WO2023281212A1 - Procede de traitement thermique flash de l'amidon de pois - Google Patents

Procede de traitement thermique flash de l'amidon de pois Download PDF

Info

Publication number
WO2023281212A1
WO2023281212A1 PCT/FR2022/051348 FR2022051348W WO2023281212A1 WO 2023281212 A1 WO2023281212 A1 WO 2023281212A1 FR 2022051348 W FR2022051348 W FR 2022051348W WO 2023281212 A1 WO2023281212 A1 WO 2023281212A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
sds
content
pea
weight
Prior art date
Application number
PCT/FR2022/051348
Other languages
English (en)
Inventor
Julien Parcq
Jovin Hasjim
Alban DUPONT
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to CN202280047915.0A priority Critical patent/CN117677301A/zh
Priority to KR1020247000621A priority patent/KR20240032827A/ko
Priority to CA3224199A priority patent/CA3224199A1/fr
Priority to EP22751772.9A priority patent/EP4366545A1/fr
Publication of WO2023281212A1 publication Critical patent/WO2023281212A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/14Organic oxygen compounds
    • A21D2/18Carbohydrates
    • A21D2/186Starches; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/06Drying; Forming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin

Definitions

  • the present invention relates to a hydrothermal process for increasing the slowly digestible fraction content of pea starch. More specifically, this hydrothermal process is a continuous and rapid heat treatment process for pea starch (known as “Flash” heat treatment).
  • starch an energy reserve molecule characteristic of plants and the main component of starchy foods ( pasta, flour, potatoes).
  • starch molecules dissociate into smaller glucan chains, themselves dissociated into simple glucoses which can be assimilated by the digestive system.
  • Starch is mainly a mixture of two homopolymers, amylose and amylopectin, composed of D-glucose units, linked together by ⁇ (1-4) bonds and ⁇ (1- 6) which are at the origin of ramifications in the structure of the molecule.
  • Amylose is slightly branched with short branches and has a molecular weight of between 10,000 and 1,000,000 Dalton. The molecule is made up of 100 to 10,000 molecules of glucose.
  • Amylopectin is a branched molecule with branches every 24 to 30 glucose units, via ⁇ (1-6) bonds. Its molecular weight ranges from 1,000,000 to 100,000,000 Dalton and its level of branching is around 5%. The total chain can count 10,000 to 100,000 glucose units.
  • Starch is stored in reserve organs and tissues in a granular state, that is to say in the form of semi-crystalline granules.
  • This semi-crystalline state is essentially due to amylopectin macromolecules.
  • the starch granules In the native state, the starch granules have a degree of crystallinity ranging from 15 to 45% by weight, which essentially depends on the botanical origin and the process used for their extraction.
  • the rheological properties of the starch depend on the relative proportion of these two phases and on the swelling volume of the granules.
  • the gelatinization range is variable depending on the botanical origin of the starch.
  • Amylose-lipid complexes exhibit swelling delays because the association prevents the interaction of amylose with water molecules and temperatures above 90° C. are required to obtain total swelling of the granules (case lipid-complexed amyloma ⁇ s).
  • the lowering of the temperature (by cooling) of the starch paste causes gelation or insolubilization of the macromolecules then there is crystallization of these macromolecules.
  • This network is formed very quickly, in a few hours, and continues to develop until a few weeks later.
  • the association of molecules with each other via hydrogen bridge bonds forming double helices displaces the associated water molecules in the network and causes significant syneresis.
  • starch can be classified into three categories, depending on its digestibility: rapidly digestible, slowly digestible, or indigestible.
  • Starch which is in a naturally granular/semi-crystalline form, can be converted into “rapidly digestible starch” (acronym Anglo-Saxon “RDS” for Rapid Digestible Starch) after exposure to heat, pressure and/or humidity during food processing.
  • RDS Rapid Digestible Starch
  • Slowly digestible starch (English acronym "SDS” for Slow Digestible Starch) takes longer to be degraded by digestive enzymes in comparison with RDS because it still has a crystalline structure, and because it is less accessible to digestive enzymes.
  • RDS are nutritious carbohydrates because they will release their glucose into the blood much more quickly. Be careful, however, that the nutrient source does not contain too much, which can lead to metabolic syndromes.
  • resistant starches As for the so-called resistant starches (Anglo-Saxon acronym "RS” for Resistant Starch), they are assimilable to indigestible fibers (such as corn bran, oat fibers, gums) by the enzymes intestinal.
  • indigestible fibers such as corn bran, oat fibers, gums
  • total starch is the sum of its three components RDS, SDS and RS.
  • RS are a fraction of starch that resists enzymatic digestion in the small intestine. These will be fermented in the large intestine and can therefore be considered dietary fibre.
  • SDS and RS fractions are therefore sources of available glucose.
  • SDS are found naturally in certain uncooked seeds of cereals such as wheat, rice, barley, rye, corn, in legumes such as peas, fava beans and lentils.
  • the SDS content is mainly influenced by the gelatinization of the starch during the food process which will follow.
  • This conversion can be minimized by controlling the cooking conditions to limit starch gelatinization.
  • the original SDS content in the composition or the food product will depend on the way in which its preparation has been carried out.
  • This method was developed to simulate the enzymatic digestion that occurs in the small intestine.
  • a sample of product or starch is introduced into a tube, in the presence of digestive enzymes, and the release of glucose is measured during 120 minutes of reaction.
  • the RDS fraction by measuring rapidly available glucose (acronym “RAG”), in this case measuring the glucose released between 0 and 20 minutes;
  • the SDS fraction by measuring the slowly available glucose (English acronym “SAG”); in this case here measurement of the glucose released between 20 and 120 minutes ;
  • TS total starch (Total Starch considered equal to 100% when the analyzes are carried out on the starch as such).
  • Carbohydrate-rich foods containing more than 50% by weight of available carbohydrates from starch, of which at least 40% by weight are SDS, are conventionally considered to be high-SDS foods. They are therefore recommended to limit the glycemic index and the production of insulin, compared to foods lower in SDS.
  • starches Conventionally used in these food applications, legume starches, and more particularly pea starch, is a candidate of choice.
  • pea seeds are known for their richness in starch
  • Native pea starches having an SDS content typically between 27 and 38% by weight according to ENGLYST, are therefore of interest for nutritional applications.
  • the purpose of the heating time in the discontinuous process is to balance the temperature between the heat source and the center of the container (or reactor) and to allow the rearrangement of the starch crystallites (annealing effect).
  • a larger reactor will require a longer heating time due to the longer path from the heat source to the center of the vessel. Also, higher solids content will require longer heating time due to higher viscosity.
  • the applicant company has therefore decided to optimize this annealing process, by finding operating conditions allowing the SDS content of legume starch, in particular peas, to be increased by implementing a continuous process with much shorter heating time than the basic annealing process.
  • FIG. 1 shows a thermal cooker according to one embodiment of the invention comprising three baths in series.
  • the invention relates to a process for the preparation of a legume starch, preferably pea starch, with a high content of slowly digestible fraction (SDS), a hydrothermal treatment process characterized in that it includes the following steps:
  • high content of slowly digestible fraction within the meaning of the present invention, is meant an increase in the SDS content of 5 to 25% by dry weight, preferably 10 to 20% by dry weight compared to the starch from which it is prepared.
  • leg within the meaning of the present invention, is meant any plant belonging to the families Caesalpiniaceae, Mimosaceae or Papilionaceae and in particular any plant belonging to the family Papilionaceae such as, for example, peas, beans, broad bean, horse bean, lentil, alfalfa, clover or lupine.
  • the legume is chosen from the group comprising peas, beans, broad beans and broad beans.
  • peas are peas, the term “peas” being considered here in its broadest sense and including in particular: - all the wild varieties of “smooth peas”, and - all mutant varieties of "smooth pea” and “wrinkled pea” and this, regardless of the uses for which said varieties are generally intended (human food, animal nutrition and/or other uses).
  • Said mutant varieties are in particular those called “r mutants”, “rb mutants”, “rug 3 mutants”, “rug 4 mutants”, “rug 5 mutants” and “lam mutants” as described in the article by HEYDLEY et al. entitled “Developing novel pea starches” Proceedings of the Symposium of the Industrial Biochemistry and Biotechnology Group of the Biochemical Society, 1996, pp. 77-87.
  • the legumes are plants giving seeds containing at least 25%, preferably at least 40%, by weight of starch (dry/dry ).
  • leg starch any composition extracted, in any way whatsoever, from a legume and in particular from a papilionaceae, and whose starch content is greater than 40%, preferably greater than 50% and even more preferably greater than 75%, these percentages being expressed by dry weight relative to the dry weight of said composition.
