator blade 24 in the turbine casing 22 is provided on the outer shroud 60 a of the stator blade 40 on the trailing edge 43 side of the blade body 40 .
  • the hook 76 of the turbine stationary blade 24 is provided on the peripheral wall 62 on the trailing edge 43 side of the outer shroud 60a.
  • the wing body 40 extends in the wing height direction, connects to the outer shroud 60a via a fillet portion 46 on the outer side in the wing height direction, and connects to the outer shroud 60a on the inner side in the wing height direction. It connects to the inner shroud 60b via the portion 46.
  • the blade body 40 forms the turbine stationary blade 24 together with the outer shroud 60a and the inner shroud 60b.
  • FIG. 3 shows a plane cross section of the outer shroud 60a viewed from the outside in the blade height direction, which is on the opposite side of the combustion gas flow path 47.
  • the outer shroud 60a side will be described as an example.
  • the wing body 40 connected to the outer shroud 60a via the fillet portion 46 forms a wing shape.
  • Airfoil 40 has a leading edge 42 at an axially upstream end and a trailing edge 43 at an axially downstream end.
  • the blade body 40 has, of the circumferentially facing surfaces of the blade surface 41, a suction surface 44 forming a convex surface and a pressure surface 45 forming a concave surface.
  • the suction side 44 and the pressure side 45 join at the leading edge 42 and the trailing edge 43 and together form a single airfoil 40 .
  • the side of the pressure surface 45 of the wing body 40 may be referred to as the ventral side
  • the side of the suction surface 44 of the wing body 40 may be referred to as the dorsal side.
  • the wing body 40 extends in the wing height direction and has a wing body cavity 51 (first cavity) through which the cooling air Ac flows in the internal space of the wing body 40 .
  • the blade cavity 51 extends in the blade height direction from the outer shroud 60a to the inner shroud 60b, and a plurality of internal spaces are continuously formed between the leading edge 42 and the trailing edge 43.
  • three wing-body cavities 51 (a wing-body leading edge cavity 52, a wing-body intermediate cavity 53, an example of the arrangement of the wing body trailing edge cavity 54) is shown as an example.
  • the blade cavity 51 has a plurality of blade partition ribs 49 connected at one end to the inner wall 62a of the blade wall 40b on the suction surface 44 side and at the other end to the inner wall 62a of the blade wall 40b on the pressure surface 45 side. divided into internal spaces.
  • the wing body cavity 51 is composed of a wing body leading edge cavity 52 disposed on the leading edge 42 side of the wing body 40 via the wing body partitioning rib 49 and a wing body leading edge cavity 52 is subdivided into an airfoil mid-cavity 53 located axially downstream and adjacent thereto.
  • the wing body cavity 51 is adjacent to the wing body intermediate cavity 53 via the wing body partitioning rib 49 and the axially downstream side of the wing body intermediate cavity 53. It is divided into wing body trailing edge cavities 54 located therein.
  • Each of the blade cavities 51 does not communicate with each other and opens to either the outer shroud 60a or the inner shroud 60b, and the blade end 40a of the other blade cavity 51 is provided with a lid 56 or the like. , is blocked. All airfoil cavities 51 are supplied with cooling air Ac from either outer shroud 60 a or inner shroud 60 b to cool airfoil 40 and discharge airfoil 41 into combustion gas flow path 47 .
  • the blade cavity 51 communicates with each other to form a serpentine flow path, and cooling air Ac is supplied from one opening 56a of the blade leading edge cavity 52 in the blade height direction. It may flow through the body trailing edge cavity 54 and exit into the combustion gas flow path 47 through cooling passages (not shown) formed in the trailing edge 43 .
  • FIG. 4 shows a cross section of the wing body leading edge cavity 52 of the wing body 40 and the outer shroud 60a around the wing body leading edge cavity 52 along line AA in FIG.
  • the outer shroud 60a includes a bottom plate 69 that forms the bottom surface of the outer shroud 60a, and is formed around the entire outer periphery of the bottom plate 69.
  • a peripheral wall 62 erected in the height direction, partition ribs 73 dividing a recess 75 formed by the bottom plate 69 and the peripheral wall 62 into a plurality of cavities 80, and the cavities 80 (recesses 75) are separated from each other on the outer side in the blade height direction.
  • It is composed of a collision plate 85 that divides into a cavity 82 (third cavity) and an inner cavity 83 (fourth cavity) on the inner side in the blade height direction.
  • a collision plate 85 arranged in the cavity 80 has a plurality of through holes 86 that communicate the outer cavity 82 and the inner cavity 83 .
  • the outer cavity 82 forms part of the recess 75 and forms one space with the outer shroud 60a.
  • the inner cavity 83 is arranged inside the outer cavity 82 in the blade height direction with the recess 75 divided into a plurality of spaces in the blade height direction by the collision plate 85 with the collision plate 85 interposed therebetween.
  • the peripheral wall 62 is arranged to face a front edge end 64 formed on the axially upstream side of the front edge 42 and axially downstream of the front edge end 64 .
  • a suction side end 66 formed at the end of the circumferential blade body 40 on the side of the suction side 44 and circumferentially opposed to the suction side end 66 and a pressure surface side end portion 67 formed at the end portion of the blade body 40 on the pressure surface 45 side.
  • the bottom plate 69 has an outer surface (gas path surface) 71 in contact with the combustion gas G inside the combustion gas flow path 47 in the blade height direction, and a counterflow on the side opposite to the outer surface (gas path surface) 71 in the blade height direction. and an inner surface (counter-flow surface) 70 facing outward in the blade height direction on the roadside.
  • the bottom plate 69 has a plurality of cooling holes 89, the details of which will be described later.
  • the cooling hole 89 penetrates the bottom plate 69 in the blade height direction and communicates with the combustion gas flow path 47 facing the inner cavity 83 and the outer surface 71 via the cooling hole 89 .
  • the outer edge of the blade body 40 in the blade height direction (the inner side in the blade height direction in the case of the inner shroud 60b) extends from the inner surface 70 of the bottom plate 69 of the outer shroud 60a to the outer side or inner side in the blade height direction. has a wing body end 40a that slightly protrudes into the
  • the region of the outer shroud 60 a on the suction surface 44 side and on the front edge 42 side protrudes from the inner surface 70 of the bottom plate 69 to the opposite side of the flow path, which is opposite to the outer surface (gas path surface) 71 .
  • a plurality of projecting partition ribs 73 are provided.
  • the partition rib 73 is a leading edge partition rib 73 a that connects the leading edge end portion 64 and the blade body end portion 40 a on the leading edge 42 side of the blade body 40 formed in the recess 75 of the shroud 60 .
  • a suction surface side intermediate partition rib 73 b that connects the blade body end portion 40 a of the blade body 40 and the suction side end portion 66 .
  • the inner cavity 83 communicates with the outer cavity 82 via the through hole 86 of the impingement plate 85 on the outer side in the blade height direction, and communicates with the outer cavity 82 via the cooling hole 89 of the bottom plate 69 on the inner side in the blade height direction. It communicates with the gas flow path 47 .
  • the configuration of the inner shroud 60b is substantially the same as the configuration of the outer shroud 60a described above. That is, the structure shown in FIGS. 3 and 4 is an example of the outer shroud 60a, but the structure shown in FIGS. 3 and 4 can also be applied to the structure of the inner shroud 60b. Therefore, the names and symbols of the components of the inner shroud 60b may be the same as the description of the components of the outer shroud 60a, unless otherwise specified. In the following description using FIGS. 4 to 8 as well, the description relating to the outer shroud 60a is also applicable to the inner shroud 60b, unless otherwise specified. In the case of the inner shroud 60b, the outer side in the blade height direction of the outer shroud 60a should be read as the inner side in the blade height direction, and the inner side in the blade height direction should be read as the outer side in the blade height direction.
  • the region forming the combustion gas flow path 47 sandwiched between the shrouds 60 at both ends of the turbine stator blade 24 in the blade height direction is a region where the high-temperature combustion gas G flowing into the turbine stator blade 24 from the upstream side in the axial direction passes through the blade.
  • gas path surface 71 of shroud 60 As it flows along surface 41 and gas path surface 71, gas path surface 71 of shroud 60 is superheated.
  • the gas path surface 71 on the negative pressure surface 44 side of the leading edge 42 tends to overheat remarkably because the flow velocity of the combustion gas G is faster than that on the positive pressure surface 45 side. Therefore, a cooling means for suppressing thermal damage from the combustion gas G to the shroud 60 is required.
  • shroud 60 including an outer shroud 60a and an inner shroud 60b will be described. Therefore, shroud 60 is applicable to both outer shroud 60a and inner shroud 60b unless otherwise specified.
  • FIGS. 5, 6 and 7 show plan cross-sections of the leading edge 42 side of the suction surface 44 when the outer shroud 60a is viewed from the side of the gas path surface (outer surface) 71 on the inner side in the blade height direction.
  • 4 is a sectional view along line BB of FIG.
  • the cooling structure of this embodiment includes an impingement plate 85 having a plurality of through holes 86, a bottom plate 69 having a plurality of cooling holes 89, and an outer cavity 82 formed outside the impingement plate 85 in the blade height direction. and an inner cavity 83 formed inside the impingement plate 85 in the blade height direction.
  • the shroud 60 allows the cooling air Ac supplied from the outer cavity 82 through the through holes 86 formed in the impingement plate 85 to blow into the inner cavity 83 and onto the inner surface 70 of the bottom plate 69 .
  • a cooling structure combining a film cooling structure for cooling the outer surface (gas path surface) 71 of the bottom plate 69 is formed. 3, 4, 5 and 9, a cooling structure combining impingement cooling and film cooling of the suction side leading edge cavity 81 will be specifically described below.
  • a plurality of cooling holes 89 are arranged along the blade surface 41 of the blade body 40 so as to surround the blade surface 41 in the outer surface (gas path surface) 71 of the suction side leading edge cavity 81 of the shroud 60 .
  • a plurality of cooling hole rows 90 having a plurality of cooling holes 89 surround the outer periphery of the blade surface 41 of the blade body cavity 51 of the blade body 40 on the suction side 44 side. , along the curved surface of the blade surface 41 at predetermined intervals.
  • the plurality of cooling hole rows 90 are formed so as to gradually change the inclination with respect to the axial direction as they go toward the downstream side in the axial direction.
  • Cooling hole rows 90 (91, 92, 93, 94) shown in FIG. and a fourth cooling hole array 94 .
  • Each respective cooling hole row 91 , 92 , 93 , 94 each comprises a plurality of cooling holes 89 .
  • the reference numerals of the cooling holes 89 forming the third cooling hole row 93 and the fourth cooling hole row 94 are the most airfoil. Only the cooling holes 89 closest to the surface 41 and the cooling holes 89 farthest from the blade surface 41 are indicated with reference numerals, and the reference numerals of the other cooling holes 89 are omitted.
  • each of the cooling hole rows 91, 92, 93, and 94 is arranged from the blade surface 41 side of the blade body 40 to the leading edge end 64 or It is composed of a plurality of cooling holes 89 arranged at predetermined intervals toward the suction surface side end portion 66 .
  • the direction in which the cooling hole 89 extends is the same as the direction in which the cooling hole center line FL extends. match.
  • the combustion gas G flowing into the gas path surface 71 on the leading edge 42 side of the turbine stationary blade 24 from the upstream side in the axial direction flows along the blade surface 41 of the blade body 40 toward the suction surface 44 side and the pressure surface 45 .
  • flow on the side A blade surface 41 on the negative pressure surface 44 side of the blade body 40 forms a convex curved surface, and the shape of the blade surface 41 changes toward the downstream side in the axial direction. Therefore, the direction of flow of the combustion gas G flowing along the blade surface 41 changes as the curved surface of the blade surface 41 of the blade body 40 changes.
  • the cooling air Ac discharged from the cooling holes 89 of the bottom plate 69 of the shroud 60 into the combustion gas flow path 47 is directed along the flow of the combustion gas G whose flow direction changes so as not to disturb the flow of the combustion gas G. It is desirable to discharge in the direction. Therefore, the plurality of cooling holes 89 forming the plurality of cooling hole rows 90 are arranged so as to gradually change their inclination with respect to the axial direction along with the change in the flow direction of the combustion gas G along with the axial downstream side. That is, the inclination of the cooling hole center lines FL of the plurality of cooling holes 89 forming the plurality of cooling hole rows 90 with respect to the axial line AL gradually decreases toward the downstream side in the axial direction.
  • each of the cooling hole rows 91, 92, 93, and 94 shown in FIG. toward the leading edge end 64 or the suction side end 66, in the direction away from the blade surface 41, the plurality of cooling holes 89 forming the same cooling hole row 90 are arranged at the same intervals and at the same distance.
  • a configuration that extends while maintaining an inclination with respect to the axial line AL is desirable.
  • the direction in which the groups of the cooling hole rows 91, 92, 93, and 94 extend is parallel to the direction in which the isobar IBL of the combustion gas G, which will be described later, extends.
  • the cooling hole centerline FL of the cooling hole 89 described above is the inlet of the plurality of cooling holes 89 forming each of the cooling hole rows 91 , 92 , 93 , 94 forming the cooling hole row 90 . It is indicated by a straight solid line connecting the center of the opening 89a and the center of the outlet opening 89b.
  • a plurality of cooling holes 89 forming each of the cooling hole rows 91, 92, 93, 94 are arranged from positions approaching the blade surface 41 of the plurality of cooling holes 89 in which the respective cooling hole rows 91, 92, 93, 94 are arranged.
  • first opening centerline OL1 which is a dashed line connecting the centers of the outlet openings 89b of the cooling holes 89 adjacent to each other.
  • the plurality of cooling holes 89 that form the same cooling hole row 90 are arranged from positions approaching the blade surface 41 of the plurality of cooling holes 89 in which the respective cooling hole rows 91, 92, 93, and 94 are arranged.
  • second opening centerline OL2 shown by a dashed line connecting the centers of the inlet openings 89a of the cooling holes 89 adjacent to each other.
  • the first opening centerline OL1 and the second opening centerline OL2 are collectively referred to as the opening centerline OL.
  • the structure of the cooling hole 89 is shown in FIG. 8 as details of the C section of the cooling hole shown in FIG. 8, the cooling hole 89 formed in the bottom plate 69 has an inlet opening 89a that opens to the inner surface 70 and an outlet opening 89b that opens to the outer surface (gas path surface) 71. As shown in FIG. An outlet opening 89b is formed at a position on the side of the trailing edge 43 on the downstream side in the axial direction from the position of the inlet opening 89a.
  • the inclination of the cooling hole 89 with respect to the inner surface 70 or the outer surface (gas path surface) 71 of the bottom plate 69 is the same.
  • the length of the line FL is also the same.
  • the cooling hole row 90 is the cooling hole 89 closest to the blade surface 41 with reference to the position of the cooling hole 89 closest to the blade surface 41 . , toward the leading edge end 64 or the suction side end 66 in a direction away from the blade surface 41 .
  • Each cooling hole row 91, 92, 93, 94 consisting of a plurality of cooling holes 89 is regarded as one group of cooling holes 89 extending while maintaining the same spacing and the same inclination with respect to the axial line AL. be able to.
  • the cooling hole center lines FL of the plurality of cooling holes 89 forming the same cooling hole rows 91, 92, 93, 94 are parallel to each other and the same within the same cooling hole rows 91, 92, 93, 94. , and the inclination with respect to the same axial line AL.
  • the first opening center line OL1 and the second opening center line OL2 of the plurality of cooling holes 89 forming the same cooling hole rows 91, 92, 93, and 94 are formed parallel to each other and are aligned with the cooling hole center line FL. It extends with the same inclination.
  • the inclination of the cooling hole center line FL with respect to the first opening center line OL1 is preferably maintained at the same inclination in the same cooling hole rows 91, 92, 93, and 94 at any position in the axial direction. .
  • each cooling hole row As shown in FIG. 5, when comparing the plurality of cooling hole rows 90 (91, 92, 93, 94) arranged from the axial upstream side to the downstream side, each cooling hole row
  • the direction in which the groups of the plurality of cooling holes 89 forming the 91, 92, 93, and 94 extend coincides with the direction in which the first opening centerline OL1 and the second opening centerline OL2 extend, and extends toward the downstream side in the axial direction.
  • the inclination with respect to the axial direction increases and the inclination with respect to the axial line AL decreases.
  • the cooling hole center lines FL of the cooling holes 89 of the cooling hole array 90 are compared, the cooling hole center lines FL of the groups of the plurality of cooling holes 89 forming the respective cooling hole arrays 91, 92, 93, and 94 extend.
  • the direction coincides with the direction in which the cooling hole center line FL of each cooling hole 89 extends, and as it goes axially downstream, the inclination with respect to the axial direction becomes smaller, and the inclination with respect to the axial direction line AL becomes smaller.
  • first opening center line OL1 and the second opening center line OL2 of each of the cooling hole rows 91, 92, 93, and 94 also tend toward the downstream side in the axial direction, and the inclination with respect to the axial direction increases. slope becomes smaller.
  • the first cooling hole row 91 arranged on the most upstream side in the axial direction is directed toward the leading edge end 64 or the suction side end 66 with reference to the cooling hole 91a closest to the blade surface 41. It is composed of five cooling holes 91a, 91b, 91c, 91d, and 91e having the same spacing and the same inclination with respect to the axial direction of the cooling hole center line FL.
  • the second cooling hole row 92 arranged adjacent to the first cooling hole row 91 on the downstream side in the axial direction is located at the suction surface side end portion with reference to the cooling hole 92 a closest to the blade surface 41 .
  • first cooling hole array 91 is arranged parallel to an isobar IBL1 of the combustion gas G, which will be described later, and the first opening center line OL1 of the second cooling hole array 92 is aligned with the combustion gas G. It is arranged parallel to the isobar line IBL2.
  • the first opening center line OL1 of the second cooling hole row 92 is axially offset from the first opening center line OL1 of the first cooling hole row 91.
  • the inclination increases and the inclination with respect to the axial line AL decreases.
  • the cooling hole center line FL of the second cooling hole array 92 has a greater inclination with respect to the axial direction than the cooling hole center line FL of the first cooling hole array 91, and has a smaller inclination with respect to the axial direction line AL.
  • the isobar IBL of the combustion gas G which will be described later, is axially downstream, approaches the suction surface side end portion 66, has a large inclination with respect to the axial direction, and has a small inclination with respect to the axial direction line AL.
  • the opening centerline (first opening centerline OL1) of each of the cooling hole rows 91, 92, 93, and 94 be arranged parallel to the constant pressure line IBL of the combustion gas G.
  • the opening center line OL and the cooling hole center line FL which are the directions in which the respective cooling hole rows 91, 92, 93, and 94 extend, change along with the change in the inclination of the isobar IBL of the combustion gas G with respect to the axial line AL. It is desirable to change the inclination of the opening centerline (first opening centerline OL1) of the cooling hole rows 91, 92, 93, 94 with respect to the axial line AL. That is, the opening center line OL and the cooling hole center line FL of each of the cooling hole rows 91, 92, 93, and 94 are directed downstream in the axial direction, and the inclination with respect to the axial line AL gradually decreases.
  • the inclination or angle of the opening centerline OL (the first opening centerline OL1, the second opening centerline OL2) or the cooling hole centerline FL of the plurality of cooling holes 89 forming the cooling hole row 90 with respect to the axial line AL is an axial line AL that passes through the leading edge 42 and extends in the axial direction.
  • the center line OL or the cooling hole center line FL is viewed, it means the inclination or angle formed by the axial direction line AL and the opening center line OL or the cooling hole center line FL in the counterclockwise direction.
  • the number and arrangement of the plurality of cooling holes 89 forming each cooling hole row 90 are selected in consideration of the metal temperature of the gas path surface 71 of the shroud 60 and the like.
  • the embodiment shown in FIG. 5 has four cooling hole rows 90 (a first cooling hole row 91, a second cooling hole row 92, a third cooling hole row 93, and a fourth cooling hole row) in the suction side leading edge cavity 81. 94) are arranged at a predetermined interval in the downstream direction from the upstream side in the axial direction.
  • the number of cooling hole rows 90 is not limited to four, and may be three or less, or may be five or more.
  • the number of cooling holes 89 may be five or more, or may be four or less.
  • the number of cooling holes 89 in the third cooling hole row 93 and the fourth cooling hole row 94 may be three or more.
  • FIG. 5 shows part of the pressure distribution of the combustion gas G flowing through the gas path surface 71 of the leading edge 42 of the shroud 60 on the negative pressure surface 44 side.
  • An isobar IBL of the pressure (static pressure) of the combustion gas G is indicated by a dashed line.
  • the pressure of the combustion gas G flowing into the turbine stationary blade 24 decreases while flowing through the combustion gas passages 47 on the suction surface 44 side and the pressure surface 45 side from the leading edge 42 to the trailing edge 43 .
  • the isobar IBL of the combustion gas G has, for example, the blade surface 41 on the suction surface 44 side of the turbine stator blade 24 as a starting point Xa, and the blade surface 41 on the pressure surface 45 side of the turbine stator blade 24 (not shown) adjacent in the circumferential direction. is drawn as a gentle curve with the end point at .
  • the isobar IBL means a curve connecting positions where the pressure (static pressure) of the combustion gas G flowing through the combustion gas flow path 47 shows the same pressure.
  • An isobar IBL1 shown in FIG. 5 as an example of the isobar IBL of the combustion gas G connects a starting point Xa on the blade surface 41 of the blade body 40 and an intermediate point Xb located on the end surface of the suction surface side end portion 66, and is indicated by a dashed line. indicated by the gentle curve shown.
  • the isobar IBL1 indicates part of the entire length of the isobar, and although not shown, is a curved line extending from the intermediate point Xb to the blade surface 41 of the adjacent turbine stator blade 24 on the pressure surface 45 side.
  • the pressure (static pressure) of the combustion gas G decreases toward the downstream side in the axial direction of the gas path surface 71 .
  • the isobar IBL1 from the starting point Xa to the intermediate point Xb extends axially downstream, separates from the blade surface 41, approaches the suction surface side end portion 66, has a large inclination with respect to the axial direction, and extends along the axial line AL. becomes smaller.
  • the pressure (static pressure) of the isobar IBL2 is lower than that of the isobar IBL1. Further, the flow of the combustion gas G on the gas path surface 71 moves axially downstream and approaches the suction surface side end portion 66, and the axial distance between the isobars IBL1 and IBL2 increases.
  • the tendency of the axial interval of the isobars IBL to widen is that the axial interval near the starting point Xa of the blade surface 41 is small, the axial interval gradually widens as the distance from the blade surface 41 increases, and the axial interval increases in the vicinity of the intermediate point Xb. widest.
  • the inclination of the isobar IBL with respect to the axial direction varies greatly in the vicinity of the blade surface 41 , but varies slightly away from the blade surface 41 and up to the intermediate point Xb of the suction surface side end portion 66 .
  • the first cooling hole row 91 arranged closest to the leading edge end 64 on the most upstream side in the axial direction among the plurality of cooling hole rows 90 is taken as an example.
  • the relationship between the gas G and the isobar IBL will be described.
  • the first cooling hole row 91 is composed of a group of five cooling holes 89 (91a, 91b, 91c, 91d, and 91e), and extends from a position close to the blade surface 41 toward the suction surface side end 66 at equal intervals. are arrayed.
  • An example of the constant pressure line IBL of the combustion gas G in the vicinity of the first cooling hole array 91 is the constant pressure line IBL1.
  • the isobar IBL1 is formed by drawing a gentle curve from a starting point Xa on the blade surface 41 on the suction surface 44 side of the leading edge 42 side of the blade body 40 to an intermediate point Xb on the end surface of the suction surface side end portion 66. .
  • the arrangement of the plurality of cooling holes 89 of the first cooling hole row 91 is such that the first opening center line OL1 connecting the outlet openings 89b of the plurality of cooling holes 89 of the first cooling hole row 91 is substantially parallel to the isobar IBL1.
  • the opening center line OL (first opening center line OL1) of the cooling hole 89 must be strictly parallel to the isobar IBL1.
  • a curved line is desirable.
  • the cooling holes 89 are formed by machining or electric discharge machining, it is desirable to arrange the plurality of cooling holes 89 such that the first opening center line OL1 is straight from the viewpoint of simplification of the machining work. .
  • the first cooling device located near the isobar IBL1 extending from the starting point Xa on the blade surface 41 on the leading edge 42 side of the blade body 40 to the intermediate point Xb on the suction surface side end portion 66.
  • the first opening centerline OL1 of the plurality of cooling holes 89 of the hole row 91 is the cooling hole 91a arranged closest to the blade surface 41 side and the adjacent cooling hole 91a in the direction from the blade surface 41 to the suction surface side end portion 66.
