WO2023282034A1 - Support film reusability determination method, support film cleaning method, support film reuse method, support film roll production method, transfer laminated film roll production method, support film reusability determination program, and support film reusability determination system - Google Patents

Support film reusability determination method, support film cleaning method, support film reuse method, support film roll production method, transfer laminated film roll production method, support film reusability determination program, and support film reusability determination system Download PDF

Info

Publication number
WO2023282034A1
WO2023282034A1 PCT/JP2022/024438 JP2022024438W WO2023282034A1 WO 2023282034 A1 WO2023282034 A1 WO 2023282034A1 JP 2022024438 W JP2022024438 W JP 2022024438W WO 2023282034 A1 WO2023282034 A1 WO 2023282034A1
Authority
WO
WIPO (PCT)
Prior art keywords
support film
film
transfer
support
reusability
Prior art date
Application number
PCT/JP2022/024438
Other languages
French (fr)
Japanese (ja)
Inventor
康 大久保
修 増田
太平 伊香賀
浩 西村
公志 田坂
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2023533507A priority Critical patent/JPWO2023282034A1/ja
Priority to CN202280048454.9A priority patent/CN117716229A/en
Priority to KR1020237044826A priority patent/KR20240013222A/en
Publication of WO2023282034A1 publication Critical patent/WO2023282034A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8812Diffuse illumination, e.g. "sky"
    • G01N2021/8816Diffuse illumination, e.g. "sky" by using multiple sources, e.g. LEDs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention provides a method for determining reusability of a support film, a method for washing a support film, a method for reusing a support film, a method for manufacturing a support film roll, a method for manufacturing a transferable laminated film roll, and reusability of a support film.
  • the present invention relates to a determination program and a support film reusability determination system. More specifically, the present invention relates to a support film reusability determination method capable of efficiently and accurately determining whether or not a support film used in laminate production by a peel transfer method can be reused.
  • optical film in the form of a peel-off transfer type.
  • Such an optical film is provided in a form integrated with a support film capable of imparting process suitability to the optical film, and the optical film provided as an upper layer is laminated, peeled, and transferred to a desired position. This has the advantage that only very thin optical films can be provided for products such as laminates.
  • the thickness of the optical film to be transferred (hereinafter also referred to as "transferred film”) is, for example, 10 ⁇ m or less, the strength of the film itself is reduced, so the transfer process is difficult. It has been found that there is a problem that the peeling residue due to breakage or tearing is likely to occur due to disturbance. For example, when it is assumed that an optical film having a thickness of 3 ⁇ m is to be transferred, it is not difficult to imagine that a film thickness variation of ⁇ 0.5 ⁇ m or a foreign matter on the support film would cause a serious problem.
  • Patent Document 1 As a system for inspecting the film surface, for example, an inspection system capable of determining the composition of the resin layer of a resin sheet has been disclosed (see Patent Document 1). However, since such an inspection system is intended to inspect the composition of the resin sheet itself, it is possible to efficiently and accurately inspect the peeling residue of the transfer-receiving film formed on the support film. I could't.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is that it is possible to efficiently and highly accurately determine whether the support film used in the production of a laminate by the peel transfer method can be reused.
  • An object of the present invention is to provide a method for manufacturing a roll and a method for manufacturing a transferable laminated film roll.
  • the present inventors have investigated the causes of the above problems, etc., and found that while conveying the support film used in the production of the laminate by the peel transfer method, the support was measured using an optical measuring means. It has a measurement step of measuring data related to the transfer-receiving film residue remaining on the film, and a judgment step of judging whether or not it can be reused based on the measured data.
  • the inventors have found that it is possible to provide a method for determining the reusability of a support film, which can efficiently and highly accurately determine the reusability of a support film that has been processed, and have arrived at the present invention. That is, the above problems related to the present invention are solved by the following means.
  • a method for determining the reusability of a support film used in laminate production by a peel transfer method a measuring step of measuring data relating to a transfer-receiving film residue remaining on the support film using an optical measuring means while transporting the support film; and determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue.
  • a measurement condition setting step for the optical measurement means In the measurement condition setting step, setting the measurement condition to a measurement condition that emphasizes the thickness or material of the transfer-receiving film residue based on the data regarding the transfer-receiving film formed on the support film. 2. The method for determining reusability of the support film according to item 1.
  • the measuring step comprises at least a first measuring step and a second measuring step; In the first measuring step, measuring the position of the transfer-receiving film residue; 3. Judgment on reusability of the support film according to claim 1 or 2, characterized in that in the second measuring step, the thickness or material of the transfer-receiving film residue remaining at the position is measured.
  • a method for cleaning a support film used in laminate production by a peel transfer method comprising: When it is determined that cleaning is necessary by the method for determining the reusability of a support film according to any one of items 1 to 3, based on the measured data on the transfer film residue, the A method for washing a support film, comprising removing a transfer-receiving film residue remaining on the support film.
  • a method for reusing a support film used in laminate production by a peel transfer method The support film determined not to require cleaning by the method for determining reusability of the support film according to any one of items 1 to 3, or the method for cleaning the support film according to item 4.
  • a method for reusing a support film comprising: reusing the support film washed by the method as a support for a transfer-receiving film.
  • a method for manufacturing a support film roll which is a roll of a support film, comprising: The support film determined not to require cleaning by the method for determining reusability of the support film according to any one of items 1 to 3, or the method for cleaning the support film according to item 4.
  • a method for producing a support film roll comprising: winding up the support film washed by the above method to produce a support film roll.
  • a method for producing a transferable laminated film roll which is a roll body of a transferable laminated film, comprising: The support film determined not to require cleaning by the method for determining reusability of the support film according to any one of items 1 to 3, or the method for cleaning the support film according to item 4.
  • a transferable laminated film is produced by laminating a transfer-receiving film on the support film washed by the method, and the transferable laminated film is wound up to produce a transferable laminated film roll A method for manufacturing a laminated film roll.
  • a program for determining the reusability of a support film used in laminate production by a peel transfer method a measuring step of measuring data relating to a transfer-receiving film residue remaining on the support film using an optical measuring means while transporting the support film; determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue.
  • a system for determining the reusability of a support film used in laminate production by a peel transfer method a conveying means for conveying the support film; optical measuring means for measuring data relating to transfer-receiving film remnants remaining on the support film during transportation; and determination means for determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue.
  • a reusability determination system, a support film cleaning method using the support film reusability determination method, a support film reuse method, a support film roll manufacturing method, and a transferable laminated film roll manufacturing method can provide.
  • the method for determining the reusability of a support film of the present invention is a method for determining the reusability of a support film used in the production of a laminate by a peel transfer method, wherein the support film is conveyed while an optical measuring means is measured. a measurement step of measuring data relating to the transfer-receiving film residue remaining on the support film using and a judgment step for judging reusability.
  • This feature is a technical feature common to or corresponding to the following embodiments.
  • the step of setting measurement conditions for the optical measurement means is provided before the measurement step, and in the measurement condition setting step, on the support film It is preferable to set the measurement conditions to emphasizing the thickness or material of the transfer-receiving film remnants based on the data on the transfer-receiving film formed in the above. As a result, it is possible to determine whether or not an item can be reused at high speed and with high accuracy.
  • the measuring step comprises at least a first measuring step and a second measuring step, and in the first measuring step, It is preferable that the position of the object is measured, and the thickness or material of the transfer-receiving film residue remaining at the position is measured in the second measuring step. This makes it possible to more efficiently determine whether or not the item can be reused.
  • the method for cleaning a support film of the present invention is a method for cleaning a support film used in the production of a laminate by the peel-transfer method, and it is determined that cleaning is necessary by the method for determining reusability of a support film of the present invention.
  • the transfer-receiving film remnants remaining on the support film are removed based on the measured data relating to the transfer-receiving film remnants.
  • the method for reusing a support film of the present invention is a method for reusing a support film that has been used in the production of a laminate by the peel-transfer method, and is judged by the method for determining reusability of a support film of the present invention that washing is unnecessary.
  • the support film, or the support film washed by the method for washing a support film of the present invention, is reused as a support for producing a transferred film.
  • the method for manufacturing a support film roll of the present invention is a method for manufacturing a support film roll, which is a roll body of a support film, and was determined not to require washing by the method for determining reusability of a support film of the present invention.
  • a support film roll is manufactured by winding up the support film or the support film washed by the method for washing a support film of the present invention.
  • the method for producing a transferable laminated film roll of the present invention is a method for producing a transferable laminated film roll, which is a roll body of a transferable laminated film, and cleaning is unnecessary by the method for determining whether or not a support film can be reused according to the present invention.
  • a transfer-receiving film is laminated on the determined support film or the support film washed by the method for washing a support film of the present invention to prepare a transferable laminated film, and the transferable laminated film is produced. It is characterized in that it is wound up to produce a transferable laminated film roll.
  • a program for determining the reusability of a support film of the present invention is a program for determining the reusability of a support film used in the production of a laminate by a peel transfer method, wherein the support film is transported while an optical measuring means is measured. a measurement step of measuring data relating to the transfer-receiving film residue remaining on the support film using and a judgment step for judging whether or not reuse is possible.
  • the support film reusability determination system of the present invention is a support film reusability determination system used in laminate production by a peel transfer method, comprising a transport means for transporting the support film, Optical measuring means for measuring data on the transfer-receiving film residue remaining on the support film, and whether or not the support film needs to be washed based on the measured data on the transfer-receiving film residue. and determination means for determining whether or not the device can be reused.
  • the method for determining the reusability of a support film of the present invention is a method for determining the reusability of a support film used in the production of a laminate by a peel transfer method, wherein the support film is conveyed while an optical measuring means is measured. a measurement step of measuring data relating to the transfer-receiving film residue remaining on the support film using and a judgment step for judging reusability.
  • a measuring condition setting step for the optical measuring means is provided, and in the measuring condition setting step, based on the data regarding the transferred film formed on the support film, the It is preferable to set the measurement conditions so that the thickness or material of the transfer-receiving film residue is emphasized. As a result, it is possible to determine whether or not the item can be reused with higher accuracy.
  • the measuring step includes at least a first measuring step and a second measuring step, wherein the first measuring step measures the position of the transfer-receiving film residue, and the second measuring step measures the position of the transfer-receiving film residue. It is preferable to measure the thickness or material of the transfer-receiving film residue remaining at the position. This makes it possible to more efficiently determine whether or not the item can be reused.
  • Laminate production by peeling transfer method means that from a transferable laminated film having a transfer film (for example, an optical film such as a zero retardation film) on a support film, another substrate etc. is peeled off while peeling the transfer film. It refers to a production method for producing a laminate (for example, a polarizing plate) by transferring and bonding to (for example, a substrate on which a polarizer is formed).
  • a transfer film for example, an optical film such as a zero retardation film
  • the reusability is determined for the support film used in the production of the laminate by such a peel transfer method.
  • Reuse of the support film in the present invention means reuse as the support film. In other words, it refers to reuse as a support film in the production and transport of a transferable laminated film, and does not include recycling (reuse) for other uses.
  • Transferred film residue refers to the peeled residue of the transferred film in the peel-transfer process.
  • the "support film” that is subject to reusability refers to the film that supports the transfer-receiving film when the transfer-receiving film is formed.
  • the constituent base material of the support film is a general resin film, and may contain various additives.
  • the thickness, material, configuration, etc. of the support film are not particularly limited from the viewpoint of reusability determination, but from the viewpoint of reuse, for example, the following are preferable.
  • the thickness of the support film is preferably 200 ⁇ m or less.
  • the thickness of the support film is preferably within the range of 25 to 125 ⁇ m, more preferably within the range of 35 to 100 ⁇ m, since the support requires a certain degree of strength (resilience and rigidity).
  • the resin used for the support film examples include cellulose ester-based resins, cycloolefin-based resins, polypropylene-based resins, acrylic-based resins, polyester-based resins, polyarylate-based resins, and styrene-based resins.
  • a species or two or more species can be used.
  • polyester resins examples include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polybutylene naphthalate (PBN).
  • PET polyethylene terephthalate
  • PBT polytrimethylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • the resin film may be heat-treated (heat-relaxed) or stretched.
  • the heat treatment is a treatment for reducing the residual stress of the resin film (for example, the residual stress associated with stretching), and is not particularly limited. ⁇ (Tg+180)°C.
  • the stretching process is a process for increasing the residual stress of the resin film, and the stretching process is preferably carried out, for example, in the biaxial directions of the resin film.
  • the stretching treatment can be performed under arbitrary conditions, for example, at a stretching ratio of about 120 to 900%. Whether or not the resin film is stretched can be confirmed by checking, for example, whether or not there is an in-plane slow axis (an axis extending in the direction in which the refractive index is maximized).
  • the stretching treatment may be performed before laminating a functional layer such as a release layer or an easy-adhesion layer described below, or after lamination.
  • polyester resin films can be used.
  • Therapeal SY/HP2/PJ101 manufactured by Toray Industries, Inc.
  • Therapeal SY/HP2/PJ101 manufactured by Toray Industries, Inc.
  • Therapeal SY/HP2/PJ101 manufactured by Toray Industries, Inc.
  • Therapeal SY/HP2/PJ101 manufactured by Toray Industries, Inc.
  • Therapeal SY/HP2/PJ101 manufactured by Toray Industries, Inc.
  • the support film may further have a release layer provided on the surface of the resin film.
  • the release layer can make it easier to separate the support film and the transferred film when producing a laminate such as a polarizing plate.
  • the release layer may contain a known release agent, and is not particularly limited.
  • release agents contained in the release layer include silicone release agents and non-silicone release agents.
  • silicone-based release agents include known silicone-based resins.
  • non-silicone release agents include long-chain alkyl pendant type polymers obtained by reacting long-chain alkyl isocyanate with polyvinyl alcohol or ethylene-vinyl alcohol copolymer, olefin resins and waxes (e.g.
  • it is a non-silicone type release agent that is difficult to transfer to the transfer-receiving film.
  • the thickness of the release layer is not particularly limited as long as it can exhibit the desired releasability, but is preferably 0.1 to 1.0 ⁇ m, for example.
  • a support film having an easy-adhesion layer may be used in order to provide higher adhesiveness to the transfer-receiving film.
  • the easy-adhesion layer include polyolefin-based and polyester-based resins, polyacrylamide-based polymers; vinyl alcohol-based polymers such as polyvinyl alcohol and ethylene-vinyl alcohol copolymers, and (meth)acrylic acid or its anhydride-vinyl alcohol copolymers. starches; sodium alginate; water-soluble polymers such as polyethylene oxide polymers; and known materials such as oxazoline polymers.
  • the measurement conditions of the optical measurement means are set. For example, based on the data (e.g., thickness, refractive index, etc.) related to the transfer film formed on the support film, the measurement conditions are set to emphasize the thickness or material of the transfer film residue. do.
  • the data e.g., thickness, refractive index, etc.
  • the light sources include xenon lamps, halogen lamps, white LED lamps, near-infrared hyperspectral imaging lighting (LDL-222X42CIR-LACL manufactured by CCS Co., Ltd., etc.), and emits light from deep ultraviolet to near-infrared wavelengths.
  • LDL-222X42CIR-LACL manufactured by CCS Co., Ltd., etc. near-infrared hyperspectral imaging lighting
  • a laser-excited white light source KLV XWS-65, etc.
  • KLV XWS-65, etc. can be used.
  • the optical measurement means As an example of setting the measurement conditions of the optical measurement means by spectral interferometry so that the thickness of the transfer film residue is emphasized using the data of the thickness and refractive index of the transfer film, the optical measurement means A method for adjusting the light receiving position and a method for adjusting the emission wavelength of the light source of the optical measuring means will be described.
  • the light-receiving position of the optical measuring means can be accurately measured based on the thickness and refractive index of the transferred film (In other words, it is possible to set the position, angle, and light source conditions that can emphasize the transfer-receiving film residue.
  • the reflected light A reflected on the surface of the transfer-receiving film residue is refracted by the surface of the transfer-receiving film residue, enters the transfer-receiving film residue, is reflected by the support film surface, and is transferred again.
  • the optical path difference of the reflected light B refracted on the surface of the film residue becomes a multiple of the emission wavelength ⁇ of the light source and the phases of the reflected lights are aligned, the reflected lights are strengthened by interference.
  • the phases are reversed, they weaken each other, and the spectrum of the white light from the light source is converted into a waveform that becomes stronger or weaker depending on the wavelength, and reflected light is obtained.
  • the present invention it is preferable to input in advance the following information that greatly affects the interference spectrum. As a result, it is possible to improve the accuracy of calculating the film thickness of the transfer-receiving film residue to be measured.
  • the wavelength region where such accuracy is expected to be insufficient may be scattered by additives such as fine particles, ultraviolet absorbers, antioxidants, etc. contained in the transferred film, and other wavelengths may It can also be removed from the light source to reduce the accuracy of the calculation from the spectrum of the region. By performing such processing, it is possible to emphatically measure the portion of the transferred film remaining (peeling residue) on the support film, and to provide a system capable of high-precision and high-speed determination.
  • the light source itself may be changed, or a cut filter, mirror, prism, etc. may be inserted between the light source and the film to be measured.
  • the refractive index data of the transferred film is used as the data on the transferred film, and the measurement conditions are set to emphasizing the material (refractive index) of the object to be detected, for example, metal powder
  • the refractive index is It is also possible to detect the number of objects different from the transfer-receiving film. As a result, it becomes possible to determine with high accuracy whether or not the device can be reused in the subsequent determination step.
  • optical measurement means is used to measure data on the transfer-receiving film residue remaining on the support film.
  • the "data relating to the transfer-receiving film residue" includes image data and various data obtained by image processing.
  • the measurement step is performed while conveying the support film.
  • a higher conveying speed is preferable from the viewpoint of measurement efficiency, but it must be determined in consideration of the required measurement accuracy and the ability of the optical measuring means to be used.
  • the conveying speed is preferably in the range of 3 to 100 m/min, more preferably in the range of 5 to 70 m/min, and even more preferably in the range of 10 to 50 m/min.
  • optical measuring means those capable of measuring the entire surface of the support film in the lateral direction are preferable.
  • optical measurement means for example, as shown in FIG.
  • a device having a combined imaging unit can be used.
  • a hyperspectral camera can image an object at multiple wavelengths with high resolution, so it is possible to quantify the film thickness of the object over a wide range in a single measurement.
  • the judging means judges whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the data on the transfer-receiving film residue measured in the measurement step.
  • a device such as a computer including a PLC (programmable logic controller) can be used as the determination means.
  • the optical measurement means can also serve as the determination means by providing a determination unit and a program for determination. That is, in the present invention, different devices can be used separately for the optical measuring means and the judging means, or a single device serving as both means can be used.
  • the image data is subjected to image processing, etc. as necessary to obtain more detailed data on the transfer film residue, for example, the transfer film Data such as the number of residuals and the area and minimum width of each transfer-receiving film residual are acquired.
  • Data such as the area and minimum width of the transfer film residue are calculated from the clarified contour of the transfer film residue, for example, by clarifying the contour of the transfer film residue from the HOG (Histograms of Oriented Gradients) feature amount obtained by image processing. can do.
  • HOG Heistograms of Oriented Gradients
  • HOG feature amount is a feature amount obtained by histogramming local image gradients. By acquiring the HOG feature amount, it is possible to detect the transfer-receiving film residue and clarify its contour.
  • the HOG feature amount can be calculated with reference to various known papers and Japanese Patent Application Laid-Open No. 2018-36689.
  • the contour of the residue may be clarified depending on whether or not the acquired reflection spectrum distribution has a frequency component equal to or higher than the frequency component expected from the film thickness of the transferred film.
  • Figs. 3 and 4 are examples of flow charts after the reusability determination.
  • the support film determined to be reusable without washing in the reusability determination can be wound up and used as a support film roll, and can be continuously transferred and laminated as it is without being wound up after the determination. It can also be reused in the film manufacturing process.
  • the support film judged to be reusable by washing in the reusability judgment is washed in the washing process described later.
  • the support film after washing may be wound up or reused as it is as shown in the flowchart shown in FIG. you can go
  • FIG. 2 is a flow chart of the reusability determination method in which the measurement steps consist of a first measurement step and a second measurement step. Since the measurement condition setting step (S2-1) and the determination step (S2-4) are the same as the measurement condition setting step (S1-1) and the determination step (S1-3), respectively, the first measurement step ( S2-2) and the second measurement step (S2-3) will be described below.
  • optical measurement means is used to measure the position of the transferred film residue remaining on the support film.
  • an image is captured on the support film using an optical measuring means, image data is obtained, and image processing is performed on the image data to obtain the support film of the transferred film residue. Get top location data.
  • the optical measuring means used in the first measuring step is capable of acquiring position data and capable of measuring the entire surface of the support film in the lateral direction. is preferred.
  • optical measurement means for example, as shown in FIG. (RMSL8K76CL manufactured by Nippon Electro-Device Co., Ltd.) can be used. With this device, a resolution of about 0.1 mm is obtained when the distance L from the support film to the lens is 1300 mm.
  • the thickness or material (refractive index, etc.) of the transferred film residue remaining at the position measured in the first measurement step is measured.
  • the optical measuring means used in the second measuring step is preferably one that can acquire high-resolution image data of the transfer-receiving film residue according to the position data.
  • optical measurement means for example, as shown in FIGS. ), a mount adapter 204, a monochrome line sensor camera 205 (RMSL4K100CL manufactured by Nippon Electro-Device Co., Ltd.), and a high-speed lateral movement mechanism 206 can be used.
  • 7A is a schematic diagram viewed from the front in the width direction
  • FIG. 7B is a schematic diagram viewed from the front in the transport direction.
  • the second optical measurement means is installed downstream of the first optical measurement means in the conveying direction of the support film.
  • the interval between the imaging positions by the first optical measuring means and the second optical measuring means can be arbitrarily set according to the required imaging interval in consideration of the transport speed and the controllability of each optical measuring means. can. For example, if the conveying speed is 5 m/min and the necessary imaging interval is 1 minute, the interval between the imaging positions by the first optical measuring means and the second optical measuring means should be 5 m or more.
  • the above steps can be consistently executed by a computer, or can be consistently executed by a user's operation. Furthermore, some of the steps may be executed mainly by a computer, and some of the steps may be executed by user operations.
  • the method for cleaning a support film of the present invention is a method for cleaning a support film used in the production of a laminate by the peel-transfer method, and it is determined that cleaning is necessary by the method for determining reusability of a support film of the present invention.
  • the transfer-receiving film remnants remaining on the support film are removed based on the measured data relating to the transfer-receiving film remnants.
  • the method for removing the transfer-receiving film residue is not particularly limited, but suitable methods include dry ice blasting and adhesive roller processing.
  • Dry ice blasting will be described below as an example of a method for removing the transfer-receiving film residue.
  • dry ice blasting material dry ice pellets
  • dry ice blasting material dry ice pellets
  • the direction in which the dry ice blast material is sprayed is preferably the direction opposite to the transport direction of the support film.
  • the temperature of the support film in order to prevent dew condensation on the surface of the support film, it is preferable to set the temperature of the support film to room temperature or higher.
  • the surface temperature of the support film is 20-120°C. Note that it is necessary to pay attention to the melting temperature depending on the composition of the support film. By setting the surface temperature of the support film to 20 to 120° C. in this way, it is possible to prevent the temperature of the support film from lowering when the dry ice blast material is sprayed thereon, thereby preventing dew condensation. It becomes possible.
  • a method of raising the temperature of the support film there is a method of blowing air onto the support film with a dryer or the like before blowing the dry ice blast material onto the support film.
  • a support member such as a roller member or a belt member for conveying the support film is heated, so that the support member in contact with the support member is heated.
  • the film may be heated.
  • the support film is heated by a support member having a temperature higher than the surface temperature of the support film, and the temperature of the support member is adjusted so that the surface temperature of the support film is 20 to 120°C.
  • the support film can be prevented from being cooled too much, and dew condensation on the support film can be prevented in the step of spraying the dry ice blast material and the subsequent step.
  • a method for heating the supporting member hot water or the like may be passed through the roller member, or an electric jacket roll may be used as the roller member.
  • the dew point of the atmosphere before, during, and after the dry ice blasting material is sprayed it is preferable to lower the dew point of the atmosphere before, during, and after the dry ice blasting material is sprayed.
  • the spraying process is performed in a chamber or the like, and the chamber is filled with sublimated carbon dioxide gas, nitrogen gas, or the like to lower the dew point.
  • the chamber may be filled with dry air having a dew point of ⁇ 60° C., and a dry ice blast material may be sprayed onto the support film in that environment.
  • a blasting nozzle for blowing dry ice blasting material and a suction nozzle for sucking the removed transfer film residue.
  • the transfer-receiving film residue floats around the support film. If this state is left as it is, the removed residue of the transfer-receiving film may reattach to the support film, and the support film may be contaminated.
  • a blasting nozzle 20 is installed obliquely to a support film 23 on a conveying roller 22, and a blasting material is sprayed obliquely onto the support film 23 to remove the transferred film residue.
  • a suction nozzle 21 is installed on the opposite side of the blowing, and the transferred film residue peeled off from the support film 23 by the blowing of the dry ice blast material is sucked by the suction nozzle 21 and quickly discharged.
  • the suction nozzle 21 is installed so as to surround the portion of the support film 23 to which the dry ice blasting material is sprayed, by setting the suction nozzle 21 so as to surround the blast nozzle 20 .
  • the peeled transfer-receiving film residue may be sucked and quickly discharged. Wind pressure generated when the dry ice blasting material sublimates is generated in all directions of the part to which the blasting material is sprayed. Residues can be aspirated and quickly discharged.
  • the surface of the support film is discharged while the static electricity is removed using a static eliminator.
  • Dry ice blast material may be sprayed on the surface.
  • static elimination may be performed before the dry ice blasting material is sprayed. For example, static elimination is performed by determining the static elimination conditions so that the charge amount of the support film after the dry ice blasting material is sprayed is 1 [kV] or less.
  • an electrode for generating ions is provided in a blasting nozzle for spraying dry ice blasting material, and the surface of the support film is neutralized while spraying the blasting material.
  • the support film may be further washed by a known cleaning method.
  • cleaning methods include, for example, air web cleaners, sticky web cleaners, or brush web cleaners.
  • the support film when the dry ice blasting material is sprayed on the surface of the support film, the support film may be stored in a sealed chamber, and the pressure inside the chamber may be reduced from the outside to spray the dry ice blasting material.
  • the pressure is reduced by about 10 Pa from the pressure outside the chamber.
  • the support film after removing the transfer-receiving film residue is immersed in a water tank containing water to remove the residue of the transferred film remaining on the surface of the support film. Further, by washing the support film with a washing agent, the remaining transfer-receiving film residue can be removed more effectively.
  • a washing liquid may be sprayed onto the support film at high speed to remove remaining transfer-receiving film residue.
  • saponification may be performed instead of washing.
  • a cleaning agent may be sprayed onto the support film being conveyed while being placed on the belt member or the support film being wound around the roller member to remove the remaining transfer-receiving film residue. good.
  • this cleaning agent for example, water or water to which an active agent or the like is added is used. After removing transfer-receiving film residues remaining on the support film using a cleaning agent, the support film is washed with water and then dried. The washing liquid is passed through a filter so as to be free of foreign matter, and after washing, the washing liquid on the support film is dried.
  • the dry ice blasting material may be sprayed onto the support film in multiple batches.
  • a plurality of dry ice blasting devices are provided, and dry ice blasting materials having the same particle size or different particle sizes are sprayed onto the support film from each dry ice blasting device.
  • Dry ice blasting equipment has a limit to the amount of dry ice blasting material that can be generated, so if the amount of dry ice blasting material to be used is large, it is better to install multiple dry ice blasting equipment for processing. .
  • the amount of dry ice blasting material generated is insufficient, and there is a risk that the transfer-receiving film residue cannot be satisfactorily removed. Therefore, by providing a plurality of dry ice blasting devices and blowing the dry ice blast material in a plurality of times, it is possible to sufficiently remove the transfer-receiving film residue.
  • the method for producing a transferable laminated film roll of the present invention is a method for producing a transferable laminated film roll, which is a roll body of a transferable laminated film, and cleaning is unnecessary by the method for determining whether or not a support film can be reused according to the present invention.
  • a transfer-receiving film is laminated on the determined support film or the support film washed by the method for washing a support film of the present invention to prepare a transferable laminated film, and the transferable laminated film is wound up. and manufacturing a transferable laminated film roll.
  • Transferable laminated film refers to a laminated film in which at least a transfer-receiving film is laminated on a support film.
  • the type of film to be transferred laminated on the support film is not particularly limited, and examples include retardation films, polarizing films, protective films, hard coat films, release films, release films, base films, light absorbing films, and the like. can be laminated.
  • the resin material of the transfer-receiving film formed on the support film is not particularly limited. It is possible to use one or more kinds of resins, cellulose ester resins, polyamide resins, polyimide resins, and styrene resins.
  • a polymer material having a polar group such as a carbonyl group, an ester group, or an amide group which can give a certain level of adhesive strength to the support film, the adhesive layer, and the like. Therefore, (meth)acrylic resins, styrene/(meth)acrylate copolymers, diester fumarate resins, polyamide resins, polyimide resins, some cycloolefin resins, cellulose ester resins, etc. are used. is preferred.
  • the (meth)acrylic resin is a copolymer containing structural units derived from (meth)acrylic acid ester/phenylmaleimide as described in JP-A-2021-89301. Preferably.
  • the cycloolefin-based polymer is preferably a polymer described in Japanese Patent No. 2977274 or a polymer obtained by polymerizing a cycloolefin monomer as described in Japanese Patent Application Laid-Open No. 2017-82143.
  • fumaric acid ester-based resin it is preferable to use the polymers described in Japanese Patent No. 6572532, Japanese Patent No. 5298535, Japanese Patent No. 5262013, and the like.
  • the polyimide-based resin is preferably a soluble transparent polyimide resin described in JP-A-2014-151559, JP-A-2019-59834, JP-A-2021-59731, etc., which have excellent optical properties. Moreover, it may be a composition in which a plurality of types of polyimide resins are blended as described in International Publication No. 2019/203037.
  • cellulose ester-based resins examples include mixed fatty acid esters such as cellulose acetate propionate and cellulose acetate butyrate described in JP-A-10-45804, JP-A-08-231761, and US Pat. No. 2,319,052. can be used. Among them, cellulose triacetate and cellulose acetate propionate are preferred.
  • the transfer film according to the present invention may further contain an additive as necessary, and may contain an additive having a molecular weight of 1000 or less within the range of 0.0001 to 1% by mass relative to the transfer film.
  • an additive having a molecular weight of 1000 or less within the range of 0.0001 to 1% by mass relative to the transfer film.
  • examples of other components include known antioxidants, rubber particles, matting agents (fine particles), plasticizers, ultraviolet absorbers, antistatic agents, and the like.
  • a more preferable content is in the range of 0.001 to 0.1% by mass.
  • any amount (1 to 90 mass %, preferably 20 to 80% by mass) may be added.
  • a known antioxidant can be used.
  • lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used. By adding these, it is possible to improve the storage stability of the transfer-receiving film over time.
  • lactone compounds such as "IrgafosXP40, IrgafosXP60 (trade name)” manufactured by BASF Japan Ltd.
  • sulfur compounds such as "Sumilizer TPL-R” and “Sumilizer TP-D” manufactured by Sumitomo Chemical Co., Ltd. , BASF Japan Co., Ltd.
  • Irganox (registered trademark) 1076 "Irganox (registered trademark) 1010", ADEKA Co., Ltd.
  • Double bond compounds such as “Sumilizer (registered trademark) GM” and “Sumilizer (registered trademark) GS” manufactured by BASF Japan Co., Ltd.
  • a rubber particle is a particle containing a rubber-like polymer. Rubber particles are added mainly for the purpose of improving the flexibility of the transferred film.
  • a rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20° C. or less. Examples of such crosslinked polymers include butadiene crosslinked polymers, (meth)acrylic crosslinked polymers, and organosiloxane crosslinked polymers. Among them, a (meth)acrylic crosslinked polymer is preferable from the viewpoint that the refractive index difference with the (meth)acrylic resin is small and the transparency of the film to be transferred is less likely to be impaired. polymer) is more preferred.
  • ultraviolet absorbers examples include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based ones.
  • fine particles include inorganic compounds such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Mention may be made of magnesium silicate and calcium phosphate.
  • Fine particles of organic compounds can also be preferably used.
  • organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, acrylic styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, and melamine resins.
  • Polyolefin powder, polyester resin, polyamide resin, polyimide resin, polyfluoroethylene resin, pulverized classified products of organic polymer compounds such as starch, and polymer compounds synthesized by suspension polymerization can be used. can.
  • the thickness of the transferred film formed on the support film is not particularly limited.
  • the support film can be suitably reused in forming a transfer-receiving film having a thickness of 20 ⁇ m or less.
  • the thickness may be more than 20 ⁇ m (for example, 40 ⁇ m), preferably 1 to 20 ⁇ m, more preferably 3 to 10 ⁇ m.
  • the method of forming the transferred film on the support film is not particularly limited, and is formed by a conventionally known solution casting method such as a comma coater, gravure, reverse gravure, slot die, slide coater, or a melt casting method. can do.
  • the production method of the transferable laminated film roll of the present invention can be carried out using, for example, the production apparatus shown in FIG.
  • FIG. 10 is a schematic diagram of a manufacturing apparatus B200 that can be used in the method for manufacturing a transferable laminated film roll of the present invention.
  • the manufacturing apparatus B200 has a supply section B210, a coating section B220, a drying section B230, a cooling section B240, and a winding section B250.
  • Ba to Bd indicate transport rolls that transport the support film B110.
  • the supply unit B210 has a delivery device (not shown) that delivers a roll B201 of the band-shaped support film B110 wound around the core.
  • the support film B110 is a support film that has been determined not to require cleaning by the method for determining reusability of a support film of the present invention, or a support film that has been cleaned by the method for cleaning a support film of the present invention.
  • the roll B201 may be a film roll manufactured by the method for manufacturing a support film roll of the present invention.
  • the coating unit B220 is a coating device, and includes a backup roll B221 that holds the support film B110, a coating head B222 that coats the support B110 held by the backup roll B221 with the solution for the transferred film, and a coating head. and a decompression chamber B223 provided upstream of B222.
  • the flow rate of the transfer film solution discharged from the coating head B222 can be adjusted by a pump (not shown).
  • the flow rate of the transfer film solution discharged from the coating head B222 is set to an amount that can stably form a coating layer of a predetermined thickness when continuous coating is performed under the conditions of the coating head B222 adjusted in advance.
  • the decompression chamber B223 is a mechanism for stabilizing the bead (collection of coating solution) formed between the solution for the film to be transferred from the coating head B222 and the support film B110 during coating, and adjusts the degree of decompression. It is possible.
  • the decompression chamber B223 is connected to a decompression blower (not shown) so that the inside is decompressed.
  • the decompression chamber B223 is in a state without air leakage, and the gap with the backup roll is adjusted to be narrow, so that a stable bead of the coating liquid can be formed.
  • the drying section B230 is a drying device that dries the coating film applied to the surface of the support film B110, and has a drying chamber B231, a drying gas inlet B232, and an outlet B233.
  • the temperature and air volume of the drying air are appropriately determined depending on the type of the coating film and the type of the support film B110.
  • the amount of residual solvent in the coating film after drying can be adjusted.
  • the amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after sufficiently drying the coating film.
  • a support film As a support film, a polyethylene terephthalate film (PET film, Therapyl HP2 manufactured by Toray Industries, with a release layer containing a non-silicone release agent, processed into a thickness of 75 ⁇ m, a width of 1,300 mm, and a length of 1,000 m, with a refractive index of 1.66) was used. Using. The refractive index is a value measured under an environment of 23° C. and 50% RH.
  • a mixed solution was prepared by mixing the following materials. Methyl ethyl ketone (boiling point 80°C) 900 parts by mass Acrylic resin 80 parts by mass Acrylic rubber particles 20 parts by mass
  • MMA/PMI/MADA copolymer 60/20/20 mass ratio, Mw: 1,500,000, Tg: 137°C was used as the acrylic resin. Moreover, each abbreviation is as follows.
  • MMA methyl methacrylate
  • PMI phenylmaleimide
  • MADA adamantyl acrylate
  • the above acrylic rubber particles were synthesized based on the method described in JP-A-2021-89301.
  • the average primary particle size was 200 nm.
  • a dispersing agent sodium polyoxyethylene lauryl ether phosphate: molecular weight 332
  • a dispersing agent sodium polyoxyethylene lauryl ether phosphate: molecular weight 332
  • a transfer-receiving film having a thickness of 3 ⁇ m and a refractive index of 1.50 was produced on the support film by the above process.
  • the refractive index is a value measured under an environment of 23° C. and 50% RH.
  • the film to be transferred on the support film and the adhesive film were laminated, and an aging process was performed. Specifically, the release film of the adhesive film (PET75-T723N(6) manufactured by Nisei Shinka Co., Ltd., release film 19 ⁇ m/adhesive layer 6 ⁇ m/surface substrate 75 ⁇ m) is peeled off, and the transferred film is supported. An adhesive film was attached to the surface opposite to the body film. After lamination, the support film/transferred film/adhesive layer/surface base material were laminated in a state of being wound up and allowed to stand for one week.
  • the support film and the transferred film were continuously separated by a roll conveyor. While peeling, the support film was wound up to obtain a "used support film".
  • FIG. 11 shows a block diagram of the reusability determination system used.
  • a high-intensity condensing line illumination 301 (LDL-222X42CIR-LACL manufactured by CCS Corporation) and a line scan type hyperspectral camera 303 (Pika XC2 manufactured by Resonon) are used as shown in FIG.
  • a device equipped with the combined imaging unit was installed and used on the transport line of the transport means.
  • the optical measurement means includes an imaging unit that acquires image data, an image processing unit that processes the image data, a transmission/reception unit that transmits various data acquired by the imaging unit and the image processing unit to the determination unit, and and a control unit for controlling the processing.
  • the determining means includes a transmitting/receiving section for receiving various data transmitted from the optical measuring means, an image processing section for performing image processing on image data, and determining whether or not the support film can be reused, including whether it is necessary to wash the support film.
  • a computer including a determination unit, a display unit for displaying various data and determination results, and a control unit for controlling each process was used.
  • the reusability of the film was determined according to the procedure of the flowchart shown in FIG.
  • the measurement condition setting step is performed by user operation, and the subsequent steps are performed mainly by the optical measurement means and the determination means using a reusability determination program that causes the optical measurement means and the determination means to execute each step. went.
  • the light-receiving position of the entire surface thickness gauge which is an optical measuring means, is set to the remaining object of the transfer film based on the data on the transfer film formed on the support film. It is set at a position where the thickness is emphasized.
  • the reflected light A reflected on the surface of the transfer film residue is refracted by the surface of the transfer film residue, enters the transfer film residue, is reflected by the support film surface, and is reflected again by the transfer film residue.
  • the angle at which the optical path difference of the reflected light B refracted at the surface is a multiple of the emission wavelength ⁇ of the light source was obtained.
  • Thickness of support film (d1) 75 ⁇ m
  • Refractive index of support film (n1) 1.66
  • Thickness of transferred film (d2) 3.0 ⁇ m
  • Refractive index of transferred film (n2) 1.50
  • Peak wavelength of light source 780 nm
  • the light-receiving position of the optical measurement means was adjusted so that the incident angle and the reflection angle were angles at which the phases of the reflected light obtained above were aligned.
  • the obtained interference spectrum is predicted, the frequency components of the interference spectrum of the support film are removed, and the frequency components of the interference spectrum of the transferred film are emphasized.
  • the calculation wavelength range was set as follows.
  • the imaging step (S3-2) the "used support film" conveyed by the conveying means at a speed of 5 m/min is photographed using a thickness gauge on the entire surface in the width direction, and the image data is obtained. Two-dimensional reflectance spectral distribution data were acquired.
  • the film thickness according to the light spectrum was calculated by performing image processing on the reflection spectrum distribution data obtained above.
  • the transfer film residue is detected from the film thickness calculated above, the distance of the transfer film residue in the width direction x length direction x film thickness direction is obtained, 3D image data to be displayed was generated.
  • the generated 3D image data was transmitted to the determination means.
  • the determination means received the generated three-dimensional image data from the optical measurement means.
  • the HOG feature amount was calculated by executing image processing on the received three-dimensional image data.
  • the contour of the transferred film residue was clarified using the HOG feature amount calculated above.
  • the reusability determination step (S3-10) based on the film thickness, minimum width, area, and number of remaining objects on the transfer film, if the support film cannot be reused even after washing, Those that can be reused without washing are judged as “reusable (washing required)”, and those that can be reused without washing are judged as “reusable (no washing required)”.
  • Table I shows the determination criteria used in the example and the results determined in the reusability determination step (S3-10).
  • the steps (S3-1) to (S3-9) are performed on two "support films after use” (Sample 1 and Sample 2) similarly prepared by the above method. The results obtained by
  • FIG. 12 shows a block diagram of the reusability determination system used.
  • the first optical measurement means As the first optical measurement means, as shown in FIG. 6, a high-intensity condensing line illumination 101 (LN-GA manufactured by CCS Co., light source peak wavelength 465 nm), a lens 102 (XL501 manufactured by Myutron Co., Ltd.), and a monochrome line A device equipped with an imaging unit combined with a sensor camera 103 (RMSL8K76CL manufactured by Nippon Electro-Device Co., Ltd.) was installed on the transport line of the transport means and used.
  • the first optical measurement means includes the imaging section for acquiring image data, an image processing section for image processing the image data, and transmission of various data acquired by the imaging section and the image processing section to the second optical measurement means. and a control unit for controlling each process.
  • a high-intensity condensing line illumination 201 (LN-D2 manufactured by CCS Co., Ltd.), a half mirror box 202, a lens 203 (XLS01 manufactured by Myutron Co., Ltd.), A device equipped with an image capturing unit comprising a combination of a mount adapter 204, a monochrome line sensor camera 205 (RMSL4K100CL manufactured by Nippon Electro-Device Co., Ltd.), and a high-speed lateral movement mechanism 206 was installed on the transport line of the transport means.
  • the second optical measurement means includes the imaging section that acquires image data, an image processing section that performs image processing on the image data, a transmission/reception section that transmits and receives various data to and from the first optical measurement means and determination means, and a control unit for controlling each process.
  • the second optical measurement means can take an image with specular reflection, high-resolution image data can be obtained.
  • the interval between the imaging positions of the first optical measuring means and the second optical measuring means is 20 m (1 minute in terms of time since the conveying speed is 20 m/min). , was installed downstream of the first optical measuring means in the direction of transport of the support film.
  • the determining means includes a transmitting/receiving section for receiving various data transmitted from the second optical measuring means, an image processing section for performing image processing on image data, and determining whether or not the support film can be reused, including whether it needs to be washed.
  • a computer including a determination unit for determination, a display unit for displaying various data and determination results, and a control unit for controlling each process was used.
  • the reusability of the support film was determined according to the procedure of the flowchart shown in FIG.
  • the measurement condition setting step is performed by user operation, and the subsequent steps are performed mainly by the optical measurement means and the determination means using a reusability determination program that causes the optical measurement means and the determination means to execute each step. went.
  • the first optical measurement means detects the portion where the peeling residue is estimated to be left over the entire surface.
  • the measurement system was set up so that the existence or non-existence of the transfer-receiving film residue can be confirmed with high precision by the high-resolution measurement means of the optical measurement means.
  • the second optical measurement means was set so that highly directional light was perpendicularly incident on the support film, so that the outline of the transfer-receiving film residue could be accurately obtained. As a result, it is possible to easily see the state of deformation from the change in the amount of light due to unevenness, and to obtain an image suitable for discrimination.
  • the resolution of the first optical means is 87.5 ⁇ /pixel
  • the resolution of the second optical measurement means is set to 14 ⁇ /pixel.
  • the entire surface in the width direction is imaged using the first optical measuring means on the "used support film" being transported by the transporting means at a speed of 20 m/min. , acquired low-resolution image data.
  • position data generation step (S4-3) image processing was performed on the low-resolution image data obtained above to generate position data of the detected object assumed to be the transferred film residue. Specifically, a value of ⁇ 10% from the average brightness in the range captured at the same time is set as a threshold, and the position of the detected object assumed to be the transferred film residue is the position data that has the brightness outside the threshold.
  • the generated position data was transmitted to the second optical measuring means installed downstream in the transport direction of the support film.
  • the second optical measuring means receives the generated position data from the first optical measuring means.
  • the location on the support film corresponding to the position data generated above was imaged with specular reflection to obtain high-resolution image data.
  • the position in the conveying direction is adjusted by aligning the measurement timing using the data converted into the measurement time considering the conveying speed, and the position in the lateral direction is adjusted by the high-speed lateral movement mechanism.
  • the position on the support film corresponding to the position data was imaged.
  • the acquired high-resolution image data was transmitted to the determination means.
  • the determination means received the acquired high-resolution image data from the second optical measurement means.
  • the HOG feature quantity was calculated by performing image processing on the received high-resolution image data.
  • the outline of the transferred film residue was clarified using the HOG feature amount calculated above.
  • Table II shows the determination criteria used in the example and the results determined in the reusability determination step (S4-12).
  • (S4-1) to (S4-11) for three "support films after use” (Sample 3, Sample 4, and Sample 5) prepared in the same manner as described above. Describe the results obtained by performing the steps.
  • the "support film after use" (Sample 1) was set in the unwinder and conveyed at a conveying speed of 20 m/min.
  • dry ice blasting is applied to the position where the transfer film remains, based on the data such as the position of the transfer film residue obtained by the support reusability judgment. By doing so, the transfer-receiving film residue remaining on the support film was removed.
  • the dry ice blasting was performed by installing the blast nozzle 20 and the suction nozzle 21 as shown in FIG.
  • the atmosphere temperature is set to 20°C
  • the dew point of the atmosphere is set to less than 0°C in a state in which the support film is supported by a roller member (support member) of ⁇ 500 mm at a temperature of 20°C
  • static electricity is removed by a static eliminator, and a suction nozzle is provided.
  • a dry ice blasting material was blown onto the surface of the support film, and finally the support film was completely cleaned with an adhesive web cleaner.
  • Pellet-like dry ice particles with an average particle size of ⁇ 3 ⁇ 2 mm were used as the dry ice blast material. Moreover, the supplied air pressure was 3.5 kg/cm 2 .
  • the present invention provides a support film reusability determination method, a reusability determination program, and a reusability determination method that can efficiently and highly accurately determine whether a support film used in laminate production by a peel transfer method can be reused.
  • Use in a method for cleaning a support film, a method for reusing a support film, a method for manufacturing a support film roll, and a method for manufacturing a transferable laminated film roll using a system and a method for determining whether the support film is reusable. can be done.