  • this starch content is greater than 90% (dry/dry). It may in particular be greater than 95% by weight, including greater than 98% by weight.
  • “native” starch is meant a starch which has not undergone any chemical modification.
  • the pea starches according to the invention or not are analyzed according to the operating conditions of in vitro digestion of the method of ENGLYST et al. entitled “Classification and measurement of nutritionally important starch fractions”, Eur. J. Clin. Nutri., 1992, vol. 46 (Supp. 2), p. S33-S50.
  • the method consists in measuring the rapidly digestible (RDS), slowly digestible (SDS) and non-digestible (resistant) (RS) starch fractions contained in a food. These fractions are determined after enzymatic digestion with pancreatin, amyloglucosidase and invertase.
  • the released glucose is measured by colorimetry, using a glucose oxidase kit Glucose GOD FS referenced 1 250099 10923, marketed by the company DiaSys Distribution France Sari following the protocol of said kit.
  • the acetate buffer (0.1 M) was prepared by dissolving 8.203 g of anhydrous sodium acetate in 250 ml of saturated benzoic acid solution, diluting it to 500 ml with RO water, adjusting the pH to 5.2 with 0.1 M acetic acid, again diluting it to 1000 ml with RO water and adding 4 ml of 1 M CaCL per liter of buffer.
  • the enzymatic solution was freshly prepared before the experiments.
  • Four 50 mL centrifuge tubes were prepared, each containing 2.5 g of porcine pancreatin (8 c USP, P7545, Sigma) and mixed with 20 mL of RO water.
  • the mixture was stirred for 10 minutes and centrifuged for 10 minutes at 1500 c g.
  • a "blank" control was prepared using 20 ml of acetate buffer and 50 mg of guar gum, without sample, while a standard contained 0.5 g of anhydrous glucose and 50 mg of guar gum in 20 ml of acetate buffer solution.
  • the guar gum can be predissolved in the acetate buffer, for example, 750 mg of guar gum in 300 ml of acetate buffer.
  • the mixtures of alcoholic solutions were centrifuged at 1500 c g for three minutes.
  • the glucose content (Go, G20 and G120 for 0, 20 and 120 minutes, respectively) in each supernatant was analyzed using a colorimetric method, and used to calculate the rapidly digestible starch (RDS ), slowly digestible starch (SDS) and resistant starch (RS) as follows:
  • RSE ENGLYST method
  • RSA AOAC 2002.02
  • native pea starch typically has a content:
  • the flash heat treatment method according to the invention is based on precise hydrothermal control.
  • the invention therefore relates to a process for the preparation of a legume starch, preferably pea starch, with a high content of slowly digestible fraction (SDS), a hydrothermal treatment process characterized in that it includes the following steps:
  • the first step of said process in accordance with the invention consists in preparing a legume starch milk, in this case peas, with a dry matter content of between 30 and 40% by weight, preferably 32% by weight .
  • the second stage of the process in accordance with the invention consists in heating the starch milk thus prepared to a temperature of between 48 and 60° C., preferably 55° C., in a continuous reactor, so as to that the residence time of the starch milk is less than 5 minutes, preferably less than 2 minutes.
  • This starch milk temperature is that measured at the outlet of the heat treatment device.
  • the applicant company recommends using a thermal cooker whose bath temperature does not exceed 65°C.
  • the thermal cooker used in the examples comprises three baths in series (cf. Fig. 1).
  • this device can be replaced by any other device making it possible to implement a continuous process.
  • Those skilled in the art will be able to select the dimensions, the number of baths, and the flow rate adapted to each device in order to carry out this second step under adequate conditions.
  • the second stage can be preceded by a pre-heating stage, for example at a temperature between 35 and 45°, preferably around 40° C., for a sufficient time to allow the milk to starch to reach a temperature closer to that of step 2).
  • a pre-heating stage for example at a temperature between 35 and 45°, preferably around 40° C., for a sufficient time to allow the milk to starch to reach a temperature closer to that of step 2).
  • the duration of this optional pre-heating step will be easily determined by those skilled in the art depending on the exact configuration of the device. filtration and drying of the starch milk thus treated, as exemplified below.
  • the residual moisture content of the dry starch obtained is less than 15% by weight, preferably less than or equal to 12% by weight.
  • the ENGLYST measure of digestibility of these products gives SDS values increased by 8 to 25% by dry weight, preferably 12 to 20% by dry weight relative to the starch from which it is prepared.
  • this SDS value for pea starch is more than 35% by weight, preferably between 40 and 55% by weight.
  • the present invention also relates to a pea starch with a high content of slowly digestible fraction prepared according to one of the processes described above, characterized in that the SDS content is greater than 35% by weight, preferably comprised between 40 and 50% by weight.
  • starches with a high SDS content will then be advantageously used in the fields of food applications (intended in particular for athletes) or medical applications (specialized nutrition).
  • the invention also relates to the use of a starch according to the invention in the fields of food and medical applications, in particular for the diet of athletes or in specialized nutrition.
  • Example 1 Flash heat treatment of pea starch, having an SDS content of 33%, at different temperatures
  • a suspension of pea starch (LN30 pea starch marketed by the applicant company—batch 1) at 32% dry matter in demineralized water was heated in the laboratory cooker of FIG. 1 to reach a temperature of 50, 52, 55 or 59°C at the outlet.
  • the system operated with water until the temperature of the cooker was stable, then the water was replaced by the suspension of pea starch.
  • the temperatures of the three baths were adjusted until the desired temperature was obtained at the outlet of the laboratory cooker (see Table I).
  • a thermal cooker comprising 3 baths in series was used in this example. However, if the dimensions allow it, it can be replaced by a cooker allowing a continuous process comprising a single bath at the desired temperature.
  • the pea starch slurry was preheated to 40°C to reduce the time required to reach the target temperature in the laboratory cooker.
  • the starch slurry flow rate was about 200 mL/min. Residence time was less than 2 minutes.
  • the treated starch was filtered through a Buchner funnel with a sintered disk of porosity n°3, then dried using a fluidized bed dryer (TG 200, Retsch) at 60° C. until at a humidity equal to or less than 12%, and ground using a food processor (Thermomix TM3300, Vorwerk, Germany).
  • Treatments 1, 2 and 3 produced a starch with similar digestibility properties, which slightly increased the RDS and SDS contents of the base native pea starch, while decreasing the RSE and RSA ( Table II).
  • Treatment 4 had the highest SDS and RDS contents, where the SDS content was also higher than the RDS content.
  • Treatment 4 also contained the lowest RSE and RSA.
  • the RSA contents were very similar among the processed samples, which were very low ( ⁇ 4%), indicating that most of the RSEs were in fact vSDS.
  • the gelatinization properties were analyzed using the DSC 8000 (Perkin Elmer, USA). Each starch sample was mixed with water to obtain an 18% (w/w) starch suspension. The starch suspension (15 mg) was placed in an aluminum crucible and sealed. It was then equilibrated at 5°C before being heated from 5°C to 110°C at 10°C/min.
  • the onset temperature (Anglo-Saxon term for onset temperature or To), the peak temperature (peak temperature or T p ), the conclusion temperature (conclusion temperature or T c ) and the enthalpy of gelatinization were determined from their thermograms.
  • T 0 is an indicator of the annealing effect, which explains the significant change in the digestibility of pea starch after treatment 4.
  • Example 2 Flash heat treatment of two batches of pea starch, having respectively 24 and 34% SDS
  • the system operated with water until the temperature of the cooker was stable, then the water was replaced by the suspension of pea starch.
  • the concentration of the starch suspension and the temperatures of the three baths of the laboratory cooker are indicated in Table IV.
  • the pea starch slurry was preheated to 40°C to reduce the time required to reach the target temperature in the laboratory cooker.
  • the flow rate of the starch suspension was approximately 200 mL/min.
  • the residence time was less than 2 minutes.
  • the treated starch was filtered through a Buchner funnel with a sintered disc of porosity n°3, then dried using a fluidized bed dryer (TG200, Retch) at 60° C. until humidity equal to or less than 12%, and ground using a food processor (Thermomix TM3300, Vorwerk, Germany).
  • the RSE contents were the highest in the native pea starches, followed by their vSDS contents. Most of the RSE grades were vSDS because the RSA grades were less than 50% of the RSE grades.
  • the RDS contents of the treated starches were always less than 30% and were lower than their SDS contents.
  • the decreases in RSE levels were greater than those in RSA levels, which reduced their differences, indicating that vSDS levels decreased after treatment.
  • more than 70% of RSE content was still vSDS.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pediatric Medicine (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