  • the cooling hole 91a closest to the blade surface 41 and the adjacent cooling hole 91b are selected in the above description, a combination of other two adjacent cooling holes 89 of the same cooling hole row 90 may be selected. That is, the first cooling hole OL1 determined by the cooling holes 91d and the cooling holes 91e, which are a combination of the other cooling holes 89 forming the same first cooling hole row 91, is parallel to the isobar IBL1.
  • the arrangement of the cooling holes 89 in the hole array 91 may be selected. Simply selecting the linear first opening centerline OL1 based on the outlet openings 89b of two adjacent cooling holes 89 of the same cooling hole row 90 improves the cooling performance of the shroud 60 and reduces the processing work.
  • the two adjacent cooling holes 89 used when selecting the second opening center line OL2 are desirably a combination of the two adjacent cooling holes 89 used when selecting the first opening center line OL1.
  • the arrangement of the plurality of cooling holes 89 of the cooling hole array 90 is selected so that the metal temperature, thermal stress, etc. of the bottom plate 69 forming the shroud 60 are within allowable values.
  • the cooling structure of the shroud 60 consists of a combination of impingement cooling by the impingement plate 85 and film cooling by the cooling holes 89 of the bottom plate 69. Thermal damage from the combustion gas G is suppressed. As shown in FIG.
  • the cooling air Ac supplied to the shroud 60 from the outside is supplied to the outer cavity 82 and supplied to the inner cavity 83 through the through holes 86 formed in the impingement plate 85 .
  • the cooling air Ac is decompressed while passing through the through holes 86 of the impingement plate 85 .
  • the cooling air Ac forms a jet in the course of flowing into the inner cavity 83 from the through-hole 86 and collides with the inner surface 70 of the floor plate 69 to impingement-cool (collision-cool) the inner surface 70 .
  • the cooling air Ac after impingement cooling of the inner surface 70 film-cools the gas path surface 71 in the process of being discharged from the cooling holes 89 formed in the bottom plate 69 to the combustion gas flow path 47 on the side of the gas path surface 71 .
  • a characteristic factor that influences the cooling of the shroud 60 by the arrangement of the cooling holes 89 of the cooling hole row 90 arranged in the suction side leading edge cavity 81 is film cooling by the cooling holes 89 .
  • the combustion gas G that has flowed into the combustion gas flow path 47 of the turbine stationary blade 24 flows down the gas path surface 71 of the shroud 60 in the axial direction downstream, and the pressure ( static pressure) decreases.
  • the amount of cooling air discharged from the inner cavity 83 of the shroud 60 into the combustion gas passage 47 through the cooling holes 89 is the difference in pressure between the inlet opening 89a and the outlet opening 89b of the cooling hole 89, that is, the cooling hole It depends on the differential pressure between the inner cavity 83 of 89 and the combustion gas flow path 47 .
  • the amount of cooling air flowing through the cooling holes 89 of the cooling hole array 90 varies due to the difference in the pressure drop of the combustion gas G while the combustion gas G flows through the gas path surface 71 .
  • the same pressure is maintained in the inner cavity 83 to which the inlet opening 89a on the upstream side of the cooling hole 89 connects as long as it is in the same space.
  • the pressure of the combustion gas G on the side of the gas path surface 71 connected to the outlet opening 89b on the downstream side of the cooling hole 89 decreases toward the downstream side in the axial direction. Therefore, depending on the arrangement of the plurality of cooling holes 89 in the cooling hole row 90, a difference in differential pressure (pressure difference) occurs between the cooling holes 89 among the plurality of cooling holes 89 forming the same cooling hole row 90. Variation in the amount of cooling air discharged can occur. Variations in the amount of cooling air in the plurality of cooling holes 89 forming the cooling hole array 90 cause non-uniform film cooling and non-uniform metal temperature distribution of the bottom plate 69 .
  • the first opening center line OL1 of the plurality of cooling holes 89 forming the same cooling hole row 90 is aligned with the isobar IBL of the combustion gas G near each of the cooling hole rows 91, 92, 93, and 94. It is desirable to select the arrangement of the plurality of cooling holes 89 of the same cooling hole row 90 so that they are generally parallel. If the arrangement of the plurality of cooling holes 89 of the same cooling hole row 90 is set so that the first opening center line OL1 of the cooling hole row 90 and the isobar IBL of the combustion gas G are substantially parallel, the same cooling hole row The plurality of cooling holes 89 that make up 90 can maintain the same differential pressure.
  • the amount of cooling air discharged from the plurality of cooling holes 89 of the same cooling hole row 90 to the gas path surface 71 is made uniform.
  • Film cooling on the downstream side in the axial direction from the positions of the plurality of cooling holes 89 of the cooling hole array 90 is made uniform.
  • the temperature distribution of the gas path surface 71 of the shroud 60 is leveled, thermal damage to the bottom plate 69 is suppressed, and thermal stress caused by uneven temperature distribution of the bottom plate 69 is reduced.
  • the pressure (static pressure) of the combustion gas G decreases axially downstream, but the axial interval between isobars IBL of the combustion gas G tends to increase axially downstream. . Therefore, the axial distance between the first opening center lines OL1 of the cooling hole rows 91, 92, 93, and 94 arranged in parallel with the isobar IBL also gradually increases toward the downstream in the axial direction. As a result, the gas path surface 71 on the downstream side in the axial direction from the plurality of cooling holes 89 of each of the cooling hole rows 91, 92, 93, 94 is uniformly cooled.
  • the constant pressure line IBL of the combustion gas G moves toward the downstream side in the axial direction, approaches the suction surface side end portion 66, and increases in inclination with respect to the axial direction. Therefore, the axial inclination of the linear first opening center lines OL1 of the plurality of cooling hole arrays 90 is also directed toward the axial downstream side, and the inclination with respect to the axial direction is large in accordance with the change of the constant pressure line IBL.
  • the slope with respect to AL becomes smaller gradually. As a result, as shown in FIG.
  • the first opening center line OL1 extending toward the front edge 42 on the side opposite to the suction surface end portion 66 in the circumferential direction is directed downstream in the axial direction and has a smaller inclination with respect to the axial line AL.
  • a circular front edge region 42a (first region) indicated by a dashed line inscribed in the outer edge 46a of the fillet portion 46 formed axially upstream of the position of the front edge 42 with respect to the position of the front edge 42 is formed.
  • the first opening centerlines OL1 of the plurality of cooling hole rows 90 pass through the leading edge region 42a (first region).
  • a plurality of cooling hole rows 90 (91, 92, 93, 94) composed of a plurality of cooling holes 89 formed in the suction side leading edge cavity 81 are centered around the leading edge 42.
  • the first opening center line OL1 of at least one of the plurality of cooling hole rows 90 configured by the plurality of cooling holes 89 formed in the suction side leading edge cavity 81 is aligned with the leading edge cavity 81.
  • the constant pressure line IBL of the combustion gas G has a parallel positional relationship with the first opening center line OL1 of the cooling hole array 90 as a characteristic factor that affects the arrangement of the cooling hole array 90 of the present embodiment.
  • the combustion gas G flowing on the gas path surface 71 on the suction surface 44 side of the shroud 60 on the leading edge 42 side flows along the blade surface 41 having a convex curved surface.
  • the region where the plurality of cooling holes 89 formed in the suction side leading edge cavity 81 are arranged extends from the upstream side to the downstream side in the axial direction, and the blade surface 41 of the blade body 40 extends toward the suction side end portion 66 . , and the inclination of the curved surface of the blade surface 41 with respect to the axial line AL gradually decreases.
  • the cooling hole center line FL is arranged in a direction inclined toward the blade surface 41 from the direction orthogonal to the opening center line OL with respect to the direction in which the opening center line OL of the plurality of cooling holes 89 extends. ing.
  • the cooling hole center lines FL of the same cooling hole rows 90 are also axially aligned.
  • the inclination with respect to the axial line AL decreases toward the downstream side.
  • the inclination or angle formed by the cooling hole center line FL of the cooling hole 89 of each of the cooling hole rows 91, 92, 93, and 94 with the opening center line OL (first opening center line OL1) may be any position in the axial direction. It is desirable to maintain the same inclination or angle.
  • the inclination of the cooling hole center line FL of the same cooling hole row 90 with respect to the opening center line OL is not maintained, and the cooling hole center line FL is excessively inclined toward the blade surface 41 depending on the position of the cooling hole row 90 in the axial direction. In this case, the flow of cooling air Ac discharged from the cooling holes 89 disturbs the flow of the combustion gas G.
  • the positional relationship between the first opening center line OL1 and the second opening center line OL2 of the cooling hole row 90 will be described by taking the first cooling hole row 91 as an example.
  • the cooling hole center lines FL of the plurality of cooling holes 89 forming the same cooling hole row 90 have the same length and the same inclination. Therefore, as shown in FIG. 5, if the first opening center line OL1 of the first cooling hole row 91 is a straight line starting from the leading edge region (first region) 42a, then the same cooling hole row 90 can A second opening center line OL2 extending toward the front edge 42 connecting the inlet openings 89a of the cooling holes 89 is also formed in a straight line.
  • the second opening centerline OL2 of the same first cooling hole array 91 is an upstream leading edge region located at a predetermined position axially upstream of the position of the leading edge 42 on the axial line AL passing through the leading edge 42. (Second region) is formed by a straight line starting from 42b.
  • the upstream-side leading edge region (second region) 42b is on the axial direction line AL on the upstream side in the axial direction from the position of the leading edge 42, and is on the axis of the cooling hole center line FL of the first cooling hole row 91. It refers to an area formed in a circular shape with the same radius as the leading edge area 46a, centered at a position at a distance corresponding to the directional length, and indicated by a dashed line.
  • the arrangement of the cooling holes 89 and their functions, actions, and effects have been described with a focus on the first cooling hole row 91.
  • the selection of arrangement can also be set in the same manner as in the case of the first cooling hole row 91 described above.
  • the opening center lines OL of the other cooling hole rows 90 change in inclination with respect to the axial line AL as they move toward the downstream side in the axial direction. Therefore, among the opening centerlines OL of all the cooling hole rows 90, the first opening centerline OL1 of at least one of the cooling hole rows 90 starts from the leading edge region (first region) 42a and extends from the second opening centerline OL1.
  • the OL2 extends in the direction of the leading edge end portion 64 or the suction surface side end portion 66 from the upstream leading edge region (second region) 42b.
  • FIG. 6 shows a plan cross-section of this embodiment of shroud 60 and is a plan view taken along line BB of FIG.
  • FIG. 7 is a detailed view showing a portion of the plan view of this embodiment of the shroud 60 shown in FIG.
  • the cooling structure of this embodiment relates to an embodiment in which the arrangement of the cooling holes 89 is changed from the structure of the first embodiment of the plurality of cooling holes 89 of the cooling hole row 90 formed in the shroud 60 described above.
  • the cooling structure that constitutes the present embodiment differs from the first embodiment in that the arrangement of the plurality of cooling holes 89 that constitute the film cooling structure is different. It has a different configuration.
  • the impingement cooling structure shown in FIGS. 3 and 4 is also applied to this embodiment.
  • the cooling hole array 95 of this embodiment shown in FIG. It consists of columns 99 .
  • Each respective cooling hole row 96 , 97 , 98 , 99 each comprises a plurality of cooling holes 89 .
  • the arrangement of the plurality of cooling holes 89 of the plurality of cooling hole rows 95 (96, 97, 98, 99) according to this embodiment is indicated by solid lines, and for comparison, the first embodiment described below is shown.
  • the arrangement of the plurality of cooling holes 89 of the plurality of cooling hole rows 90a (91, 92, 93, 94), which is a modification of the form, is indicated by dashed lines.
  • the number of cooling hole rows constituting the plurality of cooling hole rows 95 arranged on the gas path surface 71 of the suction side leading edge cavity 81 of the shroud 60 and the respective cooling hole rows 96, 97, 98, 99 is the same as in the first embodiment.
  • the plurality of cooling holes 89 indicated by solid lines in the plurality of cooling hole rows 90 are aligned with the first opening centers of the respective cooling hole rows 91, 92, 93, 94.
  • the arrangement of the cooling holes 89 is selected so as to be substantially parallel to the isobar IBL1 of the combustion gas G near the line OL1.
  • the high-temperature portion of the gas path surface 71 of the shroud 60 spreads more than in the first embodiment, and it is desired to strengthen cooling to a position closer to the blade surface 41.
  • the extending direction of the opening center lines OL (the first opening center line OL1 and the second opening center line OL2) of the plurality of cooling holes 89 forming the cooling hole row 90 of the first embodiment is maintained.
  • the groups of the plurality of cooling holes 89 of each of the cooling hole rows 91, 92, 93, 94 may be desired to be arranged closer to the blade surface 41 than in the first embodiment.
  • the arrangement of the plurality of cooling holes 89 of the cooling hole row 90 of the first embodiment is further brought closer to the blade surface 41 in the arrangement of the cooling holes 89 of the cooling hole row 90a. be.
  • the cooling holes 89 may be machined or drilled through the bottom plate 69 from the gas path surface 71 side toward the inner cavity 83 side by machining or electrical discharge machining.
  • the cooling holes 89 may be machined or drilled through the bottom plate 69 from the gas path surface 71 side toward the inner cavity 83 side by machining or electrical discharge machining.
  • the wing body 40 becomes an obstacle, making it difficult to machine the cooling holes 89 .
  • the extending direction of the cooling holes 89 is slightly changed so that the inclination of the cooling hole 89 with respect to the axial direction of the cooling hole center line FL is reduced. Correction may be desirable.
  • the modified cooling hole array 90a is a virtual cooling hole array.
  • the arrangement of the cooling holes 89 shown in FIG. 6 is different from the arrangement in which the plurality of cooling holes 89 of the cooling hole row 90a, which is a modified example of the first embodiment, is indicated by broken lines, and the arrangement of the cooling hole rows 95 (96) of the present embodiment. , 97, 98, 99) are shown in comparison with the placement of a plurality of cooling holes 89 shown in solid lines.
  • Cooling hole rows 90a (91, 92, 93, 94), which are modifications of the first embodiment shown in FIGS. 6 and 7, constitute the respective cooling hole rows 91, 92, 93, 94 of the first embodiment.
  • the number of the plurality of cooling holes 89, the direction in which each group of the cooling hole rows 91, 92, 93, and 94 extends, the interval between the cooling holes 89 in the direction in which the cooling hole row 90 extends, and the inclination of the cooling hole center line FL in the axial direction is maintained, and each group of cooling holes 89 of each of the cooling hole rows 91, 92, 93, and 94 of the first embodiment is moved toward the blade surface 41 side.
  • the position and extension of the opening centerline OL (first opening centerline OL1, second opening centerline OL2) of each cooling hole row 90a (91, 92, 93, 94) constituting the modification of the first embodiment The direction is the same as in the first embodiment. Further, the inclination of the cooling hole center line FL of the plurality of cooling holes 89 of each cooling hole row 90a (91, 92, 93, 94) with respect to the axial direction and the cooling hole row 90a (91, 92, 93, 94) constituting the modified example 94) are the same as in the first embodiment, as are the intervals of the cooling holes 89 in the direction in which each group extends and the inclination of the cooling hole center line FL with respect to the opening center line OL.
  • the concept of changing the arrangement of the cooling holes 89 of the cooling hole row 90a, which is the modified example of the first embodiment, to the arrangement of the cooling holes 89 of the cooling hole row 95 of the present embodiment will be described. do.
  • the cooling holes 89 (91aa, 92aa, 93aa, 94a) closest to the blade surface 41 of each cooling hole row 90a (91, 92, 93, 94) showing the modification of the first embodiment are In order to avoid interference with the blade body 40 when drilling the cooling holes 89, it is desirable to correct the inclination of the cooling holes 89 with respect to the axial direction.
  • the fourth cooling hole row 94 is arranged on the most downstream side in the axial direction among the cooling hole rows 90a, and the inclination of the cooling hole center line FL with respect to the axial line AL is equal to that of the other cooling holes on the upstream side in the axial direction. 89 (91aa, 92aa, 93aa), and the possibility of interference with the wing body 40 is small. Therefore, the arrangement of the cooling holes 94a of the modified example is maintained without changing the inclination of the cooling holes 94a closest to the blade surface 41 of the fourth cooling hole row 94.
  • the cooling hole 89 closest to the blade surface 41 of the other cooling hole rows 90a (91, 92, 93) of the modified example is designed to avoid interference with the blade body 40 during machining.
  • the cooling hole 91aa of the first cooling hole row 91, the cooling hole 92aa of the second cooling hole row 92, and the cooling hole 93aa of the third cooling hole 93 of 90a are changed in inclination with respect to the axial direction.
  • the arrangement of the cooling holes 89 after changing the position of the cooling holes 89 closest to the blade surface 41 in such a procedure is the closest to each of the cooling hole rows 95 (96, 97, 98, 99) of the present embodiment.
  • Cooling holes 89 (96a, 97a, 98a, 99a) are brought closer to the blade surface 41.
  • FIG. The cooling holes 99a of the fourth cooling hole row 99 of the present embodiment are arranged in the same manner as the cooling holes 94a of the fourth cooling hole row 94 of the cooling hole row 90a of the modified example of the first embodiment. no.
  • the configuration of the fourth cooling hole row 99 of the present embodiment shown in FIG. 6 is the same as the configuration of the fourth cooling hole row 94 of the cooling hole row 90a of the modified example. Only the cooling holes 99a closest to the blade surface 41 of the embodiment and the cooling holes 99c furthest from the blade surface 41 are shown, and the reference numerals of the cooling holes 89 of the modified example are omitted.
  • the cooling hole rows 96, 97, 98, 99a The location of another cooling hole 89 to be located away from the blade surface 41 is selected.
  • the cooling holes 89 constituting each of the cooling hole rows 96, 97, 98, and 99 are arranged based on the cooling holes 89 (96a, 97a, 98a, and 99a) closest to the blade surface 41 after the change in arrangement, It has the same inclination with respect to the axial direction as the cooling holes 89 (96a, 97a, 98a, 99a), and has the same spacing and the same cooling hole center line FL as the cooling holes 89 of the cooling hole row 90a of the modified example of the first embodiment. They are slanted and spaced and formed in a direction away from the blade surface 41 toward the leading edge end 64 or the suction side end 66 .
  • the directions in which the cooling hole rows 96, 97, 98, and 99 extend are the directions in which the cooling hole rows 91, 92, 93, and 94 in the first embodiment extend, that is, the cooling holes in the modification.
  • Each cooling of the first embodiment is not set in the same direction as the direction in which the opening center lines OL (first opening center line OL1, second opening center line OL2) of the hole row 90a (91, 92, 93, 94) extend. It is preferable that the arrangement be arranged upstream of the hole rows 91, 92, 93, and 94 in the axial direction, with a large inclination with respect to the axial direction and with a large inclination angle with respect to the axial line AL.
  • the opening center lines OL (first opening center line OL1, second opening center line OL2) of the cooling holes 89 of the respective cooling hole rows 96, 97, 98, and 99 of the present embodiment are compared with the respective cooling hole rows of the first embodiment.
  • the inclination of the cooling hole centerline FL with respect to the opening centerline OL is greater than the inclination of the cooling hole centerline FL of the first embodiment. This is because the cooling air flow discharged from the excessively inclined cooling holes 89 disturbs the flow of the combustion gas G flowing along the blade surface 41 . .
  • the arrangement of the cooling holes 89 of the respective cooling hole rows 96, 97, 98 and 99 of the present embodiment is changed from the position of the cooling holes 89 of the respective cooling hole rows 91, 92, 93 and 94 of the first embodiment to the axial direction.
  • the constant pressure line IBL of the combustion gas G in the vicinity of the opening center line OL of the cooling hole row 90 of the first embodiment is The parallel relationship between the opening center line OL and the constant pressure line IBL is somewhat lost as the distance increases axially upstream from the extending direction.
  • the opening center line OL is formed substantially parallel to another isobar line IBL on the upstream side in the axial direction of the isobar line IBL, fluctuations in the amount of cooling air discharged from the cooling holes 89 for each cooling hole row are suppressed to be small. be done.
  • the arrangement of the cooling holes 89 of the cooling hole rows 95 (96, 97, 98, 99 (94)) of the present embodiment is selected.
  • the fourth cooling hole array 99 has the same arrangement as the fourth cooling hole array 94 of the modified example of the first embodiment, and does not need to be changed.
  • the opening centerline OL of the cooling hole array 95 of the present embodiment is indicated by the first opening centerline OL1 and the second opening centerline OL2 of the cooling hole arrays 96 and 97 in FIG.
  • the opening centerlines OL of the cooling hole rows 98 and 99 only the first opening centerline OL1 is shown in FIG.
  • the second opening centerline OL2 of the cooling hole rows 98, 99 like the other cooling hole rows, is parallel to the first opening centerline OL1, connects the centers of the inlet openings 89a of the cooling holes 89, and has an intermediate leading edge region. It can be considered as a straight line starting from 42d and extending to the suction surface side end portion 66 .
  • FIG. 7 shows a combination of a first cooling hole row 96 and a second cooling hole row 97 in the cooling hole row 95 of this embodiment shown in FIG. 9 is a detailed view showing a comparison of the arrangement of cooling holes 89 by extracting combinations of a first cooling hole row 91 and a second cooling hole row 92.
  • FIG. 9 shows a detailed view showing a comparison of the arrangement of cooling holes 89 by extracting combinations of a first cooling hole row 91 and a second cooling hole row 92.
  • the first cooling hole row 91 of the cooling hole row 90a of the modified example of the first embodiment is composed of a plurality of cooling holes 89 (91aa, 91bb, 91cc, 91dd, 91ee), and the second cooling hole row 92 is composed of a plurality of cooling holes 89 (92aa, 92bb, 92cc, 92dd, 92ee).
  • the first cooling hole row 96 of the present embodiment is composed of a plurality of cooling holes 89 (96a, 96b, 96c, 96d, 96e), and the second cooling hole row 97 is composed of a plurality of cooling holes 89 (97a, 97b, 97c, 97d, 97e).
  • the cooling holes 89 (91aa, 91bb, 91cc, 91dd, 91ee) of the first cooling hole row 91 of the cooling hole row 90a, which is a modification of the first embodiment, as an example, specific changes in the arrangement of the cooling holes 89 are described below. explain the way of thinking. As described above, it is the cooling hole 91aa closest to the blade surface 41 that needs to avoid interference with the blade body 40 when the cooling hole 89 is drilled. As shown in FIG. 7, in order to avoid interference with the blade body 40 during drilling of the cooling hole 91aa, the cooling hole 91aa is inclined with respect to the axial direction about the position of the outlet opening 89b of the cooling hole 91aa.
  • the position of the new cooling hole 89 after the change corresponds to the position of the cooling hole 96a indicated by the solid line closest to the blade surface of the first cooling hole row 96 of the cooling hole row 95 of this embodiment.
  • the arrangement of the group of the plurality of cooling holes 89 forming the first cooling hole row 96 in the present embodiment is based on the position of the cooling hole 96a closest to the blade surface 41, which has been changed based on the arrangement correction method described above. , from the blade surface 41 side toward the leading edge end portion 64 while maintaining the same inclination with respect to the axial direction as the cooling holes 96a and the same intervals between the cooling holes 89 as in the first embodiment.
  • the direction in which the first cooling hole array 96 extends is the direction away from the isobar IBL1 on the upstream side in the axial direction from the direction in which the isobar IBL1 of the combustion gas G extends.
  • the first opening center line OL1 is formed substantially parallel to the isobar line IBL3 on the upstream side in the axial direction of the isobar line IBL1.
  • the inclination (angle) of the cooling hole center line FL of the first cooling hole row 96 with respect to the opening center line OL (first opening center line OL1) is It is desirable that the inclination of FL is the same with respect to the opening centerline OL (first opening centerline OL1).
  • the direction in which the first cooling hole row 96 of the present embodiment extends is not the same as the direction in which the first opening center line OL1 of the first cooling hole row 91 of the cooling hole row 90a of the modified example extends.
  • the arrangement is upstream of the cooling hole row 91 in the axial direction and in a direction in which the inclination with respect to the axial direction increases, and the opening center line OL of the cooling hole center line FL of the first cooling hole row 91 of the first embodiment