Landscapes

  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The present invention addresses the problem of providing a support film reusability determination method, a support film reusability determination program, and a support film reusability determination system which enable efficient and highly accurate determination on the reusability of a support film used in producing a laminated body by a release and transfer method, and also providing a support film cleaning method, a support film reuse method, a support film roll production method, and a transfer laminated film roll production method which adopt the support film reusability determination method. This support film reusability determination method is characterized by comprising: a measurement step for measuring, while conveying a support film, data relating to a transfer film residue remaining on the support film by using an optical measuring means; and a determination step for determining, on the basis of the data relating to the measured transfer film residue, reusability including the necessity of cleaning of the support film.

Description

支持体フィルムのリユース可否判定方法、支持体フィルムの洗浄方法、支持体フィルムのリユース方法、支持体フィルムロールの製造方法、転写性積層フィルムロールの製造方法、支持体フィルムのリユース可否判定プログラム、及び支持体フィルムのリユース可否判定システムA support film reusability determination method, a support film cleaning method, a support film reuse method, a support film roll manufacturing method, a transferable laminated film roll manufacturing method, a support film reusability determination program, and Support film reusability judgment system
 本発明は、支持体フィルムのリユース可否判定方法、支持体フィルムの洗浄方法、支持体フィルムのリユース方法、支持体フィルムロールの製造方法、転写性積層フィルムロールの製造方法、支持体フィルムのリユース可否判定プログラム、及び支持体フィルムのリユース可否判定システムに関する。
 より詳しくは、剥離転写法による積層体製造において使用された支持体フィルムのリユースの可否を効率的にかつ高精度で判定できる支持体フィルムのリユース可否判定方法等に関する。
The present invention provides a method for determining reusability of a support film, a method for washing a support film, a method for reusing a support film, a method for manufacturing a support film roll, a method for manufacturing a transferable laminated film roll, and reusability of a support film. The present invention relates to a determination program and a support film reusability determination system.
More specifically, the present invention relates to a support film reusability determination method capable of efficiently and accurately determining whether or not a support film used in laminate production by a peel transfer method can be reused.
 昨今、折り畳み可能なフレキシブルディスプレイの開発が多く行われている。当該ディスプレイに必要とされる折りたたみ性の付与のためには、ディスプレイに用いられている各種フィルムの薄膜化が強く要望されている。
 他方でフィルムの薄膜化に伴って、実際の工程での作業性・収率が低下することが知られている。例えば厚さが20μm以下の薄膜を工程で搬送する場合、フィルム全体のコシ・強度が低下するために、カールや折れ、破断等のトラブル発生頻度が急激に高まり、工程汚染や収率低下等、大きな問題が発生することがある。
Recently, many foldable flexible displays have been developed. In order to provide the foldability required for the display, thinning of various films used for the display is strongly desired.
On the other hand, it is known that workability and yield in actual processes decrease as the film becomes thinner. For example, when a thin film with a thickness of 20 μm or less is transported in a process, the stiffness and strength of the entire film decreases, so the frequency of problems such as curling, folding, and breaking increases rapidly, resulting in process contamination and a decrease in yield. Big problems can occur.
 このような問題を解決するために、近年剥離転写型の形態で光学フィルムを提供する試みが進んでいる。このような光学フィルムの提供形態は、光学フィルムに工程適性を付与し得る支持体フィルムと一体化した形で提供しつつ、上層に設置された光学フィルムを所望の位置に貼合・剥離・転写すれば、積層体等の製品そのものには、非常に薄膜の光学フィルムのみを提供できるといったメリットを有する。 In order to solve such problems, attempts have recently been made to provide an optical film in the form of a peel-off transfer type. Such an optical film is provided in a form integrated with a support film capable of imparting process suitability to the optical film, and the optical film provided as an upper layer is laminated, peeled, and transferred to a desired position. This has the advantage that only very thin optical films can be provided for products such as laminates.
 しかしながら、この剥離転写型の提供形態においても、転写される光学フィルム(以下「被転写フィルム」ともいう。)の厚さが例えば10μm以下になると、膜そのものの強度が低下するため、転写工程における外乱によって破断や破れに起因する剥離残りが発生しやすくなるといった問題があることが見いだされた。例えば3μmの膜厚の光学フィルムを転写することを想定した場合、支持体フィルムに±0.5μmの膜厚ばらつきや異物があると大きな問題となることは想定に難くない。 However, even in this peel-and-transfer type provision form, if the thickness of the optical film to be transferred (hereinafter also referred to as "transferred film") is, for example, 10 μm or less, the strength of the film itself is reduced, so the transfer process is difficult. It has been found that there is a problem that the peeling residue due to breakage or tearing is likely to occur due to disturbance. For example, when it is assumed that an optical film having a thickness of 3 μm is to be transferred, it is not difficult to imagine that a film thickness variation of ±0.5 μm or a foreign matter on the support film would cause a serious problem.
 また、例えばこのような超薄膜を支持体フィルム上に塗工して提供する場合、超薄膜部分の面品質は支持体の品質に大きく関連するため、支持体フィルムの面品質に対しても非常に高い品質が必要となるが、このような高品質の支持体フィルムは高価なだけでなくリードタイムも長いといった問題がある。 In addition, for example, when such an ultra-thin film is provided by coating it on a support film, the surface quality of the ultra-thin film is greatly related to the quality of the support. However, such high-quality support films are not only expensive, but also have long lead times.
 このような問題の解決方法として、このような剥離転写型の使用方法において使用後に不要となる支持体フィルムをリユース(再使用)する方法が有効と考えられる。例えば顧客が生産を実施したのちに残存する支持体フィルムを受け取ることができれば、顧客の消費量に応じた支持体フィルムを確保し、かつリードタイム及びコストの低減された支持体を確保できる。さらには、顧客の生産状況も推測することができるため、全体の生産計画の可視化による短納期化が可能となるという、生産計画立案上のメリットもある。 As a solution to such problems, it is considered effective to reuse the support film that becomes unnecessary after use in such a peel-and-transfer type usage method. For example, if the customer can receive the remaining support film after the production is completed, the support film can be secured according to the customer's consumption and the support with reduced lead time and cost can be secured. Furthermore, since the customer's production status can also be estimated, there is an advantage in terms of production planning that it is possible to shorten the delivery time by visualizing the entire production plan.
 したがって、このような支持体フィルムのリユースを組み込んだビジネスモデルを構築するにあたっては、支持体フィルム上の剥離残りを効率的にかつ高精度で検査し、リユースの可否を判定できる方法が必須である。 Therefore, in building a business model that incorporates the reuse of such support films, it is essential to have a method that can efficiently and accurately inspect the peeling residue on the support film and determine whether it can be reused. .
 フィルム表面を検査するシステムとして、例えば樹脂シートの樹脂層の組成を判定可能な検査システムが開示されている(特許文献1参照。)。しかし、このような検査システムは、樹脂シート自体の組成を検査することを目的としているため、支持体フィルム上に形成されていた被転写フィルムの剥離残りを効率的にかつ高精度で検査することはできなかった。 As a system for inspecting the film surface, for example, an inspection system capable of determining the composition of the resin layer of a resin sheet has been disclosed (see Patent Document 1). However, since such an inspection system is intended to inspect the composition of the resin sheet itself, it is possible to efficiently and accurately inspect the peeling residue of the transfer-receiving film formed on the support film. I couldn't.
特開2019-86412号公報JP 2019-86412 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、剥離転写法による積層体製造において使用された支持体フィルムのリユースの可否を効率的にかつ高精度で判定できる支持体フィルムのリユース可否判定方法、リユース可否判定プログラム、及びリユース可否判定システム、並びに当該支持体フィルムのリユース可否判定方法を利用した支持体フィルムの洗浄方法、支持体フィルムのリユース方法、支持体フィルムロールの製造方法、及び転写性積層フィルムロールの製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is that it is possible to efficiently and highly accurately determine whether the support film used in the production of a laminate by the peel transfer method can be reused. Support film reusability determination method, reusability determination program, reusability determination system, support film cleaning method using support film reusability determination method, support film reuse method, support film An object of the present invention is to provide a method for manufacturing a roll and a method for manufacturing a transferable laminated film roll.
 本発明者は、上記課題を解決すべく、上記課題の原因等について検討した結果、剥離転写法による積層体製造において使用された支持体フィルムを搬送しながら、光学的測定手段を用いて支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、測定したデータに基づいてリユースの可否を判定する判定ステップとを有することで、剥離転写法による積層体製造において使用された支持体フィルムのリユースの可否を効率的にかつ高精度で判定できる支持体フィルムのリユース可否判定方法等を提供することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, the present inventors have investigated the causes of the above problems, etc., and found that while conveying the support film used in the production of the laminate by the peel transfer method, the support was measured using an optical measuring means. It has a measurement step of measuring data related to the transfer-receiving film residue remaining on the film, and a judgment step of judging whether or not it can be reused based on the measured data. The inventors have found that it is possible to provide a method for determining the reusability of a support film, which can efficiently and highly accurately determine the reusability of a support film that has been processed, and have arrived at the present invention.
That is, the above problems related to the present invention are solved by the following means.
 1.剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定方法であって、
 前記支持体フィルムを搬送しながら、光学的測定手段を用いて前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、
 測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定ステップとを有する
 ことを特徴とする支持体フィルムのリユース可否判定方法。
1. A method for determining the reusability of a support film used in laminate production by a peel transfer method,
a measuring step of measuring data relating to a transfer-receiving film residue remaining on the support film using an optical measuring means while transporting the support film;
and determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue.
 2.前記測定ステップの前に、前記光学的測定手段の測定条件設定ステップを有し、
 当該測定条件設定ステップにおいて、前記支持体フィルム上に形成されていた被転写フィルムに関するデータに基づいて、前記測定条件を被転写フィルム残存物の厚さ又は材質が強調される測定条件に設定する
 ことを特徴とする第1項に記載の支持体フィルムのリユース可否判定方法。
2. Before the measurement step, a measurement condition setting step for the optical measurement means,
In the measurement condition setting step, setting the measurement condition to a measurement condition that emphasizes the thickness or material of the transfer-receiving film residue based on the data regarding the transfer-receiving film formed on the support film. 2. The method for determining reusability of the support film according to item 1.
 3.前記測定ステップが、少なくとも、第1測定ステップと、第2測定ステップとからなり、
 前記第1測定ステップにおいて、前記被転写フィルム残存物の位置を測定し、
 前記第2測定ステップにおいて、当該位置に残存している前記被転写フィルム残存物の厚さ又は材質を測定する
 ことを特徴とする第1項又は第2項に記載の支持体フィルムのリユース可否判定方法。
3. the measuring step comprises at least a first measuring step and a second measuring step;
In the first measuring step, measuring the position of the transfer-receiving film residue;
3. Judgment on reusability of the support film according to claim 1 or 2, characterized in that in the second measuring step, the thickness or material of the transfer-receiving film residue remaining at the position is measured. Method.
 4.剥離転写法による積層体製造において使用された支持体フィルムの洗浄方法であって、
 第1項から第3項までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が必要と判定された場合に、測定した前記被転写フィルム残存物に関するデータに基づいて、前記支持体フィルム上に残存している被転写フィルム残存物を除去する
 ことを特徴とする支持体フィルムの洗浄方法。
4. A method for cleaning a support film used in laminate production by a peel transfer method, comprising:
When it is determined that cleaning is necessary by the method for determining the reusability of a support film according to any one of items 1 to 3, based on the measured data on the transfer film residue, the A method for washing a support film, comprising removing a transfer-receiving film residue remaining on the support film.
 5.剥離転写法による積層体製造において使用された支持体フィルムのリユース方法であって、
 第1項から第3項までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は第4項に記載の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムを、被転写フィルムの支持体としてリユースする
 ことを特徴とする支持体フィルムのリユース方法。
5. A method for reusing a support film used in laminate production by a peel transfer method,
The support film determined not to require cleaning by the method for determining reusability of the support film according to any one of items 1 to 3, or the method for cleaning the support film according to item 4. A method for reusing a support film, comprising: reusing the support film washed by the method as a support for a transfer-receiving film.
 6.支持体フィルムのロール体である支持体フィルムロールの製造方法であって、
 第1項から第3項までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は第4項に記載の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムを巻き取って、支持体フィルムロールを製造する
 ことを特徴とする支持体フィルムロールの製造方法。
6. A method for manufacturing a support film roll, which is a roll of a support film, comprising:
The support film determined not to require cleaning by the method for determining reusability of the support film according to any one of items 1 to 3, or the method for cleaning the support film according to item 4. A method for producing a support film roll, comprising: winding up the support film washed by the above method to produce a support film roll.
 7.転写性積層フィルムのロール体である転写性積層フィルムロールの製造方法であって、
 第1項から第3項までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は第4項に記載の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムの上に、被転写フィルムを積層して転写性積層フィルムを作製し、当該転写性積層フィルムを巻き取って、転写性積層フィルムロールを製造する
 ことを特徴とする転写性積層フィルムロールの製造方法。
7. A method for producing a transferable laminated film roll, which is a roll body of a transferable laminated film, comprising:
The support film determined not to require cleaning by the method for determining reusability of the support film according to any one of items 1 to 3, or the method for cleaning the support film according to item 4. A transferable laminated film is produced by laminating a transfer-receiving film on the support film washed by the method, and the transferable laminated film is wound up to produce a transferable laminated film roll A method for manufacturing a laminated film roll.
 8.剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定プログラムであって、
 前記支持体フィルムを搬送しながら、光学的測定手段を用いて前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、
 測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定ステップとをコンピューターに実行させる
 ことを特徴とする支持体フィルムのリユース可否判定プログラム。
8. A program for determining the reusability of a support film used in laminate production by a peel transfer method,
a measuring step of measuring data relating to a transfer-receiving film residue remaining on the support film using an optical measuring means while transporting the support film;
determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue. program.
 9.剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定システムであって、
 前記支持体フィルムを搬送する搬送手段と、
 搬送中の前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する光学的測定手段と、
 測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定手段とを有する
 ことを特徴とする支持体フィルムのリユース可否判定システム。
9. A system for determining the reusability of a support film used in laminate production by a peel transfer method,
a conveying means for conveying the support film;
optical measuring means for measuring data relating to transfer-receiving film remnants remaining on the support film during transportation;
and determination means for determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue.
 本発明の上記手段により、剥離転写法による積層体製造において使用された支持体フィルムのリユースの可否を効率的にかつ高精度で判定できる支持体フィルムのリユース可否判定方法、リユース可否判定プログラム、及びリユース可否判定システム、並びに当該支持体フィルムのリユース可否判定方法を利用した支持体フィルムの洗浄方法、支持体フィルムのリユース方法、支持体フィルムロールの製造方法、及び転写性積層フィルムロールの製造方法を提供することができる。 A method for determining the reusability of a support film, a program for determining the reusability of a support film, and a program for determining the reusability of a support film, which can efficiently and accurately determine whether or not the support film used in the production of a laminate by a peel transfer method can be reused by the means of the present invention; A reusability determination system, a support film cleaning method using the support film reusability determination method, a support film reuse method, a support film roll manufacturing method, and a transferable laminated film roll manufacturing method can provide.
リユース可否判定方法の実施形態の一例を示すフローチャートFlowchart showing an example of an embodiment of a reusability determination method リユース可否判定方法の実施形態の一例を示すフローチャートFlowchart showing an example of an embodiment of a reusability determination method リユース可否判定後のフローチャート例Flowchart example after reusability determination リユース可否判定後のフローチャート例Flowchart example after reusability determination 光学的測定手段の一例を示す幅手方向手前から視た模式図Schematic diagram seen from the front in the width direction showing an example of optical measurement means 第1光学的測定手段の一例を示す幅手方向手前から視た模式図Schematic diagram showing an example of the first optical measuring means viewed from the front in the widthwise direction 第2光学的測定手段の一例を示す幅手方向手前から視た模式図Schematic diagram showing an example of the second optical measuring means viewed from the front in the widthwise direction 第2光学的測定手段の一例を示す搬送方向手前から視た模式図Schematic diagram showing an example of the second optical measuring means as viewed from the front in the conveying direction ドライアイスブラスト処理におけるブラストノズルと吸引ノズルの設置例Installation example of blast nozzle and suction nozzle in dry ice blasting ドライアイスブラスト処理におけるブラストノズルと吸引ノズルの設置例Installation example of blast nozzle and suction nozzle in dry ice blasting 光学フィルムロールの製造装置の一例を示す模式図Schematic diagram showing an example of an optical film roll manufacturing apparatus 実施例:リユース可否判定(1)で用いたリユース可否判定システムのブロック図Example: Block diagram of reusability determination system used in reusability determination (1) 実施例:リユース可否判定(2)で用いたリユース可否判定システムのブロック図Example: Block diagram of reusability determination system used in reusability determination (2) 実施例:リユース可否判定(1)のフローチャートExample: Flowchart of Reusability Judgment (1) 実施例:リユース可否判定(2)のフローチャートExample: Flowchart of Reusability Judgment (2)
 本発明の支持体フィルムのリユース可否判定方法は、剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定方法であって、前記支持体フィルムを搬送しながら、光学的測定手段を用いて前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定ステップとを有することを特徴とする。
 この特徴は、下記実施形態に共通する又は対応する技術的特徴である。
The method for determining the reusability of a support film of the present invention is a method for determining the reusability of a support film used in the production of a laminate by a peel transfer method, wherein the support film is conveyed while an optical measuring means is measured. a measurement step of measuring data relating to the transfer-receiving film residue remaining on the support film using and a judgment step for judging reusability.
This feature is a technical feature common to or corresponding to the following embodiments.
 本発明の支持体フィルムのリユース可否判定方法の実施形態としては、前記測定ステップの前に、前記光学的測定手段の測定条件設定ステップを有し、当該測定条件設定ステップにおいて、前記支持体フィルム上に形成されていた被転写フィルムに関するデータに基づいて、前記測定条件を被転写フィルム残存物の厚さ又は材質が強調される測定条件に設定することが好ましい。これによって、リユースの可否をより高速・高精度で判定できる。 As an embodiment of the method for determining the reusability of a support film of the present invention, the step of setting measurement conditions for the optical measurement means is provided before the measurement step, and in the measurement condition setting step, on the support film It is preferable to set the measurement conditions to emphasizing the thickness or material of the transfer-receiving film remnants based on the data on the transfer-receiving film formed in the above. As a result, it is possible to determine whether or not an item can be reused at high speed and with high accuracy.
 本発明の支持体フィルムのリユース可否判定方法の実施形態としては、前記測定ステップが、少なくとも、第1測定ステップと、第2測定ステップとからなり、前記第1測定ステップにおいて、前記被転写フィルム残存物の位置を測定し、前記第2測定ステップにおいて、当該位置に残存している前記被転写フィルム残存物の厚さ又は材質を測定することが好ましい。これによって、リユースの可否をより効率的に判定できる。 As an embodiment of the method for determining reusability of a support film of the present invention, the measuring step comprises at least a first measuring step and a second measuring step, and in the first measuring step, It is preferable that the position of the object is measured, and the thickness or material of the transfer-receiving film residue remaining at the position is measured in the second measuring step. This makes it possible to more efficiently determine whether or not the item can be reused.
 本発明の支持体フィルムの洗浄方法は、剥離転写法による積層体製造において使用された支持体フィルムの洗浄方法であって、本発明の支持体フィルムのリユース可否判定方法により洗浄が必要と判定された場合に、測定した前記被転写フィルム残存物に関するデータに基づいて、前記支持体フィルム上に残存している被転写フィルム残存物を除去することを特徴とする。 The method for cleaning a support film of the present invention is a method for cleaning a support film used in the production of a laminate by the peel-transfer method, and it is determined that cleaning is necessary by the method for determining reusability of a support film of the present invention. In this case, the transfer-receiving film remnants remaining on the support film are removed based on the measured data relating to the transfer-receiving film remnants.
 本発明の支持体フィルムのリユース方法は、剥離転写法による積層体製造において使用された支持体フィルムのリユース方法であって、本発明の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は本発明の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムを、被転写フィルム製造用の支持体としてリユースすることを特徴とする。 The method for reusing a support film of the present invention is a method for reusing a support film that has been used in the production of a laminate by the peel-transfer method, and is judged by the method for determining reusability of a support film of the present invention that washing is unnecessary. The support film, or the support film washed by the method for washing a support film of the present invention, is reused as a support for producing a transferred film.
 本発明の支持体フィルムロールの製造方法は、支持体フィルムのロール体である支持体フィルムロールの製造方法であって、本発明の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は本発明の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムを巻き取って、支持体フィルムロールを製造することを特徴とする。 The method for manufacturing a support film roll of the present invention is a method for manufacturing a support film roll, which is a roll body of a support film, and was determined not to require washing by the method for determining reusability of a support film of the present invention. A support film roll is manufactured by winding up the support film or the support film washed by the method for washing a support film of the present invention.
 本発明の転写性積層フィルムロールの製造方法は、転写性積層フィルムのロール体である転写性積層フィルムロールの製造方法であって、本発明の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は本発明の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムの上に、被転写フィルムを積層して転写性積層フィルムを作製し、当該転写性積層フィルムを巻き取って、転写性積層フィルムロールを製造することを特徴とする。 The method for producing a transferable laminated film roll of the present invention is a method for producing a transferable laminated film roll, which is a roll body of a transferable laminated film, and cleaning is unnecessary by the method for determining whether or not a support film can be reused according to the present invention. A transfer-receiving film is laminated on the determined support film or the support film washed by the method for washing a support film of the present invention to prepare a transferable laminated film, and the transferable laminated film is produced. It is characterized in that it is wound up to produce a transferable laminated film roll.