La présente invention est relative à un procédé de préparation d'un amidon de légumineuse à haute teneur en fraction lentement digestible (SDS), procédé de traitement hydrothermique caractérisé en ce qu'il comprend les étapes suivantes : 1) Préparer un lait d'amidon à une matière sèche comprise entre 30 et 40 % en poids, 2) Chauffer le lait d'amidon ainsi préparé à une température comprise entre 50 et 60°C, de préférence 55°C, dans un réacteur en continu, de manière à ce que le temps de séjour du lait d'amidon soit inférieur à 5 minutes, de préférence de moins de 2 minutes, 3) Récupérer, filtrer et sécher le lait d'amidon ainsi traité.

Description

Description
Titre : PROCEDE DE TRAITEMENT THERMIQUE FLASH
DE L’AMIDON DE POIS
[0001] La présente invention est relative à un procédé hydrothermique d’augmentation de la teneur en fraction lentement digestible de l’amidon de pois. Plus particulièrement, ce procédé hydrothermique est un procédé continu et rapide de traitement thermique de l’amidon de pois (dit traitement thermique « Flash »).
[0002] Elle est également relative aux amidons de pois ainsi obtenus et à leurs utilisations.
Contexte de l’invention
[0003] D’un point de vue physiologique, chez l’homme ou les animaux, l'essentiel des glucides ingérés lors de l’alimentation est représenté par l'amidon, molécule de réserve énergétique caractéristique des végétaux et composante principale des féculents (pâtes, farine, pommes de terre).
[0004] Lors de la digestion, les molécules d'amidon se dissocient en chaînes de glucanes plus petites, elles-mêmes dissociées en glucoses simples et assimilables par le système digestif.
[0005] La digestion de l'amidon débute dans la bouche pendant la mastication grâce à une enzyme de la salive : l'amylase salivaire.
[0006] Cette première décomposition de l'amidon est stoppée par l'acidité de l'estomac mais reprend dans le duodénum (première partie de l'intestin grêle) grâce à l'action des enzymes pancréatique et intestinale.
[0007] L'action successive de toutes ces amylases conduit à l'apparition d'un disaccharide, le maltose, qui sera lui-même transformé en deux monosaccharides, des glucoses.
[0008] Synthétisé par voie biochimique, source d’hydrates de carbone, l’amidon est l’une des matières organiques les plus répandues du monde végétal, où il constitue la réserve nutritionnelle des organismes. [0009] Il est ainsi naturellement présent dans les organes et tissus de réserve des végétaux supérieurs, en particulier dans les graines de céréales (blé, maïs...), les graines de légumineuses (pois, fèves ...), les tubercules (pomme de terre, igname...), les racines (manioc, patate douce ...), les bulbes, les tiges et les fruits.
[0010] L'amidon est principalement un mélange de deux homopolymères, l'amylose et l'amylopectine, composés d'unités de D-glucose, liées entre elles par des liaisons a (1-4) et des liaisons a (1-6) qui sont à l'origine de ramifications dans la structure de la molécule.
[0011] Ces deux homopolymères diffèrent par leur degré de branchement et leur degré de polymérisation.
[0012] L'amylose est légèrement ramifiée avec de courtes branches et présente une masse moléculaire comprise entre 10.000 et 1 .000.000 Dalton. La molécule est formée de 100 à 10.000 molécules de glucose.
[0013] L'amylopectine est une molécule ramifiée avec de branches toutes les 24 à 30 unités de glucose, par l'intermédiaire de liaisons a (1-6). Sa masse moléculaire va de 1 .000.000 à 100.000.000 Dalton et son niveau de branchement est de l'ordre de 5 %. La chaîne totale peut compter 10.000 à 100.000 unités glucose.
[0014] Le ratio entre l'amylose et l'amylopectine dépend de la source botanique de l'amidon.
[0015] L’amidon est stocké dans les organes et tissus de réserve dans un état granulaire, c'est-à-dire sous la forme de granules semi-cristallins.
[0016] Cet état semi-cristallin est essentiellement dû aux macromolécules d’amylopectine.
[0017] A l’état natif, les granules d’amidon présentent un taux de cristallinité allant de 15 à 45 % en poids qui dépend essentiellement de l’origine botanique et du procédé mis en oeuvre pour leur extraction.
[0018] L’amidon granulaire, placé sous lumière polarisée, présente alors en microscopie une croix noire caractéristique, dite « croix de Malte ». [0019] Ce phénomène de biréfringence positive est dû à l’organisation semi- cristalline des granules : l’orientation moyenne des chaînes de polymères étant radiale.
[0020] Pour une description plus détaillée de l’amidon granulaire, on pourra se référer au chapitre II intitulé « Structure et morphologie du grain d’amidon » de S. Perez, dans l’ouvrage « Initiation à la chimie et à la physico-chi'mie macromoléculaires », Première Edition, 2000, vol. 13, pp. 41 -86, Groupe Français d’Etudes et d’Applications des Polymères.
[0021] L’amidon sec renferme une teneur en eau qui varie de 12 à 20 % en poids selon l’origine botanique. Cette teneur en eau dépend évidemment de l’humidité résiduelle du milieu (pour une aw = 1 , l’amidon peut fixer jusqu'à 0,5 g d'eau par gramme d'amidon).
[0022] Le chauffage, en excès d'eau, d'une suspension d'amidon à des températures proches de sa température de gélatinisation entraîne un gonflement irréversible des granules et conduit à leur dispersion, puis à leur solubilisation.
[0023] Ce sont notamment ces propriétés qui confèrent à l’amidon ses propriétés technologiques d’intérêt.
[0024] Pour une plage de température donnée appelée « plage de gélatinisation », le grain d'amidon va gonfler très rapidement et perdre sa structure semi-cristalline (perte de la biréfringence).
[0025] Généralement, tous les granules seront gonflés au maximum sur un intervalle de température de l'ordre de 5 à 20 °C. On obtient un empois composé de granules gonflés qui constituent la phase dispersée et de molécules (amylose principalement) qui épaississent la phase continue aqueuse.
[0026] Les propriétés rhéologiques de l'empois dépendent de la proportion relative de ces deux phases et du volume de gonflement des granules. La plage de gélatinisation est variable selon l'origine botanique de l'amidon.
[0027] La viscosité maximale est obtenue quand l'empois d'amidon renferme un grand nombre de granules très gonflés. Quand on continue de chauffer avec cisaillement, les granules vont éclater et le matériel va se disperser dans le milieu. [0028] Les complexes amylose-lipide présentent des retards au gonflement car l'association empêche l'interaction de l'amylose avec les molécules d'eau et il faut des températures supérieures à 90 °C pour obtenir le gonflement total des granules (cas de l'amylomaïs complexé aux lipides).
[0029] La disparition des granules et la solubilisation des macromolécules entraînent une diminution de la viscosité.
[0030] L'abaissement de température (par refroidissement) de l'empois d'amidon provoque une gélification ou une insolubilisation des macromolécules puis on assiste à une cristallisation de ces macromolécules.
[0031] Ce phénomène est connu sous l'appellation de rétrogradation.
[0032] Quand un empois renferme de l'amylose, c'est cette première molécule qui subira la rétrogradation.
[0033] Elle consistera à la formation de double hélice et à l'association de ces dernières pour former des « cristaux » qui donneront par l'intermédiaire de zones de jonction un réseau tridimensionnel.