  • the reason why the inclination of the cooling hole center line FL of the cooling hole 89 with respect to the opening center line OL1) is the same is that the inclination of the cooling hole center line FL of the cooling hole 89 with respect to the opening center line OL is kept the same, and the cooling hole 89 is not excessively inclined toward the blade surface 41 side. This is to avoid disturbing the flow of the combustion gas G by the flow of cooling air discharged from the cooling holes 89 that have been formed.
  • the number of cooling holes 89 (96a, 96b, 96c, 96d, 96e) forming the first cooling hole row 96 of this embodiment is the same as in the first embodiment.
  • the group of cooling holes 89 forming the first cooling hole array 96 in this embodiment is arranged in a direction in which the inclination with respect to the axial direction is greater than that of the first cooling hole array 91 in the first embodiment. It is formed on the side approaching the upstream leading edge end 64 .
  • the idea of changing the arrangement of the cooling holes 89 of the second cooling hole row 92 arranged axially downstream and adjacent to the first cooling hole row 91 of the modification of the first embodiment also applies to the first cooling hole row 91. It is similar to the row of holes 91 . It is necessary to avoid interference with the blade body 40 when drilling the cooling holes 89 (92aa, 92bb, 92cc, 92dd, 92ee) of the second cooling hole row 92 of the modified cooling hole row 90a. , are the cooling holes 92aa closest to the blade surface 41 . As shown in FIG.
  • the cooling hole 92aa is tilted with respect to the axial direction about the position of the outlet opening 89b of the cooling hole 92aa.
  • the position of the new cooling hole 89 after the change corresponds to the position of the cooling hole 97a indicated by the solid line closest to the blade surface of the second cooling hole row 97 of this embodiment.
  • the arrangement of the cooling holes 89 constituting the second cooling hole row 97 in the present embodiment is based on the positions of the cooling holes 97a set as described above, in the direction from the blade surface 41 side to the suction surface side end portion 66.
  • the same inclination with respect to the axial direction as the cooling holes 97a and the same intervals between the cooling holes 89 as in the first embodiment are maintained.
  • the number of cooling holes 89 (97a, 97b, 97c, 97d, 97e) forming the second cooling hole row 97 is the same as in the first embodiment.
  • the second cooling hole array 97 in the present embodiment is arranged in a direction in which the inclination with respect to the axial direction is greater than that of the second cooling hole array 92 in the first embodiment.
  • the inclination of the cooling hole center line FL with respect to the opening center line OL is the same as in the first embodiment. It is desirable that the cooling hole center line FL of the second cooling hole row 92 has the same inclination with respect to the opening center line OL (first opening center line OL1).
  • the cooling holes 89 of the third cooling hole row 98 and the fourth cooling hole row 99 of the present embodiment The concept of selecting the arrangement is also the same as the above-described concept. However, the arrangement of the fourth cooling hole array 99 of the present embodiment maintains the same arrangement as the fourth cooling hole array 94 of the modified example, and does not need to be modified. Note that the number of cooling holes 89 and the number of cooling hole rows constituting each of the cooling hole rows 96, 97, 98, and 99 in this embodiment may differ from those in the first embodiment depending on the operating conditions of the gas turbine. may
  • the opening center line OL ( It is desirable that the inclinations with respect to the first opening center line OL1 and the second opening center line OL2 be the same at any position in the axial direction. If the inclination of the cooling hole center line FL with respect to the opening center line OL is changed due to the difference in the position of the cooling hole row 95 in the axial direction, the cooling hole center line FL may be excessively inclined toward the blade surface 41 side, or may be inclined to the side opposite to the blade surface 41 side. This is because the cooling air Ac discharged from the cooling holes 89 disturbs the flow of the combustion gas G, which is not desirable.
  • the arrangement of the cooling holes 89 of the cooling hole row 95 of the present embodiment is based on the arrangement of the cooling holes 89 of the cooling hole row 90a of the modified example of the first embodiment, and each cooling hole row 90a of the modified example
  • Each cooling hole row 90a (91, 92, 93 , 94) are rotated counterclockwise to select the arrangement of each of the cooling hole rows 96, 97, 98 and 99 of the present embodiment.
  • the counterclockwise rotation angle becomes smaller toward the downstream side in the axial direction of the cooling hole row 95.
  • the air passing through the exit opening 89b or the entrance opening 89a of the cooling hole 89 closest to the blade surface 41 is passed through.
  • the opening centerlines OL (first opening centerline OL1, second opening centerline OL2) of each of the cooling hole rows 96, 97, 98, 99 of the modification are different from each of the cooling hole rows 90a (91, 92, 93, 94 ) with respect to the axial direction and with respect to the axial line AL.
  • the opening center line OL of each of the cooling hole rows 96, 97, 98, and 99 intersects the axial line AL on the side of the leading edge 42 of the blade body 40 circumferentially opposite to the suction surface side end 66 in the extending direction.
  • points Y3 and Y4 where the opening center line OL (first opening center line OL1, second opening center line OL2) of each cooling hole row 90a (91, 92, 93, 94) of the modified example intersects the axial direction line AL. Further, the point Y3 coincides with the leading edge 42. As shown in FIG.
  • the positions where the opening center lines OL of the respective cooling hole rows 91, 92, 93, 94 of the first embodiment intersect with the axial line AL correspond to the respective cooling hole rows 90a (91, 92, 93, 94), the opening center lines OL (the first opening center line OL1, the second opening center line OL2) coincide with the points Y3, Y4 at which the axial line AL intersects.
  • Points Y1 and Y2 at positions where the opening center lines OL (first opening center line OL1, second opening center line OL2) of the cooling holes 89 of the hole rows 96, 97, 98, and 99 intersect the axial line AL are It is arranged closer to the trailing edge 43 than the position where the opening center lines OL of the cooling hole array 90 of the first embodiment intersect.
  • a point Y3 at which the first opening center line OL1 of the cooling hole row 90 of the first embodiment intersects the axial line AL coincides with the position of the leading edge 42, so the cooling hole row of the present embodiment
  • a point Y1 at which the first opening center line OL1 of 95 intersects the axial line AL is located closer to the trailing edge 43 than the leading edge 42 is.
  • the point Y1 where the first opening center lines OL1 of at least two of the first opening center lines OL1 of the cooling hole rows 95 of the present embodiment intersect the axial line AL is closer to the trailing edge 43 than the leading edge 42. located in the downstream leading edge region 42 c (third region) in the side wing body leading edge cavity 52 . Therefore, the first opening centerline OL1 of the cooling hole row 95 of the present embodiment extends from the downstream leading edge region 42c axially downstream of the leading edge 42 to at least two adjacent holes forming the cooling hole row 95. It is formed by a straight line connecting the centers of the outlet openings 89b of the cooling holes 89 and extending to the front edge end 64 or the suction surface side end 66 .
  • the downstream leading edge region 42c means a circular region arranged on the axial line AL and having the same radius as the leading edge region 42a.
  • the second opening centerline OL2 of the cooling hole row 95 is arranged axially upstream of the first opening centerline OL1 and separated from the first opening centerline OL1 by the length of the cooling hole 89.
  • the point Y2 where the second opening center lines OL2 of at least two of the second opening center lines OL2 of the cooling hole arrays 95 intersect the axial line AL is It is located in the intermediate leading edge region 42 d (fourth region) in the wing body leading edge cavity 52 on the leading edge 42 side from the position of the point YI that intersects the line AL.
  • the intermediate leading edge region 42d is a circular region arranged on the axial line AL and having the same radius as the leading edge region 42a. placed in between.
  • the second opening centerlines OL2 of at least two of the cooling hole rows 95 are formed in a circle formed at a position upstream in the axial direction by the length of the cooling holes 89 from the center position of the downstream leading edge region 42c. Starting from the intermediate leading edge region 42d of the shape, connecting the centers of the inlet openings 89a of at least two adjacent cooling holes 89 forming the cooling hole row 95 in parallel with the first opening centerline OL1, the leading edge end 64 Alternatively, it is formed by a straight line extending to the suction surface side end portion 66 . At least two adjacent cooling holes 89 forming the second opening centerline OL2 are preferably the same combination of cooling holes 89 used when selecting the first opening centerline OL1.
  • the positions of the points Y1 and Y2 which are the center positions where the downstream leading edge region 42c and the intermediate leading edge region 42d are arranged, are different from the arrangement of the cooling hole row 90a of the modified example of the first embodiment. It varies depending on the inclination angle ⁇ of the cooling hole center line FL when changing to the hole row 95 .
  • the group of the plurality of cooling holes 89 is positioned closer to the blade surface 41 than the cooling structure of the cooling hole array 90 of the first embodiment. to suppress the occurrence of thermal damage and thermal stress on the gas path surface 71 of the shroud 60, and the gas path surface 71 is properly cooled. Also, the amount of cooling air is reduced and the efficiency of the gas turbine is improved.
  • the method of cooling the suction surface side leading edge cavity 81 of the blade 40 of the turbine stationary blade 24 includes step S1 of supplying cooling air Ac to the outer cavity 82 of the shroud 60, A step S2 of reducing the pressure in the through hole 86 of the plate 85 and supplying the cooling air Ac to the inner cavity 83, a step S3 of impingement cooling the bottom plate 69 with the cooling air, and film-cooling the gas path surface 71 of the bottom plate 69 with the cooling air. and a step S4 of performing.
  • step S1 of supplying cooling air Ac to the outer cavity 82 of the suction side leading edge cavity 81 of the shroud 60 the cooling air Ac is supplied to the shroud 60 from the casing 20 or the turbine casing 22 outside the turbine stator vanes 24. (S1).
  • step S2 of reducing the pressure of the cooling air Ac through the through holes 86 of the impingement plate 85 the pressure in the inner cavity 83 is reduced in the process of discharging the cooling air Ac into the inner cavity 83 through the plurality of through holes 86 formed in the impingement plate 85. (S2).
  • step S3 of impingement cooling the bottom plate 69 with the cooling air Ac the cooling air Ac ejected into the inner cavity 83 through the plurality of through holes 86 of the impingement plate 85 collides with the inner surface 70 of the bottom plate 69, The surface 70 is impingement cooled (impingement cooled) (S3).
  • the cooling air Ac after the impingement cooling of the inner surface 70 of the bottom plate 69 is supplied to the plurality of cooling holes 89 formed in the bottom plate 69 .
  • the gas path surface 71 of the bottom plate 69 of the shroud 60 is film-cooled in the process of discharging the combustion gas from the outlet opening 89b to the combustion gas flow path 47 (S4).
  • the first opening center lines OL1 of the cooling hole rows 90 and 95 of the plurality of cooling holes 89 are arranged in parallel along the constant pressure line IBL of the combustion gas G.
  • the inner cavity 83 connected to the upstream side of each group of the plurality of cooling holes 89 constituting the cooling hole rows 90 and 95 through the inlet opening 89a and the combustion gas flow path connected through the downstream outlet opening 89b. 47 becomes substantially the same, and the amount of cooling air discharged from each group of the plurality of cooling holes 89 constituting the cooling hole rows 90 and 95 is equalized to the same flow rate. be done.
  • the first opening center lines OL1 of the cooling hole rows 90 and 95 of the plurality of cooling holes 89 formed in the bottom plate 69 are arranged along the constant pressure line IBL of the combustion gas G. are arranged in parallel with each other to stabilize internal pressure fluctuations in the inner cavity 83 .
  • the first opening center lines OL1 of the cooling hole rows 90 and 95 of the plurality of cooling holes 89 are arranged in parallel along the isobar IBL of the combustion gas G, so that the plurality of cooling holes of the cooling hole rows 90 and 95
  • the arrangement of the cooling holes 89 is selected so that the differential pressure (pressure difference) between the inner cavity 83 to which the upstream side of the 89 is connected and the combustion gas flow path 47 to which the downstream side is connected are substantially the same.
  • the amount of cooling air discharged from the plurality of cooling holes 89 of the cooling hole rows 90, 95 is made uniform. Therefore, an excessive amount of cooling air is prevented from being discharged from the cooling holes 89, and the amount of cooling air can be reduced.
  • the amount of cooling air discharged from the cooling holes 89 of the cooling hole rows 90 and 95 is made uniform, the metal temperature distribution of the bottom plate 69 is made uniform, and the occurrence of thermal stress in the bottom plate 69 of the shroud 60 is suppressed. be.
  • expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained.
  • the shape including the part etc. shall also be represented.
  • the expressions “comprising”, “comprising”, “having”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • a turbine stator vane includes a blade body, a shroud formed at an end portion of the blade body in a blade height direction, and a fillet portion joining the blade body and the shroud.
  • the shroud includes a bottom plate in contact with a combustion gas flow path, a peripheral wall extending in the blade height direction along the peripheral edge of the bottom plate, and a space surrounded by the peripheral wall and the bottom plate.
  • the peripheral wall includes a leading edge end portion extending toward the leading edge side of the wing body and a suction side end portion extending from the leading edge to the trailing edge on the suction side side of the wing body.
  • said shroud comprising a plurality of said cooling holes formed in a suction side leading edge region of said shroud and formed in said bottom plate, said plurality of cooling holes having first ends formed in said bottom plate connected to an inlet opening, a second end connected to an outlet opening formed in the gas path surface of the bottom plate and axially downstream of the inlet opening, the leading edge circumferentially from the surface of the wing body;
  • the plurality of cooling holes are arranged at predetermined intervals toward the end portion or the suction surface side end portion, and maintain the same inclination with respect to the axial direction of the center line of the cooling holes connecting the inlet opening and the outlet opening.
  • a set of cooling holes in which a first linear opening centerline connecting the centers of the outlet openings and a second linear opening centerline connecting the centers of the inlet openings of the cooling holes are formed parallel to each other.
  • a plurality of the cooling hole rows are arranged along the blade surface from the upstream side to the downstream side in the axial direction, and the inclination of the cooling hole center line of the cooling holes of the plurality of cooling hole rows is , and becomes smaller toward the downstream side in the axial direction.
  • a plurality of rows of cooling holes are arranged along the blade surface in the leading edge region on the suction side of the shroud, and the axial direction of the cooling hole centerlines of the plurality of rows of cooling holes becomes smaller toward the downstream side in the axial direction.
  • the combustion gas flowing on the gas path surface flows axially downstream along the blade surface, and the inclination of the isobar of the combustion gas with respect to the axial direction decreases along the blade surface toward the axial downstream side. Therefore, the gradient of the isobar with respect to the axial direction becomes smaller, and the gradient of the cooling hole center line of each cooling hole row also becomes smaller toward the downstream side in the axial direction along the blade surface.
  • the amount of cooling air discharged from the cooling holes of each cooling hole row is made uniform, the gas path surface is properly cooled, and the amount of cooling air is also reduced. Also, the flow of cooling air discharged from the cooling holes is also discharged along the flow direction of the combustion gas, so that the combustion gas flow is not disturbed. Therefore, the influence on the aerodynamic performance of the gas turbine is suppressed.
  • the shroud includes a first region formed in a circular shape in contact with the outer edge of the fillet portion centered on the front edge of the blade body, and the first an opening centerline extending from the first region as a starting point;
  • the first opening centerlines of the plurality of cooling holes forming the cooling hole row extend from the first region, they are substantially parallel to the isobar of the combustion gas. The amount of cooling air formed and discharged from the row of cooling holes is uniformed.
  • the shroud is arranged in a first cavity formed inside the blade body, and is axially downstream of the leading edge on the axial line of the blade body. a third region having a size corresponding to a circular region inscribed in the outer edge of the fillet portion centered on the leading edge of the wing body; The first opening centerlines of the two cooling hole rows extend from the third region.
  • the cooling structure is formed by arranging the cooling holes so that the inclination of the cooling holes approaches the inclination of the blade surface. Since the first opening centerlines of at least two cooling hole rows extend from the third region, the first opening centerlines of the respective cooling hole rows are formed substantially parallel to the combustion gas isobar. , the amount of cooling air discharged from the row of cooling holes is made uniform. Also, machining of the cooling holes becomes easier.
  • the shroud is formed in a circular shape having the same radius as the first region on an axial line axially upstream of the leading edge of the blade body. Equipped with 2 areas, The second opening centerline extends from the second region.
  • the second opening centerlines of the plurality of cooling holes forming the cooling hole row are formed on the upstream side in the axial direction in parallel with the first opening centerline. Since the center line extends from the second region as a starting point, the second opening center line is also formed substantially parallel to the isobar of the combustion gas, and the amount of cooling air discharged from the cooling hole array is made uniform.
  • the shroud is arranged in the first cavity and is axially downstream from the leading edge on the axial line of the blade body and from the third region.
  • a fourth region is arranged on the upstream side in the axial direction and is formed in a circular shape having the same radius as the third region, and the second opening centerlines of at least two of the cooling hole rows are aligned with each other. , extending from the fourth region.
  • the second opening centerlines of the plurality of cooling holes forming the cooling hole row are formed on the upstream side in the axial direction in parallel with the first opening centerline. Since the center line extends from the fourth region as a starting point, the second opening center line is also formed substantially parallel to the isobar of the combustion gas, and the amount of cooling air discharged from the cooling hole array is uniformed.
  • the first opening centerline or the second opening centerline is at least adjacent to the direction in which the first opening centerline or the second opening centerline extends. It is formed by two cooling holes.
  • the first opening center line or the second opening center line of the row of cooling holes is at least adjacent to the extending direction of the first opening center line or the second opening center line. Since it is formed by two cooling holes, machining of the cooling holes is facilitated.
  • the cooling hole centerline is inclined toward the blade surface from a direction perpendicular to the first opening centerline or the second opening centerline.
  • the cooling hole centerline of the cooling hole is inclined toward the blade surface side from the direction orthogonal to the first opening centerline or the second opening centerline.
  • the cooling air exhausted from the exhaust does not disturb the combustion gas flow across the gas path surface.
  • the inclination of the cooling hole center line of the cooling hole row with respect to the first opening center line is the same at any position in the axial direction of the cooling hole row. is maintained.
  • the inclination of the cooling hole centerline of the cooling hole row with respect to the first opening centerline is maintained at any position in the axial direction. Therefore, the cooling air discharged from the cooling holes does not disturb the flow of the combustion gas flowing on the gas path surface.
  • the first opening centerlines of the plurality of cooling hole rows are oriented in the axial downstream direction and arranged adjacent to each other in the axial direction. is increased in axial distance from the first opening centerline.
  • the interval between isobars of the combustion gas in the second cavity expands in the axial downstream direction.
  • the first opening centerline of each cooling hole row is arranged parallel to the isobar of the combustion gas. Therefore, the distance between the center lines of the first openings of the cooling hole row increases as the cooling air goes downstream in the axial direction, and the gas path surface from which the cooling air is discharged is uniformly cooled.
  • the plurality of cooling holes in the row of cooling holes maintains the same spacing in the direction in which the first opening centerline or the second opening centerline extends. are placed.
  • the cooling holes forming the row of cooling holes are arranged at the same intervals in the direction in which the first opening center line or the second opening center line extends. Therefore, the gas path surface through which the cooling air is discharged is uniformly cooled.
  • the groups of the plurality of cooling holes forming the plurality of rows of cooling holes have starting points in at least one of the first region to the fourth region. radially toward the front edge or the suction side end.
  • the group of the plurality of cooling holes forming the plurality of rows of cooling holes is arranged at the leading edge starting from at least one of the first to fourth regions. It extends radially toward the end or the end on the negative pressure side.
  • the groups of cooling holes forming the cooling hole array spread radially along with the inclination of the blade surface, so that the gas path surface is uniformly cooled and the discharged cooling air flow does not disturb the combustion gas flow. .
  • either the first opening centerline or the second opening centerline of the plurality of cooling hole rows lies within the first region to the fourth region. starting from at least one region of , and spreading radially toward the front edge end or the suction surface side end.
  • either the first opening center line or the second opening center line of the plurality of cooling hole rows is in at least one of the first to fourth regions. radiating toward the front edge or the suction side end.
  • the shroud includes a leading edge partition rib that connects the blade body and the leading edge end, and a blade body and the suction surface side end that connect the blade body and the suction surface side end.
  • the second cavity is divided into a third cavity formed outside in the blade height direction and a fourth cavity formed inside the third cavity, and the third cavity and the fourth cavity are communicated. and an impingement plate with a plurality of through holes.
  • the shroud includes: a leading edge partition rib connecting the blade body and the leading edge end; and a suction side partition rib connecting the blade body and the suction side end. and a second cavity defined by the outer wall surface of the blade, the leading edge partition rib, and the suction surface side partition rib. Furthermore, the shroud divides the second cavity into a third cavity formed outside in the blade height direction and a fourth cavity formed inside the third cavity. 4 includes an impingement plate with a plurality of through holes communicating with the cavities. As a result, the cooling air supplied to the inner shroud through the impingement plate effectively cools the bottom plate through a combination of impingement cooling of the inner surface of the bottom plate and film cooling of the gas path surface by the cooling holes in the bottom plate. .
  • the shroud includes an outer shroud formed at an outer end portion of the blade body in the blade height direction, and a an inner shroud formed on the inner end.
  • a gas turbine according to a fifteenth aspect comprises: a turbine stator blade according to any one of claims 1 to 13; Equipped with a vessel and
  • a turbine stator blade cooling method includes a blade body, and a shroud formed at an end portion of the blade body in the blade height direction, the shroud forming a combustion gas flow path.
  • a peripheral wall formed in the blade height direction along the peripheral edge of the bottom plate; a recess forming a space surrounded by the peripheral wall and the bottom plate; a second cavity formed in the leading edge region on the suction surface side, and a third cavity formed outside the second cavity in the blade height direction.
  • a cooling hole array having a plurality of cooling holes communicating with the fourth cavity through inlet openings formed in the surface thereof and communicating with the combustion gas flow path through outlet openings formed in the gas path surface of the bottom plate; a cooling method for a turbine stator blade, comprising supplying cooling air from the outside to the third cavity; reducing the pressure of cooling air in the fourth cavity supplied from the third cavity to the fourth cavity through holes; impingement cooling the inner surface of the bottom plate with the cooling air; discharging the cooling air into the combustion gas flow path from a plurality of the cooling holes forming the cooling hole row formed in the bottom plate and having a first opening centerline arranged parallel to the isobar of the combustion gas; and C. film cooling the gas path surface.
  • the shroud includes the second cavity having the impingement plate in the suction surface side region of the shroud, and the externally supplied cooling air passes through the impingement plate.
  • a vacuum is applied through the holes to impingement cool the inner surface of the bottom plate.
  • the first opening centerline connecting the outlet openings of the cooling holes forming the cooling hole row is arranged parallel to the isobar of the combustion gas flow, the pressure at the outlet opening of the cooling holes forming the cooling hole row is The same pressure is maintained, and internal pressure fluctuations in the fourth cavity connected to the upstream side of the cooling hole are suppressed. Therefore, the amount of cooling air discharged from the cooling holes is stabilized, the gas path surface is properly cooled, and the amount of cooling air is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

