WO2023281674A1 - Film-type surface-stress sensor and method for manufacturing film-type surface-stress sensor - Google Patents

Film-type surface-stress sensor and method for manufacturing film-type surface-stress sensor Download PDF

Info

Publication number
WO2023281674A1
WO2023281674A1 PCT/JP2021/025694 JP2021025694W WO2023281674A1 WO 2023281674 A1 WO2023281674 A1 WO 2023281674A1 JP 2021025694 W JP2021025694 W JP 2021025694W WO 2023281674 A1 WO2023281674 A1 WO 2023281674A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
sensor
layer
membrane
silicon
Prior art date
Application number
PCT/JP2021/025694
Other languages
French (fr)
Japanese (ja)
Inventor
賢司 宮崎
久 萩原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2023532962A priority Critical patent/JPWO2023281674A1/ja
Priority to PCT/JP2021/025694 priority patent/WO2023281674A1/en
Publication of WO2023281674A1 publication Critical patent/WO2023281674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a membrane-type surface stress sensor and a method for manufacturing the membrane-type surface stress sensor.
  • Target detection is important in a wide variety of fields such as food and medicine, and various methods have been proposed.
  • a membrane-type surface stress sensor has attracted attention (see Patent Document 1).
  • the film-type surface stress sensor can analyze the presence and amount of the target by, for example, binding a target to a film such as a silicon film, deforming the film, and measuring variations in electrical resistance caused by the deformation. .
  • the present inventors invented MSS in which a binding substance such as an aptamer capable of binding to a target is immobilized on the surface of the MSS membrane.
  • the inventors have found a problem that the immobilization efficiency of the binding substance on the membrane of MSS is low.
  • the second object of the present invention is to provide an MSS capable of improving the binding substance immobilization efficiency.
  • the membrane is a membrane that deforms in response to surface stress
  • the sensor substrate comprises a support area and circuitry; the support region supports the membrane and comprises a piezoresistive element;
  • the piezoresistive element is an element that detects deformation of the film,
  • the circuit is connected to the piezoresistive element,
  • the circuit includes a metal capable of forming an oxide film by oxidation treatment,
  • the circuit has an oxide film layer on its surface.
  • a method for manufacturing a film-type surface stress sensor according to the present invention is a film-type stress sensor comprising a film and a circuit, wherein the circuit includes a metal capable of forming an oxide film by oxidation treatment. and forming an oxide film layer on the surface of the circuit by oxidizing the circuit.
  • the membrane is a membrane that deforms in response to surface stress
  • the sensor substrate comprises a support area; the support region supports the membrane and comprises a piezoresistive element;
  • the piezoresistive element is an element that detects deformation of the film,
  • the film comprises an amorphous layer.
  • a method for manufacturing a film-type surface stress sensor of the present invention is a film-type stress sensor comprising a film and a circuit, wherein the film is subjected to an amorphization treatment (amorphization process). quenching treatment) to form an amorphous layer on the surface of the film.
  • a circuit containing a metal capable of forming an oxide film by oxidation treatment is subjected to oxidation treatment to form an oxide film layer on the surface of the circuit. and and forming an amorphous layer on the surface of the film by subjecting the film to amorphization treatment.
  • the target analysis method of the present invention includes an applying step of applying a voltage to a membrane surface stress sensor in a sample liquid; an analysis step of analyzing the target in the sample liquid by measuring the stress change of the piezoresistive element in the film-type surface stress sensor;
  • the film-type surface stress sensor is the first film-type surface stress sensor of the present invention or the second film-type surface stress sensor of the present invention.
  • the first MSS of the present invention it is possible to insulate between circuits.
  • the second MSS of the present invention it is possible to improve the immobilization efficiency of the binding substance on the MSS membrane.
  • FIG. 5 is a schematic diagram showing an example of a method for producing MSS according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing another example of the silicon film of the MSS in Embodiment 2.
  • FIG. 7 is a schematic diagram showing another example of the method for producing MSS according to Embodiment 2.
  • FIG. 8 is a schematic diagram showing an example of the configuration of the MSS according to the third embodiment.
  • 9 is a photograph showing a transmission electron microscope image of the silicon film of MSS of Embodiment 3 in Example 1.
  • the term "membrane-type surface-stress sensor (MSS)” refers to a sensor in which a film that deforms in response to surface stress is supported by a support having a piezoresistive element. do.
  • MSS membrane-type surface-stress sensor
  • the film when the film receives stress, the film deforms (generates strain) due to the generation of strain or the like. Then, according to the amount of deformation of the film, stress is generated in the piezoresistive element of the support supporting the film, and the resistance value of the piezoresistive element changes in proportion to the stress.
  • the presence or absence of the target bound to the membrane can be qualitatively analyzed indirectly by applying a voltage to the MSS and measuring an electrical signal accompanying a change in resistance value. can.
  • the MSS sensor by applying a voltage to the MSS and measuring an electrical signal accompanying a change in resistance value, it is possible to quantitatively analyze the amount of the target that has contributed to the generation of stress in the film. .
  • the "target” is not particularly limited and can be set arbitrarily.
  • Said target may be, for example, a substance that can come into contact with said membrane or said binding substance in a liquid, ie in liquid phase.
  • the target has, for example, one or more regions to which the binding substance binds, ie epitopes of the binding substance.
  • the targets include, for example, microorganisms including bacteria such as anthrax, Escherichia coli, salmonella, and tubercle bacillus; viruses such as SARS-CoV-2 and influenza virus; allergens; Examples of the allergen include grains such as wheat; eggs; meat; fish; shellfish; vegetables;
  • the type of the target is not particularly limited, and examples thereof include high-molecular compounds such as proteins, sugar chains, nucleic acids, and polymers; low-molecular-weight compounds; and the like.
  • antibody can also be referred to as a soluble immunoglobulin that has binding properties to a target.
  • Types of the antibody include, for example, IgA, IgD, IgE, IgG, or IgM.
  • IgA includes, for example, IgA1 or IgA2.
  • IgG includes, for example, IgG1, IgG2, IgG3, or IgG4.
  • the antibody may be an antigen-binding fragment thereof, that is, a partial peptide of the antibody that has binding properties to the target. Said antigen-binding fragment is for example a polypeptide comprising a part of said antibody, more particularly the binding or variable region of said antibody.
  • the antibody As the antibody, a known antibody or an antigen-binding fragment thereof having a binding property to a target may be used, or a new antibody or an antigen-binding fragment thereof obtained by immunizing an animal or the like with a target may be used. good.
  • the antibody may be a monoclonal antibody or a polyclonal antibody.
  • the antibody may be a blood-derived fraction such as serum or plasma that contains antibodies capable of binding to the target.
  • an "aptamer” is a nucleic acid molecule that has binding properties to a target.
  • the aptamer can also be referred to as, for example, a nucleic acid molecule that specifically binds to a target.
  • the constituent units of the aptamer are, for example, nucleotide residues and non-nucleotide residues.
  • Said nucleotide residues include, for example, deoxyribonucleotide residues and ribonucleotide residues, and said nucleotide residues may, for example, be modified or unmodified.
  • the aptamer examples include DNA aptamers composed of deoxyribonucleotide residues, RNA aptamers composed of ribonucleotide residues, aptamers containing both, aptamers containing modified nucleotide residues, and the like.
  • the length of the aptamer is not particularly limited, and is, for example, 10-200 bases.
  • an existing aptamer may be used, or an aptamer newly obtained using, for example, the SELEX method or the like may be used depending on the target.
  • the binding substance is preferably an aptamer or an antibody.
  • the binding substance may be labeled.
  • the label is not particularly limited, and examples thereof include fluorescent substances, dyes, isotopes, enzymes, and the like.
  • the fluorescent substance include pyrene, TAMRA, fluorescein, Cy3 dye, Cy5 dye, FAM dye, rhodamine dye, Texas Red dye, and fluorophores such as JOE, MAX, HEX, and TYE.
  • Alexa dyes such as Alexa488 and Alexa647.
  • the enzyme include luciferase, alkaline phosphatase, peroxidase, ⁇ -galactosidase, glucuronidase and the like.
  • the binding substance is a nucleic acid
  • the label is bound, for example, to at least one of the 5' end and the 3' end of the nucleic acid.
  • the label and carrier are, for example, attached to the N-terminus, C-terminus or side chain of the protein.
  • the label is, for example, directly or indirectly bound to the binding substance.
  • said label is attached via a linker.
  • the "sample liquid” may be any liquid.
  • the specimen to be collected is liquid, it may be used as a liquid sample as it is, or may be a liquid sample prepared by diluting, suspending, dispersing, or the like with a liquid solvent.
  • the specimen to be collected is solid, it may be a liquid sample prepared by dissolving, suspending, dispersing, or the like in a liquid solvent.
  • the specimen to be collected is a gas, for example, it may be a liquid sample obtained by concentrating an aerosol in the gas, or a liquid sample prepared by dissolving, suspending, or dispersing in a liquid solvent.
  • the type of the liquid solvent is not particularly limited.
  • the sample liquid may be, for example, a liquid containing targets, a liquid containing no targets, or a liquid whose presence or absence of targets is unknown.
  • FIG. 1 is a schematic diagram showing an MSS 1 of Embodiment 1.
  • FIG. 1 (A) is a schematic plan view of the MSS 1 and a schematic enlarged view of the periphery of the circuit 12A, and (B) is a schematic cross-sectional view seen from the II direction in (A).
  • the MSS 1 of Embodiment 1 comprises a sensor substrate 10, electrodes 11, aluminum wires 12A (circuits), MSS films 13 (films), piezoresistive elements 14, and support regions 15.
  • FIG. 1 is a schematic diagram showing an MSS 1 of Embodiment 1.
  • FIG. 1 (A) is a schematic plan view of the MSS 1 and a schematic enlarged view of the periphery of the circuit 12A
  • (B) is a schematic cross-sectional view seen from the II direction in (A).
  • the MSS 1 of Embodiment 1 comprises a sensor substrate 10, electrodes 11, aluminum wires 12A (circuits), MSS films 13 (films), piezoresistive
  • the aluminum wire 12A is composed of a conductive layer 121 and an insulating layer 122 (oxide layer).
  • the MSS film 13 is supported by the sensor substrate via a support region 15 having a piezoresistive element 14 formed thereon. Also, the MSS film 13 is connected to the aluminum wire 12A through the piezoresistive element 14, and the aluminum wire 12A is connected to the electrode 11 respectively.
  • the aluminum wire 12A constitutes a Wheatstone bridge circuit including four piezoresistive elements 14 .
  • the MSS 1 of Embodiment 1 includes the electrode 11, the electrode 11 has an arbitrary configuration and may or may not be present. If the MSS 1 does not have the electrode 11, the aluminum wire 12A is connected to the voltage applying device.
  • the sensor substrate 10 is a substrate on which various configurations of the MSS 1 such as the electrodes 11, aluminum wires 12A, and the MSS film 13 can be arranged.
  • a semiconductor substrate can be used, and as a specific example, a wafer made of silicon can be used.
  • the sensor substrate 10 supports the MSS film 13 by means of support regions 15 .
  • the sensor substrate 10 preferably partially supports the MSS film 13 , and specifically preferably partially supports the side surfaces of the MSS film 13 .
  • the sensor substrate 10 supports the MSS film 13 via four supporting regions 15 (supporting portions), but the present invention is not limited to this, and the sensor substrate 10 may be any A number of support regions 15 may support the MSS membrane 13 .
  • the sensor substrate 10 supports one MSS film with four support regions 15, but the present invention is not limited to this. Multiple support regions 15 may each support an MSS membrane 13 . In this case, the number of support regions 15 and the number of supported MSS films 13 on one sensor substrate 10 are not particularly limited, and each may be one or two or more.
  • the electrode 11 can be configured to apply a voltage to the MSS1 by being connected to a voltage applying device outside the MSS1.
  • the electrode 11 thereby makes it possible to measure the change in stress on the piezoresistive element 14 as a voltage value.
  • the material of the electrode 11 may be any conductive metal, and the description of the material of the circuit in the description of the aluminum wire 12A, which will be described later, can be used.
  • the material of the electrodes 11 may be the same as or different from that of the circuit.
  • the electrode 11 is composed of a conductive layer made of a conductive metal, but the present invention is not limited to this. may be formed.
  • the aluminum wire 12A electrically connects the electrode 11 and the piezoresistive element 14, and makes it possible to measure the change in stress on the piezoresistive element 14 as a voltage value when voltage is applied by the voltage application device outside the MSS1.
  • the aluminum wire 12A has a conductive layer 121 laminated on the substrate 10 on the center side thereof, and the conductive layer 121 is covered with an insulating layer 122. As shown in FIG. That is, the conductive layer 121 is sealed between the substrate 10 and the insulating layer 122 . Therefore, the conductive layer 121 is insulated from the outside of the aluminum wire 12A.
  • the insulation between the aluminum wires 12A is ensured in the MSS1, short-circuiting between the aluminum wires 12A can be suppressed even if the MSS1 is immersed in the sample liquid and a voltage is applied to the MSS1.
  • the conductive layer 121 is made of aluminum that exhibits conductivity, and more specifically, is made of non-oxidized aluminum.
  • the insulating layer 122 is made of aluminum exhibiting insulating properties, specifically, made of aluminum oxide.
  • the insulation means insulation to the extent that the short circuit between the circuits is significantly suppressed when the MSS 1 is used under normal conditions, as compared with the MSS without the insulation layer 122 .
  • the material of the circuit is aluminum, but in the present invention, the material of the circuit is not limited to this, and may be any metal capable of forming an oxide film layer by oxidation treatment.
  • metals capable of forming the oxide film layer include valve metals, and specific examples include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof.
  • the MSS 1 can ensure insulation between circuits without forming an insulating layer using resin.
  • the width and height of the conductive layer 121 are sufficient as long as they are thick enough to electrically connect the electrodes 11 and the piezoresistive elements 14 .
  • the width of the conductive layer 121 is, for example, 1-100 ⁇ m, 10-20 ⁇ m.
  • the height of the conductive layer 121 is, for example, 0.1 to 100 ⁇ m, 1 to 20 ⁇ m.
  • the thickness of the insulating layer 122 is such that when the MSS 1 is used under normal conditions, compared to the MSS without the insulating layer 122, the insulating property is such that the short circuit between the aluminum wires 12A is significantly suppressed. Any thickness can be used.
  • the thickness of the insulating layer 122 is, for example, 0.5 to 50 nm, 1 to 10 nm.
  • the aluminum wire 12A forms a Wheatstone bridge circuit with the piezoresistive element 14, but the circuit structure of the aluminum wire 12A is not limited to this, and the change in stress on the piezoresistive element 14 can be electrically measured. circuit structure.
  • the MSS film 13 deforms according to the surface stress, and the deformation applies stress to the piezoresistive element 14 .
  • the material of the MSS film 13 is not particularly limited as long as it deforms in response to surface stress and applies stress to the piezoresistive element 14 due to the deformation.
  • the MSS film 13 is, for example, a thin film, and its thickness and surface area are not particularly limited, and are similar to MSS films used in commercially available MSS, for example.
  • the planar shape of the MSS film 13 is circular, the present invention is not limited to this, and may be any shape.
  • the planar shape of the MSS film 13 is preferably a perfect circle because it can increase distortion due to surface stress.
  • the material of the MSS film 13 is not particularly limited, and is silicon, for example.
  • a silicon film can be used as the MSS film 13, and as a specific example, any silicon film can be used regardless of p-type or n-type polarity.
  • Si(100) can be used.
  • the piezoresistive element 14 is an element that detects deformation of the MSS film 13 .
  • the stress change is concentrated in support region 15 . Therefore, in the MSS 1 , the piezoresistive element 14 is formed in the supporting region 15 at a location supporting the MSS film 13 .
  • the piezoresistive element 14 changes its resistance value according to the stress change. Therefore, in the MSS1, by applying a voltage through the electrode 11 and the aluminum wire 12A, an output voltage corresponding to the stress can be obtained due to the change in the resistance value. This allows the MSS 1 to analyze the presence or amount of the target in the sample liquid.
  • the piezoresistive element 14 can be manufactured, for example, by doping an arbitrary region of the support region 15 made of a silicon film to make it p-type by doping an impurity. Therefore, the piezoresistive element 14 preferably uses p-type Si formed on a silicon film. Note that the piezoresistive element 14 is formed at the location where the support region 15 supports the MSS film 13, but may be formed in the vicinity of that location.
  • FIG. 2 is a schematic cross-sectional view showing an example of a method for manufacturing the MSS1.
  • MSS is prepared.
  • MSS commercially available MSS may be used, or self-prepared.
  • the MSS 1 forms the piezoresistive element 14 by, for example, connecting the MSS film 13 to the supporting region 15 of the sensor substrate 10 and then doping the supporting region 15 .
  • the manufacturing method of the first embodiment can form the electrodes 11 and the aluminum wires 12A, which are circuits, by wiring aluminum by sputtering, vapor deposition, or the like.
  • the aluminum wire 12A formed on the MSS is made of conductive aluminum, that is, non-oxidized aluminum. Therefore, in the manufacturing method of the first embodiment, the insulating layer 122 is formed on the surface of the aluminum wire 12A. Specifically, in the manufacturing method of the first embodiment, the aluminum wire 12A is oxidized. In the manufacturing method of Embodiment 1, the oxidation treatment oxidizes the aluminum on the surface of the aluminum wire 12A, thereby forming an insulating oxide film as shown in FIG. is formed.
  • the oxidation treatment may be any treatment as long as it causes an oxidation reaction with a metal such as aluminum. be done.
  • the acid can be applied to the surface of the aluminum wire 12A, and the aluminum wire 12A and the acid can be reacted for a predetermined time.
  • the acid used for the acid treatment is an acid that can act as an oxidizing agent, and specific examples include nitric acid, sulfuric acid, phosphoric acid, oxalic acid, chromic acid, etc., preferably concentrated nitric acid, concentrated sulfuric acid, concentrated phosphoric acid, etc. acid, concentrated oxalic acid, concentrated chromic acid.
  • the reaction time with the acid in the acid treatment can be set according to the type of the acid and the metal forming the circuit, and is, for example, 15 to 180 minutes, 60 to 90 minutes.
  • the reaction temperature of the acid treatment is, for example, 0 to 50°C, preferably 30°C or less.
  • the plasma treatment can be performed by placing the MSS1 in a plasma generator and generating plasma while supplying oxygen to the plasma generator.
  • the oxygen concentration in the gas supplied to the plasma generator may be, for example, the default setting of each device, eg, 80-100%, 85-95%, about 90%.
  • the plasma treatment time can be set according to the type of metal forming the circuit and the thickness of the insulating layer 122 to be formed. One hour.
  • an insulating layer 122 containing aluminum oxide and aluminum hydroxide is formed on the surface of the aluminum wire 12A. Therefore, in the manufacturing method of Embodiment 1, after the oxygen plasma treatment, the formed aluminum hydroxide is preferably converted into aluminum oxide by a step including a heat treatment such as an annealing step to be described later. Thereby, the manufacturing method of Embodiment 1 can improve the insulating property of the formed insulating layer 122 .
  • the manufacturing method of Embodiment 1 can manufacture MSS1.
  • the sample liquid is brought into contact with the MSS1 (contact step).
  • the conditions for immersing MSS1 in the sample liquid are not particularly limited, and examples thereof include a temperature of 20 to 35° C. and a temperature of 0.1 to 120 minutes and a temperature of 50 to 60° C. and 0.1 to 120 minutes.
  • the MSS1 has a plurality of MSS membranes, for example, the plurality of MSS membranes in the MSS1 may be immersed in the same sample liquid at the same time.
  • a voltage is applied to the MSS1 in the sample liquid (liquid phase) (application step).
  • Conditions for applying the voltage are not particularly limited, and for example, conditions similar to those for commercially available MSS can be exemplified.
  • the liquid phase may be, for example, the sample liquid in the contacting step, or may be another solvent. In the latter case, the MSS1 after the contacting step is removed from the sample solution, immersed in a new solvent, and voltage is applied.
  • the solvent is not particularly limited, and examples thereof include PBS, buffer solutions such as Tris-HCl, water, and the like.
  • the timing of the application is the start of the contact process or after a predetermined time has elapsed since the start of the contact process.
  • the target in the sample liquid is analyzed by measuring the stress change of the piezoresistive element 14 in MSS1.
  • the stress change can be measured, for example, by measuring electrical signals, and a commercially available measurement module (eg, MSS-8RM, NANOSENSOR) can be used.
  • a reference measurement value may be obtained using a control sample solution that does not contain the target.
  • the target may be analyzed using a reference measurement value and a measurement value (signal) of the sample liquid.
  • an insulating layer 122 is formed on the surface of the aluminum wire 12A, which is the line. Therefore, in the MSS1, since the insulation between the aluminum wires 12A is ensured, it is possible to perform measurement in a liquid phase such as a sample liquid. Therefore, MSS1 can be suitably used for the analysis of liquid samples.
  • an oxide film layer can be formed by oxidation treatment, and the oxide film layer is used as the insulating layer 122 . be able to.
  • the manufacturing method according to the first embodiment does not require coating of the lines with resin, and damage due to adhesion of the resin to the piezoresistive element 14 can be avoided. Therefore, according to the manufacturing method of Embodiment 1, the breakage rate during manufacturing can be reduced, so the yield in manufacturing the MSS1 can be improved.
  • the manufacturing method of Embodiment 1 one type of oxidation treatment is performed, but the present invention is not limited to this, and multiple oxidation treatments may be performed. Moreover, the manufacturing method of Embodiment 1 may further include a step of annealing the formed oxide film layer. Another example of the manufacturing method of Embodiment 1 will be described with reference to FIG.
  • FIG. 3 is a schematic diagram showing another example of the method for manufacturing the MSS1 of Embodiment 1.
  • the conductive layer 121 of the aluminum wire 12A is subjected to two-stage oxidation treatment (FIGS. 3B and 3C), and then heat treatment to remove the oxide formed. Annealing the film layer forms an insulating layer 122 having a higher insulating property (FIG. 3A).
  • the MSS after the acid treatment is subjected to plasma treatment in an oxygen atmosphere.
  • the oxide film layer formed on the surface of the aluminum wire 12A is grown to increase the thickness of the insulating layer 122.
  • aluminum hydroxide is formed in the insulating layer 122 in addition to aluminum oxide.
  • the manufacturing method of another example of Embodiment 1 heat treatment is performed on the MSS after the oxygen plasma treatment.
  • the insulating layer 122 formed on the surface of the aluminum wire 12A is annealed, and the aluminum hydroxide in the insulating layer 122 is removed.
  • the lower limit of the temperature in the heat treatment is preferably 100° C. or higher, 200° C. or higher, or 300° C. or higher, for example.
  • the upper limit of the temperature in the heat treatment is, for example, 400° C. or less.
  • the temperature in the heat treatment is, for example, 100 to 400°C, 200 to 400°C, 300 to 400°C, and about 350°C.
  • the heat treatment time is, for example, 60 to 180 minutes.
  • the manufacturing method of another example of Embodiment 1 can manufacture MSS1.
  • the thickness of the insulating layer 122 in the MSS1 can be increased. Therefore, according to the manufacturing method of another example of the first embodiment, the MSS1 with higher insulation can be manufactured.
  • the binding substance is not immobilized on the MSS membrane 13 .
  • the present invention is not limited to this, and the binding substance may be immobilized on MSS1.
  • the binding substance may be immobilized on one surface of the MSS membrane 13, or may be immobilized on both surfaces.
  • the binding substance on one surface and the binding substance on the other surface are preferably the same binding substance that binds to the same target, for example.
  • the present invention is not limited to this, and a protein such as an antibody may be immobilized. good too.
  • the surface of the MSS film 13 may be, for example, one surface or both surfaces.
  • the method for immobilizing the aptamer on the MSS membrane 13 is not particularly limited, and the aptamer may be immobilized directly or indirectly on the MSS membrane 13.
  • the MSS membrane 13 and the aptamer can be immobilized by covalent bonding or the like by chemically treating the aptamer.
  • the direct fixing method includes, for example, a method using photolithography, and for specific examples, reference can be made to US Pat. No. 5,424,186.
  • Another direct immobilization method is, for example, a method of synthesizing the aptamer on the MSS membrane 13 . This method includes, for example, a so-called spot method, and for specific examples, reference can be made to US Pat. No. 5,807,522.
  • the aptamer can be immobilized on the MSS membrane 13 via a linker.
  • the type of linker is not limited at all, and examples thereof include a combination of biotin or a biotin derivative (hereinafter referred to as biotins) and avidin or an avidin derivative (hereinafter referred to as avidins).
  • biotins biotin derivative
  • avidins avidin derivative
  • examples of the biotin derivative include biocytin
  • examples of the avidin derivative include streptavidin.
  • the length of the linker is, for example, the length of the shortest molecular chain (main chain long).
  • the main chain length of the linker is 1 to 20, and is preferably 1 to 15, 1 to 13, 3 to 13, 5 to 13, 1 to 11, 3 to 11 because it can improve the sensitivity of the MSS membrane 13. , 1-10, 3-10, 1-8, 3-8, 1-5, 1-3, 1 or 2. Examples of immobilization methods are shown below, but the present invention is not limited to these.
  • the biotins are bound to one of the MSS membrane 13 and the aptamer, and the avidins are bound to the other. Then, the aptamer can be indirectly immobilized on the MSS membrane 13 by binding the biotins and the avidins.
  • the aptamer was indirectly immobilized on the MSS membrane by utilizing the specific binding between avidins and biotins, that is, the affinity of biotins to avidins.
  • affinity tags other than avidins-biotins may be used.
  • the affinity tag include His tag (His ⁇ 6 tag)-nickel ion, glutathione-S-transferase-glutathione, maltose binding protein-maltose, epitope tag (myc tag, FLAG tag, HA (hemagglutinin) tag)- Antibodies or antigen-binding fragments can be used.
  • His tag His ⁇ 6 tag
  • maltose binding protein-maltose epitope tag
  • epitope tag myc tag, FLAG tag, HA (hemagglutinin) tag
  • Antibodies or antigen-binding fragments can be used.
  • the point that other affinity tags may be used is
  • the aptamer may be immobilized on the MSS membrane 13 via an intervening membrane, for example.
  • the intervening film is, for example, a film of metal such as gold, and can be formed by vapor-depositing the metal on the MSS film 13 .
  • the thickness of the intervening film is not particularly limited, and is, for example, 10 to 100 nm.
  • the intervening film may be, for example, one layer or two or more layers.
  • the intervening film is, for example, two-layered, and a metal film (adhesive film) for adhesion to the MSS film 13 is provided in order to improve the adhesiveness of the gold film. It is preferable to form the gold film through the metal.
  • the metal of the adhesive film include titanium and chromium.
  • the thickness of the adhesive film is, for example, 0.1 to 10 nm, and the thickness of the gold film is, for example, 0.1 to 100 nm.
  • biotins When the biotins are bound to the intervening membrane, for example, self-assembled monolayers (SAMs) of thiolalkanes are formed on the surface of the intervening membrane using thiolalkanes to which the biotins are bound.
  • SAMs self-assembled monolayers
  • the aptamer formed and bound with the biotins may be brought into contact, and the aptamer may be immobilized by binding the biotins and the avidins.
  • the MSS film 13 is reacted with a silane coupling agent having an amino group to bond the amino group onto the MSS film 13 .
  • the reaction can be carried out, for example, by coating the MSS film 13 with a solution containing a silane coupling agent having an amino group.