[0034] Ce réseau est formé très rapidement, en quelques heures, et continue à se développer jusqu’à quelques semaines plus tard. L'association des molécules entre-elles par l'intermédiaire de liaisons pont hydrogène formant des doubles hélices déplace les molécules d'eau associées dans le réseau et provoque une synérèse importante.
[0035] La complexité structurale de l’amidon et ses propriétés physico-chimiques font que cette classe d’hydrates de carbone sera assimilée puis digérée de façon variable chez l’homme et les animaux.
[0036] C’est la raison pour laquelle l’amidon peut être classé en trois catégories, en fonction de sa digestibilité : rapidement digestible, lentement digestible, ou non digestible.
[0037] L’amidon qui se présente sous forme naturellement granulaire / semi cristalline, peut être converti en « amidon rapidement digestible » (acronyme anglosaxon « RDS » pour Rapid Digestible Starch) après exposition à la chaleur, la pression et/ou à l’humidité durant les processus alimentaires.
[0038] L’amidon lentement digestible (acronyme anglosaxon « SDS » pour Slow Digestible Starch) prend plus longtemps à être dégradé par les enzymes digestives en comparaison avec les RDS parce qu’il présente une structure encore cristalline, et parce qu’il est moins accessible aux enzymes de digestion.
[0039] La digestion de cette fraction SDS conduit à une libération modérée et régulière de glucose dans le sang. On parlera alors d’amidons présentant un faible indice glycémique (acronyme anglosaxon « low G.l. » pour low Glycémie Index ou faible indice glycémique).
[0040] Des aliments qui présentent un contenu élevé en SDS provoqueront alors des réponses glycémiques post prandiales plus faibles et des réponses insulinémiques post prandiales plus basses que des aliments ne contenant qu’un faible contenu en SDS.
[0041] Inversement, les RDS sont des hydrates de carbones nutritifs, car ils libéreront leur glucose dans le sang beaucoup plus rapidement. Attention cependant à ce que la source nutritive n’en contienne trop, ce qui peut entraîner des syndromes métaboliques.
[0042] Quant aux amidons dits résistants (acronyme anglosaxon « RS » pour Résistant Starch), ils sont quant à eux assimilables à des fibres non digestibles (tels que le son de maïs, les fibres d'avoine, les gommes) par les enzymes intestinales.
[0043] Il est admis, dans l’état de l’art, que l’amidon total est la somme de ses trois composantes RDS, SDS et RS.
[0044] Les différents types d'amidon sont donc digérées à des rythmes différents dans le système digestif humain.
[0045] On admet donc que les SDS ont une vitesse de digestion plus lente que les RDS. Les RS sont une fraction de l’amidon qui résiste à la digestion enzymatique dans l’intestin grêle. Ces derniers seront fermentés dans le gros intestin et peuvent dès lors être considérés comme des fibres alimentaires.
[0046] Les fractions SDS et RS sont donc des sources de glucose disponible. [0047] Les SDS sont trouvés naturellement dans certaines graines non cuites des céréales comme le blé, le riz, l’orge, le seigle, le maïs, dans les légumineuses comme le pois, les féveroles et les lentilles.
[0048] Le contenu en SDS est principalement influencé par la gélatinisation de l’amidon lors du procédé alimentaire qui suivra.
[0049] En effet, lors de ce processus, l’exposition à la température, la pression et l’humidité conduit à la conversion de la fraction SDS en RDS, rendant l’amidon plus accessible à la digestion enzymatique.
[0050] Cette conversion peut être minimisée par le contrôle des conditions de cuisson pour limiter la gélatinisation de l’amidon.
[0051] De ce fait, le contenu originel en SDS dans la composition ou le produit alimentaire dépendra de la manière dont sa préparation aura été menée.
[0052] Il est ainsi connu que les produits alimentaires qui contiennent beaucoup de SDS sont certaines pâtes alimentaires, le riz étuvé, l’orge perlé et certains biscuits, contrairement aux céréales soufflées du petit déjeuner ou au pain qui n’en contiennent habituellement que très peu.
[0053] Le contenu en SDS des aliments est classiquement déterminé en utilisant une méthode in vitro développée par H. N. ENGLYST et ses collaborateurs (publiée en 1992 dans l’European Journal of Clinical Nutrition, vol. 46, pp. S33 -S50). [0054] Dans la suite de cet exposé, il sera fait référence à cette méthode de 1992 « selon ENGLYST ».
[0055] Cette méthode a été élaborée pour simuler la digestion enzymatique qui se produit dans l’intestin grêle.
[0056] Un échantillon de produit ou d’amidon est introduit dans un tube, en présence d’enzymes digestives, et la libération du glucose est mesurée durant 120 minutes de réaction.
[0057] Cette méthode permet alors de différencier :
- La fraction RDS, par la mesure du glucose disponible rapidement (acronyme anglosaxon « RAG »), en l’occurrence ici mesure du glucose libéré entre 0 et 20 minutes ;
- La fraction SDS, par la mesure du glucose disponible lentement (acronyme anglosaxon « SAG ») ; en l’occurrence ici mesure du glucose libéré entre 20 et 120 minutes ;
- La fraction RS, correspondant au glucose non libéré après 120 minutes, qui se calcule selon la méthode ENGLYST par la formule suivante : TS - (RDS + SDS) où TS = amidon total (Total Starch considéré égal à 100 % lorsque les analyses sont réalisées sur l’amidon en tant que tel).
[0058] Des aliments riches en glucides contenant plus de 50 % en poids de carbohydrates disponibles provenant d’amidon, dont au moins 40 % en poids sont du SDS, sont classiquement considérés comme des aliments à haute richesse en SDS. [0059] Ils sont donc préconisés pour limiter l’indice glycémique et la production d’insuline, en regard des aliments plus pauvre en SDS.
[0060] De tous les amidons classiquement mis en œuvre dans ces applications alimentaires, les amidons de légumineuses, et plus particulièrement l’amidon de pois est un candidat de choix. [0061] En effet, les graines de pois sont connues pour leur richesse en amidon
(entre 55 et 70 % en poids de matière sèche) et pour leur faible indice glycémique (RATNAYAKE et al. « Pea starch, composition, structure and properties - A review », Starch/Stàrke, 2002, vol. 54, pp. 217-234).
[0062] Les amidons de pois natifs, présentant une teneur en SDS classiquement comprises entre 27 et 38 % en poids selon ENGLYST sont donc d’intérêt pour des applications nutritionnelles.
[0063] Cependant, pour préparer des aliments à haute richesse en SDS, il est nécessaire de disposer d’amidon présentant une plus haute teneur en fraction glucidique lentement digestible. [0064] Il est connu dans l’état de l’art que des traitements thermiques de type recuit
(terme anglosaxon d’« annealing ») permettent d’altérer la structure cristalline du granule d’amidon.
[0065] Cependant, Il est connu dans l’état de l’art que les procédés d’annealing n’ont pas pour objectif principal d’augmenter la teneur en fraction lentement digestible (SDS), mais au contraire de rendre plus digestible l’amidon, et notamment l’amidon de légumineuse comme le pois (cf. article de CHUNG et al, dans Carbohydr. Polym., 2009, vol. 75, pp. 436-447), en en augmentant la teneur en fraction RDS.