翼体と、翼体の翼高さ方向の端部に形成されたシュラウドと、翼体とシュラウドを接合するフィレット部と、燃焼ガス流路に接する底板に複数の冷却孔を備えるタービン静翼において、複数の冷却孔は底板に形成された入口開口と下流側の出口開口に接続し、入口開口と出口開口を結ぶ冷却孔中心線の軸方向に対する傾きが同一に維持され、出口開口の中心を結ぶ直線状の第1開口中心線と、入口開口の中心を結ぶ直線状の第2開口中心線と、が互いに平行に形成された一組の冷却孔列を構成する。冷却孔列が、軸方向上流側から下流側に向けて翼面に沿って複数配置され、複数の冷却孔列の冷却孔の冷却孔中心線の傾きが、軸方向下流側に向かうと共に小さくなる。

Description

タービン静翼およびガスタービン
 本開示は、タービン静翼およびガスタービンに関する。
 本願は、2021年7月7日に日本国特許庁に出願された特願2021-112476号に基づき優先権を主張し、その内容をここに援用する。
 ガスタービンは、圧縮空気と燃料を混焼させ高温の燃焼ガスを発生させる。ガスタービンの一部を構成するタービン静翼は、発生した高温の燃焼ガス中に配置されているため、高温の燃焼ガスから熱損傷を受ける可能性がある。タービン静翼は、この熱損傷を防止するため、外部から圧縮空気の一部を冷却空気として受け入れ、翼体及びシュラウドを冷却している。タービン静翼の冷却空気を用いた冷却構造の一例が、特許文献1に示されている。特許文献1には、翼体及びシュラウドの高温領域及び低温領域に対して、それぞれの領域に必要な冷却孔を配置して、適正な冷却を行う例が開示されている。
特開2011-185270号公報
 しかし、特許文献1に開示された冷却構造よりも、更に適正な冷却手段により、冷却空気量の低減を図ることが望まれる。
 本開示は、タービン静翼のシュラウドの中でも、特に熱負荷の高いシュラウドの負圧面側前縁領域に対して、更に適正な冷却手段を適用し、冷却空気量の一層の低減が可能なタービン静翼を提供することを目的とする。
 本開示に係る少なくとも一実施形態は、翼体と、前記翼体の翼高さ方向の端部に形成されたシュラウドと、前記翼体と前記シュラウドを接合するフィレット部と、を備えるタービン静翼であって、前記シュラウドは、燃焼ガス流路に接する底板と、前記底板の周縁に沿って前記翼高さ方向に延びる周壁と、前記周壁と前記底板に囲まれた空間を形成する凹部と、を含み、前記周壁は、前記翼体の前縁側に延在する前縁端部と、前記翼体の負圧面側の前縁から後縁に延びる負圧面側端部と、を含み、前記シュラウドは、前記シュラウドの負圧面側前縁領域に形成され、前記底板に形成された複数の前記冷却孔を備え、
 前記複数の冷却孔は、第1端が前記底板に形成された入口開口に接続し、
 第2端が前記底板のガスパス面に形成されて前記入口開口より軸方向下流側に形成された出口開口に接続し、前記翼体の翼面から周方向の前記前縁端部又は前記負圧面側端部に向けて所定間隔をあけて配置され、前記入口開口と前記出口開口を結ぶ冷却孔中心線の軸方向に対する傾きが同一に維持され、前記複数の冷却孔の前記出口開口の中心を結ぶ直線状の第1開口中心線と、前記冷却孔の前記入口開口の中心を結ぶ直線状の第2開口中心線と、が互いに平行に形成された一組の冷却孔列を形成し、前記冷却孔列が、軸方向上流側から下流側に向けて前記翼面に沿って複数配置され、前記複数の冷却孔列の前記冷却孔の前記冷却孔中心線の傾きが、軸方向下流側に向かうと共に小さくなる。
 本開示の少なくとも一実施形態によれば、シュラウドの負圧面側前縁領域に適正な冷却構造が形成され、底板のガスパス面が均等に冷却される。また、冷却空気量が低減されて、ガスタービンの効率が改善される。
図1は、本開示に係る一実施形態におけるガスタービンの構成図である。 図2は、本開示に係る一実施形態におけるガスタービン静翼の斜視図である。 図3は、本開示に係る一実施形態のシュラウドの平面図である。 図4は、図3のA―A線に沿ったシュラウドの断面図である。 図5は、図4のB-B線に沿ったシュラウドのガスパス面の平面断面を示す。 図6は、図4のB-B線に沿ったシュラウドのガスパス面の他の実施形態の平面断面を示す。 図7は、図6に示すシュラウドのガスパス面の平面断面の一部を示す詳細図である。 図8は、図5のC部詳細を示す冷却孔の平面図及び断面図である。 図9は、タービン静翼の冷却方法を示すフローチャートである。
 以下、本開示の実施形態について、添付図面に基づき説明する。
《ガスタービンの構成》
 タービン静翼が適用されるガスタービンの構成について、図1を参照して説明する。なお、図1は、タービン静翼24が適用される一実施形態のガスタービン1を示す概略構成図である。
 図1に示すように、一実施形態に係るガスタービン1は、圧縮空気を生成するための圧縮機2と、圧縮空気及び燃料を用いて燃焼ガスGを発生させるための燃焼器4と、燃焼ガスGによって回転駆動されるタービン6と、を備える。発電用のガスタービン1の場合、タービン6には不図示の発電機が連結され、タービン6の回転エネルギーによって発電が行われるようになっている。
 ガスタービン1における各構成について、図1を用いて説明する。
 圧縮機2は、圧縮機車室10と、圧縮機車室10の入口側に設けられ、空気を取り込むための吸気室12と、圧縮機車室10及び後述するタービン車室22を共に貫通するように設けられたロータ8と、圧縮機車室10内に配置された各種の翼と、を備える。各種の翼は、吸気室12側に設けられた入口案内翼14と、圧縮機車室10側に固定された複数の圧縮機静翼16と、圧縮機静翼16に対して軸方向に交互に配列されるようにロータ8に植設された複数の圧縮機動翼18と、を含む。なお、圧縮機2は、不図示の抽気室等の他の構成要素を備えていてもよい。このような圧縮機2において、吸気室12から取り込まれた空気は、複数の圧縮機静翼16及び複数の圧縮機動翼18を通過して圧縮されることで圧縮空気が生成される。圧縮空気は圧縮機2から軸方向下流側の燃焼器4に送られる。
 燃焼器4は、ケーシング20内に配置される。図1に示すように、燃焼器4は、ケーシング20内にロータ8を中心として環状に複数配置されている。燃焼器4には燃料と圧縮機2で生成された圧縮空気とが供給され、燃料を燃焼させることによって、タービン6の作動流体である高温高圧の燃焼ガスGを発生させる。発生した燃焼ガスGは燃焼器4から軸方向下流側のタービン6に送られる。
 タービン6は、タービン車室(ケーシング)22と、タービン車室22内に配置された各種のタービン翼と、を備える。各種のタービン翼は、タービン車室22側に固定された複数のタービン静翼24と、タービン静翼24に対して軸方向に交互に配列されるようにロータ8に植設された複数のタービン動翼26と、を含む。
 タービン6において、ロータ8は、軸方向に延在し、タービン車室22から排出された燃焼ガスGは、軸方向の下流側の排気車室28に排出される。図1では、図示の左側が軸方向上流側であり、図示の右側が軸方向下流側である。また、以下の説明では、単に径方向と記載した場合、ロータ8に直交する方向を表す。また、周方向と記載した場合、ロータ8の回転方向を表す。径方向は、翼高さ方向と呼ぶ場合もある。
 タービン動翼24は、タービン静翼24とともにタービン車室22内を流れる高温高圧の燃焼ガスGから回転駆動力を発生させるように構成される。この回転駆動力がロータ8に伝達され、ロータ8に連結された不図示の発電機が駆動される。
 タービン車室22の軸方向下流側には、排気車室28を介して排気室29が連結されている。タービン6を駆動した後の燃焼ガスGは、排気車室28及び排気室29を通って外部へ排出される。
《タービン静翼の構成》
 図2は、タービン静翼24の斜視図を示す。図2に示すように、タービン6の静翼24は、翼高さ方向に延びる翼体40と、翼体40の翼高さ方向の外側及び内側の両端にシュラウド60を有する。シュラウド60は、翼体40の翼高さ方向の外側に形成されている外側シュラウド60aと、翼体40の翼高さ方向の内側に形成されている内側シュラウド60bと、からなる。翼体40は、燃焼ガスGが流れる燃焼ガス流路47内に配置されている。外側シュラウド60aは、ロータ8廻りに環状に形成された燃焼ガス流路47の翼高さ方向の外側の位置を画定している。内側シュラウド60bは、環状の燃焼ガス流路47の翼高さ方向の内側の位置を画定している。
 静翼40の外側シュラウド60aのうち、翼体40の後縁43側には、タービン静翼24をタービン車室22に支持するためのフック76が設けられている。タービン静翼24のフック76は、外側シュラウド60aの後縁43側の周壁62に設けられている。
 図2に示すように、翼体40は、翼高さ方向に延在して、翼高さ方向の外側でフィレット部46を介して外側シュラウド60aに接続し、翼高さ方向の内側でフィレット部46を介して内側シュラウド60bに接続している。翼体40は、外側シュラウド60a及び内側シュラウド60bと一体となってタービン静翼24を形成している。
 図3は、燃焼ガス流路47に対して反流路側である翼高さ方向の外側から外側シュラウド60aを見た平面断面を示す。以下の説明では、外側シュラウド60a側を一例として説明する。図2及び図3に示すように、外側シュラウド60aにフィレット部46を介して接続する翼体40は、翼形状を形成する。翼体40は、軸方向上流端に前縁42を有し、軸方向下流端に後縁43を有している。翼体40は、翼面41の周方向を向く面のうち、凸面状を形成する負圧面44と、凹面状を形成する正圧面45とを有している。負圧面44及び正圧面45は、前縁42及び後縁43で接合し、一体となって一つの翼体40を形成している。なお、以下の説明では、周方向で翼体40の正圧面45側を腹側、翼体40の負圧面44側を背側と呼ぶこともある。
 翼体40は、翼高さ方向に延び、翼体40の内部空間を冷却空気Acが流れる翼体キャビティ51(第1キャビティ)を備えている。翼体キャビティ51は、外側シュラウド60aから内側シュラウド60bまでの翼高さ方向に延在し、前縁42から後縁43までの間に複数の内部空間が連なって形成されている。図2及び図3に示す実施形態では、翼体40の前縁42と後縁43とを結ぶ前縁-後縁方向に3つの翼体キャビティ51(翼体前縁キャビティ52、翼体中間キャビティ53、翼体後縁キャビティ54)を配置した例を一例として示している。
 翼体キャビティ51は、一端が負圧面44側の翼壁40bの内壁62aに接続し、他端が正圧面45側の翼壁40bの内壁62aに接続する複数の翼体仕切リブ49により複数の内部空間に区分けされている。翼体キャビティ51は、翼体40の前縁42側で、翼体仕切リブ49を介して、翼体40の前縁42側に配置された翼体前縁キャビティ52と、翼体前縁キャビティ52の軸方向下流側に隣接して配置された翼体中間キャビティ53に区分けされている。また、同様に、翼体キャビティ51は、翼体40の後縁43側では、翼体仕切リブ49を介して翼体中間キャビティ53と、翼体中間キャビティ53の軸方向下流側に隣接して配置された翼体後縁キャビティ54に区分けされている。
 それぞれの翼体キャビティ51は、互いに連通することなく、外側シュラウド60a又は内側シュラウド60bのいずれか一方のシュラウド60に開口し、他方の翼体キャビティ51の翼体端部40aは蓋56等を設け、閉塞されている。全ての翼体キャビティ51は、外側シュラウド60a又は内側シュラウド60bのいずれか一方から冷却空気Acを供給され、翼体40を冷却して、翼面41から燃焼ガス流路47に排出される。なお、翼体キャビティ51は、互いに連通してサーペンタイン流路を形成し、翼体前縁キャビティ52の翼高さ方向の一方の開口56aから冷却空気Acが供給され、翼体中間キャビティ53及び翼体後縁キャビティ54を流れ、後縁43に形成された図示されていない冷却通路から燃焼ガス流路47に排出されてもよい。
 図4は、図3のA-A線に沿った翼体40の翼体前縁キャビティ52及び翼体前縁キャビティ52廻りの外側シュラウド60aの断面を示す。図2、図3及び図4に示すように、外側シュラウド60aは、外側シュラウド60aの底面を形成する底板69と、底板69の外周縁の全周に形成され、底板69の内表面70から翼高さ方向に立設する周壁62と、底板69と周壁62により形成される凹部75を複数のキャビティ80に区分けする仕切リブ73と、キャビティ80(凹部75)を翼高さ方向の外側の外側キャビティ82(第3キャビティ)と翼高さ方向の内側の内側キャビティ83(第4キャビティ)と、に区分けする衝突板85と、から構成されている。
 キャビティ80に配置される衝突板85は、外側キャビティ82と内側キャビティ83を連通する複数の貫通孔86を有する。外側キャビティ82は、凹部75の一部を構成し、外側シュラウド60aで1つの空間を形成する。一方、内側キャビティ83は、凹部75が衝突板85で翼高さ方向に複数の空間に区分けされ、衝突板85を間に挟んで外側キャビティ82の翼高さ方向の内側に配置されている。
 周壁62は、軸方向上流側の前縁42側に形成された前縁端部64と、前縁端部64に対して軸方向下流側に対向して配置され、後縁43側の周方向に延在する後縁端部65と、周方向の翼体40の負圧面44側の端部に形成された負圧面側端部66と、負圧面側端部66に対して周方向に対向して配置され、翼体40の正圧面45側の端部に形成された正圧面側端部67と、から構成されている。
 底板69は、翼高さ方向の燃焼ガス流路47の内側で燃焼ガスGに接する外表面(ガスパス面)71と、外表面(ガスパス面)71とは翼高さ方向の反対側の反流路側で、翼高さ方向の外側を向く内表面(反流路面)70と、を備えている。底板69は、詳細は後述する複数の冷却孔89を備えている。冷却孔89は、底板69を翼高さ方向に貫通し、冷却孔89を介して内側キャビティ83と外表面71に面する燃焼ガス流路47に連通している。翼体40の翼高さ方向の外側(内側シュラウド60bの場合は、翼高さ方向の内側)の端部は、外側シュラウド60aの底板69の内表面70から、翼高さ方向の外側又は内側にわずかに突出している翼体端部40aを有する。
 図3に示すように、外側シュラウド60aの負圧面44側の前縁42側の領域は、断面が底板69の内表面70から外表面(ガスパス面)71とは反対側の反流路側に突出する突起状の複数の仕切リブ73を備えている。本実施形態においては、仕切リブ73は、シュラウド60の凹部75内に形成された翼体40の前縁42側の翼体端部40aと前縁端部64を接続する前縁仕切リブ73aと、翼体40の翼体端部40aと負圧面側端部66を接続する負圧面側中間仕切リブ73bと、を含む。外側シュラウド60aの負圧面44側の前縁42側の領域には、前縁仕切リブ73a及び負圧面側中間仕切リブ73bを配置することにより、翼体端部40aと前縁端部64と負圧面側端部67と前縁仕切リブ73aと負圧面側中間仕切リブ73bに囲まれた空間である負圧面側前縁キャビティ81(第2キャビティ)の一部を構成する内側キャビティ83が形成される。従って、内側キャビティ83は、翼高さ方向の外側において、衝突板85の貫通孔86を介して外側キャビティ82に連通し、翼高さ方向の内側において、底板69の冷却孔89を介して燃焼ガス流路47に連通している。
 内側シュラウド60bの構成は、上述した外側シュラウド60aの構成とほぼ同様の構成である。すなわち、図3及び図4に示す構造は、外側シュラウド60aの例であるが、内側シュラウド60bの構成も、図3及び図4に示す構造を適用できる。従って、内側シュラウド60bの各構成の名称及び符号は、特段の説明がある場合を除き、外側シュラウド60aの各構成の説明をそのまま流用してもよい。以下の図4から図8を用いた説明においても、特段の説明がある場合を除き、外側シュラウド60aに係る説明は、内側シュラウド60bにも適用可能である。なお、内側シュラウド60bの場合、外側シュラウド60aの翼高さ方向の外側は、翼高さ方向の内側と読み替え、翼高さ方向の内側は、翼高さ方向の外側と読み替える。
 一般に、タービン静翼24の翼高さ方向の両端のシュラウド60に挟まれた燃焼ガス流路47を形成する領域は、軸方向上流側からタービン静翼24に流入する高温の燃焼ガスGが翼面41及びガスパス面71に沿って流れるため、シュラウド60のガスパス面71が過熱される。特に、前縁42側の負圧面44側のガスパス面71は、正圧面45側と比較して燃焼ガスGの流速が早まるため、過熱の傾向が顕著である。従って、シュラウド60の燃焼ガスGからの熱損傷を抑制するための冷却手段が要求される。以下の説明では、タービン静翼24のシュラウド60の負圧面側前縁キャビティ81の冷却構造について、いくつかの実施形態を説明する。以下の実施形態の説明にあたっては、外側シュラウド60aと内側シュラウド60bを包含するシュラウド60として説明する。従って、特段の説明のない限り、シュラウド60は、外側シュラウド60aと内側シュラウド60bの両方に適用できるものとする。
《第1実施形態》
 本実施形態におけるシュラウド60の負圧面側前縁キャビティ81廻りの冷却構造は、図3、図4及び図5に示される。なお、図5、図6及び図7は、外側シュラウド60aを翼高さ方向の内側のガスパス面(外表面)71側から見た負圧面44側の前縁42側の平面断面を示し、図4のB-B線に沿った断面図である。
 本実施形態の冷却構造は、複数の貫通孔86を備えた衝突板85と、複数の冷却孔89を備えた底板69と、衝突板85の翼高さ方向の外側に形成された外側キャビティ82と、衝突板85の翼高さ方向の内側に形成された内側キャビティ83と、から構成される。これらの構成の組合せにより、シュラウド60は、衝突板85に形成された貫通孔86を介して外側キャビティ82から供給された冷却空気Acが、内側キャビティ83に噴出して底板69の内表面70に衝突し、内表面70をインピンジメント冷却(衝突冷却)するインピンジメント冷却構造と、インピンジメント冷却後の冷却空気Acが底板69に形成された冷却孔89を介して燃焼ガス流路47に排出する過程で、底板69の外表面(ガスパス面)71を冷却するフィルム冷却構造と、を組み合わせた冷却構造が形成される。
 図3、図4、図5及び図9に基づき、負圧面側前縁キャビティ81のインピンジメント冷却とフィルム冷却を組合わせた冷却構造について、以下に具体的に説明する。
 シュラウド60の負圧面側前縁キャビティ81の外表面(ガスパス面)71には、翼体40の翼面41に沿って、翼面41を囲むように複数の冷却孔89が配置されている。シュラウド60の負圧面側前縁キャビティ81には、複数の冷却孔89を備えた複数の冷却孔列90が、翼体40の翼体キャビティ51の負圧面44側の翼面41の外周を囲むように、所定の間隔を空けて翼面41の曲面の変化に沿って配置されている。複数の冷却孔列90は、軸方向下流側に向かうと共に次第に軸方向に対する傾きを変えて形成されている。
 図5に示す冷却孔列90(91、92、93、94)は、軸方向上流側から下流側に向けて、第1冷却孔列91、第2冷却孔列92、第3冷却孔列93及び第4冷却孔列94から構成されている。それぞれの各冷却孔列91、92、93、94は、それぞれが複数の冷却孔89を備える。なお、各冷却孔列91、92、93、94を構成する複数の冷却孔89の内で、第3冷却孔列93及び第4冷却孔列94を構成する冷却孔89の符号は、最も翼面41に接近する冷却孔89と最も翼面41から離れた冷却孔89のみに符号を表示し、他の冷却孔89の符号の表示は省略している。
 各冷却孔列91、92、93、94の構成は、最も翼面41に接近した位置に配置された冷却孔89を基準にして、翼体40の翼面41側から前縁端部64又は負圧面側端部66に向かって、所定間隔を維持して配置された複数の冷却孔89から構成される。ここで、冷却孔89の入口開口89aの中心と出口開口89bの中心を結ぶ直線を冷却孔中心線FLとすれば、冷却孔89が延伸する方向は、冷却孔中心線FLが延伸する方向と一致する。上述のように、タービン静翼24の前縁42側のガスパス面71に軸方向上流側から流入する燃焼ガスGは、翼体40の翼面41に沿って、負圧面44側及び正圧面45側を流れる。翼体40の負圧面44側の翼面41は、凸状の曲面を形成し、軸方向下流側に向かうと共に、翼面41の形状が変化する。従って、翼面41に沿って流れる燃焼ガスGは、翼体40の翼面41の曲面の変化に伴なって流れ方向が変化する。一方、シュラウド60の底板69の冷却孔89から燃焼ガス流路47に排出される冷却空気Acは、燃焼ガスGの流れを乱さないように、流れ方向が変化する燃焼ガスGの流れに沿った方向に排出することが望ましい。従って、複数の冷却孔列90を形成する複数の冷却孔89は、軸方向下流側に向かうと共に燃焼ガスGの流れ方向の変化に合わせて、次第に軸方向に対する傾きを変えるように配置される。すなわち、複数の冷却孔列90を形成する複数の冷却孔89の冷却孔中心線FLの軸方向線ALに対する傾きは、軸方向下流側に向かうと共に次第に小さくなる。
 ここで、図5を参照しながら、冷却孔列90(91、92、93、94)の構成を説明する。上述のように、図5に示す各冷却孔列91、92、93、94は、最も翼面41に近い冷却孔89の位置を基準にして、最も翼面41に接近している冷却孔89の位置から前縁端部64又は負圧面側端部66に向かって、翼面41から離間する方向に、同一の冷却孔列90を構成する複数の冷却孔89が、同一の間隔及び同一の軸方向線ALに対する傾きを維持しつつ延在する構成が望ましい。また、各冷却孔列91、92、93、94の群が延伸する方向は、後述する燃焼ガスGの等圧線IBLが延在する方向に平行に配置することが望ましい。