 本発明の支持体フィルムのリユース可否判定プログラムは、剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定プログラムであって、前記支持体フィルムを搬送しながら、光学的測定手段を用いて前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定ステップとをコンピューターに実行させることを特徴とする。 A program for determining the reusability of a support film of the present invention is a program for determining the reusability of a support film used in the production of a laminate by a peel transfer method, wherein the support film is transported while an optical measuring means is measured. a measurement step of measuring data relating to the transfer-receiving film residue remaining on the support film using and a judgment step for judging whether or not reuse is possible.
 本発明の支持体フィルムのリユース可否判定システムは、剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定システムであって、前記支持体フィルムを搬送する搬送手段と、搬送中の前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する光学的測定手段と、測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定手段とを有することを特徴とする。 The support film reusability determination system of the present invention is a support film reusability determination system used in laminate production by a peel transfer method, comprising a transport means for transporting the support film, Optical measuring means for measuring data on the transfer-receiving film residue remaining on the support film, and whether or not the support film needs to be washed based on the measured data on the transfer-receiving film residue. and determination means for determining whether or not the device can be reused.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 The following is a detailed description of the present invention, its components, and the forms and modes for carrying out the present invention. In the present application, "-" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
<支持体フィルムのリユース可否判定方法の概要>
 本発明の支持体フィルムのリユース可否判定方法は、剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定方法であって、前記支持体フィルムを搬送しながら、光学的測定手段を用いて前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定ステップとを有することを特徴とする。
<Outline of method for judging reusability of support film>
The method for determining the reusability of a support film of the present invention is a method for determining the reusability of a support film used in the production of a laminate by a peel transfer method, wherein the support film is conveyed while an optical measuring means is measured. a measurement step of measuring data relating to the transfer-receiving film residue remaining on the support film using and a judgment step for judging reusability.
 また、前記測定ステップの前に、前記光学的測定手段の測定条件設定ステップを有し、当該測定条件設定ステップにおいて、前記支持体フィルム上に形成されていた被転写フィルムに関するデータに基づいて、前記測定条件を被転写フィルム残存物の厚さ又は材質が強調される測定条件に設定することが好ましい。これによって、リユースの可否をより高精度で判定できる。 In addition, before the measuring step, a measuring condition setting step for the optical measuring means is provided, and in the measuring condition setting step, based on the data regarding the transferred film formed on the support film, the It is preferable to set the measurement conditions so that the thickness or material of the transfer-receiving film residue is emphasized. As a result, it is possible to determine whether or not the item can be reused with higher accuracy.
 また、前記測定ステップが、少なくとも、第1測定ステップと、第2測定ステップとからなり、前記第1測定ステップにおいて、前記被転写フィルム残存物の位置を測定し、前記第2測定ステップにおいて、当該位置に残存している前記被転写フィルム残存物の厚さ又は材質を測定することが好ましい。これによって、リユースの可否をより効率的に判定できる。 Further, the measuring step includes at least a first measuring step and a second measuring step, wherein the first measuring step measures the position of the transfer-receiving film residue, and the second measuring step measures the position of the transfer-receiving film residue. It is preferable to measure the thickness or material of the transfer-receiving film residue remaining at the position. This makes it possible to more efficiently determine whether or not the item can be reused.
 「剥離転写法による積層体製造」とは、支持体フィルム上に被転写フィルム(例えばゼロ位相差フィルム等の光学フィルム)を有する転写性積層フィルムから、被転写フィルムを剥離しながら別の基板等(例えば偏光子が形成された基板)に転写及び貼合することによって、積層体(例えば偏光板)を製造する製造方法のことをいう。 "Laminate production by peeling transfer method" means that from a transferable laminated film having a transfer film (for example, an optical film such as a zero retardation film) on a support film, another substrate etc. is peeled off while peeling the transfer film. It refers to a production method for producing a laminate (for example, a polarizing plate) by transferring and bonding to (for example, a substrate on which a polarizer is formed).
 本発明の支持体フィルムのリユース可否判定方法では、このような剥離転写法による積層体製造において支持体フィルムとして使用されたものを対象として、リユースの可否を判定する。 In the method for determining the reusability of the support film of the present invention, the reusability is determined for the support film used in the production of the laminate by such a peel transfer method.
 本発明において「支持体フィルムのリユース」とは、支持体フィルムとしてリユース(再使用)することをいう。すなわち、支持体フィルムとして転写性積層フィルムの製造や搬送に再び用いることを指し、別の用途として利用するリサイクル(再生利用)は含まない。 "Reuse of the support film" in the present invention means reuse as the support film. In other words, it refers to reuse as a support film in the production and transport of a transferable laminated film, and does not include recycling (reuse) for other uses.
 「被転写フィルム残存物」とは、剥離転写工程における被転写フィルムの剥離残りのことをいう。 "Transferred film residue" refers to the peeled residue of the transferred film in the peel-transfer process.
 リユース可否判定の対象とする「支持体フィルム」とは、被転写フィルム形成時に被転写フィルムを支持するフィルムのことをいう。当該支持体フィルムの構成基材は、一般的な樹脂フィルムであり、各種添加剤を含有するものであっても良い。 The "support film" that is subject to reusability refers to the film that supports the transfer-receiving film when the transfer-receiving film is formed. The constituent base material of the support film is a general resin film, and may contain various additives.
 支持体フィルムの厚さ、材質、構成などは、リユース可否判定の観点からは特に限定されないが、リユースの観点からは、例えば以下のようなものが好ましい。 The thickness, material, configuration, etc. of the support film are not particularly limited from the viewpoint of reusability determination, but from the viewpoint of reuse, for example, the following are preferable.
 支持体フィルムの厚さは、200μm以下であることが好ましい。支持体フィルムの厚さは、ある程度の強度(腰や剛性)が支持体として必要であることから、好ましくは、25~125μmの範囲内であり、より好ましくは35~100μmの範囲内である。 The thickness of the support film is preferably 200 μm or less. The thickness of the support film is preferably within the range of 25 to 125 μm, more preferably within the range of 35 to 100 μm, since the support requires a certain degree of strength (resilience and rigidity).
 支持体フィルムに用いられる樹脂としては、セルロースエステル系樹脂、シクロオレフィン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、及びスチレン系樹脂を挙げることができ、これらを1種又は2種以上用いることができる。これらの中でも高湿度環境下での保存性に優れる樹脂として、ポリエステル系樹脂を使用することが好ましい。 Examples of the resin used for the support film include cellulose ester-based resins, cycloolefin-based resins, polypropylene-based resins, acrylic-based resins, polyester-based resins, polyarylate-based resins, and styrene-based resins. A species or two or more species can be used. Among these, it is preferable to use a polyester-based resin as a resin that is excellent in storage stability in a high-humidity environment.
 ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)などが含まれる。中でも、扱いやすさの観点から、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)が好ましい。 Examples of polyester resins include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polybutylene naphthalate (PBN). Among them, polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are preferable from the viewpoint of ease of handling.
 樹脂フィルムは、熱処理(熱緩和)されたものであってもよいし、延伸処理されたものであってもよい。 The resin film may be heat-treated (heat-relaxed) or stretched.
 熱処理は、樹脂フィルムの残留応力(例えば延伸に伴う残留応力など)を低減させるための処理であり、特に制限されないが、樹脂フィルムを構成する樹脂のガラス転移温度をTgとしたとき、(Tg+60)~(Tg+180)℃で行うことができる。 The heat treatment is a treatment for reducing the residual stress of the resin film (for example, the residual stress associated with stretching), and is not particularly limited. ~(Tg+180)°C.
 延伸処理は、樹脂フィルムの残留応力を増加させるための処理であり、延伸処理は、例えば樹脂フィルムの2軸方向に行うことが好ましい。延伸処理は、任意の条件で行うことができ、例えば延伸倍率120~900%程度で行うことができる。樹脂フィルムが延伸されているかどうかは、例えば面内遅層軸(屈折率が最大となる方向に延びた軸)があるかどうかによって確認することができる。延伸処理は、下記の離型層や易接着層といった機能層を積層する前にされてもよいし、積層した後にされてもよいが、積層する前に延伸されていることが好ましい。 The stretching process is a process for increasing the residual stress of the resin film, and the stretching process is preferably carried out, for example, in the biaxial directions of the resin film. The stretching treatment can be performed under arbitrary conditions, for example, at a stretching ratio of about 120 to 900%. Whether or not the resin film is stretched can be confirmed by checking, for example, whether or not there is an in-plane slow axis (an axis extending in the direction in which the refractive index is maximized). The stretching treatment may be performed before laminating a functional layer such as a release layer or an easy-adhesion layer described below, or after lamination.
 ポリエステル系樹脂フィルム(簡単に、ポリエステルフィルムともいう。)は市販品を用いることができ、例えば、ポリエチレンテレフタレートフィルムTN100(東洋紡社製)、MELINEX ST504(帝人デュポンフィルム社製)、ルミラーR80/U40、セラピールSY/HP2/PJ101等(東レ社製)等を好適に用いることができる。 Commercially available polyester resin films (simply referred to as polyester films) can be used. Therapeal SY/HP2/PJ101 (manufactured by Toray Industries, Inc.) and the like can be preferably used.
 支持体フィルムは、樹脂フィルムの表面に設けられた離型層をさらに有していてもよい。離型層は、偏光板等の積層体を作製する際に、支持体フィルムと被転写フィルムを剥離しやすくし得る。 The support film may further have a release layer provided on the surface of the resin film. The release layer can make it easier to separate the support film and the transferred film when producing a laminate such as a polarizing plate.
 離型層は、公知の剥離剤を含むものであってよく、特に制限されない。離型層に含まれる剥離剤の例には、シリコーン系剥離剤、及び、ノンシリコーン系剥離剤が含まれる。 The release layer may contain a known release agent, and is not particularly limited. Examples of release agents contained in the release layer include silicone release agents and non-silicone release agents.
 シリコーン系剥離剤の例には、公知のシリコーン系樹脂が含まれる。ノンシリコーン系剥離剤の例には、ポリビニルアルコール又はエチレン-ビニルアルコール共重合体などに長鎖アルキルイソシアネートを反応させた長鎖アルキルペンダント型重合体、オレフィン系樹脂やワックス(例えば共重合ポリエチレン、ポリプロピレン、環状ポリオレフィン、ポリメチルペンテン、及びカルナバワックス等)、ポリアリレート樹脂(例えば、芳香族ジカルボン酸成分と二価フェノール成分との重縮合物)、フッ素樹脂(例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、PFA(四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体)、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)、ETFE(テトラフルオロエチレンとエチレンの共重合体))、スチレン、(メタ)アクリル系樹脂などが含まれる。好ましくは被転写フィルムに転写されにくいノンシリコーン系の剥離剤であることが好ましい。 Examples of silicone-based release agents include known silicone-based resins. Examples of non-silicone release agents include long-chain alkyl pendant type polymers obtained by reacting long-chain alkyl isocyanate with polyvinyl alcohol or ethylene-vinyl alcohol copolymer, olefin resins and waxes (e.g. copolymerized polyethylene, polypropylene , cyclic polyolefins, polymethylpentene, carnauba wax, etc.), polyarylate resins (e.g., polycondensates of aromatic dicarboxylic acid components and dihydric phenol components), fluororesins (e.g., polytetrafluoroethylene (PTFE), polyfluoride Vinylidene chloride (PVDF), polyvinyl fluoride (PVF), PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene), FEP (copolymer of tetrafluoroethylene and hexafluoropropylene), ETFE (tetrafluoro ethylene and ethylene copolymers)), styrene, (meth)acrylic resins, and the like. Preferably, it is a non-silicone type release agent that is difficult to transfer to the transfer-receiving film.
 離型層の厚さは、所望の剥離性を発現しうる程度であればよく、特に制限されないが、例えば0.1~1.0μmであることが好ましい。 The thickness of the release layer is not particularly limited as long as it can exhibit the desired releasability, but is preferably 0.1 to 1.0 μm, for example.
 また被転写フィルムとのより高い接着性を与えるためには、易接着層を有する支持体フィルムを用いても良い。易接着層としては、ポリオレフィン系やポリエステル系樹脂、ポリアクリルアミド系ポリマー;ポリビニルアルコール及びエチレン-ビニルアルコール共重合体、(メタ)アクリル酸又はその無水物-ビニルアルコール共重合体等のビニルアルコール系ポリマー;カルボキシビニル系ポリマー;ポリビニルピロリドン;デンプン類;アルギン酸ナトリウム;又はポリエチレンオキシド系ポリマー等の水溶性ポリマー、及びオキサゾリン系ポリマー等の公知の材料を用いることができる。 In addition, a support film having an easy-adhesion layer may be used in order to provide higher adhesiveness to the transfer-receiving film. Examples of the easy-adhesion layer include polyolefin-based and polyester-based resins, polyacrylamide-based polymers; vinyl alcohol-based polymers such as polyvinyl alcohol and ethylene-vinyl alcohol copolymers, and (meth)acrylic acid or its anhydride-vinyl alcohol copolymers. starches; sodium alginate; water-soluble polymers such as polyethylene oxide polymers; and known materials such as oxazoline polymers.
<支持体フィルムのリユース可否判定方法の実施形態>
 以下、本発明の支持体フィルムのリユース可否判定方法の実施形態の一例を、図1に示すフローチャートを用いて説明する。
<Embodiment of Method for Determining Reusability of Support Film>
An embodiment of the method for judging whether or not a support film can be reused according to the present invention will be described below with reference to the flowchart shown in FIG.
 測定条件設定ステップ(S1-1)では、光学的測定手段の測定条件を設定する。例えば、支持体フィルム上に形成されていた被転写フィルムに関するデータ(例えば厚さ、屈折率など)に基づいて、測定条件を被転写フィルム残存物の厚さ又は材質が強調される測定条件に設定する。 In the measurement condition setting step (S1-1), the measurement conditions of the optical measurement means are set. For example, based on the data (e.g., thickness, refractive index, etc.) related to the transfer film formed on the support film, the measurement conditions are set to emphasize the thickness or material of the transfer film residue. do.
 これにより、光学的測定手段における被転写フィルム残存物の検出精度を向上させることができる。また、ハイパースペクトルカメラを使用することで、強調された波長の光を簡便に可視化でき、さらには後段の輪郭明確化ステップ等の処理を高速かつ正確に行えるようになる。さらには、事前に光学定数既知の材料(例えばSiウェハや、未使用の支持体フィルム等)でリファレンスを測定して光源スペクトルの影響についての補正を行うことで正確かつ高速な処理を行えるようになる。 As a result, it is possible to improve the detection accuracy of the transfer-receiving film residue in the optical measurement means. In addition, by using a hyperspectral camera, light of emphasized wavelengths can be easily visualized, and further processing such as the contour clarification step in the latter stage can be performed quickly and accurately. In addition, accurate and high-speed processing can be performed by measuring the reference in advance using materials with known optical constants (e.g., Si wafers, unused support films, etc.) and correcting for the influence of the light source spectrum. Become.
 なお、光源としては、キセノンランプ、ハロゲンランプ、白色LED灯、近赤外ハイパースペクトルイメージング照明(シーシーエス株式会社製LDL-222X42CIR-LACL等)、深紫外から近赤外の波長域までの光を放射できるレーザー励起白色光源(ケイエルブイ社製XWS-65等)等を使用することができる。 The light sources include xenon lamps, halogen lamps, white LED lamps, near-infrared hyperspectral imaging lighting (LDL-222X42CIR-LACL manufactured by CCS Co., Ltd., etc.), and emits light from deep ultraviolet to near-infrared wavelengths. A laser-excited white light source (KLV XWS-65, etc.) or the like can be used.
 被転写フィルムの厚さ及び屈折率のデータを用い、分光干渉法による光学的測定手段の測定条件を被転写フィルム残存物の厚さが強調されるように設定する例として、光学的測定手段の受光位置を調整する方法と、光学的測定手段の光源の射出波長を調整する方法を説明する。 As an example of setting the measurement conditions of the optical measurement means by spectral interferometry so that the thickness of the transfer film residue is emphasized using the data of the thickness and refractive index of the transfer film, the optical measurement means A method for adjusting the light receiving position and a method for adjusting the emission wavelength of the light source of the optical measuring means will be described.
 光学的測定手段の受光位置を調整する方法では、被転写フィルムの厚さ及び屈折率に基づいて、光学的測定手段の受光位置を、被転写フィルム残存物の厚さを正確に測定できるる(すなわち、被転写フィルム残存物を強調できる)位置や角度、光源条件に設定することができる。 In the method of adjusting the light-receiving position of the optical measuring means, the light-receiving position of the optical measuring means can be accurately measured based on the thickness and refractive index of the transferred film ( In other words, it is possible to set the position, angle, and light source conditions that can emphasize the transfer-receiving film residue.
 具体的には、被転写フィルム残存物表面で反射する反射光Aと、被転写フィルム残存物表面で屈折して被転写フィルム残存物内に入射し、支持体フィルム表面で反射して再び被転写フィルム残存物表面で屈折して出てくる反射光Bの光路差が、光源の射出波長λの倍数となって反射光の位相が揃うと、反射光が干渉によって強め合う。また逆に位相が反転した場合は弱めあうことになり、光源の白色光のスペクトルが、波長に応じて強くなったり弱まったりした波形に変換された反射光が得られることになる。 Specifically, the reflected light A reflected on the surface of the transfer-receiving film residue is refracted by the surface of the transfer-receiving film residue, enters the transfer-receiving film residue, is reflected by the support film surface, and is transferred again. When the optical path difference of the reflected light B refracted on the surface of the film residue becomes a multiple of the emission wavelength λ of the light source and the phases of the reflected lights are aligned, the reflected lights are strengthened by interference. Conversely, when the phases are reversed, they weaken each other, and the spectrum of the white light from the light source is converted into a waveform that becomes stronger or weaker depending on the wavelength, and reflected light is obtained.
 搬送されてくる被転写フィルムに照射した白色光の反射光の干渉スペクトルをハイパースペクトルカメラで測定することで、支持体フィルム全面において被転写フィルム残存物、その他の付着異物を測定することを可能としている。 By using a hyperspectral camera to measure the interference spectrum of the reflected white light emitted from the transported film, it is possible to measure the residue of the film to be transferred and other adhering foreign matter on the entire surface of the support film. there is
 このようにハイパースペクトルカメラを用いることで簡便に被転写フィルム残存物等の異物を測定することができる。しかし、波長の分解能が5nmごと程度であるために、干渉周期に対して十分な測定精度が得られないことがある。得られた波形(干渉スペクトル)に対して十分なフィッティングができない場合、算出される膜厚は大幅にずれてしまう課題がある。 By using a hyperspectral camera in this way, it is possible to easily measure foreign matter such as transfer film residue. However, since the wavelength resolution is about every 5 nm, sufficient measurement accuracy may not be obtained for the interference period. If the obtained waveform (interference spectrum) cannot be adequately fitted, there is a problem that the calculated film thickness deviates significantly.
 そのため本発明においては、上記の干渉スペクトルに大きく影響を与える下記の情報を、事前にインプットすることが好ましい。これによって、測定される被転写フィルム残存物の膜厚算出の精度を向上させることができる。 Therefore, in the present invention, it is preferable to input in advance the following information that greatly affects the interference spectrum. As a result, it is possible to improve the accuracy of calculating the film thickness of the transfer-receiving film residue to be measured.
 干渉スペクトルの予測に有効な情報は、以下の4点である。
[1]支持体フィルムの膜厚(d1)
[2]支持体フィルムの屈折率(n1)
[3]支持体フィルム上に形成されていた被転写フィルムの膜厚(d2)
[4]支持体フィルム上に形成されていた被転写フィルムの屈折率(n2)
The following four points are effective information for predicting the interference spectrum.
[1] Thickness of support film (d1)
[2] Refractive index of support film (n1)
[3] Thickness (d2) of transferred film formed on support film
[4] Refractive index (n2) of the transferred film formed on the support film
 これらの情報を基に事前に推定される波形(干渉スペクトル)を予測し、得られたハイパースペクトル画像との類似性を評価することで、高速かつ高精度にリユース可否を判断することができる。特に上記の4点の情報からハイパースペクトルカメラの分解能であっても精度高く計算が可能な波長域、逆に精度が低い波長域を推定することができる。本発明においては、このような精度が不足すると予想される波長域を算出に用いないようにカットオフすることが好ましい。 By predicting the presumed waveform (interference spectrum) based on this information and evaluating the similarity with the obtained hyperspectral image, it is possible to determine whether it can be reused at high speed and with high accuracy. In particular, from the above four pieces of information, it is possible to estimate a wavelength region that can be calculated with high accuracy even with the resolution of a hyperspectral camera, and conversely, a wavelength region with low accuracy. In the present invention, it is preferable to perform cutoff so as not to use such a wavelength range in which accuracy is expected to be insufficient for calculation.
 また、このような精度が不足すると予想される波長域は、被転写フィルムに含まれる微粒子や紫外線吸収剤、酸化防止剤等の添加剤によって散乱されたり吸収・発光等が起きると、他の波長域のスペクトルからの算出精度を下げるため、光源から取り除くことも可能である。このような処理を行うことで、支持体フィルム上への被転写フィルム残存物(剥離残り)部分の計測を強調し、高精度かつ高速に判断することが可能なシステムとすることができる。 In addition, the wavelength region where such accuracy is expected to be insufficient may be scattered by additives such as fine particles, ultraviolet absorbers, antioxidants, etc. contained in the transferred film, and other wavelengths may It can also be removed from the light source to reduce the accuracy of the calculation from the spectrum of the region. By performing such processing, it is possible to emphatically measure the portion of the transferred film remaining (peeling residue) on the support film, and to provide a system capable of high-precision and high-speed determination.
 精度が不足すると予想される波長域を取り除くためには、例えば、光源そのものを変えたり、光源と測定するフィルムの間にカットフィルターやミラーやプリズム等を入れて調整してもよい。 In order to remove the wavelength range where the accuracy is expected to be insufficient, for example, the light source itself may be changed, or a cut filter, mirror, prism, etc. may be inserted between the light source and the film to be measured.
 被転写フィルムに関するデータとして、被転写フィルムの屈折率のデータを用い、測定条件を検出物の材質(屈折率)が強調される測定条件に設定する場合、例えば金属粉のように、屈折率が被転写フィルムと異なる物の個数等も検出することが可能となる。これにより、その後の判定ステップにおけるリユース可否の判定を高精度で行うことが可能となる。 When the refractive index data of the transferred film is used as the data on the transferred film, and the measurement conditions are set to emphasizing the material (refractive index) of the object to be detected, for example, metal powder, the refractive index is It is also possible to detect the number of objects different from the transfer-receiving film. As a result, it becomes possible to determine with high accuracy whether or not the device can be reused in the subsequent determination step.
 測定ステップ(S1-2)では、光学的測定手段を用いて支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する。 In the measurement step (S1-2), optical measurement means is used to measure data on the transfer-receiving film residue remaining on the support film.
 より具体的には、光学的測定手段を用いて支持体フィルム上を撮像して、画像データを取得し、その画像データに対し、必要に応じて画像処理等を行い、被転写フィルム残存物に関するデータを得る。「被転写フィルム残存物に関するデータ」とは、画像データや、画像処理で得た各種データを含む。 More specifically, an image is taken on the support film using an optical measuring means, image data is obtained, image processing, etc. get the data. The "data relating to the transfer-receiving film residue" includes image data and various data obtained by image processing.
 測定ステップは、支持体フィルムを搬送しながら行う。搬送速度は、測定効率の観点からは速い方が好ましいが、要求される測定精度や、用いる光学的測定手段の能力を考慮して決める必要がある。搬送速度は、3~100m/分の範囲内であることが好ましく、5~70m/分の範囲内であることがより好ましく、10~50m/分の範囲内であることがさらに好ましい。 The measurement step is performed while conveying the support film. A higher conveying speed is preferable from the viewpoint of measurement efficiency, but it must be determined in consideration of the required measurement accuracy and the ability of the optical measuring means to be used. The conveying speed is preferably in the range of 3 to 100 m/min, more preferably in the range of 5 to 70 m/min, and even more preferably in the range of 10 to 50 m/min.
 光学的測定手段としては、支持体フィルムの幅手方向全面の測定が可能であるものが好ましい。このような光学的測定手段として、例えば図5のように、高輝度集光型ライン照明301(シーシーエス社製LDL-222X42CIR-LACL)及びラインスキャン式ハイパースペクトルカメラ303(Resonon社製Pika XC2)を組み合わせてなる撮像部を備える装置を用いることができる。ハイパースペクトルカメラは、多数の波長において高い分解能で対象物を撮影することができるため、対象物の膜厚を一回の測定で広範囲に定量化することが可能である。 As the optical measuring means, those capable of measuring the entire surface of the support film in the lateral direction are preferable. As such optical measurement means, for example, as shown in FIG. A device having a combined imaging unit can be used. A hyperspectral camera can image an object at multiple wavelengths with high resolution, so it is possible to quantify the film thickness of the object over a wide range in a single measurement.