[0066] Dans sa demande de brevet WO 2021/099747, la société Demanderesse a cependant optimisé cette technologie d’annealing, non pas pour augmenter la fraction RDS, mais bien pour augmenter le contenu en SDS de l’amidon de légumineuse, notamment du pois, en cherchant et trouvant des conditions opératoires d’annealing particulièrement adaptées à cette fin.
[0067] Il demeure cependant une limitation au procédé d’annealing proprement dit. Ce traitement est en effet normalement effectué dans le cadre d'un processus discontinu, qui nécessite un chauffage à une température ciblée pendant au moins 30 minutes.
[0068] Le temps de chauffage dans le processus discontinu a pour but d'équilibrer la température entre la source de chaleur et le centre du récipient (ou réacteur) et de permettre le réarrangement des cristallites d'amidon (effet de recuit).
[0069] Un réacteur plus grand nécessitera un temps de chauffage plus long en raison du trajet plus long entre la source de chaleur et le centre du récipient. De même, un contenu solide plus élevé nécessitera un temps de chauffage plus long en raison de la viscosité plus élevée.
[0070] La société Demanderesse a donc décidé d’optimiser ce procédé d’annealing, en trouvant des conditions opératoires permettant d’augmenter le contenu en SDS de l’amidon de légumineuse, notamment du pois, en mettant en œuvre un procédé continu avec un temps de chauffage beaucoup plus court que celui du procédé annealing de base.
Brève description des dessins
[0071] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0072] [Fig. 1] montre un cuiseur thermique selon un mode de réalisation de l’invention comprenant trois bains en série. [0073] Description détaillée
[0074] Ainsi, l'invention concerne un procédé de préparation d’un amidon de légumineuse, de préférence de l’amidon de pois, à haute teneur en fraction lentement digestible (SDS), procédé de traitement hydrothermique caractérisé en ce qu’il comprend les étapes suivantes :
1) Préparer un lait d’amidon à une matière sèche comprise entre 30 et 40 % en poids,
2) Chauffer le lait d’amidon ainsi préparé à une température comprise entre 48 et 60 °C, de préférence 55 °C, dans un réacteur en continu, de manière à ce que le temps de séjour du lait d’amidon soit inférieur à 5 minutes, de préférence de moins de 2 minutes,
3) Récupérer, filtrer et sécher le lait d’amidon ainsi traité.
[0075] Par « haute teneur en fraction lentement digestible », au sens de la présente invention, on entend une augmentation de la teneur en SDS de 5 à 25 % en poids sec, de préférence 10 à 20 % en poids sec par rapport à la l’amidon à partir duquel il est préparé.
[0076] Par « légumineuse » au sens de la présente invention, on entend toute plante appartenant aux familles des césalpiniacées, des mimosacées ou des papilionacées et notamment toute plante appartenant à la famille des papilionacées comme, par exemple, le pois, le haricot, la fève, la fèverole, la lentille, la luzerne, le trèfle ou le lupin.
[0077] Cette définition inclut notamment toutes les plantes décrites dans les tableaux de l’article de HOOVER et al. intitulé « Composition, structure, functionality and Chemical modification of legume starches : a review », Can. J. Physiol. Pharmacol., 1991 , vol. 69, pp. 79-92.
[0078] De préférence, la légumineuse est choisie dans le groupe comprenant le pois, le haricot, la fève et la fèverole.
[0079] Avantageusement, il s’agit de pois, le terme « pois » étant ici considéré dans son acception la plus large et incluant en particulier : - toutes les variétés sauvages de « pois lisse » (« smooth pea »), et - toutes les variétés mutantes de « pois lisse » et de « pois ridé » (« wrinkled pea ») et ce, quelles que soient les utilisations auxquelles on destine généralement lesdites variétés (alimentation humaine, nutrition animale et/ou autres utilisations).
[0080] Lesdites variétés mutantes sont notamment celles dénommées « mutants r », « mutants rb », « mutants rug 3 », « mutants rug 4 », « mutants rug 5 » et « mutants lam » tels que décrits dans l’article de HEYDLEY et al. intitulé « Developing novel pea starches » Proceedings of the Symposium of the Industrial Biochemistry and Biotechnology Group of the Biochemical Society, 1996, pp. 77-87.
[0081] Selon une autre variante avantageuse, les légumineuses (par exemple des variétés de pois ou de féverole) sont des plantes donnant des graines contenant au moins 25 %, de préférence au moins 40 %, en poids d’amidon (sec/sec).
[0082] Par « amidon de légumineuse », on entend toute composition extraite et ce, de quelque manière que ce soit, d’une légumineuse et notamment d’une papilionacée, et dont la teneur en amidon est supérieure à 40 %, de préférence supérieure à 50 % et encore plus préférentiellement supérieure à 75 %, ces pourcentages étant exprimés en poids sec par rapport aux poids sec de ladite composition.
[0083] Avantageusement, cette teneur en amidon est supérieure à 90 % (sec/sec). Elle peut en particulier être supérieure à 95 % en poids, y compris supérieure à 98 % en poids.
[0084] Par amidon « natif », on entend un amidon qui n’a subi aucune modification chimique.
[0085] Afin de déterminer leur teneur de base en fraction SDS, les amidons de pois selon l’invention ou non sont analysés suivant les conditions opératoires de digestion in vitro de la méthode de ENGLYST et al. intitulé « Classification and measurement of nutritionally important starch fractions », Eur. J. Clin. Nutr., 1992, vol. 46 (Supp. 2), pp. S33-S50.
[0086] La méthode consiste à mesurer les fractions d’amidon rapidement digestible (RDS), lentement digestible (SDS) et non digestible (résistants) (RS) contenues dans un aliment. [0087] Ces fractions sont déterminées après digestion enzymatique avec de la pancréatine, de l’amyloglucosidase et de l’invertase.
[0088] Le glucose libéré est mesuré par colorimétrie, en utilisant un kit de glucose oxydase Glucose GOD FS référencé 1 250099 10923, commercialisé par la société DiaSys Distribution France Sari en suivant le protocole dudit kit.
[0089] Le détail de la méthode mise en œuvre pour la mesure de la digestion selon ENGLYST est similaire à celui donné par la société Demanderesse dans sa demande brevet WO 2021/099747.
[0090] Les réactifs utilisés :
- Acétate de sodium anhydre (réf : 71184, de la société SIGMA)
- Acide benzoïque (réf : 242381 , de la société SIGMA)
- CaCL (réf : 1 .02378.0500, de la société MERCK)
- Acide acétique 0,1 M (réf : 33209, de la société SIGMA)
- Pancréatine de porc 8 x USP (réf : P 7545 de la société SIGMA)
- Amyloglucosidase EC 3.2.1.3 (de la société SIGMA, d’activité >260 U/ml / * 300 AG U/ml, Cat. NO. A7095)
- Invertase EC 3.2.1 .26 (de la société SIMA , d’activité >300 units/mg solid, Cat. NO. I-4504)
- Guar (réf : G4129, de la société SIGMA)
- Ethanol à 66°
Mode opératoire
[0091] Le tampon acétate (0,1 M) a été préparé en dissolvant 8,203 g d'acétate de sodium anhydre dans 250 ml de solution saturée d'acide benzoïque, en le diluant à 500 ml avec de l'eau RO, en ajustant le pH à 5,2 avec de l'acide acétique 0,1 M, en le diluant à nouveau à 1000 ml avec de l'eau RO et en ajoutant 4 ml de CaCL 1 M par litre de tampon.
[0092] La solution enzymatique a été préparée fraîchement avant les expériences. Quatre tubes à centrifuger de 50 ml ont été préparés, chacun contenant 2,5 g de pancréatine porcine (8 c USP, P7545, Sigma) et mélangé à 20 ml d'eau RO.