 図5に示すように、上述の冷却孔89の冷却孔中心線FLは、冷却孔列90を形成するそれぞれの各冷却孔列91、92、93、94を構成する複数の冷却孔89の入口開口89aの中心と出口開口89bの中心を結ぶ直線状の実線で示される。各冷却孔列91、92、93、94を形成する複数の冷却孔89は、各冷却孔列91、92、93、94が配置される複数の冷却孔89の翼面41に接近する位置から前縁端部64又は負圧面側端部66に向かう方向に対して、互いに隣接する冷却孔89の出口開口89bの中心を結ぶ破線で示された直線状の第1開口中心線OL1を有する。また、同様に、同一の冷却孔列90を形成する複数の冷却孔89は、各冷却孔列91、92、93、94が配置される複数の冷却孔89の翼面41に接近する位置から前縁端部64又は負圧面側端部66に向かう方向に対して、互いに隣接する冷却孔89の入口開口89aの中心を結ぶ破線で示された直線状の第2開口中心線OL2を有する。第1開口中心線OL1と第2開口中心線OL2を総称して、開口中心線OLと呼ぶ。
 冷却孔89の構造は、図5に示す冷却孔のC部詳細として図8に示されている。図8のC部詳細に示すように、底板69に形成された冷却孔89は、内表面70に開口する入口開口89aと外表面(ガスパス面)71に開口する出口開口89bを有する。入口開口89aの位置より軸方向下流側の後縁43側の位置に出口開口89bが形成されている。 冷却孔89の底板69の内表面70又は外表面(ガスパス面)71に対する傾きは同一であり、冷却孔89の入口開口89aと出口開口89bを結ぶ冷却孔89の長さに相当する冷却孔中心線FLの長さも同一である。
 ここで、本実施形態における冷却孔列90を定義すれば、冷却孔列90は、最も翼面41に近い冷却孔89の位置を基準にして、最も翼面41に接近している冷却孔89の位置から前縁端部64又は負圧面側端部66に向かって、翼面41から離間する方向に延びている。複数の冷却孔89からなる各冷却孔列91、92、93、94は、同一の間隔及び同一の軸方向線ALに対する傾きを維持しつつ延在する複数の冷却孔89の一つの群と見ることができる。更に、同一の冷却孔列91、92、93、94を構成する複数の冷却孔89の冷却孔中心線FLは、同一の冷却孔列91、92、93、94の中では、互いに平行に同一の間隔及び同一の軸方向線ALに対する傾きを維持して配列されている。また、同一の冷却孔列91、92、93、94を形成する複数の冷却孔89の第1開口中心線OL1と第2開口中心線OL2は、互いに平行に形成され、冷却孔中心線FLに対して同一の傾きを備えて延伸している。なお、冷却孔中心線FLの第1開口中心線OL1に対する傾きは、軸方向のいずれの位置においても、同一の冷却孔列91、92、93、94においては、同じ傾きを維持することが望ましい。
 図5に示すように、軸方向上流側から下流側に配置された複数の冷却孔列90(91、92、93、94)を比較した場合、軸方向下流側に向かうと共に、各冷却孔列91、92、93、94を形成する複数の冷却孔89の群が延びる方向は、第1開口中心線OL1及び第2開口中心線OL2が延伸する方向と一致し、軸方向下流側に向かうと共に、軸方向に対する傾斜が大きくなり、軸方向線ALに対する傾きが小さくなる。また、冷却孔列90の冷却孔89の冷却孔中心線FLを比較した場合、各冷却孔列91、92、93、94を形成する複数の冷却孔89の群の冷却孔中心線FLが延びる方向は、構成する各冷却孔89の冷却孔中心線FLが延びる方向と一致し、軸方向下流側に向かうと共に、軸方向に対する傾きが小さくなり、軸方向線ALに対する傾きが小さくなる。更に、各冷却孔列91、92、93、94の第1開口中心線OL1及び第2開口中心線OL2も、軸方向下流側に向かうと共に、軸方向に対する傾斜が大きくなり、軸方向線ALに対する傾きが小さくなる。
 例えば、最も軸方向上流側に配置された第1冷却孔列91は、翼面41に最も接近する冷却孔91aを基準にして、前縁端部64又は負圧面側端部66に向かって、同一の間隔及び同一の冷却孔中心線FLの軸方向に対する傾きを備えた5つの冷却孔91a、91b、91c、91d、91eで構成されている。一方、第1冷却孔列91に対して軸方向下流側に隣接して配置された第2冷却孔列92は、翼面41に最も接近する冷却孔92aを基準にして、負圧面側端部66に向かって、同一の間隔及び同一の冷却孔中心線FLの軸方向に対する傾きを備えた5つの冷却孔92a、92b、92c、92d、92eで構成されている。また、第1冷却孔列91の第1開口中心線OL1は、後述する燃焼ガスGの等圧線IBL1に平行に配置され、第2冷却孔列92の第1開口中心線OL1は、燃焼ガスGの等圧線IBL2に平行に配置されている。
 第1冷却孔列91と第2冷却孔列92を比較した場合、第2冷却孔列92の第1開口中心線OL1は、第1冷却孔列91の第1開口中心線OL1より軸方向に対する傾斜が大きくなり、軸方向線ALに対する傾きが小さくなる。また、第2冷却孔列92の冷却孔中心線FLは、第1冷却孔列91の冷却孔中心線FLより軸方向に対する傾斜が大きくなり、軸方向線ALに対する傾きが小さくなる。
 すなわち、後述する燃焼ガスGの等圧線IBLは、軸方向下流側に向かい、且つ、負圧面側端部66に接近すると共に、軸方向に対する傾斜が大きく、軸方向線ALに対する傾きが小さくなる。一方、各冷却孔列91、92、93、94の開口中心線(第1開口中心線OL1)は、燃焼ガスGの等圧線IBLに平行に配置することが望ましい。従って、各冷却孔列91、92、93、94の延在する方向である開口中心線OL及び冷却孔中心線FLは、燃焼ガスGの等圧線IBLの軸方向線ALに対する傾きの変化と共に、各冷却孔列91、92、93、94の開口中心線(第1開口中心線OL1)の軸方向線ALに対する傾きを変えることが望ましい。すなわち、各冷却孔列91、92、93、94の開口中心線OL及び冷却孔中心線FLは、軸方向下流側に向かうと共に、軸方向線ALに対する傾きは次第に小さくなる。ここで、冷却孔列90を構成する複数の冷却孔89の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)又は冷却孔中心線FLの軸方向線ALに対する傾き又は角度とは、前縁42を通り軸方向に延伸する軸方向線ALに対して、開口中心線OL又は冷却孔中心線FLと軸方向線ALとが交差する位置より軸方向下流側の位置から開口中心線OL又は冷却孔中心線FLを見た場合、反時計廻りの方向に軸方向線ALと開口中心線OL又は冷却孔中心線FLがなす傾き又は角度を意味する。
 それぞれの冷却孔列90を構成する複数の冷却孔89の数及び配置は、シュラウド60のガスパス面71のメタル温度等を勘案して選定される。図5に示す実施形態は、負圧面側前縁キャビティ81に、4つの冷却孔列90(第1冷却孔列91、第2冷却孔列92、第3冷却孔列93、第4冷却孔列94)を軸方向上流側から下流方向に所定間隔を空けて配置した態様である。冷却孔列90は、4つの冷却孔列90の例に限らず、3つ以下でも良いし、5つ以上の冷却孔列90の配置でもよい。また、図5に示す各冷却孔列91、92、93、94を構成する冷却孔89の数は、一例であって、例えば、第1冷却孔列91及び第2冷却孔列92を構成する冷却孔89の数は、5つ以上であっても良いし、4つ以下であってもよい。
 第3冷却孔列93及び第4冷却孔列94の冷却孔89の数は、3つ以上を配置してもよい。
 次に、ガスパス面71に形成される冷却孔89の配置と燃焼ガス流路47を流れる燃焼ガスGの圧力分布との関係を以下に説明する。図5には、シュラウド60の負圧面44側の前縁42のガスパス面71を流れる燃焼ガスGの圧力分布の一部が示されている。燃焼ガスGの圧力(静圧)の等圧線IBLは、鎖線で示されている。タービン静翼24に流入する燃焼ガスGは、前縁42から後縁43までの負圧面44側及び正圧面45側の燃焼ガス流路47を流れる過程で、圧力が低下する。燃焼ガスGの等圧線IBLは、例えば、タービン静翼24の負圧面44側の翼面41を起点Xaとし、周方向に隣接する図示していないタービン静翼24の正圧面45側の翼面41を終点とする緩やかな曲線で描かれる。
 ここで、等圧線IBLとは、燃焼ガス流路47を流れる燃焼ガスGの圧力(静圧)が同じ圧力を示す位置を繋ぐ曲線を意味する。
 燃焼ガスGの等圧線IBLの一例として図5に示される等圧線IBL1は、翼体40の翼面41上の起点Xaと負圧面側端部66の端面に配置された中間点Xbを結び、鎖線で示された緩やかな曲線で示される。等圧線IBL1は、等圧線の全長の一部を示したものであり、図示されていないが、中間点Xbから更に隣接するタービン静翼24の正圧面45側の翼面41まで延びる曲線である。燃焼ガスGの圧力(静圧)は、ガスパス面71の軸方向下流側に向かうと共に低下する。起点Xaから中間点Xbに向かう等圧線IBL1は、軸方向下流側へ向かい、且つ、翼面41から離間し、負圧面側端部66に接近すると共に、軸方向に対する傾斜が大きく、軸方向線ALに対する傾きが小さくなる。図5において、等圧線IBL1と、等圧線IBL1より軸方向下流側に形成された等圧線IBL2を比較した場合、等圧線IBL1より等圧線IBL2の圧力(静圧)が低下している。また、ガスパス面71の燃焼ガスGの流れが、軸方向下流側へ向かい、負圧面側端部66に接近すると共に、等圧線IBL1と等圧線IBL2の間の軸方向の間隔が拡大する。この等圧線IBLの軸方向の間隔が広がる傾向は、翼面41の起点Xa近傍での軸方向の間隔は小さく、翼面41から離間すると共に次第に軸方向の間隔が広がり、中間点Xbの近傍で最も広くなる。等圧線IBLの軸方向に対する傾きは、翼面41の近傍での変化は大きいが、翼面41から離れる共に負圧面側端部66の中間点Xbまでの間の変化は小さい。
 図5において、複数の冷却孔列90の内の最も軸方向上流側の前縁端部64に接近して配置されている第1冷却孔列91を一例に、冷却孔列90の配置と燃焼ガスGの等圧線IBLとの関係を説明する。第1冷却孔列91は、5つの冷却孔89(91a、91b、91c、91d、91e)の群で構成され、翼面41に接近する位置から等間隔に負圧面側端部66の方向に配列されている。第1冷却孔列91近傍の燃焼ガスGの等圧線IBLの一例として等圧線IBL1を挙げることが出来る。等圧線IBL1は、翼体40の前縁42側の負圧面44側の翼面41上の起点Xaから負圧面側端部66の端面上の中間点Xbまで緩やかな曲線を描いて形成されている。
 一方、第1冷却孔列91の複数の冷却孔89の配置は、第1冷却孔列91の複数の冷却孔89の出口開口89bを結ぶ第1開口中心線OL1が、等圧線IBL1と大略平行になるように設定されている。但し、等圧線IBL1は緩やかな曲線を描くため、冷却孔89の開口中心線OL(第1開口中心線OL1)を厳密に等圧線IBL1に平行に配置するには、開口中心線OLも直線ではなく、曲線にすることが望ましい。しかしながら、冷却孔89は、機械加工又は放電加工で形成するため、加工作業の簡略化の点から、第1開口中心線OL1が直線となるように、複数の冷却孔89を配置することが望ましい。従って、図5において、翼体40の前縁42側の翼面41上の起点Xaから負圧面側端部66の中間点Xbまで延びる等圧線IBL1に対して、その近傍に配置された第1冷却孔列91の複数の冷却孔89の第1開口中心線OL1は、最も翼面41側に接近して配置された冷却孔91aと翼面41から負圧面側端部66の方向に隣接する冷却孔91bの2つの冷却孔89を選定し、冷却孔91aと冷却孔91bの出口開口89bの中心を結び、等圧線IBL1に沿って平行に伸びる直線状の第1開口中心線OL1を選定することが望ましい。
 上記の説明は、翼面41に最も近い冷却孔91aと隣接する冷却孔91bを選択したが、同一の冷却孔列90の隣接する他の2つの冷却孔89の組合せを選択してもよい。すなわち、同一の第1冷却孔列91を構成する他の冷却孔89の組合せである冷却孔91d及び冷却孔91eから定まる第1開口中心線OL1が、等圧線IBL1に平行になるように第1冷却孔列91の冷却孔89の配置を選定してもよい。同一の冷却孔列90の隣接する2つの冷却孔89の出口開口89bに基づき直線状の第1開口中心線OL1を簡易的に選択することは、シュラウド60の冷却性能面の改善と加工作業の簡略化の両面から望ましい選択である。この考え方は、第2開口中心線OL2の選定においても同様である。また、第2開口中心線OL2の選定の際に用いる隣接する2つの冷却孔89は、第1開口中心線OL1を選定する際に用いた2つの隣接する冷却孔89の組合せが望ましい。
 上述のように、冷却孔列90の複数の冷却孔89の配置は、シュラウド60を形成する底板69のメタル温度及熱応力等が許容値内に納まるように選定する。また、冷却孔89及び冷却孔列90の軸方向に対する傾きの選定は、ガスパス面71を流れる燃焼ガスGの等圧線IBLとの関係を考慮しつつ選定することが望ましい。上述のように、シュラウド60の冷却構造は、衝突板85によるインピンジメント冷却と底板69の冷却孔89によるフィルム冷却の組合せからなり、その2つの組合せを適用することにより、シュラウド60の底板69の燃焼ガスGからの熱損傷が抑制されている。図4に示すように、外部からシュラウド60に供給された冷却空気Acは、外側キャビティ82に供給され、衝突板85に形成された貫通孔86を介して内側キャビティ83に供給される。冷却空気Acは、衝突板85の貫通孔86を通る過程で減圧される。また、冷却空気Acは、貫通孔86から内側キャビティ83に流入する過程で噴流となり、床板69の内表面70に衝突し、内表面70をインピンジメント冷却(衝突冷却)する。内表面70をインピンジメント冷却後の冷却空気Acは、底板69に形成された冷却孔89からガスパス面71側の燃焼ガス流路47に排出する過程で、ガスパス面71をフィルム冷却している。
 負圧面側前縁キャビティ81に配置された冷却孔列90の冷却孔89の配置が、シュラウド60の冷却に影響を与える特徴的な要素は、冷却孔89によるフィルム冷却である。上述のように、タービン静翼24の燃焼ガス流路47に流入した燃焼ガスGは、シュラウド60のガスパス面71を軸方向下流側に流下する過程で、等圧線IBLの変化に示すように圧力(静圧)が低下する。一方、シュラウド60の内側キャビティ83から冷却孔89を介して燃焼ガス流路47中に排出される冷却空気量は、冷却孔89の入口開口89aと出口開口89bとの差圧、つまり、冷却孔89の内側キャビティ83と燃焼ガス流路47の差圧(圧力差)に左右される。
 燃焼ガスGがガスパス面71を流れる過程における燃焼ガスGの圧力降下の違いにより、冷却孔列90の冷却孔89を流れる冷却空気量に違いが生ずる。冷却孔89の上流側の入口開口89aが接続する内側キャビティ83は、同一の空間内である限り、同一の圧力が維持される。一方、冷却孔89の下流側の出口開口89bが接続するガスパス面71側の燃焼ガスGの圧力は、軸方向下流側に向かうと共に低下する。従って、冷却孔列90の複数の冷却孔89の配置によっては、同一の冷却孔列90を構成する複数の冷却孔89の中でも、冷却孔89の差圧(圧力差)の違いが発生し、排出する冷却空気量のばらつきを生ずる可能性がある。冷却孔列90を構成する複数の冷却孔89の冷却空気量のばらつきは、不均一なフィルム冷却を生じ、底板69の不均一なメタル温度分布を生ずる原因になる。この点を改善するため、同一の冷却孔列90を構成する複数の冷却孔89の第1開口中心線OL1が、各冷却孔列91、92、93、94近傍の燃焼ガスGの等圧線IBLに大略平行になるように、同一の冷却孔列90の複数の冷却孔89の配置を選定することが望ましい。同一の冷却孔列90の複数の冷却孔89の配置を、冷却孔列90の第1開口中心線OL1と燃焼ガスGの等圧線IBLが大略平行となるように設定すれば、同一の冷却孔列90を構成する複数の冷却孔89は同一の差圧を維持することできる。同一の冷却孔列90の複数の冷却孔89の差圧を同一とすれば、同一の冷却孔列90の複数の冷却孔89からガスパス面71に排出される冷却空気量が均一化され、同一の冷却孔列90の複数の冷却孔89の位置から軸方向下流側のフィルム冷却が均一化される。その結果、シュラウド60のガスパス面71の温度分布が平準化され、底板69の熱損傷が抑制され、底板69の不均一な温度分布により生ずる熱応力が低減される。
 上述のように、燃焼ガスGの圧力(静圧)は、軸方向下流に向かうと共に低下するが、燃焼ガスGの等圧線IBLの軸方向の間隔は、軸方向下流に向かうと共に拡大する傾向にある。従って、等圧線IBLに平行に配置された各冷却孔列91、92、93、94の第1開口中心線OL1の軸方向の間隔も、軸方向下流に向かうと共に次第に拡大する。その結果、各冷却孔列91、92、93、94の複数の冷却孔89から軸方向下流側のガスパス面71が均一に冷却される。
 図5に示すように、燃焼ガスGの等圧線IBLは、軸方向下流側に向かい、負圧面側端部66に接近すると共に、軸方向に対する傾斜が大きくなる。従って、複数の冷却孔列90の直線状の第1開口中心線OL1の軸方向の傾きも、軸方向下流側に向かうと共に、等圧線IBLの変化に合わせて軸方向に対する傾斜が大きく、軸方向線ALに対する傾きが次第に小さくなる。その結果、図5に示すように、複数の冷却孔列90の第1開口中心線であって、最も翼面41に接近する冷却孔89(91a、92a、93a、94a)の位置に対して負圧面端部66とは周方向の反対側の前縁42側に延びる第1開口中心線OL1は、軸方向下流側に向かうと共に、軸方向線ALに対する傾きが小さくなる。一方、前縁42の位置を中心として、前縁42の位置より軸方向上流側に形成されたフィレット部46の外縁46aに内接する破線で示す円状の前縁領域42a(第1領域)を想定した場合、複数の冷却孔列90の第1開口中心線OL1は、前縁領域42a(第1領域)を通る。別の見方をすれば、負圧面側前縁キャビティ81に形成されている複数の冷却孔89から構成される複数の冷却孔列90(91、92、93、94)は、前縁42を中心として形成された円状の前縁領域42a(第1領域)を起点として、冷却孔列90を構成する複数の冷却孔89の内の冷却孔列90が延伸する負圧面側端部66の方向に互いに隣接する少なくとも2つの冷却孔89の出口開口89bを結ぶ第1開口中心線OL1を備える。すなわち、負圧面側前縁キャビティ81に形成されている複数の冷却孔89から構成される複数の冷却孔列90の内の少なくとも1つの冷却孔列90の第1開口中心線OL1は、前縁42を中心とする前縁領域42a(第1領域)を起点とし、同一の冷却孔列90を構成する複数の冷却孔89の出口開口89bの中心を結び、負圧面側端部66まで延びる直線で形成される。かかる冷却孔列90の第1開口中心線OL1の配置が成立する理由は、負圧面側前縁キャビティ81に形成する複数の冷却孔列90が、翼体40の翼面41に沿って翼面41を囲むように放射状に配置され、各冷却孔列91、92、93、94の第1開口中心線OL1が、燃焼ガスGの等圧線IBLに平行に配置される関係を維持しつつ、軸方向線ALに対する傾きが軸方向下流側に向かうと共に小さくなることによる。
 燃焼ガスGの等圧線IBLが、本実施形態の冷却孔列90の配置に影響する特徴的な要素として、冷却孔列90の第1開口中心線OL1と等圧線IBLが平行な位置関係を有する点に加えて、前述のように、冷却孔列90の冷却孔中心線FLの軸方向に対する傾きがある。
 図5に示すように、シュラウド60の前縁42側の負圧面44側のガスパス面71を流れる燃焼ガスGは、凸状の曲面を有する翼面41に沿って流れる。負圧面側前縁キャビティ81に形成されている複数の冷却孔89が配置されている領域は、軸方向上流側から下流側に向かうと共に、翼体40の翼面41が負圧面側端部66に接近し、翼面41の曲面の軸方向線ALに対する傾きが次第に小さくなる領域である。この領域においては、複数の冷却孔89の開口中心線OLが延びる方向に対して、冷却孔中心線FLは、開口中心線OLに対して直交する方向より翼面41側に傾く方向に配置されている。 また、複数の冷却孔列90の開口中心線OLは、軸方向下流側に向かうと共に、軸方向線ALに対する傾きが小さくなるので、同一の冷却孔列90の冷却孔中心線FLも、軸方向下流側に向かうと共に軸方向線ALに対する傾きが小さくなる。なお、各冷却孔列91、92、93、94の冷却孔89の冷却孔中心線FLが開口中心線OL(第1開口中心線OL1)となす傾き又は角度は、軸方向のいずれの位置でも同一の傾き又は角度に維持されることが望ましい。同一の冷却孔列90の冷却孔中心線FLの開口中心線OLに対する傾きが維持されず、冷却孔列90の軸方向の位置によって、冷却孔中心線FLが翼面41側へ過度に傾斜する場合は、冷却孔89から排出される冷却空気Acの流れが、燃焼ガスGの流れを乱すことになる。
 ここで、冷却孔列90の第1開口中心線OL1と第2開口中心線OL2の位置関係について、第1冷却孔列91を一例に挙げて説明する。上述のように、同一の冷却孔列90を構成する複数の冷却孔89の冷却孔中心線FLは、同一の長さ及び同一の傾きを備えている。従って、図5に示すように、第1冷却孔列91の第1開口中心線OL1が、前縁領域(第1領域)42aを起点とする直線とすれば、同一の冷却孔列90の複数の冷却孔89の入口開口89aを結ぶ前縁42側に延びる第2開口中心線OL2も直線で形成される。