  • the conditions for the cross-linking reaction can be appropriately determined according to, for example, the type of cross-linking agent.
  • the avidins are bound to the other end of the cross-linking agent such as glutaraldehyde.
  • the surface of the MSS membrane is washed, and a solution containing avidins is applied to bind the other end of the cross-linking agent to the main chain or side chain of amino acids of avidins.
  • the biotin-bound aptamer is brought into contact with the MSS membrane 13 treated in this way, and the aptamer can be immobilized by binding the biotins and the avidins.
  • Silane coupling agents having an amino group include, for example, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (eg, KBM-602 (manufactured by Shin-Etsu Silicone Co., Ltd.)), N-(2-aminoethyl )-3-aminopropyltrimethoxysilane (e.g., KBM-603 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-aminopropyltrimethoxysilane (e.g., KBM-903 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-aminopropyltriethoxy Silane (e.g., KBE-903 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-(2-aminoethylamino)propyltrimethoxysilane (e.g., GEN
  • the cross-linking agent can be appropriately determined according to the functional group of the main chain or side chain of the amino acid that binds to the linker.
  • the functional group include an amino group (--NH 2 ), a thiol group (--SH), a carboxyl group (--COOH) and the like.
  • Said amino groups are present, for example, at the N-terminus of proteins or peptides or at the side chains of lysines.
  • the thiol group is, for example, a side chain of cysteine.
  • Said carboxyl groups are present, for example, at the C-terminus of proteins or peptides or at the side chains of aspartic acid or glutamic acid.
  • examples of the cross-linking agent include a cross-linking agent having aldehyde groups at both ends such as glutaraldehyde; bis(sulfosuccinimidyl) suberate (BS3); Disuccinimidyl glutarate (DSG), Disuccinimidyl suberate (DSS), Dithiobis(succinimidylpropionate), Dithiobis(sulfosuccinimidylpropionate) (DSP), Dithiobis(succinimidylpropionate) (DTSP) , dithiobis(sulfosuccinimidyl propionate) (DTSSP), disuccinimidyl tartrate (DST), ethylene glycol bis(succinimidyl succinate) (ESG), ethylene glycol bis(sulfosuccinimidyl succinate) ) (Sulfo-ESG), N
  • examples of the cross-linking agent include N-(6-maleimidocaproyloxy) succinimide (EMCS), N-(6-maleimidocaproyloxy) sulfosuccinimide (Sulfo -EMCS), N-(8-maleimidocaryloxy) succinimide (HMCS), N-(8-maleimidocaryloxy) sulfosuccinimide (Suflo-HMCS), N- ⁇ -maleimidoacet-oxysuccinimide ester (AMAS), N- ⁇ -maleimidopropyl-oxysuccinimide ester (BMPS), N- ⁇ -maleimidobutyryl-oxysuccinimide ester (GMBS), N- ⁇ -maleimidobutyryl-oxysulfosuccinimide ester (Sulfo-GMBS), m-maleimidobenzoyl-N-hydroxy
  • examples of the cross-linking agent include dicyclohexylcarbodiimide (DCC), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxysuccinimide (NHS ), N-hydroxysulfosuccinimide (Sulfo-NHS), acetic anhydride, and the like.
  • DCC dicyclohexylcarbodiimide
  • EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • NHS N-hydroxysuccinimide
  • Sulfo-NHS N-hydroxysulfosuccinimide
  • acetic anhydride and the like.
  • the cross-linking agent is preferably a cross-linking agent that does not substantially cause self-condensation because the length of the linker can be made substantially constant or constant.
  • the above-mentioned "constant linker length" means, for example, that in the linkers of a plurality of aptamers, the linkers of each aptamer have substantially the same or the same length.
  • the length of the linker can be achieved, for example, by making the structures of the linkers the same.
  • the sensitivity of MSS can be improved by using such a cross-linking agent. The improvement in sensitivity is presumed to be due to the following reasons.
  • the present invention is not limited to the following estimation.
  • a target When a target binds to an aptamer, steric hindrance caused by the target occurs around the aptamer bound to the target. If the aptamers are immobilized at different distances from the MSS membrane 13, the targets are more likely to come into contact with aptamers that are distal to the MSS membrane 13. FIG. Therefore, it is presumed that the target preferentially binds to the aptamer on the distal end side from the MSS membrane 13 . In this case, even if steric hindrance due to the target occurs around the target-bound aptamer, other aptamers are present on the MSS membrane 13 side compared to the target-bound aptamer.
  • the surrounding aptamers are less susceptible to steric hindrance caused by the target. Therefore, even if the target binds to the aptamer, the surrounding aptamers are less likely to move due to steric hindrance. Therefore, when the aptamers are immobilized at different distances with respect to the MSS membrane 13, distortion of the MSS membrane may occur on the MSS membrane 13 due to the displacement of the surrounding aptamers. relatively low. On the other hand, when the aptamers are immobilized on the MSS membrane 13 at substantially the same distance, when the aptamers bind to the targets, the surrounding aptamers are affected by steric hindrance caused by the targets.
  • the positions of the surrounding aptamers will move, and the possibility that the MSS membrane will be distorted due to the movement of the positions of the surrounding aptamers is also relatively high. That is, when the aptamers are immobilized on the MSS membrane 13 at approximately the same distance, the binding of one aptamer to the target on the MSS membrane 13 also causes the position of the surrounding aptamers to move. The distortion of the MSS film 13 is amplified. Therefore, when the aptamer is immobilized on the MSS membrane 13 at substantially the same distance, that is, when the linker length is substantially constant, the sensitivity of the MSS membrane 13 is presumed to be improved. be.
  • cross-linking agent having an active ester at both ends of the molecule a cross-linking agent having an N-hydroxysuccinimide active ester and a haloacetyl-reactive group at both ends, a cross-linking agent having an N-hydroxysuccinimide active ester and a pyridyldithiol-reactive group at both ends, DCC, EDC, NHS, Sulfo-NHS, acetic anhydride and the like.
  • the linker is represented, for example, by the following formula (1).
  • M 1 represents an atom bonded to the silane coupling agent on the MSS film
  • L 1 represents a region (group) derived from the silane coupling agent
  • L 2 represents a cross-linking Represents the agent - derived region (group)
  • L2 is optional
  • M2 represents the atom that binds to the crosslinker or NH in the affinity tag.
  • NH represents an amine derived from an amino group of a silane coupling agent having an amino group.
  • L 1 is, for example, (M 1 )—Si(CH 3 ) 2-m (OR 4 ) m —R 1 —(NH) or (M 1 )—Si(CH 3 ) 2-m (OR 4 ) m —R 2 —NH—R 3 —(NH).
  • R 1 is a straight or branched alkyl group having 1 to 5 carbon atoms.
  • R 2 and R 3 are, for example, each independently a linear or branched alkyl group having 1 to 5 carbon atoms, and may be the same or different. Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group and pentyl group.
  • R4 is, for example, a hydrogen atom or a bond.
  • m is 1 or 2;
  • L 1 is represented by, for example, (M 1 )-Si(OR 4 ) 2 --(CH 2 ) 3 --(NH).
  • R4 is, for example, a hydrogen atom or a bond.
  • the length of the linker is, for example, the shortest molecular chain length (main chain length) between the functional group on the MSS membrane (for example, the oxygen atom of the silanol group on the silicon membrane) and the affinity tag such as avidin. can be represented.
  • the main chain length of the linker is 1 to 20, and since it can improve the sensitivity of MSS, it is preferably 1 to 15, 1 to 13, 3 to 13, 5 to 13, 1 to 11, 3 to 11, 1 ⁇ 10, 3-10, 1-8, 3-8, 1-5, 1-3, 1 or 2.
  • avidin-biotin binding is used, but the third example is not limited to this, and a linker is directly bound to the hydroxyl group or phosphate group of the aptamer. good too.
  • the aptamer can be immobilized on the MSS membrane 13 by amidating the 3' terminal phosphate group and reacting it with the linker.
  • the reaction can be carried out, for example, by coating the MSS film 13 with a solution containing a silane coupling agent having a methacrylic group.
  • a linker is formed between the main chain or side chain of the amino acid derivative and the main chain or side chain of the amino acid of the avidins.
  • a possible cross-linking agent is reacted to bind one end of the cross-linking agent to the amino acid derivative on the MSS membrane 13 .
  • the surface of the MSS membrane after treatment with the amino acid derivative is washed, and a solution containing a cross-linking agent is applied to the MSS membrane 13 to bind the amino acid derivative and the cross-linking agent.
  • the conditions for the cross-linking reaction can be appropriately determined according to, for example, the type of cross-linking agent.
  • the avidins are bound to the other end of the cross-linking agent. Specifically, after cross-linking, the surface of the MSS membrane is washed, and a solution containing avidins is applied to bind the other end of the cross-linking agent to the main chain or side chain of amino acids of avidins. Then, the biotin-bound aptamer is brought into contact with the MSS membrane 13 treated in this way, and the aptamer can be immobilized by binding the biotins and the avidins.
  • the silane coupling agent is represented by, for example, Y—Si(CH 3 ) 3-n (OR) n .
  • the silane coupling agent is a silane coupling agent having a methacryl group
  • examples of n, R, and Y are given below.
  • the "n" is 2 or 3.
  • examples of R include alkyl groups such as methyl group and ethyl group; acyl groups such as acetyl group and propyl group; and the like.
  • Y is a reactive functional group terminated with a methacryl group.
  • the silane coupling agent having a methacrylic group includes, for example, 3-(methacryloyloxy)propylmethyldimethoxysilane (eg, KBM-502 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-(methacryloyloxy)propyltrimethoxysilane (eg, KBM-503 (manufactured by Shin-Etsu Silicone Co., Ltd.), GENIOSIL (registered trademark) GF31 (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.)), 3-(methacryloyloxy) propylmethyldimethoxysilane (e.g., KBE-502 (manufactured by Shin-Etsu Silicone Co., Ltd.)), ( 3-methacryloyloxypropyl)triethoxysilane (for example, KBE-503 (manufactured by Shin-Etsu Silicone Co
  • the amino acid or amino acid derivative has, for example, a functional group capable of reacting with a methacryl group and a carboxyl group.
  • the functional group capable of reacting with the methacrylic group include a thiol group (--SH).
  • examples of the amino acid or amino acid derivative having a thiol group include cysteine; cysteine having an amino group modified such as N-acetylcysteine; and the like.
  • the cross-linking agent can be appropriately determined according to, for example, the functional group of the amino acid derivative subjected to cross-linking and the functional group of the amino acid of the avidins to be subjected to cross-linking.
  • the cross-linking agent can refer to the description of the cross-linking agent in the case of using the amino group of the main chain or side chain of the amino acid in the third example.
  • the cross-linking agent is the side chain thiol group of the amino acid in the third example. can be used.
  • the cross-linking agent can be used for cross-linking when utilizing the carboxyl group of the main chain or side chain of the amino acid in the third example.
  • the description of the agent can be used.
  • the cross-linking agent is preferably a cross-linking agent that does not substantially cause self-condensation because the length of the linker can be made constant.
  • the sensitivity of MSS can be improved by a mechanism similar to the mechanism described in the third example.
  • Specific examples of cross-linking agents that do not substantially cause self-condensation include cross-linking agents having N-hydroxysuccinimide active esters at both ends, cross-linking agents having imide ester reactive groups at both ends, and maleimide groups and N-hydroxysuccinimide active groups.
  • cross-linking agent having an ester at both ends of the molecule, cross-linking agent having an N-hydroxysuccinimide active ester and a haloacetyl reactive group at both ends, cross-linking agent having an N-hydroxysuccinimide active ester and a pyridyldithiol reactive group at both ends, DCC , EDC, NHS, Sulfo-NHS, acetic anhydride and the like.
  • the linker is represented, for example, by the following formula (2).
  • M 1 represents an atom bonded to the silane coupling agent on the MSS film
  • L 1 represents a region (group) derived from the silane coupling agent
  • A is an amino acid derivative.
  • L2 represents a crosslinker - derived region ( group), L2 may or may not be present
  • M2 represents an atom bonded to the crosslinker or NH in the affinity tag.
  • L 1 is, for example, (M 1 )—Si(OR 4 ) 2 —(CH 2 ) 3 —OC( ⁇ O)—C(CH 3 ) 2 —(A).
  • R4 is, for example, a hydrogen atom or a bond.
  • L2 is absent, for example.
  • the length of the linker can be represented, for example, by the shortest molecular chain length (main chain length) between the functional group on the MSS membrane (eg, silanol group on the silicon membrane) and the affinity tag such as avidin. can.
  • the main chain length of the linker is 1 to 20, and since it can improve the sensitivity of MSS, it is preferably 1 to 15, 1 to 13, 1 to 11, 1 to 10, 1 to 8, 1 to 5, 1 ⁇ 3, 1 or 2.
  • avidin-biotin binding is used, but the fourth example is not limited to this, and a linker is directly bound to the hydroxyl group or phosphate group of the aptamer. good too.
  • the aptamer can be immobilized on the MSS membrane 13 by amidating the 3' terminal phosphate group and reacting it with the linker.
  • the site for immobilizing the aptamer on the MSS membrane 13 is not particularly limited, and examples include the 3' end or 5' end.
  • FIG. 4 is a schematic diagram showing the MSS2 of the second embodiment.
  • (A) is a schematic plan view of the MSS2
  • (B) is a schematic cross-sectional view of (A) viewed from the II-II direction.
  • the MSS 2 of Embodiment 2 comprises a sensor substrate 10, electrodes 11, aluminum wires 121 (circuits), MSS films 13A (films), piezoresistive elements 14, and support regions 15.
  • the aluminum wire 12 is composed of a conductive layer 121 .
  • the MSS film 13A is composed of a support layer 131 and an amorphous layer 132, and the amorphous layer 132 is laminated on the support layer 131.
  • the support layer 131 is made of crystalline silicon, for example.
  • the amorphous layer 132 is composed of amorphous silicon (eg, amorphized silicon).
  • one surface of the film is composed of amorphous molecules, so that the contact area with other substances and the number of atoms that can be used for bonding are reduced compared to the case where the film is composed only of crystalline molecules. can be relatively increased. Therefore, by including the amorphous layer 132, the MSS film 13A can immobilize a larger amount of the binding substance on the surface of the MSS film 13A than the MSS film 13 does.
  • the amorphous layer 132 may contain other molecules in addition to amorphous silicon.
  • the other molecules include silicon carbide (silicon carbide), oxides of silicon carbide, and the like.
  • FIG. 5 is a schematic cross-sectional view showing an example of a method for manufacturing the MSS2.
  • MSS is prepared.
  • MSS commercially available MSS may be used, or self-prepared.
  • the MSS film 13 of the MSS is composed of a support layer 131 composed of crystalline silicon. Therefore, in the manufacturing method of Embodiment 2, the amorphous layer 132 is formed on the surface of the support layer 131 .
  • the support layer 131 is subjected to an amorphization treatment (amorphization treatment).
  • amorphization treatment amorphization treatment
  • the crystalline silicon on the surface of the support layer 131 is made amorphous by the amorphization treatment, and as shown in FIG. Therefore, an amorphous layer 132 made of amorphous silicon is formed.
  • the amorphization treatment may be any treatment as long as it causes a change in crystal structure.
  • Growth treatment for example, plasma CVD (Chemical Vapor Deposition), reactive ion etching (RIE), etc.
  • RIE reactive ion etching
  • the manufacturing method of Embodiment 2 can manufacture MSS2.
  • an amorphous layer 132 is formed on the surface of the MSS film 13A. Therefore, in MSS2, in the MSS film, the surface area of the MSS film that can be bound to the binding substance is increased, and the contact area with other substances and the number of atoms that can be used for binding are increased as compared with MSS1. Relatively increasing. Therefore, in the MSS2 of Embodiment 2, the immobilization efficiency of the binding substance can be improved.
  • the entire surface of one surface of the MSS film 13A is the amorphous layer 132, but the present invention is not limited to this, and part of one surface may be the amorphous layer 132. . Further, in the MSS2 of Embodiment 2, part or the entire surface of both surfaces of the MSS film 13A may be the amorphous layer 132. FIG. As a result, it is possible to prevent damage to the piezoresistive element 14 and the like during modification processing of the MSS film in the manufacturing method of the MSS2, which will be described later.
  • the amorphization treatment was performed as the modification treatment of the MSS film, but the present invention is not limited to this, and the amorphization treatment is combined with other modification treatments. good too. Another example of the method for manufacturing MSS will be described with reference to FIGS.
  • the silicon carbide oxide layer 135 on the surface contains silicon carbide oxide, the types of functional groups increase compared to crystalline silicon and amorphous silicon. It is excellent in reactivity with the above-mentioned cross-linking agents such as Specifically, since the MSS film 13B contains carbon atoms in its surface layer, carbon atoms can be selected as atoms to be bonded in addition to silicon atoms. Therefore, according to MSS2, binding molecules such as nucleic acid molecules or proteins can be introduced more easily. Therefore, according to MSS2, the binding substance can be more efficiently immobilized using the cross-linking agent.
  • FIG. 7 is a schematic diagram showing another example of a method for producing MSS2.
  • the MSS film 131 which is a crystalline silicon film, is subjected to the amorphization treatment to form an amorphous layer 132 (FIG. 7B).
  • carbon is introduced into the amorphous layer 132 to form a silicon carbide layer 133 containing silicon carbide (FIG. 7(C)), after which part of it is converted into an oxide layer 135 of silicon carbide. (Fig. 7(D)).
  • the crystalline silicon film 131 which is the MSS film, is subjected to an amorphization treatment by ion beam treatment. Thereby, an amorphous layer 132 is formed on the surface of the support layer 131 as shown in FIG. 7B.
  • the method for introducing the carbon can be implemented by, for example, a vapor deposition method, a CVD method, a coating method, or the like.
  • heat treatment may be performed in order to promote the reaction between the introduced carbon and the silicon in the amorphous silicon.
  • the lower limit of the temperature in the heat treatment is preferably 100° C. or higher, 200° C. or higher, or 300° C. or higher, for example.
  • the upper limit of the temperature in the heat treatment is, for example, 400° C. or less.
  • the temperature in the heat treatment is, for example, 100 to 400°C, 200 to 400°C, 300 to 400°C, and about 350°C.
  • the heat treatment time is, for example, 60 to 180 minutes.
  • the carbon layer 134 is removed from the MSS film after the introduction of carbon by plasma treatment in an oxygen atmosphere. Thereby, as shown in FIG. 7D, a silicon carbide layer 133 and a silicon carbide oxide layer 135 are formed.
  • oxygen plasma treatment for example, the above explanation of the oxygen plasma treatment can be used.
  • the removal of the carbon layer 134 may be performed by a method other than the oxygen plasma treatment, and specific examples thereof include sputtering treatment in an inert gas atmosphere such as helium, neon, argon, and dry etching treatment. .
  • Embodiment 2 can manufacture another example of MSS2.
  • FIG. 8 is a schematic diagram showing the MSS3 of the third embodiment.
  • the MSS 3 of Embodiment 3 comprises a sensor substrate 10, electrodes 11, aluminum wires 12A (circuits), MSS films 13B (films), piezoresistive elements 14, and support regions 15.
  • Aluminum wire 12A is composed of conductive layer 121 and insulating layer 122 .
  • the MSS film 13B is composed of a support layer 131 and an amorphous layer 132, and the amorphous layer 132 is composed of a silicon carbide layer 133 and a silicon carbide oxide layer 135.
  • the MSS film 13B is supported by the sensor substrate via a support region 15 having a piezoresistive element 14 formed thereon. Also, the MSS film 13B is connected to the aluminum wire 12A through the piezoresistive element 14, and the aluminum wire 12A is connected to the electrode 11, respectively.
  • the aluminum wire 12A constitutes a Wheatstone bridge circuit including four piezoresistive elements 14. As shown in FIG. Except for this point, the MSS3 of Embodiment 3 has the same configuration as the MSS1 of Embodiment 1, and the description thereof can be used. Although the MSS 3 of Embodiment 3 includes the electrode 11, the electrode 11 has any configuration and may or may not be present. If the MSS 2 does not have the electrode 11, the aluminum wire 12A is connected to the voltage applying device.
  • an insulating layer 122 is formed on the surface of the aluminum wire 12A, which is the line. Therefore, in the MSS3, since the insulation between the aluminum wires 12A is ensured, it is possible to perform measurement in a liquid phase such as a sample liquid. Therefore, MSS3 can be suitably used for the analysis of liquid samples.
  • an amorphous layer 132 is formed on the surface of the MSS film 13B, and the amorphous layer 132 is composed of a silicon carbide layer 133 and a silicon carbide oxide layer 135 . Further, in the MSS film 13B, an oxide layer 135 of silicon carbide is arranged (stacked) on the surface.
  • the silicon carbide oxide layer 135 on the surface contains silicon carbide oxide, the types of functional groups increase compared to crystalline silicon and amorphous silicon. It is excellent in reactivity with the above-mentioned cross-linking agents such as Therefore, according to MSS3, the binding substance can be more efficiently immobilized using the cross-linking agent.
  • MSS3 of Embodiment 3 was manufactured, and it was confirmed that a silicon carbide layer and a silicon carbide oxide layer were formed on the MSS film.
  • An insulating layer 122 was formed by oxidizing the aluminum wire 121 of the MSS. Specifically, nitric acid (1.38 g/ml or more) was applied onto the aluminum wire 121 of the MSS. The amount of nitric acid applied was 50 ⁇ l per MSS. After the coating, the aluminum wire 121 was oxidized by reacting at room temperature (about 25° C., hereinafter the same) for 60 minutes. After the oxidation treatment, the MSS was rinsed under pure water at room temperature for 30 minutes to remove nitric acid.
  • FIG. 9 is a photograph showing an electron microscope image.
  • the MSS film 13B consists of a support layer 131 made of crystalline silicon, a silicon carbide layer 133 made of amorphous silicon and silicon carbide, and a silicon carbide layer 133 made of amorphous silicon and silicon carbide. It was confirmed that an oxide layer 135 of silicon carbide composed of an oxide of silicon carbide was laminated. It was also found that when the MSS film was processed under the conditions described above, the thickness of the silicon carbide layer 133 was about 70 nm, and the thickness of the silicon carbide oxide layer 135 was about 5 nm. Amorphous silicon also has an improved surface area compared to crystalline silicon.
  • ⁇ Appendix> Some or all of the above-described embodiments and examples can be described as in the following appendices, but are not limited to the following.
  • ⁇ First Membrane Surface Stress Sensor> (Appendix 1) comprising a membrane and a sensor substrate;
  • the membrane is a membrane that deforms in response to surface stress, the sensor substrate comprises a support area and circuitry; the support region supports the membrane and comprises a piezoresistive element;
  • the piezoresistive element is an element that detects deformation of the film,
  • the circuit is connected to the piezoresistive element,
  • the circuit includes a metal capable of forming an oxide film by oxidation treatment,
  • the circuit has an oxide film layer on the surface, Membrane type surface stress sensor.
  • Appendix 2 2.
  • the membrane comprises a support layer; the support layer comprises a crystalline component of the amorphous layer; 6. The sensor of any one of Clauses 2-5, wherein the amorphous layer is laminated to the support layer.
  • the support layer comprises crystalline silicon; wherein the amorphous layer comprises amorphous silicon or amorphized silicon; A sensor according to Appendix 6.
  • the amorphous layer is a silicon carbide layer; an oxide layer of silicon carbide; the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide; the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide; 8.
  • (Appendix 9) 9. The sensor of any one of the clauses 1-8, wherein the membrane is a silicon membrane.
  • (Appendix 10) 10. The sensor of any preceding clause, wherein the support region partially supports the membrane.
  • the support region includes a plurality of piezoresistive elements, 11. The sensor according to any one of appendices 1 to 10, wherein the circuit constitutes a Wheatstone bridge circuit including the plurality of piezoresistive elements.
  • (Appendix 12) the sensor substrate having a plurality of support areas; 12. The sensor of any one of Clauses 1 to 11, wherein the plurality of support regions each support the membrane.
  • (Appendix 13) 13 The sensor of any one of Clauses 1-12, wherein the metal is a valve metal.
  • Appendix 14 14. A sensor according to any preceding clause, wherein the metal is aluminium, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof.
  • Appendix 15 15. The sensor of any one of Clauses 1-14, wherein the metal is aluminum.
  • the membrane comprises a binding substance that binds to a target; 16. The sensor of any one of Clauses 1 to 15, wherein the membrane deforms upon binding of a target to the binding substance. (Appendix 17) 17.
  • the sensor of clause 16, wherein the binding substance is a nucleic acid molecule or a protein.
  • Appendix 18 18.
  • the sensor of clause 16 or 17, wherein the binding substance is immobilized on one surface of the membrane.
  • Appendix 19 18.
  • the sensor of clause 16 or 17, wherein the binding substance is immobilized on both sides of the membrane.
  • Appendix 20 20.
  • Appendix 21 The membrane comprises a metal film on the surface, 21.
  • ⁇ Second Membrane Surface Stress Sensor> comprising a membrane and a sensor substrate;
  • the membrane is a membrane that deforms in response to surface stress, the sensor substrate comprises a support area; the support region supports the membrane and comprises a piezoresistive element;
  • the piezoresistive element is an element that detects deformation of the film, the film comprises an amorphous layer; Membrane type surface stress sensor.
  • Appendix 28 28.
  • the sensor of Clause 27, wherein the amorphous layer comprises amorphous silicon or amorphized silicon.
  • (Appendix 29) 29 The sensor of clause 27 or 28, wherein the amorphous layer comprises silicon carbide.
  • the amorphous layer is a silicon carbide layer; an oxide layer of silicon carbide; the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide; the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide; 30.
  • the membrane comprises a support layer; the support layer comprises a crystalline component of the amorphous layer; 31.
  • the support layer comprises crystalline silicon; wherein the amorphous layer comprises amorphous silicon or amorphized silicon; 32.
  • the sensor of clause 31. (Appendix 33)
  • the amorphous layer is a silicon carbide layer; an oxide layer of silicon carbide; the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide; the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide; 33.
  • (Appendix 34) 34 34.
  • the sensor substrate has a circuit, The support region includes a plurality of piezoresistive elements, 36.
  • Appendix 37 the sensor substrate having a plurality of support areas; 37.
  • the membrane comprises a binding substance that binds to a target; 38.
  • (Appendix 39) 39 The sensor of clause 38, wherein said binding agent is a nucleic acid molecule or a protein.
  • (Appendix 40) 40 The sensor of clause 38 or 39, wherein the binding substance is immobilized on one surface of the membrane.
  • (Appendix 41) 40 The sensor of clause 38 or 39, wherein the binding substance is immobilized on both sides of the membrane.
  • (Appendix 42) 42 The sensor according to any one of Appendices 38 to 41, wherein the binding substance is immobilized on the membrane via a conjugate of avidin or an avidin derivative and biotin or a biotin derivative.
  • the membrane comprises a metal film on the surface, 43.
  • Appendix 52 52.
  • Appendix 53 53.
  • Appendix 54 54.
  • (Appendix 62) 62 The manufacturing method according to appendix 61, wherein the amorphization treatment is performed by an amorphization treatment.
  • (Appendix 63) 63 The manufacturing method according to appendix 61 or 62, including the step of introducing carbon into the amorphous layer.
  • (Appendix 64) 64 The manufacturing method according to appendix 63, comprising removing carbon from the film by plasma treatment and/or sputtering treatment in an oxygen atmosphere.
  • (Appendix 65) 65 The manufacturing method according to any one of appendices 61 to 64, wherein the film is a silicon film.
  • ⁇ Method for manufacturing a semiconductor device> (Appendix 66) In a semiconductor device comprising a film and a circuit, a step of oxidizing a circuit containing a metal capable of forming an oxide film by oxidation treatment to form an oxide film layer on the surface of the circuit; A method of manufacturing a semiconductor device, comprising: subjecting the film to an amorphization treatment to form an amorphous layer on the surface of the film. (Appendix 67) 67. The manufacturing method according to appendix 66, wherein the oxidation treatment is performed by acid treatment and/or plasma treatment in an oxygen atmosphere. (Appendix 68) a step of acid-treating the circuit to form an oxide film layer on the surface of the circuit; 68.
  • the manufacturing method according to appendix 66 or 67 comprising performing a plasma treatment in an oxygen atmosphere on the circuit.
  • Appendix 69 69.
  • Appendix 70 69.
  • Appendix 71 71.
  • Appendix 72 72.
  • Appendix 77 77.
  • Appendix 78 78.
  • ⁇ Target analysis method> (Appendix 79) an applying step of applying a voltage to the membrane surface stress sensor in the sample liquid; an analysis step of analyzing the target in the sample liquid by measuring the stress change of the piezoresistive element in the film-type surface stress sensor; 48.
  • the present invention is useful in, for example, the analysis field of samples and the like, the medical field, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Micromachines (AREA)