Le mélange a été agité pendant 10 minutes et centrifugé pendant 10 minutes à 1500 c g.
Les surnageants (13,5 ml de chaque tube) ont été combinés et mélangés avec 2,775 ml d'amyloglucosidase (EC 3.2.1.3, A7095, Sigma), 3,225 ml d'eau RO et 33,3 mg d'invertase (EC 3.2.1.26, I4504, Sigma) prédissous dans 4 ml d'eau RO. [0093] Chaque échantillon (0,8 g, base sèche) a été mélangé avec 20 ml de tampon acétate et 50 mg de gomme de guar dans un tube de 50 ml.
[0094] Un témoin « blanc » a été préparé en utilisant 20 ml de tampon acétate et 50 mg de gomme de guar, sans échantillon, tandis qu'un étalon contenait 0,5 g de glucose anhydre et 50 mg de gomme de guar dans 20 ml de solution tampon acétate. [0095] La gomme de guar peut être prédissoute dans le tampon acétate, par exemple, 750 mg de gomme de guar dans 300 ml de tampon acétate.
Les échantillons, le blanc et l'étalon ont été équilibrés à 37°C dans un bain-marie avec agitation pendant 15 minutes.
[0096] Une aliquote (0,1 ml) a été prélevée dans chaque tube avant d'ajouter les enzymes (0 minute) et mélangée avec 0,9 ml de solution d'éthanol à 66 %.
En prenant un tube par minute, 5 ml de solution enzymatique ont été ajoutés aux échantillons, au blanc et à l'étalon.
[0097] Immédiatement après le mélange, les tubes ont été replacés dans le bain- marie à 37°C pendant 120 min sous agitation. [0098] Une aliquote (0,1 ml) a été prélevée dans chaque tube à 20 et 120 minutes et bien mélangée avec 0,9 ml de solution d'éthanol à 66 % v/v.
Les mélanges de solutions alcoolisées ont été centrifugés à 1500 c g pendant trois minutes.
[0099] La teneur en glucose (Go, G20 et G120 pour 0, 20 et 120 minutes, respectivement) dans chaque surnageant a été analysée à l'aide d'une méthode colorimétrique, et utilisée pour calculer l'amidon rapidement digestible (RDS), l'amidon lentement digestible (SDS) et l'amidon résistant (RS) comme suit :
- RDS = (G20 — Go) x 0,9
- SDS = (G120 — G20) x 0,9 - RS = 100 % - (RDS + SDS) = 100 % - (G120 x 0.9)
[0100] La méthode d'ENGLYST classique ne permet pas d'hydrolyser les échantillons d'amidon jusqu'à épuisement, car comme la société Demanderesse l’a constaté, une plus grande quantité d'amidon peut être hydrolysée après 2 heures de réaction.
[0101] Cette observation a permis à la société Demanderesse d’exploiter cette propriété en découvrant l’existence d’une fraction très lentement digestible, issue de la fraction RS de l’amidon de pois, dans sa demande de brevet WO 2021/099748. Cette fraction a été définie comme la fraction vSDS (pour very Slow Digestible Starch).
[0102] Par conséquent, la méthode AOAC 2002.02, qui utilise une hydrolyse de 16 heures, a été utilisée pour obtenir la teneur absolue en RS, et le résultat peut être revendiqué comme fibre alimentaire.
[0103] Pour différencier les deux teneurs en RS, les paramètres RSE et RSA ont été utilisés pour désigner les teneurs en RS obtenues par la méthode d'ENGLYST (RSE) et par AOAC 2002.02 (RSA), respectivement.
[0104] La différence entre RSE et RSA est considérée comme de l'amidon très lentement digestible (vSDS), la partie digestible de l'amidon qui nécessite plus de 2 heures pour être hydrolysée en utilisant la méthode d'ENGLYST.
[0105] Selon cette méthode, l’amidon de pois natif présente classiquement une teneur :
- en RDS comprise entre 13 et 16 % en poids,
- une teneur en SDS comprise entre 24 et 38 % en poids,
- une teneur en RSE comprise entre 50 et 65 % en poids,
- une teneur en RSA comprise entre 9 et 20 % en poids,
- une teneur en vSDS comprise entre 35 et 45 % en poids.
[0106] Pour augmenter le taux de SDS, le procédé de traitement thermique flash selon l’invention, développé par la société Demanderesse, repose sur une conduite hydrothermique précise.
[0107] L'invention est alors relative à un procédé de préparation d’un amidon de légumineuse, de préférence de l’amidon de pois, à haute teneur en fraction lentement digestible (SDS), procédé de traitement hydrothermique caractérisé en ce qu’il comprend les étapes suivantes :
1 ) Préparer un lait d’amidon à une matière sèche comprise entre 30 et 40 % en poids,
2) Chauffer le lait d’amidon ainsi préparé à une température comprise entre 50 et 60 °C, de préférence 55 °C, dans un réacteur en continu, de manière à ce que le temps de séjour du lait d’amidon soit inférieur à 5 minutes, de préférence de moins de 2 minutes,
3) Récupérer, filtrer et sécher le lait d’amidon ainsi traité.
[0108] La première étape dudit procédé conforme à l’invention consiste à préparer un lait d’amidon de légumineuse, en l’occurrence de pois, à une matière sèche comprise entre 30 et 40 % en poids, de préférence 32 % en poids. [0109] La seconde étape du procédé conforme à l’invention consiste à chauffer le lait d’amidon ainsi préparé à une température comprise entre 48 et 60 °C, de préférence 55 °C, dans un réacteur en continu, de manière à ce que le temps de séjour du lait d’amidon soit inférieur à 5 minutes, de préférence de moins de 2 minutes. [0110] Cette température du lait d’amidon est celle mesurée à la sortie du dispositif de traitement thermique.
[0111] La société Demanderesse recommande de mettre en oeuvre un cuiseur thermique dont la température des bains n’excède pas 65 °C. Comme il sera exemplifié ci-après, dans le dispositif de laboratoire utilisé dans un exemple de mise en oeuvre du procédé selon l’invention, le cuiseur thermique utilisé dans les exemples comprend trois bains en série (cf. Fig. 1 ). Toutefois, ce dispositif peut être remplacé par n’importe quel autre dispositif permettant de mettre en oeuvre un procédé continu. L’homme de l’art saura sélectionner les dimensions, le nombre de bains, et le débit adapté à chaque dispositif afin de réaliser cette seconde étape dans des conditions adéquates.
[0112] D’autres dispositifs permettant de réaliser le procédé selon l’invention sont par exemple ceux utilisés pour la pasteurisation des produits laitiers, tels que les échangeurs à plaque ou les échangeurs tubulaires.
[0113] De manière avantageuse, la seconde étape peut être précédée d’une étape de pré-chauffage, par exemple à une température comprise entre 35 et 45°, de préférence environ 40 °C, pendant un temps suffisant pour permettre au lait d’amidon d’atteindre une température plus proche de celle de l’étape 2). La durée de cette étape facultative de pré-chauffage sera déterminée aisément par l’homme de l’art en fonction de la configuration exacte du dispositif [0114] La troisième étape et dernière étape du procédé conforme à l’invention consiste alors en la récupération, la filtration et le séchage du lait d’amidon ainsi traité, tel qu’exemplifié ci-après.
[0115] La teneur en humidité résiduelle de l’amidon sec obtenu est inférieure à 15 % en poids, de préférence inférieure ou égale à 12 % en poids.
[0116] La mesure ENGLYST de digestibilité de ces produits donne des valeurs en SDS augmentées de 8 à 25 % en poids sec, de préférence 12 à 20 % en poids sec par rapport à l’amidon à partir duquel il est préparé.
[0117] Comme il sera exemplifié ci-après, cette valeur en SDS pour l’amidon de pois est de plus de 35 % en poids, de préférence comprise entre 40 et 55 % en poids.