 また、同一の第1冷却孔列91の第2開口中心線OL2は、前縁42を通る軸方向線AL上の前縁42の位置より軸方向上流側の所定位置にある上流側前縁領域(第2領域)42bを起点とする直線で形成される。ここで、上流側前縁領域(第2領域)42bとは、前縁42の位置より軸方向上流側の軸方向線AL上にあり、第1冷却孔列91の冷却孔中心線FLの軸方向長さに相当する距離にある位置を中心に、前縁領域46aと同じ半径の破線で示す円状に形成された領域を言う。
 上記の説明は、第1冷却孔列91を中心に、冷却孔89の配置とその機能、作用及び効果を説明したが、他の冷却孔列90(92、93、94)の冷却孔89の配置の選定も、上記の第1冷却孔列91の場合と同様に設定できる。但し、他の冷却孔列90の開口中心線OLが、軸方向下流側に向かうと共に、軸方向線ALに対する傾きが変化するのは、上述の通りである。従って、全ての冷却孔列90の開口中心線OLの内、少なくとも一つの冷却孔列90の第1開口中心線OL1は、前縁領域(第1領域)42aを起点とし、第2開口中心線OL2は、上流側前縁領域(第2領域)42bを起点として、前縁端部64又は負圧面側端部66の方向に延伸する。上述の冷却孔89の配置を選定することにより、負圧面側前縁キャビティ81の適切な冷却が行われ、シュラウド60の底板69の熱損傷及び熱応力の発生が抑制される。また、適正な冷却孔89の配置により、冷却空気量が低減され、ガスタービンの効率が向上する。
《第2実施形態》
 以下の説明は、シュラウド60の負圧面側前縁キャビティ81廻りの冷却構造の第2実施形態に係り、図6及び図7を参照しながら説明する。図6は、シュラウド60の本実施形態の平面断面を示し、図4のB-B線に沿った平面図である。図7は、図6に示すシュラウド60の本実施形態の平面図の一部を示す詳細図である。
 本実施形態の冷却構造は、前述のシュラウド60に形成された冷却孔列90の複数の冷却孔89の第1実施形態の構造に対して、冷却孔89の配置を変えた実施形態に関する。本実施形態を構成する冷却構造は、第1実施形態におけるインピンジメント冷却構造とフィルム冷却構造の組合せに対して、フィルム冷却構造を構成する複数の冷却孔89の配置の考え方が、第1実施形態と異なる構成である。なお、図3及び図4に示すインピンジメント冷却構造は、本実施形態にも適用される。
 図6に示す本実施形態の冷却孔列95は、軸方向上流側から下流側に向けて、第1冷却孔列96、第2冷却孔列97、第3冷却孔列98及び第4冷却孔列99から構成されている。それぞれの各冷却孔列96、97、98、99は、それぞれが複数の冷却孔89を備える。
 図6では、本実施形態に係る複数の冷却孔列95(96、97、98、99)の複数の冷却孔89の配置を実線で示すと共に、比較のために、下記に説明する第1実施形態の変形例である複数の冷却孔列90a(91、92、93、94)の複数の冷却孔89の配置を破線で示している。
 本実施形態においても、シュラウド60の負圧面側前縁キャビティ81のガスパス面71に配置された複数の冷却孔列95を構成する冷却孔列の数及び各冷却孔列96、97、98、99を構成する冷却孔89の数は、第1実施形態と同じ構成である。
 前述のように、図5に示す第1実施形態は、複数の冷却孔列90の実線で示された複数の冷却孔89が、各冷却孔列91、92、93、94の第1開口中心線OL1近傍の燃焼ガスGの等圧線IBL1に大略平行になるように冷却孔89の配置を選定している。しかし、燃焼ガス温度の違い等の異なるガスタービンの運転条件の下では、シュラウド60のガスパス面71の高温部分が第1実施形態よりも広がり、翼面41に更に接近する位置まで冷却を強化したい場合がある。そのような場合、第1実施形態の冷却孔列90を構成する複数の冷却孔89の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)の延伸する方向は維持したまま、各冷却孔列91、92、93、94の複数の冷却孔89の群の位置を、第1実施形態よりも更に翼面41に接近させて配置したい場合がある。第1実施形態の変形例は、第1実施形態の冷却孔列90の複数の冷却孔89の配置を、更に翼面41に接近させた態様が、冷却孔列90aの冷却孔89の配置である。
 しかしながら、冷却孔89の加工は、機械加工又は放電加工により、底板69を貫通する孔加工をガスパス面71側から内側キャビティ83側に向かって行なう場合がある。そのような孔加工を行う場合、各冷却孔列90a(91、92、93、94)の最も翼面41に接近する冷却孔89の位置及びその冷却孔中心線FLの延伸する方向によっては、翼体40が障害になり、冷却孔89の加工が困難な場合がある。このような冷却孔89の加工時の翼体40との干渉を回避するため、冷却孔89の延伸する方向を幾分変更して、冷却孔89の冷却孔中心線FLの軸方向に対する傾きを修正する方が望ましい場合がある。
 上述の考え方に基づき、第1実施形態の変形例である冷却孔列90aの冷却孔89の配置と、変更後の本実施形態の冷却孔列95の複数の冷却孔89の配置が、比較して図6に示されている。変形例の冷却孔列90aは、仮想の冷却孔列である。図6に示された冷却孔89の配置は、第1実施形態の変形例である冷却孔列90aの複数の冷却孔89を破線で示した配置と、本実施形態の冷却孔列95(96、97、98、99)の複数の冷却孔89を実線で示した配置を比較して示した図である。
 図6及び図7に示す第1実施形態の変形例である冷却孔列90a(91、92、93、94)は、第1実施形態の各冷却孔列91、92、93、94を構成する複数の冷却孔89の数及び各冷却孔列91、92、93、94の各群が延びる方向並びに冷却孔列90が延びる方向の冷却孔89の間隔及び冷却孔中心線FLの軸方向の傾きは維持したまま、第1実施形態の各冷却孔列91、92、93、94の冷却孔89の各群を翼面41側に移動した配置である。従って、第1実施形態の変形例を構成する各冷却孔列90a(91、92、93、94)の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)の位置及び延伸する方向は、第1実施形態と同じである。また、変形例を構成する各冷却孔列90a(91、92、93、94)の複数の冷却孔89の冷却孔中心線FLの軸方向に対する傾き及び冷却孔列90a(91、92、93、94)の各群が延在する方向の冷却孔89の間隔並びに冷却孔中心線FLの開口中心線OLに対する傾きも、第1実施形態と同じである。
 図6及び図7を参照しながら、第1実施形態の変形例である冷却孔列90aの冷却孔89の配置を本実施形態の冷却孔列95の冷却孔89の配置に変更する考え方を説明する。上述のように、第1実施形態の変形例を示す各冷却孔列90a(91、92、93、94)の最も翼面41に接近する冷却孔89(91aa、92aa、93aa、94a)は、冷却孔89の孔加工の際、翼体40との干渉を回避するため、冷却孔89の軸方向に対する傾きを修正することが望ましい。但し、第4冷却孔列94は、冷却孔列90aの中で最も軸方向の下流側に配置され、冷却孔中心線FLの軸方向線ALに対する傾きが、軸方向上流側の他の冷却孔89(91aa、92aa、93aa)より小さく、翼体40との干渉の可能性が小さい。従って、第4冷却孔列94の翼面41に最も近い冷却孔94aの傾きは変更せずに、変形例の冷却孔94aの配置を維持している。
 一方、変形例の他の冷却孔列90a(91、92、93)の最も翼面41に接近する冷却孔89は、加工時の翼体40との干渉を避けるため、変形例の冷却孔列90aの第1冷却孔列91の冷却孔91aa、第2冷却孔列92の冷却孔92aa、第3冷却孔93の冷却孔93aaの軸方向に対する傾きを変更している。このような手順で、翼面41に最も接近する冷却孔89の位置を変更した後の冷却孔89の配置が、本実施形態の各冷却孔列95(96、97、98、99)の最も翼面41に接近させた冷却孔89(96a、97a、98a、99a)である。なお、本実施形態の第4冷却孔列99の冷却孔99aは、第1実施形態の変形例の冷却孔列90aの第4冷却孔列94の冷却孔94aと同じ配置になり、位置の変更はない。図6に示す本実施形態の第4冷却孔列99の構成は、変形例の冷却孔列90aの第4冷却孔列94と同じ構成であるため、構成する冷却孔89の符号は、本実施形態の翼面41に最も接近する冷却孔99aと、最も翼面41から離れた冷却孔99cのみを表示し、変形例の冷却孔89の符号の表示は省略している。
 次に、本実施形態の冷却孔列95の最も翼面41に接近する冷却孔89(96a、97a、98a、99a)の位置を設定した後、各冷却孔列96、97、98、99の翼面41から離れる方向に配置する他の冷却孔89の位置を選定する。その場合、各冷却孔列96、97、98、99を構成する冷却孔89は、配置を変更後の最も翼面41に接近する冷却孔89(96a、97a、98a、99a)を基準に、冷却孔89(96a、97a、98a、99a)と同じ軸方向に対する傾きを備え、第1実施形態の変形例の冷却孔列90aの冷却孔89と同一の間隔及び同一の冷却孔中心線FLの傾き及び間隔で配置され、前縁端部64又は負圧面側端部66に向かって翼面41から離れる方向に形成される。
 次に、各冷却孔列96、97、98、99が延在する方向は、第1実施形態の各冷却孔列91、92、93、94が延在する方向、すなわち、変形例の各冷却孔列90a(91、92、93、94)の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)が延伸する方向と同じ方向とせずに、第1実施形態の各冷却孔列91、92、93、94より軸方向上流側であって、軸方向に対する傾きが大きく、軸方向線ALに対する傾き角が大きくなる配列とすることが望ましい。本実施形態の各冷却孔列96、97、98、99の冷却孔89の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)を、第1実施形態の各冷却孔列91、92、93、94の開口中心線OLと同一の方向に延在させた場合、開口中心線OLに対する冷却孔中心線FLの傾きが、第1実施形態の冷却孔中心線FLの傾きより更に翼面41側に傾斜させることになり、過度に傾斜された冷却孔89から排出される冷却空気の流れが、翼面41に沿って流れる燃焼ガスGの流れを乱すことになるからである。
 一方、本実施形態の各冷却孔列96、97、98、99の冷却孔89の配置を、第1実施形態の各冷却孔列91、92、93、94の冷却孔89の位置より軸方向上流側であって、軸方向に対する傾きが大きくなる配列とする場合、第1実施形態の冷却孔列90の開口中心線OLに対して、開口中心線OLの近傍の燃焼ガスGの等圧線IBLが延伸する方向より軸方向上流側に離れ、開口中心線OLと等圧線IBLの平行関係が幾分崩れる。しかし、等圧線IBLより更に軸方向上流側の他の等圧線IBLに大略平行に開口中心線OLが形成されるため、各冷却孔列ごとの冷却孔89から排出される冷却空気量の変動は小さく抑えられる。上記の冷却孔89の配置の変更の考え方に基づき、本実施形態の冷却孔列95(96、97、98、99(94))の冷却孔89の配置が選定される。なお、第4冷却孔列99は、第1実施形態の変形例の第4冷却孔列94と同じ配置であり、変更する必要はない。なお、本実施形態の冷却孔列95の開口中心線OLは、図7において、冷却孔列96、97の第1開口中心線OL1及び第2開口中心線OL2が示されている。冷却孔列98、99の開口中心線OLは、図6において、第1開口中心線OL1のみが表示されている。冷却孔列98、99の第2開口中心線OL2は、他の冷却孔列と同様に、第1開口中心線OL1と平行し、冷却孔89の入口開口89aの中心を繋ぎ、中間前縁領域42dを起点に負圧面側端部66まで延びる直線と考えてよい。
 次に、図7を参照しつつ、本実施形態の冷却孔列95の配置及び配置変更の具体的な考え方を以下に説明する。図7は、図6に示す本実施形態の冷却孔列95の内の第1冷却孔列96及び第2冷却孔列97の組合せと、第1実施形態の変形例の冷却孔列90aの第1冷却孔列91及び第2冷却孔列92の組合せを抜粋して、冷却孔89の配置を比較して示した詳細図である。第1実施形態の変形例の冷却孔列90aの第1冷却孔列91は、複数の冷却孔89(91aa、91bb,91cc、91dd,91ee)で構成され、第2冷却孔列92は、複数の冷却孔89(92aa、92bb,92cc、92dd,92ee)で構成されている。本実施形態の第1冷却孔列96は、複数の冷却孔89(96a、96b、96c、96d、96e)で構成され、第2冷却孔列97は、複数の冷却孔89(97a、97b、97c、97d、97e)で構成されている。
 第1実施形態の変形例である冷却孔列90aの第1冷却孔列91の冷却孔89(91aa、91bb,91cc、91dd,91ee)を例に挙げて、冷却孔89の配置の変更の具体的な考え方を説明する。上述のように、冷却孔89を孔加工する際の翼体40との干渉を回避する必要性があるのは、最も翼面41に接近する冷却孔91aaである。図7に示すように、冷却孔91aaの孔加工時の翼体40との干渉を回避するためには、冷却孔91aaの出口開口89bの位置を中心にして、冷却孔91aaの軸方向に対する傾きが、更に翼面41に接近する側の反時計回りの方向に角度α1だけ回転させた変更をすることが望ましい。変更後の新たな冷却孔89の位置が、本実施形態の冷却孔列95の第1冷却孔列96の最も翼面に接近する実線で表示された冷却孔96aの位置に相当する。
 本実施形態における第1冷却孔列96を構成する複数の冷却孔89の群の配置は、上述の配置の修正方法に基づき変更された最も翼面41に近い冷却孔96aの位置を基準にして、翼面41側から前縁端部64の方向に、冷却孔96aと同じ軸方向に対する傾きと、第1実施形態と同じ冷却孔89の間隔を維持して配置される。第1冷却孔列96が延在する方向は、燃焼ガスGの等圧線IBL1が延伸する方向より軸方向上流側の等圧線IBL1から離れた方向である。この方向は、第1開口中心線OL1と等圧線IBL1が平行関係を有する方向からは幾分外れるが、第1開口中心線OL1は等圧線IBL1より軸方向上流側の等圧線IBL3に大略平行に形成される。また、第1冷却孔列96の冷却孔中心線FLの開口中心線OL(第1開口中心線OL1)に対する傾き(角度)は、第1実施形態の第1冷却孔列91の冷却孔中心線FLの開口中心線OL(第1開口中心線OL1)に対する傾きと同一とすることが望ましい。
 本実施形態の第1冷却孔列96が延在する方向を、変形例の冷却孔列90aの第1冷却孔列91の第1開口中心線OL1が延伸する方向と同じとせずに、第1冷却孔列91より軸方向上流側であって、軸方向に対する傾きが大きくなる方向の配列とし、第1実施形態の第1冷却孔列91の冷却孔中心線FLの開口中心線OL(第1開口中心線OL1)に対する傾きと同一とする理由は、上述のように、冷却孔89の冷却孔中心線FLの開口中心線OLに対する傾きを同一に維持して、翼面41側へ過度に傾斜された冷却孔89から排出される冷却空気の流れが、燃焼ガスGの流れを乱すことを回避するためである。
 本実施態の第1冷却孔列96を構成する冷却孔89(96a、96b、96c、96d、96e)の数は、第1実施形態と同様である。本実施形態における第1冷却孔列96を構成する冷却孔89の群は、第1実施形態の第1冷却孔列91と比較して、軸方向に対する傾きが大きくなる方向に配置され、軸方向上流側の前縁端部64に接近する側に形成される。
 次に、第1実施形態の変形例の第1冷却孔列91の軸方向下流側に隣接して配置された第2冷却孔列92の冷却孔89の配置の変更の考え方も、第1冷却孔列91と同様である。変形例の冷却孔列90aの第2冷却孔列92の冷却孔89(92aa、92bb,92cc、92dd,92ee)を孔加工する際の翼体40との干渉を回避する必要性があるのは、最も翼面41に接近する冷却孔92aaである。図7に示すように、冷却孔92aaの孔加工時の翼体40との干渉を回避するためには、冷却孔92aaの出口開口89bの位置を中心にして、冷却孔92aaの軸方向に対する傾きが、更に翼面41に接近する側に角度α2だけ回転させた方向に変更することが望ましい。変更後の新たな冷却孔89の位置が、本実施形態の第2冷却孔列97の最も翼面に接近する実線で表示された冷却孔97aの位置に相当する。本実施形態における第2冷却孔列97を構成する冷却孔89の配置は、上述の設定された冷却孔97aの位置を基準にして、翼面41側から負圧面側端部66の方向に、冷却孔97aと同じ軸方向に対する傾きと、第1実施形態と同じ冷却孔89の間隔を維持して配置されている。第2冷却孔列97を構成する冷却孔89(97a、97b、97c、97d、97e)の数は、第1実施形態と同様である。本実施形態における第2冷却孔列97は、第1実施形態の第2冷却孔列92と比較して、軸方向に対する傾きが大きくなる方向に配置され、軸方向上流側で前縁端部64に接近する側に形成される。なお、本実施形態の第1冷却孔列96と同様に、第2冷却孔列97においても、冷却孔中心線FLの開口中心線OL(第1開口中心線OL1)に対する傾きは、第1実施形態の第2冷却孔列92の冷却孔中心線FLの開口中心線OL(第1開口中心線OL1)に対する傾きと同一とすることが望ましい。
 第1実施形態の変形例の第3冷却孔列93及び第4冷却孔列94の配置を修正して、本実施形態の第3冷却孔列98及び第4冷却孔列99の冷却孔89の配置を選定する考え方も、上述の考え方と同様である。但し、本実施形態の第4冷却孔列99の配置は、変形例の第4冷却孔列94と同じ配置が維持され、修正の必要がない。なお、本実施形態の各冷却孔列96、97、98、99を構成する冷却孔89の数及び冷却孔列の数は、ガスタービンの運転条件によっては、第1実施形態と異なる数であってもよい。
 上述のように、第1実施形態の変形例の冷却孔列90aの冷却孔89の配置を変更して、本実施形態の冷却孔列95の冷却孔89の配置を選定する際、最も翼面41に接近する冷却孔89の出口開口89bの位置を中心に反時計方向に回転させて新たな冷却孔列95の複数の冷却孔89の配置を決定する。冷却孔89の配置を反時計方向に回転させることで、第1実施形態の冷却孔列90の第1開口中心線OL1と等圧線IBLの平行関係が崩れるが、配置変更後の本実施形態の冷却孔列95の第1開口中心線OL1と上流側の他の等圧線IBLとの平行関係が維持されるので、各冷却孔列96、97、98、99の冷却孔89から排出される冷却空気量は均一化され、冷却空気量の変動は小さい。
 また、第1実施形態の冷却孔列90と同様に、本実施形態の冷却孔列95においても、冷却孔列95を構成する複数の冷却孔89の冷却孔中心線FLの開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)に対する傾きは、軸方向のいずれの位置においても、同一とすることが望ましい。軸方向の冷却孔列95の位置の違いで、冷却孔中心線FLの開口中心線OLに対する傾きを変えると、冷却孔中心線FLを翼面41側に過度に傾けたり、反翼面41側に過度に傾けることになり、冷却孔89から排出される冷却空気Acの流れが、燃焼ガスGの流れを乱すことになり、望ましくないからである。
 上述のように、本実施形態の冷却孔列95の冷却孔89の配置は、第1実施形態の変形例の冷却孔列90aの冷却孔89の配置に基づき、変形例の各冷却孔列90a(91、92、93、94の最も翼面41に接近する冷却孔89(91aa、92aa,93aa、94aa)の出口開口89bの位置を中心にして、各冷却孔列90a(91、92、93、94)の群を反時計方向に回転させて本実施形態の各冷却孔列96、97、98、99の配置を選定している。なお、各冷却孔列96、97、98、99の反時計回りの方向に回転させる角度は、軸方向下流側の冷却孔列95ほど小さくなる。その結果、最も翼面41に接近する冷却孔89の出口開口89b又は入口開口89aを通る本実施形態の各冷却孔列96、97、98、99の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)は、変形例の各冷却孔列90a(91、92、93、94)の開口中心線OLより、軸方向に対する傾きが大きく、軸方向線ALに対する傾きが大きくなる。また、各冷却孔列96、97、98、99の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)が、その延伸する方向の負圧面側端部66とは周方向の反対側の翼体40の前縁42側の軸方向線ALと交差する点Y1、Y2は、変形例の各冷却孔列90a(91、92、93、94)の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)が軸方向線ALと交差する点Y3,Y4より、後縁43側に配置される。なお、点Y3は、前縁42と一致する。
 第1実施形態の各冷却孔列91、92、93、94の開口中心線OLが軸方向線ALと交差する位置は、第1実施形態の変形例の各冷却孔列90a(91、92、93、94)の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)が軸方向線ALと交差する位置である点Y3、Y4と一致するので、本実施形態の各冷却孔列96、97、98、99の冷却孔89の開口中心線OL(第1開口中心線OL1、第2開口中心線OL2)が軸方向線ALと交差する位置である点Y1、Y2は、第1実施形態の冷却孔列90の開口中心線OLが交差する位置より後縁43側に配置される。なお、第1実施形態の冷却孔列90の第1開口中心線OL1が軸方向線ALと交差する位置である点Y3は、前縁42の位置と一致するので、本実施形態の冷却孔列95の第1開口中心線OL1が軸方向線ALと交差する位置である点Y1は、前縁42の位置より後縁43側に配置される。
 本実施形態の冷却孔列95の第1開口中心線OL1の内の少なくとも2つの冷却孔列の第1開口中心線OL1が軸方向線ALと交差する点Y1は、前縁42より後縁43側の翼体前縁キャビティ52内の下流側前縁領域42c(第3領域)内に配置される。従って、本実施形態の冷却孔列95の第1開口中心線OL1は、前縁42より軸方向下流側の下流側前縁領域42cを起点として、冷却孔列95を構成する少なくとも2つの隣接する冷却孔89の出口開口89bの中心を結び、前縁端部64又は負圧面側端部66まで延びる直線で形成されている。
 ここで、下流側前縁領域42cとは、軸方向線AL上に配置され、前縁領域42aと同一の半径を有する円状の領域を意味する。
 次に、冷却孔列95の第2開口中心線OL2は、第1開口中心線OL1と平行に、第1開口中心線OL1より冷却孔89の長さだけ離して軸方向上流側に配置されている。従って、冷却孔列95の第2開口中心線OL2の内の少なくとも2つの冷却孔列の第2開口中心線OL2が軸方向線ALと交差する点Y2は、第1開口中心線OL1が軸方向線ALと交差する点YIの位置より前縁42側であって、翼体前縁キャビティ52内の中間前縁領域42d(第4領域)内に配置される。ここで、中間前縁領域42dとは、軸方向線AL上に配置され、前縁領域42aと同一の半径を有する円状の領域であって、前縁領域42aと下流側前縁領域42cの間に配置される。
 冷却孔列95の内の少なくとも2つの冷却孔列の第2開口中心線OL2は、下流側前縁領域42cの中心位置より冷却孔89の長さだけ軸方向上流側の位置に形成された円状の中間前縁領域42dを起点として、第1開口中心線OL1に平行に、冷却孔列95を構成する少なくとも2つの隣接する冷却孔89の入口開口89aの中心を結び、前縁端部64又は負圧面側端部66まで延びる直線で形成される。なお、第2開口中心線OL2を形成する少なくとも2つの隣接する冷却孔89は、第1開口中心線OL1を選定する際の同じ冷却孔89の組合せとすることが望ましい。
 なお、下流側前縁領域42c及び中間前縁領域42dが配置される中心位置である点Y1及びY2の位置は、第1実施形態の変形例の冷却孔列90aの配置を本実施形態の冷却孔列95に変更する際の冷却孔中心線FLの傾き角αによって変動する。
 上述の本実施形態の冷却孔列95の冷却構造によれば、第1実施形態の冷却孔列90の冷却構造と比較して翼面41に更に接近する位置に複数の冷却孔89からなる群を配置して、シュラウド60のガスパス面71の熱損傷及び熱応力の発生を抑制し、ガスパス面71が適正に冷却される。また、冷却空気量も低減され、ガスタービンの効率も向上する。
《第3実施形態》
 上述の第1実施形態及び第2実施形態に示すタービン静翼24の冷却方法の手順について、図9に基づき説明する。
 図9に示すように、タービン静翼24の翼体40の負圧面側前縁キャビティ81の冷却方法は、シュラウド60の外側キャビティ82に冷却空気Acを供給する工程S1と、冷却空気Acを衝突板85の貫通孔86で減圧し、内側キャビティ83に冷却空気Acを供給する工程S2と、冷却空気で底板69をインピンジメント冷却する工程S3と、冷却空気で底板69のガスパス面71をフィルム冷却する工程S4と、を含んでいる。
 シュラウド60の負圧面側前縁キャビティ81の外側キャビティ82に冷却空気Acを供給する工程S1では、冷却空気Acは、タービン静翼24の外部のケーシング20又はタービン車室22からシュラウド60に供給される(S1)。
 冷却空気Acを衝突板85の貫通孔86で減圧する工程S2では、衝突板85に形成された複数の貫通孔86を介して内側キャビティ83に排出する過程で、内側キャビティ83の圧力が減圧される(S2)。
 冷却空気Acで底板69をインピンジメント冷却する工程S3では、衝突板85の複数の貫通孔86を介して内側キャビティ83に噴出した冷却空気Acは、底板69の内表面70に衝突して、内表面70をインピンジメント冷却(衝突冷却)する(S3)。
 冷却空気Acで底板69をフィルム冷却する工程S4では、底板69の内表面70をインピンジメント冷却した後の冷却空気Acを、底板69に形成された複数の冷却孔89に供給し、冷却孔89の出口開口89bから燃焼ガス流路47に排出する過程で、シュラウド60の底板69のガスパス面71をフィルム冷却している(S4)。なお、上述のように、複数の冷却孔89の冷却孔列90、95の第1開口中心線OL1は、燃焼ガスGの等圧線IBLに沿って平行に配置される。従って、冷却孔列90、95を構成する複数の冷却孔89の各群の上流側が入口開口89aを介して接続する内側キャビティ83と、下流側の出口開口89bを介して接続する燃焼ガス流路47と、の間の差圧(圧力差)が略同一になり、冷却孔列90、95を構成する複数の冷却孔89の各群から排出される冷却空気量が、同一の流量に均一化される。
 本実施形態のタービン静翼24の冷却方法によれば、底板69に形成された複数の冷却孔89の冷却孔列90、95の第1開口中心線OL1を、燃焼ガスGの等圧線IBLに沿って平行に配置して、内側キャビティ83の内圧変動を安定させている。また、複数の冷却孔89の冷却孔列90、95の第1開口中心線OL1は、燃焼ガスGの等圧線IBLに沿って平行に配置することにより、冷却孔列90、95の複数の冷却孔89の上流側が接続する内側キャビティ83と、下流側が接続する燃焼ガス流路47の差圧(圧力差)を略同一の差圧となるように冷却孔89の配置を選定している。その結果、冷却孔列90、95の複数の冷却孔89から排出される冷却空気量が、一定化され、均一化される。従って、冷却孔89からの過剰な冷却空気量の排出が抑制され、冷却空気量の低減が可能になる。また、冷却孔列90、95の冷却孔89から排出される冷却空気量を均一化させて、底板69のメタル温度の分布を均一化して、シュラウド60の底板69の熱応力の発生が抑制される。
 上述の実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 上記の各実施形態に記載の内容は、以下のように把握される。
(1)第1の態様に係るタービン静翼は、翼体と、前記翼体の翼高さ方向の端部に形成されたシュラウドと、前記翼体と前記シュラウドを接合するフィレット部と、を備えるタービン静翼であって、前記シュラウドは、燃焼ガス流路に接する底板と、前記底板の周縁に沿って前記翼高さ方向に延びる周壁と、前記周壁と前記底板に囲まれた空間を形成する凹部と、を含み、前記周壁は、前記翼体の前縁側に延在する前縁端部と、前記翼体の負圧面側の前縁から後縁に延びる負圧面側端部と、を含み、前記シュラウドは、前記シュラウドの負圧面側前縁領域に形成され、前記底板に形成された複数の前記冷却孔を備え、前記複数の冷却孔は、第1端が前記底板に形成された入口開口に接続し、第2端が前記底板のガスパス面に形成されて前記入口開口より軸方向下流側に形成された出口開口に接続し、前記翼体の翼面から周方向の前記前縁端部又は前記負圧面側端部に向けて所定間隔をあけて配置され、前記入口開口と前記出口開口を結ぶ冷却孔中心線の軸方向に対する傾きが同一に維持され、前記複数の冷却孔の前記出口開口の中心を結ぶ直線状の第1開口中心線と、前記冷却孔の前記入口開口の中心を結ぶ直線状の第2開口中心線と、が互いに平行に形成された一組の冷却孔列を形成し、前記冷却孔列が、軸方向上流側から下流側に向けて前記翼面に沿って複数配置され、前記複数の冷却孔列の前記冷却孔の前記冷却孔中心線の傾きが、軸方向下流側に向かうと共に小さくなる。
 上記(1)に記載のタービン静翼によれば、シュラウドの負圧面側前縁領域に翼面に沿って複数の冷却孔列を配置し、複数の冷却孔列の冷却孔中心線の軸方向に対する傾きが、軸方向下流側に向かうと共に小さくなっている。一方、ガスパス面を流れる燃焼ガスは、翼面に沿って軸方向下流側に流れ、燃焼ガスの等圧線の軸方向に対する傾きは、翼面に沿って軸方向下流側に向かうと共に小さくなる。
 従って、等圧線の軸方向に対する傾きが小さくなると共に、各冷却孔列の冷却孔中心線の傾きも翼面に沿って軸方向下流側に向けて小さくなり、各冷却孔列は、燃焼ガスの等圧線に平行に形成されている。従って、各冷却孔列の冷却孔から排出される冷却空気量が均一化され、ガスパス面が適正に冷却され、冷却空気量も低減される。
 また、冷却孔から排出される冷却空気の流れも燃焼ガスの流れ方向に沿って排出され、燃焼ガス流を乱さない。従って、ガスタービンの空力性能への影響が抑制される。
(2)第2の態様に係るタービン静翼は、前記シュラウドは、前記翼体の前縁を中心に前記フィレット部の外縁に内接し円状に形成された第1領域を備え、前記第1開口中心線が、前記第1領域を起点に延伸する、
 上記(2)に記載のタービン静翼によれば、冷却孔列を構成する複数の冷却孔の第1開口中心線が、第1領域を起点に延伸するので、燃焼ガスの等圧線に略平行に形成され、冷却孔列から排出される冷却空気量が均一化される。
(3)第3の態様に係るタービン静翼は、前記シュラウドは、前記翼体の内部に形成された第1キャビティ内に配置され、前記翼体の軸方向線上の前記前縁より軸方向下流側に配置され、前記翼体の前記前縁を中心に前記フィレット部の外縁に内接する円状に形成された領域に相当する大きさの第3領域を備え、前記冷却孔列の内、少なくとも2つの前記冷却孔列の前記第1開口中心線が、前記第3領域を起点に延伸する。
 上記(3)に記載のタービン静翼によれば、冷却孔の穴加工時の翼体との干渉を回避するため、冷却孔の傾きを翼面の傾きに近づける冷却孔の配置からなる冷却構造においては、少なくとも2つの冷却孔列の第1開口中心線が、第3領域を起点に延伸するので、それぞれの冷却孔列の第1開口中心線が、燃焼ガスの等圧線に略平行に形成され、冷却孔列から排出される冷却空気量が均一化される。また、冷却孔の加工が容易になる。
(4)第4の態様に係るタービン静翼は、前記シュラウドは、前記翼体の前記前縁より軸方向上流側の軸方向線上の前記第1領域と同じ半径の円状に形成された第2領域を備え、
 前記第2開口中心線が、前記第2領域を起点に延伸する。
 上記(4)に記載のタービン静翼によれば、冷却孔列を構成する複数の冷却孔の第2開口中心線が第1開口中心線に平行に軸方向上流側に形成され、第2開口中心線が、第2領域を起点に延伸するので、第2開口中心線も燃焼ガスの等圧線に略平行に形成され、冷却孔列から排出される冷却空気量が均一化される。
(5)第5の態様に係るタービン静翼は、前記シュラウドは、前記第1キャビティ内に配置され、前記翼体の前記軸方向線上の前記前縁より軸方向下流側で前記第3領域より軸方向上流側に配置され、前記第3領域と同一半径の円状に形成された第4領域を備え、前記冷却孔列の内、少なくとも2つの前記冷却孔列の前記第2開口中心線が、前記第4領域を起点に延伸する。
 上記(5)に記載のタービン静翼によれば、冷却孔列を構成する複数の冷却孔の第2開口中心線が第1開口中心線に平行に軸方向上流側に形成され、第2開口中心線が、第4領域を起点に延伸するので、第2開口中心線も燃焼ガスの等圧線に略平行に形成され、冷却孔列から排出される冷却空気量が均一化される。
(6)第6の態様に係るタービン静翼は、前記第1開口中心線又は前記第2開口中心線は、前記第1開口中心線又は前記第2開口中心線が延伸する方向に隣接する少なくとも2つの冷却孔により形成されている。
 上記(6)に記載のタービン静翼によれば、冷却孔列の第1開口中心線又は第2開口中心線は、第1開口中心線又は第2開口中心線が延伸する方向に隣接する少なくとも2つの冷却孔により形成されているので、冷却孔の加工が容易になる。
(7)第7の態様に係るタービン静翼は、前記冷却孔中心線は、前記第1開口中心線又は前記第2開口中心線と直交する方向より前記翼面の側に傾いている。
 上記(7)に記載のタービン静翼によれば、冷却孔の冷却孔中心線が、第1開口中心線又は第2開口中心線と直交する方向より翼面側に傾いているので、冷却孔から排出される冷却空気は、ガスパス面を流れる燃焼ガスの流れを乱すことがない。
(8)第8の態様に係るタービン静翼は、前記冷却孔列の前記冷却孔中心線の前記第1開口中心線に対する傾きは、軸方向のいずれの位置の前記冷却孔列においても、同一の傾きが維持される。
 上記(8)に記載のタービン静翼によれば、冷却孔列の冷却孔中心線の第1開口中心線に対する傾きを、軸方向のいずれの位置にある冷却孔列についても同じ傾きを維持するので、冷却孔から排出される冷却空気が、ガスパス面を流れる燃焼ガスの流れを乱すことがない。
(9)第9の態様に係るタービン静翼は、前記複数の冷却孔列の前記第1開口中心線は、軸方向下流方向に向かうと共に、軸方向に隣接して配置された前記冷却孔列の前記第1開口中心線との軸方向の間隔が拡大する。
 上記(9)に記載のタービン静翼によれば、第2キャビティにおける燃焼ガスの等圧線の間隔は、軸方向下流方向に向かうと共に拡大する。一方、各冷却孔列の第1開口中心線は、燃焼ガスの等圧線に平行に配置されている。従って、軸方向下流方向に向かうと共に、冷却孔列の第1開口中心線の間隔も拡大し、冷却空気が排出されるガスパス面が均一に冷却される。
(10)第10の態様に係るタービン静翼は、前記冷却孔列の複数の前記冷却孔は、前記第1開口中心線又は前記第2開口中心線が延伸する方向に同一の間隔を維持して配置されている。
 上記(10)に記載のタービン静翼によれば、冷却孔列を構成する冷却孔が、第1開口中心線又は第2開口中心線が延伸する方向に同一の間隔を維持して配置されているので、冷却空気が排出されるガスパス面が均一に冷却される。
(11)第11の態様に係るタービン静翼は、前記複数の冷却孔列を構成する複数の前記冷却孔の群は、前記第1領域から前記第4領域の内の少なくとも一つの領域を起点に前記前縁端部又は前記負圧面側端部に向けて放射状に広がる。
 上記(11)に記載のタービン静翼によれば、複数の冷却孔列を構成する複数の冷却孔の群が、第1領域から第4領域の内の少なくとも一つの領域を起点に前記前縁端部又は前記負圧面側端部に向けて放射状に延伸する。その結果、冷却孔列を構成する冷却孔の群が、翼面の傾きと共に放射状に広がるので、ガスパス面が均一に冷却され、排出する冷却空気の流れが燃焼ガス流の流れを乱すことがない。
(12)第12の態様に係るタービン静翼は、前記複数の冷却孔列の前記第1開口中心線又は前記第2開口中心線のいずれかが、前記第1領域から前記第4領域の内の少なくとも一つの領域を起点に前記前縁端部又は前記負圧面側端部に向けて放射状に広がる。
 上記(12)に記載のタービン静翼によれば、複数の冷却孔列を第1開口中心線又は第2開口中心線のいずれかが、第1領域から第4領域の内の少なくとも一つの領域を起点に前縁端部又は負圧面側端部に向けて放射状に広がる。その結果、冷却孔列の第1開口中心線又は第2開口中心線が、翼面の傾きと共に放射状に広がるので、ガスパス面が均一に冷却され、排出する冷却空気の流れが燃焼ガス流の流れを乱すことがない。
(13)第13の態様に係るタービン静翼は、前記シュラウドは、前記翼体と、前記前縁端部を接続する前縁仕切リブと、前記翼体と前記負圧面側端部を接続する負圧面側仕切リブと、により前記凹部が区分けされ、前記翼体の外壁面と、前記前縁仕切リブと、前記負圧面側仕切リブとに囲まれて形成された第2キャビティを含み、前記第2キャビティを前記翼高さ方向の外側に形成される第3キャビティと前記第3キャビティの内側に形成される第4キャビティと、に区分けし、前記第3キャビティと前記第4キャビティとを連通する複数の貫通孔を備えた衝突板と、を含む。
 上記(13)に記載のタービン静翼によれば、シュラウドは、翼体と、前縁端部を接続する前縁仕切リブと、翼体と負圧面側端部を接続する負圧面側仕切リブと、により凹部が区分けされ、翼体の外壁面と、前縁仕切リブと、負圧面側仕切リブで形成された第2キャビティを含む。更に、シュラウドは、第2キャビティを前記翼高さ方向の外側に形成される第3キャビティと前記第3キャビティの内側に形成される第4キャビティと、に区分けされ、前記第3キャビティと前記第4キャビティとを連通する複数の貫通孔を備えた衝突板を含む。その結果、衝突板を介して内側シュラウドに供給された冷却空気により、底板の内表面のインピンジメント冷却と、底板の冷却孔によるガスパス面のフィルム冷却の組合せにより、底板が効果的に冷却される。
(14)第14の態様に係るタービン静翼は、前記シュラウドは、前記翼体の前記翼高さ方向の外側の端部に形成された外側シュラウドと、前記翼体の前記翼高さ方向の内側の端部に形成された内側シュラウドと、からなる。
(15)第15の態様に係るガスタービンは、請求項1から13のいずれか一項に記載のタービン静翼と、前記タービン静翼が設けられる燃焼ガス流路を流れる燃焼ガスを生成する燃焼器と、を備える。
 上記(15)に記載のガスタービンでは、タービン静翼の熱応力が低減され、信頼性が向上する。また、冷却空気量が低減され、ガスタービンの効率が向上する。
(16)第16の態様に係るタービン静翼の冷却方法は、翼体と、前記翼体の翼高さ方向の端部に形成されたシュラウドと、を備え、前記シュラウドは、燃焼ガス流路に接する底板と、前記底板の周縁に沿って前記翼高さ方向に形成される周壁と、前記周壁と前記底板に囲まれた空間を形成する凹部と、前記底板と前記翼体と前記周壁を接続する複数の仕切リブと、により前記凹部を区分けし、前記負圧面側前縁領域に形成された第2キャビティと、前記第2キャビティを前記翼高さ方向の外側に形成される第3キャビティと前記第3キャビティの内側に形成される第4キャビティとに区分けし、前記第3キャビティと前記第4キャビティとを連通する複数の貫通孔を備えた衝突板と、を備え、前記底板の内表面に形成された入口開口を介して前記第4キャビティに連通し、前記底板のガスパス面に形成された出口開口を介して燃焼ガス流路に連通する複数の冷却孔を有する冷却孔列を備えたタービン静翼の冷却方法であって、外部から前記第3キャビティに冷却空気を供給する工程と、前記冷却空気が、前記負圧面前縁キャビティに配置された前記衝突板に形成された前記貫通孔を介して、前記第3キャビティから前記第4キャビティに供給され、前記第4キャビティの冷却空気の圧力を減圧する工程と、前記冷却空気が前記底板の内表面をインピンジメント冷却する工程と、前記底板に形成され、燃焼ガスの等圧線に平行に配置された第1開口中心線を備えた前記冷却孔列を構成する複数の前記冷却孔から前記冷却空気を前記燃焼ガス流路に排出し、前記ガスパス面をフィルム冷却する工程と、を含む。
 上記(16)に記載のタービン静翼の冷却方法によれば、シュラウドは、シュラウドの負圧面側領域に衝突板を有する第2キャビティを備え、外部から供給された冷却空気は、衝突板の貫通孔を介して減圧され、底板の内表面をインピンジメント冷却する。また、冷却孔列を形成する冷却孔の出口開口を結ぶ第1開口中心線が、燃焼ガス流の等圧線に平行に配置されているので、冷却孔列を構成する冷却孔の出口開口における圧力が同一圧力に維持され、冷却孔の上流側に接続する第4キャビティの内圧変動が抑制される。従って、冷却孔から排出される冷却空気量が安定し、ガスパス面が適正に冷却され、冷却空気量が低減される。
1 ガスタービン
2 圧縮機
4 燃焼器
6 タービン
8 ロータ
10 圧縮機車室
12 吸気室
14 入口案内翼
16 圧縮機静翼
18 圧縮機動翼
20 ケーシング
22 タービン車室
24 タービン静翼
26 タービン動翼
28 排気車室
29 排気室
40 翼体
40a 翼体端部
40b 翼壁
41 翼面
42 前縁
42a 前縁領域(第1領域)
42b 上流側前縁領域(第2領域)
42c 下流側前縁領域(第3領域)
42d 中間前縁領域(第4領域)
43 後縁
44 負圧面
45 正圧面
46 フィレット部
46a 外縁
47 燃焼ガス流路
49 翼体仕切リブ
51 翼体キャビティ(第1キャビティ)
52 翼体前縁キャビティ
53 翼体中間キャビティ
54 翼体後縁キャビティ
56 蓋
56a 開口
60 シュラウド(外側シュラウド60a、内側シュラウド60b)
62 周壁
62a 内壁
64 前縁端部
65 後縁端部
66 負圧面側端部
67 正圧面側端部
69 底板
70 内表面
71 外表面(ガスパス面)
73 仕切リブ
73a 前縁仕切リブ
73b 負圧面側中間仕切リブ
75 凹部
76 フック
80 キャビティ
81 負圧面側前縁キャビティ(第2キャビティ)
82 外側キャビティ(第3キャビティ)
83 内側キャビティ(第4キャビティ)
85 衝突板
86 貫通孔
89 冷却孔
89a 入口開口
89b 出口開口
90 冷却孔列(第1冷却孔列91(91a~91e)、第2冷却孔列92(92a~92e)、第3冷却孔列93(93a~93c)、第4冷却孔列94(94a~94c))
90a 冷却孔列(変形例)
95 冷却孔列(第1冷却孔列96(96a~96e)、第2冷却孔列97(97a~97e)、第3冷却孔列98(98a~98c)、第4冷却孔列99(99a~99c))
G 燃焼ガス
Ac 冷却空気
AL 軸方向線
FL 冷却孔中心線
OL 開口中心線
OL1 第1開口中心線
OL2 第2開口中心線
IBL、IBL1、IBL2、IBL3 等圧線
Xa 起点
Xb 中間点

 

Claims (16)

  1.  翼体と、
     前記翼体の翼高さ方向の端部に形成されたシュラウドと、
     前記翼体と前記シュラウドを接合するフィレット部と、
    を備えるタービン静翼であって、
     前記シュラウドは、
     燃焼ガス流路に接する底板と、
     前記底板の周縁に沿って前記翼高さ方向に延びる周壁と、
     前記周壁と前記底板に囲まれた空間を形成する凹部と、
    を含み、
     前記周壁は、
     前記翼体の前縁側に延在する前縁端部と、
     前記翼体の負圧面側の前縁から後縁に延びる負圧面側端部と、
    を含み、
     前記シュラウドは、
     前記シュラウドの負圧面側前縁領域に形成され、前記底板に形成された複数の冷却孔を備え、
     前記複数の冷却孔は、
     第1端が前記底板に形成された入口開口に接続し、
     第2端が前記底板のガスパス面に形成されて前記入口開口より軸方向下流側に形成された出口開口に接続し、
     前記翼体の翼面から周方向の前記前縁端部又は前記負圧面側端部に向けて所定間隔をあけて配置され、
     前記入口開口と前記出口開口を結ぶ冷却孔中心線の軸方向に対する傾きが同一に維持され、
     前記複数の冷却孔の前記出口開口の中心を結ぶ直線状の第1開口中心線と、前記冷却孔の前記入口開口の中心を結ぶ直線状の第2開口中心線と、が互いに平行に形成された一組の冷却孔列を構成し、
     前記冷却孔列が、軸方向上流側から下流側に向けて前記翼面に沿って複数配置され、
     前記複数の冷却孔列の前記冷却孔の前記冷却孔中心線の傾きが、軸方向下流側に向かうと共に小さくなる
     タービン静翼。
  2.  前記シュラウドは、
     前記翼体の前記前縁を中心に前記フィレット部の外縁に内接し円状に形成された第1領域を備え、
     前記第1開口中心線が、前記第1領域を起点に延伸する、
    請求項1に記載のタービン静翼。
  3.  前記シュラウドは、
     前記翼体の内部に形成された第1キャビティ内に配置され、前記翼体の軸方向線上の前記前縁より軸方向下流側に配置され、前記翼体の前記前縁を中心に前記フィレット部の外縁に内接する円状に形成された領域に相当する大きさの第3領域を備え、
     前記冷却孔列の内、少なくとも2つの前記冷却孔列の前記第1開口中心線が、前記第3領域を起点に延伸する、
    請求項1に記載のタービン静翼。
  4.  前記シュラウドは、
     前記翼体の前記前縁より軸方向上流側の軸方向線上の前記第1領域と同じ半径の円状に形成された第2領域を備え、
     前記第2開口中心線が、前記第2領域を起点に延伸する、
    請求項2に記載のタービン静翼。
  5.  前記シュラウドは、
     前記第1キャビティ内に配置され、前記翼体の前記軸方向線上の前記前縁より軸方向下流側で前記第3領域より軸方向上流側に配置され、前記第3領域と同じ半径の円状に形成された第4領域を備え、
     前記冷却孔列の内、少なくとも2つの前記冷却孔列の前記第2開口中心線が、前記第4領域を起点に延伸する、
    請求項3に記載のタービン静翼。
  6.  前記第1開口中心線又は前記第2開口中心線は、前記第1開口中心線又は前記第2開口中心線が延伸する方向に隣接する少なくとも2つの冷却孔により形成されている、
    請求項1から5のいずれか一項に記載のタービン静翼。
  7.  前記冷却孔中心線は、前記第1開口中心線又は前記第2開口中心線と直交する方向より前記翼面の側に傾いている、
    請求項1から5のいずれか一項に記載のタービン静翼。
  8.  前記冷却孔列の前記冷却孔中心線の前記第1開口中心線に対する傾きは、軸方向のいずれの位置の前記冷却孔列においても、同一の傾きが維持される、
    請求項1から5のいずれか一項に記載のタービン静翼。
  9.  前記複数の冷却孔列の前記第1開口中心線は、軸方向下流方向に向かうと共に、軸方向に隣接して配置された前記冷却孔列の前記第1開口中心線との軸方向の間隔が拡大する
    請求項1から5のいずれか一項に記載のタービン静翼。
  10.  前記冷却孔列の複数の前記冷却孔は、前記第1開口中心線又は前記第2開口中心線が延伸する方向に同一の間隔を維持して配置されている、
    請求項1~5の何れか一項に記載のタービン静翼。
  11.  前記複数の冷却孔列を構成する複数の前記冷却孔の群は、前記第1領域から前記第4領域の内の少なくとも一つの領域を起点に
    前記前縁端部又は前記負圧面側端部に向けて放射状に延伸する、
    請求項6に記載のタービン静翼。
  12.  前記複数の冷却孔列の前記第1開口中心線又は前記第2開口中心線のいずれかが、前記第1領域から前記第4領域の内の少なくとも一つの領域を起点に前記前縁端部又は前記負圧面側端部に向けて放射状に延伸する、
    請求項6に記載のタービン静翼。
  13.  前記シュラウドは、
     前記翼体と、前記前縁端部を接続する前縁仕切リブと、前記翼体と前記負圧面側端部を接続する負圧面側仕切リブと、により前記凹部が区分けされ、
     前記翼体の外壁面と、前記前縁仕切リブと、前記負圧面側仕切リブとに囲まれて形成された第2キャビティを含み、
     前記第2キャビティを前記翼高さ方向の外側に形成される第3キャビティと前記第3キャビティの内側に形成される第4キャビティと、に区分けされ、
     前記第3キャビティと前記第4キャビティとを連通する複数の貫通孔を備えた衝突板と、
    を含む、
    請求項1~5のいずれか一項に記載のタービン静翼。
  14.  前記シュラウドは、
     前記翼体の前記翼高さ方向の外側の端部に形成された外側シュラウドと、
     前記翼体の前記翼高さ方向の内側の端部に形成された内側シュラウドと、
    からなる請求項1~5のいずれか一項に記載のタービン静翼。
  15.  請求項1から5のいずれか一項に記載のタービン静翼と、
     前記タービン静翼が設けられる燃焼ガス流路を流れる燃焼ガスを生成する燃焼器と、
    を備えるガスタービン。
  16.  翼体と、
     前記翼体の翼高さ方向の端部に形成されたシュラウドと、
    を備え、
     前記シュラウドは、
     燃焼ガス流路に接する底板と、
     前記底板の周縁に沿って前記翼高さ方向に形成される周壁と、
     前記周壁と前記底板に囲まれた空間を形成する凹部と、
     前記底板と前記翼体と前記周壁を接続する複数の仕切リブと、により前記凹部を区分けし、前記負圧面側前縁領域に形成された第2キャビティと、
     前記第2キャビティを前記翼高さ方向の外側に形成される第3キャビティと前記第3キャビティの内側に形成される第4キャビティとに区分けし、前記第3キャビティと前記第4キャビティとを連通する複数の貫通孔を備えた衝突板と、
    を備え、
     前記底板の内表面に形成された入口開口を介して前記第4キャビティに連通し、前記底板のガスパス面に形成された出口開口を介して燃焼ガス流路に連通する複数の冷却孔を有する冷却孔列を備えたタービン静翼の冷却方法であって、
     外部から前記第3キャビティに冷却空気を供給する工程と、
     前記冷却空気が、前記負圧面前縁キャビティに配置された前記衝突板に形成された前記貫通孔を介して、前記第3キャビティから前記第4キャビティに供給され、前記第4キャビティの冷却空気の圧力を減圧する工程と、
     前記冷却空気が前記底板の内表面をインピンジメント冷却する工程と、
     前記底板に形成され、燃焼ガスの等圧線に平行に配置された第1開口中心線を備えた前記冷却孔列を構成する複数の前記冷却孔から前記冷却空気を前記燃焼ガス流路に排出し、前記ガスパス面をフィルム冷却する工程と、
    を含む、
    タービン静翼の冷却方法。

     
PCT/JP2022/025110 2021-07-07 2022-06-23 タービン静翼およびガスタービン WO2023282078A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/567,254 US20240263561A1 (en) 2021-07-07 2022-06-23 Turbine stator vane and gas turbine
KR1020237040486A KR20230169386A (ko) 2021-07-07 2022-06-23 터빈 정익 및 가스 터빈
CN202280037399.3A CN117377813A (zh) 2021-07-07 2022-06-23 涡轮静叶片及燃气轮机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021112476A JP6963712B1 (ja) 2021-07-07 2021-07-07 タービン静翼およびガスタービン
JP2021-112476 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023282078A1 true WO2023282078A1 (ja) 2023-01-12

Family

ID=78466160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025110 WO2023282078A1 (ja) 2021-07-07 2022-06-23 タービン静翼およびガスタービン

Country Status (5)

Country Link
US (1) US20240263561A1 (ja)
JP (1) JP6963712B1 (ja)
KR (1) KR20230169386A (ja)
CN (1) CN117377813A (ja)
WO (1) WO2023282078A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286157A (ja) * 2007-05-21 2008-11-27 Mitsubishi Heavy Ind Ltd タービン静翼
US20120034075A1 (en) * 2010-08-09 2012-02-09 Johan Hsu Cooling arrangement for a turbine component
JP2018091227A (ja) * 2016-12-02 2018-06-14 三菱重工業株式会社 静翼セグメント、これを備えるガスタービン及びガスタービン設備
JP2018096376A (ja) * 2016-12-08 2018-06-21 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド ベーンの冷却構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898731B2 (ja) * 2008-03-26 2012-03-21 三菱重工業株式会社 ガスタービン冷却構造およびこれを備えたガスタービン
US10337404B2 (en) 2010-03-08 2019-07-02 General Electric Company Preferential cooling of gas turbine nozzles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286157A (ja) * 2007-05-21 2008-11-27 Mitsubishi Heavy Ind Ltd タービン静翼
US20120034075A1 (en) * 2010-08-09 2012-02-09 Johan Hsu Cooling arrangement for a turbine component
JP2018091227A (ja) * 2016-12-02 2018-06-14 三菱重工業株式会社 静翼セグメント、これを備えるガスタービン及びガスタービン設備
JP2018096376A (ja) * 2016-12-08 2018-06-21 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド ベーンの冷却構造

Also Published As

Publication number Publication date
US20240263561A1 (en) 2024-08-08
JP6963712B1 (ja) 2021-11-10
KR20230169386A (ko) 2023-12-15
JP2023009326A (ja) 2023-01-20
CN117377813A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
EP3249160B1 (en) Engine component
EP2716866B1 (en) Gas turbine engine components with lateral and forward sweep film cooling holes
JP5503140B2 (ja) 発散型タービンノズル
US11732593B2 (en) Flared central cavity aft of airfoil leading edge
EP2662528B1 (en) Gas turbine engine component with cooling holes having a multi-lobe configuration
US11624286B2 (en) Insert for re-using impingement air in an airfoil, airfoil comprising an impingement insert, turbomachine component and a gas turbine having the same
US10605090B2 (en) Intermediate central passage spanning outer walls aft of airfoil leading edge passage
CN107435562B (zh) 在冷却剂通道的转弯部开口处具有应力减小球根状突起的叶片
CN111936724B (zh) 涡轮动叶以及燃气轮机
US11396818B2 (en) Triple-walled impingement insert for re-using impingement air in an airfoil, airfoil comprising the impingement insert, turbomachine component and a gas turbine having the same
JP7118597B2 (ja) 内部リブを製造する方法
WO2023282078A1 (ja) タービン静翼およびガスタービン
US11555411B2 (en) Technique for cooling squealer tip of a gas turbine blade
EP4001591B1 (en) Trailing edge tip cooling of blade of a gas turbine blade
CN111406147B (zh) 内部冷却型涡轮机械部件
JP7223570B2 (ja) タービン動翼、タービン及びチップクリアランス計測方法
CN113939645A (zh) 用于燃气涡轮发动机的隔热罩
WO2022163030A1 (ja) ガスタービン静翼およびガスタービン
EP3450683A1 (en) Component and corresponding method of manucfacturing
WO2023095721A1 (ja) タービン静翼
KR20240031436A (ko) 터빈 날개 및 가스 터빈
JP2019052650A (ja) ガスタービンの分割環の冷却構造及びこれを有するガスタービン
JPWO2023095721A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237040486

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280037399.3

Country of ref document: CN

Ref document number: 1020237040486

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837495

Country of ref document: EP

Kind code of ref document: A1