Abstract

Provided is a film-type surface-stress sensor having insulation between circuitry. A film-type surface-stress sensor 1 according to this invention comprises a film 13 and a sensor substrate 10. The film 13 deforms in response to surface stress. The sensor substrate 10 comprises a support region 15 and a circuit 12A. The support region 15 supports the film 13 and comprises a piezoresistive element 14. The piezoresistive element 14 detects the deformation of the film 13. The circuit 12A is connected to the piezoresistive element 14. The circuit 12A includes metal that can be made to form an oxide film through oxidation treatment. The circuit 12A has an oxide film layer 122 on the surface thereof.

Description

膜型表面応力センサおよび膜型表面応力センサの製造方法MEMBRANE-TYPE SURFACE STRESS SENSOR AND METHOD FOR MANUFACTURING MEMBRANE-TYPE SURFACE STRESS SENSOR
 本発明は、膜型表面応力センサおよび膜型表面応力センサの製造方法に関する。 The present invention relates to a membrane-type surface stress sensor and a method for manufacturing the membrane-type surface stress sensor.
 食品、医療等の多種多様な分野において、ターゲットの検出は重要であり、様々な方法が提案されている。そして、近年、膜型表面応力センサが注目されている(特許文献1参照)。前記膜型表面応力センサは、例えば、シリコン膜等の膜にターゲットを結合させることで、前記膜を変形させ、前記変形による電気抵抗の変動を測定することによって、ターゲットの有無や量を分析できる。 Target detection is important in a wide variety of fields such as food and medicine, and various methods have been proposed. In recent years, a membrane-type surface stress sensor has attracted attention (see Patent Document 1). The film-type surface stress sensor can analyze the presence and amount of the target by, for example, binding a target to a film such as a silicon film, deforming the film, and measuring variations in electrical resistance caused by the deformation. .
国際公開第2011/148774号WO2011/148774
 血液の生体試料の多くは、液体である。膜型表面応力センサ(以下、「MSS」ともいう)は、センサ基板上に回路(配線)が形成されており、MSSセンサをサンプル液に浸漬して電圧を印加した場合、回路間の短絡が生じる可能性がある。そこで、本発明者は、MSSの回路を樹脂により被覆することにより、回路間の絶縁を図ろうとした。しかしながら、前記回路を樹脂により被覆する際に、前記膜の歪みを検出するピエゾ抵抗素子に樹脂が付着すると、得られたMSSセンサは、前記ピエゾ抵抗素子による歪みの検出に問題が生じ、使用できず、前記樹脂を用いて絶縁を行なう場合、製造時の破損率が高いという問題が生じた。 Most of the biological samples of blood are liquid. A membrane-type surface stress sensor (hereinafter also referred to as "MSS") has a circuit (wiring) formed on a sensor substrate. may occur. Therefore, the present inventor tried to insulate the circuits by coating the circuits of the MSS with a resin. However, if the resin adheres to the piezoresistive element that detects the distortion of the film when the circuit is coated with the resin, the resulting MSS sensor cannot be used because there is a problem in detecting the distortion by the piezoresistive element. However, when the resin is used for insulation, there arises a problem that the rate of breakage during manufacturing is high.
 そこで、本発明は、回路間が絶縁されたMSSの提供を第1の目的とする。 Therefore, the first object of the present invention is to provide an MSS insulated between circuits.
 また、本発明者らは、MSSの膜の表面に、ターゲットに結合可能なアプタマー等の結合物質を固定化がされているMSSを発明した。しかしながら、MSSの膜への前記結合物質の固定化効率が低いという問題を見出した。 In addition, the present inventors invented MSS in which a binding substance such as an aptamer capable of binding to a target is immobilized on the surface of the MSS membrane. However, the inventors have found a problem that the immobilization efficiency of the binding substance on the membrane of MSS is low.
 そこで、本発明は、結合物質の固定化効率を向上可能なMSSの提供を第2の目的とする。 Therefore, the second object of the present invention is to provide an MSS capable of improving the binding substance immobilization efficiency.
 前記第1の目的を達成するために、本発明の第1の膜型表面応力センサ(以下、「第1のセンサ」ともいう)は、膜と、センサ基板とを備え、
前記膜は、表面応力に応じて変形する膜であり、
前記センサ基板は、支持領域および回路を備え、
前記支持領域は、前記膜を支持し、かつピエゾ抵抗素子を備え、
前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であり、
前記回路は、前記ピエゾ抵抗素子と接続されており、
前記回路は、酸化処理により酸化被膜を形成可能な金属を含み、
前記回路は、表面に酸化皮膜層を有する。
In order to achieve the first object, a first film-type surface stress sensor (hereinafter also referred to as "first sensor") of the present invention comprises a film and a sensor substrate,
The membrane is a membrane that deforms in response to surface stress,
the sensor substrate comprises a support area and circuitry;
the support region supports the membrane and comprises a piezoresistive element;
The piezoresistive element is an element that detects deformation of the film,
The circuit is connected to the piezoresistive element,
The circuit includes a metal capable of forming an oxide film by oxidation treatment,
The circuit has an oxide film layer on its surface.
 本発明の膜型表面応力センサの製造方法(以下、「第1の製造方法」ともいう)は、膜および回路を備える膜型応力センサにおいて、酸化処理により酸化被膜を形成可能な金属を含む回路に対して、酸化処理を行ない、前記回路表面に酸化皮膜層を形成する工程を含む。 A method for manufacturing a film-type surface stress sensor according to the present invention (hereinafter also referred to as a "first manufacturing method") is a film-type stress sensor comprising a film and a circuit, wherein the circuit includes a metal capable of forming an oxide film by oxidation treatment. and forming an oxide film layer on the surface of the circuit by oxidizing the circuit.
 前記第2の目的を達成するために、本発明の第2の膜型表面応力センサ(以下、「第2のセンサ」ともいう)は、膜と、センサ基板とを備え、
前記膜は、表面応力に応じて変形する膜であり、
前記センサ基板は、支持領域を備え、
前記支持領域は、前記膜を支持し、かつピエゾ抵抗素子を備え、
前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であり、
前記膜は、非晶質層を備える。
In order to achieve the second object, a second film-type surface stress sensor (hereinafter also referred to as "second sensor") of the present invention comprises a film and a sensor substrate,
The membrane is a membrane that deforms in response to surface stress,
the sensor substrate comprises a support area;
the support region supports the membrane and comprises a piezoresistive element;
The piezoresistive element is an element that detects deformation of the film,
The film comprises an amorphous layer.
 本発明の膜型表面応力センサの製造方法(以下、「第2の製造方法」ともいう)は、膜および回路を備える膜型応力センサにおいて、前記膜に対して、非晶質化処理(アモルファス化処理)を行ない、前記膜表面に非晶質層を形成する工程を含む。 A method for manufacturing a film-type surface stress sensor of the present invention (hereinafter also referred to as a "second manufacturing method") is a film-type stress sensor comprising a film and a circuit, wherein the film is subjected to an amorphization treatment (amorphization process). quenching treatment) to form an amorphous layer on the surface of the film.
 本発明の半導体装置の製造方法は、膜および回路を備える半導体装置において、酸化処理により酸化被膜を形成可能な金属を含む回路に対して、酸化処理を行ない、前記回路表面に酸化皮膜層を形成する工程と、
前記膜に対して、非晶質化処理を行ない、前記膜表面に非晶質層を形成する工程とを含む。
According to the method of manufacturing a semiconductor device of the present invention, in a semiconductor device comprising a film and a circuit, a circuit containing a metal capable of forming an oxide film by oxidation treatment is subjected to oxidation treatment to form an oxide film layer on the surface of the circuit. and
and forming an amorphous layer on the surface of the film by subjecting the film to amorphization treatment.
 本発明のターゲットの分析方法は、サンプル液中で膜型表面応力センサに電圧を印加する印加工程と、
前記膜型表面応力センサにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する分析工程とを含み、
前記膜型表面応力センサは、前記本発明の第1の膜型表面応力センサ、または前記本発明の第2の膜型表面応力センサである。
The target analysis method of the present invention includes an applying step of applying a voltage to a membrane surface stress sensor in a sample liquid;
an analysis step of analyzing the target in the sample liquid by measuring the stress change of the piezoresistive element in the film-type surface stress sensor;
The film-type surface stress sensor is the first film-type surface stress sensor of the present invention or the second film-type surface stress sensor of the present invention.
 本発明の第1のMSSによれば、回路間を絶縁できる。また、本発明の第2のMSSによれば、MSSの膜への結合物質の固定化効率を向上できる。 According to the first MSS of the present invention, it is possible to insulate between circuits. In addition, according to the second MSS of the present invention, it is possible to improve the immobilization efficiency of the binding substance on the MSS membrane.
図1は、実施形態1におけるMSSの構成の一例を示す模式図であり、(A)は、MSSの模式平面図および模式部分拡大図であり、(B)は、(A)におけるI-I方向からみた模式断面図である。FIG. 1 is a schematic diagram showing an example of the configuration of the MSS in Embodiment 1, (A) is a schematic plan view and a schematic partial enlarged view of the MSS, and (B) is II in (A). It is a schematic cross section seen from the direction. 図2は、実施形態1におけるMSSの製造方法の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a method for producing MSS according to Embodiment 1. FIG. 図3は、実施形態1におけるMSSの製造方法の他の例を示す模式図である。FIG. 3 is a schematic diagram showing another example of the method for producing MSS according to Embodiment 1. FIG. 図4は、実施形態2におけるMSSの構成の一例を示す模式図であり、(A)は、MSSの模式平面図であり、(B)は、(A)におけるII-II方向からみた模式断面図である。FIG. 4 is a schematic diagram showing an example of the configuration of the MSS in Embodiment 2, (A) is a schematic plan view of the MSS, and (B) is a schematic cross section viewed from the II-II direction in (A). It is a diagram. 図5は、実施形態2におけるMSSの製造方法の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a method for producing MSS according to Embodiment 2. FIG. 図6は、実施形態2におけるMSSのシリコン膜の他の例を示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing another example of the silicon film of the MSS in Embodiment 2. FIG. 図7は、実施形態2におけるMSSの製造方法の他の例を示す模式図である。FIG. 7 is a schematic diagram showing another example of the method for producing MSS according to Embodiment 2. FIG. 図8は、実施形態3におけるMSSの構成の一例を示す模式図である。FIG. 8 is a schematic diagram showing an example of the configuration of the MSS according to the third embodiment. 図9は、実施例1における、実施形態3のMSSのシリコン膜の透過型電子顕微鏡像を示す写真である。9 is a photograph showing a transmission electron microscope image of the silicon film of MSS of Embodiment 3 in Example 1. FIG.
 本明細書において、「膜型表面応力センサ」(Membrane-type Surface-stress Sensor:MSS)は、表面応力に応じて変形する膜が、ピエゾ抵抗素子を有する支持体に支持されているセンサを意味する。前記MSSにおいて、前記膜が応力を受けると、歪みの発生等により前記膜は変形(歪みの発生)する。そして、前記膜の変形の量に応じて、前記膜を支持する前記支持体のピエゾ抵抗素子に応力が発生し、前記応力に比例して、前記ピエゾ抵抗素子の抵抗値が変化する。このため、前記MSSセンサによれば、MSSに電圧を印加して、抵抗値の変化に伴う電気シグナルを測定することで、間接的に、前記膜に結合した前記ターゲットの有無を定性的に分析できる。また、前記MSSセンサによれば、MSSに電圧を印加して、抵抗値の変化に伴う電気シグナルを測定することで、前記膜への応力の発生に寄与したターゲットの量を定量的に分析できる。また、本発明では、例えば、このようなMSSにおいて、ターゲットに結合する結合物質を使用すること、具体的には、前記結合物質を前記膜に固定化することで、前記ターゲットを、前記結合物質を介してMSSに結合させることができる。このため、本発明のMSSにおいて、前記膜に前記結合物質を固定化すると、前記結合物質への前記ターゲットの結合により、前記膜への応力の発生に寄与したターゲットの量を定性的または定量的に分析することもできる。 As used herein, the term "membrane-type surface-stress sensor (MSS)" refers to a sensor in which a film that deforms in response to surface stress is supported by a support having a piezoresistive element. do. In the MSS, when the film receives stress, the film deforms (generates strain) due to the generation of strain or the like. Then, according to the amount of deformation of the film, stress is generated in the piezoresistive element of the support supporting the film, and the resistance value of the piezoresistive element changes in proportion to the stress. Therefore, according to the MSS sensor, the presence or absence of the target bound to the membrane can be qualitatively analyzed indirectly by applying a voltage to the MSS and measuring an electrical signal accompanying a change in resistance value. can. In addition, according to the MSS sensor, by applying a voltage to the MSS and measuring an electrical signal accompanying a change in resistance value, it is possible to quantitatively analyze the amount of the target that has contributed to the generation of stress in the film. . Further, in the present invention, for example, in such MSS, a binding substance that binds to a target is used, specifically, by immobilizing the binding substance on the membrane, the target is bound to the binding substance can be coupled to the MSS via Therefore, in the MSS of the present invention, when the binding substance is immobilized on the film, the amount of the target that has contributed to the generation of stress on the film due to the binding of the target to the binding substance can be qualitatively or quantitatively determined. can also be analyzed.
 本発明において、「ターゲット」は、特に制限されず、任意に設定できる。前記ターゲットは、例えば、液体中、すなわち、液相で、前記膜または前記結合物質に接触できる物質であればよい。前記ターゲットは、例えば、前記結合物質が結合する領域、すなわち、前記結合物質のエピトープを1または複数有する。 In the present invention, the "target" is not particularly limited and can be set arbitrarily. Said target may be, for example, a substance that can come into contact with said membrane or said binding substance in a liquid, ie in liquid phase. The target has, for example, one or more regions to which the binding substance binds, ie epitopes of the binding substance.
 本発明において、前記ターゲットは、例えば、炭疽菌、大腸菌、サルモネラ、結核菌等の細菌をはじめとする微生物;SARS-CoV-2、インフルエンザウイルス等のウイルス;アレルゲン;等があげられる。前記アレルゲンは、例えば、小麦等の穀物;卵;肉;魚;貝;野菜;果物;牛乳;ピーナッツ等の豆;スギ、ヒノキ等の花粉等があげられる。前記ターゲットの種類は、特に制限されず、例えば、タンパク質、糖鎖、核酸、ポリマー等の高分子化合物;低分子化合物;等があげられる。 In the present invention, the targets include, for example, microorganisms including bacteria such as anthrax, Escherichia coli, salmonella, and tubercle bacillus; viruses such as SARS-CoV-2 and influenza virus; allergens; Examples of the allergen include grains such as wheat; eggs; meat; fish; shellfish; vegetables; The type of the target is not particularly limited, and examples thereof include high-molecular compounds such as proteins, sugar chains, nucleic acids, and polymers; low-molecular-weight compounds; and the like.
 本発明において、「結合物質」は、ターゲットに結合可能な物質、すなわち、結合物質であればよい。前記結合物質は、例えば、核酸分子またはタンパク質があげられ、具体例として、抗体、アプタマー等があげられる。前記ターゲットが、受容体またはそのリガンドの場合、前記結合物質は、それぞれ、リガンドまたは受容体でもよい。前記結合物質としてリガンドに対する受容体を用いる場合、前記受容体は、免疫グロブリンのFc領域との融合タンパク質、すなわち、受容体-Fc融合タンパク質であってもよく、好ましくは、IgGタンパク質のFc領域との融合タンパク質、すなわち、受容体-IgG Fcである。前記Fc融合タンパク質は、例えば、前記受容体のC末端のアミノ酸を直接またはリンカーを介して、免疫グロブリンのCL領域またはCH1領域のN末端のアミノ酸と連結することにより調製できる。 In the present invention, the "binding substance" may be any substance capable of binding to the target, that is, a binding substance. Examples of the binding substance include nucleic acid molecules and proteins, and specific examples thereof include antibodies, aptamers, and the like. Where the target is a receptor or its ligand, the binding agent may be the ligand or receptor, respectively. When using a receptor for a ligand as the binding substance, the receptor may be a fusion protein with the Fc region of an immunoglobulin, that is, a receptor-Fc fusion protein, preferably with the Fc region of an IgG protein. fusion protein, ie receptor-IgG Fc. The Fc fusion protein can be prepared, for example, by linking the C-terminal amino acid of the receptor directly or via a linker to the N-terminal amino acid of the CL region or CH1 region of an immunoglobulin.
 本発明において、「抗体」は、ターゲットに対して結合性を有する可溶型の免疫グロブリンということもできる。前記抗体の種類は、例えば、IgA、IgD、IgE、IgG、またはIgMがあげられる。IgAは、例えば、IgA1またはIgA2があげられる。IgGは、例えば、IgG1、IgG2、IgG3、またはIgG4があげられる。前記抗体は、その抗原結合断片、すなわち、前記ターゲットへの結合性を有する抗体の部分ペプチドであってもよい。前記抗原結合断片は、例えば、前記抗体の一部、より具体的には、前記抗体の結合領域または可変領域を含むポリペプチドである。前記抗原結合断片は、例えば、Fab、Fab’、F(ab’)2、Fv断片、rIgG(半IgG)断片、一本鎖抗体(scFv)、二重可変ドメイン抗体(DVD-Ig(商標))、ダイアボディ(diabody)、トリアボディ(triabody)、テトラボディ(tetrabody)、タンダブ(tandab)、scFvとダイアボディとの組合せであるフレキシボディ(flexibody)、タンデム(tandem)scFv(例えば、BiTE(登録商標)、Micromet社)、DART(登録商標)(MacroGenics社)、Fcab(商標)またはmAb(商標)(F-star社)、Fc engineering抗体(Xencor社)またはDuoBody(登録商標)(Genmab社)等があげられる。前記抗体としては、ターゲットに結合性を有する公知の抗体またはその抗原結合断片を用いてもよいし、ターゲットを動物等に免疫することにより得られる、新たな抗体またはその抗原結合断片を用いてもよい。また、前記抗体は、モノクローナル抗体でもよいし、ポリクローナル抗体でもよい。前記抗体は、ターゲットに結合可能な抗体を含む血清、血漿等の血液由来の画分でもよい。 In the present invention, "antibody" can also be referred to as a soluble immunoglobulin that has binding properties to a target. Types of the antibody include, for example, IgA, IgD, IgE, IgG, or IgM. IgA includes, for example, IgA1 or IgA2. IgG includes, for example, IgG1, IgG2, IgG3, or IgG4. The antibody may be an antigen-binding fragment thereof, that is, a partial peptide of the antibody that has binding properties to the target. Said antigen-binding fragment is for example a polypeptide comprising a part of said antibody, more particularly the binding or variable region of said antibody. Said antigen-binding fragments are, for example, Fab, Fab', F(ab')2, Fv fragments, rIgG (half IgG) fragments, single chain antibodies (scFv), dual variable domain antibodies (DVD-Ig™ ), diabodies, triabodies, tetrabodies, tandabs, flexibodies that are combinations of scFvs and diabodies, tandem scFvs (e.g., BiTE ( Micromet), DART® (MacroGenics), Fcab™ or mAb2 ™ (F-star), Fc engineering antibody (Xencor) or DuoBody® (Genmab company), etc. As the antibody, a known antibody or an antigen-binding fragment thereof having a binding property to a target may be used, or a new antibody or an antigen-binding fragment thereof obtained by immunizing an animal or the like with a target may be used. good. Moreover, the antibody may be a monoclonal antibody or a polyclonal antibody. The antibody may be a blood-derived fraction such as serum or plasma that contains antibodies capable of binding to the target.
 本発明において、「アプタマー」は、ターゲットに対して結合性を有する核酸分子である。前記アプタマーは、例えば、ターゲットに特異的に結合する核酸分子ということもできる。前記アプタマーの構成単位は、例えば、ヌクレオチド残基および非ヌクレオチド残基である。前記ヌクレオチド残基は、例えば、デオキシリボヌクレオチド残基およびリボヌクレオチド残基があげられ、前記ヌクレオチド残基は、例えば、修飾されても、未修飾でもよい。前記アプタマーは、例えば、デオキシリボヌクレオチド残基からなるDNAアプタマー、リボヌクレオチド残基からなるRNAアプタマー、両方を含むアプタマー、修飾ヌクレオチド残基を含むアプタマー等があげられる。前記アプタマーの長さは、特に制限されず、例えば、10~200塩基である。前記ターゲットに対するアプタマーは、例えば、既存のアプタマーを使用してもよいし、前記ターゲットに応じて、例えば、SELEX法等を利用して新たに取得したものを使用することもできる。 In the present invention, an "aptamer" is a nucleic acid molecule that has binding properties to a target. The aptamer can also be referred to as, for example, a nucleic acid molecule that specifically binds to a target. The constituent units of the aptamer are, for example, nucleotide residues and non-nucleotide residues. Said nucleotide residues include, for example, deoxyribonucleotide residues and ribonucleotide residues, and said nucleotide residues may, for example, be modified or unmodified. Examples of the aptamer include DNA aptamers composed of deoxyribonucleotide residues, RNA aptamers composed of ribonucleotide residues, aptamers containing both, aptamers containing modified nucleotide residues, and the like. The length of the aptamer is not particularly limited, and is, for example, 10-200 bases. As the aptamer for the target, for example, an existing aptamer may be used, or an aptamer newly obtained using, for example, the SELEX method or the like may be used depending on the target.
 本発明において、「結合する」または「結合可能」は、対象の結合物質が、前記結合物質に結合される結合対象物(ターゲット)に対して実際に結合することを意味してもよいし、分子ドッキング法等を用いたシミュレーションにおいて結合することを意味してもよいが、好ましくは、前者である。前記結合物質と前記結合対象物との結合は、例えば、タンパク質間相互作用の解析方法を利用して検出でき、例えば、共免疫沈降、プルダウンアッセイ、ELISA法、フローサイトメトリー等の抗体抗原反応を利用した方法を利用して検出できる。具体例として、前記結合物質と前記結合対象物との結合は、例えば、前記結合対象物を発現する細胞と、標識化した結合物質とを接触後、前記細胞において、標識を検出することにより検出できる。 In the present invention, "bind" or "capable of binding" may mean that the binding substance of interest actually binds to the binding entity (target) bound to the binding substance, It may mean that they are combined in a simulation using a molecular docking method or the like, but the former is preferable. The binding between the binding substance and the binding target can be detected, for example, using a protein-protein interaction analysis method, for example, antibody-antigen reaction such as co-immunoprecipitation, pull-down assay, ELISA method, and flow cytometry. It can be detected using the method used. As a specific example, the binding between the binding substance and the binding target is detected by, for example, contacting a cell expressing the binding target with a labeled binding substance and then detecting the label in the cell. can.
 前記結合物質は、好ましくは、アプタマーまたは抗体である。 The binding substance is preferably an aptamer or an antibody.
 前記結合物質は、標識されていてもよい。前記標識は、特に制限されず、例えば、蛍光物質、色素、同位体、酵素等があげられる。前記蛍光物質は、例えば、ピレン、TAMRA、フルオレセイン、Cy3色素、Cy5色素、FAM色素、ローダミン色素、テキサスレッド色素、JOE、MAX、HEX、TYE等の蛍光団があげられ、前記色素は、例えば、Alexa488、Alexa647等のAlexa色素等があげられる。前記酵素は、例えば、ルシフェラーゼ、アルカリフォスファターゼ、ペルオキシダーゼ、β-ガラクトシダーゼ、グルクロニダーゼ等があげられる。 The binding substance may be labeled. The label is not particularly limited, and examples thereof include fluorescent substances, dyes, isotopes, enzymes, and the like. Examples of the fluorescent substance include pyrene, TAMRA, fluorescein, Cy3 dye, Cy5 dye, FAM dye, rhodamine dye, Texas Red dye, and fluorophores such as JOE, MAX, HEX, and TYE. Examples include Alexa dyes such as Alexa488 and Alexa647. Examples of the enzyme include luciferase, alkaline phosphatase, peroxidase, β-galactosidase, glucuronidase and the like.
 前記結合物質が核酸の場合、前記標識は、例えば、前記核酸の5’末端および3’末端の少なくとも一方に結合している。他方、前記第1の結合物質がタンパク質の場合、前記標識および担体は、例えば、前記タンパク質のN末端、C末端、または側鎖に結合している。 When the binding substance is a nucleic acid, the label is bound, for example, to at least one of the 5' end and the 3' end of the nucleic acid. On the other hand, if the first binding substance is a protein, the label and carrier are, for example, attached to the N-terminus, C-terminus or side chain of the protein.
 前記標識は、例えば、直接または間接的に、前記結合物質に結合している。前記間接的な結合の場合、前記標識は、リンカーを介して結合している。 The label is, for example, directly or indirectly bound to the binding substance. In said indirect attachment, said label is attached via a linker.
 本発明において、「サンプル液」は、液体であればよい。採取検体が液体の場合、それをそのまま液体サンプルとしてもよいし、さらに、液体溶媒によって、希釈、懸濁、分散等を行って調製した液体サンプルでもよい。採取検体が固体の場合、例えば、液体溶媒によって、溶解、懸濁、分散等を行って調製した液体サンプルでもよい。また、採取検体が気体の場合、例えば、前記気体中のエアロゾルを濃縮した液体サンプルでもよいし、さらに、液体溶媒によって、溶解、懸濁、分散等を行って調製した液体サンプルでもよい。前記液体溶媒の種類は、特に制限されず、例えば、前記結合物質とターゲットとの結合等に影響を与えにくい溶媒であり、具体例として、水、緩衝液等があげられる。前記採取検体は、例えば、食品、生体物質(例えば、血液、尿、唾液、体液等の生体試料)、土壌、排水、雨水、水道水、池、河川、海水、空気、大気、等が例示できる。前記サンプル液は、例えば、ターゲットを含む液体でもよいし、ターゲットを含まない液体でもよいし、ターゲットを含むか否かが不明な液体でもよい。 In the present invention, the "sample liquid" may be any liquid. When the specimen to be collected is liquid, it may be used as a liquid sample as it is, or may be a liquid sample prepared by diluting, suspending, dispersing, or the like with a liquid solvent. When the specimen to be collected is solid, it may be a liquid sample prepared by dissolving, suspending, dispersing, or the like in a liquid solvent. When the specimen to be collected is a gas, for example, it may be a liquid sample obtained by concentrating an aerosol in the gas, or a liquid sample prepared by dissolving, suspending, or dispersing in a liquid solvent. The type of the liquid solvent is not particularly limited. For example, it is a solvent that hardly affects the binding between the binding substance and the target, and specific examples thereof include water and buffer solutions. Examples of the specimen to be collected include foods, biological substances (e.g., biological samples such as blood, urine, saliva, and body fluids), soil, wastewater, rainwater, tap water, ponds, rivers, seawater, air, atmosphere, and the like. . The sample liquid may be, for example, a liquid containing targets, a liquid containing no targets, or a liquid whose presence or absence of targets is unknown.
 以下、本発明のMSSおよびMSS等の半導体の製造方法について、図面を参照して詳細に説明する。ただし、本発明は、以下の説明に限定されない。なお、以下の図1~図8において、同一部分には、同一符号を付し、その説明を省略する場合がある。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なり、模式的に示す場合がある。 Hereinafter, the manufacturing method of a semiconductor such as MSS and MSS of the present invention will be described in detail with reference to the drawings. However, the invention is not limited to the following description. In FIGS. 1 to 8 below, the same parts are denoted by the same reference numerals, and their description may be omitted. In addition, in the drawings, for convenience of explanation, the structure of each part may be simplified as appropriate, and the dimensional ratio of each part may be schematically shown unlike the actual one.
[実施形態1]
 本実施形態は、本発明の第1のMSSおよびMSS等の半導体の製造方法の一例である。図1は、実施形態1のMSS1を示す模式図である。図1において、(A)は、MSS1の模式平面図および回路12A周囲の模式拡大図であり、(B)は、(A)におけるI-I方向からみた模式断面図である。図1に示すように、実施形態1のMSS1は、センサ基板10、電極11、アルミ線12A(回路)、MSS膜13(膜)、ピエゾ抵抗素子14、および支持領域15を備える。アルミ線12Aは、導電層121と、絶縁層122(酸化皮膜層)とから構成される。MSS膜13は、ピエゾ抵抗素子14が形成された支持領域15を介してセンサ基板に支持されている。また、MSS膜13は、ピエゾ抵抗素子14を介してアルミ線12Aと連結し、アルミ線12Aは、それぞれ電極11と連結した構造である。実施形態1において、アルミ線12Aは、4つのピエゾ抵抗素子14を含むホイートストンブリッジ回路を構成している。なお、実施形態1のMSS1は、電極11を含むが、電極11は、任意の構成であり、あってもよいし、なくてもよい。MSS1が電極11を備えない場合、アルミ線12Aが電圧印加装置に接続される。
[Embodiment 1]
This embodiment is an example of the first MSS of the present invention and a method of manufacturing a semiconductor such as the MSS. FIG. 1 is a schematic diagram showing an MSS 1 of Embodiment 1. FIG. In FIG. 1, (A) is a schematic plan view of the MSS 1 and a schematic enlarged view of the periphery of the circuit 12A, and (B) is a schematic cross-sectional view seen from the II direction in (A). As shown in FIG. 1, the MSS 1 of Embodiment 1 comprises a sensor substrate 10, electrodes 11, aluminum wires 12A (circuits), MSS films 13 (films), piezoresistive elements 14, and support regions 15. FIG. The aluminum wire 12A is composed of a conductive layer 121 and an insulating layer 122 (oxide layer). The MSS film 13 is supported by the sensor substrate via a support region 15 having a piezoresistive element 14 formed thereon. Also, the MSS film 13 is connected to the aluminum wire 12A through the piezoresistive element 14, and the aluminum wire 12A is connected to the electrode 11 respectively. In Embodiment 1, the aluminum wire 12A constitutes a Wheatstone bridge circuit including four piezoresistive elements 14 . In addition, although the MSS 1 of Embodiment 1 includes the electrode 11, the electrode 11 has an arbitrary configuration and may or may not be present. If the MSS 1 does not have the electrode 11, the aluminum wire 12A is connected to the voltage applying device.
 センサ基板10は、電極11およびアルミ線12A、MSS膜13等のMSS1の各種構成を配置可能な基板である。センサ基板10としては、半導体基板を使用でき、具体例として、シリコン製のウェーハを使用できる。センサ基板10は、支持領域15によって、MSS膜13を支持している。センサ基板10は、MSS膜13を部分的に支持することが好ましく、具体的には、MSS膜13の側面を部分的に支持することが好ましい。 The sensor substrate 10 is a substrate on which various configurations of the MSS 1 such as the electrodes 11, aluminum wires 12A, and the MSS film 13 can be arranged. As the sensor substrate 10, a semiconductor substrate can be used, and as a specific example, a wafer made of silicon can be used. The sensor substrate 10 supports the MSS film 13 by means of support regions 15 . The sensor substrate 10 preferably partially supports the MSS film 13 , and specifically preferably partially supports the side surfaces of the MSS film 13 .
 実施形態1のMSS1において、センサ基板10は、4つの支持領域15(支持部)を介してMSS膜13を支持しているが、本発明はこれに限定されず、センサ基板10は、任意の数の支持領域15により、MSS膜13を支持してもよい。また、センサ基板10は、4つの支持領域15により、1つのMSS膜を支持しているが、本発明はこれに限定されず、センサ基板10は、例えば、複数の支持領域15を有し、複数の支持領域15が、それぞれ、MSS膜13を支持してもよい。この場合、1つのセンサ基板10における支持領域15の数および支持されるMSS膜13の数は、特に制限されず、それぞれ、1つでもよいし、2つ以上の複数でもよい。 In the MSS 1 of Embodiment 1, the sensor substrate 10 supports the MSS film 13 via four supporting regions 15 (supporting portions), but the present invention is not limited to this, and the sensor substrate 10 may be any A number of support regions 15 may support the MSS membrane 13 . In addition, the sensor substrate 10 supports one MSS film with four support regions 15, but the present invention is not limited to this. Multiple support regions 15 may each support an MSS membrane 13 . In this case, the number of support regions 15 and the number of supported MSS films 13 on one sensor substrate 10 are not particularly limited, and each may be one or two or more.
 電極11は、MSS1外の電圧印加装置と接続されることにより、MSS1に電圧を印加可能に構成できる。電極11は、これにより、ピエゾ抵抗素子14に対する応力変化を電圧値として測定可能とする。電極11の素材は、導電性の金属であればよく、後述のアルミ線12Aの説明における回路の素材の説明を援用できる。電極11の素材は、前記回路の素材と同じでもよいし、異なってもよい。MSS1において、電極11は、導電性の金属から構成される導電層から構成されるが、本発明はこれに限定されず、例えば、その一部の表面において、アルミ線12Aと同様に、絶縁層が形成されてもよい。 The electrode 11 can be configured to apply a voltage to the MSS1 by being connected to a voltage applying device outside the MSS1. The electrode 11 thereby makes it possible to measure the change in stress on the piezoresistive element 14 as a voltage value. The material of the electrode 11 may be any conductive metal, and the description of the material of the circuit in the description of the aluminum wire 12A, which will be described later, can be used. The material of the electrodes 11 may be the same as or different from that of the circuit. In the MSS 1, the electrode 11 is composed of a conductive layer made of a conductive metal, but the present invention is not limited to this. may be formed.
 アルミ線12Aは、電極11とピエゾ抵抗素子14とを電気的に接続し、MSS1外の前記電圧印加装置による電圧印加時に、ピエゾ抵抗素子14に対する応力変化を電圧値として測定可能とする。図1(B)に示すように、アルミ線12Aは、その中心側に導電層121が基板10に積層するように配置され、導電層121の周囲を絶縁層122が被覆している。すなわち、導電層121は、基板10と絶縁層122とに封止されている。このため、導電層121は、アルミ線12A外と絶縁されている。したがって、MSS1においては、アルミ線12A間の絶縁が確保されているため、MSS1をサンプル液に浸漬し、MSS1に電圧を印加したとしても、アルミ線12A間の短絡を抑制できる。アルミ線12Aにおいて、導電層121は、導電性を示すアルミニウムから構成されており、具体的には、酸化されていないアルミニウムから構成されている。他方、アルミ線12Aにおいて、絶縁層122は、絶縁性を示すアルミニウムから構成されており、具体的には、酸化アルミニウムから構成されている。なお、前記絶縁は、MSS1を通常の条件で使用した場合に、絶縁層122を備えないMSSと比較して、前記回路間の短絡が有意に抑制される程度の絶縁性を意味する。 The aluminum wire 12A electrically connects the electrode 11 and the piezoresistive element 14, and makes it possible to measure the change in stress on the piezoresistive element 14 as a voltage value when voltage is applied by the voltage application device outside the MSS1. As shown in FIG. 1B, the aluminum wire 12A has a conductive layer 121 laminated on the substrate 10 on the center side thereof, and the conductive layer 121 is covered with an insulating layer 122. As shown in FIG. That is, the conductive layer 121 is sealed between the substrate 10 and the insulating layer 122 . Therefore, the conductive layer 121 is insulated from the outside of the aluminum wire 12A. Therefore, since the insulation between the aluminum wires 12A is ensured in the MSS1, short-circuiting between the aluminum wires 12A can be suppressed even if the MSS1 is immersed in the sample liquid and a voltage is applied to the MSS1. In the aluminum wire 12A, the conductive layer 121 is made of aluminum that exhibits conductivity, and more specifically, is made of non-oxidized aluminum. On the other hand, in the aluminum wire 12A, the insulating layer 122 is made of aluminum exhibiting insulating properties, specifically, made of aluminum oxide. In addition, the insulation means insulation to the extent that the short circuit between the circuits is significantly suppressed when the MSS 1 is used under normal conditions, as compared with the MSS without the insulation layer 122 .
 実施形態1のMSS1において、前記回路の素材は、アルミニウムであるが、本発明において、前記回路の素材はこれに限定されず、酸化処理により酸化皮膜層を形成可能な金属であればよい。前記酸化皮膜層を形成可能な金属としては、例えば、バルブメタルがあげられ、具体例として、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、モリブデン、クロム、鉄、またはこれらの合金があげられる。このように、回路の素材として、酸化処理により酸化皮膜を形成する金属を用いることにより、MSS1は、樹脂を用いて絶縁層を形成しなくとも、回路間の絶縁を確保することができる。 In the MSS 1 of Embodiment 1, the material of the circuit is aluminum, but in the present invention, the material of the circuit is not limited to this, and may be any metal capable of forming an oxide film layer by oxidation treatment. Examples of metals capable of forming the oxide film layer include valve metals, and specific examples include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof. In this way, by using a metal that forms an oxide film by oxidation treatment as the material of the circuit, the MSS 1 can ensure insulation between circuits without forming an insulating layer using resin.
 アルミ線12Aにおいて、導電層121の幅および高さは、電極11とピエゾ抵抗素子14とを電気的に接続できる厚みであればよい。導電層121の幅は、例えば、1~100 μm、10~20μmである。導電層121の高さは、例えば、0.1~100μm、1~20μmである。また、絶縁層122の厚みは、MSS1を通常の条件で使用した場合に、絶縁層122を備えないMSSと比較して、アルミ線12A間の短絡が有意に抑制される程度の絶縁性が確保できる厚みであればよい。絶縁層122の厚みは、例えば、0.5~50nm、1~10nmである。 In the aluminum wire 12A, the width and height of the conductive layer 121 are sufficient as long as they are thick enough to electrically connect the electrodes 11 and the piezoresistive elements 14 . The width of the conductive layer 121 is, for example, 1-100 μm, 10-20 μm. The height of the conductive layer 121 is, for example, 0.1 to 100 μm, 1 to 20 μm. In addition, the thickness of the insulating layer 122 is such that when the MSS 1 is used under normal conditions, compared to the MSS without the insulating layer 122, the insulating property is such that the short circuit between the aluminum wires 12A is significantly suppressed. Any thickness can be used. The thickness of the insulating layer 122 is, for example, 0.5 to 50 nm, 1 to 10 nm.
 MSS1において、アルミ線12Aは、ピエゾ抵抗素子14とホイートストンブリッジ回路を構成しているが、アルミ線12Aの回路構造は、これに限定されず、ピエゾ抵抗素子14に対する応力変化を電気的に測定可能な回路構造であればよい。 In MSS1, the aluminum wire 12A forms a Wheatstone bridge circuit with the piezoresistive element 14, but the circuit structure of the aluminum wire 12A is not limited to this, and the change in stress on the piezoresistive element 14 can be electrically measured. circuit structure.
 MSS膜13は、表面応力に応じて変形し、その変形によって、ピエゾ抵抗素子14に応力を与える。MSS膜13の素材は、特に制限されず、表面応力に応じて変形し、その変形によって、ピエゾ抵抗素子14に応力を与えるものであればよい。MSS膜13は、例えば、薄膜であり、その厚みおよび各表面の面積は、特に制限されず、例えば、市販のMSSに使用されているMSS膜と同様である。MSS膜13の平面形状は、円形であるが、本発明はこれに限定されず、任意の形状とできる。MSS膜13の平面形状は、好ましくは、表面応力による歪みを大きくできることから、正円である。MSS膜13の素材は、特に制限されず、例えば、シリコンである。MSS膜13としては、シリコン膜が使用でき、具体例として、p型またはn型の極性を問わず、任意のシリコン膜が使用でき、例えば、Si(100)を使用できる。 The MSS film 13 deforms according to the surface stress, and the deformation applies stress to the piezoresistive element 14 . The material of the MSS film 13 is not particularly limited as long as it deforms in response to surface stress and applies stress to the piezoresistive element 14 due to the deformation. The MSS film 13 is, for example, a thin film, and its thickness and surface area are not particularly limited, and are similar to MSS films used in commercially available MSS, for example. Although the planar shape of the MSS film 13 is circular, the present invention is not limited to this, and may be any shape. The planar shape of the MSS film 13 is preferably a perfect circle because it can increase distortion due to surface stress. The material of the MSS film 13 is not particularly limited, and is silicon, for example. A silicon film can be used as the MSS film 13, and as a specific example, any silicon film can be used regardless of p-type or n-type polarity. For example, Si(100) can be used.
 ピエゾ抵抗素子14は、MSS膜13の変形を検出する素子である。MSS1において、MSS膜13に対する応力が加わると、その応力変化は、支持領域15に集中する。このため、MSS1において、ピエゾ抵抗素子14は、支持領域15において、MSS膜13を支持する箇所に形成されている。また、ピエゾ抵抗素子14は、前記応力変化に応じて、その抵抗値が変化する。このため、MSS1では、電極11およびアルミ線12Aを介して電圧を印加することにより、前記抵抗値の変化に起因して、応力に応じた出力電圧が得られる。これにより、MSS1は、サンプル液中のターゲットの有無または量が分析可能となる。ピエゾ抵抗素子14は、例えば、シリコン膜で構成された支持領域15の任意の領域に対して、不純物のドーピングによりp型化することによって、製造できる。このため、ピエゾ抵抗素子14は、シリコン膜上に構成されたp型のSiを用いることが好ましい。なお、ピエゾ抵抗素子14は、支持領域15がMSS膜13を支持している箇所に形成しているが、その付近に形成してもよい。 The piezoresistive element 14 is an element that detects deformation of the MSS film 13 . When stress is applied to MSS membrane 13 in MSS 1 , the stress change is concentrated in support region 15 . Therefore, in the MSS 1 , the piezoresistive element 14 is formed in the supporting region 15 at a location supporting the MSS film 13 . Moreover, the piezoresistive element 14 changes its resistance value according to the stress change. Therefore, in the MSS1, by applying a voltage through the electrode 11 and the aluminum wire 12A, an output voltage corresponding to the stress can be obtained due to the change in the resistance value. This allows the MSS 1 to analyze the presence or amount of the target in the sample liquid. The piezoresistive element 14 can be manufactured, for example, by doping an arbitrary region of the support region 15 made of a silicon film to make it p-type by doping an impurity. Therefore, the piezoresistive element 14 preferably uses p-type Si formed on a silicon film. Note that the piezoresistive element 14 is formed at the location where the support region 15 supports the MSS film 13, but may be formed in the vicinity of that location.
 つぎに、MSS1の製造方法について、図2を用いて説明する。図2は、MSS1の製造方法の一例を示す模式断面図である。実施形態1のMSS1の製造方法では、まず、MSSを準備する。MSSは、市販のMSSを用いてもよいし、自家調製してもよい。MSS1を自家調製する場合、MSS1は、例えば、センサ基板10の支持領域15に、MSS膜13を接続後、支持領域15に対してドーピングを行なうことにより、ピエゾ抵抗素子14を形成する。そして、実施形態1の製造方法は、スパッタリング、蒸着法等により、アルミニウムを配線することに、電極11および回路であるアルミ線12Aを形成できる。 Next, the manufacturing method of MSS1 will be explained using FIG. FIG. 2 is a schematic cross-sectional view showing an example of a method for manufacturing the MSS1. In the manufacturing method of MSS1 of Embodiment 1, first, MSS is prepared. As MSS, commercially available MSS may be used, or self-prepared. When the MSS 1 is self-prepared, the MSS 1 forms the piezoresistive element 14 by, for example, connecting the MSS film 13 to the supporting region 15 of the sensor substrate 10 and then doping the supporting region 15 . Then, the manufacturing method of the first embodiment can form the electrodes 11 and the aluminum wires 12A, which are circuits, by wiring aluminum by sputtering, vapor deposition, or the like.
 図2(A)に示すように、MSS上に形成されたアルミ線12Aは、導電性のアルミニウム、すなわち、酸化されていないアルミニウムから構成されている。そこで、実施形態1の製造方法では、アルミ線12Aの表面に、絶縁層122を形成する。具体的には、実施形態1の製造方法では、アルミ線12Aに対して酸化処理を実施する。実施形態1の製造方法では、前記酸化処理によりアルミ線12Aの表面のアルミニウムが酸化されることにより、図2(B)に示すように、絶縁性の酸化皮膜が形成されるため、絶縁層122が形成される。 As shown in FIG. 2(A), the aluminum wire 12A formed on the MSS is made of conductive aluminum, that is, non-oxidized aluminum. Therefore, in the manufacturing method of the first embodiment, the insulating layer 122 is formed on the surface of the aluminum wire 12A. Specifically, in the manufacturing method of the first embodiment, the aluminum wire 12A is oxidized. In the manufacturing method of Embodiment 1, the oxidation treatment oxidizes the aluminum on the surface of the aluminum wire 12A, thereby forming an insulating oxide film as shown in FIG. is formed.
 前記酸化処理は、アルミニウム等の金属との酸化反応が生じる処理であればよく、例えば、強酸等の酸による酸処理、陽極酸化処理、酸素雰囲気下でのプラズマ処理(酸素プラズマ処理)等があげられる。 The oxidation treatment may be any treatment as long as it causes an oxidation reaction with a metal such as aluminum. be done.
 前記酸処理により酸化処理を実施する場合、実施形態1の製造方法では、前記酸をアルミ線12Aの表面に塗布し、所定時間、アルミ線12Aと前記酸とを反応させることにより実施できる。前記酸処理に用いる酸は、酸化剤として作用可能な酸であり、具体例として、硝酸、硫酸、リン酸、シュウ酸、クロム酸等があげられ、好ましくは、濃硝酸、濃硫酸、濃リン酸、濃シュウ酸、濃クロム酸である。前記酸処理における酸との反応時間は、前記酸および回線を構成する金属の種類に応じて設定でき、例えば、15~180分、60~90分である。前記酸処理の反応温度は、例えば、0~50℃、好ましくは、30℃以下である。 When the oxidation treatment is performed by the acid treatment, in the manufacturing method of Embodiment 1, the acid can be applied to the surface of the aluminum wire 12A, and the aluminum wire 12A and the acid can be reacted for a predetermined time. The acid used for the acid treatment is an acid that can act as an oxidizing agent, and specific examples include nitric acid, sulfuric acid, phosphoric acid, oxalic acid, chromic acid, etc., preferably concentrated nitric acid, concentrated sulfuric acid, concentrated phosphoric acid, etc. acid, concentrated oxalic acid, concentrated chromic acid. The reaction time with the acid in the acid treatment can be set according to the type of the acid and the metal forming the circuit, and is, for example, 15 to 180 minutes, 60 to 90 minutes. The reaction temperature of the acid treatment is, for example, 0 to 50°C, preferably 30°C or less.
 前記プラズマ処理は、MSS1をプラズマ発生装置内に配置し、前記プラズマ発生装置に対して酸素を供給しながら、プラズマを発生させることにより実施できる。前記プラズマ発生装置に供給されるガス中の酸素濃度は、例えば、各装置のデフォルトの設定でよく、例えば、80~100%、85~95%、約90%である。前記プラズマ処理の時間は、前記回路を構成する金属の種類および形成する絶縁層122の厚みに応じて設定でき、具体例として、0.5~2時間、0.75~1.5時間、約1時間である。前記酸素プラズマ処理後、アルミ線12Aの表面には、酸化アルミニウムと水酸化アルミニウムとを含む絶縁層122が形成される。このため、実施形態1の製造方法は、前記酸素プラズマ処理後、後述のアニール工程等の熱処理を含む工程により、形成された水酸化アルミニウムを、酸化アルミニウムに変換することが好ましい。これにより、実施形態1の製造方法は、形成された絶縁層122の絶縁性を向上できる。 The plasma treatment can be performed by placing the MSS1 in a plasma generator and generating plasma while supplying oxygen to the plasma generator. The oxygen concentration in the gas supplied to the plasma generator may be, for example, the default setting of each device, eg, 80-100%, 85-95%, about 90%. The plasma treatment time can be set according to the type of metal forming the circuit and the thickness of the insulating layer 122 to be formed. One hour. After the oxygen plasma treatment, an insulating layer 122 containing aluminum oxide and aluminum hydroxide is formed on the surface of the aluminum wire 12A. Therefore, in the manufacturing method of Embodiment 1, after the oxygen plasma treatment, the formed aluminum hydroxide is preferably converted into aluminum oxide by a step including a heat treatment such as an annealing step to be described later. Thereby, the manufacturing method of Embodiment 1 can improve the insulating property of the formed insulating layer 122 .
 これにより、実施形態1の製造方法は、MSS1を製造できる。 Thus, the manufacturing method of Embodiment 1 can manufacture MSS1.
 つぎに、MSS1を用いた、サンプル中のターゲットの分析方法の一例を説明する。まず、実施形態1のターゲットの分析方法は、サンプル液と、MSS1と接触させる(接触工程)。前記サンプル液へのMSS1の浸漬条件は、特に制限されず、例えば、温度20~35℃で0.1~120分、温度50~60℃で0.1~120分等が例示できる。MSS1が複数のMSS膜を有する場合は、例えば、MSS1における複数のMSS膜を同時に同じサンプル液に浸漬させればよい。 Next, an example of a method for analyzing targets in samples using MSS1 will be described. First, in the target analysis method of Embodiment 1, the sample liquid is brought into contact with the MSS1 (contact step). The conditions for immersing MSS1 in the sample liquid are not particularly limited, and examples thereof include a temperature of 20 to 35° C. and a temperature of 0.1 to 120 minutes and a temperature of 50 to 60° C. and 0.1 to 120 minutes. When the MSS1 has a plurality of MSS membranes, for example, the plurality of MSS membranes in the MSS1 may be immersed in the same sample liquid at the same time.
 つぎに、実施形態1の分析方法では、前記サンプル液(液相)中でMSS1に電圧を印加する(印加工程)。前記電圧の印加条件は、特に制限されず、例えば、市販のMSSと同様の条件が例示できる。前記液相は、例えば、前記接触工程におけるサンプル液でもよいし、他の溶媒でもよい。後者の場合、前記接触工程後のMSS1を、前記サンプル液から取出し、新たな溶媒に浸漬させて、電圧を印加すればよい。前記溶媒は、特に制限されず、例えば、PBS、Tris-HCl等の緩衝液、水等があげられる。 Next, in the analysis method of Embodiment 1, a voltage is applied to the MSS1 in the sample liquid (liquid phase) (application step). Conditions for applying the voltage are not particularly limited, and for example, conditions similar to those for commercially available MSS can be exemplified. The liquid phase may be, for example, the sample liquid in the contacting step, or may be another solvent. In the latter case, the MSS1 after the contacting step is removed from the sample solution, immersed in a new solvent, and voltage is applied. The solvent is not particularly limited, and examples thereof include PBS, buffer solutions such as Tris-HCl, water, and the like.
 前記印加のタイミングは、前記接触工程の開始または前記接触工程を開始し、所定時間経過後である。 The timing of the application is the start of the contact process or after a predetermined time has elapsed since the start of the contact process.
 つぎに、実施形態1の分析方法は、MSS1におけるピエゾ抵抗素子14の応力変化の測定により、前記サンプル液中のターゲットを分析する。前記応力変化の測定は、例えば、電気シグナルの測定により行うことができ、市販の計測モジュール(例えば、MSS-8RM、NANOSENSOR社)等が使用できる。実施形態1の分析方法では、例えば、前記ターゲットを含有しないコントロールのサンプル液を用いて、リファレンスの測定値(シグナル)を取得してもよい。この場合、前記分析工程では、例えば、リファレンスの測定値と前記サンプル液の測定値(シグナル)とを用いて、前記ターゲットを分析してもよい。 Next, according to the analysis method of the first embodiment, the target in the sample liquid is analyzed by measuring the stress change of the piezoresistive element 14 in MSS1. The stress change can be measured, for example, by measuring electrical signals, and a commercially available measurement module (eg, MSS-8RM, NANOSENSOR) can be used. In the analysis method of Embodiment 1, for example, a reference measurement value (signal) may be obtained using a control sample solution that does not contain the target. In this case, in the analysis step, for example, the target may be analyzed using a reference measurement value and a measurement value (signal) of the sample liquid.
 実施形態1のMSS1では、前記回線であるアルミ線12Aの表面に絶縁層122が形成されている。このため、MSS1では、アルミ線12A間の絶縁が確保されているため、サンプル液等の液相での測定が可能である。したがって、MSS1は、液体のサンプルの分析に好適に使用できる。また、実施形態1の製造方法では、前記回線の素材を、酸化処理により酸化皮膜を形成する金属とすることにより、酸化処理により酸化皮膜層を形成でき、前記酸化皮膜層を絶縁層122として用いることができる。このため、実施形態1の製造方法は、樹脂による回線の被覆が不要となり、前記樹脂のピエゾ抵抗素子14への付着による破損を回避できる。したがって、実施形態1の製造方法よれば、製造時の破損率を低減できるため、MSS1の製造における歩留まりを向上できる。 In the MSS 1 of Embodiment 1, an insulating layer 122 is formed on the surface of the aluminum wire 12A, which is the line. Therefore, in the MSS1, since the insulation between the aluminum wires 12A is ensured, it is possible to perform measurement in a liquid phase such as a sample liquid. Therefore, MSS1 can be suitably used for the analysis of liquid samples. In addition, in the manufacturing method of the first embodiment, by using a metal that forms an oxide film by oxidation treatment as the material of the circuit, an oxide film layer can be formed by oxidation treatment, and the oxide film layer is used as the insulating layer 122 . be able to. Therefore, the manufacturing method according to the first embodiment does not require coating of the lines with resin, and damage due to adhesion of the resin to the piezoresistive element 14 can be avoided. Therefore, according to the manufacturing method of Embodiment 1, the breakage rate during manufacturing can be reduced, so the yield in manufacturing the MSS1 can be improved.
 実施形態1の製造方法では、1種類の酸化処理を実施したが、本発明はこれに限定されず、複数の酸化処理を実施してもよい。また、実施形態1の製造方法は、さらに、形成された酸化皮膜層をアニールさせる工程を含んでもよい。図3を用いて、実施形態1の製造方法の他の例について説明する。 In the manufacturing method of Embodiment 1, one type of oxidation treatment is performed, but the present invention is not limited to this, and multiple oxidation treatments may be performed. Moreover, the manufacturing method of Embodiment 1 may further include a step of annealing the formed oxide film layer. Another example of the manufacturing method of Embodiment 1 will be described with reference to FIG.
 図3は、実施形態1のMSS1の製造方法の他の例を示す模式図である。実施形態1の他の例の製造方法では、アルミ線12Aの導電層121に対して、2段階の酸化処理(図3(B)および(C))の実施後、熱処理により、形成された酸化皮膜層をアニールさせることにより、より絶縁性の高い絶縁層122を形成する(図3(A))。 FIG. 3 is a schematic diagram showing another example of the method for manufacturing the MSS1 of Embodiment 1. FIG. In the manufacturing method of another example of the first embodiment, the conductive layer 121 of the aluminum wire 12A is subjected to two-stage oxidation treatment (FIGS. 3B and 3C), and then heat treatment to remove the oxide formed. Annealing the film layer forms an insulating layer 122 having a higher insulating property (FIG. 3A).
 まず、実施形態1の他の例の製造方法では、MSS上に形成されたアルミ線12Aに対して、酸処理による酸化処理を実施する。これにより、図3(B)に示すように、実施形態1の他の例の製造方法では、導電層121の表面に酸化皮膜層である絶縁層122を形成する。 First, in the manufacturing method of another example of the first embodiment, the aluminum wire 12A formed on the MSS is oxidized by acid treatment. Thereby, as shown in FIG. 3B, in the manufacturing method of another example of the first embodiment, an insulating layer 122 which is an oxide film layer is formed on the surface of the conductive layer 121 .
 つぎに、実施形態1の他の例の製造方法では、前記酸処理後のMSSに対して、酸素雰囲気下でプラズマ処理を実施する。これにより、図3(C)に示すように、実施形態1の他の例の製造方法では、アルミ線12Aの表面に形成された酸化皮膜層を成長させ、絶縁層122の厚みを肥厚させる。また、前記酸素プラズマ処理では、絶縁層122内に、酸化アルミニウムに加えて、水酸化アルミニウムが形成される。 Next, in another example of the manufacturing method of Embodiment 1, the MSS after the acid treatment is subjected to plasma treatment in an oxygen atmosphere. As a result, as shown in FIG. 3C, in the manufacturing method of the other example of the first embodiment, the oxide film layer formed on the surface of the aluminum wire 12A is grown to increase the thickness of the insulating layer 122. As shown in FIG. Further, in the oxygen plasma treatment, aluminum hydroxide is formed in the insulating layer 122 in addition to aluminum oxide.
 そして、実施形態1の他の例の製造方法では、前記酸素プラズマ処理後のMSSに対して、熱処理を実施する。これにより、図3(D)に示すように、実施形態1の他の例の製造方法では、アルミ線12Aの表面に形成された絶縁層122をアニールすると共に、絶縁層122内の水酸化アルミニウムを酸化アルミニウムに変換し、絶縁性を向上できる。前記熱処理における温度の下限は、例えば、100℃以上、200℃以上、300℃以上が好ましい。前記熱処理における温度の上限は、例えば、400℃以下である。また、前記熱処理における温度は、例えば、100~400℃、200~400℃、300~400℃、約350℃である。前記熱処理の時間は、例えば、60~180分である。 Then, in the manufacturing method of another example of Embodiment 1, heat treatment is performed on the MSS after the oxygen plasma treatment. As a result, as shown in FIG. 3D, in the manufacturing method of another example of the first embodiment, the insulating layer 122 formed on the surface of the aluminum wire 12A is annealed, and the aluminum hydroxide in the insulating layer 122 is removed. can be converted to aluminum oxide to improve insulation. The lower limit of the temperature in the heat treatment is preferably 100° C. or higher, 200° C. or higher, or 300° C. or higher, for example. The upper limit of the temperature in the heat treatment is, for example, 400° C. or less. Further, the temperature in the heat treatment is, for example, 100 to 400°C, 200 to 400°C, 300 to 400°C, and about 350°C. The heat treatment time is, for example, 60 to 180 minutes.
 これにより、実施形態1の他の例の製造方法は、MSS1を製造できる。実施形態1の他の例の製造方法によれば、MSS1における絶縁層122の厚みを肥厚できる。このため、実施形態1の他の例の製造方法によれば、より絶縁性が高いMSS1を製造できる。 Thereby, the manufacturing method of another example of Embodiment 1 can manufacture MSS1. According to another example of the manufacturing method of Embodiment 1, the thickness of the insulating layer 122 in the MSS1 can be increased. Therefore, according to the manufacturing method of another example of the first embodiment, the MSS1 with higher insulation can be manufactured.
 本実施形態のMSS1において、MSS膜13には、前記結合物質は固定化されていない。ただし、本発明はこれに限定されず、MSS1には、前記結合物質が固定化されてもよい。この場合、前記結合物質は、MSS膜13の一方の表面に固定化されてもよいし、両方の表面に固定化されてもよい。MSS膜13の両面に前記結合物質が固定化される場合、一方の表面の結合物質と他方の表面の結合物質は、例えば、同じターゲットに結合する同じ結合物質であることが好ましい。以下、前記結合物質として、アプタマーを用いる場合を例にあげて、MSS膜13への結合物質の固定化方法を説明するが、本発明はこれに限定されず、抗体等のタンパク質を固定化してもよい。また、以下の説明において、MSS膜13の表面とは、例えば、一方の表面でもよいし、両面でもよい。 In the MSS 1 of this embodiment, the binding substance is not immobilized on the MSS membrane 13 . However, the present invention is not limited to this, and the binding substance may be immobilized on MSS1. In this case, the binding substance may be immobilized on one surface of the MSS membrane 13, or may be immobilized on both surfaces. When the binding substance is immobilized on both sides of the MSS membrane 13, the binding substance on one surface and the binding substance on the other surface are preferably the same binding substance that binds to the same target, for example. Hereinafter, a method for immobilizing a binding substance on the MSS membrane 13 will be described by taking as an example a case where an aptamer is used as the binding substance, but the present invention is not limited to this, and a protein such as an antibody may be immobilized. good too. Further, in the following description, the surface of the MSS film 13 may be, for example, one surface or both surfaces.
 MSS膜13に対する前記アプタマーの固定化方法は、特に制限されず、MSS膜13に対して、前記アプタマーを直接的に固定化しても、間接的に固定化してもよい。前者の場合、例えば、MSS膜13と前記アプタマーとを化学的処理することによって、共有結合等により固定化することができる。前記直接的な固定方法は、例えば、フォトリソグラフィーを利用する方法があげられ、具体例として、米国特許5,424,186号明細書等を参照できる。また、他の直接的な固定方法は、例えば、MSS膜13上で前記アプタマーを合成する方法があげられる。この方法は、例えば、いわゆるスポット法があげられ、具体例として、米国特許5,807,522号明細書等を参照できる。後者の場合、例えば、MSS膜13に対して、リンカーを介して前記アプタマーを固定化することができる。前記リンカーの種類は、何ら制限されず、例えば、ビオチンまたはビオチン誘導体(以下、ビオチン類という)と、アビジンまたはアビジン誘導体(以下、アビジン類という)との組み合わせ等があげられる。前記ビオチン誘導体は、例えば、ビオシチン等があり、前記アビジン誘導体は、例えば、ストレプトアビジン等がある。前記リンカーの長さは、例えば、MSS膜13上の官能基(例えば、シリコン膜上のシラノール基の酸素原子)と、アビジン等のアフィニティータグまたはアプタマーまでの最短の分子鎖の長さ(主鎖長)で表すことができる。前記リンカーの主鎖長は、1~20であり、MSS膜13の感度を向上できることから、好ましくは、1~15、1~13、3~13、5~13、1~11、3~11、1~10、3~10、1~8、3~8、1~5、1~3、1または2である。以下に、固定化方法を例示するが、本発明は、これらには制限されない。 The method for immobilizing the aptamer on the MSS membrane 13 is not particularly limited, and the aptamer may be immobilized directly or indirectly on the MSS membrane 13. In the former case, for example, the MSS membrane 13 and the aptamer can be immobilized by covalent bonding or the like by chemically treating the aptamer. The direct fixing method includes, for example, a method using photolithography, and for specific examples, reference can be made to US Pat. No. 5,424,186. Another direct immobilization method is, for example, a method of synthesizing the aptamer on the MSS membrane 13 . This method includes, for example, a so-called spot method, and for specific examples, reference can be made to US Pat. No. 5,807,522. In the latter case, for example, the aptamer can be immobilized on the MSS membrane 13 via a linker. The type of linker is not limited at all, and examples thereof include a combination of biotin or a biotin derivative (hereinafter referred to as biotins) and avidin or an avidin derivative (hereinafter referred to as avidins). Examples of the biotin derivative include biocytin, and examples of the avidin derivative include streptavidin. The length of the linker is, for example, the length of the shortest molecular chain (main chain long). The main chain length of the linker is 1 to 20, and is preferably 1 to 15, 1 to 13, 3 to 13, 5 to 13, 1 to 11, 3 to 11 because it can improve the sensitivity of the MSS membrane 13. , 1-10, 3-10, 1-8, 3-8, 1-5, 1-3, 1 or 2. Examples of immobilization methods are shown below, but the present invention is not limited to these.
 第1の例として、MSS膜13および前記アプタマーのいずれか一方に、前記ビオチン類を結合させ、他方に、前記アビジン類を結合させる。そして、前記ビオチン類と前記アビジン類とを結合させることによって、間接的に、MSS膜13に前記アプタマーを固定化できる。 As a first example, the biotins are bound to one of the MSS membrane 13 and the aptamer, and the avidins are bound to the other. Then, the aptamer can be indirectly immobilized on the MSS membrane 13 by binding the biotins and the avidins.
 なお、第1の例では、アビジン類-ビオチン類間の特異的な結合、すなわち、アビジン類へのビオチン類のアフィニティーを利用して、アプタマーを間接的にMSS膜に固定したが、本発明はこれに限定されず、アビジン類-ビオチン類以外のアフィニティータグを利用してもよい。前記アフィニティータグとしては、例えば、Hisタグ(His×6タグ)-ニッケルイオン、グルタチオン-S-トランスフェラーゼ-グルタチオン、マルトース結合タンパク質-マルトース、エピトープタグ(mycタグ、FLAGタグ、HA(ヘマグルチニン)タグ)-抗体または抗原結合断片が利用できる。他のアフィニティータグを用いてもよい点は、後述の第2~4の例においても同様である。 In the first example, the aptamer was indirectly immobilized on the MSS membrane by utilizing the specific binding between avidins and biotins, that is, the affinity of biotins to avidins. Not limited to this, affinity tags other than avidins-biotins may be used. Examples of the affinity tag include His tag (His×6 tag)-nickel ion, glutathione-S-transferase-glutathione, maltose binding protein-maltose, epitope tag (myc tag, FLAG tag, HA (hemagglutinin) tag)- Antibodies or antigen-binding fragments can be used. The point that other affinity tags may be used is the same in the second to fourth examples described later.
 第2の例として、MSS膜13に対して、例えば、介在膜を介して、前記アプタマーを固定化してもよい。MSS膜13上に前記介在膜を形成し、前記第1の例と同様に、前記介在膜および前記アプタマーのいずれか一方に、前記ビオチン類を結合させ、他方に、前記アビジン類を結合させ、前記ビオチン類と前記アビジン類との結合により、前記介在膜を介して前記アプタマーを前記MSSに固定化できる。前記介在膜は、例えば、金等の金属の膜であり、MSS膜13に対して前記金属を蒸着することにより形成できる。前記介在膜の厚みは、特に制限されず、例えば、10~100nmである。前記介在膜は、例えば、一層でも二層以上でもよい。前記介在膜の表面を金にする場合、前記介在膜は、例えば、二層とし、金膜の接着性を向上できる点から、MSS膜13に対して、接着用の金属膜(接着膜)を介して前記金膜を形成することが好ましい。前記接着膜の金属は、例えば、チタン、クロム等があげられる。前記接着膜の厚みは、例えば、0.1~10nmであり、前記金膜の厚みは、例えば、0.1~100nmである。前記介在膜に前記ビオチン類を結合する場合、例えば、前記介在膜の表面に、さらに、前記ビオチン類が結合したチオールアルカンを用いて、チオールアルカンの自己形成膜(SAM:self-assembled monolayers)を形成し、前記ビオチン類が結合したアプタマーを接触させ、前記ビオチン類と前記アビジン類との結合により、前記アプタマーを固定化してもよい。 As a second example, the aptamer may be immobilized on the MSS membrane 13 via an intervening membrane, for example. Forming the intervening membrane on the MSS membrane 13, binding the biotins to one of the intervening membrane and the aptamer in the same manner as in the first example, and binding the avidins to the other, By binding the biotins and the avidins, the aptamer can be immobilized on the MSS through the intervening membrane. The intervening film is, for example, a film of metal such as gold, and can be formed by vapor-depositing the metal on the MSS film 13 . The thickness of the intervening film is not particularly limited, and is, for example, 10 to 100 nm. The intervening film may be, for example, one layer or two or more layers. When the surface of the intervening film is made of gold, the intervening film is, for example, two-layered, and a metal film (adhesive film) for adhesion to the MSS film 13 is provided in order to improve the adhesiveness of the gold film. It is preferable to form the gold film through the metal. Examples of the metal of the adhesive film include titanium and chromium. The thickness of the adhesive film is, for example, 0.1 to 10 nm, and the thickness of the gold film is, for example, 0.1 to 100 nm. When the biotins are bound to the intervening membrane, for example, self-assembled monolayers (SAMs) of thiolalkanes are formed on the surface of the intervening membrane using thiolalkanes to which the biotins are bound. The aptamer formed and bound with the biotins may be brought into contact, and the aptamer may be immobilized by binding the biotins and the avidins.
 第3の例として、MSS膜13に対して、アミノ基を結合させ、さらにグルタルアルデヒドを結合させることによって、前記ストレプトアビジン類を結合させる方法があげられる。すなわち、MSS膜13に対して、アミノ基を有するシランカップリング剤を反応させ、MSS膜13上にアミノ基を結合させる。前記反応は、例えば、アミノ基を有するシランカップリング剤を含む溶液をMSS膜13に塗布することにより実施できる。さらに、MSS膜13に対して、アミノ基とアミノ酸の主鎖もしくは側鎖とを結合可能な架橋剤、またはMSS膜13に対して、アミノ基とアミノ酸の主鎖もしくは側鎖との間にリンカーを形成可能な、グルタルアルデヒド等の架橋剤とを反応させ、MSS膜13上の前記アミノ基にグルタルアルデヒド等の架橋剤の一端を結合させる。具体的には、シランカップリング後のMSS膜について、膜表面を洗浄し、架橋剤を含む溶液をMSS膜13に塗布し、前記アミノ基と、前記架橋剤とを結合させる。前記架橋反応の条件は、例えば、架橋剤の種類に応じて適宜決定できる。つぎに、前記グルタルアルデヒド等の架橋剤の他端に前記アビジン類を結合させる。具体的には、架橋後のMSS膜について、膜表面を洗浄し、アビジン類を含む溶液を塗布し、架橋剤の他端と、アビジン類のアミノ酸の主鎖または側鎖とを結合させる。そして、このように処理したMSS膜13に、前記ビオチンを結合させたアプタマーを接触させ、前記ビオチン類と前記アビジン類との結合により、前記アプタマーを固定化できる。 As a third example, there is a method of binding an amino group to the MSS film 13 and further binding glutaraldehyde to bind the streptavidins. That is, the MSS film 13 is reacted with a silane coupling agent having an amino group to bond the amino group onto the MSS film 13 . The reaction can be carried out, for example, by coating the MSS film 13 with a solution containing a silane coupling agent having an amino group. Furthermore, for the MSS membrane 13, a cross-linking agent capable of binding the amino group and the main chain or side chain of the amino acid, or for the MSS membrane 13, a linker between the amino group and the main chain or side chain of the amino acid is reacted with a cross-linking agent such as glutaraldehyde capable of forming a , and one end of the cross-linking agent such as glutaraldehyde is bound to the amino group on the MSS film 13 . Specifically, after silane coupling, the surface of the MSS film is washed, and a solution containing a cross-linking agent is applied to the MSS film 13 to bond the amino groups with the cross-linking agent. The conditions for the cross-linking reaction can be appropriately determined according to, for example, the type of cross-linking agent. Next, the avidins are bound to the other end of the cross-linking agent such as glutaraldehyde. Specifically, after cross-linking, the surface of the MSS membrane is washed, and a solution containing avidins is applied to bind the other end of the cross-linking agent to the main chain or side chain of amino acids of avidins. Then, the biotin-bound aptamer is brought into contact with the MSS membrane 13 treated in this way, and the aptamer can be immobilized by binding the biotins and the avidins.
 シランカップリング剤は、例えば、Y-Si(CH3-n(OR)で表される。前記シランカップリング剤がアミノ基を有するシランカップリング剤の場合、n、R、およびYは、例えば、以下の例があげられる。前記「n」は、2または3である。Rは、例えば、メチル基、エチル基等のアルキル基;アセチル基、プロピル基等のアシル基;等があげられる。Yは、アミノ基を末端に有する反応性官能基である。 A silane coupling agent is represented by, for example, Y—Si(CH 3 ) 3-n (OR) n . When the silane coupling agent is a silane coupling agent having an amino group, examples of n, R, and Y are given below. The "n" is 2 or 3. Examples of R include alkyl groups such as methyl group and ethyl group; acyl groups such as acetyl group and propyl group; and the like. Y is a reactive functional group terminating with an amino group.
 前記アミノ基を有するシランカップリング剤は、例えば、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン(例えば、KBM-602(信越シリコーン社製))、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(例えば、KBM-603(信越シリコーン社製))、3-アミノプロピルトリメトキシシラン(例えば、KBM-903(信越シリコーン社製))、3-アミノプロピルトリエトキシシラン(例えば、KBE-903(信越シリコーン社製))、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン(例えば、GENIOSIL(登録商標)GF 91(旭化成ワッカーシリコーン社製))、3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン(例えば、GENIOSIL(登録商標)GF 95(旭化成ワッカーシリコーン社製))等があげられる。 Silane coupling agents having an amino group include, for example, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (eg, KBM-602 (manufactured by Shin-Etsu Silicone Co., Ltd.)), N-(2-aminoethyl )-3-aminopropyltrimethoxysilane (e.g., KBM-603 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-aminopropyltrimethoxysilane (e.g., KBM-903 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-aminopropyltriethoxy Silane (e.g., KBE-903 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-(2-aminoethylamino)propyltrimethoxysilane (e.g., GENIOSIL (registered trademark) GF 91 (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.)), 3-( 2-aminoethylamino)propylmethyldimethoxysilane (eg, GENIOSIL (registered trademark) GF 95 (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.)) and the like.
 前記架橋剤は、リンカーと結合するアミノ酸の主鎖または側鎖の官能基に応じて、適宜決定できる。前記官能基は、例えば、アミノ基(-NH)、チオール基(-SH)、カルボキシル基(-COOH)等があげられる。前記アミノ基は、例えば、タンパク質もしくはペプチドのN末端またはリジンの側鎖が有する。前記チオール基は、例えば、システインの側鎖が有する。前記カルボキシル基は、例えば、タンパク質もしくはペプチドのC末端またはアスパラギン酸もしくはグルタミン酸の側鎖が有する。 The cross-linking agent can be appropriately determined according to the functional group of the main chain or side chain of the amino acid that binds to the linker. Examples of the functional group include an amino group (--NH 2 ), a thiol group (--SH), a carboxyl group (--COOH) and the like. Said amino groups are present, for example, at the N-terminus of proteins or peptides or at the side chains of lysines. The thiol group is, for example, a side chain of cysteine. Said carboxyl groups are present, for example, at the C-terminus of proteins or peptides or at the side chains of aspartic acid or glutamic acid.
 前記アミノ酸の主鎖または側鎖のアミノ基を利用する場合、前記架橋剤としては、例えば、グルタルアルデヒド等のアルデヒド基を両端に有する架橋剤;ビス(スルホスクシンイミジル)スベラート(BS3)、グルタル酸ジスクシンイミジル(DSG)、スベリン酸ジスクシンイミジル(DSS)、ジチオビス(プロピオン酸スクシンイミジル)、ジチオビス(プロピオン酸スルホスクシンイミジル)(DSP)、ジチオビス(プロピオン酸スクシンイミジル)(DTSP)、ジチオビス(プロピオン酸スルホスクシンイミジル)(DTSSP)、酒石酸ジスクシンイミジル(DST)、エチレングリコールビス(スクシンイミジルスクシネート)(ESG)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(Sulfo-ESG)、PEG化ビス(スルホスクシンイミジル)(BS(PEG)5、BS(PEG)9等)等のN-ヒドロキシスクシンイミド活性エステル(N-ヒドロキシスクシンイミド反応基)を両端に有する架橋剤;アジポイミド酸ジメチル(DMA)、ピメルイミド酸ジメチル(DMP)、ピメルイミド酸ジメチル(DMS)等のイミドエステル反応基を両端に有する架橋剤;等があげられる。 When the amino group of the main chain or side chain of the amino acid is used, examples of the cross-linking agent include a cross-linking agent having aldehyde groups at both ends such as glutaraldehyde; bis(sulfosuccinimidyl) suberate (BS3); Disuccinimidyl glutarate (DSG), Disuccinimidyl suberate (DSS), Dithiobis(succinimidylpropionate), Dithiobis(sulfosuccinimidylpropionate) (DSP), Dithiobis(succinimidylpropionate) (DTSP) , dithiobis(sulfosuccinimidyl propionate) (DTSSP), disuccinimidyl tartrate (DST), ethylene glycol bis(succinimidyl succinate) (ESG), ethylene glycol bis(sulfosuccinimidyl succinate) ) (Sulfo-ESG), N-hydroxysuccinimide active esters (N-hydroxysuccinimide reactive groups) such as PEGylated bis(sulfosuccinimidyl) (BS(PEG)5, BS(PEG)9, etc.) at both ends cross-linking agents having imide ester reactive groups at both ends, such as dimethyl adipimidate (DMA), dimethyl pimelimidate (DMP), and dimethyl pimelimidate (DMS);
 前記アミノ酸の側鎖のチオール基を利用する場合、前記架橋剤としては、例えば、N-(6-マレイミドカプロイルオキシ)スクシンイミド(EMCS)、N-(6-マレイミドカプロイルオキシ)スルホスクシンイミド(Sulfo-EMCS)、N-(8-マレイミドカプリルオキシ)スクシンイミド(HMCS)、N-(8-マレイミドカプリルオキシ)スルホスクシンイミド(Suflo-HMCS)、N-α-maleimidoacet-oxysuccinimide ester(AMAS)、N-β-maleimidopropyl-oxysuccinimide ester(BMPS)、N-γ-maleimidobutyryl-oxysuccinimide ester(GMBS)、N-γ-maleimidobutyryl-oxysulfosuccinimide ester(Sulfo-GMBS)、m-maleimidobenzoyl-N-hydroxysuccinimide ester(MBS)、m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester(Sulfo-MBS)、succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate(SMCC)、sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate(Sulfo-SMCC)、succinimidyl 4-(p-maleimidophenyl) butyrate(SMPB)、sulfosuccinimidyl 4-(N-maleimidophenyl) butyrate(Sulfo-SMPB)、Succinimidyl 6-((beta-maleimidopropionamido) hexanoate)(SMPH)、succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxy-(6-amidocaproate)(LC-SMCC)、N-κ-maleimidoundecanoyl-oxysulfosuccinimide ester(Sulfo-KMUS)等のマレイミド基とN-ヒドロキシスクシンイミド活性エステルとを分子の両端に有する架橋剤;succinimidyl iodoacetate(SIA)、succinimidyl 3-(bromoacetamido) propionate(SBAP)、succinimidyl (4-iodoacetyl) aminobenzoate(SIAB)、sulfosuccinimidyl (4-iodoacetyl) aminobenzoate(Sulfo-SIAB)等のN-ヒドロキシスクシンイミド活性エステルと、ハロアセチル反応基とを両端に有する架橋剤;succinimidyl 3-(2-pyridyldithio) propionate(SPDP)、succinimidyl 6-(3(2-pyridyldithio) propionamido) hexanoate(LC-SPDP)、succinimidyl 6-(3(2-pyridyldithio) propionamido) hexanoate(Sulfo-LC-SPDP)、4-succinimidyloxycarbonyl-alpha-methyl-α(2-pyridyldithio) toluene(SMPT)、2-Pyridyldithiol-tetraoxatetradecane-N-hydoxysuccinimide(PEG4-SPDP)、2-Pyridyldithiol-tetraoxaoctatriacontane-N-hydoxysuccinimide(PEG12-SPDP)等のN-ヒドロキシスクシンイミド活性エステルと、ピリジルジチオール反応基とを両端に有する架橋剤;等があげられる。 When the thiol group of the side chain of the amino acid is used, examples of the cross-linking agent include N-(6-maleimidocaproyloxy) succinimide (EMCS), N-(6-maleimidocaproyloxy) sulfosuccinimide (Sulfo -EMCS), N-(8-maleimidocaryloxy) succinimide (HMCS), N-(8-maleimidocaryloxy) sulfosuccinimide (Suflo-HMCS), N-α-maleimidoacet-oxysuccinimide ester (AMAS), N-β -maleimidopropyl-oxysuccinimide ester (BMPS), N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS), N-γ-maleimidobutyryl-oxysulfosuccinimide ester (Sulfo-GMBS), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), m-maleimidobenzoyl -N-hydroxysulfosuccinimide ester (Sulfo-MBS), succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC), succinimidyl 4- (p-maleimidophenyl) butyrate (SMPB), sulfosuccinimidyl 4-(N-maleimidophenyl) butyrate (Sulfo-SMPB), Succinimidyl 6-((beta-maleimidopropionamido) hexanoate) (SMPH), succinimidyl 4-(N-maleimidomethyl)cyclohexane- 1-carboxy-(6-amidocaproate) (LC-SMCC), N-κ-maleimidoundecanoyl-oxysulfosuccinimide ester (Sulfo-KMUS) and other maleimide groups and N-hydroxysuccinimide active esters at both ends of the molecule N-hydroxysuccinimide such as succinimidyl iodoacetate (SIA), succinimidyl 3-(bromoacetamido) propionate (SBAP), succinimidyl (4-iodoacetyl) aminobenzoate (SIAB), sulfosuccinimidyl (4-iodoacetyl) aminobenzoate (Sulfo-SIAB) Crosslinkers with active esters and haloacetyl-reactive groups on both ends; (3(2-pyridyldithio) propionamido) hexanoate (Sulfo-LC-SPDP), 4-succinimidyloxycarbonyl-alpha-methyl-α(2-pyridyldithio) toluene (SMPT), 2-Pyridyldithiol-tetraoxatetradecane-N-hydoxysuccinimide (PEG4-SPDP) ), 2-Pyridyldithiol-tetraoxaoctatriacontane-N-hydoxysuccinimide (PEG12-SPDP) or other N-hydroxysuccinimide active ester and a cross-linking agent having pyridyldithiol reactive groups at both ends;
 前記アミノ酸の主鎖または側鎖のカルボキシル基を利用する場合、前記架橋剤としては、例えば、Dicyclohexylcarbodiimide(DCC)、1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC)、N-hydroxysuccinimide(NHS)、N-hydroxysulfosuccinimide(Sulfo-NHS)、無水酢酸等があげられる。なお、DCC、EDC、NHS、Sulfo-NHS、無水酢酸は、例えば、アミノ基とカルボキシル基とを直接結合させるため、カルボキシル基とアミノ基との間に残存せず、架橋剤に由来するリンカー領域(基)は生じない。 When using the carboxyl group of the main chain or side chain of the amino acid, examples of the cross-linking agent include dicyclohexylcarbodiimide (DCC), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxysuccinimide (NHS ), N-hydroxysulfosuccinimide (Sulfo-NHS), acetic anhydride, and the like. In addition, DCC, EDC, NHS, Sulfo-NHS, and acetic anhydride, for example, directly bond the amino group and the carboxyl group, do not remain between the carboxyl group and the amino group, the linker region derived from the cross-linking agent (group) does not occur.
 前記架橋剤は、リンカーの長さを略一定化または一定化できることから、自己縮合が実質的に生じない架橋剤が好ましい。前記「リンカーの長さが一定」は、例えば、複数のアプタマーのリンカーにおいて、各アプタマーのリンカーの長さが略同じまたは同じであることを意味する。前記リンカーの長さは、例えば、リンカーの構造を同一とすることにより達成できる。第3の例では、このような架橋剤を用いることにより、MSSの感度を向上できる。前記感度の向上は、以下の理由によると推定される。なお、本発明は、以下の推定に何ら制限されない。アプタマーにターゲットが結合すると、ターゲットと結合したアプタマーの周囲には、前記ターゲットに起因する立体的障害が生じる。前記アプタマーがMSS膜13に対して異なる距離で固定化されている場合、前記ターゲットは、MSS膜13から遠位端側に存在するアプタマーと接触する可能性が高い。このため、前記ターゲットは、MSS膜13から遠位端側のアプタマーと優先的に結合すると推定される。この場合、前記ターゲットが結合したアプタマーの周囲に前記ターゲットに起因する立体的障害が生じても、他のアプタマーは、前記ターゲットが結合したアプタマーと比較して、MSS膜13側に存在するものが多いため、前記ターゲットに起因する立体的障害を受けづらい。このため、前記ターゲットがアプタマーに結合しても、周囲に存在するアプタマーが、立体的障害による影響を受けて、位置が動く可能性が低い。したがって、前記アプタマーがMSS膜13に対して異なる距離で固定化されている場合、MSS膜13上では、前記周囲のアプタマーの位置の移動に起因して、MSS膜の歪みが生じる可能性も相対的に低い。他方、前記アプタマーがMSS膜13に対して略同一の距離で固定化されている場合、アプタマーにターゲットが結合すると、周囲のアプタマーは、前記ターゲットに起因する立体的障害の影響を受ける。このため、周囲のアプタマーの位置が動く可能性が高く、周囲のアプタマーの位置の移動に起因して、MSS膜の歪みが生じる可能性も相対的に高い。すなわち、前記アプタマーがMSS膜13に対して略同一の距離で固定化されている場合、MSS膜13上では、1つのアプタマーとターゲットとの結合により、周囲のアプタマーの位置の移動も生じるため、MSS膜13の歪みが増幅されることになる。したがって、前記アプタマーがMSS膜13に対して略同一の距離で固定化されている場合、すなわち、前記リンカーの長さが略一定化されている場合、MSS膜13は、感度が向上すると推定される。 The cross-linking agent is preferably a cross-linking agent that does not substantially cause self-condensation because the length of the linker can be made substantially constant or constant. The above-mentioned "constant linker length" means, for example, that in the linkers of a plurality of aptamers, the linkers of each aptamer have substantially the same or the same length. The length of the linker can be achieved, for example, by making the structures of the linkers the same. In the third example, the sensitivity of MSS can be improved by using such a cross-linking agent. The improvement in sensitivity is presumed to be due to the following reasons. In addition, the present invention is not limited to the following estimation. When a target binds to an aptamer, steric hindrance caused by the target occurs around the aptamer bound to the target. If the aptamers are immobilized at different distances from the MSS membrane 13, the targets are more likely to come into contact with aptamers that are distal to the MSS membrane 13. FIG. Therefore, it is presumed that the target preferentially binds to the aptamer on the distal end side from the MSS membrane 13 . In this case, even if steric hindrance due to the target occurs around the target-bound aptamer, other aptamers are present on the MSS membrane 13 side compared to the target-bound aptamer. Because of its large number, it is less susceptible to steric hindrance caused by the target. Therefore, even if the target binds to the aptamer, the surrounding aptamers are less likely to move due to steric hindrance. Therefore, when the aptamers are immobilized at different distances with respect to the MSS membrane 13, distortion of the MSS membrane may occur on the MSS membrane 13 due to the displacement of the surrounding aptamers. relatively low. On the other hand, when the aptamers are immobilized on the MSS membrane 13 at substantially the same distance, when the aptamers bind to the targets, the surrounding aptamers are affected by steric hindrance caused by the targets. Therefore, there is a high possibility that the positions of the surrounding aptamers will move, and the possibility that the MSS membrane will be distorted due to the movement of the positions of the surrounding aptamers is also relatively high. That is, when the aptamers are immobilized on the MSS membrane 13 at approximately the same distance, the binding of one aptamer to the target on the MSS membrane 13 also causes the position of the surrounding aptamers to move. The distortion of the MSS film 13 is amplified. Therefore, when the aptamer is immobilized on the MSS membrane 13 at substantially the same distance, that is, when the linker length is substantially constant, the sensitivity of the MSS membrane 13 is presumed to be improved. be.
 前記自己縮合が実質的に生じない架橋剤の具体例としては、例えば、N-ヒドロキシスクシンイミド活性エステルを両端に有する架橋剤、イミドエステル反応基を両端に有する架橋剤、マレイミド基とN-ヒドロキシスクシンイミド活性エステルを分子の両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ハロアセチル反応基とを両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ピリジルジチオール反応基とを両端に有する架橋剤、DCC、EDC、NHS、Sulfo-NHS、無水酢酸等があげられる。 Specific examples of the cross-linking agent that does not substantially cause self-condensation include, for example, a cross-linking agent having N-hydroxysuccinimide active esters at both ends, a cross-linking agent having imide ester reactive groups at both ends, and a maleimide group and N-hydroxysuccinimide. a cross-linking agent having an active ester at both ends of the molecule, a cross-linking agent having an N-hydroxysuccinimide active ester and a haloacetyl-reactive group at both ends, a cross-linking agent having an N-hydroxysuccinimide active ester and a pyridyldithiol-reactive group at both ends, DCC, EDC, NHS, Sulfo-NHS, acetic anhydride and the like.
 前記リンカーは、例えば、下記式(1)で表される。下記式(1)において、Mは、MSS膜上のシランカップリング剤と結合している原子を表し、Lは、シランカップリング剤由来の領域(基)を表し、Lは、架橋剤由来の領域(基)を表し、Lは、あってもなくてもよく、Mは、アフィニティータグにおける架橋剤またはNHと結合している原子を表す。また、NHは、アミノ基を有するシランカップリング剤のアミノ基由来のアミンを表す。
 M-L-NH-L-M・・・(1)
The linker is represented, for example, by the following formula (1). In the following formula (1), M 1 represents an atom bonded to the silane coupling agent on the MSS film, L 1 represents a region (group) derived from the silane coupling agent, and L 2 represents a cross-linking Represents the agent - derived region (group), L2 is optional, and M2 represents the atom that binds to the crosslinker or NH in the affinity tag. NH represents an amine derived from an amino group of a silane coupling agent having an amino group.
M 1 -L 1 -NH-L 2 -M 2 (1)
 Lは、例えば、(M)-Si(CH2-m(OR-R-(NH)または(M)-Si(CH2-m(OR-R-NH-R-(NH)で表される。Rは、炭素原子数1~5の直鎖もしくは分枝状のアルキル基である。RおよびRは、例えば、それぞれ独立して、炭素原子数1~5の直鎖もしくは分枝状のアルキル基であり、同じでもよいし、異なってもよい。前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等があげられる。Rは、例えば、水素原子または結合手である。mは、1または2である。 L 1 is, for example, (M 1 )—Si(CH 3 ) 2-m (OR 4 ) m —R 1 —(NH) or (M 1 )—Si(CH 3 ) 2-m (OR 4 ) m —R 2 —NH—R 3 —(NH). R 1 is a straight or branched alkyl group having 1 to 5 carbon atoms. R 2 and R 3 are, for example, each independently a linear or branched alkyl group having 1 to 5 carbon atoms, and may be the same or different. Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group and pentyl group. R4 is, for example, a hydrogen atom or a bond. m is 1 or 2;
 前記シランカップリング剤として、3-アミノプロピルトリエトキシシランを用いた場合、Lは、例えば、(M)-Si(OR-(CH-(NH)で表される。Rは、例えば、水素原子または結合手である。また、前記架橋剤として、グルタルアルデヒドを用いた場合、Lは、例えば、(NH)=CH-C-CH=(CH(CHO)-C-CH)=CH(CHO)-C-C=(M)で表される。 When 3-aminopropyltriethoxysilane is used as the silane coupling agent, L 1 is represented by, for example, (M 1 )-Si(OR 4 ) 2 --(CH 2 ) 3 --(NH). . R4 is, for example, a hydrogen atom or a bond. Further, when glutaraldehyde is used as the cross-linking agent, L 2 is, for example, (NH)=CH--C 3 H 6 --CH=(CH(CHO)--C 2 H 4 --CH) n =CH( CHO)—C 2 H 4 —C=(M 2 ).
 前記リンカーの長さは、例えば、MSS膜上の官能基(例えば、シリコン膜上のシラノール基の酸素原子)と、アビジン等のアフィニティータグまでの最短の分子鎖の長さ(主鎖長)で表すことができる。前記リンカーの主鎖長は、1~20であり、MSSの感度を向上できることから、好ましくは、1~15、1~13、3~13、5~13、1~11、3~11、1~10、3~10、1~8、3~8、1~5、1~3、1または2である。 The length of the linker is, for example, the shortest molecular chain length (main chain length) between the functional group on the MSS membrane (for example, the oxygen atom of the silanol group on the silicon membrane) and the affinity tag such as avidin. can be represented. The main chain length of the linker is 1 to 20, and since it can improve the sensitivity of MSS, it is preferably 1 to 15, 1 to 13, 3 to 13, 5 to 13, 1 to 11, 3 to 11, 1 ~10, 3-10, 1-8, 3-8, 1-5, 1-3, 1 or 2.
 なお、第3の例では、アビジン類-ビオチン類の結合を利用しているが、第3の例は、これに限定されず、前記アプタマーの水酸基またはリン酸基に、リンカーを直接結合させてもよい。この場合、アプタマーは、3’末端のリン酸基をアミダイド化し、前記リンカーと反応させることにより、MSS膜13に固定化できる。 In the third example, avidin-biotin binding is used, but the third example is not limited to this, and a linker is directly bound to the hydroxyl group or phosphate group of the aptamer. good too. In this case, the aptamer can be immobilized on the MSS membrane 13 by amidating the 3' terminal phosphate group and reacting it with the linker.
 第4の例として、MSS膜13に対して、メタクリル基(-C(=O)-C(CH)=CH)を結合させ、さらにアミノ酸またはその誘導体(以下、「アミノ酸誘導体」という)を介して、前記ストレプトアビジン類を結合させる方法があげられる。すなわち、MSS膜13に対して、メタクリル基を有するシランカップリング剤を反応させ、MSS膜13上にアミノ基を結合させる。前記反応は、例えば、メタクリル基を有するシランカップリング剤を含む溶液をMSS膜13に塗布することにより実施できる。さらに、MSS膜13に対して、N-アセチルシステイン等のアミノ酸誘導体を反応させた後、前記アミノ酸誘導体の主鎖または側鎖と、アビジン類のアミノ酸の主鎖または側鎖の間にリンカーを形成可能な架橋剤とを反応させ、MSS膜13上の前記アミノ酸誘導体に架橋剤の一端を結合させる。具体的には、アミノ酸誘導体処理後のMSS膜について、膜表面を洗浄し、架橋剤を含む溶液をMSS膜13に塗布し、前記アミノ酸誘導体と、前記架橋剤とを結合させる。前記架橋反応の条件は、例えば、架橋剤の種類に応じて適宜決定できる。つぎに、前記架橋剤の他端に前記アビジン類を結合させる。具体的には、架橋後のMSS膜について、膜表面を洗浄し、アビジン類を含む溶液を塗布し、架橋剤の他端と、アビジン類のアミノ酸の主鎖または側鎖とを結合させる。そして、このように処理したMSS膜13に、前記ビオチンを結合させたアプタマーを接触させ、前記ビオチン類と前記アビジン類との結合により、前記アプタマーを固定化できる。 As a fourth example, a methacryl group (--C(=O)--C(CH 3 )=CH 2 ) is bound to the MSS membrane 13, and an amino acid or derivative thereof (hereinafter referred to as "amino acid derivative"). and binding the streptavidins via. That is, the MSS film 13 is reacted with a silane coupling agent having a methacrylic group to bond an amino group onto the MSS film 13 . The reaction can be carried out, for example, by coating the MSS film 13 with a solution containing a silane coupling agent having a methacrylic group. Furthermore, after reacting an amino acid derivative such as N-acetylcysteine with the MSS film 13, a linker is formed between the main chain or side chain of the amino acid derivative and the main chain or side chain of the amino acid of the avidins. A possible cross-linking agent is reacted to bind one end of the cross-linking agent to the amino acid derivative on the MSS membrane 13 . Specifically, the surface of the MSS membrane after treatment with the amino acid derivative is washed, and a solution containing a cross-linking agent is applied to the MSS membrane 13 to bind the amino acid derivative and the cross-linking agent. The conditions for the cross-linking reaction can be appropriately determined according to, for example, the type of cross-linking agent. Next, the avidins are bound to the other end of the cross-linking agent. Specifically, after cross-linking, the surface of the MSS membrane is washed, and a solution containing avidins is applied to bind the other end of the cross-linking agent to the main chain or side chain of amino acids of avidins. Then, the biotin-bound aptamer is brought into contact with the MSS membrane 13 treated in this way, and the aptamer can be immobilized by binding the biotins and the avidins.
 前述のように、前記シランカップリング剤は、例えば、Y-Si(CH3-n(OR)で表される。前記シランカップリング剤がメタクリル基を有するシランカップリング剤の場合、n、R、およびYは、例えば、以下の例があげられる。前記「n」は、2または3である。Rは、例えば、メチル基、エチル基等のアルキル基;アセチル基、プロピル基等のアシル基;等があげられる。Yは、メタクリル基を末端に有する反応性官能基である。 As mentioned above, the silane coupling agent is represented by, for example, Y—Si(CH 3 ) 3-n (OR) n . When the silane coupling agent is a silane coupling agent having a methacryl group, examples of n, R, and Y are given below. The "n" is 2 or 3. Examples of R include alkyl groups such as methyl group and ethyl group; acyl groups such as acetyl group and propyl group; and the like. Y is a reactive functional group terminated with a methacryl group.
 前記メタクリル基を有するシランカップリング剤は、例えば、3-(メタクリロイルオキシ)プロピルメチルジメトキシシラン(例えば、KBM-502(信越シリコーン社製))、3-(メタクリロイルオキシ)プロピルトリメトキシシラン(例えば、KBM-503(信越シリコーン社製)、GENIOSIL(登録商標)GF31(旭化成ワッカーシリコーン社製))、3-(メタクリロイルオキシ)プロピルメチルジメトキシシラン(例えば、KBE-502(信越シリコーン社製))、(3-メタクリロイルオキシプロピル)トリエトキシシラン(例えば、KBE-503(信越シリコーン社製))等があげられる。 The silane coupling agent having a methacrylic group includes, for example, 3-(methacryloyloxy)propylmethyldimethoxysilane (eg, KBM-502 (manufactured by Shin-Etsu Silicone Co., Ltd.)), 3-(methacryloyloxy)propyltrimethoxysilane (eg, KBM-503 (manufactured by Shin-Etsu Silicone Co., Ltd.), GENIOSIL (registered trademark) GF31 (manufactured by Asahi Kasei Wacker Silicone Co., Ltd.)), 3-(methacryloyloxy) propylmethyldimethoxysilane (e.g., KBE-502 (manufactured by Shin-Etsu Silicone Co., Ltd.)), ( 3-methacryloyloxypropyl)triethoxysilane (for example, KBE-503 (manufactured by Shin-Etsu Silicone Co., Ltd.)) and the like.
 前記アミノ酸またはアミノ酸誘導体は、例えば、メタクリル基と反応可能な官能基と、カルボキシル基とを有する。前記メタクリル基と反応可能な官能基は、例えば、チオール基(-SH)等があげられる。前記チオール基を有するアミノ酸またはアミノ酸誘導体は、例えば、システイン;N-アセチルシステイン等のアミノ基が修飾されたシステイン;等があげられる。 The amino acid or amino acid derivative has, for example, a functional group capable of reacting with a methacryl group and a carboxyl group. Examples of the functional group capable of reacting with the methacrylic group include a thiol group (--SH). Examples of the amino acid or amino acid derivative having a thiol group include cysteine; cysteine having an amino group modified such as N-acetylcysteine; and the like.
 前記架橋剤は、例えば、架橋に供するアミノ酸誘導体の官能基と、架橋に供するアビジン類のアミノ酸の官能基とに応じて、適宜決定できる。具体例として、2つの官能基がアミノ基の場合、前記架橋剤は、前記第3の例における前記アミノ酸の主鎖または側鎖のアミノ基を利用する場合の架橋剤の説明を援用できる。また、2つの官能基の一方がアミノ基であり、他方がチオール基である場合、前記架橋剤は、前記第3の例における前記アミノ酸の側鎖のチオール基を利用する場合の架橋剤の説明を援用できる。さらに、2つの官能基の一方がアミノ基であり、他方がカルボキシル基である場合、前記架橋剤は、前記第3の例における前記アミノ酸の主鎖または側鎖のカルボキシル基を利用する場合の架橋剤の説明を援用できる。 The cross-linking agent can be appropriately determined according to, for example, the functional group of the amino acid derivative subjected to cross-linking and the functional group of the amino acid of the avidins to be subjected to cross-linking. As a specific example, when the two functional groups are amino groups, the cross-linking agent can refer to the description of the cross-linking agent in the case of using the amino group of the main chain or side chain of the amino acid in the third example. Further, when one of the two functional groups is an amino group and the other is a thiol group, the cross-linking agent is the side chain thiol group of the amino acid in the third example. can be used. Furthermore, when one of the two functional groups is an amino group and the other is a carboxyl group, the cross-linking agent can be used for cross-linking when utilizing the carboxyl group of the main chain or side chain of the amino acid in the third example. The description of the agent can be used.
 前記架橋剤は、リンカーの長さを一定化できることから、自己縮合が実質的に生じない架橋剤が好ましい。第4の例では、このような架橋剤を用いることにより、前述の第3の例で説明するメカニズムと同様のメカニズムにより、MSSの感度を向上できる。自己縮合が実質的に生じない架橋剤の具体例としては、例えば、N-ヒドロキシスクシンイミド活性エステルを両端に有する架橋剤、イミドエステル反応基を両端に有する架橋剤、マレイミド基とN-ヒドロキシスクシンイミド活性エステルを分子の両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ハロアセチル反応基とを両端に有する架橋剤、N-ヒドロキシスクシンイミド活性エステルと、ピリジルジチオール反応基とを両端に有する架橋剤、DCC、EDC、NHS、Sulfo-NHS、無水酢酸等があげられる。 The cross-linking agent is preferably a cross-linking agent that does not substantially cause self-condensation because the length of the linker can be made constant. In the fourth example, by using such a cross-linking agent, the sensitivity of MSS can be improved by a mechanism similar to the mechanism described in the third example. Specific examples of cross-linking agents that do not substantially cause self-condensation include cross-linking agents having N-hydroxysuccinimide active esters at both ends, cross-linking agents having imide ester reactive groups at both ends, and maleimide groups and N-hydroxysuccinimide active groups. cross-linking agent having an ester at both ends of the molecule, cross-linking agent having an N-hydroxysuccinimide active ester and a haloacetyl reactive group at both ends, cross-linking agent having an N-hydroxysuccinimide active ester and a pyridyldithiol reactive group at both ends, DCC , EDC, NHS, Sulfo-NHS, acetic anhydride and the like.
 前記リンカーは、例えば、下記式(2)で表される。下記式(2)において、Mは、MSS膜上のシランカップリング剤と結合している原子を表し、Lは、シランカップリング剤由来の領域(基)を表し、Aは、アミノ酸誘導体を表し、Lは、架橋剤由来の領域(基)を表し、Lは、あってもなくてもよく、Mは、アフィニティータグにおける架橋剤またはNHと結合している原子を表す。
 M-L-A-L-M・・・(2)
The linker is represented, for example, by the following formula (2). In the following formula (2), M 1 represents an atom bonded to the silane coupling agent on the MSS film, L 1 represents a region (group) derived from the silane coupling agent, and A is an amino acid derivative. , L2 represents a crosslinker - derived region ( group), L2 may or may not be present, and M2 represents an atom bonded to the crosslinker or NH in the affinity tag.
M 1 -L 1 -AL 2 -M 2 (2)
 Lは、例えば、(M)-Si(CH2-m(OR-R-C(=O)-CH(CH2-l-(A)で表される。Rは、例えば、水素原子または結合手である。Rは、炭素原子数1~5の直鎖もしくは分枝状のアルキル基である。前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等があげられる。mは、1または2である。lは、0または1である。 L 1 is represented, for example, by (M 1 )—Si(CH 3 ) 2-m (OR 4 ) m —R 5 —C(═O)—CH 1 (CH 3 ) 2-1 —(A) be. R4 is, for example, a hydrogen atom or a bond. R 5 is a linear or branched alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group and pentyl group. m is 1 or 2; l is 0 or 1;
 前記シランカップリング剤として、3-(メタクリロイルオキシ)プロピルトリメトキシシランを用いた場合、Lは、例えば、(M)-Si(OR-(CH-O-C(=O)-C(CH-(A)で表される。Rは、例えば、水素原子または結合手である。また、前記アミノ酸誘導体として、N-アセチルシステインを用いた場合、Aは、例えば、(L)-S-CH-CH(-NHCOCH)-C(=O)-(M)で表される。前記架橋剤として、無水酢酸を用いた場合、Lは、例えば、存在しない。 When 3-(methacryloyloxy)propyltrimethoxysilane is used as the silane coupling agent, L 1 is, for example, (M 1 )—Si(OR 4 ) 2 —(CH 2 ) 3 —OC( ═O)—C(CH 3 ) 2 —(A). R4 is, for example, a hydrogen atom or a bond. Further, when N-acetylcysteine is used as the amino acid derivative, A is, for example, (L 1 )-S-CH 2 -CH(-NHCOCH 3 )-C(=O)-(M 2 ). be done. When acetic anhydride is used as the cross - linking agent, L2 is absent, for example.
 前記リンカーの長さは、例えば、MSS膜上の官能基(例えば、シリコン膜上のシラノール基)と、アビジン等のアフィニティータグまでの最短の分子鎖の長さ(主鎖長)で表すことができる。前記リンカーの主鎖長は、1~20であり、MSSの感度を向上できることから、好ましくは、1~15、1~13、1~11、1~10、1~8、1~5、1~3、1または2である。 The length of the linker can be represented, for example, by the shortest molecular chain length (main chain length) between the functional group on the MSS membrane (eg, silanol group on the silicon membrane) and the affinity tag such as avidin. can. The main chain length of the linker is 1 to 20, and since it can improve the sensitivity of MSS, it is preferably 1 to 15, 1 to 13, 1 to 11, 1 to 10, 1 to 8, 1 to 5, 1 ~3, 1 or 2.
 なお、第4の例では、アビジン類-ビオチン類の結合を利用しているが、第4の例は、これに限定されず、前記アプタマーの水酸基またはリン酸基に、リンカーを直接結合させてもよい。この場合、アプタマーは、3’末端のリン酸基をアミダイド化し、前記リンカーと反応させることにより、MSS膜13に固定化できる。 In the fourth example, avidin-biotin binding is used, but the fourth example is not limited to this, and a linker is directly bound to the hydroxyl group or phosphate group of the aptamer. good too. In this case, the aptamer can be immobilized on the MSS membrane 13 by amidating the 3' terminal phosphate group and reacting it with the linker.
 MSS膜13に対する前記アプタマーの固定化部位は、特に制限されず、例えば、3’末端または5’末端があげられる。 The site for immobilizing the aptamer on the MSS membrane 13 is not particularly limited, and examples include the 3' end or 5' end.
[実施形態2]
 本実施形態は、本発明の第2のMSSおよびMSS等の半導体の製造方法の一例である。図4は、実施形態2のMSS2を示す模式図である。図4において、(A)は、MSS2の模式平面図であり、(B)は、(A)におけるII-II方向からみた模式断面図である。図4に示すように、実施形態2のMSS2は、センサ基板10、電極11、アルミ線121(回路)、MSS膜13A(膜)、ピエゾ抵抗素子14、および支持領域15を備える。アルミ線12は、導電層121から構成される。MSS膜13Aは、支持層131および非晶質層132から構成される。MSS膜13Aは、ピエゾ抵抗素子14が形成された支持領域15を介してセンサ基板に支持されている。また、MSS膜13Aは、ピエゾ抵抗素子14を介してアルミ線121と連結し、アルミ線121は、それぞれ電極11と連結した構造である。実施形態2において、アルミ線121は、4つのピエゾ抵抗素子14を含むホイートストンブリッジ回路を構成している。この点を除き、実施形態2のMSS2は、実施形態1のMSS1と同様の構成を有し、その説明を援用できる。なお、実施形態2のMSS2は、電極11を含むが、電極11は、任意の構成であり、あってもよいし、なくてもよい。MSS2が電極11を備えない場合、アルミ線121が電圧印加装置に接続される。
[Embodiment 2]
This embodiment is an example of the second MSS of the present invention and a method of manufacturing a semiconductor such as the MSS. FIG. 4 is a schematic diagram showing the MSS2 of the second embodiment. In FIG. 4, (A) is a schematic plan view of the MSS2, and (B) is a schematic cross-sectional view of (A) viewed from the II-II direction. As shown in FIG. 4, the MSS 2 of Embodiment 2 comprises a sensor substrate 10, electrodes 11, aluminum wires 121 (circuits), MSS films 13A (films), piezoresistive elements 14, and support regions 15. FIG. The aluminum wire 12 is composed of a conductive layer 121 . The MSS film 13A is composed of a support layer 131 and an amorphous layer 132. As shown in FIG. The MSS film 13A is supported by the sensor substrate via a support region 15 having a piezoresistive element 14 formed thereon. Also, the MSS film 13A is connected to the aluminum wire 121 through the piezoresistive element 14, and the aluminum wire 121 is connected to the electrode 11 respectively. In Embodiment 2, the aluminum wire 121 constitutes a Wheatstone bridge circuit including four piezoresistive elements 14 . Except for this point, the MSS2 of the second embodiment has the same configuration as the MSS1 of the first embodiment, and the description thereof can be used. Although the MSS 2 of Embodiment 2 includes the electrode 11, the electrode 11 has any configuration and may or may not be present. If the MSS 2 does not have electrodes 11, an aluminum wire 121 is connected to the voltage application device.
 図4(B)に示すように、MSS膜13Aは、支持層131および非晶質層132から構成され、非晶質層132は、支持層131に積層されている。MSS膜13Aがシリコン膜の場合、支持層131は、例えば、結晶性シリコンから構成されている。他方、非晶質層132は、非晶性シリコン(例えば、アモルファス化シリコン)から構成されている。MSS膜13Aは、膜の一面を非晶性の分子から構成することにより、結晶性の分子のみから構成する場合と比較して、他の物質との接触面積および結合に使用可能な原子の数を相対的に増加できる。このため、MSS膜13Aは、非晶質層132を備えることにより、MSS膜13と比較して、より多くの前記結合物質をMSS膜13Aの表面に固定化できる。 As shown in FIG. 4B, the MSS film 13A is composed of a support layer 131 and an amorphous layer 132, and the amorphous layer 132 is laminated on the support layer 131. When the MSS film 13A is a silicon film, the support layer 131 is made of crystalline silicon, for example. On the other hand, the amorphous layer 132 is composed of amorphous silicon (eg, amorphized silicon). In the MSS film 13A, one surface of the film is composed of amorphous molecules, so that the contact area with other substances and the number of atoms that can be used for bonding are reduced compared to the case where the film is composed only of crystalline molecules. can be relatively increased. Therefore, by including the amorphous layer 132, the MSS film 13A can immobilize a larger amount of the binding substance on the surface of the MSS film 13A than the MSS film 13 does.
 MSS膜13Aがシリコン膜の場合、非晶質層132は、非晶性シリコンに加えて、他の分子を含んでもよい。前記他の分子は、例えば、炭化シリコン(炭化ケイ素)、炭化ケイ素の酸化物等があげられる。 When the MSS film 13A is a silicon film, the amorphous layer 132 may contain other molecules in addition to amorphous silicon. Examples of the other molecules include silicon carbide (silicon carbide), oxides of silicon carbide, and the like.
 つぎに、MSS2の製造方法について、図5を用いて説明する。図5は、MSS2の製造方法の一例を示す模式断面図である。実施形態2のMSS2の製造方法では、まず、MSSを準備する。MSSは、市販のMSSを用いてもよいし、自家調製してもよい。 Next, the manufacturing method of MSS2 will be explained using FIG. FIG. 5 is a schematic cross-sectional view showing an example of a method for manufacturing the MSS2. In the manufacturing method of MSS2 of Embodiment 2, first, MSS is prepared. As MSS, commercially available MSS may be used, or self-prepared.
 図5(A)に示すように、MSSのMSS膜13は、結晶性シリコンから構成される支持層131から構成されている。そこで、実施形態2の製造方法では、支持層131の表面に、非晶質層132を形成する。具体的には、実施形態2の製造方法では、支持層131に対して、非晶質化処理(アモルファス化処理)を実施する。実施形態2の製造方法では、前記非晶質化処理により、支持層131の表面の結晶性シリコンが非晶質化し、図5(B)に示すように、結晶構造が不定型のシリコン層が形成されるため、非晶性シリコンから構成される非晶質層132が形成される。 As shown in FIG. 5(A), the MSS film 13 of the MSS is composed of a support layer 131 composed of crystalline silicon. Therefore, in the manufacturing method of Embodiment 2, the amorphous layer 132 is formed on the surface of the support layer 131 . Specifically, in the manufacturing method of the second embodiment, the support layer 131 is subjected to an amorphization treatment (amorphization treatment). In the manufacturing method of Embodiment 2, the crystalline silicon on the surface of the support layer 131 is made amorphous by the amorphization treatment, and as shown in FIG. Therefore, an amorphous layer 132 made of amorphous silicon is formed.
 前記非晶質化処理は、結晶構造の変化が生じる処理であればよく、例えば、イオンビームによる処理(イオンビーム処理)、メタル蒸着処理(金属の蒸着処理)、スパッタリング処理の組合せ、化学気相成長処理(例えば、プラズマCVD(Chemical Vapor Deposition)または反応性イオンエッチング(Reactive Ion Etching:RIE)等)等があげられる。 The amorphization treatment may be any treatment as long as it causes a change in crystal structure. Growth treatment (for example, plasma CVD (Chemical Vapor Deposition), reactive ion etching (RIE), etc.) and the like can be mentioned.
 これにより、実施形態2の製造方法は、MSS2を製造できる。 Thus, the manufacturing method of Embodiment 2 can manufacture MSS2.
 実施形態2のMSS2では、MSS膜13Aの表面に非晶質層132が形成されている。このため、MSS2では、MSS1と比較して、MSS膜において、前記結合物質と結合可能なMSS膜表面の面積が増加し、かつ他の物質との接触面積および結合に使用可能な原子の数を相対的に増加している。このため、実施形態2のMSS2では、前記結合物質の固定化効率を向上できる。 In the MSS2 of Embodiment 2, an amorphous layer 132 is formed on the surface of the MSS film 13A. Therefore, in MSS2, in the MSS film, the surface area of the MSS film that can be bound to the binding substance is increased, and the contact area with other substances and the number of atoms that can be used for binding are increased as compared with MSS1. Relatively increasing. Therefore, in the MSS2 of Embodiment 2, the immobilization efficiency of the binding substance can be improved.
 実施形態2のMSS2では、MSS膜13Aの一方の表面の全面を非晶質層132としたが、本発明はこれに限定されず、一方の表面の一部を非晶質層132としてもよい。また、実施形態2のMSS2では、MSS膜13Aの両方の表面の一部または全面を非晶質層132としてもよい。これにより、後述のMSS2の製造方法におけるMSS膜の改質処理の際に、ピエゾ抵抗素子14等に破損が生じるのを防止できる。 In the MSS 2 of Embodiment 2, the entire surface of one surface of the MSS film 13A is the amorphous layer 132, but the present invention is not limited to this, and part of one surface may be the amorphous layer 132. . Further, in the MSS2 of Embodiment 2, part or the entire surface of both surfaces of the MSS film 13A may be the amorphous layer 132. FIG. As a result, it is possible to prevent damage to the piezoresistive element 14 and the like during modification processing of the MSS film in the manufacturing method of the MSS2, which will be described later.
 実施形態2の製造方法では、MSS膜の改質処理として、非晶質化処理を行なったが、本発明はこれに限定されず、非晶質化処理を他の改質処理と組合わせてもよい。図6および7を用いて、MSSの製造方法の他の例について説明する。 In the manufacturing method of Embodiment 2, the amorphization treatment was performed as the modification treatment of the MSS film, but the present invention is not limited to this, and the amorphization treatment is combined with other modification treatments. good too. Another example of the method for manufacturing MSS will be described with reference to FIGS.
 実施形態2のMSS2の他の例では、MSS膜13Aに代えて、MSS膜13Bを備える。図6に示すように、MSS膜13Bは、支持層131および非晶質層132から構成されている。非晶質層132は、炭化シリコン層133および炭化シリコンの酸化物層135から構成されている。MSS13Bにおいて、支持層131、炭化シリコン層133、および炭化シリコンの酸化物層135は、この順番で配置(積層)されている。炭化シリコン層133は、非晶性シリコンと、炭化シリコンとを含む層である。また、炭化シリコンの酸化物層135は、非晶性シリコンと、炭化シリコンの酸化物とを含む層である。MSS膜13Bでは、表面の炭化シリコンの酸化物層135が、炭化シリコンの酸化物を含むため、結晶性シリコンおよび非晶性シリコンと比較して、官能基の種類が増えるため、シランカップリング剤等の前述の架橋剤との反応性に優れている。具体的には、MSS膜13Bは、その表層に炭素原子を含むため、シリコン原子に加えて、炭素原子を結合対象の原子として選択できる。このため、MSS2によれば、より簡便に、核酸分子またはタンパク質等の結合分子を導入できる。このため、MSS2によれば、前記架橋剤を利用して、前記結合物質をより効率よく固定化することができる。 Another example of the MSS 2 of Embodiment 2 includes an MSS film 13B instead of the MSS film 13A. As shown in FIG. 6, the MSS film 13B is composed of a supporting layer 131 and an amorphous layer 132. As shown in FIG. The amorphous layer 132 is composed of a silicon carbide layer 133 and a silicon carbide oxide layer 135 . In the MSS 13B, the support layer 131, the silicon carbide layer 133, and the silicon carbide oxide layer 135 are arranged (stacked) in this order. The silicon carbide layer 133 is a layer containing amorphous silicon and silicon carbide. The silicon carbide oxide layer 135 is a layer containing amorphous silicon and silicon carbide oxide. In the MSS film 13B, since the silicon carbide oxide layer 135 on the surface contains silicon carbide oxide, the types of functional groups increase compared to crystalline silicon and amorphous silicon. It is excellent in reactivity with the above-mentioned cross-linking agents such as Specifically, since the MSS film 13B contains carbon atoms in its surface layer, carbon atoms can be selected as atoms to be bonded in addition to silicon atoms. Therefore, according to MSS2, binding molecules such as nucleic acid molecules or proteins can be introduced more easily. Therefore, according to MSS2, the binding substance can be more efficiently immobilized using the cross-linking agent.
 図7は、他の例のMSS2の製造方法を示す模式図である。他の例のMSS2の製造方法では、結晶性のシリコン膜であるMSS膜131に対して、前記非晶質化処理を行なって非晶質層132を形成する(図7(B))。ついで、非晶質層132に対して炭素を導入し、炭化シリコンを含む炭化シリコン層133を形成させた後(図7(C))、その一部を炭化シリコンの酸化物層135に変換する(図7(D))。 FIG. 7 is a schematic diagram showing another example of a method for producing MSS2. In another example of the method of manufacturing the MSS2, the MSS film 131, which is a crystalline silicon film, is subjected to the amorphization treatment to form an amorphous layer 132 (FIG. 7B). Next, carbon is introduced into the amorphous layer 132 to form a silicon carbide layer 133 containing silicon carbide (FIG. 7(C)), after which part of it is converted into an oxide layer 135 of silicon carbide. (Fig. 7(D)).
 まず、他の例のMSS2の製造方法では、MSS膜である結晶性シリコン膜131に対して、イオンビーム処理により、非晶質化処理を実施する。これにより、図7(B)に示すように、支持層131の表面に非晶質層132を形成する。 First, in the method of manufacturing the MSS 2 of another example, the crystalline silicon film 131, which is the MSS film, is subjected to an amorphization treatment by ion beam treatment. Thereby, an amorphous layer 132 is formed on the surface of the support layer 131 as shown in FIG. 7B.
 つぎに、他の例のMSS2の製造方法では、前記非晶質化処理後のMSS膜に対して、炭素を導入する。これにより、図7(C)に示すように、炭化シリコン層133と、炭素層134とが形成される。 Next, in another example of the method for manufacturing MSS2, carbon is introduced into the MSS film after the amorphization treatment. Thereby, as shown in FIG. 7C, a silicon carbide layer 133 and a carbon layer 134 are formed.
 前記炭素の導入方法は、例えば、蒸着法、CVD法、塗布法等により実施できる。 The method for introducing the carbon can be implemented by, for example, a vapor deposition method, a CVD method, a coating method, or the like.
 他の例のMSS2の製造方法では、炭化シリコン層133および炭素層134の形成後、導入された炭素と非晶性シリコン中のケイ素との反応を促進するため、熱処理を実施してもよい。前記熱処理における温度の下限は、例えば、100℃以上、200℃以上、300℃以上が好ましい。前記熱処理における温度の上限は、例えば、400℃以下である。また、前記熱処理における温度は、例えば、100~400℃、200~400℃、300~400℃、約350℃である。前記熱処理の時間は、例えば、60~180分である。 In another example of the method for manufacturing MSS2, after forming the silicon carbide layer 133 and the carbon layer 134, heat treatment may be performed in order to promote the reaction between the introduced carbon and the silicon in the amorphous silicon. The lower limit of the temperature in the heat treatment is preferably 100° C. or higher, 200° C. or higher, or 300° C. or higher, for example. The upper limit of the temperature in the heat treatment is, for example, 400° C. or less. Further, the temperature in the heat treatment is, for example, 100 to 400°C, 200 to 400°C, 300 to 400°C, and about 350°C. The heat treatment time is, for example, 60 to 180 minutes.
 つぎに、他の例のMSS2の製造方法では、前記炭素導入後のMSS膜から、酸素雰囲気下のプラズマ処理により炭素層134を除去する。これにより、図7(D)に示すように、炭化シリコン層133と、炭化シリコンの酸化物層135とが形成される。 Next, in the method of manufacturing the MSS2 of another example, the carbon layer 134 is removed from the MSS film after the introduction of carbon by plasma treatment in an oxygen atmosphere. Thereby, as shown in FIG. 7D, a silicon carbide layer 133 and a silicon carbide oxide layer 135 are formed.
 前記酸素プラズマ処理は、例えば、前述の酸素プラズマ処理の説明を援用できる。 For the oxygen plasma treatment, for example, the above explanation of the oxygen plasma treatment can be used.
 炭素層134の除去は、前記酸素プラズマ処理以外の方法により実施してもよく、具体例として、ヘリウム、ネオン、アルゴン等の不活性ガスの雰囲気下でのスパッタリング処理、ドライエッチング処理等があげられる。 The removal of the carbon layer 134 may be performed by a method other than the oxygen plasma treatment, and specific examples thereof include sputtering treatment in an inert gas atmosphere such as helium, neon, argon, and dry etching treatment. .
 これにより、実施形態2の製造方法は、他の例のMSS2を製造できる。 As a result, the manufacturing method of Embodiment 2 can manufacture another example of MSS2.
[実施形態3]
 本実施形態は、本発明の第1および第2のMSSの一例である。図8は、実施形態3のMSS3を示す模式図である。図8に示すように、実施形態3のMSS3は、センサ基板10、電極11、アルミ線12A(回路)、MSS膜13B(膜)、ピエゾ抵抗素子14、および支持領域15を備える。アルミ線12Aは、導電層121および絶縁層122から構成される。MSS膜13Bは、支持層131および非晶質層132から構成され、非晶質層132は、炭化シリコン層133および炭化シリコンの酸化物層135から構成される。MSS膜13Bは、ピエゾ抵抗素子14が形成された支持領域15を介してセンサ基板に支持されている。また、MSS膜13Bは、ピエゾ抵抗素子14を介してアルミ線12Aと連結し、アルミ線12Aは、それぞれ電極11と連結した構造である。実施形態3において、アルミ線12Aは、4つのピエゾ抵抗素子14を含むホイートストンブリッジ回路を構成している。この点を除き、実施形態3のMSS3は、実施形態1のMSS1と同様の構成を有し、その説明を援用できる。なお、実施形態3のMSS3は、電極11を含むが、電極11は、任意の構成であり、あってもよいし、なくてもよい。MSS2が電極11を備えない場合、アルミ線12Aが電圧印加装置に接続される。
[Embodiment 3]
This embodiment is an example of the first and second MSS of the present invention. FIG. 8 is a schematic diagram showing the MSS3 of the third embodiment. As shown in FIG. 8, the MSS 3 of Embodiment 3 comprises a sensor substrate 10, electrodes 11, aluminum wires 12A (circuits), MSS films 13B (films), piezoresistive elements 14, and support regions 15. FIG. Aluminum wire 12A is composed of conductive layer 121 and insulating layer 122 . The MSS film 13B is composed of a support layer 131 and an amorphous layer 132, and the amorphous layer 132 is composed of a silicon carbide layer 133 and a silicon carbide oxide layer 135. FIG. The MSS film 13B is supported by the sensor substrate via a support region 15 having a piezoresistive element 14 formed thereon. Also, the MSS film 13B is connected to the aluminum wire 12A through the piezoresistive element 14, and the aluminum wire 12A is connected to the electrode 11, respectively. In Embodiment 3, the aluminum wire 12A constitutes a Wheatstone bridge circuit including four piezoresistive elements 14. As shown in FIG. Except for this point, the MSS3 of Embodiment 3 has the same configuration as the MSS1 of Embodiment 1, and the description thereof can be used. Although the MSS 3 of Embodiment 3 includes the electrode 11, the electrode 11 has any configuration and may or may not be present. If the MSS 2 does not have the electrode 11, the aluminum wire 12A is connected to the voltage applying device.
 実施形態3のMSS3では、前記回線であるアルミ線12Aの表面に絶縁層122が形成されている。このため、MSS3では、アルミ線12A間の絶縁が確保されているため、サンプル液等の液相での測定が可能である。したがって、MSS3は、液体のサンプルの分析に好適に使用できる。実施形態3のMSS3では、MSS膜13Bの表面に非晶質層132が形成され、非晶質層132は、炭化シリコン層133および炭化シリコンの酸化物層135から構成される。また、MSS膜13Bでは、炭化シリコンの酸化物層135が表面に配置(積層)される。MSS膜13Bでは、表面の炭化シリコンの酸化物層135が、炭化シリコンの酸化物を含むため、結晶性シリコンおよび非晶性シリコンと比較して、官能基の種類が増えるため、シランカップリング剤等の前述の架橋剤との反応性に優れている。このため、MSS3によれば、前記架橋剤を利用して、前記結合物質をより効率よく固定化することができる。 In the MSS3 of Embodiment 3, an insulating layer 122 is formed on the surface of the aluminum wire 12A, which is the line. Therefore, in the MSS3, since the insulation between the aluminum wires 12A is ensured, it is possible to perform measurement in a liquid phase such as a sample liquid. Therefore, MSS3 can be suitably used for the analysis of liquid samples. In the MSS 3 of Embodiment 3, an amorphous layer 132 is formed on the surface of the MSS film 13B, and the amorphous layer 132 is composed of a silicon carbide layer 133 and a silicon carbide oxide layer 135 . Further, in the MSS film 13B, an oxide layer 135 of silicon carbide is arranged (stacked) on the surface. In the MSS film 13B, since the silicon carbide oxide layer 135 on the surface contains silicon carbide oxide, the types of functional groups increase compared to crystalline silicon and amorphous silicon. It is excellent in reactivity with the above-mentioned cross-linking agents such as Therefore, according to MSS3, the binding substance can be more efficiently immobilized using the cross-linking agent.
 つぎに、本発明の実施例について説明する。ただし、本発明は、以下の実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコールに基づいて使用した。 Next, an embodiment of the present invention will be described. However, the present invention is not limited by the following examples. Commercially available reagents were used according to their protocol unless otherwise indicated.
[実施例1]
 実施形態3のMSS3を製造し、MSS膜上に、炭化シリコン層および炭化シリコンの酸化物層が形成されていることを確認した。
[Example 1]
MSS3 of Embodiment 3 was manufactured, and it was confirmed that a silicon carbide layer and a silicon carbide oxide layer were formed on the MSS film.
(1)MSSの構成
 市販のMSS(SD-MSS-1K2G、NANOSENSOR社)を用いて、実施形態3のMSS3を作成した。前記市販のMSSは、図1(A)のMSS1において、アルミ線12Aが導電層121のみから構成される以外は、MSS1と同様の構成を有する。
(1) Configuration of MSS Using a commercially available MSS (SD-MSS-1K2G, NANOSENSOR), MSS3 of Embodiment 3 was created. The commercially available MSS has the same configuration as MSS1 in FIG.
(2)絶縁層の形成
 前記MSSのアルミ線121に対して酸化処理を行ない、絶縁層122を形成した。具体的には、前記MSSのアルミ線121に対して、硝酸(1.38g/ml以上)をアルミ線121上に塗布した。硝酸の塗布量は、1枚のMSSあたり50μlとした。前記塗布後、60分間、室温(約25℃、以下、同様。)で反応させることにより、アルミ線121に対して酸化処理を実施した。前記酸化処理後のMSSを、純水下で、常温30分の条件でリンスして、硝酸を除去した。
(2) Formation of Insulating Layer An insulating layer 122 was formed by oxidizing the aluminum wire 121 of the MSS. Specifically, nitric acid (1.38 g/ml or more) was applied onto the aluminum wire 121 of the MSS. The amount of nitric acid applied was 50 μl per MSS. After the coating, the aluminum wire 121 was oxidized by reacting at room temperature (about 25° C., hereinafter the same) for 60 minutes. After the oxidation treatment, the MSS was rinsed under pure water at room temperature for 30 minutes to remove nitric acid.
 つぎに、前記MSSに対して、酸素プラズマ処理を実施した。前記酸素プラズマ処理は、酸素雰囲気下のプラズマ発生装置内で実施し、処理時間は、16時間とした。酸素濃度は、前記プラズマ発生装置のデフォルトの設定(100%)とした。前記処理後のMSSを、350℃、3時間の条件で熱処理し、形成された酸化皮膜をアニールさせるとともに、前記酸素プラズマ処理で形成された水酸化アルミニウムを酸化アルミニウムに変換した。これにより、前記MSSのアルミ線12を、導電層121および絶縁層122から構成されるアルミ線12Aに変換した。 Next, the MSS was subjected to oxygen plasma treatment. The oxygen plasma treatment was performed in a plasma generator under an oxygen atmosphere for 16 hours. The oxygen concentration was the default setting (100%) of the plasma generator. The treated MSS was heat-treated at 350° C. for 3 hours to anneal the formed oxide film and convert the aluminum hydroxide formed by the oxygen plasma treatment into aluminum oxide. As a result, the aluminum wire 12 of the MSS was converted into an aluminum wire 12A composed of a conductive layer 121 and an insulating layer 122. FIG.
(3)炭化シリコン層および炭化シリコンの酸化物層の形成
 前記実施例1(2)のMSSについて、結晶性シリコンを非晶性シリコン(アモルファス化シリコン)に変換し、非晶質層132を形成した。
(3) Formation of Silicon Carbide Layer and Silicon Carbide Oxide Layer Regarding the MSS of Example 1 (2), crystalline silicon is converted to amorphous silicon (amorphized silicon) to form an amorphous layer 132. bottom.
 つぎに、非晶質層132に対して、炭素を導入した。前記蒸着後、前記MSSを、熱処理し、導入した炭素と非晶質層132内のケイ素とを反応させ、炭化シリコンに変換した。そして、得られたMSSから炭素層134を除去するとともに、炭化シリコン層133の表面を炭化シリコンの酸化物層135に変換した。 Next, carbon was introduced into the amorphous layer 132 . After the deposition, the MSS was heat treated to react the introduced carbon with the silicon in the amorphous layer 132 and convert it to silicon carbide. Then, the carbon layer 134 was removed from the obtained MSS, and the surface of the silicon carbide layer 133 was converted to an oxide layer 135 of silicon carbide.
(4)MSS膜の構造
 前記実施例1(3)で得られたMSS3から、MSS膜13Bを回収し、透過型電子顕微鏡により、その積層方向の構造を確認した。この結果を図9に示す。
(4) Structure of MSS film The MSS film 13B was recovered from the MSS3 obtained in Example 1(3), and its structure in the stacking direction was confirmed with a transmission electron microscope. The results are shown in FIG.
 図9は、電子顕微鏡像を示す写真である。図9に示すように、MSS膜13Bは、結晶性シリコンから構成される支持層131に対して、非晶性シリコンおよび炭化シリコンから構成される炭化シリコン層133と、非晶性シリコンおよび炭化シリコンの酸化物から構成される炭化シリコンの酸化物層135とが積層されているのが確認された。また、前述の条件でMSS膜を処理した場合、炭化シリコン層133の厚みは、約70nm、炭化シリコンの酸化物層135の厚みは、約5nmとなることがわかった。また、非晶性シリコンは、結晶性シリコンと比較して、表面積が向上する。このため、MSS3は、核酸分子、抗体等の結合物質をより効率よく、表面に固定化できるといえる。なお、MSS3について、MSS膜13Bを含む領域を水溶液に浸漬し電圧を印加したところ、電気シグナルが測定できた。このため、アルミ線12Aは、絶縁層122が形成されることにより、回路間、すなわち、アルミ線12A間の絶縁が確保できていることが確認された。 FIG. 9 is a photograph showing an electron microscope image. As shown in FIG. 9, the MSS film 13B consists of a support layer 131 made of crystalline silicon, a silicon carbide layer 133 made of amorphous silicon and silicon carbide, and a silicon carbide layer 133 made of amorphous silicon and silicon carbide. It was confirmed that an oxide layer 135 of silicon carbide composed of an oxide of silicon carbide was laminated. It was also found that when the MSS film was processed under the conditions described above, the thickness of the silicon carbide layer 133 was about 70 nm, and the thickness of the silicon carbide oxide layer 135 was about 5 nm. Amorphous silicon also has an improved surface area compared to crystalline silicon. Therefore, it can be said that MSS3 can more efficiently immobilize binding substances such as nucleic acid molecules and antibodies on the surface. Regarding the MSS3, when the region including the MSS film 13B was immersed in an aqueous solution and a voltage was applied, an electric signal could be measured. For this reason, it was confirmed that the aluminum wire 12A was able to secure insulation between circuits, ie, between the aluminum wires 12A, by forming the insulating layer 122 .
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
<第1の膜型表面応力センサ>
(付記1)
膜と、センサ基板とを備え、
前記膜は、表面応力に応じて変形する膜であり、
前記センサ基板は、支持領域および回路を備え、
前記支持領域は、前記膜を支持し、かつピエゾ抵抗素子を備え、
前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であり、
前記回路は、前記ピエゾ抵抗素子と接続されており、
前記回路は、酸化処理により酸化被膜を形成可能な金属を含み、
前記回路は、表面に酸化皮膜層を有する、
膜型表面応力センサ。
(付記2)
前記膜は、非晶質層を備える、付記1に記載のセンサ。
(付記3)
前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、付記2に記載のセンサ。
(付記4)
前記非晶質層は、炭化シリコンを含む、付記2または3に記載のセンサ。
(付記5)
前記非晶質層は、
 炭化シリコン層と、
 炭化シリコンの酸化物層とを
備え、
前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、付記2から4のいずれかに記載のセンサ。
(付記6)
前記膜は、支持体層を備え、
前記支持体層は、前記非晶質層の成分の結晶質を含み、
前記非晶質層は、前記支持体層に積層されている、付記2から5のいずれかに記載のセンサ。
(付記7)
前記支持層は、結晶性シリコンを含み、
前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、
付記6に記載のセンサ。
(付記8)
前記非晶質層は、
 炭化シリコン層と、
 炭化シリコンの酸化物層とを
備え、
前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
前記支持体層と、前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、付記7に記載のセンサ。
(付記9)
前記膜は、シリコン膜である、付記1から8のいずれかに記載のセンサ。
(付記10)
前記支持領域は、前記膜を部分的に支持する、付記1から9のいずれかに記載のセンサ。
(付記11)
前記支持領域は、複数のピエゾ抵抗素子を含み、
前記回路は、前記複数のピエゾ抵抗素子を含むホイートストンブリッジ回路を構成する、付記1から10のいずれかに記載のセンサ。
(付記12)
前記センサ基板が、複数の支持領域を有し、
前記複数の支持領域は、それぞれ、前記膜を支持する、付記1から11のいずれかに記載のセンサ。
(付記13)
前記金属は、バルブメタルである、付記1から12のいずれかに記載のセンサ。
(付記14)
前記金属は、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、モリブデン、クロム、鉄、またはこれらの合金である、付記1から13のいずれかに記載のセンサ。
(付記15)
前記金属は、アルミニウムである、付記1から14のいずれかに記載のセンサ。
(付記16)
前記膜は、ターゲットに結合する結合物質を備え、
前記膜は、前記結合物質へのターゲットの結合により変形する、付記1から15のいずれかに記載のセンサ。
(付記17)
前記結合物質は、核酸分子またはタンパク質である、付記16に記載のセンサ。
(付記18)
前記結合物質は、前記膜の一方の表面に固定化されている、付記16または17に記載のセンサ。
(付記19)
前記結合物質は、前記膜の両面に固定化されている、付記16または17に記載のセンサ。
(付記20)
前記結合物質は、アビジンまたはアビジン誘導体と、ビオチンまたはビオチン誘導体との結合体を介して、前記膜に固定化されている、付記16から19のいずれかに記載のセンサ。
(付記21)
前記膜は、表面に金属膜を備え、
前記結合物質は、前記金属膜を介して、前記膜の表面に固定化されている、付記16から20のいずれかに記載のセンサ。
(付記22)
前記結合物質は、リンカーを介して、前記膜表面に固定化されている、付記16から21のいずれかに記載のセンサ。
(付記23)
前記リンカーの長さは、略一定である、付記22記載のセンサ。
(付記24)
前記リンカーは、シランカップリング剤を含む、付記22または23記載のセンサ。
(付記25)
前記回路は、樹脂により被覆されていない、付記1から24のいずれかに記載のセンサ。
(付記26)
液体サンプルの分析に用いるための、付記1から25のいずれかに記載のセンサ。
<第2の膜型表面応力センサ>
(付記27)
膜と、センサ基板とを備え、
前記膜は、表面応力に応じて変形する膜であり、
前記センサ基板は、支持領域を備え、
前記支持領域は、前記膜を支持し、かつピエゾ抵抗素子を備え、
前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であり、
前記膜は、非晶質層を備える、
膜型表面応力センサ。
(付記28)
前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、付記27に記載のセンサ。
(付記29)
前記非晶質層は、炭化シリコンを含む、付記27または28に記載のセンサ。
(付記30)
前記非晶質層は、
 炭化シリコン層と、
 炭化シリコンの酸化物層とを
備え、
前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、付記27から29のいずれかに記載のセンサ。
(付記31)
前記膜は、支持体層を備え、
前記支持体層は、前記非晶質層の成分の結晶質を含み、
前記非晶質層は、前記支持体層に積層されている、付記27から30のいずれかに記載のセンサ。
(付記32)
前記支持層は、結晶性シリコンを含み、
前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、
付記31に記載のセンサ。
(付記33)
前記非晶質層は、
 炭化シリコン層と、
 炭化シリコンの酸化物層とを
備え、
前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
前記支持体層と、前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、付記32に記載のセンサ。
(付記34)
前記膜は、シリコン膜である、付記27から33のいずれかに記載のセンサ。
(付記35)
前記支持領域は、前記膜を部分的に支持する、付記27から34のいずれかに記載のセンサ。
(付記36)
前記センサ基板は、回路を有し、
前記支持領域は、複数のピエゾ抵抗素子を含み、
前記回路は、前記複数のピエゾ抵抗素子を含むホイートストンブリッジ回路を構成する、付記27から35のいずれかに記載のセンサ。
(付記37)
前記センサ基板が、複数の支持領域を有し、
前記複数の支持領域は、それぞれ、前記膜を支持する、付記27から36のいずれかに記載のセンサ。
(付記38)
前記膜は、ターゲットに結合する結合物質を備え、
前記膜は、前記結合物質へのターゲットの結合により変形する、付記27から37のいずれかに記載のセンサ。
(付記39)
前記結合物質は、核酸分子またはタンパク質である、付記38に記載のセンサ。
(付記40)
前記結合物質は、前記膜の一方の表面に固定化されている、付記38または39に記載のセンサ。
(付記41)
前記結合物質は、前記膜の両面に固定化されている、付記38または39に記載のセンサ。
(付記42)
前記結合物質は、アビジンまたはアビジン誘導体と、ビオチンまたはビオチン誘導体との結合体を介して、前記膜に固定化されている、付記38から41のいずれかに記載のセンサ。
(付記43)
前記膜は、表面に金属膜を備え、
前記結合物質は、前記金属膜を介して、前記膜の表面に固定化されている、付記38から42のいずれかに記載のセンサ。
(付記44)
前記結合物質は、リンカーを介して、前記膜表面に固定化されている、付記38から43のいずれかに記載のセンサ。
(付記45)
前記リンカーの長さは、略一定である、付記44に記載のセンサ。
(付記46)
前記リンカーは、シランカップリング剤を含む、付記44または45記載のセンサ。
(付記47)
液体サンプルの分析に用いるための、付記27から46のいずれかに記載のセンサ。
<第1の膜型表面応力センサの製造方法>
(付記48)
膜および回路を備える膜型応力センサにおいて、酸化処理により酸化被膜を形成可能な金属を含む回路に対して、酸化処理を行ない、前記回路表面に酸化皮膜層を形成する工程を含む、膜型表面応力センサの製造方法。
(付記49)
前記酸化処理は、酸処理および/または酸素雰囲気下のプラズマ処理により実施される、付記48に記載の製造方法。
(付記50)
前記回路に対して、酸処理を行い、前記回路表面に酸化皮膜層を形成する工程を含む、付記48または49に記載の製造方法。
(付記51)
前記酸処理は、硝酸処理、硫酸処理、リン酸処理、シュウ酸処理、および/またはクロム酸処理である、付記49または50に記載の製造方法。
(付記52)
前記酸化皮膜の形成後、熱処理を行なう、付記48から51のいずれかに記載の製造方法。
(付記53)
前記熱処理は、100℃以上で実施する、付記52に記載の製造方法。
(付記54)
前記膜型表面応力センサの膜に対して、非晶質化処理(アモルファス化処理)を行ない、前記膜表面に非晶質層を形成する工程を含む、付記48から53のいずれかに記載の製造方法。
(付記55)
前記非晶質層に、炭素を導入する工程を含む、付記54に記載の製造方法。
(付記56)
前記膜に対して、酸素雰囲気下のプラズマ処理および/またはスパッタリング処理により、炭素を除去する工程を含む、付記55に記載の製造方法。
(付記57)
前記膜は、シリコン膜である、付記48から56のいずれかに記載の製造方法。
(付記58)
前記金属は、バルブメタルである、付記48から57のいずれかに記載の製造方法。
(付記59)
前記金属は、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、モリブデン、クロム、鉄、またはこれらの合金である、付記48から58のいずれかに記載の製造方法。
(付記60)
前記金属は、アルミニウムである、付記48から59のいずれかに記載の製造方法。
<第2の膜型表面応力センサの製造方法>
(付記61)
膜および回路を備える膜型応力センサにおいて、前記膜に対して、非晶質化処理を行ない、前記膜表面に非晶質層を形成する工程を含む、膜型表面応力センサの製造方法。
(付記62)
前記非晶質化処理は、アモルファス化処理により実施される、付記61に記載の製造方法。
(付記63)
前記非晶質層に、炭素を導入する工程を含む、付記61または62に記載の製造方法。
(付記64)
前記膜に対して、酸素雰囲気下のプラズマ処理および/またはスパッタリング処理により、炭素を除去する工程を含む、付記63に記載の製造方法。
(付記65)
前記膜は、シリコン膜である、付記61から64のいずれかに記載の製造方法。
<半導体装置の製造方法>
(付記66)
膜および回路を備える半導体装置において、酸化処理により酸化被膜を形成可能な金属を含む回路に対して、酸化処理を行ない、前記回路表面に酸化皮膜層を形成する工程と、
前記膜に対して、非晶質化処理を行ない、前記膜表面に非晶質層を形成する工程とを含む、半導体装置の製造方法。
(付記67)
前記酸化処理は、酸処理および/または酸素雰囲気下のプラズマ処理により実施される、付記66に記載の製造方法。
(付記68)
前記回路に対して、酸処理を行い、前記回路表面に酸化皮膜層を形成する工程と、
前記回路に対して、酸素雰囲気下のプラズマ処理を実施する工程とを含む、付記66または67に記載の製造方法。
(付記69)
前記酸処理は、硝酸処理、硫酸処理、硝酸処理、硫酸処理、リン酸処理、シュウ酸処理、および/またはクロム酸処理である、付記67または68に記載の製造方法。
(付記70)
前記酸化皮膜の形成後、熱処理を行なう、付記66から69のいずれかに記載の製造方法。
(付記71)
前記熱処理は、100℃以上で実施する、付記70に記載の製造方法。
(付記72)
前記非晶質化処理は、イオンビーム処理により実施される、付記66から71のいずれかに記載の製造方法。
(付記73)
前記非晶質層に、炭素を導入する工程を含む、付記66から72のいずれかに記載の製造方法。
(付記74)
前記膜に対して、酸素雰囲気下のプラズマ処理および/またはスパッタリング処理により、炭素を除去する工程を含む、付記73に記載の製造方法。
(付記75)
前記膜は、シリコン膜である、付記66から74のいずれかに記載の製造方法。
(付記76)
前記金属は、バルブメタルである、付記66から75のいずれかに記載の製造方法。
(付記77)
前記金属は、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、モリブデン、クロム、鉄、またはこれらの合金である、付記66から76のいずれかに記載の製造方法。
(付記78)
前記金属は、アルミニウムである、付記66から77のいずれかに記載の製造方法。
<ターゲットの分析方法>
(付記79)
サンプル液中で膜型表面応力センサに電圧を印加する印加工程と、
前記膜型表面応力センサにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する分析工程とを含み、
前記膜型表面応力センサは、付記1から47のいずれかに記載の膜型表面応力センサである、ターゲットの分析方法。
<Appendix>
Some or all of the above-described embodiments and examples can be described as in the following appendices, but are not limited to the following.
<First Membrane Surface Stress Sensor>
(Appendix 1)
comprising a membrane and a sensor substrate;
The membrane is a membrane that deforms in response to surface stress,
the sensor substrate comprises a support area and circuitry;
the support region supports the membrane and comprises a piezoresistive element;
The piezoresistive element is an element that detects deformation of the film,
The circuit is connected to the piezoresistive element,
The circuit includes a metal capable of forming an oxide film by oxidation treatment,
The circuit has an oxide film layer on the surface,
Membrane type surface stress sensor.
(Appendix 2)
2. The sensor of clause 1, wherein the membrane comprises an amorphous layer.
(Appendix 3)
3. The sensor of Clause 2, wherein the amorphous layer comprises amorphous silicon or amorphized silicon.
(Appendix 4)
4. The sensor of Clause 2 or 3, wherein the amorphous layer comprises silicon carbide.
(Appendix 5)
The amorphous layer is
a silicon carbide layer;
an oxide layer of silicon carbide;
the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
5. The sensor according to any one of appendices 2 to 4, wherein the silicon carbide layer and the oxide layer are laminated in this order.
(Appendix 6)
the membrane comprises a support layer;
the support layer comprises a crystalline component of the amorphous layer;
6. The sensor of any one of Clauses 2-5, wherein the amorphous layer is laminated to the support layer.
(Appendix 7)
the support layer comprises crystalline silicon;
wherein the amorphous layer comprises amorphous silicon or amorphized silicon;
A sensor according to Appendix 6.
(Appendix 8)
The amorphous layer is
a silicon carbide layer;
an oxide layer of silicon carbide;
the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
8. The sensor of Claim 7, wherein the support layer, the silicon carbide layer and the oxide layer are stacked in this order.
(Appendix 9)
9. The sensor of any one of the clauses 1-8, wherein the membrane is a silicon membrane.
(Appendix 10)
10. The sensor of any preceding clause, wherein the support region partially supports the membrane.
(Appendix 11)
The support region includes a plurality of piezoresistive elements,
11. The sensor according to any one of appendices 1 to 10, wherein the circuit constitutes a Wheatstone bridge circuit including the plurality of piezoresistive elements.
(Appendix 12)
the sensor substrate having a plurality of support areas;
12. The sensor of any one of Clauses 1 to 11, wherein the plurality of support regions each support the membrane.
(Appendix 13)
13. The sensor of any one of Clauses 1-12, wherein the metal is a valve metal.
(Appendix 14)
14. A sensor according to any preceding clause, wherein the metal is aluminium, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof.
(Appendix 15)
15. The sensor of any one of Clauses 1-14, wherein the metal is aluminum.
(Appendix 16)
the membrane comprises a binding substance that binds to a target;
16. The sensor of any one of Clauses 1 to 15, wherein the membrane deforms upon binding of a target to the binding substance.
(Appendix 17)
17. The sensor of clause 16, wherein the binding substance is a nucleic acid molecule or a protein.
(Appendix 18)
18. The sensor of clause 16 or 17, wherein the binding substance is immobilized on one surface of the membrane.
(Appendix 19)
18. The sensor of clause 16 or 17, wherein the binding substance is immobilized on both sides of the membrane.
(Appendix 20)
20. The sensor according to any one of Appendices 16 to 19, wherein the binding substance is immobilized on the membrane via a conjugate of avidin or an avidin derivative and biotin or a biotin derivative.
(Appendix 21)
The membrane comprises a metal film on the surface,
21. The sensor according to any one of appendices 16 to 20, wherein the binding substance is immobilized on the surface of the film via the metal film.
(Appendix 22)
22. The sensor according to any one of appendices 16 to 21, wherein the binding substance is immobilized on the membrane surface via a linker.
(Appendix 23)
23. The sensor of clause 22, wherein the length of the linker is substantially constant.
(Appendix 24)
24. The sensor of clause 22 or 23, wherein the linker comprises a silane coupling agent.
(Appendix 25)
25. A sensor according to any one of the clauses 1 to 24, wherein the circuit is not covered with resin.
(Appendix 26)
26. A sensor according to any of clauses 1 to 25 for use in analyzing liquid samples.
<Second Membrane Surface Stress Sensor>
(Appendix 27)
comprising a membrane and a sensor substrate;
The membrane is a membrane that deforms in response to surface stress,
the sensor substrate comprises a support area;
the support region supports the membrane and comprises a piezoresistive element;
The piezoresistive element is an element that detects deformation of the film,
the film comprises an amorphous layer;
Membrane type surface stress sensor.
(Appendix 28)
28. The sensor of Clause 27, wherein the amorphous layer comprises amorphous silicon or amorphized silicon.
(Appendix 29)
29. The sensor of clause 27 or 28, wherein the amorphous layer comprises silicon carbide.
(Appendix 30)
The amorphous layer is
a silicon carbide layer;
an oxide layer of silicon carbide;
the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
30. The sensor according to any one of appendices 27 to 29, wherein the silicon carbide layer and the oxide layer are laminated in this order.
(Appendix 31)
the membrane comprises a support layer;
the support layer comprises a crystalline component of the amorphous layer;
31. The sensor of any of Clauses 27-30, wherein the amorphous layer is laminated to the support layer.
(Appendix 32)
the support layer comprises crystalline silicon;
wherein the amorphous layer comprises amorphous silicon or amorphized silicon;
32. The sensor of clause 31.
(Appendix 33)
The amorphous layer is
a silicon carbide layer;
an oxide layer of silicon carbide;
the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
33. The sensor of clause 32, wherein the support layer, the silicon carbide layer and the oxide layer are stacked in this order.
(Appendix 34)
34. The sensor of any of clauses 27-33, wherein the membrane is a silicon membrane.
(Appendix 35)
35. The sensor of any of clauses 27-34, wherein the support region partially supports the membrane.
(Appendix 36)
The sensor substrate has a circuit,
The support region includes a plurality of piezoresistive elements,
36. The sensor according to any one of appendices 27 to 35, wherein said circuit constitutes a Wheatstone bridge circuit including said plurality of piezoresistive elements.
(Appendix 37)
the sensor substrate having a plurality of support areas;
37. The sensor of any of Clauses 27-36, wherein each of the plurality of support regions supports the membrane.
(Appendix 38)
the membrane comprises a binding substance that binds to a target;
38. The sensor of any of clauses 27-37, wherein the membrane is deformed upon binding of a target to the binding substance.
(Appendix 39)
39. The sensor of clause 38, wherein said binding agent is a nucleic acid molecule or a protein.
(Appendix 40)
40. The sensor of clause 38 or 39, wherein the binding substance is immobilized on one surface of the membrane.
(Appendix 41)
40. The sensor of clause 38 or 39, wherein the binding substance is immobilized on both sides of the membrane.
(Appendix 42)
42. The sensor according to any one of Appendices 38 to 41, wherein the binding substance is immobilized on the membrane via a conjugate of avidin or an avidin derivative and biotin or a biotin derivative.
(Appendix 43)
The membrane comprises a metal film on the surface,
43. The sensor according to any one of Appendices 38 to 42, wherein the binding substance is immobilized on the surface of the membrane via the metal membrane.
(Appendix 44)
44. The sensor according to any one of Appendices 38 to 43, wherein the binding substance is immobilized on the membrane surface via a linker.
(Appendix 45)
Clause 45. The sensor of Clause 44, wherein the linker length is substantially constant.
(Appendix 46)
46. The sensor of clause 44 or 45, wherein the linker comprises a silane coupling agent.
(Appendix 47)
47. A sensor according to any of clauses 27 to 46 for use in analyzing liquid samples.
<Manufacturing Method of First Membrane Surface Stress Sensor>
(Appendix 48)
A film-type stress sensor comprising a film and a circuit, the film-type surface comprising a step of subjecting a circuit containing a metal capable of forming an oxide film by oxidation treatment to an oxidation treatment to form an oxide film layer on the circuit surface. A method of manufacturing a stress sensor.
(Appendix 49)
49. The manufacturing method according to appendix 48, wherein the oxidation treatment is performed by acid treatment and/or plasma treatment in an oxygen atmosphere.
(Appendix 50)
49. The manufacturing method according to appendix 48 or 49, comprising the step of subjecting the circuit to acid treatment to form an oxide film layer on the surface of the circuit.
(Appendix 51)
51. The production method according to appendix 49 or 50, wherein the acid treatment is nitric acid treatment, sulfuric acid treatment, phosphoric acid treatment, oxalic acid treatment, and/or chromic acid treatment.
(Appendix 52)
52. The manufacturing method according to any one of appendices 48 to 51, wherein a heat treatment is performed after forming the oxide film.
(Appendix 53)
53. The manufacturing method according to Appendix 52, wherein the heat treatment is performed at 100° C. or higher.
(Appendix 54)
54. The method according to any one of appendices 48 to 53, including a step of subjecting the film of the film-type surface stress sensor to an amorphization treatment (amorphization treatment) to form an amorphous layer on the film surface. Production method.
(Appendix 55)
55. The manufacturing method according to appendix 54, comprising the step of introducing carbon into the amorphous layer.
(Appendix 56)
56. The manufacturing method according to appendix 55, comprising removing carbon from the film by plasma treatment and/or sputtering treatment in an oxygen atmosphere.
(Appendix 57)
57. The manufacturing method according to any one of appendices 48 to 56, wherein the film is a silicon film.
(Appendix 58)
58. The manufacturing method according to any one of appendices 48 to 57, wherein the metal is a valve metal.
(Appendix 59)
59. The manufacturing method according to any one of Appendices 48 to 58, wherein the metal is aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof.
(Appendix 60)
60. The manufacturing method according to any one of appendices 48 to 59, wherein the metal is aluminum.
<Method for Manufacturing Second Membrane Surface Stress Sensor>
(Appendix 61)
1. A method of manufacturing a film-type surface stress sensor comprising a film and a circuit, comprising the step of subjecting said film to amorphization treatment to form an amorphous layer on said film surface.
(Appendix 62)
62. The manufacturing method according to appendix 61, wherein the amorphization treatment is performed by an amorphization treatment.
(Appendix 63)
63. The manufacturing method according to appendix 61 or 62, including the step of introducing carbon into the amorphous layer.
(Appendix 64)
64. The manufacturing method according to appendix 63, comprising removing carbon from the film by plasma treatment and/or sputtering treatment in an oxygen atmosphere.
(Appendix 65)
65. The manufacturing method according to any one of appendices 61 to 64, wherein the film is a silicon film.
<Method for manufacturing a semiconductor device>
(Appendix 66)
In a semiconductor device comprising a film and a circuit, a step of oxidizing a circuit containing a metal capable of forming an oxide film by oxidation treatment to form an oxide film layer on the surface of the circuit;
A method of manufacturing a semiconductor device, comprising: subjecting the film to an amorphization treatment to form an amorphous layer on the surface of the film.
(Appendix 67)
67. The manufacturing method according to appendix 66, wherein the oxidation treatment is performed by acid treatment and/or plasma treatment in an oxygen atmosphere.
(Appendix 68)
a step of acid-treating the circuit to form an oxide film layer on the surface of the circuit;
68. The manufacturing method according to appendix 66 or 67, comprising performing a plasma treatment in an oxygen atmosphere on the circuit.
(Appendix 69)
69. The production method according to appendix 67 or 68, wherein the acid treatment is nitric acid treatment, sulfuric acid treatment, nitric acid treatment, sulfuric acid treatment, phosphoric acid treatment, oxalic acid treatment, and/or chromic acid treatment.
(Appendix 70)
69. The manufacturing method according to any one of appendices 66 to 69, wherein a heat treatment is performed after forming the oxide film.
(Appendix 71)
71. The manufacturing method according to appendix 70, wherein the heat treatment is performed at 100° C. or higher.
(Appendix 72)
72. The manufacturing method according to any one of appendices 66 to 71, wherein the amorphization treatment is performed by ion beam treatment.
(Appendix 73)
73. The manufacturing method according to any one of Appendixes 66 to 72, comprising introducing carbon into the amorphous layer.
(Appendix 74)
74. The manufacturing method according to appendix 73, comprising removing carbon from the film by plasma treatment and/or sputtering treatment in an oxygen atmosphere.
(Appendix 75)
75. The manufacturing method according to any one of appendices 66 to 74, wherein the film is a silicon film.
(Appendix 76)
76. The manufacturing method according to any one of appendices 66 to 75, wherein the metal is a valve metal.
(Appendix 77)
77. The manufacturing method according to any of appendices 66 to 76, wherein the metal is aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof.
(Appendix 78)
78. The manufacturing method according to any one of appendices 66 to 77, wherein the metal is aluminum.
<Target analysis method>
(Appendix 79)
an applying step of applying a voltage to the membrane surface stress sensor in the sample liquid;
an analysis step of analyzing the target in the sample liquid by measuring the stress change of the piezoresistive element in the film-type surface stress sensor;
48. A method of analyzing a target, wherein the film-type surface stress sensor is the film-type surface stress sensor according to any one of Appendices 1 to 47.
 本発明の第1のMSSによれば、回路間を絶縁できる。また、本発明の第2のMSSによれば、MSSの膜への結合物質の固定化効率を向上できる。このため、本発明は、例えば、試料等の分析分野、医療分野等において有用である。 According to the first MSS of the present invention, it is possible to insulate between circuits. In addition, according to the second MSS of the present invention, it is possible to improve the immobilization efficiency of the binding substance on the MSS membrane. Therefore, the present invention is useful in, for example, the analysis field of samples and the like, the medical field, and the like.
1、2、3   MSS
10    センサ基板
11    電極
12、12A  アルミ線
121   導電層
122   絶縁層(酸化皮膜層)
13、13A  MSS膜
131   支持層
132   非晶質層
14    ピエゾ抵抗素子
15    支持領域

 
1, 2, 3 MSS
10 Sensor substrate 11 Electrodes 12, 12A Aluminum wire 121 Conductive layer 122 Insulating layer (oxide layer)
13, 13A MSS film 131 support layer 132 amorphous layer 14 piezoresistive element 15 support region

Claims (65)

  1. 膜と、センサ基板とを備え、
    前記膜は、表面応力に応じて変形する膜であり、
    前記センサ基板は、支持領域および回路を備え、
    前記支持領域は、前記膜を支持し、かつピエゾ抵抗素子を備え、
    前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であり、
    前記回路は、前記ピエゾ抵抗素子と接続されており、
    前記回路は、酸化処理により酸化被膜を形成可能な金属を含み、
    前記回路は、表面に酸化皮膜層を有する、
    膜型表面応力センサ。
    comprising a membrane and a sensor substrate;
    The membrane is a membrane that deforms in response to surface stress,
    the sensor substrate comprises a support area and circuitry;
    the support region supports the membrane and comprises a piezoresistive element;
    The piezoresistive element is an element that detects deformation of the film,
    The circuit is connected to the piezoresistive element,
    The circuit includes a metal capable of forming an oxide film by oxidation treatment,
    The circuit has an oxide film layer on the surface,
    Membrane type surface stress sensor.
  2. 前記膜は、非晶質層を備える、請求項1に記載のセンサ。 2. The sensor of Claim 1, wherein the membrane comprises an amorphous layer.
  3. 前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、請求項2に記載のセンサ。 3. The sensor of claim 2, wherein the amorphous layer comprises amorphous silicon or amorphized silicon.
  4. 前記非晶質層は、炭化シリコンを含む、請求項2または3に記載のセンサ。 4. The sensor of claim 2 or 3, wherein the amorphous layer comprises silicon carbide.
  5. 前記非晶質層は、
     炭化シリコン層と、
     炭化シリコンの酸化物層とを
    備え、
    前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
    前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
    前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、請求項2から4のいずれか一項に記載のセンサ。
    The amorphous layer is
    a silicon carbide layer;
    an oxide layer of silicon carbide;
    the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
    the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
    5. The sensor according to any one of claims 2 to 4, wherein said silicon carbide layer and said oxide layer are laminated in this order.
  6. 前記膜は、支持体層を備え、
    前記支持体層は、前記非晶質層の成分の結晶質を含み、
    前記非晶質層は、前記支持体層に積層されている、請求項2から5のいずれか一項に記載のセンサ。
    the membrane comprises a support layer;
    the support layer comprises a crystalline component of the amorphous layer;
    6. The sensor of any one of claims 2-5, wherein the amorphous layer is laminated to the support layer.
  7. 前記支持層は、結晶性シリコンを含み、
    前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、請求項6に記載のセンサ。
    the support layer comprises crystalline silicon;
    7. The sensor of claim 6, wherein the amorphous layer comprises amorphous silicon or amorphized silicon.
  8. 前記非晶質層は、
     炭化シリコン層と、
     炭化シリコンの酸化物層とを
    備え、
    前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
    前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
    前記支持体層と、前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、請求項7に記載のセンサ。
    The amorphous layer is
    a silicon carbide layer;
    an oxide layer of silicon carbide;
    the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
    the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
    8. The sensor of claim 7, wherein the support layer, the silicon carbide layer and the oxide layer are laminated in this order.
  9. 前記膜は、シリコン膜である、請求項1から8のいずれか一項に記載のセンサ。 9. A sensor according to any preceding claim, wherein the membrane is a silicon membrane.
  10. 前記支持領域は、前記膜を部分的に支持する、請求項1から9のいずれか一項に記載のセンサ。 10. The sensor of any one of claims 1-9, wherein the support area partially supports the membrane.
  11. 前記支持領域は、複数のピエゾ抵抗素子を含み、
    前記回路は、前記複数のピエゾ抵抗素子を含むホイートストンブリッジ回路を構成する、請求項1から10のいずれか一項に記載のセンサ。
    The support region includes a plurality of piezoresistive elements,
    11. The sensor according to any one of claims 1 to 10, wherein said circuit constitutes a Wheatstone bridge circuit including said plurality of piezoresistive elements.
  12. 前記センサ基板が、複数の支持領域を有し、
    前記複数の支持領域は、それぞれ、前記膜を支持する、請求項1から11のいずれか一項に記載のセンサ。
    the sensor substrate having a plurality of support areas;
    12. The sensor of any one of claims 1-11, wherein the plurality of support areas each support the membrane.
  13. 前記金属は、バルブメタルである、請求項1から12のいずれか一項に記載のセンサ。 13. A sensor according to any preceding claim, wherein the metal is a valve metal.
  14. 前記金属は、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、モリブデン、クロム、鉄、またはこれらの合金である、請求項1から13のいずれか一項に記載のセンサ。 14. Any one of claims 1 to 13, wherein the metal is aluminium, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof. sensor.
  15. 前記金属は、アルミニウムである、請求項1から14のいずれか一項に記載のセンサ。 15. A sensor according to any preceding claim, wherein the metal is aluminum.
  16. 前記膜は、ターゲットに結合する結合物質を備え、
    前記膜は、前記結合物質へのターゲットの結合により変形する、請求項1から15のいずれか一項に記載のセンサ。
    the membrane comprises a binding substance that binds to a target;
    16. The sensor of any one of claims 1-15, wherein the membrane is deformed upon binding of a target to the binding substance.
  17. 前記結合物質は、核酸分子またはタンパク質である、請求項16に記載のセンサ。 17. The sensor of claim 16, wherein said binding agent is a nucleic acid molecule or protein.
  18. 前記結合物質は、前記膜の一方の表面に固定化されている、請求項16または17に記載のセンサ。 18. A sensor according to claim 16 or 17, wherein said binding substance is immobilized on one surface of said membrane.
  19. 前記結合物質は、前記膜の両面に固定化されている、請求項16または17に記載のセンサ。 18. A sensor according to claim 16 or 17, wherein said binding substance is immobilized on both sides of said membrane.
  20. 前記回路は、樹脂により被覆されていない、請求項1から19のいずれか一項に記載のセンサ。 20. The sensor of any one of claims 1-19, wherein the circuitry is not coated with resin.
  21. 液体サンプルの分析に用いるための、請求項1から20のいずれか一項に記載のセンサ。 21. A sensor according to any preceding claim for use in analyzing liquid samples.
  22. 膜と、センサ基板とを備え、
    前記膜は、表面応力に応じて変形する膜であり、
    前記センサ基板は、支持領域を備え、
    前記支持領域は、前記膜を支持し、かつピエゾ抵抗素子を備え、
    前記ピエゾ抵抗素子は、前記膜の変形を検出する素子であり、
    前記膜は、非晶質層を備える、
    膜型表面応力センサ。
    comprising a membrane and a sensor substrate;
    The membrane is a membrane that deforms in response to surface stress,
    the sensor substrate comprises a support area;
    the support region supports the membrane and comprises a piezoresistive element;
    The piezoresistive element is an element that detects deformation of the film,
    the film comprises an amorphous layer;
    Membrane type surface stress sensor.
  23. 前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、請求項22に記載のセンサ。 23. The sensor of claim 22, wherein the amorphous layer comprises amorphous silicon or amorphized silicon.
  24. 前記非晶質層は、炭化シリコンを含む、請求項22または23に記載のセンサ。 24. A sensor according to claim 22 or 23, wherein the amorphous layer comprises silicon carbide.
  25. 前記非晶質層は、
     炭化シリコン層と、
     炭化シリコンの酸化物層とを
    備え、
    前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
    前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
    前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、請求項22から24のいずれか一項に記載のセンサ。
    The amorphous layer is
    a silicon carbide layer;
    an oxide layer of silicon carbide;
    the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
    the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
    25. The sensor of any one of claims 22-24, wherein the silicon carbide layer and the oxide layer are stacked in that order.
  26. 前記膜は、支持体層を備え、
    前記支持体層は、前記非晶質層の成分の結晶質を含み、
    前記非晶質層は、前記支持体層に積層されている、請求項22から25のいずれか一項に記載のセンサ。
    the membrane comprises a support layer;
    the support layer comprises a crystalline component of the amorphous layer;
    26. The sensor of any one of claims 22-25, wherein the amorphous layer is laminated to the support layer.
  27. 前記支持層は、結晶性シリコンを含み、
    前記非晶質層は、非晶性シリコンまたはアモルファス化シリコンを含む、請求項26に記載のセンサ。
    the support layer comprises crystalline silicon;
    27. The sensor of Claim 26, wherein the amorphous layer comprises amorphous silicon or amorphized silicon.
  28. 前記非晶質層は、
     炭化シリコン層と、
     炭化シリコンの酸化物層とを
    備え、
    前記炭化シリコン層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンとを含み、
    前記酸化物層は、非晶性シリコンまたはアモルファス化シリコンと、炭化シリコンおよび/または酸化された炭化シリコンとを含み、
    前記支持体層と、前記炭化シリコン層と、前記酸化物層とが、この順番で積層されている、請求項27に記載のセンサ。
    The amorphous layer is
    a silicon carbide layer;
    an oxide layer of silicon carbide;
    the silicon carbide layer includes amorphous silicon or amorphized silicon and silicon carbide;
    the oxide layer comprises amorphous silicon or amorphized silicon and silicon carbide and/or oxidized silicon carbide;
    28. The sensor of claim 27, wherein the support layer, the silicon carbide layer and the oxide layer are stacked in that order.
  29. 前記膜は、シリコン膜である、請求項22から28のいずれか一項に記載のセンサ。 29. The sensor of any one of claims 22-28, wherein the membrane is a silicon membrane.
  30. 前記支持領域は、前記膜を部分的に支持する、請求項22から29のいずれか一項に記載のセンサ。 30. The sensor of any one of claims 22-29, wherein the support area partially supports the membrane.
  31. 前記センサ基板は、回路を有し、
    前記支持領域は、複数のピエゾ抵抗素子を含み、
    前記回路は、前記複数のピエゾ抵抗素子を含むホイートストンブリッジ回路を構成する、請求項22から30のいずれか一項に記載のセンサ。
    The sensor substrate has a circuit,
    The support region includes a plurality of piezoresistive elements,
    31. A sensor according to any one of claims 22 to 30, wherein said circuit constitutes a Wheatstone bridge circuit comprising said plurality of piezoresistive elements.
  32. 前記センサ基板が、複数の支持領域を有し、
    前記複数の支持領域は、それぞれ、前記膜を支持する、請求項22から31のいずれか一項に記載のセンサ。
    the sensor substrate having a plurality of support areas;
    32. The sensor of any one of claims 22-31, wherein said plurality of support areas each support said membrane.
  33. 前記膜は、ターゲットに結合する結合物質を備え、
    前記膜は、前記結合物質へのターゲットの結合により変形する、請求項22から32のいずれか一項に記載のセンサ。
    the membrane comprises a binding substance that binds to a target;
    33. The sensor of any one of claims 22-32, wherein the membrane deforms upon binding of a target to the binding substance.
  34. 前記結合物質は、核酸分子またはタンパク質である、請求項33に記載のセンサ。 34. The sensor of claim 33, wherein said binding agent is a nucleic acid molecule or protein.
  35. 前記結合物質は、前記膜の一方の表面に固定化されている、請求項33または34に記載のセンサ。 35. A sensor according to claim 33 or 34, wherein said binding substance is immobilized on one surface of said membrane.
  36. 前記結合物質は、前記膜の両面に固定化されている、請求項33または34に記載のセンサ。 35. A sensor according to claim 33 or 34, wherein the binding substance is immobilized on both sides of the membrane.
  37. 液体サンプルの分析に用いるための、請求項22から36のいずれか一項に記載のセンサ。 37. A sensor according to any one of claims 22 to 36 for use in analyzing liquid samples.
  38. 膜および回路を備える膜型応力センサにおいて、酸化処理により酸化被膜を形成可能な金属を含む回路に対して、酸化処理を行ない、前記回路表面に酸化皮膜層を形成する工程を含む、膜型表面応力センサの製造方法。 A film-type stress sensor comprising a film and a circuit, the film-type surface comprising a step of subjecting a circuit containing a metal capable of forming an oxide film by oxidation treatment to an oxidation treatment to form an oxide film layer on the circuit surface. A method of manufacturing a stress sensor.
  39. 前記酸化処理は、酸処理、および/または酸素雰囲気下のプラズマ処理により実施される、請求項38に記載の製造方法。 39. The manufacturing method according to claim 38, wherein said oxidation treatment is performed by acid treatment and/or plasma treatment in an oxygen atmosphere.
  40. 前記回路に対して、酸処理を行い、前記回路表面に酸化皮膜層を形成する工程を含む、請求項38または39に記載の製造方法。 40. The manufacturing method according to claim 38 or 39, comprising the step of acid-treating the circuit to form an oxide film layer on the surface of the circuit.
  41. 前記酸処理は、硝酸処理、硫酸処理、リン酸処理、シュウ酸処理、および/またはクロム酸処理である、請求項39または40に記載の製造方法。 41. The manufacturing method according to claim 39 or 40, wherein said acid treatment is nitric acid treatment, sulfuric acid treatment, phosphoric acid treatment, oxalic acid treatment and/or chromic acid treatment.
  42. 前記酸化皮膜の形成後、熱処理を行なう、請求項38から41のいずれか一項に記載の製造方法。 42. The manufacturing method according to any one of claims 38 to 41, wherein a heat treatment is performed after forming the oxide film.
  43. 前記熱処理は、100℃以上で実施する、請求項42に記載の製造方法。 The manufacturing method according to claim 42, wherein the heat treatment is performed at 100°C or higher.
  44. 前記膜に対して、非晶質化処理(アモルファス化処理)を行ない、前記膜表面に非晶質層を形成する工程を含む、請求項38から43のいずれか一項に記載の製造方法。 44. The manufacturing method according to any one of claims 38 to 43, comprising the step of subjecting said film to amorphization treatment (amorphization treatment) to form an amorphous layer on said film surface.
  45. 前記膜は、シリコン膜である、請求項38から44のいずれか一項に記載の製造方法。 45. The manufacturing method according to any one of claims 38 to 44, wherein said film is a silicon film.
  46. 前記金属は、バルブメタルである、請求項38から45のいずれか一項に記載の製造方法。 46. The manufacturing method of any one of claims 38-45, wherein the metal is a valve metal.
  47. 前記金属は、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、モリブデン、クロム、鉄、またはこれらの合金である、請求項38から46のいずれか一項に記載の製造方法。 47. Any one of claims 38-46, wherein the metal is aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof. Production method.
  48. 前記金属は、アルミニウムである、請求項38から47のいずれか一項に記載の製造方法。 48. The manufacturing method according to any one of claims 38 to 47, wherein said metal is aluminum.
  49. 膜および回路を備える膜型応力センサにおいて、前記膜に対して、非晶質化処理を行ない、前記膜表面に非晶質層を形成する工程を含む、膜型表面応力センサの製造方法。 1. A method of manufacturing a film-type surface stress sensor comprising a film and a circuit, comprising the step of subjecting said film to amorphization treatment to form an amorphous layer on said film surface.
  50. 前記非晶質化処理は、アモルファス化処理により実施される、請求項49に記載の製造方法。 50. The manufacturing method according to claim 49, wherein said amorphization treatment is performed by an amorphization treatment.
  51. 前記膜は、シリコン膜である、請求項49または50に記載の製造方法。 51. The manufacturing method according to claim 49 or 50, wherein said film is a silicon film.
  52. 膜および回路を備える半導体装置において、酸化処理により酸化被膜を形成可能な金属を含む回路に対して、酸化処理を行ない、前記回路表面に酸化皮膜層を形成する工程と、
    前記膜に対して、非晶質化処理を行ない、前記膜表面に非晶質層を形成する工程とを含む、半導体装置の製造方法。
    In a semiconductor device comprising a film and a circuit, a step of oxidizing a circuit containing a metal capable of forming an oxide film by oxidation treatment to form an oxide film layer on the surface of the circuit;
    A method of manufacturing a semiconductor device, comprising: subjecting the film to an amorphization treatment to form an amorphous layer on the surface of the film.
  53. 前記酸化処理は、酸処理および/または酸素雰囲気下のプラズマ処理により実施される、請求項52に記載の製造方法。 53. The manufacturing method according to claim 52, wherein said oxidation treatment is performed by acid treatment and/or plasma treatment in an oxygen atmosphere.
  54. 前記回路に対して、酸処理を行い、前記回路表面に酸化皮膜層を形成する工程を含む、請求項52または53に記載の製造方法。 54. The manufacturing method according to claim 52 or 53, comprising the step of subjecting said circuit to acid treatment to form an oxide film layer on said circuit surface.
  55. 前記酸処理は、硝酸処理、硫酸処理、硝酸処理、硫酸処理、リン酸処理、シュウ酸処理、および/またはクロム酸処理である、請求項53または54に記載の製造方法。 55. The manufacturing method according to claim 53 or 54, wherein said acid treatment is nitric acid treatment, sulfuric acid treatment, nitric acid treatment, sulfuric acid treatment, phosphoric acid treatment, oxalic acid treatment and/or chromic acid treatment.
  56. 前記酸化皮膜の形成後、熱処理を行なう、請求項52から55のいずれか一項に記載の製造方法。 56. The manufacturing method according to any one of claims 52 to 55, wherein a heat treatment is performed after forming the oxide film.
  57. 前記熱処理は、100℃以上で実施する、請求項56に記載の製造方法。 57. The manufacturing method according to claim 56, wherein the heat treatment is performed at 100[deg.]C or higher.
  58. 前記非晶質化処理は、イオンビーム処理により実施される、請求項52から57のいずれか一項に記載の製造方法。 58. The manufacturing method according to any one of claims 52 to 57, wherein said amorphization treatment is performed by ion beam treatment.
  59. 前記非晶質層に、炭素を導入する工程を含む、請求項52から58のいずれか一項に記載の製造方法。 59. The manufacturing method according to any one of claims 52 to 58, comprising introducing carbon into said amorphous layer.
  60. 前記膜に対して、酸素雰囲気下のプラズマ処理および/またはスパッタリング処理により、炭素を除去する工程を含む、請求項59に記載の製造方法。 60. The manufacturing method according to claim 59, comprising removing carbon from said film by plasma treatment and/or sputtering treatment in an oxygen atmosphere.
  61. 前記膜は、シリコン膜である、請求項52から60のいずれか一項に記載の製造方法。 61. The manufacturing method according to any one of claims 52 to 60, wherein said film is a silicon film.
  62. 前記金属は、バルブメタルである、請求項52から61のいずれか一項に記載の製造方法。 62. The manufacturing method of any one of claims 52-61, wherein the metal is a valve metal.
  63. 前記金属は、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン、モリブデン、クロム、鉄、またはこれらの合金である、請求項52から62のいずれか一項に記載の製造方法。 63. Any one of claims 52-62, wherein the metal is aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, molybdenum, chromium, iron, or alloys thereof. Production method.
  64. 前記金属は、アルミニウムである、請求項52から63のいずれか一項に記載の製造方法。 64. The manufacturing method of any one of claims 52-63, wherein the metal is aluminum.
  65. サンプル液中で膜型表面応力センサに電圧を印加する印加工程と、
    前記膜型表面応力センサにおける前記ピエゾ抵抗素子の応力変化の測定により、前記サンプル液中のターゲットを分析する分析工程とを含み、
    前記膜型表面応力センサは、請求項1から37のいずれか一項に記載の膜型表面応力センサである、ターゲットの分析方法。

     
    an applying step of applying a voltage to the membrane surface stress sensor in the sample liquid;
    an analysis step of analyzing the target in the sample liquid by measuring the stress change of the piezoresistive element in the film-type surface stress sensor;
    A method for analyzing a target, wherein the membrane-type surface stress sensor is the membrane-type surface stress sensor according to any one of claims 1 to 37.

PCT/JP2021/025694 2021-07-07 2021-07-07 Film-type surface-stress sensor and method for manufacturing film-type surface-stress sensor WO2023281674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023532962A JPWO2023281674A1 (en) 2021-07-07 2021-07-07
PCT/JP2021/025694 WO2023281674A1 (en) 2021-07-07 2021-07-07 Film-type surface-stress sensor and method for manufacturing film-type surface-stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025694 WO2023281674A1 (en) 2021-07-07 2021-07-07 Film-type surface-stress sensor and method for manufacturing film-type surface-stress sensor

Publications (1)

Publication Number Publication Date
WO2023281674A1 true WO2023281674A1 (en) 2023-01-12

Family

ID=84801486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025694 WO2023281674A1 (en) 2021-07-07 2021-07-07 Film-type surface-stress sensor and method for manufacturing film-type surface-stress sensor

Country Status (2)

Country Link
JP (1) JPWO2023281674A1 (en)
WO (1) WO2023281674A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004935A1 (en) * 2000-07-06 2002-01-17 Asahi Kasei Kabushiki Kaisha Molecule detecting sensor
JP2002296228A (en) * 2001-03-30 2002-10-09 Seiko Epson Corp Biosensor
WO2011148774A1 (en) * 2010-05-24 2011-12-01 独立行政法人物質・材料研究機構 Surface stress sensor
WO2014024598A1 (en) * 2012-08-08 2014-02-13 株式会社 日立ハイテクノロジーズ Biomolecule detection method, biomolecule detection device and analysis device
JP2016045032A (en) * 2014-08-21 2016-04-04 日本電信電話株式会社 Biomolecule detection element
WO2019182103A1 (en) * 2018-03-23 2019-09-26 東洋鋼鈑株式会社 Microsatellite detection microarray and microsatellite detection method using same
WO2020179400A1 (en) * 2019-03-06 2020-09-10 国立研究開発法人物質・材料研究機構 Hydrogen sensor and hydrogen detection method
WO2020218086A1 (en) * 2019-04-26 2020-10-29 国立研究開発法人物質・材料研究機構 Sensitive film for nanomechanical sensor using poly(2,6-diphenyl-p-phenylene oxide), nanomechanical sensor having said sensitive film, method for coating nanomechanical sensor with said sensitive film, and method for regenerating sensitive film of said nanomechanical sensor
WO2021006003A1 (en) * 2019-07-10 2021-01-14 日本電気株式会社 Membrane-type surface stress sensor and analysis method using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004935A1 (en) * 2000-07-06 2002-01-17 Asahi Kasei Kabushiki Kaisha Molecule detecting sensor
JP2002296228A (en) * 2001-03-30 2002-10-09 Seiko Epson Corp Biosensor
WO2011148774A1 (en) * 2010-05-24 2011-12-01 独立行政法人物質・材料研究機構 Surface stress sensor
WO2014024598A1 (en) * 2012-08-08 2014-02-13 株式会社 日立ハイテクノロジーズ Biomolecule detection method, biomolecule detection device and analysis device
JP2016045032A (en) * 2014-08-21 2016-04-04 日本電信電話株式会社 Biomolecule detection element
WO2019182103A1 (en) * 2018-03-23 2019-09-26 東洋鋼鈑株式会社 Microsatellite detection microarray and microsatellite detection method using same
WO2020179400A1 (en) * 2019-03-06 2020-09-10 国立研究開発法人物質・材料研究機構 Hydrogen sensor and hydrogen detection method
WO2020218086A1 (en) * 2019-04-26 2020-10-29 国立研究開発法人物質・材料研究機構 Sensitive film for nanomechanical sensor using poly(2,6-diphenyl-p-phenylene oxide), nanomechanical sensor having said sensitive film, method for coating nanomechanical sensor with said sensitive film, and method for regenerating sensitive film of said nanomechanical sensor
WO2021006003A1 (en) * 2019-07-10 2021-01-14 日本電気株式会社 Membrane-type surface stress sensor and analysis method using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIKAWA MICHIHIRO, MURATA TOMOHIRO, ISHIHARA SHINSUKE, SHIBA KOTA, SHRESTHA LOK KUMAR, YOSHIKAWA GENKI, MINAMI KOSUKE, ARIGA KAT: "Discrimination of Methanol from Ethanol in Gasoline Using a Membrane-type Surface Stress Sensor Coated with Copper(I) Complex", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, CHEMICAL SOCIETY OF JAPAN,NIPPON KAGAKUKAI, JP, vol. 94, no. 2, 15 February 2021 (2021-02-15), JP , pages 648 - 654, XP093022857, ISSN: 0009-2673, DOI: 10.1246/bcsj.20200347 *

Also Published As

Publication number Publication date
JPWO2023281674A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
JP6215223B2 (en) Multiplex immunoscreening assay
KR100927886B1 (en) Protein shock-oligonucleotide conjugates
JP5744743B2 (en) Methods and compositions in particle-based detection of target molecules using covalent bond-forming reaction pairs
Chen et al. A new colorimetric platform for ultrasensitive detection of protein and cancer cells based on the assembly of nucleic acids and proteins
US20110189690A1 (en) Antibody complex, method for detecting antigen, and method for producing anitbody complex
US8541005B2 (en) Cysteine-tagged streptococcal protein G variant
WO2009136676A1 (en) Method for specific covalent coupling of antibody using a photoactivable protein g variant
JP2005204609A (en) Kit for immobilizing organic material, structure in which organic material is immobilized and method for producing the same structure
US8846869B2 (en) Mutant protein capable of binding specifically and quickly to troponin I derived from human myocardium
KR101970963B1 (en) DNA aptamer binding specifically to yellow fever virus envelope protein domain III (YFV EDIII) and uses thereof
JP2023165765A (en) Membrane-type surface stress sensor and analysis method using the same
WO2023281674A1 (en) Film-type surface-stress sensor and method for manufacturing film-type surface-stress sensor
Roh et al. Quantum‐dots‐based detection of hepatitis C virus (HCV) NS3 using RNA aptamer on chip
WO2011078800A1 (en) Method for the detection of an analyte
JP4872033B1 (en) Method for detecting antigen
JP3784111B2 (en) Method for measuring antigen concentration
JP4956715B2 (en) Measuring method of target substance
JP7260058B2 (en) Target analysis kit and analysis method using it
Kruis et al. An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions
Dixit et al. Antibody immobilization chemistries for nanosurfaces
FR2844519A1 (en) New recombinant DNA encoding chimeric protein, useful for in vitro diagnosis of viral infections, comprises sequences encoding epitopic regions, a linker and a binding region
Mayrolle et al. Antibody-Biological warfare agents
Egorov et al. Recombinant horseradish peroxidase for analytical applications
Ta et al. Developing An Ellipsometry-based Biosensor Platform via Covalent and Oriented Coupling of The Nanobody Targeting The Vascular Cell Adhesion Molecule-1 To A Silicon Wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532962

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949307

Country of ref document: EP

Kind code of ref document: A1