[0118] La présente invention concerne également un amidon de pois à haute teneur en fraction lentement digestible préparé selon l’un des procédés décrits ci-dessus, caractérisé en ce que la teneur en SDS est supérieure à 35% en poids, de préférence comprise entre 40 et 50% en poids.
[0119] Ces amidons à haute teneur en SDS seront alors avantageusement mis en œuvre dans les domaines d’applications alimentaires (destinés notamment aux sportifs) ou médicale (nutrition spécialisée).
[0120] L’invention concerne également l’utilisation d’un amidon selon l’invention dans les domaines d’applications alimentaires et médicales, notamment pour l’alimentation des sportifs ou en nutrition spécialisée.
[0121] L’invention sera encore mieux comprise à la lecture des exemples qui suivent, lesquels se veulent illustratifs en faisant seulement état de certains modes de réalisation et de certaines propriétés avantageuses selon l’invention, et non limitatifs.
[0122] Exemple 1 : Traitement thermique flash de l’amidon de pois, présentant une teneur en SDS de 33 %, à différentes températures [0123] Une suspension d'amidon de pois (amidon de pois LN30 commercialisé par la société Demanderesse - lot 1) à 32 % de matière sèche dans de l'eau déminéralisée a été chauffée dans le cuiseur de laboratoire de la Fig. 1 pour atteindre une température de 50, 52, 55 ou 59 °C à la sortie. [0124] Le système a fonctionné avec de l'eau jusqu'à ce que la température du cuiseur soit stable, puis l'eau a été remplacée par la suspension d'amidon de pois. [0125] Les températures des trois bains ont été ajustées jusqu'à ce que la température souhaitée soit obtenue à la sortie du cuiseur de laboratoire (voir Tableau I). [0126] Un cuiseur thermique comprenant 3 bains en série a été utilisé dans cet exemple. Toutefois si les dimensions le permettent il peut être remplacé par un cuiseur permettant un procédé en continu comprenant un unique bain à la température désirée.
[0127] La suspension d'amidon de pois a été préchauffée à 40 °C pour réduire le temps nécessaire pour atteindre la température cible dans le cuiseur de laboratoire. Le débit de la suspension d'amidon était d'environ 200 mL/min. Le temps de séjour était inférieur à 2 minutes.
[0128] L'amidon traité a été filtré à travers un entonnoir Buchner avec un disque fritté de porosité n°3, puis séché à l'aide d'un séchoir à lit fluidisé (TG 200, Retsch) à 60 °C jusqu'à une humidité égale ou inférieure à 12 %, et broyé à l'aide d'un robot de cuisine (Thermomix TM3300, Vorwerk, Allemagne).
[0129] Tableau I
Figure imgf000017_0001
[0130] La digestibilité in vitro de l'amidon de pois traité a été analysée selon ENGLYST tel qu’indiqué ci-avant, et les résultats présentés dans le tableau II suivant.
[0131] Tableau II
Figure imgf000017_0002
Figure imgf000018_0001
[0132] Les traitements 1 , 2 et 3 ont produit un amidon ayant des propriétés de digestibilité similaires, ce qui a légèrement augmenté les teneurs en RDS et SDS de l'amidon de pois natif de base, tout en diminuant la RSEet la RSA (Tableau II).
[0133] Le traitement 4 présentait les teneurs les plus élevées en SDS et en RDS, où la teneur en SDS était également supérieure à celle en RDS.
[0134] Le traitement 4 contenait également les plus faibles RSE et RSA. Les teneurs en RSA étaient très similaires parmi les échantillons traités, qui étaient très faibles (< 4 %), ce qui indique que la plupart des RSE étaient en fait des vSDS.
[0135] Les propriétés de gélatinisation ont été analysées à l'aide du DSC 8000 (Perkin Elmer, USA). Chaque échantillon d'amidon a été mélangé à de l'eau pour obtenir une suspension d'amidon à 18 % (p/p). La suspension d'amidon (15 mg) a été placée dans un creuset en aluminium et fermée hermétiquement. Elle a ensuite été équilibrée à 5°C avant d'être chauffée de 5°C à 110°C à 10°C/min.
[0136] La température de début (terme anglosaxon d’onset température ou To), la température de pointe (peak température ou Tp), la température de conclusion (conclusion température ou Tc) et l’enthalpie de gélatinisation ont été déterminées à partir de leurs thermogrammes.
[0137] Les résultats sont présentés dans le tableau III suivant.
[0138] Tableau III
Figure imgf000018_0002
[0139] Les traitements 1 , 2 et 3 montent de légers changements dans les propriétés de gélatinisation de l'amidon de pois natif, alors que le traitement 4 a augmenté le To, tandis que les autres propriétés étaient similaires à celles de l'amidon de pois natif (Tableau III).
[0140] L'augmentation du T0 est un indicateur de l'effet de recuit, ce qui explique le changement important de la digestibilité de l'amidon de pois après le traitement 4. [0141] Exemple 2 : Traitement thermique flash de deux lots d’amidon de pois, présentant respectivement 24 et 34 % de SDS
[0142] Deux suspensions d’amidon de pois (amidon de pois natif N-735 et amidon de pois LN30 - lot 2 de la société Demanderesse) à 32 % ou 37 % de matière sèche dans de l'eau déminéralisée ont été traités dans un cuiseur de laboratoire à 55 °C.
[0143] Le système a fonctionné avec de l'eau jusqu'à ce que la température du cuiseur soit stable, puis l'eau a été remplacée par la suspension d'amidon de pois.
[0144] La concentration de la suspension d'amidon et les températures des trois bains du cuiseur de laboratoire sont indiquées dans le tableau IV. [0145] La suspension d'amidon de pois a été préchauffée à 40 °C pour réduire le temps nécessaire pour atteindre la température cible dans le cuiseur de laboratoire.
[0146] Le débit de la suspension d'amidon était d'environ 200 mL/min.
[0147] Le temps de séjour était inférieur à 2 minutes.
[0148] L'amidon traité a été filtré à travers un entonnoir Buchner avec un disque fritté de porosité n°3, puis séché à l'aide d'un séchoir à lit fluidisé (TG200, Retch) à 60 °C jusqu'à une humidité égale ou inférieure à 12 %, et broyé à l'aide d'un robot de cuisine (Thermomix TM3300, Vorwerk, Allemagne).
[0149] Tableau IV
Figure imgf000019_0001
[0150] La digestibilité in vitro de l'amidon de pois traité a été analysée selon ENGLYST tel qu’indiqué ci-avant, et les résultats présentés dans le tableau V suivant.
[0151] Tableau V
Figure imgf000019_0002
Figure imgf000020_0001
[0152] Les teneurs en RSE étaient les plus élevées dans les amidons de pois natifs, suivies par leurs teneurs en vSDS. La plupart des teneurs en RSE étaient des vSDS car les teneurs en RSA étaient inférieures à 50 % des teneurs en RSE.
[0153] Les suspensions d'amidon de 32 % et 37 % ont montré des résultats de digestibilité in vitro similaires (Tableau V).
[0154] Tous les échantillons traités ont montré des teneurs en RDS et en SDS plus élevées et des teneurs en RSE et en RSA plus faibles que leurs homologues natifs.
[0155] Les teneurs en RDS des amidons traités étaient toujours inférieures à 30 % et étaient plus faibles que leurs teneurs en SDS. [0156] Les diminutions des teneurs en RSE étaient plus importantes que celles des teneurs en RSA, ce qui a réduit leurs différences, indiquant que les teneurs en vSDS ont diminué après le traitement. Cependant, en général, plus de 70 % des teneurs en RSE étaient encore des vSDS.
[0157] Table VI
Figure imgf000020_0002
[0158] Les changements dans les propriétés de gélatinisation après le traitement étaient moins apparents (Tableau VI).