 判定ステップ(S1-3)では、判定手段で、測定ステップで測定した被転写フィルム残存物に関するデータに基づいて、支持体フィルムの洗浄の要否を含むリユースの可否を判定する。 In the judgment step (S1-3), the judging means judges whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the data on the transfer-receiving film residue measured in the measurement step.
 判定手段としては、PLC(programmable logic controller)を含むコンピューター等の装置を用いることができる。また、光学的測定手段に、判定を行う判定部やプログラムを備えさせることで、判定手段を兼ねさせることもできる。すなわち、本発明において、光学的測定手段と判定手段は、異なる装置を別個に用いることもできるし、両手段を兼ねる1つの装置を用いることもできる。 A device such as a computer including a PLC (programmable logic controller) can be used as the determination means. Further, the optical measurement means can also serve as the determination means by providing a determination unit and a program for determination. That is, in the present invention, different devices can be used separately for the optical measuring means and the judging means, or a single device serving as both means can be used.
 測定ステップで測定した被転写フィルム残存物に関するデータが、画像データである場合、当該画像データを、必要に応じて画像処理等を行い、より詳細な被転写フィルム残存物に関するデータ、例えば被転写フィルム残存物の個数や、各被転写フィルム残存物の面積及び最小幅といったデータを取得する。 When the data on the transfer film residue measured in the measuring step is image data, the image data is subjected to image processing, etc. as necessary to obtain more detailed data on the transfer film residue, for example, the transfer film Data such as the number of residuals and the area and minimum width of each transfer-receiving film residual are acquired.
 被転写フィルム残存物の面積及び最小幅といったデータは、例えば画像処理により取得したHOG(Histograms of Oriented Gradients)特徴量から被転写フィルム残存物の輪郭の明確化を行い、当該明確化した輪郭から算出することができる。 Data such as the area and minimum width of the transfer film residue are calculated from the clarified contour of the transfer film residue, for example, by clarifying the contour of the transfer film residue from the HOG (Histograms of Oriented Gradients) feature amount obtained by image processing. can do.
 「HOG特徴量」とは、局所的な画像勾配をヒストグラム化した特徴量である。HOG特徴量を取得することにより、被転写フィルム残存物を検出し、その輪郭を明確化することができる。HOG特徴量は、各種公知の論文及び特開2018-36689号公報等を参考として算出することができる。 "HOG feature amount" is a feature amount obtained by histogramming local image gradients. By acquiring the HOG feature amount, it is possible to detect the transfer-receiving film residue and clarify its contour. The HOG feature amount can be calculated with reference to various known papers and Japanese Patent Application Laid-Open No. 2018-36689.
 また、別法として、取得した反射スペクトル分布が被転写フィルムの膜厚から予想される周波数成分以上の周波数成分を有するか否かで、残存物の輪郭の明確化を行っても良い。 As another method, the contour of the residue may be clarified depending on whether or not the acquired reflection spectrum distribution has a frequency component equal to or higher than the frequency component expected from the film thickness of the transferred film.
 上記の被転写フィルム残存物の個数や、各被転写フィルム残存物の面積及び最小幅といったデータに基づいて、支持体フィルムが洗浄してもリユースできないものであるか、洗浄すればリユースできるものであるか、又は洗浄しなくてもリユースできるものであるかを判定する。 Based on the above data such as the number of transfer film remnants and the area and minimum width of each transfer film remnant, it is possible to determine whether the support film cannot be reused even if it is washed, or can be reused after washing. or if it can be reused without cleaning.
 図3及び図4は、それぞれリユース可否判定後のフローチャートの一例である。  Figs. 3 and 4 are examples of flow charts after the reusability determination.
 リユース可否判定で洗浄しなくてもリユースできると判定された支持体フィルムは、巻き取ってから支持体フィルムロールとすることができ、また、判定後に巻き取らずに、そのまま連続的に転写性積層フィルムの製造工程でリユースこともできる。 The support film determined to be reusable without washing in the reusability determination can be wound up and used as a support film roll, and can be continuously transferred and laminated as it is without being wound up after the determination. It can also be reused in the film manufacturing process.
 リユース可否判定で洗浄すればリユースできると判定された支持体フィルムは、後述する洗浄工程にて洗浄を行う。洗浄後の支持体フィルムは、図3に示すフローチャートのように、巻取り又はそのままリユースしても良いし、図4に示すフローチャートのように、再度、測定ステップや判定ステップを含むリユース可否判定を行っても良い。 The support film judged to be reusable by washing in the reusability judgment is washed in the washing process described later. The support film after washing may be wound up or reused as it is as shown in the flowchart shown in FIG. you can go
 続いて、上述の実施形態とは異なるリユース可否判定方法の例を、図2に示すフローチャートを用いて説明する。 Next, an example of a reusability determination method different from the above-described embodiment will be described using the flowchart shown in FIG.
 図2は、測定ステップが、第1測定ステップと第2測定ステップからなるリユース可否判定方法のフローチャートである。測定条件設定ステップ(S2-1)及び判定ステップ(S2-4)は、それぞれ上述の測定条件設定ステップ(S1-1)及び判定ステップ(S1-3)と同様であるため、第1測定ステップ(S2-2)及び第2測定ステップ(S2-3)について、以下説明する。 FIG. 2 is a flow chart of the reusability determination method in which the measurement steps consist of a first measurement step and a second measurement step. Since the measurement condition setting step (S2-1) and the determination step (S2-4) are the same as the measurement condition setting step (S1-1) and the determination step (S1-3), respectively, the first measurement step ( S2-2) and the second measurement step (S2-3) will be described below.
 第1測定ステップ(S2-2)では、光学的測定手段を用いて支持体フィルム上に残存している被転写フィルム残存物の位置を測定する。 In the first measurement step (S2-2), optical measurement means is used to measure the position of the transferred film residue remaining on the support film.
 より具体的には、光学的測定手段を用いて支持体フィルム上を撮像して、画像データを取得し、その画像データに対し、画像処理を行うことで、被転写フィルム残存物の支持体フィルム上の位置データを取得する。 More specifically, an image is captured on the support film using an optical measuring means, image data is obtained, and image processing is performed on the image data to obtain the support film of the transferred film residue. Get top location data.
 第1測定ステップで用いる光学的測定手段(以下、「第1光学的測定手段」ともいう。)としては、位置データを取得できるものであって、支持体フィルムの幅手方向全面の測定が可能であるものが好ましい。このような光学的測定手段として、例えば図6のように、高輝度集光型ライン照明101(シーシーエス社製LN-GA)、レンズ102(株式会社ミュートロン製XL501)、及びモノクロラインセンサーカメラ103(日本エレクトロデバイス社製RMSL8K76CL)を組み合わせてなる撮像部を備える装置を用いることができる。当該装置の場合、支持体フィルムからレンズまでの距離Lが1300mmのとき、分解能が約0.1mmとなる。 The optical measuring means used in the first measuring step (hereinafter also referred to as "first optical measuring means") is capable of acquiring position data and capable of measuring the entire surface of the support film in the lateral direction. is preferred. As such optical measurement means, for example, as shown in FIG. (RMSL8K76CL manufactured by Nippon Electro-Device Co., Ltd.) can be used. With this device, a resolution of about 0.1 mm is obtained when the distance L from the support film to the lens is 1300 mm.
 第2測定ステップ(S2-3)では、第1測定ステップで測定した位置に残存している被転写フィルム残存物の厚さ又は材質(屈折率等)を測定する。 In the second measurement step (S2-3), the thickness or material (refractive index, etc.) of the transferred film residue remaining at the position measured in the first measurement step is measured.
 第2測定ステップで用いる光学的測定手段(以下、「第2光学的測定手段」ともいう。)としては、位置データに応じて被転写フィルム残存物の高解像度画像データを取得できるものが好ましい。このような光学的測定手段として、例えば図7A及び図7Bのように、高輝度集光型ライン照明201(シーシーエス社製LN-D2)、ハーフミラーボックス202、レンズ203(株式会社ミュートロン製XLS01)、マウントアダプター204、及びモノクロラインセンサーカメラ205(日本エレクトロデバイス社製RMSL4K100CL)、高速幅手移動機構206を組み合わせてなる撮像部を備える装置を用いることができる。なお、図7Aは、幅手方向手前から視た模式図であり、図7Bは、搬送方向手前から視た模式図である。 The optical measuring means used in the second measuring step (hereinafter also referred to as "second optical measuring means") is preferably one that can acquire high-resolution image data of the transfer-receiving film residue according to the position data. As such optical measurement means, for example, as shown in FIGS. ), a mount adapter 204, a monochrome line sensor camera 205 (RMSL4K100CL manufactured by Nippon Electro-Device Co., Ltd.), and a high-speed lateral movement mechanism 206 can be used. 7A is a schematic diagram viewed from the front in the width direction, and FIG. 7B is a schematic diagram viewed from the front in the transport direction.
 第2光学的測定手段は、第1光学的測定手段に対して支持体フィルムの搬送方向下流に設置する。第1光学的測定手段と第2光学的測定手段による撮像位置の間隔は、搬送速度や、各光学的測定手段の制御能力を考慮して必要な撮像間隔に応じて、任意に設定することができる。例えば、搬送速度が5m/分であり、必要な撮像間隔が1分である場合、第1光学的測定手段と第2光学的測定手段による撮像位置の間隔は5m以上であればよい。 The second optical measurement means is installed downstream of the first optical measurement means in the conveying direction of the support film. The interval between the imaging positions by the first optical measuring means and the second optical measuring means can be arbitrarily set according to the required imaging interval in consideration of the transport speed and the controllability of each optical measuring means. can. For example, if the conveying speed is 5 m/min and the necessary imaging interval is 1 minute, the interval between the imaging positions by the first optical measuring means and the second optical measuring means should be 5 m or more.
 上述の支持体フィルムのリユース可否判定方法は、上記の各ステップを、一貫してコンピューターが主体として実行することが可能であり、また、一貫してユーザー操作により実行することも可能である。さらに、一部のステップをコンピューターが主体として実行し、一部のステップをユーザー操作により実行することとしてもよい。 In the method for determining whether or not the support film can be reused, the above steps can be consistently executed by a computer, or can be consistently executed by a user's operation. Furthermore, some of the steps may be executed mainly by a computer, and some of the steps may be executed by user operations.
 コンピューターが主体として実行する場合、各ステップをコンピューターに実行させるリユース可否判定プログラムを用いる。  When a computer is the subject of execution, a reusability judgment program that causes the computer to execute each step is used.
<支持体フィルムの洗浄方法>
 本発明の支持体フィルムの洗浄方法は、剥離転写法による積層体製造において使用された支持体フィルムの洗浄方法であって、本発明の支持体フィルムのリユース可否判定方法により洗浄が必要と判定された場合に、測定した被転写フィルム残存物に関するデータに基づいて、支持体フィルム上に残存している被転写フィルム残存物を除去することを特徴とする。
<Washing method for support film>
The method for cleaning a support film of the present invention is a method for cleaning a support film used in the production of a laminate by the peel-transfer method, and it is determined that cleaning is necessary by the method for determining reusability of a support film of the present invention. In this case, the transfer-receiving film remnants remaining on the support film are removed based on the measured data relating to the transfer-receiving film remnants.
 被転写フィルム残存物を除去する方法は、特に限定されないが、好適な方法として、ドライアイスブラスト処理や、粘着ローラー処理が挙げれる。 The method for removing the transfer-receiving film residue is not particularly limited, but suitable methods include dry ice blasting and adhesive roller processing.
 以下、被転写フィルム残存物を除去する方法の一例として、ドライアイスブラスト処理について説明する。 Dry ice blasting will be described below as an example of a method for removing the transfer-receiving film residue.
 ドライアイスブラスト処理では、圧縮エアーによってドライアイスブラスト材(ドライアイスペレット)を加速して噴射し、支持体フィルム上に残存している被転写フィルム残存物に吹き付けて除去する。これにより、支持体フィルム表面を傷つけずに洗浄することができる。 In the dry ice blasting process, dry ice blasting material (dry ice pellets) is accelerated and jetted with compressed air to blow and remove the transfer film residue remaining on the support film. As a result, the surface of the support film can be washed without being damaged.
 ドライアイスブラスト材を吹き付ける方向は、支持体フィルムの搬送方向に対向する方向であることが好ましい。これにより、支持体フィルム表面に効率良くドライアイスブラスト材の力が伝わるため、被転写フィルム残存物を容易に除去することが可能となる。 The direction in which the dry ice blast material is sprayed is preferably the direction opposite to the transport direction of the support film. As a result, the force of the dry ice blast material is efficiently transmitted to the surface of the support film, making it possible to easily remove the transfer-receiving film residue.
 また、支持体フィルムの表面において結露することを防止するために、支持体フィルムの温度を室温以上にすることが好ましい。例えば、支持体フィルムの表面温度を20~120℃にする。なお、支持体フィルムの組成に応じて、溶融温度に注意する必要がある。このように、支持体フィルムの表面温度を20~120℃にすることにより、ドライアイスブラスト材が吹き付けられた際に、支持体フィルムの温度低下を防止することができ、結露を防止することが可能となる。 Also, in order to prevent dew condensation on the surface of the support film, it is preferable to set the temperature of the support film to room temperature or higher. For example, the surface temperature of the support film is 20-120°C. Note that it is necessary to pay attention to the melting temperature depending on the composition of the support film. By setting the surface temperature of the support film to 20 to 120° C. in this way, it is possible to prevent the temperature of the support film from lowering when the dry ice blast material is sprayed thereon, thereby preventing dew condensation. It becomes possible.
 支持体フィルムの温度を上げる方法として、ドライアイスブラスト材を支持体フィルムに吹き付ける前に、ドライヤー等により支持体フィルムに風を吹き付ける方法がある。また、別の方法として、ドライアイスブラスト材を支持体フィルムに吹き付ける前に、支持体フィルムを搬送するローラー部材やベルト部材などの支持部材を加熱することにより、その支持部材に接している支持体フィルムを加熱しても良い。例えば、支持体フィルムの表面温度よりも高い温度の支持部材により支持体フィルムを加熱し、支持体フィルムの表面温度が20~120℃になるように支持部材の温度を調整する。これにより、支持体フィルムが冷却され過ぎることを防止することができ、ドライアイスブラスト材を吹き付ける工程及びその後の工程において、支持体フィルムへの結露を防止することが可能となる。支持部材を加熱する方法として、ローラー部材内に温水などを流しても良く、電気製のジャケットロールをローラー部材として用いても良い。 As a method of raising the temperature of the support film, there is a method of blowing air onto the support film with a dryer or the like before blowing the dry ice blast material onto the support film. As another method, before the dry ice blasting material is sprayed on the support film, a support member such as a roller member or a belt member for conveying the support film is heated, so that the support member in contact with the support member is heated. The film may be heated. For example, the support film is heated by a support member having a temperature higher than the surface temperature of the support film, and the temperature of the support member is adjusted so that the surface temperature of the support film is 20 to 120°C. As a result, the support film can be prevented from being cooled too much, and dew condensation on the support film can be prevented in the step of spraying the dry ice blast material and the subsequent step. As a method for heating the supporting member, hot water or the like may be passed through the roller member, or an electric jacket roll may be used as the roller member.
 また、ドライアイスにより冷却されて結露が生じるおそれがあるため、ドライアイスブラスト材を吹き付ける前、吹き付け中、吹き付けた後などにおいて、雰囲気の露点を下げておくことが好ましい。例えば、10℃以下に露点を下げることが望ましく、0℃未満とすることがより好ましい。具体的には、吹き付け処理をチャンバー内などで行い、そのチャンバー内に昇華した二酸化炭素ガスや窒素ガス等を充満させて、露点を下げる。また、例えば露点が-60℃のドライエアーをチャンバー内に充満させて、その環境下でドライアイスブラスト材を支持体フィルムに吹き付けても良い。 In addition, since there is a risk of condensation due to cooling by dry ice, it is preferable to lower the dew point of the atmosphere before, during, and after the dry ice blasting material is sprayed. For example, it is desirable to lower the dew point to 10°C or less, more preferably less than 0°C. Specifically, the spraying process is performed in a chamber or the like, and the chamber is filled with sublimated carbon dioxide gas, nitrogen gas, or the like to lower the dew point. Alternatively, for example, the chamber may be filled with dry air having a dew point of −60° C., and a dry ice blast material may be sprayed onto the support film in that environment.
 ドライアイスブラスト処理には、ドライアイスブラスト材を吹き付けるブラストノズルとともに、除去された被転写フィルム残存物を吸引する吸引ノズルを用いることが好ましい。ドライアイスブラスト材により支持体フィルムから被転写フィルム残存物を除去すると、その除去された被転写フィルム残存物は、支持体フィルム周辺を漂うことになる。この状態を放置すると、除去された被転写フィルム残存物が支持体フィルムに再付着するおそれがあり、支持体フィルムが汚染されるおそれがある。このようにドライアイスブラスト材により除去された被転写フィルム残存物を、吸引して速やかに排出することにより、支持体フィルムへの再付着を防止することが可能となる。 For dry ice blasting, it is preferable to use a blasting nozzle for blowing dry ice blasting material and a suction nozzle for sucking the removed transfer film residue. When the transfer-receiving film residue is removed from the support film with a dry ice blasting material, the removed transfer-receiving film residue floats around the support film. If this state is left as it is, the removed residue of the transfer-receiving film may reattach to the support film, and the support film may be contaminated. By sucking and rapidly discharging the transfer-receiving film residue removed by the dry ice blasting material in this way, it is possible to prevent reattachment to the support film.
 例えば、図8に示すように、搬送ローラー22上の支持体フィルム23に対して斜めにブラストノズル20を設置し、斜め方向からブラスト材を支持体フィルム23に吹き付けて被転写フィルム残存物を除去する場合、その吹き付けの反対側に吸引ノズル21を設置し、ドライアイスブラスト材の吹き付けにより支持体フィルム23から剥がされた被転写フィルム残存物を、吸引ノズル21により吸引して速やかに排出する。 For example, as shown in FIG. 8, a blasting nozzle 20 is installed obliquely to a support film 23 on a conveying roller 22, and a blasting material is sprayed obliquely onto the support film 23 to remove the transferred film residue. In this case, a suction nozzle 21 is installed on the opposite side of the blowing, and the transferred film residue peeled off from the support film 23 by the blowing of the dry ice blast material is sucked by the suction nozzle 21 and quickly discharged.
 また、図9に示すように、ブラストノズル20の周囲を囲んで吸引ノズル21を設置することにより、支持体フィルム23においてドライアイスブラスト材が吹き付けられる部分の周囲を囲むように吸引ノズル21を設置し、剥がされた被転写フィルム残存物を吸引して速やかに排出しても良い。ドライアイスブラスト材が昇華する際に生じる風圧は、ブラスト材が吹き付けられた部分の全方向に対して発生するため、吹き付けられる部分を吸引ノズル21で囲むことにより、周辺の雰囲気に舞い上がる被転写フィルム残存物を吸引して速やかに排出することができる。 Further, as shown in FIG. 9, the suction nozzle 21 is installed so as to surround the portion of the support film 23 to which the dry ice blasting material is sprayed, by setting the suction nozzle 21 so as to surround the blast nozzle 20 . Alternatively, the peeled transfer-receiving film residue may be sucked and quickly discharged. Wind pressure generated when the dry ice blasting material sublimates is generated in all directions of the part to which the blasting material is sprayed. Residues can be aspirated and quickly discharged.
 また、ドライアイスブラスト材を吹き付けることにより除去された被転写フィルム残存物が、再び支持体フィルム表面に付着するのを防止するために、除電装置を用いて支持体フィルムの表面を除電しながら表面にドライアイスブラスト材を吹き付けても良い。また、ドライアイスブラスト材を吹き付ける前に、除電を行っても良い。例えば、ドライアイスブラスト材を吹き付けた後の支持体フィルムの帯電量が1[kV]以下になるように除電の条件を決めて除電を行う。帯電量が1[kV]以下になるまで除電することにより、除去された被転写フィルム残存物が支持体フィルムに再び付着するのを防止でき、更に、雰囲気中のごみ等が支持体フィルムに付着するのを防止することができる。具体的な手段として、ドライアイスブラスト材を吹き付けるブラストノズル内にイオン発生用の電極を設け、ブラスト材を吹き付けるとともに支持体フィルム表面を除電する。 In order to prevent the transfer-receiving film residue removed by blowing the dry ice blasting material from adhering to the support film surface again, the surface of the support film is discharged while the static electricity is removed using a static eliminator. Dry ice blast material may be sprayed on the surface. Moreover, static elimination may be performed before the dry ice blasting material is sprayed. For example, static elimination is performed by determining the static elimination conditions so that the charge amount of the support film after the dry ice blasting material is sprayed is 1 [kV] or less. By removing the charge until the charge amount becomes 1 [kV] or less, it is possible to prevent the removed transfer-receiving film residue from adhering to the support film again, and furthermore, dust in the atmosphere adheres to the support film. can be prevented. As a specific means, an electrode for generating ions is provided in a blasting nozzle for spraying dry ice blasting material, and the surface of the support film is neutralized while spraying the blasting material.
 また、ドライアイスブラスト材を吹き付けて支持体フィルムの表面から被転写フィルム残存物を除去した後に、公知のクリーニング方法により更に支持体フィルムを洗浄しても良い。公知のクリーニング方法として、例えば、エアー式ウェブクリーナー、粘着式ウェブクリーナー、又はブラシ式ウェブクリーナーなどが挙げられる。 Further, after removing the transferred film residue from the surface of the support film by spraying dry ice blast material, the support film may be further washed by a known cleaning method. Known cleaning methods include, for example, air web cleaners, sticky web cleaners, or brush web cleaners.
 また、支持体フィルム表面にドライアイスブラスト材を吹き付ける際に、支持体フィルムを密封されたチャンバー内に格納し、そのチャンバー内を外部よりも減圧してドライアイスブラスト材を吹き付けても良い。例えば、チャンバー外部の圧力よりも10Pa程度、減圧する。このような減圧下でドライアイスブラスト材の吹き付けを行うことにより、吹き付けにより除去された被転写フィルム残存物が支持体フィルム表面に再び付着することを防止することができる。なお、10Pa程度減圧しても、ドライアイスブラスト材は昇華して気体となるため、ドライアイスブラスト処理の効果が損なわれることはない。 In addition, when the dry ice blasting material is sprayed on the surface of the support film, the support film may be stored in a sealed chamber, and the pressure inside the chamber may be reduced from the outside to spray the dry ice blasting material. For example, the pressure is reduced by about 10 Pa from the pressure outside the chamber. By spraying the dry ice blasting material under such a reduced pressure, it is possible to prevent remnants of the transfer-receiving film removed by the spraying from adhering again to the surface of the support film. Even if the pressure is reduced by about 10 Pa, the dry ice blasting material sublimes into gas, so the effect of the dry ice blasting process is not impaired.
 また、ドライアイスブラスト材により被転写フィルム残存物を除去した後、更に、支持体フィルムを洗浄することが好ましい。例えば、水を入れた水槽中にドライアイスブラスト材による洗浄後の支持体フィルムを浸漬し、支持体フィルム表面に残存する被転写フィルム残存物を除去する。さらに、洗浄剤を用いて支持体フィルムを洗浄すると、より効果的に残存する被転写フィルム残存物を除去することができる。洗浄液を支持体フィルムに高速で吹き付けて残存する被転写フィルム残存物を除去しても良い。また、超音波洗浄器又は超音波発信器を用いて支持体フィルムに超音波を照射することより、効果的に残存する被転写フィルム残存物を除去することができる。また、洗浄の代わりに、鹸化しても良い。また、ベルト部材に載置して搬送している状態の支持体フィルムや、ローラー部材に巻き付けられている状態の支持体フィルムに洗浄剤を吹き付けて残存する被転写フィルム残存物を除去しても良い。この洗浄剤には、例えば、水、又は水に活性剤等を添加したものを用いる。洗浄剤を使用して支持体フィルムに残存する被転写フィルム残存物を除去した後は、支持体フィルムを水洗いし、その後、乾燥する。なお、洗浄液はフィルターを通すことにより異物がない状態で用い、洗浄後、支持体フィルム上の洗浄液を乾燥する。 Further, it is preferable to wash the support film after removing the transfer-receiving film residue with a dry ice blasting material. For example, the support film after washing with a dry ice blasting material is immersed in a water tank containing water to remove the residue of the transferred film remaining on the surface of the support film. Further, by washing the support film with a washing agent, the remaining transfer-receiving film residue can be removed more effectively. A washing liquid may be sprayed onto the support film at high speed to remove remaining transfer-receiving film residue. In addition, by irradiating the support film with ultrasonic waves using an ultrasonic cleaner or an ultrasonic transmitter, the remaining transfer-receiving film residue can be effectively removed. Also, instead of washing, saponification may be performed. Alternatively, a cleaning agent may be sprayed onto the support film being conveyed while being placed on the belt member or the support film being wound around the roller member to remove the remaining transfer-receiving film residue. good. For this cleaning agent, for example, water or water to which an active agent or the like is added is used. After removing transfer-receiving film residues remaining on the support film using a cleaning agent, the support film is washed with water and then dried. The washing liquid is passed through a filter so as to be free of foreign matter, and after washing, the washing liquid on the support film is dried.
 また、ドライアイスブラスト材を複数回に分けて支持体フィルムに吹き付けても良い。例えば、複数のドライアイスブラスト装置を設け、各ドライアイスブラスト装置から同じ粒径又は異なった大きさの粒径のドライアイスブラスト材を支持体フィルムに吹き付ける。ドライアイスブラスト装置は、ドライアイスブラスト材を生成する量に限度があるため、使用すべきドライアイスブラスト材の量が多い場合は、複数のドライアイスブラスト装置を設けて処理を行った方が良い。つまり、1つだけドライアイスブラスト装置を設けて処理を行おうとすると、ドライアイスブラスト材の生成量が足りず、良好に被転写フィルム残存物を除去することができないおそれがある。従って、複数のドライアイスブラスト装置を設け、複数回に分けてドライアイスブラスト材を吹き付けることで、被転写フィルム残存物を十分に除去することが可能となる。 Alternatively, the dry ice blasting material may be sprayed onto the support film in multiple batches. For example, a plurality of dry ice blasting devices are provided, and dry ice blasting materials having the same particle size or different particle sizes are sprayed onto the support film from each dry ice blasting device. Dry ice blasting equipment has a limit to the amount of dry ice blasting material that can be generated, so if the amount of dry ice blasting material to be used is large, it is better to install multiple dry ice blasting equipment for processing. . In other words, if only one dry ice blasting device is provided for processing, the amount of dry ice blasting material generated is insufficient, and there is a risk that the transfer-receiving film residue cannot be satisfactorily removed. Therefore, by providing a plurality of dry ice blasting devices and blowing the dry ice blast material in a plurality of times, it is possible to sufficiently remove the transfer-receiving film residue.
<転写性積層フィルムロールの製造方法>
 本発明の転写性積層フィルムロールの製造方法は、転写性積層フィルムのロール体である転写性積層フィルムロールの製造方法であって、本発明の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された支持体フィルム、又は本発明の支持体フィルムの洗浄方法により洗浄した支持体フィルムの上に、被転写フィルムを積層して転写性積層フィルムを作製し、当該転写性積層フィルムを巻き取って、転写性積層フィルムロールを製造することを特徴とする。
<Manufacturing method of transferable laminated film roll>
The method for producing a transferable laminated film roll of the present invention is a method for producing a transferable laminated film roll, which is a roll body of a transferable laminated film, and cleaning is unnecessary by the method for determining whether or not a support film can be reused according to the present invention. A transfer-receiving film is laminated on the determined support film or the support film washed by the method for washing a support film of the present invention to prepare a transferable laminated film, and the transferable laminated film is wound up. and manufacturing a transferable laminated film roll.
 「転写性積層フィルム」とは、支持体フィルムの上に、少なくとも被転写フィルムを積層した積層フィルムのことをいう。 "Transferable laminated film" refers to a laminated film in which at least a transfer-receiving film is laminated on a support film.
 支持体フィルム上に積層される被転写フィルムの種類は、特に限定されず、例えば位相差フィルム、偏光フィルム、保護フィルム、ハードコートフィルム、剥離フィルム、離型フィルム、基材フィルム、光吸収フィルム等を積層することができる。 The type of film to be transferred laminated on the support film is not particularly limited, and examples include retardation films, polarizing films, protective films, hard coat films, release films, release films, base films, light absorbing films, and the like. can be laminated.
 支持体フィルム上に形成される被転写フィルムの樹脂材料は、特に限定されず、例えばシクロオレフィン系樹脂、ポリプロピレン系樹脂、フマル酸ジエステル系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリアリレート系樹脂、セルロースエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレン系樹脂を1種又は2種以上用いることができる。 The resin material of the transfer-receiving film formed on the support film is not particularly limited. It is possible to use one or more kinds of resins, cellulose ester resins, polyamide resins, polyimide resins, and styrene resins.
 これらの中でも、支持体フィルムや粘着層等に対しても一定以上の接着強度を与えることが可能なカルボニル基、エステル基、アミド基等の極性基を有する高分子材料を含有することが好ましい。したがって、(メタ)アクリル系樹脂、スチレン・(メタ)アクリレート共重合体、フマル酸ジエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、一部のシクロオレフィン系樹脂、セルロースエステル系樹脂、などを用いるのが好ましい。 Among these, it is preferable to contain a polymer material having a polar group such as a carbonyl group, an ester group, or an amide group, which can give a certain level of adhesive strength to the support film, the adhesive layer, and the like. Therefore, (meth)acrylic resins, styrene/(meth)acrylate copolymers, diester fumarate resins, polyamide resins, polyimide resins, some cycloolefin resins, cellulose ester resins, etc. are used. is preferred.
 より具体的には、(メタ)アクリル系樹脂としては特開2021-89301号公報等に記載されているような(メタ)アクリル酸エステル/フェニルマレイミドに由来する構造単位などを含む共重合体であることが好ましい。 More specifically, the (meth)acrylic resin is a copolymer containing structural units derived from (meth)acrylic acid ester/phenylmaleimide as described in JP-A-2021-89301. Preferably.
 シクロオレフィン系ポリマーとしては、特許2977274号公報に記載ポリマー等、及び特開2017-82143号公報等に記載されているようなシクロオレフィンモノマーを重合したポリマーであることが好ましい。 The cycloolefin-based polymer is preferably a polymer described in Japanese Patent No. 2977274 or a polymer obtained by polymerizing a cycloolefin monomer as described in Japanese Patent Application Laid-Open No. 2017-82143.
 フマル酸エステル系樹脂としては特許第6572532号公報、特許第5298535号公報、特許第5262013号公報等に記載のポリマーを用いることが好ましい。 As the fumaric acid ester-based resin, it is preferable to use the polymers described in Japanese Patent No. 6572532, Japanese Patent No. 5298535, Japanese Patent No. 5262013, and the like.
 ポリイミド系樹脂としては、光学特性に優れた特開2014-151559号公報、及び特開2019-59834号公報、特開2021-59731号公報等に記載の可溶性透明ポリイミド樹脂であることが好ましい。また国際公開2019/203037号等に記載されているような複数種のポリイミド樹脂をブレンドした組成物であっても構わない。 The polyimide-based resin is preferably a soluble transparent polyimide resin described in JP-A-2014-151559, JP-A-2019-59834, JP-A-2021-59731, etc., which have excellent optical properties. Moreover, it may be a composition in which a plurality of types of polyimide resins are blended as described in International Publication No. 2019/203037.
 セルロースエステル系樹脂としては、特開平10-45804号公報、同08-231761号公報、米国特許第2319052号明細書等に記載されているセルロースアセテートプロピオネート、セルロースアセテートブチレート等の混合脂肪酸エステルを用いることができる。なかでも、セルローストリアセテート、セルロースアセテートプロピオネートが好ましい。 Examples of cellulose ester-based resins include mixed fatty acid esters such as cellulose acetate propionate and cellulose acetate butyrate described in JP-A-10-45804, JP-A-08-231761, and US Pat. No. 2,319,052. can be used. Among them, cellulose triacetate and cellulose acetate propionate are preferred.
 また、特開2018-045220号公報等に記載されているようなUV硬化したのちに転写するフィルムの製造方法に対しても適用することができる。 In addition, it can also be applied to a method for producing a film in which transfer is performed after UV curing, as described in JP-A-2018-045220.
 本発明に係る被転写フィルムは、必要に応じて添加剤を更に含んでもよく、分子量1000以下の添加剤を、被転写フィルムに対して0.0001~1質量%の範囲内で含有することが好ましい。他の成分の例としては、公知の酸化防止剤、ゴム粒子、マット剤(微粒子)、可塑剤及び紫外線吸収剤、帯電防止剤等が挙げられる。より好ましい含有量は0.001~0.1質量%の範囲内である。ただし、ゴム粒子に関しては、屈折率が略同等で光学特性を取り崩さないマトリックスポリマー(アクリルポリマー等)に対しては、所望の物理特性・耐久性を付与できるよう任意の量(1~90質量%、好ましくは20~80質量%)を入れても良い。 The transfer film according to the present invention may further contain an additive as necessary, and may contain an additive having a molecular weight of 1000 or less within the range of 0.0001 to 1% by mass relative to the transfer film. preferable. Examples of other components include known antioxidants, rubber particles, matting agents (fine particles), plasticizers, ultraviolet absorbers, antistatic agents, and the like. A more preferable content is in the range of 0.001 to 0.1% by mass. However, with respect to rubber particles, for matrix polymers (acrylic polymers, etc.) that have approximately the same refractive index and do not lose optical properties, any amount (1 to 90 mass %, preferably 20 to 80% by mass) may be added.
 酸化防止剤としては、公知のものを使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系の各化合物を好ましく用いることができる。これらを添加することで被転写フィルムの経時保存性を向上させることができる。具体的には、BASFジャパン株式会社製の「IrgafosXP40、IrgafosXP60(商品名)」等のラクトン系化合物、住友化学株式会社製の「Sumilizer TPL-R」及び「Sumilizer TP-D」等のイオウ系化合物、BASFジャパン株式会社製の「Irganox(登録商標)1076」、「Irganox(登録商標)1010」、株式会社ADEKA製の「アデカスタブ(登録商標)AO-50」等のフェノール系化合物、住友化学株式会社製の「Sumilizer(登録商標) GM」及び「Sumilizer(登録商標) GS」等の二重結合系化合物、BASFジャパン株式会社製の「Tinuvin(登録商標)144」及び「Tinuvin(登録商標)770」、株式会社ADEKA製の「ADK STAB(登録商標)LA-52」等のヒンダードアミン系化合物、住友化学株式会社製の「Sumilizer(登録商標)GP」、株式会社ADEKA製の「ADK STAB(登録商標) PEP-24G」、「ADK STAB(登録商標) PEP-36」及び「ADK STAB(登録商標) 3010」、BASFジャパン株式会社製の「IRGAFOS P-EPQ」、堺化学工業株式会社製の「GSY-P101」等のリン系化合物、米国特許第4137201号明細書に記載されているような酸補足剤等を含有させることも可能である。これらの酸化防止剤は、1種のみを用いても数種の異なった系の化合物を併用することもできる。 A known antioxidant can be used. In particular, lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used. By adding these, it is possible to improve the storage stability of the transfer-receiving film over time. Specifically, lactone compounds such as "IrgafosXP40, IrgafosXP60 (trade name)" manufactured by BASF Japan Ltd., sulfur compounds such as "Sumilizer TPL-R" and "Sumilizer TP-D" manufactured by Sumitomo Chemical Co., Ltd. , BASF Japan Co., Ltd. "Irganox (registered trademark) 1076", "Irganox (registered trademark) 1010", ADEKA Co., Ltd. "Adekastab (registered trademark) AO-50" phenolic compounds, Sumitomo Chemical Co., Ltd. Double bond compounds such as "Sumilizer (registered trademark) GM" and "Sumilizer (registered trademark) GS" manufactured by BASF Japan Co., Ltd. "Tinuvin (registered trademark) 144" and "Tinuvin (registered trademark) 770" , Hindered amine compounds such as "ADK STAB (registered trademark) LA-52" manufactured by ADEKA Corporation, "Sumilizer (registered trademark) GP" manufactured by Sumitomo Chemical Co., Ltd., "ADK STAB (registered trademark)" manufactured by ADEKA Corporation PEP-24G", "ADK STAB (registered trademark) PEP-36" and "ADK STAB (registered trademark) 3010", "IRGAFOS P-EPQ" manufactured by BASF Japan, "GSY- P101", an acid scavenger as described in US Pat. No. 4,137,201, and the like. These antioxidants can be used alone or in combination of several different types of compounds.
 ゴム粒子は、ゴム状重合体を含む粒子である。ゴム粒子は、主に被転写フィルムの屈曲性を向上させる目的で添加される。ゴム状重合体は、ガラス転移温度が20℃以下の軟質な架橋重合体である。そのような架橋重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、及びオルガノシロキサン系架橋重合体が含まれる。中でも、(メタ)アクリル系樹脂との屈折率差が小さく、被転写フィルムの透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。 A rubber particle is a particle containing a rubber-like polymer. Rubber particles are added mainly for the purpose of improving the flexibility of the transferred film. A rubber-like polymer is a soft crosslinked polymer having a glass transition temperature of 20° C. or less. Examples of such crosslinked polymers include butadiene crosslinked polymers, (meth)acrylic crosslinked polymers, and organosiloxane crosslinked polymers. Among them, a (meth)acrylic crosslinked polymer is preferable from the viewpoint that the refractive index difference with the (meth)acrylic resin is small and the transparency of the film to be transferred is less likely to be impaired. polymer) is more preferred.
 紫外線吸収剤としては、ベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系のもの等が挙げられる。例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。 Examples of ultraviolet absorbers include benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based ones. For example, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3, Triazoles such as 5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone benzophenones such as
 微粒子としては、無機化合物の例として、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。また、有機化合物の微粒子も好ましく使用することができる。有機化合物の例としてはポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、アクリルスチレン系樹脂、シリコーン系樹脂、ポリカーボネート樹脂、ベンゾグアナミン系樹脂、メラミン系樹脂、ポリオレフィン系粉末、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、あるいはポリフッ化エチレン系樹脂、澱粉等の有機高分子化合物の粉砕分級物や懸濁重合法で合成した高分子化合物を用いることができる。 Examples of fine particles include inorganic compounds such as silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Mention may be made of magnesium silicate and calcium phosphate. Fine particles of organic compounds can also be preferably used. Examples of organic compounds include polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, acrylic styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, and melamine resins. , Polyolefin powder, polyester resin, polyamide resin, polyimide resin, polyfluoroethylene resin, pulverized classified products of organic polymer compounds such as starch, and polymer compounds synthesized by suspension polymerization can be used. can.
 支持体フィルム上に形成される被転写フィルムの厚さは、特に限定されない。当該支持体フィルムは、厚さ20μm以下の被転写フィルムの形成において、好適にリユースすることができる。また20μm超の厚さ(たとえば40μm等)であっても構わないが、好ましくは1~20μm、より好ましくは3~10μmの厚さである。 The thickness of the transferred film formed on the support film is not particularly limited. The support film can be suitably reused in forming a transfer-receiving film having a thickness of 20 μm or less. The thickness may be more than 20 μm (for example, 40 μm), preferably 1 to 20 μm, more preferably 3 to 10 μm.
 支持体フィルム上に被転写フィルムを形成する方法は、特に限定されず、従来公知であるコンマコーター、グラビア、リバースグラビア、スロットダイ、スライドコーター等の溶液流延法や、溶融流延法によって形成することができる。 The method of forming the transferred film on the support film is not particularly limited, and is formed by a conventionally known solution casting method such as a comma coater, gravure, reverse gravure, slot die, slide coater, or a melt casting method. can do.
<転写性積層フィルムロールの製造装置>
 本発明の転写性積層フィルムロールの製造方法は、例えば図10に示される製造装置を用いて行うことができる。
<Manufacturing Equipment for Transferable Laminated Film Roll>
The production method of the transferable laminated film roll of the present invention can be carried out using, for example, the production apparatus shown in FIG.
 図10は、本発明の転写性積層フィルムロールの製造方法に用いることができる製造装置B200の模式図である。製造装置B200は、供給部B210と、塗布部B220と、乾燥部B230と、冷却部B240と、巻き取り部B250とを有する。Ba~Bdは、支持体フィルムB110を搬送する搬送ロールを示す。 FIG. 10 is a schematic diagram of a manufacturing apparatus B200 that can be used in the method for manufacturing a transferable laminated film roll of the present invention. The manufacturing apparatus B200 has a supply section B210, a coating section B220, a drying section B230, a cooling section B240, and a winding section B250. Ba to Bd indicate transport rolls that transport the support film B110.
 供給部B210は、巻き芯に巻かれた帯状の支持体フィルムB110のロール体B201を繰り出す繰り出し装置(不図示)を有する。支持体フィルムB110は、本発明の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された支持体フィルム、又は本発明の支持体フィルム洗浄方法により洗浄した支持体フィルムである。ロール体B201は、本発明の支持体フィルムロールの製造方法で製造されたフィルムロールであってよい。 The supply unit B210 has a delivery device (not shown) that delivers a roll B201 of the band-shaped support film B110 wound around the core. The support film B110 is a support film that has been determined not to require cleaning by the method for determining reusability of a support film of the present invention, or a support film that has been cleaned by the method for cleaning a support film of the present invention. The roll B201 may be a film roll manufactured by the method for manufacturing a support film roll of the present invention.
 塗布部B220は、塗布装置であって、支持体フィルムB110を保持するバックアップロールB221と、バックアップロールB221で保持された支持体B110に、被転写フィルム用溶液を塗布する塗布ヘッドB222と、塗布ヘッドB222の上流側に設けられた減圧室B223とを有する。 The coating unit B220 is a coating device, and includes a backup roll B221 that holds the support film B110, a coating head B222 that coats the support B110 held by the backup roll B221 with the solution for the transferred film, and a coating head. and a decompression chamber B223 provided upstream of B222.
 塗布ヘッドB222から吐出される被転写フィルム用溶液の流量は、不図示のポンプにより調整可能となっている。塗布ヘッドB222から吐出する被転写フィルム用溶液の流量は、予め調整した塗布ヘッドB222の条件で連続塗布したときに、安定して所定の膜厚の塗布層を形成できる量に設定されている。 The flow rate of the transfer film solution discharged from the coating head B222 can be adjusted by a pump (not shown). The flow rate of the transfer film solution discharged from the coating head B222 is set to an amount that can stably form a coating layer of a predetermined thickness when continuous coating is performed under the conditions of the coating head B222 adjusted in advance.
 減圧室B223は、塗布時に塗布ヘッドB222からの被転写フィルム用溶液と支持体フィルムB110との間に形成されるビード(塗布液の溜まり)を安定化するための機構であり、減圧度を調整可能となっている。減圧室B223は、減圧ブロワ(不図示)に接続されており、内部が減圧されるようになっている。減圧室B223は、空気漏れがない状態になっており、かつ、バックアップロールとの間隙も狭く調整され、安定した塗布液のビードを形成できるようになっている。 The decompression chamber B223 is a mechanism for stabilizing the bead (collection of coating solution) formed between the solution for the film to be transferred from the coating head B222 and the support film B110 during coating, and adjusts the degree of decompression. It is possible. The decompression chamber B223 is connected to a decompression blower (not shown) so that the inside is decompressed. The decompression chamber B223 is in a state without air leakage, and the gap with the backup roll is adjusted to be narrow, so that a stable bead of the coating liquid can be formed.
 乾燥部B230は、支持体フィルムB110の表面に塗布された塗膜を乾燥させる乾燥装置であって、乾燥室B231と、乾燥用気体の導入口B232と、排出口B233とを有する。乾燥風の温度及び風量は、塗膜の種類及び支持体フィルムB110の種類により適宜決められる。乾燥部B230で乾燥風の温度及び風量、乾燥時間などの条件を設定することにより、乾燥後の塗膜の残留溶媒量を調整することができる。乾燥後の塗膜の残留溶媒量は、乾燥後の塗膜の単位質量と、該塗膜を十分に乾燥した後の質量を比較することにより測定することができる。 The drying section B230 is a drying device that dries the coating film applied to the surface of the support film B110, and has a drying chamber B231, a drying gas inlet B232, and an outlet B233. The temperature and air volume of the drying air are appropriately determined depending on the type of the coating film and the type of the support film B110. By setting conditions such as the temperature and air volume of the drying air and the drying time in the drying section B230, the amount of residual solvent in the coating film after drying can be adjusted. The amount of residual solvent in the coating film after drying can be measured by comparing the unit mass of the coating film after drying with the mass after sufficiently drying the coating film.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these. In the examples, "parts" or "%" are used, but "mass parts" or "mass%" are indicated unless otherwise specified.
<使用後の支持体フィルムの準備>
 リユース可否判定を行うために、下記のとおり、支持体フィルム上に、被転写フィルムとして光学フィルムを積層させて転写性積層フィルムを形成し、エージング後に被転写フィルムを剥離することで、「使用後の支持体フィルム」を得た。
<Preparation of support film after use>
In order to determine whether it can be reused, as described below, an optical film is laminated on a support film as a film to be transferred to form a transferable laminated film, and after aging, the film to be transferred is peeled off. support film” was obtained.
(支持体フィルム)
 支持体フィルムとして、ポリエチレンテレフタレートフィルム(PETフィルム、東レ社製セラピールHP2、ノンシリコーン系剥離剤を含む離型層あり、厚さ75μm、巾1300mm、長さ1000mに加工、屈折率1.66)を用いた。なお、屈折率は、23℃、50%RHの環境下で測定した値である。
(Support film)
As a support film, a polyethylene terephthalate film (PET film, Therapyl HP2 manufactured by Toray Industries, with a release layer containing a non-silicone release agent, processed into a thickness of 75 μm, a width of 1,300 mm, and a length of 1,000 m, with a refractive index of 1.66) was used. Using. The refractive index is a value measured under an environment of 23° C. and 50% RH.
(被転写フィルム用溶液の調製)
 下記材料を混合して混合液を調整した。
 メチルエチルケトン(沸点80℃)         900質量部
 アクリル系樹脂                   80質量部
 アクリル系ゴム粒子                 20質量部
(Preparation of solution for transferred film)
A mixed solution was prepared by mixing the following materials.
Methyl ethyl ketone (boiling point 80°C) 900 parts by mass Acrylic resin 80 parts by mass Acrylic rubber particles 20 parts by mass
 上記アクリル樹脂には、MMA/PMI/MADA共重合体(60/20/20質量比、Mw:150万、Tg:137℃)を用いた。また、各略称は、以下のとおりである。
 MMA:メタクリル酸メチル
 PMI:フェニルマレイミド
 MADA:アクリル酸アダマンチル
MMA/PMI/MADA copolymer (60/20/20 mass ratio, Mw: 1,500,000, Tg: 137°C) was used as the acrylic resin. Moreover, each abbreviation is as follows.
MMA: methyl methacrylate PMI: phenylmaleimide MADA: adamantyl acrylate
 上記アクリル系ゴム粒子は特開2021-89301号公報に記載の方法に基づいて合成した。平均一次粒子径は200nmであった。 The above acrylic rubber particles were synthesized based on the method described in JP-A-2021-89301. The average primary particle size was 200 nm.
 さらに、混合液に分散剤(ポリオキシエチレンラウリルエーテルリン酸ナトリウム:分子量332)を、被転写フィルム中に0.3質量%となる添加量を添加し、被転写フィルム用溶液を得た。 Furthermore, a dispersing agent (sodium polyoxyethylene lauryl ether phosphate: molecular weight 332) was added to the mixture in an amount of 0.3% by mass in the transfer film to obtain a transfer film solution.
(被転写フィルムの作製)
 支持体フィルムの離型層に、被転写フィルム用溶液を、バックコート法によりダイを用い、搬送速度10m/分の速度で塗布した後、下記の初期乾燥及び後乾燥により、被転写フィルムを乾燥した。
(Preparation of transferred film)
After applying the transfer film solution to the release layer of the support film by a back coating method using a die at a conveying speed of 10 m / min, the transfer film is dried by the following initial drying and post-drying. bottom.
(初期乾燥)
 第1ステップ:40℃で1分
 第2ステップ:70℃で1分
 第3ステップ:100℃で1分
 第4ステップ:130℃で2分
(後乾燥)
 第5ステップ:120℃で15分
(initial drying)
1st step: 1 minute at 40°C 2nd step: 1 minute at 70°C 3rd step: 1 minute at 100°C 4th step: 2 minutes at 130°C (post drying)
Fifth step: 15 minutes at 120°C
 上記工程により、厚さ3μm、屈折率1.50の被転写フィルムを、支持体フィルム上に作製した。なお、屈折率は、23℃、50%RHの環境下で測定した値である。 A transfer-receiving film having a thickness of 3 μm and a refractive index of 1.50 was produced on the support film by the above process. The refractive index is a value measured under an environment of 23° C. and 50% RH.
(エージング工程)
 支持体フィルム上の被転写フィルムと粘着フィルムとを貼合し、エージング工程を行った。具体的には、粘着フィルム(日榮新化株式会社製PET75-T723N(6)、剥離フィルム19μm/粘着層6μm/表面基材75μm)の剥離フィルムを剥がし、搬送されてきた被転写フィルムの支持体フィルムと反対側の面に、粘着フィルムを貼合した。貼合後、支持体フィルム/被転写フィルム/粘着層/表面基材が積層された状態で巻取りを行い、1週間静置させた。
(Aging process)
The film to be transferred on the support film and the adhesive film were laminated, and an aging process was performed. Specifically, the release film of the adhesive film (PET75-T723N(6) manufactured by Nisei Shinka Co., Ltd., release film 19 μm/adhesive layer 6 μm/surface substrate 75 μm) is peeled off, and the transferred film is supported. An adhesive film was attached to the surface opposite to the body film. After lamination, the support film/transferred film/adhesive layer/surface base material were laminated in a state of being wound up and allowed to stand for one week.
 エージング工程後に、支持体フィルムと被転写フィルムを、ロール搬送機にて連続的に剥離した。剥離しながら、支持体フィルムを巻き取り、「使用後の支持体フィルム」を得た。 After the aging process, the support film and the transferred film were continuously separated by a roll conveyor. While peeling, the support film was wound up to obtain a "used support film".
<リユース可否判定(1)>
 リユース可否判定システムを用いて、上記「使用後の支持体フィルム」を対象としたリユース可否判定を行った。図11に、使用したリユース可否判定システムのブロック図を示す。
<Reusability determination (1)>
Using a reusability determination system, the reusability determination was performed for the above-mentioned "support film after use". FIG. 11 shows a block diagram of the reusability determination system used.
 本実施例では、光学的測定手段として、図5のように高輝度集光型ライン照明301(シーシーエス社製LDL-222X42CIR-LACL)及びラインスキャン式ハイパースペクトルカメラ303(Resonon社製Pika XC2)を組み合わせてなる撮像部を備える装置を、搬送手段の搬送ライン上に設置して用いた。当該光学的測定手段は、画像データを取得する撮像部と、画像データを画像処理する画像処理部と、撮像部や画像処理部で取得した各種データを判定手段に送信する受送信部と、各処理を制御する制御部とを備える。 In this embodiment, as optical measurement means, a high-intensity condensing line illumination 301 (LDL-222X42CIR-LACL manufactured by CCS Corporation) and a line scan type hyperspectral camera 303 (Pika XC2 manufactured by Resonon) are used as shown in FIG. A device equipped with the combined imaging unit was installed and used on the transport line of the transport means. The optical measurement means includes an imaging unit that acquires image data, an image processing unit that processes the image data, a transmission/reception unit that transmits various data acquired by the imaging unit and the image processing unit to the determination unit, and and a control unit for controlling the processing.
 判定手段としては、光学的測定手段から送信された各種データを受信する受送信部と、画像データを画像処理する画像処理部と、支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定部と、各種データや判定結果を表示する表示部と、各処理を制御する制御部とを備えるコンピューターを用いた。 The determining means includes a transmitting/receiving section for receiving various data transmitted from the optical measuring means, an image processing section for performing image processing on image data, and determining whether or not the support film can be reused, including whether it is necessary to wash the support film. A computer including a determination unit, a display unit for displaying various data and determination results, and a control unit for controlling each process was used.
 本実施例では、図13に示すフローチャートの手順でフィルムのリユース可否判定を行った。なお、測定条件設定ステップは、ユーザー操作で行い、それ以降のステップは、各ステップを光学的測定手段及び判定手段に実行させるリユース可否判定プログラムを用いて、光学的測定手段及び判定手段が主体として行った。 In this example, the reusability of the film was determined according to the procedure of the flowchart shown in FIG. In addition, the measurement condition setting step is performed by user operation, and the subsequent steps are performed mainly by the optical measurement means and the determination means using a reusability determination program that causes the optical measurement means and the determination means to execute each step. went.
 図13に示すフローチャートの各ステップのうち、(S3-2)~(S3-5)は測定ステップに含まれ、(S3-2)~(S3-5)は判定ステップに含まれる。以下、各ステップについて説明する。 Of the steps in the flowchart shown in FIG. 13, (S3-2) to (S3-5) are included in the measurement steps, and (S3-2) to (S3-5) are included in the determination steps. Each step will be described below.
 測定条件設定ステップ(S3-1)では、支持体フィルム上に形成されていた被転写フィルムに関するデータに基づいて、光学的測定手段である全面厚さ計の受光位置を、被転写フィルム残存物の厚さが強調される位置に設定した。 In the measurement condition setting step (S3-1), the light-receiving position of the entire surface thickness gauge, which is an optical measuring means, is set to the remaining object of the transfer film based on the data on the transfer film formed on the support film. It is set at a position where the thickness is emphasized.
 具体的には、まず以下のデータに基づき、反射光の位相が揃う角度を求めた。すなわち、被転写フィルム残存物表面で反射する反射光Aと、被転写フィルム残存物表面で屈折して被転写フィルム残存物内に入射し、支持体フィルム表面で反射して再び被転写フィルム残存物表面で屈折して出てくる反射光Bの光路差が、光源の射出波長λの倍数となる角度を求めた。 Specifically, we first determined the angle at which the phases of the reflected light are aligned based on the following data. In other words, the reflected light A reflected on the surface of the transfer film residue is refracted by the surface of the transfer film residue, enters the transfer film residue, is reflected by the support film surface, and is reflected again by the transfer film residue. The angle at which the optical path difference of the reflected light B refracted at the surface is a multiple of the emission wavelength λ of the light source was obtained.
[1]支持体フィルムの膜厚(d1) :75μm
[2]支持体フィルムの屈折率(n1):1.66
[3]被転写フィルムの膜厚(d2) :3.0μm
[4]被転写フィルムの屈折率(n2):1.50
[5]光源のピーク波長       :780nm
[1] Thickness of support film (d1): 75 μm
[2] Refractive index of support film (n1): 1.66
[3] Thickness of transferred film (d2): 3.0 μm
[4] Refractive index of transferred film (n2): 1.50
[5] Peak wavelength of light source: 780 nm
 入射角及び反射角が、上記求めた反射光の位相が揃う角度になるように、光学的測定手段の受光位置を調整した。 The light-receiving position of the optical measurement means was adjusted so that the incident angle and the reflection angle were angles at which the phases of the reflected light obtained above were aligned.
 また、上記[1]~[5]のデータに基づいて、取得される干渉スペクトルを予測し、支持体フィルムの干渉スペクトルの周波数成分が除去され、被転写フィルムの干渉スペクトルの周波数成分が強調されるように計算波長範囲を設定した。 Further, based on the data of [1] to [5] above, the obtained interference spectrum is predicted, the frequency components of the interference spectrum of the support film are removed, and the frequency components of the interference spectrum of the transferred film are emphasized. The calculation wavelength range was set as follows.
 撮像ステップ(S3-2)では、搬送手段により速度5m/分で搬送されている「使用後の支持体フィルム」上を、全面厚さ計を用いて幅手方向全面を撮影し、画像データとして2次元の反射スペクトル分布データを取得した。 In the imaging step (S3-2), the "used support film" conveyed by the conveying means at a speed of 5 m/min is photographed using a thickness gauge on the entire surface in the width direction, and the image data is obtained. Two-dimensional reflectance spectral distribution data were acquired.
 膜厚データ算出ステップ(S3-3)では、上記得た反射スペクトル分布データに対して画像処理を実行することにより、光のスペクトルに応じた膜厚を算出した。 In the film thickness data calculation step (S3-3), the film thickness according to the light spectrum was calculated by performing image processing on the reflection spectrum distribution data obtained above.
 3次元画像データ生成ステップ(S3-4)では、上記算出した膜厚から、被転写フィルム残存物を検出し、被転写フィルム残存物の幅手方向×長手方向×膜厚方向の距離を求め、表示される3次元画像データを生成した。 In the three-dimensional image data generation step (S3-4), the transfer film residue is detected from the film thickness calculated above, the distance of the transfer film residue in the width direction x length direction x film thickness direction is obtained, 3D image data to be displayed was generated.
 3次元画像データ送信ステップ(S3-5)では、上記生成した3次元画像データを、判定手段に送信した。 At the 3D image data transmission step (S3-5), the generated 3D image data was transmitted to the determination means.
 3次元画像データ受信ステップ(S3-6)では、判定手段が、上記生成した3次元画像データを、光学的測定手段から受信した。 In the three-dimensional image data receiving step (S3-6), the determination means received the generated three-dimensional image data from the optical measurement means.
 HOG特徴量算出ステップ(S3-7)では、上記受信した3次元画像データに対して画像処理を実行することにより、HOG特徴量を算出した。 In the HOG feature amount calculation step (S3-7), the HOG feature amount was calculated by executing image processing on the received three-dimensional image data.
 輪郭明確化ステップ(S3-8)では、上記算出したHOG特徴量を用いて、被転写フィルム残存物の輪郭の明確化を行った。 In the contour clarification step (S3-8), the contour of the transferred film residue was clarified using the HOG feature amount calculated above.
 面積・最小幅算出ステップ(S3-9)では、上記輪郭を明確化した被転写フィルム残存物の面積及び最小幅を算出した。 In the area/minimum width calculation step (S3-9), the area and minimum width of the transfer-receiving film residue whose outline was clarified were calculated.
 リユース可否判定ステップ(S3-10)では、被転写フィルム残存物の膜厚、最小幅、面積、及び個数に基づいて、支持体フィルムが洗浄してもリユースできないものは「リユース不可」、洗浄すればリユースできるものは「リユース可(洗浄要)」、洗浄しなくてもリユースできるものは「リユース可(洗浄不要)」として判定した。 In the reusability determination step (S3-10), based on the film thickness, minimum width, area, and number of remaining objects on the transfer film, if the support film cannot be reused even after washing, Those that can be reused without washing are judged as “reusable (washing required)”, and those that can be reused without washing are judged as “reusable (no washing required)”.
 実施例で用いた判定基準と、リユース可否判定ステップ(S3-10)で判定した結果を、表Iに示す。また、実施データとして、上記の方法で同様に用意した2つの「使用後の支持体フィルム」(試料1及び試料2)に対して(S3-1)~(S3-9)のステップを実行することで得られた結果を記載する。 Table I shows the determination criteria used in the example and the results determined in the reusability determination step (S3-10). In addition, as implementation data, the steps (S3-1) to (S3-9) are performed on two "support films after use" (Sample 1 and Sample 2) similarly prepared by the above method. The results obtained by
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (S3-1)~(S3-10)のステップを実行することにより、試料1は、「リユース可(洗浄要)」という判定結果を得ることができた。また試料2は、「リユース可(洗浄不要)」という判定結果を得ることができた。
 なお、上記の判定においては洗浄すればリユース可能であるという判定を、後述するドライアイスブラスト処理における洗浄実績を想定して判定しているが、別の洗浄方法の場合や、被転写フィルムの材料・膜厚が異なる場合においては、それぞれ適切な判定基準に設定することができる。
By executing the steps (S3-1) to (S3-10), it was possible to obtain the judgment result that the sample 1 was "reusable (requires cleaning)". In addition, the sample 2 was able to obtain the judgment result of "reusable (no cleaning required)".
In the above judgment, the judgment that it can be reused by washing is made by assuming the washing performance in the dry ice blast treatment described later, but in the case of another washing method or the material of the transfer film・When the film thickness is different, it is possible to set appropriate criteria for each.
<リユース可否判定(2)>
 リユース可否判定システムを用いて、上記「使用後の支持体フィルム」を対象としたリユース可否判定を行った。図12に、使用したリユース可否判定システムのブロック図を示す。
<Reusability determination (2)>
Using a reusability determination system, the reusability determination was performed for the above-mentioned "support film after use". FIG. 12 shows a block diagram of the reusability determination system used.
 第1光学的測定手段としては、図6のように高輝度集光型ライン照明101(シーシーエス社製LN-GA、光源ピーク波長465nm)、レンズ102(株式会社ミュートロン製XL501)、及びモノクロラインセンサーカメラ103(日本エレクトロデバイス社製RMSL8K76CL)を組み合わせてなる撮像部を備える装置を、搬送手段の搬送ライン上に設置して用いた。当該第1光学的測定手段は、画像データを取得する上記撮像部と、画像データを画像処理する画像処理部と、撮像部や画像処理部で取得した各種データを第2光学的測定手段に送信する受送信部と、各処理を制御する制御部とを備える。 As the first optical measurement means, as shown in FIG. 6, a high-intensity condensing line illumination 101 (LN-GA manufactured by CCS Co., light source peak wavelength 465 nm), a lens 102 (XL501 manufactured by Myutron Co., Ltd.), and a monochrome line A device equipped with an imaging unit combined with a sensor camera 103 (RMSL8K76CL manufactured by Nippon Electro-Device Co., Ltd.) was installed on the transport line of the transport means and used. The first optical measurement means includes the imaging section for acquiring image data, an image processing section for image processing the image data, and transmission of various data acquired by the imaging section and the image processing section to the second optical measurement means. and a control unit for controlling each process.
 第2光学的測定手段としては、図7A及び図7Bのように高輝度集光型ライン照明201(シーシーエス社製LN-D2)、ハーフミラーボックス202、レンズ203(株式会社ミュートロン製XLS01)、マウントアダプター204、及びモノクロラインセンサーカメラ205(日本エレクトロデバイス社製RMSL4K100CL)、高速幅手移動機構206を組み合わせてなる撮像部を備える装置を、搬送手段の搬送ライン上に設置して用いた。当該第2光学的測定手段は、画像データを取得する上記撮像部と、画像データを画像処理する画像処理部と、第1光学的測定手段や判定手段と各種データを送受信する受送信部と、各処理を制御する制御部とを備える。また、当該第2光学的測定手段は、正反射で撮像を行うことが可能であるため、高解像度な画像データを取得することができる。 As the second optical measurement means, as shown in FIGS. 7A and 7B, a high-intensity condensing line illumination 201 (LN-D2 manufactured by CCS Co., Ltd.), a half mirror box 202, a lens 203 (XLS01 manufactured by Myutron Co., Ltd.), A device equipped with an image capturing unit comprising a combination of a mount adapter 204, a monochrome line sensor camera 205 (RMSL4K100CL manufactured by Nippon Electro-Device Co., Ltd.), and a high-speed lateral movement mechanism 206 was installed on the transport line of the transport means. The second optical measurement means includes the imaging section that acquires image data, an image processing section that performs image processing on the image data, a transmission/reception section that transmits and receives various data to and from the first optical measurement means and determination means, and a control unit for controlling each process. In addition, since the second optical measurement means can take an image with specular reflection, high-resolution image data can be obtained.
 なお、第2光学的測定手段は、第1光学的測定手段と第2光学的測定手段による撮像位置の間隔が20m(搬送速度が20m/分であることから、時間換算で1分)となるように、第1光学的測定手段に対して支持体フィルムの搬送方向下流に設置した。 In the second optical measuring means, the interval between the imaging positions of the first optical measuring means and the second optical measuring means is 20 m (1 minute in terms of time since the conveying speed is 20 m/min). , was installed downstream of the first optical measuring means in the direction of transport of the support film.
 判定手段としては、第2光学的測定手段から送信された各種データを受信する受送信部と、画像データを画像処理する画像処理部と、支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定部と、各種データや判定結果を表示する表示部と、各処理を制御する制御部とを備えるコンピューターを用いた。 The determining means includes a transmitting/receiving section for receiving various data transmitted from the second optical measuring means, an image processing section for performing image processing on image data, and determining whether or not the support film can be reused, including whether it needs to be washed. A computer including a determination unit for determination, a display unit for displaying various data and determination results, and a control unit for controlling each process was used.
 本実施例では、図14に示すフローチャートの手順で支持体フィルムのリユース可否判定を行った。なお、測定条件設定ステップは、ユーザー操作で行い、それ以降のステップは、各ステップを光学的測定手段及び判定手段に実行させるリユース可否判定プログラムを用いて、光学的測定手段及び判定手段が主体として行った。 In this example, the reusability of the support film was determined according to the procedure of the flowchart shown in FIG. In addition, the measurement condition setting step is performed by user operation, and the subsequent steps are performed mainly by the optical measurement means and the determination means using a reusability determination program that causes the optical measurement means and the determination means to execute each step. went.
 図14に示すフローチャートの各ステップのうち、(S4-2)~(S4-4)は第1測定ステップに含まれ、(S4-5)~(S4-7)は第2測定ステップに含まれ、(S4-8)~(S4-12)は判定ステップに含まれる。以下、各ステップについて説明する。 Among the steps of the flowchart shown in FIG. 14, (S4-2) to (S4-4) are included in the first measurement step, and (S4-5) to (S4-7) are included in the second measurement step. , (S4-8) to (S4-12) are included in the determination step. Each step will be described below.
 測定条件設定ステップ(S4-1)では、支持体フィルム上に形成されていた被転写フィルムに関して、第1光学的測定手段では全面で剥離残りが推定される部位の検出を行い、次いで、第2光学的測定手段の高解像度な測定手段により被転写フィルム残存物の有無を高精度に強調して確認できるような測定システムとして設定した。 In the measurement condition setting step (S4-1), with respect to the transfer-receiving film formed on the support film, the first optical measurement means detects the portion where the peeling residue is estimated to be left over the entire surface. The measurement system was set up so that the existence or non-existence of the transfer-receiving film residue can be confirmed with high precision by the high-resolution measurement means of the optical measurement means.
 具体的には、第2光学的測定手段は、指向性の高い光を支持体フィルムに対して垂直入射させることで、被転写フィルム残存物の輪郭を正確に得られるように設定した。これにより、さらに凹凸による光量変化から変形の状態も見やすく、判別に適した画像を取得することができる。 Specifically, the second optical measurement means was set so that highly directional light was perpendicularly incident on the support film, so that the outline of the transfer-receiving film residue could be accurately obtained. As a result, it is possible to easily see the state of deformation from the change in the amount of light due to unevenness, and to obtain an image suitable for discrimination.
 また、第1光学手段の解像度が87.5μ/画素であるのに対し、第2光学的測定手段の解像度は14μ/画素に設定した。 Also, while the resolution of the first optical means is 87.5 μ/pixel, the resolution of the second optical measurement means is set to 14 μ/pixel.
 第1撮像ステップ(S4-2)では、搬送手段により速度20m/分で搬送されている「使用後の支持体フィルム」上を、第1光学的測定手段を用いて幅手方向全面を撮像し、低解像度画像データを取得した。 In the first imaging step (S4-2), the entire surface in the width direction is imaged using the first optical measuring means on the "used support film" being transported by the transporting means at a speed of 20 m/min. , acquired low-resolution image data.
 位置データ生成ステップ(S4-3)では、上記得た低解像度画像データに対して画像処理を実行することにより、被転写フィルム残存物と想定される検出物の位置データを生成した。具体的には、同時に撮像した範囲内の平均輝度から±10%の値をスレッシュホールドとして、当該スレッシュホールドから外れた輝度を持つ位置を、被転写フィルム残存物と想定される検出物の位置データとした。 In the position data generation step (S4-3), image processing was performed on the low-resolution image data obtained above to generate position data of the detected object assumed to be the transferred film residue. Specifically, a value of ±10% from the average brightness in the range captured at the same time is set as a threshold, and the position of the detected object assumed to be the transferred film residue is the position data that has the brightness outside the threshold. and
 位置データ送信ステップ(S4-4)では、上記生成した位置データを、支持体フィルムの搬送方向下流に設置した第2光学的測定手段に送信した。 In the position data transmission step (S4-4), the generated position data was transmitted to the second optical measuring means installed downstream in the transport direction of the support film.
 位置データ受信ステップ(S4-5)では、第2光学的測定手段が、上記生成した位置データを、第1光学的測定手段から受信した。 In the position data receiving step (S4-5), the second optical measuring means receives the generated position data from the first optical measuring means.
 第2撮像ステップ(S4-6)では、上記生成した位置データに応じた支持体フィルム上の箇所を、正反射で撮像し、高解像度画像データを取得した。具体的には、搬送方向の位置は、搬送速度を加味して測定時間に換算されたデータを用いて測定タイミングを合わせることで調整し、幅手方向の位置は、高速幅手移動機構によって幅手方向に撮像部が移動することによって調整することで、位置データに応じた支持体フィルム上の箇所を撮像した。 In the second imaging step (S4-6), the location on the support film corresponding to the position data generated above was imaged with specular reflection to obtain high-resolution image data. Specifically, the position in the conveying direction is adjusted by aligning the measurement timing using the data converted into the measurement time considering the conveying speed, and the position in the lateral direction is adjusted by the high-speed lateral movement mechanism. By adjusting by moving the imaging unit in the hand direction, the position on the support film corresponding to the position data was imaged.
 高解像度画像データ送信ステップ(S4-7)では、上記取得した高解像度画像データを、判定手段に送信した。 In the high-resolution image data transmission step (S4-7), the acquired high-resolution image data was transmitted to the determination means.
 高解像度画像データ受信ステップ(S4-8)では、判定手段が、上記取得した高解像度画像データを、第2光学的測定手段から受信した。 In the high-resolution image data receiving step (S4-8), the determination means received the acquired high-resolution image data from the second optical measurement means.
 HOG特徴量算出ステップ(S4-9)では、上記受信した高解像度画像データに対して画像処理を実行することにより、HOG特徴量を算出した。 In the HOG feature quantity calculation step (S4-9), the HOG feature quantity was calculated by performing image processing on the received high-resolution image data.
 輪郭明確化ステップ(S4-10)では、上記算出したHOG特徴量を用いて、被転写フィルム残存物の輪郭の明確化を行った。 In the outline clarification step (S4-10), the outline of the transferred film residue was clarified using the HOG feature amount calculated above.
 面積・最小幅算出ステップ(S4-11)では、上記輪郭を明確化した被転写フィルム残存物の面積及び最小幅を算出した。 In the area/minimum width calculation step (S4-11), the area and minimum width of the transfer-receiving film residue whose outline was clarified was calculated.
 リユース可否判定ステップ(S4-12)では、被転写フィルム残存物の膜厚、最小幅、面積、及び個数に基づいて、支持体フィルムが洗浄してもリユースできないものは「リユース不可」、洗浄すればリユースできるものは「リユース可(洗浄要)」、洗浄しなくてもリユースできるものは「リユース可(洗浄不要)」として判定した。 In the reusability judgment step (S4-12), based on the film thickness, minimum width, area, and number of remaining objects on the transfer film, if the support film cannot be reused even after washing, Those that can be reused without washing are judged as “reusable (washing required)”, and those that can be reused without washing are judged as “reusable (no washing required)”.
 実施例で用いた判定基準と、リユース可否判定ステップ(S4-12)で判定した結果を、表IIに示す。また、実施データとして、上記の方法で同様に用意した3つの「使用後の支持体フィルム」(試料3、試料4、及び試料5)に対して(S4-1)~(S4-11)のステップを実行することで得られた結果を記載する。 Table II shows the determination criteria used in the example and the results determined in the reusability determination step (S4-12). In addition, as implementation data, (S4-1) to (S4-11) for three "support films after use" (Sample 3, Sample 4, and Sample 5) prepared in the same manner as described above. Describe the results obtained by performing the steps.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (S4-1)~(S4-12)のステップを実行することにより、試料3は、「リユース可(洗浄要)」という判定結果を得ることができた。また、試料4は、「リユース可(洗浄不要)」という判定結果を得ることができた。さらに、試料5は、「リユース不可」という判定結果を得ることができた。 By executing steps (S4-1) to (S4-12), it was possible to obtain the judgment result that sample 3 was "reusable (requires cleaning)". In addition, the sample 4 was able to obtain the judgment result of "reusable (no cleaning required)". Furthermore, sample 5 was able to obtain the judgment result of "not reusable".
<支持体フィルムの洗浄>
 リユース可否判定(1)で「リユース可(洗浄要)」という判定結果が得られた試料1に対し、(S3-1)~(S3-10)のステップを実行することで得られた被転写フィルム残存物に関するデータに基づいて、支持体フィルム上に残存している被転写フィルム残存物を除去した。以下、詳細を説明する。
<Washing of support film>
Transfer target obtained by executing steps (S3-1) to (S3-10) for sample 1 for which the judgment result of "reusable (cleaning required)" was obtained in reusable judgment (1) Based on the data on film residue, the transferred film residue remaining on the support film was removed. Details will be described below.
 「使用後の支持体フィルム」(試料1)をアンワインダーにセットし、搬送速度20m/分で搬送した。搬送ライン上の支持体フィルムに対して、支持体リユース可否判定で得た被転写フィルム残存物の位置等のデータに基づいて、被転写フィルム残存物が残存している位置にドライアイスブラスト処理を行うことで、支持体フィルム上に残存している被転写フィルム残存物を除去した。 The "support film after use" (Sample 1) was set in the unwinder and conveyed at a conveying speed of 20 m/min. For the support film on the transport line, dry ice blasting is applied to the position where the transfer film remains, based on the data such as the position of the transfer film residue obtained by the support reusability judgment. By doing so, the transfer-receiving film residue remaining on the support film was removed.
 ドライアイスブラスト処理は、ブラストノズル20と吸引ノズル21を図9に示すように設置して行った。雰囲気温度を20℃にし、支持体フィルムの温度を20℃でφ500mmのローラー部材(支持部材)により支持された状態で雰囲気の露点を0℃未満とし、除電装置により除電を行い、吸引ノズルを設けて吸引を行い、ドライアイスブラスト材を支持体フィルム表面に吹き付け、最後に粘着式ウェブクリーナーにより支持体フィルムの洗浄を完了した。 The dry ice blasting was performed by installing the blast nozzle 20 and the suction nozzle 21 as shown in FIG. The atmosphere temperature is set to 20°C, the dew point of the atmosphere is set to less than 0°C in a state in which the support film is supported by a roller member (support member) of φ500 mm at a temperature of 20°C, static electricity is removed by a static eliminator, and a suction nozzle is provided. A dry ice blasting material was blown onto the surface of the support film, and finally the support film was completely cleaned with an adhesive web cleaner.
 ドライアイスブラスト材には、平均粒子径φ3×2mmのペレット状のドライアイス粒子を用いた。また、供給エアー圧は、3.5kg/cmで行った。 Pellet-like dry ice particles with an average particle size of φ3×2 mm were used as the dry ice blast material. Moreover, the supplied air pressure was 3.5 kg/cm 2 .
 当該方法により洗浄した支持体フィルムについて、再び上記同様のリユース可否判定を行ったところ、「リユース可(洗浄不要)」という判定結果を得ることができ、洗浄により被転写フィルム残存物を除去できていることが確認できた。 When the support film washed by the method was subjected to reusability judgment in the same manner as above, the judgment result was "reusable (washing not necessary)", and the residue of the transferred film could be removed by washing. I was able to confirm that there is.
 本発明は、剥離転写法による積層体製造において使用された支持体フィルムのリユースの可否を効率的にかつ高精度で判定できる支持体フィルムのリユース可否判定方法、リユース可否判定プログラム、及びリユース可否判定システム、並びに当該支持体フィルムのリユース可否判定方法を利用した支持体フィルムの洗浄方法、支持体フィルムのリユース方法、支持体フィルムロールの製造方法、及び転写性積層フィルムロールの製造方法に利用することができる。 The present invention provides a support film reusability determination method, a reusability determination program, and a reusability determination method that can efficiently and highly accurately determine whether a support film used in laminate production by a peel transfer method can be reused. Use in a method for cleaning a support film, a method for reusing a support film, a method for manufacturing a support film roll, and a method for manufacturing a transferable laminated film roll using a system and a method for determining whether the support film is reusable. can be done.
20 ブラストノズル
21 吸引ノズル
22 搬送ローラー
23 支持体フィルム
101 高輝度集光型ライン照明
102 レンズ
103 モノクロラインセンサーカメラ
201 高輝度集光型ライン照明
202 ハーフミラーボックス
203 レンズ
204 マウントアダプター
205 モノクロラインセンサーカメラ
206 高速幅手移動機構
301 高輝度集光型ライン照明
303 ラインスキャン式ハイパースペクトルカメラ
B110 支持体フィルム
B200 製造装置
B210 供給部
B220 塗布部
B230 乾燥部
B240 冷却部
B250 巻き取り部
20 Blast nozzle 21 Suction nozzle 22 Transport roller 23 Support film 101 High-intensity condensing line illumination 102 Lens 103 Monochrome line sensor camera 201 High-intensity condensing line illumination 202 Half mirror box 203 Lens 204 Mount adapter 205 Monochrome line sensor camera 206 High-speed width movement mechanism 301 High-intensity condensing line illumination 303 Line scanning hyperspectral camera B110 Support film B200 Manufacturing apparatus B210 Supply unit B220 Coating unit B230 Drying unit B240 Cooling unit B250 Winding unit

Claims (9)

  1.  剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定方法であって、
     前記支持体フィルムを搬送しながら、光学的測定手段を用いて前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、
     測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定ステップとを有する
     ことを特徴とする支持体フィルムのリユース可否判定方法。
    A method for determining the reusability of a support film used in laminate production by a peel transfer method,
    a measuring step of measuring data relating to a transfer-receiving film residue remaining on the support film using an optical measuring means while transporting the support film;
    and determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue.
  2.  前記測定ステップの前に、前記光学的測定手段の測定条件設定ステップを有し、
     当該測定条件設定ステップにおいて、前記支持体フィルム上に形成されていた被転写フィルムに関するデータに基づいて、前記測定条件を被転写フィルム残存物の厚さ又は材質が強調される測定条件に設定する
     ことを特徴とする請求項1に記載の支持体フィルムのリユース可否判定方法。
    Before the measurement step, a measurement condition setting step for the optical measurement means,
    In the measurement condition setting step, setting the measurement condition to a measurement condition that emphasizes the thickness or material of the transfer-receiving film residue based on the data regarding the transfer-receiving film formed on the support film. The method for judging whether or not a support film can be reused according to claim 1.
  3.  前記測定ステップが、少なくとも、第1測定ステップと、第2測定ステップとからなり、
     前記第1測定ステップにおいて、前記被転写フィルム残存物の位置を測定し、
     前記第2測定ステップにおいて、当該位置に残存している前記被転写フィルム残存物の厚さ又は材質を測定する
     ことを特徴とする請求項1又は請求項2に記載の支持体フィルムのリユース可否判定方法。
    the measuring step comprises at least a first measuring step and a second measuring step;
    In the first measuring step, measuring the position of the transfer-receiving film residue;
    3. Judgment as to whether or not the support film can be reused according to claim 1 or claim 2, wherein in the second measuring step, the thickness or material of the transfer-receiving film residue remaining at the position is measured. Method.
  4.  剥離転写法による積層体製造において使用された支持体フィルムの洗浄方法であって、
     請求項1から請求項3までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が必要と判定された場合に、測定した前記被転写フィルム残存物に関するデータに基づいて、前記支持体フィルム上に残存している被転写フィルム残存物を除去する
     ことを特徴とする支持体フィルムの洗浄方法。
    A method for cleaning a support film used in laminate production by a peel transfer method, comprising:
    When it is determined that cleaning is necessary by the method for determining reusability of a support film according to any one of claims 1 to 3, based on the measured data on the transfer film residue, the A method for washing a support film, comprising removing a transfer-receiving film residue remaining on the support film.
  5.  剥離転写法による積層体製造において使用された支持体フィルムのリユース方法であって、
     請求項1から請求項3までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は請求項4に記載の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムを、被転写フィルムの支持体としてリユースする
     ことを特徴とする支持体フィルムのリユース方法。
    A method for reusing a support film used in laminate production by a peel transfer method,
    The support film determined not to require cleaning by the method for determining reusability of a support film according to any one of claims 1 to 3, or the method for cleaning a support film according to claim 4. A method for reusing a support film, comprising: reusing the support film washed by the method as a support for a transfer-receiving film.
  6.  支持体フィルムのロール体である支持体フィルムロールの製造方法であって、
     請求項1から請求項3までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は請求項4に記載の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムを巻き取って、支持体フィルムロールを製造する
     ことを特徴とする支持体フィルムロールの製造方法。
    A method for manufacturing a support film roll, which is a roll of a support film, comprising:
    The support film determined not to require cleaning by the method for determining reusability of a support film according to any one of claims 1 to 3, or the method for cleaning a support film according to claim 4. A method for producing a support film roll, comprising: winding up the support film washed by the above method to produce a support film roll.
  7.  転写性積層フィルムのロール体である転写性積層フィルムロールの製造方法であって、
     請求項1から請求項3までのいずれか一項に記載の支持体フィルムのリユース可否判定方法により洗浄が不要と判定された前記支持体フィルム、又は請求項4に記載の支持体フィルムの洗浄方法により洗浄した前記支持体フィルムの上に、被転写フィルムを積層して転写性積層フィルムを作製し、当該転写性積層フィルムを巻き取って、転写性積層フィルムロールを製造する
     ことを特徴とする転写性積層フィルムロールの製造方法。
    A method for producing a transferable laminated film roll, which is a roll body of a transferable laminated film, comprising:
    The support film determined not to require cleaning by the method for determining reusability of a support film according to any one of claims 1 to 3, or the method for cleaning a support film according to claim 4. A transferable laminated film is produced by laminating a transfer-receiving film on the support film washed by the method, and the transferable laminated film is wound up to produce a transferable laminated film roll A method for manufacturing a laminated film roll.
  8.  剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定プログラムであって、
     前記支持体フィルムを搬送しながら、光学的測定手段を用いて前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する測定ステップと、
     測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定ステップとをコンピューターに実行させる
     ことを特徴とする支持体フィルムのリユース可否判定プログラム。
    A program for determining the reusability of a support film used in laminate production by a peel transfer method,
    a measuring step of measuring data relating to a transfer-receiving film residue remaining on the support film using an optical measuring means while transporting the support film;
    determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue. program.
  9.  剥離転写法による積層体製造において使用された支持体フィルムのリユース可否判定システムであって、
     前記支持体フィルムを搬送する搬送手段と、
     搬送中の前記支持体フィルム上に残存している被転写フィルム残存物に関するデータを測定する光学的測定手段と、
     測定した前記被転写フィルム残存物に関するデータに基づいて前記支持体フィルムの洗浄の要否を含むリユースの可否を判定する判定手段とを有する
     ことを特徴とする支持体フィルムのリユース可否判定システム。
    A system for determining the reusability of a support film used in laminate production by a peel transfer method,
    a conveying means for conveying the support film;
    optical measuring means for measuring data relating to transfer-receiving film remnants remaining on the support film during transportation;
    and determination means for determining whether or not the support film can be reused, including whether or not the support film needs to be washed, based on the measured data on the transfer-receiving film residue.
PCT/JP2022/024438 2021-07-08 2022-06-20 Support film reusability determination method, support film cleaning method, support film reuse method, support film roll production method, transfer laminated film roll production method, support film reusability determination program, and support film reusability determination system WO2023282034A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023533507A JPWO2023282034A1 (en) 2021-07-08 2022-06-20
CN202280048454.9A CN117716229A (en) 2021-07-08 2022-06-20 Method for determining whether or not to reuse support film, method for cleaning support film, method for reusing support film, method for producing support film roll, method for producing transferable laminate film roll, program for determining whether or not to reuse support film, and system for determining whether or not to reuse support film
KR1020237044826A KR20240013222A (en) 2021-07-08 2022-06-20 A method for determining whether or not to reuse a support film, a method for cleaning a support film, a method for reusing a support film, a method for manufacturing a support film roll, a method for manufacturing a transfer laminated film roll, a program for determining whether or not to reuse a support film, and a support film reuse decision system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113596 2021-07-08
JP2021113596 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282034A1 true WO2023282034A1 (en) 2023-01-12

Family

ID=84801430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024438 WO2023282034A1 (en) 2021-07-08 2022-06-20 Support film reusability determination method, support film cleaning method, support film reuse method, support film roll production method, transfer laminated film roll production method, support film reusability determination program, and support film reusability determination system

Country Status (4)

Country Link
JP (1) JPWO2023282034A1 (en)
KR (1) KR20240013222A (en)
CN (1) CN117716229A (en)
WO (1) WO2023282034A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120620A (en) * 1993-10-22 1995-05-12 Nippon Petrochem Co Ltd Continuous transfer method of liquid crystal polymer
JPH10239675A (en) * 1997-02-27 1998-09-11 Seiko Epson Corp Production of liquid crystal display device
JP2008194838A (en) * 2007-02-08 2008-08-28 Sii Nanotechnology Inc Method for testing nano-imprint lithography mold and method for removing resin residue
JP2010125683A (en) * 2008-11-27 2010-06-10 Konica Minolta Opto Inc Method of forming optical film
JP2020527476A (en) * 2017-06-02 2020-09-10 イシマット ゲーエムベーハー ズィープドラックマシーネ Devices and methods for decorating objects

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7137772B2 (en) 2017-11-07 2022-09-15 大日本印刷株式会社 Inspection system, inspection method and manufacturing method of inspection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120620A (en) * 1993-10-22 1995-05-12 Nippon Petrochem Co Ltd Continuous transfer method of liquid crystal polymer
JPH10239675A (en) * 1997-02-27 1998-09-11 Seiko Epson Corp Production of liquid crystal display device
JP2008194838A (en) * 2007-02-08 2008-08-28 Sii Nanotechnology Inc Method for testing nano-imprint lithography mold and method for removing resin residue
JP2010125683A (en) * 2008-11-27 2010-06-10 Konica Minolta Opto Inc Method of forming optical film
JP2020527476A (en) * 2017-06-02 2020-09-10 イシマット ゲーエムベーハー ズィープドラックマシーネ Devices and methods for decorating objects

Also Published As

Publication number Publication date
KR20240013222A (en) 2024-01-30
JPWO2023282034A1 (en) 2023-01-12
CN117716229A (en) 2024-03-15

Similar Documents

Publication Publication Date Title
KR100586207B1 (en) Surface protecting film and laminate comprising the same
TWI665478B (en) Manufacturing method of retardation film and manufacturing method of laminated polarizing plate
JP7017183B2 (en) Release film for manufacturing ceramic green sheets
CA2581873A1 (en) System and method for inspecting a light-management film and the method of making the light-management film
JP2011040449A (en) Substrate for dicing tape, the dicing tape, and method for manufacturing semiconductor device
JP2005002220A (en) Uniaxially oriented polyester film, and surface protection film and release film using the same
JP2024107487A (en) Visual inspection method and visual inspection device
WO2023282034A1 (en) Support film reusability determination method, support film cleaning method, support film reuse method, support film roll production method, transfer laminated film roll production method, support film reusability determination program, and support film reusability determination system
JP2008302547A (en) Protective polyester film for photosensitive adhesive resin
JP2008107132A (en) Foreign matter inspection method and foreign matter inspection system
JP2007056091A (en) Polyester film and release film
JP4506423B2 (en) Antistatic biaxially stretched polyester film
JP2012091399A (en) Polyester film having coating layer
JP2001071420A (en) Release film
WO2012173033A1 (en) Mold releasing polyester film
JP6016252B2 (en) Film, dope composition and method for producing the same
JP2004177718A (en) Mold releasing film
JP2006048024A (en) Transfer material
JP2009133718A (en) Flaw detection method and flaw detector
JP2002328226A (en) Cohesive film for protection of optical sheet before inspection and method for manufacturing optical sheet using the same
JP2006205668A (en) Antireflection film
TWI848119B (en) Base film for surface protection film of image display device with fingerprint authentication sensor, surface protection film and image display device
JP2001066260A (en) Device for inspecting defect of film
JP7125272B2 (en) Transparent black body film and transparent black body paint
JP2011090126A (en) Method for measuring reflection color distribution of antireflection layer of antireflection film, method for manufacturing the antireflection film, and the antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237044826

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044826

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023533507

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280048454.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837452

Country of ref document: EP

Kind code of ref document: A1