Claims

Revendications
[Revendication 1] Procédé de préparation d’un amidon de légumineuse à haute teneur en fraction lentement digestible (SDS), procédé de traitement hydrothermique caractérisé en ce qu’il comprend les étapes suivantes :
1 ) Préparer un lait d’amidon à une matière sèche comprise entre 30 et 40 % en poids,
2) Chauffer le lait d’amidon ainsi préparé à une température comprise entre 50 et 60 °C, de préférence 55 °C, dans un réacteur en continu, de manière à ce que le temps de séjour du lait d’amidon soit inférieur à 5 minutes, de préférence de moins de 2 minutes,
3) Récupérer, filtrer et sécher le lait d’amidon ainsi traité.
[Revendication 2] Procédé selon la revendication 1 , caractérisé en ce que l’amidon de légumineuse est choisi dans le groupe des amidons le pois, de haricot, de fève, de fèverole, de lentille, de luzerne, de trèfle et de lupin, et est particulièrement l’amidon de pois.
[Revendication 3] Procédé selon l’une ou l’autre des revendications 1 et 2, caractérisé en ce que la haute teneur en fraction lentement digestible (SDS) correspond une augmentation de 5 à 25 % en poids sec, de préférence 10 à 20 % en poids sec par rapport à l’amidon de départ.
[Revendication 4] Amidon de pois à haute teneur en fraction lentement digestible préparé selon le procédé de l’une quelconque des revendications précédentes, caractérisé en ce que la teneur en SDS est supérieur à 35 % en poids, de préférence comprise entre 40 et 55 % en poids.
[Revendication 5] Utilisation d’un amidon selon la revendication 4 dans des domaines d’applications alimentaires, notamment pour l’alimentation des sportifs.
PCT/FR2022/051348 2021-07-08 2022-07-05 Procede de traitement thermique flash de l'amidon de pois WO2023281212A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280047915.0A CN117677301A (zh) 2021-07-08 2022-07-05 豌豆淀粉的快速热处理方法
KR1020247000621A KR20240032827A (ko) 2021-07-08 2022-07-05 완두콩 전분의 플래시 열 처리 방법
CA3224199A CA3224199A1 (fr) 2021-07-08 2022-07-05 Procede de traitement thermique flash de l'amidon de pois
EP22751772.9A EP4366545A1 (fr) 2021-07-08 2022-07-05 Procede de traitement thermique flash de l'amidon de pois

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107402A FR3124927A1 (fr) 2021-07-08 2021-07-08 Procede de traitement thermique flash de l’amidon de pois
FRFR2107402 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023281212A1 true WO2023281212A1 (fr) 2023-01-12

Family

ID=78827918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051348 WO2023281212A1 (fr) 2021-07-08 2022-07-05 Procede de traitement thermique flash de l'amidon de pois

Country Status (6)

Country Link
EP (1) EP4366545A1 (fr)
KR (1) KR20240032827A (fr)
CN (1) CN117677301A (fr)
CA (1) CA3224199A1 (fr)
FR (1) FR3124927A1 (fr)
WO (1) WO2023281212A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117352A (zh) * 2007-08-29 2008-02-06 江南大学 一种高温稳定型慢消化淀粉的生产方法及其应用
WO2021099747A1 (fr) 2019-11-22 2021-05-27 Roquette Freres Procede d'annealing de l'amidon de pois
WO2021099748A1 (fr) 2019-11-22 2021-05-27 Roquette Freres Amidon de legumineuse faiblement digestible

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117352A (zh) * 2007-08-29 2008-02-06 江南大学 一种高温稳定型慢消化淀粉的生产方法及其应用
WO2021099747A1 (fr) 2019-11-22 2021-05-27 Roquette Freres Procede d'annealing de l'amidon de pois
WO2021099748A1 (fr) 2019-11-22 2021-05-27 Roquette Freres Amidon de legumineuse faiblement digestible

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CHUNG ET AL., CARBOHYDR. POLYM., vol. 75, 2009, pages 436 - 447
CHUNG H J ET AL: "Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches", FOOD RESEARCH INTERNATIONAL, ELSEVIER, AMSTERDAM, NL, vol. 43, no. 2, 1 March 2010 (2010-03-01), pages 501 - 508, XP026881635, ISSN: 0963-9969, [retrieved on 20090806], DOI: 10.1016/J.FOODRES.2009.07.030 *
CHUNG H J ET AL: "Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches", CARBOHYDRATE POLYMERS, APPLIED SCIENCE PUBLISHERS , LTD BARKING, GB, vol. 75, no. 3, 11 February 2009 (2009-02-11), pages 436 - 447, XP025782302, ISSN: 0144-8617, [retrieved on 20080814], DOI: 10.1016/J.CARBPOL.2008.08.006 *
DE S. PEREZ: "Initiation à la chimie et à la physico-chi'mie macromoléculaires", vol. 13, 2000, GROUPE FRANÇAIS D'ETUDES ET D'APPLICATIONS DES POLYMÈRES, article "Structure et morphologie du grain d'amidon", pages: 41 - 86
ENGLYST ET AL.: "Classification and measurement of nutritionally important starch fractions", EUR. J. CLIN. NUTR., vol. 46, 1992, pages S33 - S50, XP000864423
H.N. ENGLYST, L'EUROPEAN JOURNAL OF CLINICAL NUTRITION, vol. 46, 1992, pages S33 - S50
HEYDLEY ET AL.: "Developing novel pea starches", PROCEEDINGS OF THE SYMPOSIUM OF THE INDUSTRIAL BIOCHEMISTRY AND BIOTECHNOLOGY GROUP OF THE BIOCHEMICAL SOCIETY, 1996, pages 77 - 87, XP008089423
HOOVER ET AL.: "Composition, structure, functionality and chemical modification of legume starches : a review", CAN. J. PHYSIOL. PHARMACOL., vol. 69, 1991, pages 79 - 92, XP008089410
PIECYK MALGORZATA ET AL: "Effect of hydrothermal modifications on properties and digestibility of grass pea starch", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, ELSEVIER BV, NL, vol. 118, 20 July 2018 (2018-07-20), pages 2113 - 2120, XP085453290, ISSN: 0141-8130, DOI: 10.1016/J.IJBIOMAC.2018.07.063 *
RATNAYAKE ET AL.: "Pea starch, composition, structure and properties - A review", STARCH/STÀRKE, vol. 54, 2002, pages 217 - 234, XP002269066, DOI: 10.1002/1521-379X(200206)54:6<217::AID-STAR217>3.0.CO;2-R

Also Published As

Publication number Publication date
CN117677301A (zh) 2024-03-08
CA3224199A1 (fr) 2023-01-12
FR3124927A1 (fr) 2023-01-13
EP4366545A1 (fr) 2024-05-15
KR20240032827A (ko) 2024-03-12

Similar Documents

Publication Publication Date Title
CA2865063C (fr) Maltodextrines hyperbranchees hypo-glycemiantes
Buckman et al. Determination of the chemical and functional properties of yam bean (Pachyrhizus erosus (L.) Urban) flour for food systems
FR2840612A1 (fr) Polymeres solubles de glucose hautement branches et leur procede d&#39;obtention
FR2864088A1 (fr) Polymeres solubles de glucose hautement branches
EP4061150A1 (fr) Amidon de legumineuse faiblement digestible
EP4061149A1 (fr) Procede d&#39;annealing de l&#39;amidon de pois
Martín Bernabé et al. Resistant starch content, starch digestibility and the fermentation of some tropical starches in vitro
EP4125426A1 (fr) Amidon poreux utilisé comme auxiliaire de séchage par pulvérisation dans la préparation de poudres d&#39;arômes
WO2023281212A1 (fr) Procede de traitement thermique flash de l&#39;amidon de pois
WO2023281213A1 (fr) Procede hmt de l&#39;amidon de pois
Doporto et al. Pachyrhizus ahipa roots and starches: Composition and functional properties related to their food uses
Liu et al. Optimisation of the preparation of sweet potato resistant starch by dry heating with pectin
FR3103357A1 (fr) Amidon de legumineuse faiblement digestible
FR3103356A1 (fr) Procede d’annealing de l’amidon de pois
CA3043661C (fr) Utilisation d&#39;une combinaison de dextrines blanches et d&#39;amidons reticules phosphate hydroxypropyles comme substitut de matiere grasse
WO2020174189A1 (fr) Procédé de préparation d&#39;un amidon thermiquement modifié
WO2020225512A1 (fr) Procédé de préparation d&#39;un amidon thermiquement modifié
Ehui et al. Proprietes fonctionnelles des amidons de six varietes selectionness de manioc (Manihot esculenta Crants)
Roushdi et al. EFFECT OF AUTOCLAVING TREATMENT ON INCREASING OF RICE AND CORN RESISTANT STARCHES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22751772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3224199

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280047915.0

Country of ref document: CN

Ref document number: 2401000066

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022751772

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE