WO2023279234A1 - 触控面板及触控显示装置 - Google Patents

触控面板及触控显示装置 Download PDF

Info

Publication number
WO2023279234A1
WO2023279234A1 PCT/CN2021/104462 CN2021104462W WO2023279234A1 WO 2023279234 A1 WO2023279234 A1 WO 2023279234A1 CN 2021104462 W CN2021104462 W CN 2021104462W WO 2023279234 A1 WO2023279234 A1 WO 2023279234A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive
line
touch
substrate
Prior art date
Application number
PCT/CN2021/104462
Other languages
English (en)
French (fr)
Inventor
闵航
张贵玉
王强
王志强
罗鸿强
姜立清
罗萍
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180001796.0A priority Critical patent/CN115812349A/zh
Priority to PCT/CN2021/104462 priority patent/WO2023279234A1/zh
Publication of WO2023279234A1 publication Critical patent/WO2023279234A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the field of touch technology, in particular to a touch panel and a touch display device.
  • Metal Mesh Metal Mesh
  • a touch panel including:
  • a first carrying structure located on one side of the substrate, the first carrying structure has a plurality of first receiving grooves
  • the first conductive layer includes a plurality of first conductive lines, and each of the first conductive lines is located in the first receiving groove;
  • the first erasing layer is located in the first accommodation groove, and the orthographic projection of the first erasing layer on the substrate at least covers part of the first conductive layer on the substrate. orthographic projection.
  • the first bearing structure includes:
  • the first bearing layer has a plurality of first grooves
  • the second bearing layer located on a side of the first bearing layer away from the substrate, the second bearing layer has a plurality of second grooves;
  • the first accommodating groove includes the first groove and the second groove, the first conductive wire is located in the first groove, and the first shadow removal layer is located in the second groove.
  • the first carrying layer is insulated from the first conductive layer, and the second carrying layer is insulated from the first shadow erasing layer.
  • the first bearing structure includes a third bearing layer, and the third bearing layer has a plurality of third grooves;
  • the first accommodating groove is the third groove, the first conductive wire and the first shadow-elimination layer are both located in the third groove, and the first shadow-elimination layer is located in the The first conductive wire is away from the side of the substrate; and, the third carrying layer is insulated from both the first conductive layer and the first shadow erasing layer.
  • the touch panel also includes:
  • the second carrying structure located on one side of the substrate, the second carrying structure has a plurality of second receiving grooves;
  • the second conductive layer includes a plurality of second conductive wires, each of which is located in the second receiving groove.
  • the touch panel also includes:
  • the second shadow erasing layer is located in the second receiving groove, and the orthographic projection of the second shadow erasing layer on the substrate at least covers part of the second conductive layer on the substrate. orthographic projection.
  • the second bearing structure includes:
  • the fourth bearing layer has a plurality of fourth grooves
  • the fifth bearing layer is located on the same side of the substrate as the fourth bearing layer, and the fifth bearing layer has a plurality of fifth grooves;
  • the second accommodating groove includes the fourth groove and the fifth groove
  • the second shadow removal layer is located in the fourth groove
  • the second conductive wire is located in the first In five grooves
  • the fourth bearing layer is insulated from the second shadow erasing layer
  • the fifth bearing layer is insulated from the second conductive layer.
  • the second bearing structure includes a sixth bearing layer, and the sixth bearing layer has a plurality of sixth grooves;
  • the second accommodating groove is the sixth groove, and the second shadow removal layer and the second conductive wire are both located in the sixth groove; and, the sixth bearing layer and the Both the second shadow erasing layer and the second conductive layer are insulated.
  • the first bearing structure is located on the first side of the substrate
  • the second bearing structure is located on the second side of the substrate
  • the first side and the second side are the opposite sides of the substrate.
  • first load-bearing structure and the second load-bearing structure are located on the same side of the substrate, and the second load-bearing structure is located on a side of the first load-bearing structure away from the base material.
  • An insulating layer is arranged between the first carrying structure and the second carrying structure.
  • the orthographic projection of the first erasing layer on the substrate covers all the orthographic projections of the first conductive layer on the substrate;
  • the orthographic projection of the second image-eliminating layer on the substrate covers all the orthographic projections of the second conductive layer on the substrate.
  • the plurality of first conductive lines form a plurality of first conductive grids, and the first conductive lines corresponding to at least some of the first conductive grids in the plurality of first conductive grids have a first fracture, the first fracture separates the first conductive layer into a plurality of first conductive structures;
  • the plurality of second conductive lines form a plurality of second conductive grids, and the second conductive lines corresponding to at least some of the second conductive grids in the plurality of second conductive grids have second fractures, The second fracture separates the second conductive layer into a plurality of second conductive structures;
  • the plurality of first conductive structures and the plurality of second conductive structures together form a grid-shaped first touch electrode and a grid-shaped second touch electrode.
  • the plurality of first conductive structures include a plurality of first touch electrodes extending along a first direction
  • the plurality of second conductive structures include a plurality of second touch electrodes extending along a second direction. Touch electrodes; the first direction and the second direction intersect.
  • one of the plurality of first conductive structures and the plurality of second conductive structures includes a plurality of first touch electrodes and a plurality of electrode body parts extending along the first direction, and the other or comprising a plurality of bridging electrodes;
  • Each of the bridging electrodes is connected to two adjacent electrode body parts in the second direction through a via hole penetrating the dielectric layer, so as to form a plurality of second touch electrodes extending along the second direction. ; said first direction intersects said second direction;
  • the medium layer is a film layer between the first conductive layer and the second conductive layer.
  • the line width of the first conductive line is smaller than or equal to the line width of the second conductive line.
  • the materials of the first bearing structure and the second bearing structure are both photocurable glue.
  • both the first shadow erasing layer and the second shadow erasing layer are light-shielding ink layers or light-shielding oxide layers, and the transmittance of the first shadow erasing layer and the second shadow erasing layer Less than or equal to 10%.
  • the first conductive layer and the second conductive layer are conductive silver paste layers; or,
  • the material of the first conductive layer and the second conductive layer is at least one of copper, molybdenum, aluminum and titanium.
  • first conductive grids and the second conductive grids are arranged alternately.
  • the first conductive wire, the first shadow removal layer in each of the first receiving grooves, the second conductive wire, and the The second vanishing layer, the cross-sectional shape along the target cross-section is approximately trapezoidal;
  • the combined structure of the first shadow-eliminating layer and the first conductive wire in each of the first receiving grooves is also approximately trapezoidal in cross-sectional shape along the target cross-section; each of the first receiving grooves
  • the combined structure of the second shadow erasing layer and the second conductive wire in the two accommodation grooves is also approximately trapezoidal in cross-sectional shape along the target cross-section;
  • the target cross section is perpendicular to the plane where the base material is located, and is parallel to the line width direction of the conductive lines corresponding to the receiving grooves.
  • the sum of the thicknesses of the first conductive layer and the first shadow-eliminating layer is substantially the same as the thickness of the first bearing structure;
  • the sum of the thicknesses of the second conductive layer and the second shadow-eliminating layer is substantially consistent with the thickness of the second bearing structure.
  • the surface of the first conductive layer on a side away from the substrate is substantially on the same plane as the surface of the first carrying layer on a side away from the substrate;
  • the surface of the first image erasing layer away from the base material is substantially on the same plane as the surface of the second carrier layer away from the base material.
  • the surface of the second erasing layer away from the substrate is substantially on the same plane as the surface of the fourth carrier layer away from the substrate;
  • a surface of the second conductive layer on a side away from the substrate is substantially on the same plane as a surface of the fifth carrying layer on a side away from the substrate.
  • the plurality of first conductive structures further include a plurality of first dummy electrodes disposed between adjacent two first touch electrodes, each of the first dummy electrodes is connected to the first The touch electrodes are insulated through the first fracture;
  • the plurality of second conductive structures further include a plurality of second dummy electrodes arranged between two adjacent second touch electrodes, and a distance between each second dummy electrode and the second touch electrodes The space is insulated by the second fracture.
  • the extension direction of the first trajectory line formed by any adjacent at least two first fractures is different from the first direction. intersect, and the extension directions of any adjacent two first trajectory lines intersect;
  • the first trajectory lines are at least two adjacent ones between the first dummy electrode and the first touch electrode.
  • the straight line segment formed by the first break, and the first conductive line where the first break is located closest to the beginning of the first track line, and the first conductive line where the first break is located closest to the end of the first track line The first conductive line where the first fracture is located is parallel;
  • the extension direction of the second track line formed by any adjacent at least two second fractures intersects the second direction, and any The extension directions of two adjacent second traces intersect;
  • the second traces are at least two adjacent second fractures between the second dummy electrode and the second touch electrode.
  • each of the first dummy electrodes also passes through a third trajectory line formed by the first cutout, and the adjacent first dummy electrodes are spaced apart from each other, and the third trajectory line is formed by two of the first dummy electrodes.
  • a straight line segment formed by at least two adjacent first breaks between the first dummy electrodes, and the first conductive line where the first break is located closest to the beginning of the third track line, and the first conductive line where the first break is located closest to the end of the third trace line is parallel;
  • Each of the second dummy electrodes also passes through the fourth track line formed by the second break, and the adjacent second dummy electrodes are arranged at intervals, and the fourth track line is two of the second dummy electrodes.
  • the straight line segment formed by at least two adjacent second fractures between the electrodes, and the second conductive line where the second fracture is located closest to the beginning of the fourth trajectory line, and the second conductive line closest to the The second conductive line where the second break at the end of the fourth trace line is located is parallel.
  • At least some of the first dummy electrodes among all the first dummy electrodes include at least one closed first conductive grid
  • At least some of the second dummy electrodes among all the second dummy electrodes also include at least one closed second conductive grid.
  • the plurality of first conductive structures or the plurality of second conductive structures further include a plurality of third dummy electrodes and a plurality of fourth dummy electrodes, each of the third dummy electrodes and each of the The fourth dummy electrodes are both arranged on the same layer as the first touch electrode and the electrode main body;
  • Each of the third dummy electrodes is located in an area surrounded by the first touch electrodes, and each of the third dummy electrodes is insulated from the first touch electrodes by a target break;
  • Each of the fourth dummy electrodes is located in an area surrounded by the electrode main body, and each of the fourth dummy electrodes is also insulated from the electrode main body by the target fracture;
  • first touch electrode and the electrode body part and between two adjacent electrode body parts along the first direction are also insulated by the target fracture;
  • the target fracture is the first fracture or the second fracture.
  • the extension direction of the fifth trajectory line formed by any adjacent at least two target fractures intersects the first direction, And the extension directions of any two adjacent fifth traces intersect;
  • the fifth traces are at least two adjacent target fractures between the first touch electrode and the electrode main body
  • the formed straight line segment, and the target conductive line where the target break at the beginning end of the fifth trajectory line is the closest to the target conductive line where the target break at the end of the fifth track line is the closest are parallel, and the target conductive line is the first conductive line or the second conductive line.
  • the third dummy electrodes among all the third dummy electrodes include at least one closed target conductive grid
  • At least some of the fourth dummy electrodes among all the fourth dummy electrodes also include at least one closed target conductive grid;
  • the target conductive grid is the first conductive grid or the second conductive grid.
  • a touch display device including a display panel and the above-mentioned touch panel, the display panel is located on a side of the substrate away from the first carrying structure.
  • FIG. 1 schematically shows a schematic structural view of a first touch panel according to an embodiment of the present application
  • FIG. 2 schematically shows a schematic structural diagram of a second touch panel according to an embodiment of the present application
  • FIG. 3 schematically shows a schematic structural diagram of a third touch panel according to an embodiment of the present application
  • FIG. 4 schematically shows a schematic structural diagram of a fourth touch panel according to an embodiment of the present application.
  • FIG. 5 schematically shows a schematic structural diagram of a fifth touch panel according to an embodiment of the present application.
  • FIG. 6 schematically shows a top view of a touch panel according to an embodiment of the present application
  • FIG. 7 schematically shows a schematic structural diagram of a first conductive layer according to an embodiment of the present application.
  • FIG. 8 schematically shows a schematic structural diagram of a second conductive layer according to an embodiment of the present application.
  • FIG. 9 schematically shows a schematic structural view of another first conductive layer according to an embodiment of the present application.
  • FIG. 10 schematically shows a schematic structural view of another second conductive layer according to the embodiment of the present application.
  • Fig. 11 schematically shows a schematic structural view of another first conductive layer according to the embodiment of the present application.
  • Fig. 12 schematically shows a schematic structural diagram of another second conductive layer according to the embodiment of the present application.
  • Fig. 13 schematically shows a stacked diagram of the first conductive layer shown in Fig. 11 and the second conductive layer shown in Fig. 12;
  • Fig. 14 schematically shows a sectional view of the touch panel shown in Fig. 13 along section C-C';
  • Fig. 15 schematically shows the schematic diagram of the embodiment of the present application after forming the first bearing layer and the fourth bearing layer on both sides of the substrate;
  • Fig. 16 schematically shows the schematic diagram of the embodiment of the present application after forming the first conductive layer in the first groove and forming the second shadow-eliminating layer in the fourth groove;
  • Fig. 17 schematically shows the schematic diagram of the embodiment of the present application after forming the second bearing layer and the fifth bearing layer;
  • FIG. 18 schematically shows a schematic structural diagram of a touch display device according to an embodiment of the present application.
  • FIG. 1 it shows a schematic structural view of the first touch panel of the embodiment of the present application
  • Fig. 2 shows a schematic structural view of the second touch panel of the embodiment of the present application
  • Fig. 3 shows a schematic view of the embodiment of the present application
  • Figure 4 shows a schematic structural view of the fourth touch panel of the embodiment of the present application
  • Figure 5 shows the structure of the fifth touch panel of the embodiment of the present application schematic diagram.
  • the embodiment of the present application discloses a touch panel, including a substrate 10; a first carrying structure located on one side of the substrate 10, the first carrying structure has a plurality of first receiving grooves; a first conductive layer 22 , including a plurality of first conductive wires 221, each first conductive wire 221 is located in the first accommodation groove; the first shadow elimination layer 24 is located in the first accommodation groove, and the first shadow elimination layer 24 is on the substrate
  • the orthographic projection on the substrate 10 covers at least part of the orthographic projection of the first conductive layer 22 on the substrate 10 .
  • the substrate 10 can be a flexible substrate, and its material can be PET (Polyethylene Terephthalate, polyethylene terephthalate), acrylic, COP (Cyclo Olefin Polymer, cycloolefin polymer), PI ( Polyimide, polyimide), etc., the substrate 10 can also be a rigid substrate.
  • a first carrying structure, a first conductive layer 22 and a first shadow removal layer 24 are sequentially arranged, and the first carrying structure, the first conductive layer 22 and the first shadow elimination layer 24 are all located on the substrate 10 on the same side.
  • the first supporting structure has a plurality of first receiving grooves, and each first receiving groove runs through the first supporting structure, that is, along the direction perpendicular to the plane where the base material 10 is located, the depth of the first receiving groove Equal to the thickness of the first bearing structure;
  • the first conductive layer 22 includes a plurality of first conductive lines 221, and each first conductive line 221 is located in the first receiving groove; and the first shadow removal layer 24 is also located in the first receiving groove. inside the groove, and the orthographic projection of the first shadow-eliminating layer 24 on the substrate 10 at least covers part of the orthographic projection of the first conductive layer 22 on the substrate 10 .
  • the first conductive layer 22 is shielded by the first shadow-eliminating layer 24 to reduce the reflectivity of the first conductive layer 22 and reduce the pattern of the first conductive layer 22 to be observed under strong light reflection, thereby improving the visual effect of the product.
  • the first bearing structure includes: a first bearing layer 21, the first bearing layer 21 has a plurality of first grooves; a second bearing layer 23, located on the first A carrying layer 21 is away from the side of the substrate 10, and the second carrying layer 23 has a plurality of second grooves; wherein, the first receiving groove includes a first groove and a second groove, and the first conductive line 221 is located on the second groove.
  • the first shadow erasing layer 24 is located in the second groove; and the first bearing layer 21 is insulated from the first conductive layer 22 , and the second bearing layer 23 is insulated from the first shadow erasing layer 24 .
  • the first bearing structure includes two bearing layers, that is, the first bearing layer 21 and the second bearing layer 23 respectively.
  • the first carrying layer 21 has a plurality of first grooves, and each first groove runs through the first carrying layer 21, that is, along the direction perpendicular to the plane where the substrate 10 is located, the depth of the first groove is equal to the first groove.
  • the orthographic projection on the substrate 10 at least covers part of the orthographic projection of the first groove on the substrate 10, the first groove and the second groove together constitute the first receiving groove; the first shadow removal layer 24 is located in the second groove , and the orthographic projection of the first image-eliminating layer 24 on the substrate 10 at least covers part of the orthographic projection of the first conductive layer 22 on the substrate 10 .
  • each bearing layer The depth of the groove is basically consistent with the line width of the conductive lines in the conductive layer.
  • the touch panel shown in FIG. 1 and FIG. 2 can ensure that the thickness of the first conductive layer 22 meets the requirements. If the impedance is small, the electrical characteristics of the first conductive layer 22 can be improved to improve the touch effect.
  • the first shadow removal layer 24 when the first conductive layer 22 and the first shadow removal layer 24 are positioned in the grooves that different bearing layers have, the first shadow removal layer 24 also has enough thickness, can avoid The pattern of the first conductive layer 22 is observed due to the thinner thickness of the first shadow-elimination layer 24, thereby improving the light-shielding effect of the first shadow-elimination layer 24, further reducing the reflectivity of the first conductive layer 22, and avoiding strong light The pattern of the first conductive layer 22 can be observed under reflection, which improves the visual effect of the product.
  • the first bearing structure includes a third bearing layer 25, and the third bearing layer 25 has a plurality of third grooves; the first receiving groove is the third Groove, the first conductive line 221 and the first shadow removal layer 24 are located in the third groove, and the first shadow removal layer 24 is located on the side of the first conductive line 221 away from the substrate 10; and, the third bearing layer 25 is insulated from both the first conductive layer 22 and the first shadow erasing layer 24 .
  • the first bearing structure only includes one bearing layer, that is, the third bearing layer 25 .
  • the third carrying layer 25 has a plurality of third grooves, and each third groove runs through the third carrying layer 25, that is, along the direction perpendicular to the plane where the substrate 10 is located, the depth of the third groove is equal to the third groove.
  • the thickness of the carrying layer 25; and, the first conductive lines 221 and the first shadow-elimination layer 24 are both located in the third groove.
  • the third bearing structure can be saved. Manufacturing process steps of layer 25.
  • the orthographic projection of the first image erasing layer 24 on the substrate 10 covers all the orthographic projections of the first conductive layer 22 on the substrate 10 .
  • the orthographic projection of the first erasing layer 24 on the substrate 10 can coincide with the orthographic projection of the first conductive layer 22 on the substrate 10; or, the orthographic projection of the first erasing layer 24 on the substrate 10
  • the first conductive layer 22 can be blocked by the first shadow-elimination layer 24, The visibility of the metal grid corresponding to the first conductive layer 22 is very small.
  • the touch panel further includes: a second carrying structure located on one side of the substrate 10, the second carrying structure has a plurality of second receiving grooves; the second conductive layer 34 includes a plurality of first Two conductive wires 341, each second conductive wire 341 is located in the second receiving groove.
  • a second carrying structure and a second conductive layer 34 are provided on one side of the substrate 10 , and both the second carrying structure and the second conductive layer 34 are located on the same side of the substrate 10 .
  • the second supporting structure has a plurality of second receiving grooves, and each second receiving groove runs through the second supporting structure, that is, along the direction perpendicular to the plane where the substrate 10 is located, the depth of the second receiving groove It is equal to the thickness of the second carrying structure;
  • the second conductive layer 34 includes a plurality of second conductive lines 341 , and each second conductive line 341 is located in the second receiving groove.
  • the touch electrodes required by the touch panel are formed through the first conductive layer 22 and the second conductive layer 34 .
  • the touch panel further includes: a second shadow removal layer 32 located in the second receiving groove, and the second shadow removal layer 32 is formed on the substrate
  • the orthographic projection on the substrate 10 covers at least part of the orthographic projection of the second conductive layer 34 on the substrate 10 .
  • the second conductive layer 34 is shielded by the second shadow-eliminating layer 32 to reduce the reflectivity of the second conductive layer 34 and reduce the pattern of the second conductive layer 34 to be observed under strong light reflection, thereby improving the visual effect of the product.
  • the second carrying structure comprises: the fourth carrying layer 31, the fourth carrying layer 31 has a plurality of fourth grooves; On the same side of the same side, the fifth bearing layer 33 has a plurality of fifth grooves; wherein, the second receiving groove includes the fourth groove and the fifth groove, the second shadow erasing layer 32 is located in the fourth groove, and the second The conductive wire 34 is located in the fifth groove; and, the fourth carrying layer 31 is insulated from the second shadow erasing layer 32 , and the fifth carrying layer 33 is insulated from the second conductive layer 34 .
  • the second load-bearing structure includes two layers of load-bearing layers, namely the fourth load-bearing layer 31 and the fifth load-bearing layer 33, respectively.
  • the fourth carrying layer 31 has a plurality of fourth grooves, and each fourth groove runs through the fourth carrying layer 31, that is, along the direction perpendicular to the plane where the substrate 10 is located, the depth of the fourth groove is equal to The thickness of the fourth carrier layer 31; the second shadow erasing layer 32 is located in the fourth groove; the fifth carrier layer 33 has a plurality of fifth grooves, each of the fifth grooves runs through the fifth carrier layer 33, that is, along the In the direction perpendicular to the plane where the substrate 10 is located, the depth of the fifth groove is equal to the thickness of the fifth carrier layer 33, and the orthographic projection of the fourth groove on the substrate 10 at least partially covers the fifth groove.
  • Orthographic projection on the substrate 10, the fourth groove and the fifth groove together constitute the second receiving groove;
  • the second conductive layer 34 includes a plurality of second conductive lines 341, and each second conductive line 341 is located at the fifth In the groove, and the orthographic projection of the second shadow-eliminating layer 32 on the substrate 10 at least covers part of the orthographic projection of the second conductive layer 34 on the substrate 10 .
  • the fourth carrier layer 31 and the fifth carrier layer 33 are separately provided, only the second shadow erasing layer 32 is arranged in the fourth groove of the fourth carrier layer 31 , and the fifth carrier layer 33 Only the second conductive layer 34 is set in the fifth groove of the second conductive layer 34, so that the second conductive layer 34 has sufficient thickness, therefore, the impedance of the second conductive layer 34 can be reduced, thereby improving the electrical characteristics of the second conductive layer 34, to Improve touch performance.
  • the carrying layers in the touch panel are respectively the first carrying layer 21 , the second carrying layer 23 , the fourth carrying layer 31 and the fifth carrying layer 33 .
  • the second shadow elimination layer 32 when the second shadow elimination layer 32 and the second conductive layer 34 are positioned in the groove that different bearing layers have, the second shadow elimination layer 32 also has enough thickness, can avoid The pattern of the second conductive layer 34 is observed due to the thinner thickness of the second shadow-elimination layer 32, thereby improving the light-shielding effect of the second shadow-elimination layer 32, further reducing the reflectivity of the second conductive layer 34, and avoiding strong light
  • the pattern of the second conductive layer 34 is observed under reflection, which improves the visual effect of the product.
  • the second bearing structure includes a sixth bearing layer 35, and the sixth bearing layer 35 has a plurality of sixth grooves; and the second conductive line 341 are located in the sixth groove; and the sixth bearing layer 35 is insulated from both the second shadow erasing layer 32 and the second conductive layer 34 .
  • the second bearing structure only includes one bearing layer, that is, the sixth bearing layer 35 .
  • the sixth bearing layer 35 has a plurality of sixth grooves, and each sixth groove runs through the sixth bearing layer 35, that is, along the direction perpendicular to the plane where the substrate 10 is located, the depth of the sixth groove is equal to the sixth groove.
  • the thickness of the carrying layer 35; and, the second shadow erasing layer 32 and the second conductive wire 341 are located in the sixth groove.
  • the sixth carrying layer can be saved. Manufacturing process steps of layer 35.
  • the second conductive wire 341 is provided in the second receiving groove of the second carrying structure, and the second shadow-eliminating layer is not provided.
  • the second carrying structure is The sixth bearing layer 35 .
  • the orthographic projection of the second image-eliminating layer 32 on the substrate 10 covers all the orthographic projections of the second conductive layer 34 on the substrate 10 .
  • the orthographic projection of the second shadow erasing layer 32 on the substrate 10 can coincide with the orthographic projection of the second conductive layer 34 on the substrate 10; or, the orthographic projection of the second shadow erasing layer 32 on the substrate 10
  • the second conductive layer 34 can be blocked by the second shadow-elimination layer 32, The visibility of the metal grid corresponding to the second conductive layer 34 is very small.
  • the first conductive layer 22 and the second conductive layer 34 in the touch panel can be disposed on opposite sides of the base material 10 , or can be disposed on the same side of the base material 10 .
  • double-sided bonding is also required when the touch panel is subsequently bonded to an FPC (Flexible Printed Circuit, flexible circuit board);
  • FPC Flexible Printed Circuit, flexible circuit board
  • the first carrying structure is located on the first side of the substrate 10
  • the second carrying structure is located on the second side of the substrate 10
  • the first side and the second side are on the substrate 10 opposite sides.
  • the first conductive layer 22 and the second conductive layer 34 are disposed on opposite sides of the base material 10.
  • the base material The second side of the substrate 10 is closer to the display panel than the first side of the substrate 10 .
  • the first carrier layer 21 and the second carrier layer 23 are located on the first side of the substrate 10, and the fourth carrier layer 31 and the fifth carrier layer 33 are located on the second side of the substrate 10; As shown in FIG. 5 , the third carrying layer 25 is located on the first side of the substrate 10 , and the sixth carrying layer 35 is located on the second side of the substrate 10 .
  • the first load-bearing structure and the second load-bearing structure are located on the same side of the base material 10, and the second load-bearing structure is located on the side of the first load-bearing structure away from the base material 10, between the first load-bearing structure and the second load-bearing structure
  • An insulating layer 40 is provided between the structures.
  • the first bearing layer 21, the second bearing layer 23, the fourth bearing layer 31 and the fifth bearing layer 33 are all located on the same side of the substrate 10, and the fifth bearing layer 33 is located on the second bearing layer 23 away from the first On one side of the bearing layer 21 , the fourth bearing layer 31 is located on a side of the fifth bearing layer 33 away from the second bearing layer 23 ; and an insulating layer 40 is disposed between the second bearing layer 23 and the fifth bearing layer 33 .
  • the first conductive layer 22 and the second conductive layer 34 are arranged on the same side of the substrate 10, and the second conductive layer 34 is located between the second shadow-eliminating layer 32 and the insulating layer 40; and, as shown in FIG. 2
  • the first carrying layer 21 , the second carrying layer 23 , the fourth carrying layer 31 and the fifth carrying layer 33 are all located on the side of the substrate 10 away from the display panel.
  • the distance between the first conductive layer 22 and the second conductive layer 34 can be increased, preventing the first conductive layer 22 and the second conductive layer 34 from The distance between them is too short to affect the touch effect; wherein, the thickness of the insulating layer 40 is 1.5 ⁇ m to 4 ⁇ m.
  • the cross-sectional shapes of the first groove, the second groove, the fourth groove and the fifth groove along the target cross section are rectangular or trapezoidal, or the third groove and the sixth groove are in the The cross-sectional shape along the target cross-section is rectangular or trapezoidal; the target cross-section is perpendicular to the plane of the base material 10 and parallel to the line width direction of the conductive lines in the corresponding receiving grooves.
  • the target cross section is parallel to the line width direction of the first conductive line 221, and for the fourth groove and the fifth groove, the target cross section is parallel to the second conductive line 221.
  • the line width direction of the line 341 is parallel; correspondingly, for the third groove, the target cross section is parallel to the line width direction of the first conductive line 221, and for the sixth groove, the target cross section is parallel to the second conductive line 221.
  • the line width directions of the lines 341 are parallel.
  • each receiving groove along the target cross-section is trapezoidal
  • the second shadow erasing layer 32 in the accommodation groove has a trapezoidal cross-sectional shape along the target cross section; and, the combined structure of the first shadow eradication layer 24 and the first conductive wire 221 in each first accommodation groove
  • the cross-sectional shape along the target cross-section is also trapezoidal; the combined structure of the second shadow-eliminating layer 32 and the second conductive wire 341 in each second accommodation groove is also trapezoidal in cross-sectional shape along the target cross-section.
  • trapezoidal cross-sectional shape means that the general shape is trapezoidal, which is allowed to vary within the range of process error.
  • the combined structure of the first shadow removal layer 24 and the first conductive wire 221 in each first accommodation groove has a smooth surface on its side; correspondingly, the second in each second accommodation groove
  • the combined structure of the shadow-eliminating layer 32 and the second conductive wire 341 also has a smooth surface on its side; the side refers to the surface of the combined structure that is not parallel to the plane of the substrate 10 .
  • the cross-sectional shape of the shadow layer 24 along the target cross section is an inverted trapezoid.
  • the orthographic projection of the first shadow erasing layer 24 on the substrate 10 covers all the orthographic projections of the first conductive layer 22 on the substrate 10 , while pointing from the second bearing structure to the direction of the first bearing structure, the cross-sectional shapes of the second conductive wire 341 and the second shadow-eliminating layer 32 in the second accommodation groove along the target cross-section are all upright trapezoids, At this time, the orthographic projection of the second image-eliminating layer 32 on the substrate 10 covers the orthographic projection of a portion of the second conductive layer 34 on the substrate 10 .
  • the first conductive line 221 and the first shadow in the first receiving groove will disappear in the direction from the second carrying structure to the first carrying structure
  • the cross-sectional shapes of the layer 24, the second conductive wire 341, and the second shadow-elimination layer 32 in the second accommodation groove along the target cross-section are all inverted trapezoidal shapes.
  • the first shadow-elimination layer 24 is on the substrate 10
  • the orthographic projection of the first conductive layer 22 on the substrate 10 covers all the orthographic projections of the second conductive layer 32 on the substrate 10, and the orthographic projection of the second vanishing layer 32 on the substrate 10 covers all the orthographic projections of the second conductive layer 34 on the substrate 10 .
  • the surface area of the first conductive wire 221 away from the side of the substrate 10 is equal to the surface area of the first shadow-eliminating layer 24 in the groove facing the side of the substrate 10; as shown in Figures 1, 4 and As shown in FIG. 5 , for a touch panel with the first conductive layer 22 and the second conductive layer 34 disposed on opposite sides, the surface area of the second shadow-eliminating layer 32 in the groove away from the substrate 10 is equal to the second conductive line 341
  • the surface area of the side facing the substrate 10, as shown in FIG. The surface area of the side is equal to the surface area of the side of the second conductive wire 341 away from the substrate 10 .
  • the touch panel includes a plurality of first touch electrodes 224 distributed along a first direction and a plurality of second touch electrodes 344 distributed along a second direction to
  • the control electrodes 224 and the second touch electrodes 344 realize the touch function
  • one of the first touch electrodes 224 and the second touch electrodes 344 is a touch driving electrode
  • the other is a touch sensing electrode.
  • FIG. 6 shows the arrangement of the first touch electrodes 224 and the second touch electrodes 344.
  • the direction can be understood as the second direction, and the Y direction can be understood as the first direction.
  • a plurality of first conductive lines 221 form a plurality of first conductive grids 222 , and at least part of the first conductive grids in the plurality of first conductive grids 222
  • the first conductive line 221 corresponding to 222 has a first fracture 223, and the first fracture 223 separates the first conductive layer 22 into a plurality of first conductive structures
  • a plurality of second conductive lines 341 constitute a plurality of second conductive grids 342
  • the second conductive lines 341 corresponding to at least part of the second conductive grids 342 in the plurality of second conductive grids 342 have second fractures 343, and the second fractures 343 separate the second conductive layer 34 into multiple second conductive structures;
  • the plurality of first conductive structures and the plurality of second conductive structures together form the grid-shaped first touch electrodes 224 and the grid-shaped second touch electrodes 344 .
  • each first conductive structure includes a plurality of first conductive grids 222
  • each second conductive structure includes a plurality of second conductive grids 342
  • each first conductive grid 222 is a plurality of first conductive grids.
  • Each second conductive grid 342 is a polygon formed by a plurality of second conductive lines 341 .
  • the shapes of the first conductive grid 222 and the second conductive grid 342 are rectangle, rhombus, triangle, pentagon or hexagon and so on.
  • first fracture 223 is perpendicular to the direction in which the first conductive line 221 extends and the line width of the first conductive line 221 is located
  • second fracture 343 is perpendicular to the direction in which the second conductive line 341 extends.
  • the first fracture 223 may be formed when the first receiving groove of the first carrying structure is formed by embossing, and then the first conductive line 221 is directly formed in the first receiving groove, so that the existence of the first fracture 223 can be obtained. or, after forming the first carrying structure, deposit a whole layer of the first conductive film, and pattern the first conductive film to obtain the first conductive line with the first fracture 223 Line 221.
  • the formation process of the second fracture 343 is similar and will not be repeated here.
  • first conductive grids 222 and the second conductive grids 342 are arranged alternately, that is, the first conductive grids 222 and the second conductive grids 342 are not completely overlapped.
  • the multiple first conductive structures include multiple first touch electrodes 224 extending along the first direction
  • the multiple second conductive structures The structure includes a plurality of second touch electrodes 344 extending along the second direction; the first direction intersects with the second direction.
  • the first conductive layer 22 includes a plurality of first touch electrodes 224 extending along the first direction, each first touch electrode 224 includes a plurality of first conductive grids 222, and two adjacent first touch electrodes 224
  • the electrodes 224 are insulated, and the first conductive grids 222 included in each first touch electrode 224 are connected to each other;
  • the second conductive layer 34 includes a plurality of second touch electrodes 344 extending along the second direction , each second touch electrode 344 includes a plurality of second conductive grids 342, and insulation is provided between two adjacent second touch electrodes 344, and each second touch electrode 344 includes a plurality of second conductive grids Grids 342 are interconnected.
  • first direction and the second direction are perpendicular to each other.
  • first direction may be parallel to the column direction of the display panel
  • second direction may be parallel to the row direction of the display panel. direction parallel.
  • one of the plurality of first conductive structures and the plurality of second conductive structures includes a plurality of first touch electrodes extending along the first direction and a plurality of electrode body parts, and the other includes a plurality of bridging electrodes; each bridging electrode is connected to two adjacent electrode body parts in the second direction through a via hole penetrating the dielectric layer, so as to form a plurality of second touch electrodes extending along the second direction; the first direction and The second direction intersects; wherein, the dielectric layer is a film layer between the first conductive layer 22 and the second conductive layer 34 .
  • the multiple first conductive structures include multiple first touch electrodes 224 extending along the first direction and multiple electrode body parts 225 , as shown in FIG. 12 ,
  • the plurality of second conductive structures includes a plurality of bridging electrodes 345 .
  • the first conductive layer 22 includes a plurality of first touch electrodes 224 extending along the first direction and a plurality of electrode main parts 225, and a plurality of electrode main parts are arranged between two adjacent first touch electrodes 224.
  • the first touch electrodes 224 are insulated from each electrode body part 225 , and each electrode body part 225 is also insulated, and each first touch electrode 224 includes each first conductive grid 222 are interconnected;
  • the second conductive layer 34 includes a plurality of bridging electrodes 345, each bridging electrode 345 includes a plurality of second conductive grids 342, and the bridging electrodes 345 are insulated.
  • the multiple first conductive structures include multiple bridging electrodes
  • the multiple second conductive structures include multiple first touch electrodes extending along the first direction and multiple electrode body parts.
  • the first conductive layer includes a plurality of bridging electrodes
  • each bridging electrode includes a plurality of first conductive grids
  • the bridging electrodes are insulated
  • the second conductive layer includes a plurality of first conductive grids extending along the first direction.
  • a touch electrode and a plurality of electrode main parts, a plurality of electrode main parts are arranged between two adjacent first touch electrodes, the first touch electrode and each electrode main part are insulated, and each electrode main body The parts are also insulated, and the second conductive grids included in each first touch electrode are connected to each other.
  • each bridging electrode 345 is connected to two adjacent electrode body parts 225 in the second direction through a via hole penetrating the dielectric layer, so as to form a plurality of electrode main parts 225 extending along the second direction.
  • the second touch electrode 344 is connected to two adjacent electrode body parts 225 in the second direction through a via hole penetrating the dielectric layer, so as to form a plurality of electrode main parts 225 extending along the second direction.
  • the first carrier layer 21, the second carrier layer 23, the fourth carrier layer 31 and the fifth carrier layer 33 are all located on the same side of the substrate 10, and the dielectric layer is an insulating layer 40. And the first shadow erasing layer 24.
  • each bridging electrode 345 passes through the via hole penetrating the insulating layer 40 and the first shadow-elimination layer 24, and is connected to the second direction.
  • Two adjacent electrode body parts 225 are connected.
  • FIG. 14 the sectional view obtained along the section CC' shown in FIG. 13 is shown in FIG. 14, and in FIG. 24 and the second erasing layer 32 only reflect the connection relationship between the bridging electrodes 345 and the electrode main body 225 , and the actual cross-sectional view of the touch panel can be referred to FIG. 2 .
  • the second touch sensor formed by connecting the bridging electrode and the main body of the electrode
  • the way of electrodes is mainly applicable to the touch panel where the first conductive layer 22 and the second conductive layer 34 are arranged on the same side; in addition, the bridging electrode 345 in FIG. 13 only shows the position of the bridging electrode, and the actual shape of the bridging electrode 345 Refer to Figure 12.
  • the line width of the first conductive line 221 is smaller than or equal to the line width of the second conductive line 341 .
  • the line width d1 of the first conductive line 221 is equal to the line width d2 of the second conductive line 341; as shown in Figure 5, the line width d2 of the second conductive line 341 is greater than that of the first conductive line 221 line width d1.
  • the line width of the first conductive line 221 and the line width of the second conductive line 341 are set to be equal, the generation of moiré pattern can be improved and the optical performance of the product can be improved.
  • the line width d2 of the second conductive line 341 is set to be larger than the line width d1 of the first conductive line 221, the contact area between the second conductive layer 34 and the second shadow erasing layer 32 can be increased, This makes the second conductive layer 34 less likely to be peeled off.
  • the line width d1 of the first conductive line 221 refers to the line width at the surface where the first conductive line 221 is in contact with the first shadow-eliminating layer 24, and the line width d2 of the second conductive line 341 also refers to The line width at the surface where the second conductive line 341 is in contact with the second shadow erasing layer 32 .
  • the materials of the first carrying structure and the second carrying structure are both light-curable glue, such as ultraviolet light-curable glue.
  • the materials of the first bearing layer 21, the second bearing layer 23, the fourth bearing layer 31 and the fifth bearing layer 33 are all photocurable adhesives, and the first bearing layer 21, the second bearing layer
  • the layer 23 , the fourth carrier layer 31 and the fifth carrier layer 33 have a thickness of 10 ⁇ m to 50 ⁇ m.
  • the thicknesses of the first bearing layer 21 , the second bearing layer 23 , the fourth bearing layer 31 and the fifth bearing layer 33 are all equal.
  • the thicknesses of the first bearing layer 21 , the second bearing layer 23 , the fourth bearing layer 31 and the fifth bearing layer 33 can be 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m and so on.
  • the material of the third bearing layer 25 and the sixth bearing layer 35 is also photocurable adhesive.
  • the materials of the first load-bearing structure and the second load-bearing structure may also be other glue-based materials with a certain supporting strength, not limited to the above-mentioned photocurable glue.
  • both the first shadow erasing layer 24 and the second shadow erasing layer 32 are light-shielding ink layers or light-shielding oxide layers, and the transmittances of the first shadow erasing layer 24 and the second shadow erasing layer 32 are less than Or equal to 10%.
  • the light-shielding ink layer is a black ink layer
  • the light-shielding oxide layer is a black oxide layer, such as molybdenum oxide.
  • the first conductive layer 22 and the second conductive layer 34 are conductive silver paste layers; or, the materials of the first conductive layer 22 and the second conductive layer 34 are at least one of copper, molybdenum, aluminum and titanium one.
  • the first conductive layer 22 and the second conductive layer 34 can be a single-layer structure, such as a copper metal layer, and the first conductive layer 22 and the second conductive layer 34 can also be a three-layer structure, which includes sequentially stacked molybdenum The metal layer, the aluminum metal layer and the molybdenum metal layer, or include a titanium metal layer, an aluminum metal layer and a titanium metal layer stacked in sequence.
  • the sum of the thicknesses of the first conductive layer 22 and the first shadow elimination layer 24 is consistent with the thickness of the first bearing structure; the sum of the thicknesses of the second conductive layer 34 and the second shadow elimination layer 32 is the same.
  • the thickness of the two bearing structures is the same.
  • the sum of the thicknesses of the first conductive layer 22 and the first shadow erasing layer 24 is equal to the sum of the thicknesses of the first carrier layer 21 and the second carrier layer 23; specifically, the first conductive layer 22
  • the thickness is equal to the thickness of the first bearing layer 21, so that the surface of the first conductive layer 22 away from the substrate 10 side is on the same plane as the surface of the first bearing layer 21 away from the substrate 10 side, and the first shadow erasing layer 24
  • the thickness is equal to the thickness of the second carrier layer 23, so that the surface of the first image erasing layer 24 away from the substrate 10 is on the same plane as the surface of the second carrier layer 23 away from the substrate 10.
  • the sum of the thicknesses of the second conductive layer 34 and the second shadow elimination layer 32 is equal to the sum of the thicknesses of the fourth bearing layer 31 and the fifth bearing layer 33; specifically, the thickness of the second shadow elimination layer 32 is equal to the thickness of the fourth bearing layer
  • the thickness of the layer 31 is such that the surface of the second erasing layer 32 away from the substrate 10 is on the same plane as the surface of the fourth carrier layer 31 away from the substrate 10, and the thickness of the second conductive layer 34 is equal to the fifth carrier layer 34.
  • the thickness of the layer 33 is such that the surface of the second conductive layer 34 away from the substrate 10 and the surface of the fifth carrying layer 33 away from the substrate 10 are located on the same plane.
  • the sum of the thicknesses of the first conductive layer 22 and the first shadow removal layer 24 is equal to the thickness of the third bearing layer 25, so that the surface of the first shadow removal layer 24 away from the substrate 10 side and The surface of the third carrier layer 25 away from the substrate 10 side is on the same plane; and as shown in Figure 4 and Figure 5, the sum of the thicknesses of the second conductive layer 34 and the second shadow erasing layer 32 is equal to that of the sixth carrier layer 35
  • the thickness is such that the surface of the second conductive layer 34 on the side away from the substrate 10 and the surface of the sixth carrying layer 35 on the side away from the substrate 10 are on the same plane.
  • the same thickness in the above means that the thicknesses are basically equal, and that the two surfaces are on the same plane means that the two surfaces are basically flush, and both of them allow variations within the allowable error range of the process.
  • the plurality of first conductive structures further include a plurality of first dummy electrodes 226 arranged between two adjacent first touch electrodes 224 , and each first dummy electrode 226 is connected to the first
  • the touch electrodes 224 are insulated by the first opening 223; as shown in FIG. 8 and FIG.
  • the electrodes 346 are insulated from each of the second dummy electrodes 346 and the second touch electrodes 344 through the second opening 343 .
  • the touch panel includes a plurality of touch units distributed in an array.
  • the size of each touch unit along the first direction is b
  • the size of each touch unit along the second direction is a.
  • the size between the finger and the touch panel along the first direction and the second direction is basically about 4.2mm. In order to better identify the touch position, it is necessary to set both a and b to be less than or equal to 4.2mm.
  • Each touch unit includes first touch electrodes, second touch electrodes and dummy electrodes.
  • the first touch electrodes extending along the first direction are touch driving electrodes
  • the second touch electrodes extending along the second direction are touch driving electrodes.
  • the control electrodes are touch sensing electrodes, the width of each touch driving electrode along the second direction is 0.75a-0.99a, the width of each touch sensing electrode along the first direction is 0.5b-0.75b, and the rest The area is the location of the dummy electrodes.
  • the dummy electrodes include a plurality of first dummy electrodes 226 located between two adjacent first touch electrodes 224 , and a plurality of second dummy electrodes 346 located between two adjacent second touch electrodes 344 , the first dummy electrode 226 is located on the first conductive layer 22 , and the second dummy electrode 346 is located on the second conductive layer 34 .
  • the first dummy electrode 226 and the second dummy electrode 346 do not play the role of transmitting and sensing touch signals, the first dummy electrode 226 is set in the first conductive layer 22 and the second dummy electrode 34 is set
  • the second dummy electrode 346 is to balance the visual effect and prevent the possibility of moiré in areas where the first touch electrode 224 and the second touch electrode 344 are not provided due to optical interference;
  • the first dummy electrode 226 can increase the distance between two adjacent first touch electrodes 224 to prevent the mutual influence of two adjacent first touch electrodes 224.
  • setting the second dummy electrode 346 can make The distance between two adjacent second touch electrodes 344 increases to prevent the two adjacent second touch electrodes 344 from interacting with each other.
  • each first dummy electrode 226 in order to avoid a short circuit between adjacent first touch electrodes 224, it is necessary to insulate each first dummy electrode 226 from the first touch electrode 224 through the first break 223; correspondingly, in order to avoid adjacent If a short circuit occurs between the second touch electrodes 344 , it is necessary to insulate each second dummy electrode 346 from the second touch electrodes 344 through the second opening 343 .
  • the extension direction of the first trajectory line 51 formed by any adjacent at least two first fractures 223 intersects with the first direction, and any The extension directions of two adjacent first trace lines 51 intersect
  • the first trace line 51 is a straight line segment formed by at least two adjacent first breaks 223 between the first dummy electrode 226 and the first touch electrode 224 , and the first conductive line 221 where the first fracture 223 at the beginning of the first trace 51 is closest to is parallel to the first conductive wire 221 where the first fracture 223 at the end of the first trace 51 is located;
  • the extending direction of the second trace 52 formed by any adjacent at least two second fractures 343 intersects with the second direction, and any adjacent two The extension directions of the second track lines 52 intersect each other.
  • the second track line 52 is a straight line segment formed by at least two second breaks 343 adjacent to the second dummy electrode 346 and the second touch electrode 344, and is closest to the The second conductive line 341 where the second break 343 at the beginning of the second trace 52 is located is parallel to the second conductive line 341 where the second break 343 is located closest to the end of the second trace 52 .
  • the straight line segment formed by at least two first breaks 223 adjacent to the first dummy electrode 226 and the first touch electrode 224 is called the first trace line 51
  • the straight line segment formed by at least two adjacent second breaks 343 between the touch electrodes 344 is called the second track line 52 .
  • the two first openings 223 adjacent to each other between the first dummy electrode 226 and the first touch electrode 224 form the first track line 51.
  • the three adjacent first breaks 223 between the first touch electrodes 224 form the first track line 51, of course, it is also possible to pass adjacent four or Five first fractures 223 form the first trace 51; correspondingly, as shown in FIG.
  • the line 52 is the second trace line 52 formed by the three second breaks 343 adjacent to the second dummy electrode 346 and the second touch electrode 344. Of course, it can also be formed on the second dummy electrode 346.
  • the second track line 52 is formed by four or five adjacent second openings 343 between the second touch electrode 344 , and the embodiment of the present application does not limit the number of openings required to form one track line.
  • each first trace line 51 intersects with the first direction, and the extension directions of any two adjacent first trace lines 51 intersect. Therefore, each first touch electrode 224 and each first dummy The combination of the first trajectory lines 51 between the electrodes 226 is not a straight line along the first direction; correspondingly, the extension direction of each second trajectory line 52 intersects the second direction, and any two adjacent first trajectory lines The extension directions of the two trace lines 52 intersect each other, therefore, the combination of each second trace line 52 between each second touch electrode 344 and each second dummy electrode 346 is not a straight line along the second direction.
  • all the first trajectory lines between the first touch electrodes and each first dummy electrode are straight line segments parallel to and extending along the first direction, which can be Obvious and regular stripes are seen, showing the characteristics of alternating light and dark; and all the second trajectory lines between the second touch electrode and each second dummy electrode are also parallel to the second direction and along the first Straight line segments extending in two directions can also see obvious and regular stripes under strong light reflection, showing the characteristics of alternating light and dark.
  • the first touch electrodes 224 and each first dummy by setting the first traces 51 to intersect with the first direction, and the extension directions of any two adjacent first traces 51 intersect, the first touch electrodes 224 and each first dummy
  • the first fracture 223 between the electrodes 226 presents an irregular and randomized design
  • the second trajectory line 52 is set to intersect with the second direction, and the extension directions of any two adjacent second trajectory lines 52 intersect
  • the second fracture 343 between the second touch electrode 344 and each second dummy electrode 346 also presents an irregular and randomized design, thereby avoiding the phenomenon of obvious and regular stripes under strong light reflection, and improving the quality of the product. optical properties.
  • each first fracture 223 is located at 1/2 of the first conductive line 221 in the first conductive grid 222, and each first trace line 51
  • the first conductive lines 221 where the two first breaks 223 in the first track line 51 are located are parallel to each other.
  • the two first breaks 223 in each first track line 51 respectively refer to: near the beginning of the first track line 51
  • the first fracture 223 and the first fracture 223 at the end closest to the first trajectory line 51; and the angle between the extension directions of two adjacent first trajectory lines 51 is actually 90°.
  • each second fracture 343 is also located at 1/2 of the second conductive line 341 in the second conductive grid 342, and each second The first conductive wires 221 where the two second fractures 343 in the trajectory 52 are located are parallel to each other.
  • the two second fractures 343 in each second trajectory 52 respectively refer to: the closest to the second trajectory The second fracture 343 at the beginning of 52 and the second fracture 343 at the end closest to the second trajectory line 52; and the angle between the extension directions of two adjacent second trajectory lines 52 is 90°.
  • the three first breaks 223 in each first trace line 51 are located at 3/4, 1/2 and 1 of the first conductive line 221 in different first conductive grids 222 respectively.
  • the first conductive line 221 where the first fracture 223 at 1/2 is located is respectively connected to the first conductive line where the first fracture 223 is located at 3/4 221 and the first conductive line 221 where the first fracture 223 located at 1/4 intersects, and the first conductive line 221 where the first fracture 223 located at 3/4 intersects with the first fracture 223 located at 1/4
  • the first conductive lines 221 where they are located are parallel.
  • the first fracture 223 located at 3/4 and the first fracture 223 located at 1/4 in each first track line 51 respectively refer to: The first fracture 223 at the beginning of the line 51 and the first fracture 223 at the end closest to the first trajectory 51; and the angle between the extension directions of two adjacent first trajectory lines 51 is an obtuse angle.
  • the three second breaks 343 in each second trace line 52 are respectively located at 3/4 and 1/2 of the second conductive lines 341 in different second conductive grids 342 and 1/4, and in the same second track line 52, the second conductive line 341 where the second break 343 at 1/2 is located is respectively connected to the second conductive line where the second break 343 is located at 3/4.
  • the second conductive line 341 where the fracture 343 is located is parallel.
  • the second fracture 343 located at 3/4 and the second fracture 343 located at 1/4 in each second track line 52 refer to: the closest The second fracture 343 at the starting end of the second trajectory line 52 and the second fracture 343 at the end of the second trajectory line 52 closest to it; and the angle between the extension directions of two adjacent second trajectory lines 52 is an obtuse angle .
  • the division method of the first fracture 223 and the second fracture 343 in the embodiment of the present application is not limited to the above two methods, and the first conductive lines 221 in each first conductive grid 222 can also be divided N equal parts, the first break 223 is located at x/N, N is a positive integer greater than 2, x is a positive integer smaller than N, and it is necessary to make the first dummy electrode 226 and the first touch electrode 224 between the first All the first trajectory lines 51 formed by a fracture 223 may not be a straight line when combined.
  • the second fracture 343 is divided in a similar manner, so that the second fracture 343 between the second dummy electrode 346 and the second touch electrode 344 The combination of all the formed second trajectory lines 52 is also not a straight line.
  • first trajectory line 51 and second trajectory line 52 there is no first trajectory line 51 and second trajectory line 52, and the first trajectory line 51 and the second trajectory line 52 are shown in the figure, just for the convenience of observing each first fracture 223 and each The distribution law of the second fracture 343; and, in order to facilitate the observation of the law of the adjacent two first trajectory lines 51, the adjacent two first trajectory lines 51 are connected together, correspondingly, in order to facilitate the observation of the adjacent two first trajectory lines
  • the rule of the second trajectory lines 52 connects two adjacent second trajectory lines 52 together.
  • each first dummy electrode 226 also passes through the third track line 53 formed by the first break 223, and the adjacent first dummy electrodes 226 are arranged at intervals, and the third track line
  • the line 53 is a straight line segment formed by at least two adjacent first fractures 223 between the two first dummy electrodes 226, and is closest to the first conductive line where the first fracture 223 at the beginning of the third trajectory line 53 is located.
  • the formed fourth trajectory line 54 is spaced apart from the adjacent second dummy electrodes 346 , and the fourth trajectory line 54 is a straight line segment formed by at least two adjacent second breaks 343 between the two second dummy electrodes 346 , and the second conductive line 341 where the second break 343 is closest to the beginning of the fourth trace 54 is parallel to the second conductive line 341 where the second break 343 is closest to the end of the fourth trace 54 .
  • the extension direction of the third trajectory line 53 intersects with the first direction, and the extension directions of any two adjacent third trajectory lines 53 also intersect; correspondingly, the extension direction of the fourth trajectory line 54 intersects with the second direction and the extension directions of any two adjacent fourth trajectory lines 54 also intersect.
  • the straight line segment formed by the three adjacent first breaks 223 between the two first dummy electrodes 226 is called the third trajectory line 53
  • the straight line segment formed by the three adjacent second breaks 343 between the two second dummy electrodes 346 is called the fourth track line 54 .
  • At least part of the first dummy electrodes 226 in all the first dummy electrodes 226 includes at least one closed first conductive grid 222; as shown in Figure 8 and Figure 10, all the second At least some of the second dummy electrodes 346 of the dummy electrodes 346 also include at least one closed second conductive grid 342 .
  • the first dummy electrode and the second dummy electrode there are also fractures inside the first dummy electrode and the second dummy electrode, and the density of the fractures is relatively high, so that the first dummy electrode does not include a complete first conductive grid, and the second dummy electrode does not include a complete first conductive grid.
  • the second conductive grid is prone to light and dark stripes under strong light reflection.
  • At least part of the first dummy electrode 226 includes at least one closed first conductive grid 222
  • at least part of the second dummy electrode 346 also includes at least one closed second conductive grid 342 , so as to reduce the fracture density in the first dummy electrode 226 and the second dummy electrode 346 , so as to reduce light and dark stripes appearing under strong light reflection.
  • the plurality of first conductive structures or the plurality of second conductive structures further include a plurality of third dummy electrodes 227 and a plurality of fourth dummy electrodes 228, each third dummy electrode 227 and each fourth dummy electrode
  • the electrodes 228 are all arranged on the same layer as the first touch electrodes 224 and the electrode body part 225; each third dummy electrode 227 is located in the area surrounded by the first touch electrodes 224, and each third dummy electrode 227 is connected to the The first touch electrodes 224 are insulated by the target gap; each fourth dummy electrode 228 is located in the area surrounded by the electrode body part 225, and each fourth dummy electrode 228 and the electrode body part 225 also pass the target Fracture insulation; and, between the first touch electrode 224 and the electrode body part 225 and between two electrode body parts 225 adjacent along the first direction are also insulated by the target fracture; wherein, the target fracture is the first fracture 223 or the second fracture 343.
  • the multiple first conductive structures include multiple first touch electrodes 224 and multiple electrode body parts 225 extending along the first direction
  • the multiple second conductive structures include multiple bridging electrodes 345
  • the multiple first touch electrodes 224 A conductive structure also includes a third dummy electrode 227 and a fourth dummy electrode 228, and the target break at this time is the first break 223
  • multiple first conductive structures include multiple bridging electrodes
  • multiple second conductive structures include multiple The first touch electrodes extending along the first direction and the plurality of electrode main bodies, the plurality of second conductive structures further include third dummy electrodes 227 and fourth dummy electrodes 228 , and the target opening at this time is the second opening 343 .
  • the third dummy electrode 227 and the fourth dummy electrode 228 can block or lead away part of the electric field lines generated by the touch driving electrodes, thereby reducing the electric field lines received by the touch sensing electrodes, so that the reference capacitance between the touch driving electrodes and the touch sensing electrodes is reduced, correspondingly The ratio of the capacitance change caused by finger touch to the reference capacitance is increased, thereby improving the touch sensitivity of the touch panel and the accuracy of detection results.
  • the extension direction of the fifth trajectory line 55 formed by any adjacent at least two target breaks intersects with the first direction, and any adjacent The extension directions of the two fifth trajectory lines 55 intersect.
  • the fifth trajectory line 55 is a straight line segment formed by at least two adjacent target fractures between the first touch electrode 224 and the electrode main body 225, and is closest to the fifth The target conductive line where the target fracture at the beginning of the trajectory line 55 is parallel to the target conductive line where the target fracture is at the end of the fifth trajectory line 55.
  • the target conductive line is the first conductive line 221 or the second conductive line 341.
  • the straight line segment formed by at least two adjacent target fractures between the first touch electrode 224 and the electrode main body 225 is called the fifth trajectory line 55
  • the target fracture is the first fracture 223 or the second fracture 343
  • the target conductive wire is the first conductive wire 221
  • the target conductive wire is the second conductive wire 341; as shown in Figure 11, it is adjacent
  • the four first fractures 223 form the fifth trajectory line 55 .
  • each fifth trace line 55 intersects with the first direction, and the extension directions of any two adjacent fifth trace lines 55 intersect. Therefore, each first touch electrode 224 and each electrode body part
  • the combination of the fifth trajectory lines 55 between 225 is not a straight line along the first direction, so that the target fracture between the first touch electrode 224 and each electrode main body 225 presents an irregular and randomized design, thus Avoid the phenomenon of obvious and regular stripes under strong light reflection, and improve the optical performance of the product.
  • each first fracture 223 is located at 1/2 of the first conductive line 221 in the first conductive grid 222, and the four first fractures 223 in each fifth trace line 55 are located
  • the first conductive lines 221 are parallel to each other, and the angle between the extension directions of two adjacent fifth trace lines 55 is 90°.
  • each third dummy electrode 227 is connected to the first The sixth track lines 56 formed by the first openings 223 between the touch electrodes 224 are arranged at intervals.
  • the first conductive lines 221 are parallel; correspondingly, the seventh trajectory lines 57 formed by the first fracture 223 are also arranged at intervals between each fourth dummy electrode 228 and the electrode main body 225, and the seventh trajectory lines 57 are the fourth dummy electrodes.
  • the straight line segment formed by at least two first fractures 223 adjacent between the electrode 228 and the electrode main body 225, and the first conductive line 221 closest to the first fracture 223 at the beginning of the seventh trajectory line 57, and The first conductive line 221 where the first break 223 at the end of the seventh track line 57 is located is parallel; and each electrode body part 225 also passes through the eighth track line 58 formed by the first break 223 and its adjacent electrode
  • the main body parts 225 are arranged at intervals, and the eighth trajectory line 58 is a straight line segment formed by at least two adjacent first fractures 223 between two electrode main body parts 225, and the first The first conductive line 221 where the break 223 is located is parallel to the first conductive line 221 where the first break 223 is located at the end closest to the eighth trace 58 .
  • At least some of the third dummy electrodes 227 in all the third dummy electrodes 227 include at least one closed target conductive grid; at least some of the fourth dummy electrodes 228 in all the fourth dummy electrodes 228 also include at least one A closed target conductive grid; wherein, the target conductive grid is the first conductive grid 222 or the second conductive grid 342 .
  • the target conductive grid at this time is the first conductive grid 222
  • the multiple second conductive structures include the third dummy electrode
  • the target conductive grid at this time is the second conductive grid 342 .
  • At least part of the third dummy electrode 227 and at least part of the Each of the fourth dummy electrodes 228 includes at least one closed target conductive grid, so as to reduce the fracture density of the third dummy electrodes 227 and the fourth dummy electrodes 228, so as to reduce light and dark stripes appearing under strong light reflection.
  • the first shadow elimination layer blocks the first conductive layer to reduce the reflection of the first conductive layer High efficiency, reducing strong light reflection and the pattern of the first conductive layer being observed, improving the visual effect of the product.
  • the touch panel as shown in FIG. 1 to FIG. 5 can be formed, it can be manufactured by referring to the following manufacturing sequence.
  • Step S1 sequentially forming a first carrying structure, a first conductive layer 22 and a first erasing layer 24 on one side of the substrate 10 .
  • the specific forming process will be described below by taking the first carrying structure including the first carrying layer 21 and the second carrying layer 23 as an example.
  • a first carrying layer 21 is formed on one side surface of the substrate 10 , and the first carrying layer 21 has a plurality of first grooves.
  • a coating process is used to form a first carrier film on one side of the substrate 10, and the first carrier film is cured to reduce its fluidity, and then, the first carrier film is embossed by using a first mold, The pattern on the first mold is transferred to the first carrier film to obtain the first carrier layer 21 .
  • a first conductive layer 22 is formed in the first groove of the first carrier layer 21 , and the first conductive layer 22 includes a plurality of first conductive lines 221 .
  • the conductive silver paste in the first groove of the first carrier layer 21, and cure the conductive silver paste to obtain the first conductive layer 22, or, place the first carrier layer 21 away from the substrate A metal layer is deposited on the surface of 10 and in the first groove, and the metal layer is patterned to form the first conductive layer 22.
  • the material of the metal layer can be at least one of copper, molybdenum, aluminum and titanium.
  • a second carrying layer 23 is formed on the side of the first carrying layer 21 away from the substrate 10, and the second carrying layer 23 has a plurality of second groove.
  • a coating process is used to form a second carrier film on the surface of the first carrier layer 21 and the first conductive layer 22 away from the substrate 10, and the second carrier film is cured to reduce its fluidity, and then, the second carrier film is used
  • the second mold embosses the second carrier film, and transfers the pattern on the second mold to the second carrier film to obtain the second carrier layer 23 .
  • the second mold and the first mold may be the same mold.
  • the first shadow erasing layer 24 is filled in the second groove of the second bearing layer 23, and the first shadow erasing layer 24 is cured, and the first shadow erasing layer 24 is formed on the substrate 10
  • the orthographic projection on the substrate 10 covers the orthographic projection of the first conductive layer 22 on the substrate 10 .
  • Step S2 Forming a second carrying structure and a second conductive layer 34 on one side of the substrate 10 respectively.
  • the specific forming process will be described below by taking the first bearing structure including the fourth bearing layer 31 and the fifth bearing layer 33 as an example.
  • the fourth carrying layer 31 , the second shadow erasing layer 32 , the fifth carrying layer 33 and the second conductive layer 34 are sequentially formed on the surface of the other side of the substrate 10 .
  • the fourth bearing layer 31 is formed, and the fourth bearing layer 31 has a plurality of fourth grooves.
  • a coating process is used to form a fourth carrier film on the surface of the other side of the substrate 10, and the fourth carrier film is cured to reduce its fluidity, and then, the fourth carrier film is pressed by a third mold. Printing, transferring the pattern on the third mold to the fourth carrier film to obtain the fourth carrier layer 31 .
  • the third mold is different from the first mold.
  • a second shadow erasing layer 32 is formed in the fourth groove of the fourth carrying layer 31 , and the second shadow erasing layer 32 is cured.
  • a fifth carrying layer 33 is formed on the side of the fourth carrying layer 31 away from the substrate 10 , and the fifth carrying layer 33 has a plurality of fifth grooves.
  • a coating process is used to form a fifth carrier film on the surface of the fourth carrier layer 31 and the second image erasing layer 32 away from the substrate 10, and the fifth carrier film is cured to reduce its fluidity, and then, using The fourth mold embosses the fifth carrier film, and transfers the pattern on the fourth mold to the fifth carrier film to obtain the fifth carrier layer 33 .
  • the fourth mold and the third mold may be the same mold.
  • the second conductive layer 34 is formed in the fifth groove of the fifth carrying layer 33, the second conductive layer 34 includes a plurality of second conductive lines 341, and the orthographic projection of the second shadow-elimination layer 32 on the substrate 10 Covering the orthographic projection of the second conductive layer 34 on the substrate 10 .
  • the formation process of the second conductive layer 34 is similar to that of the first conductive layer 22 , and will not be repeated here.
  • the first carrier film and the fourth carrier film can also be formed on the opposite surface of the substrate 10 by a coating process, respectively, The first carrier film and the fourth carrier film are cured, and after curing, the first carrier film and the fourth carrier film are embossed to obtain the structure shown in FIG.
  • the first bearing layer 21, the first bearing layer 21 has a plurality of first grooves 221, and a fourth bearing layer 31 is formed on the other side surface of the substrate 10, and the fourth bearing layer 31 has a plurality of fourth grooves 311;
  • the first conductive layer 22 is formed in the first groove 211 of the first carrier layer 21, and the second shadow-eliminating layer 32 is formed in the fourth groove 311 of the fourth carrier layer 31, as shown in FIG.
  • a coating process is used to form a second carrier film on the surface of the first carrier layer 21 and the first conductive layer 22 away from the substrate 10, and a second carrier film is formed on the fourth carrier layer 31 and the second shadow erasing layer 32 away from the substrate
  • the surface of 10 adopts the coating process to form the fifth carrier film, and the second carrier film and the fifth carrier film are cured, and after curing, the second carrier film and the fifth carrier film are embossed to obtain the Structure, that is to realize the second carrier layer 23 is formed on the side of the first carrier layer 21 away from the substrate 10, and the fifth carrier layer 33 is formed on the side of the fourth carrier layer 31 away from the substrate 10, the second carrier layer 23 There are a plurality of second grooves 231, and the fifth carrier layer 33 has a plurality of fifth grooves 331; finally, the first shadow removal layer 24 is formed in the second grooves 231 of the second carrier layer 23, and the fifth The second conductive layer 34 is formed in the fifth groove 331 of the carrying layer 33 to obtain a touch panel as shown
  • the first bearing layer 21, the first conductive layer 22, the second bearing layer 23 and the first shadow removal layer 24 in sequence on one side of the base material 10 firstly form a covering layer
  • FIG. 18 shows a schematic structural diagram of a touch display device according to an embodiment of the present application.
  • the embodiment of the present application also discloses a touch display device, including a display panel 61 and the above-mentioned touch panel, and the display panel 61 is located on a side of the substrate 10 away from the first carrying structure. At this time, the light-emitting surface of the display panel 61 faces the touch panel.
  • the display panel 61 may be an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display panel, an LCD (Liquid Crystal Display, liquid crystal display) display panel or a QLED (Quantum Dots Light-Emitting Diode, quantum dot light-emitting diode) display panel Wait.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • LCD Liquid Crystal Display, liquid crystal display
  • QLED Quantum Dots Light-Emitting Diode, quantum dot light-emitting diode
  • the display panel includes a plurality of sub-pixels distributed in an array, and the orthographic projection of the first conductive line 221 and the second conductive line 341 on the display panel 61 has at least a partially non-overlapping area with the pixel opening area of each sub-pixel , so as to ensure that the light of the display panel can pass through the touch panel normally and go out.
  • the touch panel when the touch panel is set on the light-emitting side of the display panel 61 using On-cell technology, at this time, the alignment accuracy requirements for the display panel 61 and the touch panel are very high.
  • the orthographic projection of the first conductive line 221 and the second conductive line 341 on the display panel 61 can be arranged in an area other than the pixel opening area of each sub-pixel, that is, the pixel opening area of the sub-pixel is located between the first conductive line 221 and the second conductive line.
  • the grid gaps formed by the two conductive wires 341 are used to increase the light emission rate of the display panel.
  • the touch display device further includes: a polarizer 62 located on the light-emitting surface of the display panel 61; a first adhesive layer 63 located between the polarizer 62 and the touch panel; a second adhesive layer 64 , located on the side of the touch panel away from the first adhesive layer 63 ; and the cover plate 65 , located on the side of the second adhesive layer 64 away from the touch panel.
  • the material of the first adhesive layer 63 and the second adhesive layer 64 can be OCA (Optically Clear Adhesive, optical glue), and the cover plate 65 can be a glass cover plate.
  • the above-mentioned touch display device provided by the embodiment of the present application can be any product or component with touch and display functions such as mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the application can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

触控面板及触控显示装置,涉及触控技术领域。本申请通过在基材上设置第一承载结构、第一导电层和第一消影层,通过第一消影层对第一导电层进行遮挡,降低第一导电层的反射率,减轻强光反射下第一导电层的图案被观察到。

Description

触控面板及触控显示装置 技术领域
本申请涉及触控技术领域,特别是涉及一种触控面板及触控显示装置。
背景技术
随着触控技术的不断发展,金属网格结构(Metal Mesh)由于其具有的低阻抗、耐弯折等优良特性,被广泛应用在触控技术领域中。
发明内容
本公开一些实施例提供了如下技术方案:
第一方面,提供了一种触控面板,包括:
基材;
第一承载结构,位于所述基材的其中的一侧,所述第一承载结构具有多个第一容纳凹槽;
第一导电层,包括多条第一导电线,每条所述第一导电线位于所述第一容纳凹槽内;
第一消影层,位于所述第一容纳凹槽内,且所述第一消影层在所述基材上的正投影至少覆盖部分的所述第一导电层在所述基材上的正投影。
可选的,所述第一承载结构包括:
第一承载层,所述第一承载层具有多个第一凹槽;
第二承载层,位于所述第一承载层远离所述基材的一侧,所述第二承载层具有多个第二凹槽;
其中,所述第一容纳凹槽包括所述第一凹槽和所述第二凹槽,所述第一导电线位于所述第一凹槽内,所述第一消影层位于所述第二凹槽内;并且,所述第一承载层与所述第一导电层绝缘,所述第二承载层与所述第一消影层绝缘。
可选的,所述第一承载结构包括第三承载层,所述第三承载层具有多个第三凹槽;
所述第一容纳凹槽为所述第三凹槽,所述第一导电线和所述第一消影层 均位于所述第三凹槽内,且所述第一消影层位于所述第一导电线远离所述基材的一侧;并且,所述第三承载层与所述第一导电层和所述第一消影层均绝缘。
可选的,所述触控面板还包括:
第二承载结构,位于所述基材的其中一侧,所述第二承载结构具有多个第二容纳凹槽;
第二导电层,包括多条第二导电线,每条所述第二导电线位于所述第二容纳凹槽内。
可选的,所述触控面板还包括:
第二消影层,位于所述第二容纳凹槽内,且所述第二消影层在所述基材上的正投影至少覆盖部分的所述第二导电层在所述基材上的正投影。
可选的,所述第二承载结构包括:
第四承载层,所述第四承载层具有多个第四凹槽;
第五承载层,与所述第四承载层位于所述基材的同一侧,所述第五承载层具有多个第五凹槽;
其中,所述第二容纳凹槽包括所述第四凹槽和所述第五凹槽,所述第二消影层位于所述第四凹槽内,所述第二导电线位于所述第五凹槽内;并且,所述第四承载层与所述第二消影层绝缘,所述第五承载层与所述第二导电层绝缘。
可选的,所述第二承载结构包括第六承载层,所述第六承载层具有多个第六凹槽;
所述第二容纳凹槽为所述第六凹槽,所述第二消影层和所述第二导电线均位于所述第六凹槽内;并且,所述第六承载层与所述第二消影层和所述第二导电层均绝缘。
可选的,所述第一承载结构位于所述基材的第一侧,所述第二承载结构位于所述基材的第二侧,所述第一侧和所述第二侧为所述基材上相对的两侧。
可选的,所述第一承载结构和所述第二承载结构位于所述基材的同一侧,且所述第二承载结构位于所述第一承载结构远离所述基材的一侧,在所 述第一承载结构与所述第二承载结构之间设置有绝缘层。
可选的,所述第一消影层在所述基材上的正投影覆盖全部的所述第一导电层在所述基材上的正投影;
所述第二消影层在所述基材上的正投影覆盖全部的所述第二导电层在所述基材上的正投影。
可选的,所述多条第一导电线构成多个第一导电网格,所述多个第一导电网格中的至少部分所述第一导电网格对应的所述第一导电线具有第一断口,所述第一断口将所述第一导电层分隔出多个第一导电结构;
所述多条第二导电线构成多个第二导电网格,所述多个第二导电网格中的至少部分所述第二导电网格对应的所述第二导电线具有第二断口,所述第二断口将所述第二导电层分隔出多个第二导电结构;
其中,所述多个第一导电结构和所述多个第二导电结构共同构成网格状的第一触控电极和网格状的第二触控电极。
可选的,所述多个第一导电结构包括多条沿第一方向延伸的所述第一触控电极,所述多个第二导电结构包括多条沿第二方向延伸的所述第二触控电极;所述第一方向和所述第二方向相交。
可选的,所述多个第一导电结构和所述多个第二导电结构中的一者包括多条沿第一方向延伸的所述第一触控电极和多个电极主体部,另一者包括多个桥接电极;
每个所述桥接电极通过贯穿介质层的过孔,与第二方向上相邻的两个所述电极主体部连接,以形成多条沿所述第二方向延伸的所述第二触控电极;所述第一方向和所述第二方向相交;
其中,所述介质层为所述第一导电层与所述第二导电层之间的膜层。
可选的,所述第一导电线的线宽小于或等于所述第二导电线的线宽。
可选的,所述第一承载结构和所述第二承载结构的材料均为光固化胶。
可选的,所述第一消影层和所述第二消影层均为遮光油墨层或遮光氧化物层,且所述第一消影层和所述第二消影层的透过率小于或等于10%。
可选的,所述第一导电层和所述第二导电层为导电银浆层;或者,
所述第一导电层和所述第二导电层的材料为铜、钼、铝和钛中的至少一 者。
可选的,所述第一导电网格和所述第二导电网格交错设置。
可选的,所述第一导电线、每个所述第一容纳凹槽内的所述第一消影层、所述第二导电线以及每个所述第二容纳凹槽内的所述第二消影层,沿着目标截面上的截面形状均为近似梯形;
并且,每个所述第一容纳凹槽内的所述第一消影层和所述第一导电线的组合结构沿着所述目标截面上的截面形状也为近似梯形;每个所述第二容纳凹槽内的所述第二消影层和所述第二导电线的组合结构沿着所述目标截面上的截面形状也为近似梯形;
其中,所述目标截面垂直于所述基材所在的平面,且与对应容纳凹槽内的导电线的线宽方向平行。
可选的,所述第一导电层和所述第一消影层的厚度之和与所述第一承载结构的厚度基本一致;
所述第二导电层和所述第二消影层的厚度之和与所述第二承载结构的厚度基本一致。
可选的,所述第一导电层远离所述基材一侧的表面与所述第一承载层远离所述基材一侧的表面基本位于同一平面;
所述第一消影层远离所述基材一侧的表面与所述第二承载层远离所述基材一侧的表面基本位于同一平面。
可选的,所述第二消影层远离所述基材一侧的表面与所述第四承载层远离所述基材一侧的表面基本位于同一平面;
所述第二导电层远离所述基材一侧的表面与所述第五承载层远离所述基材一侧的表面基本位于同一平面。
可选的,所述多个第一导电结构还包括设置在相邻两条所述第一触控电极之间的多个第一虚设电极,每个所述第一虚设电极与所述第一触控电极之间通过所述第一断口绝缘;
所述多个第二导电结构还包括设置在相邻两条所述第二触控电极之间的多个第二虚设电极,每个所述第二虚设电极与所述第二触控电极之间通过第二断口绝缘。
可选的,在所述第一虚设电极与所述第一触控电极之间,任意相邻的至少两个所述第一断口所形成的第一轨迹线的延伸方向与所述第一方向相交,且任意相邻的两个所述第一轨迹线的延伸方向相交;所述第一轨迹线为所述第一虚设电极与所述第一触控电极之间相邻的至少两个所述第一断口所形成的直线段,且最靠近所述第一轨迹线的始端处的所述第一断口所在的第一导电线,与最靠近所述第一轨迹线的末端处的所述第一断口所在的第一导电线平行;
在所述第二虚设电极与所述第二触控电极之间,任意相邻的至少两个所述第二断口所形成的第二轨迹线的延伸方向与所述第二方向相交,且任意相邻的两个所述第二轨迹线的延伸方向相交;所述第二轨迹线为所述第二虚设电极与所述第二触控电极之间相邻的至少两个所述第二断口所形成的直线段,且最靠近所述第二轨迹线的始端处的所述第二断口所在的第二导电线,与最靠近所述第二轨迹线的末端处的所述第二断口所在的第二导电线平行。
可选的,每个所述第一虚设电极也通过所述第一断口所形成的第三轨迹线,与其相邻的所述第一虚设电极间隔设置,所述第三轨迹线为两个所述第一虚设电极之间相邻的至少两个所述第一断口所形成的直线段,且最靠近所述第三轨迹线的始端处的所述第一断口所在的第一导电线,与最靠近所述第三轨迹线的末端处的所述第一断口所在的第一导电线平行;
每个所述第二虚设电极也通过所述第二断口所形成的第四轨迹线,与其相邻的所述第二虚设电极间隔设置,所述第四轨迹线为两个所述第二虚设电极之间相邻的至少两个所述第二断口所形成的直线段,且最靠近所述第四轨迹线的始端处的所述第二断口所在的第二导电线,与最靠近所述第四轨迹线的末端处的所述第二断口所在的第二导电线平行。
可选的,所有的所述第一虚设电极中的至少部分所述第一虚设电极包括至少一个封闭的所述第一导电网格;
所有的所述第二虚设电极中的至少部分所述第二虚设电极也包括至少一个封闭的所述第二导电网格。
可选的,所述多个第一导电结构或所述多个第二导电结构还包括多个第三虚设电极和多个第四虚设电极,每个所述第三虚设电极和每个所述第四虚 设电极,均与所述第一触控电极和所述电极主体部同层设置;
每个所述第三虚设电极位于所述第一触控电极所围成的区域内,且每个所述第三虚设电极与所述第一触控电极之间通过目标断口绝缘;
每个所述第四虚设电极位于所述电极主体部所围成的区域内,且每个所述第四虚设电极与所述电极主体部之间也通过所述目标断口绝缘;
并且,所述第一触控电极与所述电极主体部之间以及沿所述第一方向上相邻的两个所述电极主体部之间,也通过所述目标断口绝缘;
其中,所述目标断口为所述第一断口或所述第二断口。
可选的,在所述第一触控电极与所述电极主体部之间,任意相邻的至少两个所述目标断口所形成的第五轨迹线的延伸方向与所述第一方向相交,且任意相邻的两个所述第五轨迹线的延伸方向相交;所述第五轨迹线为所述第一触控电极与所述电极主体部之间相邻的至少两个所述目标断口所形成的直线段,且最靠近所述第五轨迹线的始端处的所述目标断口所在的目标导电线,与最靠近所述第五轨迹线的末端处的所述目标断口所在的目标导电线平行,所述目标导电线为所述第一导电线或所述第二导电线。
可选的,所有的所述第三虚设电极中的至少部分所述第三虚设电极包括至少一个封闭的目标导电网格;
所有的所述第四虚设电极中的至少部分所述第四虚设电极也包括至少一个封闭的所述目标导电网格;
其中,所述目标导电网格为所述第一导电网格或所述第二导电网格。
第二方面,提供了一种触控显示装置,包括显示面板以及上述的触控面板,所述显示面板位于所述基材远离所述第一承载结构的一侧。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下列举本公开的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本申请实施例的第一种触控面板的结构示意图;
图2示意性地示出了本申请实施例的第二种触控面板的结构示意图;
图3示意性地示出了本申请实施例的第三种触控面板的结构示意图;
图4示意性地示出了本申请实施例的第四种触控面板的结构示意图;
图5示意性地示出了本申请实施例的第五种触控面板的结构示意图;
图6示意性地示出了本申请实施例的一种触控面板的俯视图;
图7示意性地示出了本申请实施例的一种第一导电层的结构示意图;
图8示意性地示出了本申请实施例的一种第二导电层的结构示意图;
图9示意性地示出了本申请实施例的另一种第一导电层的结构示意图;
图10示意性地示出了本申请实施例的另一种第二导电层的结构示意图;
图11示意性地示出了本申请实施例的再一种第一导电层的结构示意图;
图12示意性地示出了本申请实施例的再一种第二导电层的结构示意图;
图13示意性地示出了图11所示的第一导电层和图12所示的第二导电层的叠层关系图;
图14示意性地示出了图13所示的触控面板沿截面C-C’的剖视图;
图15示意性地示出了本申请实施例在基材的两侧形成第一承载层和第四承载层后的示意图;
图16示意性地示出了本申请实施例在第一凹槽内形成第一导电层并在第四凹槽内形成第二消影层后的示意图;
图17示意性地示出了本申请实施例形成第二承载层和第五承载层后的示意图;
图18示意性地示出了本申请实施例的一种触控显示装置的结构示意图。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参照图1,示出了本申请实施例的第一种触控面板的结构示意图,图2示出了本申请实施例的第二种触控面板的结构示意图,图3示出了本申请实施例的第三种触控面板的结构示意图,图4示出了本申请实施例的第四种触控面板的结构示意图,图5示出了本申请实施例的第五种触控面板的结构示意图。
本申请实施例公开了一种触控面板,包括基材10;第一承载结构,位于基材10的其中的一侧,第一承载结构具有多个第一容纳凹槽;第一导电层22,包括多条第一导电线221,每条第一导电线221位于第一容纳凹槽内;第一消影层24,位于第一容纳凹槽内,且第一消影层24在基材10上的正投影至少覆盖部分的第一导电层22在基材10上的正投影。
在实际产品中,基材10可以为柔性基材,其材料可以为PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)、亚克力、COP(Cyclo Olefin Polymer,环烯烃聚合物)、PI(Polyimide,聚酰亚胺)等,基材10也可以为刚性基材。
在基材10的其中一侧依次设置第一承载结构、第一导电层22和第一消影层24,第一承载结构、第一导电层22和第一消影层24均位于基材10的同一侧。
其中,第一承载结构具有多个第一容纳凹槽,每个第一容纳凹槽均贯穿第一承载结构,即沿着垂直于基材10所在平面的方向上,第一容纳凹槽的深度等于第一承载结构的厚度;第一导电层22包括多条第一导电线221,每条第一导电线221均位于第一容纳凹槽内;而第一消影层24也位于第一容纳凹槽内,且第一消影层24在基材10上的正投影至少覆盖部分的第一导电层22在基材10上的正投影。
通过第一消影层24对第一导电层22进行遮挡,降低第一导电层22的反射率,减轻强光反射下第一导电层22的图案被观察到,提高产品的视觉效果。
一种可选的实施方式,如图1和图2所示,第一承载结构包括:第一承载层21,第一承载层21具有多个第一凹槽;第二承载层23,位于第一承载层21远离基材10的一侧,第二承载层23具有多个第二凹槽;其中,第一 容纳凹槽包括第一凹槽和第二凹槽,第一导电线221位于第一凹槽内,第一消影层24位于第二凹槽内;并且,第一承载层21与第一导电层22绝缘,第二承载层23与第一消影层24绝缘。
此时,第一承载结构包括两层承载层,即分别为第一承载层21和第二承载层23。第一承载层21具有多个第一凹槽,每个第一凹槽均贯穿第一承载层21,即沿着垂直于基材10所在平面的方向上,第一凹槽的深度等于第一承载层21的厚度;第一导电层22包括多条第一导电线221,每条第一导电线221均位于第一凹槽内;第二承载层23具有多个第二凹槽,每个第二凹槽均贯穿第二承载层23,即沿着垂直于基材10所在平面的方向上,第二凹槽的深度等于第二承载层23的厚度,并且,第二凹槽在基材10上的正投影至少覆盖部分的第一凹槽在基材10上的正投影,第一凹槽和第二凹槽共同构成第一容纳凹槽;第一消影层24位于第二凹槽内,且第一消影层24在基材10上的正投影至少覆盖部分的第一导电层22在基材10上的正投影。
在实际产品中,若承载层所具有的凹槽深度太大,在压印形成承载层的凹槽后的模具脱落过程中容易导致凹槽变形,因此,受到制作工艺的影响,每个承载层所具有的凹槽的深度与导电层中的导电线的线宽基本一致。
因此,本申请实施例通过在第一承载层21远离基材10的一侧增加第二承载层23,在第一承载层21的第一凹槽内仅设置第一导电层22,在第二承载层23的第二凹槽内仅设置第一消影层24,使得第一导电层22有足够的厚度,避免在一层承载层内同时设置第一导电层和第一消影层时导致的第一导电层的厚度减薄,因此,图1和图2所示的触控面板,可以保证第一导电层22的厚度满足需求,当第一导电层22的厚度较大时,其对应的阻抗较小,则可以提高第一导电层22的电学特性,以提高触控效果。
并且,如图1和图2所示,当第一导电层22和第一消影层24位于不同的承载层所具有的凹槽内时,第一消影层24也有足够的厚度,可避免因第一消影层24的厚度较薄而导致第一导电层22的图案被观察到,从而提高第一消影层24的遮光效果,进一步降低第一导电层22的反射率,避免强光反射下第一导电层22的图案被观察到,提高产品的视觉效果。
另一种可选的实施方式,如图3至图5所示,第一承载结构包括第三承 载层25,第三承载层25具有多个第三凹槽;第一容纳凹槽为第三凹槽,第一导电线221和第一消影层24均位于第三凹槽内,且第一消影层24位于第一导电线221远离基材10的一侧;并且,第三承载层25与第一导电层22和第一消影层24均绝缘。
此时,第一承载结构仅包括一层承载层,即第三承载层25。第三承载层25具有多个第三凹槽,每个第三凹槽均贯穿第三承载层25,即沿着垂直于基材10所在平面的方向上,第三凹槽的深度等于第三承载层25的厚度;并且,第一导电线221和第一消影层24均位于第三凹槽内。
通过将第一承载结构设置仅包括第三承载层25的结构,且将第一导电线221和第一消影层24设置在第三承载层25的第三凹槽内,可节省第三承载层25的制作工艺步骤。
可选的,第一消影层24在基材10上的正投影覆盖全部的第一导电层22在基材10上的正投影。
具体的,第一消影层24在基材10上的正投影可以与第一导电层22在基材10上的正投影重合;或者,第一消影层24在基材10上的正投影除了覆盖第一导电层22在基材10上的正投影之外,还可以覆盖部分的第一承载结构在基材10上的正投影,如图1和图2中的第一承载层21,或者图3至图5中的第三承载层25。
当第一消影层24在基材10上的正投影覆盖全部的第一导电层22在基材10上的正投影时,可通过第一消影层24对第一导电层22进行遮挡,使得第一导电层22所对应的金属网格可见性非常小。
在本申请实施例中,触控面板还包括:第二承载结构,位于基材10的其中一侧,第二承载结构具有多个第二容纳凹槽;第二导电层34,包括多条第二导电线341,每条第二导电线341位于第二容纳凹槽内。
在实际产品中,在基材10的其中一侧还设置有第二承载结构和第二导电层34,第二承载结构和第二导电层34均位于基材10的同一侧。
其中,第二承载结构具有多个第二容纳凹槽,每个第二容纳凹槽均贯穿第二承载结构,即沿着垂直于基材10所在平面的方向上,第二容纳凹槽的深度等于第二承载结构的厚度;第二导电层34包括多条第二导电线341,每 条第二导电线341均位于第二容纳凹槽内。
实际上,是通过第一导电层22和第二导电层34来形成触控面板所需的触控电极。
可选的,如图1、图2、图4和图5所示,触控面板还包括:第二消影层32,位于第二容纳凹槽内,且第二消影层32在基材10上的正投影至少覆盖部分的第二导电层34在基材10上的正投影。
通过第二消影层32对第二导电层34进行遮挡,降低第二导电层34的反射率,减轻强光反射下第二导电层34的图案被观察到,提高产品的视觉效果。
如图1和图2所示,第二承载结构包括:第四承载层31,第四承载层31具有多个第四凹槽;第五承载层33,与第四承载层31位于基材10的同一侧,第五承载层33具有多个第五凹槽;其中,第二容纳凹槽包括第四凹槽和第五凹槽,第二消影层32位于第四凹槽内,第二导电线34位于第五凹槽内;并且,第四承载层31与第二消影层32绝缘,第五承载层33与第二导电层34绝缘。
此时,第二承载结构包括两层承载层,即分别为第四承载层31和第五承载层33,在基材10的其中一侧还分别设置的是第四承载层31、第二消影层32、第五承载层33和第二导电层34,在将本申请实施例中的触控面板贴附在显示面板上时,第四承载层31位于第五承载层33远离显示面板的一侧。
其中,第四承载层31具有多个第四凹槽,每个第四凹槽均贯穿第四承载层31,即沿着垂直于基材10所在平面的方向上,第四凹槽的深度等于第四承载层31的厚度;第二消影层32位于第四凹槽内;第五承载层33具有多个第五凹槽,每个第五凹槽均贯穿第五承载层33,即沿着垂直于基材10所在平面的方向上,第五凹槽的深度等于第五承载层33的厚度,并且,第四凹槽在基材10上的正投影至少覆盖部分的第五凹槽在基材10上的正投影,第四凹槽和第五凹槽共同构成第二容纳凹槽;第二导电层34包括多条第二导电线341,每条第二导电线341均位于第五凹槽内,且第二消影层32在基材10上的正投影至少覆盖部分的第二导电层34在基材10上的正投影。
相应的,在触控面板中,单独设置第四承载层31和第五承载层33,在 第四承载层31的第四凹槽内仅设置第二消影层32,在第五承载层33的第五凹槽内仅设置第二导电层34,使得第二导电层34有足够的厚度,因此,可以减小第二导电层34的阻抗,从而提高第二导电层34的电学特性,以提高触控效果。此时,触控面板中的承载层分别为第一承载层21、第二承载层23、第四承载层31和第五承载层33。
并且,如图1和图2所示,当第二消影层32和第二导电层34位于不同的承载层所具有的凹槽内时,第二消影层32也有足够的厚度,可避免因第二消影层32的厚度较薄而导致第二导电层34的图案被观察到,从而提高第二消影层32的遮光效果,进一步降低第二导电层34的反射率,避免强光反射下第二导电层34的图案被观察到,提高产品的视觉效果。
如图4和图5所示,第二承载结构包括第六承载层35,第六承载层35具有多个第六凹槽;第二容纳凹槽为第六凹槽,第二消影层32和第二导电线341均位于第六凹槽内;并且,第六承载层35与第二消影层32和第二导电层34均绝缘。
此时,第二承载结构仅包括一层承载层,即第六承载层35。第六承载层35具有多个第六凹槽,每个第六凹槽均贯穿第六承载层35,即沿着垂直于基材10所在平面的方向上,第六凹槽的深度等于第六承载层35的厚度;并且,第二消影层32和第二导电线341均位于第六凹槽内。
通过将第二承载结构设置仅包括第六承载层35的结构,且将第二消影层32和第二导电线341设置在第六承载层35的第六凹槽内,可节省第六承载层35的制作工艺步骤。
需要说明的是,图3所示的触控面板,在第二承载结构的第二容纳凹槽内仅设置第二导电线341,未设置第二消影层,此时的第二承载结构为第六承载层35。
可选的,第二消影层32在基材10上的正投影覆盖全部的第二导电层34在基材10上的正投影。
具体的,第二消影层32在基材10上的正投影可以与第二导电层34在基材10上的正投影重合;或者,第二消影层32在基材10上的正投影除了覆盖第二导电层34在基材10上的正投影之外,还可以覆盖部分的第二承载 结构在基材10上的正投影,如图1和图2所示的第五承载层33,或者图4和图5中的第六承载层35。
当第二消影层32在基材10上的正投影覆盖全部的第二导电层34在基材10上的正投影时,可通过第二消影层32对第二导电层34进行遮挡,使得第二导电层34所对应的金属网格可见性非常小。
在实际产品中,触控面板中的第一导电层22和第二导电层34可以设置在基材10相对的两侧,也可以设置在基材10的同一侧。当第一导电层22和第二导电层34设置在基材10相对的两侧时,触控面板后续与FPC(Flexible Printed Circuit,柔性电路板)进行绑定时也需要双面绑定;当第一导电层22和第二导电层34设置在基材10的同一侧时,触控面板后续与FPC进行绑定时只需单面绑定即可。
如图1、图3至图5所示,第一承载结构位于基材10的第一侧,第二承载结构位于基材10的第二侧,第一侧和第二侧为基材10上相对的两侧。
此时,第一导电层22和第二导电层34设置在基材10相对的两侧,在将图1、图3至图5所示的触控面板贴附在显示面板上时,基材10的第二侧相对于基材10的第一侧更靠近显示面板。
如图1所示,第一承载层21和第二承载层23位于基材10的第一侧,第四承载层31和第五承载层33位于基材10的第二侧;如图3至图5所示,第三承载层25位于基材10的第一侧,第六承载层35位于基材10的第二侧。
针对图1所示的异侧设置第一导电层22和第二导电层34的产品,将第二消影层32放置在第四承载层31的第四凹槽内,并将第二导电层34放置在第五承载层33的第五凹槽内,由于第二导电层34与第五承载层33的接触面积增大,则使得第二导电层34不易发生剥落现象,从而提高产品良率。
如图2所示,第一承载结构和第二承载结构位于基材10的同一侧,且第二承载结构位于第一承载结构远离基材10的一侧,在第一承载结构与第二承载结构之间设置有绝缘层40。
此时,第一承载层21、第二承载层23、第四承载层31和第五承载层33均位于基材10的同一侧,且第五承载层33位于第二承载层23远离第一承载层21的一侧,第四承载层31位于第五承载层33远离第二承载层23的一 侧;并且,在第二承载层23与第五承载层33之间设置有绝缘层40。
此时,第一导电层22和第二导电层34设置在基材10的同一侧,第二导电层34位于第二消影层32与绝缘层40之间;并且,在将图2所示的触控面板贴附在显示面板上时,第一承载层21、第二承载层23、第四承载层31和第五承载层33均位于基材10远离显示面板的一侧。
通过在第二承载层23与第五承载层33之间增加绝缘层40,可增加第一导电层22和第二导电层34之间的距离,防止第一导电层22和第二导电层34之间的距离过近而影响触控效果;其中,绝缘层40的厚度为1.5μm至4μm。
需要说明的是,第一凹槽、第二凹槽、第四凹槽和第五凹槽在沿着目标截面上的截面形状为矩形或梯形,或者,第三凹槽和第六凹槽在沿着目标截面上的截面形状为矩形或梯形;该目标截面垂直于基材10所在的平面,且与对应容纳凹槽内的导电线的线宽方向平行。
例如,针对第一凹槽和第二凹槽,该目标截面是与第一导电线221的线宽方向平行的,而针对第四凹槽和第五凹槽,该目标截面是与第二导电线341的线宽方向平行的;相应的,针对第三凹槽,该目标截面是与第一导电线221的线宽方向平行的,而针对第六凹槽,该目标截面是与第二导电线341的线宽方向平行的。
若各个容纳凹槽在沿着目标截面上的截面形状为梯形时,第一导电线221、每个第一容纳凹槽内的第一消影层24、第二导电线341以及每个第二容纳凹槽内的第二消影层32,沿着目标截面上的截面形状均为梯形;并且,每个第一容纳凹槽内的第一消影层24和第一导电线221的组合结构沿着目标截面上的截面形状也为梯形;每个第二容纳凹槽内的第二消影层32和第二导电线341的组合结构沿着目标截面上的截面形状也为梯形。
值得注意的是,截面形状为梯形指的是大致形状为梯形,允许其在工艺误差范围内的变动。
也就是说,每个第一容纳凹槽内的第一消影层24和第一导电线221的组合结构,其侧面为平滑的表面;相应的,每个第二容纳凹槽内的第二消影层32和第二导电线341的组合结构,其侧面也为平滑的表面;该侧面指的是组合结构中与基材10所在平面不平行设置的表面。
并且,针对异侧设置第一导电层22和第二导电层34的产品,从第二承载结构指向第一承载结构的方向上,第一导电线221和第一容纳凹槽内的第一消影层24沿着目标截面上的截面形状均为倒置的梯形,此时,第一消影层24在基材10上的正投影覆盖全部的第一导电层22在基材10上的正投影,而从第二承载结构指向第一承载结构的方向上,第二导电线341和第二容纳凹槽内的第二消影层32沿着目标截面上的截面形状均为正置的梯形,此时,第二消影层32在基材10上的正投影覆盖部分的第二导电层34在基材10上的正投影。
而针对同侧设置第一导电层22和第二导电层34的产品,从第二承载结构指向第一承载结构的方向上,第一导电线221、第一容纳凹槽内的第一消影层24、第二导电线341和第二容纳凹槽内的第二消影层32沿着目标截面上的截面形状均为倒置的梯形,此时,第一消影层24在基材10上的正投影覆盖全部的第一导电层22在基材10上的正投影,第二消影层32在基材10上的正投影覆盖全部的第二导电层34在基材10上的正投影。
如图1至图5所示,第一导电线221远离基材10一侧的表面积,等于凹槽内的第一消影层24朝向基材10一侧的表面积;如图1、图4和图5所示,针对异侧设置第一导电层22和第二导电层34的触控面板,凹槽内的第二消影层32远离基材10一侧的表面积,等于第二导电线341朝向基材10一侧的表面积,如图2所示,针对同侧设置第一导电层22和第二导电层34的触控面板,凹槽内的第二消影层32朝向基材10一侧的表面积,等于第二导电线341远离基材10一侧的表面积。
在实际产品中,如图6所示,触控面板包括沿第一方向分布的多条第一触控电极224以及沿第二方向分布的多条第二触控电极344,以通过第一触控电极224和第二触控电极344实现触控功能,第一触控电极224和第二触控电极344中的一者为触控驱动电极,另一者为触控感应电极。
需要说明的是,沿着图6中的截面A-A’得到的剖视图,为图1至图5中任一所示的触控面板;在实际产品中,每条第一触控电极224和每条第二触控电极344实际上均为网状结构,图6仅示出了第一触控电极224和第二触控电极344的排布方式,图6中的区域B1的放大图可参照图7至图13所 示,在图7至图13中,示出了第一触控电极224和第二触控电极344的实际的网状结构;另外,图6至图13中的X方向可以理解为第二方向,Y方向可以理解为第一方向。
在本申请实施例中,如图7至图13所示,多条第一导电线221构成多个第一导电网格222,多个第一导电网格222中的至少部分第一导电网格222对应的第一导电线221具有第一断口223,第一断口223将第一导电层22分隔出多个第一导电结构;多条第二导电线341构成多个第二导电网格342,多个第二导电网格342中的至少部分第二导电网格342对应的第二导电线341具有第二断口343,第二断口343将第二导电层34分隔出多个第二导电结构;其中,多个第一导电结构和多个第二导电结构共同构成网格状的第一触控电极224和网格状的第二触控电极344。
此时,每个第一导电结构包括多个第一导电网格222,每个第二导电结构包括多个第二导电网格342,且每个第一导电网格222为多条第一导电线221构成的多边形,每个第二导电网格342为多条第二导电线341构成的多边形。
例如,第一导电网格222和第二导电网格342的形状为矩形、菱形、三角形、五边形或六边形等。
需要说明的是,第一断口223垂直于第一导电线221的延伸方向和第一导电线221的线宽所在的方向,第二断口343垂直于第二导电线341的延伸方向第二导电线341的线宽所在的方向。并且,第一断口223可以是在压印形成第一承载结构的第一容纳凹槽时形成的,后续直接在第一容纳凹槽内形成第一导电线221,即可得到存在第一断口223的第一导电线221;或者,也可以在形成第一承载结构后沉积一整层的第一导电薄膜,并对第一导电薄膜进行图案化处理,以得到存在第一断口223的第一导电线221。第二断口343的形成过程类似,在此不再赘述。
在实际产品中,第一导电网格222和第二导电网格342交错设置,即第一导电网格222和第二导电网格342不是完全重合的。
一些实施例中,如图7和图9所示,多个第一导电结构包括多条沿第一方向延伸的第一触控电极224,如图8和图10所示,多个第二导电结构包括 多条沿第二方向延伸的第二触控电极344;第一方向和第二方向相交。
此时,第一导电层22包括多条沿第一方向延伸的第一触控电极224,每条第一触控电极224包括多个第一导电网格222,相邻两条第一触控电极224之间绝缘设置,而每一条第一触控电极224包括的各个第一导电网格222是相互连接的;第二导电层34包括多条沿第二方向延伸的第二触控电极344,每条第二触控电极344包括多个第二导电网格342,相邻两条第二触控电极344之间绝缘设置,而每一条第二触控电极344包括的各个第二导电网格342是相互连接的。
例如,第一方向和第二方向相互垂直,当本申请实施例中的触控面板贴附在显示面板上时,第一方向可以与显示面板的列方向平行,第二方向与显示面板的行方向平行。
另一些实施例中,多个第一导电结构和多个第二导电结构中的一者包括多条沿第一方向延伸的第一触控电极和多个电极主体部,另一者包括多个桥接电极;每个桥接电极通过贯穿介质层的过孔,与第二方向上相邻的两个电极主体部连接,以形成多条沿第二方向延伸的第二触控电极;第一方向和第二方向相交;其中,介质层为第一导电层22与第二导电层34之间的膜层。
一种可选的实施方式中,如图11所示,多个第一导电结构包括多条沿第一方向延伸的第一触控电极224和多个电极主体部225,如图12所示,多个第二导电结构包括多个桥接电极345。此时,第一导电层22包括多条沿第一方向延伸的第一触控电极224和多个电极主体部225,相邻两条第一触控电极224之间设置有多个电极主体部225,第一触控电极224与各个电极主体部225之间均绝缘设置,且各个电极主体部225之间也是绝缘设置的,而每一条第一触控电极224包括的各个第一导电网格222是相互连接的;第二导电层34包括多个桥接电极345,每个桥接电极345包括多个第二导电网格342,各个桥接电极345之间是绝缘设置的。
另一种可选的实施方式中,多个第一导电结构包括多个桥接电极,多个第二导电结构包括多条沿第一方向延伸的第一触控电极和多个电极主体部。此时,第一导电层包括多个桥接电极,每个桥接电极包括多个第一导电网格,各个桥接电极之间是绝缘设置的;第二导电层包括多条沿第一方向延伸的第 一触控电极和多个电极主体部,相邻两条第一触控电极之间设置有多个电极主体部,第一触控电极与各个电极主体部之间均绝缘设置,且各个电极主体部之间也是绝缘设置的,而每一条第一触控电极包括的各个第二导电网格是相互连接的。
并且,如图13和图14所示,每个桥接电极345通过贯穿介质层的过孔,与第二方向上相邻的两个电极主体部225连接,以形成多个沿第二方向延伸的第二触控电极344。
其中,针对图2所示的触控面板,第一承载层21、第二承载层23、第四承载层31和第五承载层33均位于基材10的同一侧,介质层为绝缘层40和第一消影层24。
也就是说,针对第一导电层22和第二导电层34同侧设置的触控面板,每个桥接电极345是通过贯穿绝缘层40和第一消影层24的过孔,与第二方向上相邻的两个电极主体部225连接的。
需要说明的是,沿图13所示的截面C-C’得到的剖视图如图14所示,在图14中,未示出第二承载层23、第四承载层31、第一消影层24和第二消影层32的层结构,仅体现桥接电极345与电极主体部225的连接关系,触控面板的实际剖面图可参照图2。
需要说明的是,针对第一导电层22和第二导电层34异侧设置的触控面板,若要实现基材10一侧的桥接电极与另一侧的电极主体部实现连接,需要在基材10上形成贯穿的过孔,但由于基材10的厚度较大,过孔形成不易实现,因此,为了便于制作,本申请实施例中通过桥接电极与电极主体部连接形成的第二触控电极的方式,主要适用于第一导电层22和第二导电层34同侧设置的触控面板;另外,图13中的桥接电极345仅示出了桥接电极的位置,桥接电极345的实际形状参照图12所示。
可选的,第一导电线221的线宽小于或等于第二导电线341的线宽。
如图1至图4所示,第一导电线221的线宽d1与第二导电线341的线宽d2相等;如图5所示,第二导电线341的线宽d2大于第一导电线221的线宽d1。
若将第一导电线221的线宽与第二导电线341的线宽设置成相等,可改 善莫尔纹的产生,提高产品的光学性能。而若在图5中,将第二导电线341的线宽d2设置成大于第一导电线221的线宽d1,可使得第二导电层34与第二消影层32的接触面积增大,则使得第二导电层34不易发生剥落现象。
需要说明的是,第一导电线221的线宽d1指的是第一导电线221与第一消影层24接触的表面处的线宽,第二导电线341的线宽d2也指的是第二导电线341与第二消影层32接触的表面处的线宽。
在本申请实施例中,第一承载结构和第二承载结构的材料均为光固化胶,如紫外光固化胶。
如图1和图2所示,第一承载层21、第二承载层23、第四承载层31和第五承载层33的材料均为光固化胶,且第一承载层21、第二承载层23、第四承载层31和第五承载层33的厚度为10μm至50μm。
可选的,第一承载层21、第二承载层23、第四承载层31和第五承载层33的厚度均相等。例如,第一承载层21、第二承载层23、第四承载层31和第五承载层33的厚度均可以为10μm、20μm、30μm、40μm、50μm等。
而如图3至图5所示,第三承载层25和第六承载层35的材料也为光固化胶。
当然,第一承载结构和第二承载结构的材料也可以为其他具有一定支撑强度的胶系材料,不局限于上述的光固化胶。
在本申请实施例中,第一消影层24和第二消影层32均为遮光油墨层或遮光氧化物层,且第一消影层24和第二消影层32的透过率小于或等于10%。
例如,该遮光油墨层为黑色油墨层,该遮光氧化物层为黑色氧化物层,如氧化钼。
在本申请实施例中,第一导电层22和第二导电层34为导电银浆层;或者,第一导电层22和第二导电层34的材料为铜、钼、铝和钛中的至少一者。
具体的,第一导电层22和第二导电层34可以为单层结构,如铜金属层,第一导电层22和第二导电层34也可以为三层结构,其包括依次层叠设置的钼金属层、铝金属层和钼金属层,或者包括依次层叠设置的钛金属层、铝金属层和钛金属层。
在本申请实施例中,第一导电层22和第一消影层24的厚度之和与第一 承载结构的厚度一致;第二导电层34和第二消影层32的厚度之和与第二承载结构的厚度一致。
如图1和图2所示,第一导电层22和第一消影层24的厚度之和等于第一承载层21和第二承载层23的厚度之和;具体的,第一导电层22的厚度等于第一承载层21的厚度,使得第一导电层22远离基材10一侧的表面与第一承载层21远离基材10一侧的表面位于同一平面,且第一消影层24的厚度等于第二承载层23的厚度,使得第一消影层24远离基材10一侧的表面与第二承载层23远离基材10一侧的表面位于同一平面。并且,第二导电层34和第二消影层32的厚度之和等于第四承载层31和第五承载层33的厚度之和;具体的,第二消影层32的厚度等于第四承载层31的厚度,使得第二消影层32远离基材10一侧的表面与第四承载层31远离基材10一侧的表面位于同一平面,且第二导电层34的厚度等于第五承载层33的厚度,使得第二导电层34远离基材10一侧的表面与第五承载层33远离基材10一侧的表面位于同一平面。
如图3至图5所示,第一导电层22和第一消影层24的厚度之和等于第三承载层25的厚度,使得第一消影层24远离基材10一侧的表面与第三承载层25远离基材10一侧的表面位于同一平面;而如图4和图5所示,第二导电层34和第二消影层32的厚度之和等于第六承载层35的厚度,使得第二导电层34远离基材10一侧的表面与第六承载层35远离基材10一侧的表面位于同一平面。
当然,可以理解的是,针对图3所示的触控面板,第二导电层34的厚度等于第六承载层35的厚度,使得第二导电层34远离基材10一侧的表面与第六承载层35远离基材10一侧的表面位于同一平面。
值的注意的是,上述中的厚度一致指的是厚度基本相等,而两个表面位于同一平面指的是这两个表面基本齐平,其均允许在工艺允许误差范围内的变动。
如图7和图9所示,多个第一导电结构还包括设置在相邻两条第一触控电极224之间的多个第一虚设电极226,每个第一虚设电极226与第一触控电极224之间通过第一断口223绝缘;如图8和图10所示,多个第二导电 结构还包括设置在相邻两条第二触控电极344之间的多个第二虚设电极346,每个第二虚设电极346与第二触控电极344之间通过第二断口343绝缘。
此时,触控面板包括多个阵列分布的触控单元,每个触控单元沿第一方向上的尺寸为b,每个触控单元沿第二方向上的尺寸为a,由于手指按压触控面板时,手指与触控面板沿第一方向和第二方向的尺寸基本上在4.2mm左右,为了更好的识别触控位置,需要将a和b均设置为小于或等于4.2mm。每个触控单元均包括第一触控电极、第二触控电极和虚设电极,例如,沿第一方向延伸的第一触控电极为触控驱动电极,沿第二方向延伸的第二触控电极为触控感应电极,则每条触控驱动电极沿第二方向上的宽度为0.75a~0.99a,每条触控感应电极沿第一方向上的宽度为0.5b~0.75b,其余区域为虚设电极的位置。通过合理设置触控驱动电极、触控感应电极和虚设电极的尺寸,使得触控位置的检测更准确。
具体的,虚设电极包括位于相邻两条第一触控电极224之间的多个第一虚设电极226,以及位于相邻两条第二触控电极344之间的多个第二虚设电极346,第一虚设电极226位于第一导电层22,第二虚设电极346位于第二导电层34。
需要说明的是,第一虚设电极226和第二虚设电极346并不起到传输和感应触控信号的作用,在第一导电层22中设置第一虚设电极226以及在第二导电层34设置第二虚设电极346,一方面是为了平衡视觉效果,防止未设置第一触控电极224和第二触控电极344的区域由于光学干涉而产生的莫尔纹的可能性;另一方面,设置第一虚设电极226可以使得相邻两条第一触控电极224之间的间距增大,防止相邻两条第一触控电极224的相互影响,相应的,设置第二虚设电极346可以使得相邻两条第二触控电极344之间的间距增大,防止相邻两条第二触控电极344的相互影响。
此外,为了避免相邻的第一触控电极224之间发生短路,需要将每个第一虚设电极226与第一触控电极224之间通过第一断口223绝缘;相应的,为了避免相邻的第二触控电极344之间发生短路,需要将每个第二虚设电极346与第二触控电极344之间通过第二断口343绝缘。
可选的,在第一虚设电极226与第一触控电极224之间,任意相邻的至少两个第一断口223所形成的第一轨迹线51的延伸方向与第一方向相交,且任意相邻的两个第一轨迹线51的延伸方向相交,第一轨迹线51为第一虚设电极226与第一触控电极224之间相邻的至少两个第一断口223所形成的直线段,且最靠近第一轨迹线51的始端处的第一断口223所在的第一导电线221,与最靠近第一轨迹线51的末端处的第一断口223所在的第一导电线221平行;在第二虚设电极346与第二触控电极344之间,任意相邻的至少两个第二断口343所形成的第二轨迹线52的延伸方向与第二方向相交,且任意相邻的两个第二轨迹线52的延伸方向相交,第二轨迹线52为第二虚设电极346与第二触控电极344之间相邻的至少两个第二断口343所形成的直线段,且最靠近第二轨迹线52的始端处的第二断口343所在的第二导电线341,与最靠近第二轨迹线52的末端处的第二断口343所在的第二导电线341平行。
此时,将第一虚设电极226与第一触控电极224之间相邻的至少两个第一断口223所形成的直线段称为第一轨迹线51,将第二虚设电极346与第二触控电极344之间相邻的至少两个第二断口343所形成的直线段称为第二轨迹线52。如图7所示,是第一虚设电极226与第一触控电极224之间相邻的两个第一断口223形成第一轨迹线51,如图9所示,是第一虚设电极226与第一触控电极224之间相邻的三个第一断口223形成第一轨迹线51,当然,也可以在第一虚设电极226与第一触控电极224之间通过相邻的四个或五个第一断口223形成第一轨迹线51;相应的,如图8所示,是第二虚设电极346与第二触控电极344之间相邻的两个第二断口343形成第二轨迹线52,如图10所示,是第二虚设电极346与第二触控电极344之间相邻的三个第二断口343形成第二轨迹线52,当然,也可以在第二虚设电极346与第二触控电极344之间通过相邻的四个或五个第二断口343形成第二轨迹线52,本申请实施例对形成一条轨迹线所需的断口数量不做限制。
其中,每条第一轨迹线51的延伸方向与第一方向相交,且任意相邻的两个第一轨迹线51的延伸方向相交,因此,每条第一触控电极224与各个第一虚设电极226之间的各条第一轨迹线51组合起来不是沿着第一方向的 直线;相应的,每条第二轨迹线52的延伸方向与第二方向相交,且任意相邻的两个第二轨迹线52的延伸方向相交,因此,每条第二触控电极344与各个第二虚设电极346之间的各条第二轨迹线52组合起来不是沿着第二方向的直线。
而在相关技术中,第一触控电极与各个第一虚设电极之间的所有第一轨迹线都是平行于第一方向、且沿着第一方向延伸的直线段,在强光反射下可以看到明显的、规律性的条纹,表现出明暗相间的特征;而第二触控电极与各个第二虚设电极之间的所有第二轨迹线也都是平行于第二方向、且沿着第二方向延伸的直线段,在强光反射下也可以看到明显的、规律性的条纹,表现出明暗相间的特征。因此,本申请实施例通过将第一轨迹线51设置成与第一方向相交,且任意相邻的两个第一轨迹线51的延伸方向相交,使得第一触控电极224与各个第一虚设电极226之间的第一断口223呈现无规律、随机化的设计,并且将第二轨迹线52设置成与第二方向相交,且任意相邻的两个第二轨迹线52的延伸方向相交,使得第二触控电极344与各个第二虚设电极346之间的第二断口343也呈现无规律、随机化的设计,从而避免强光反射下明显的、规律性的条纹的现象,提高产品的光学性能。
在图7中,在每条第一轨迹线51中,每个第一断口223均位于第一导电网格222中的第一导电线221的1/2处,且每条第一轨迹线51中的两个第一断口223所在的第一导电线221相互平行,此时,每条第一轨迹线51中的两个第一断口223分别指的是:靠近第一轨迹线51的始端处的第一断口223和最靠近第一轨迹线51的末端处的第一断口223;而相邻两条第一轨迹线51的延伸方向之间的夹角实际为90°。
相应的,在图8中,在每条第二轨迹线52中,每个第二断口343也是位于第二导电网格342中的第二导电线341的1/2处,且每条第二轨迹线52中的两个第二断口343所在的第一导电线221相互平行,此时,每条第二轨迹线52中的两个第二断口343分别指的是:最靠近第二轨迹线52的始端处的第二断口343和最靠近第二轨迹线52的末端处的第二断口343;而相邻两条第二轨迹线52的延伸方向之间的夹角为90°。
而在图9中,每条第一轨迹线51中的三个第一断口223分别位于不同 的第一导电网格222中的第一导电线221的3/4处、1/2处和1/4处,且在同一第一轨迹线51中,位于1/2处的第一断口223所在的第一导电线221,分别与位于3/4处的第一断口223所在的第一导电线221以及位于1/4处的第一断口223所在的第一导电线221相交,且位于3/4处的第一断口223所在的第一导电线221与位于1/4处的第一断口223所在的第一导电线221平行,此时,每条第一轨迹线51中位于3/4处的第一断口223和位于1/4处的第一断口223分别指的是:靠近第一轨迹线51的始端处的第一断口223和最靠近第一轨迹线51的末端处的第一断口223;而相邻两条第一轨迹线51的延伸方向之间的夹角为钝角。
相应的,在图10中,每条第二轨迹线52中的三个第二断口343分别位于不同的第二导电网格342中的第二导电线341的3/4处、1/2处和1/4处,且在同一第二轨迹线52中,位于1/2处的第二断口343所在的第二导电线341,分别与位于3/4处的第二断口343所在的第二导电线341以及位于1/4处的第二断口343所在的第二导电线341相交,且位于3/4处的第二断口343所在的第二导电线341与位于1/4处的第二断口343所在的第二导电线341平行,此时,每条第二轨迹线52中位于3/4处的第二断口343和位于1/4处的第二断口343分别指的是:最靠近第二轨迹线52的始端处的第二断口343和最靠近第二轨迹线52的末端处的第二断口343;而相邻两条第二轨迹线52的延伸方向之间的夹角为钝角。
需要说明的是,本申请实施例中的第一断口223和第二断口343的划分方式不局限于上述两种方式,还可以将每个第一导电网格222中的第一导电线221划分为N等份,第一断口223位于x/N处,N为大于2的正整数,x为小于N的正整数,且需要使得第一虚设电极226与第一触控电极224之间的第一断口223所形成的所有第一轨迹线51组合起来不是一条直线即可,第二断口343的划分方式类似,使得第二虚设电极346与第二触控电极344之间的第二断口343所形成的所有第二轨迹线52组合起来也不是一条直线。
另外,在实际产品中,是不存在第一轨迹线51和第二轨迹线52的,图中示出第一轨迹线51和第二轨迹线52,只是为了便于观察各个第一断口223和各个第二断口343的分布规律;并且,为了便于观察相邻两条第一轨迹线 51的规律,将相邻两条第一轨迹线51连接在一起,相应的,为了便于观察相邻两条第二轨迹线52的规律,将相邻两条第二轨迹线52连接在一起。
可选的,如图7和图9所示,每个第一虚设电极226也通过第一断口223所形成的第三轨迹线53,与其相邻的第一虚设电极226间隔设置,第三轨迹线53为两个第一虚设电极226之间相邻的至少两个第一断口223所形成的直线段,且最靠近第三轨迹线53的始端处的第一断口223所在的第一导电线221,与最靠近第三轨迹线53的末端处的第一断口223所在的第一导电线221平行;如图8和图10所示,每个第二虚设电极346也通过第二断口343所形成的第四轨迹线54,与其相邻的第二虚设电极346间隔设置,第四轨迹线54为两个第二虚设电极346之间相邻的至少两个第二断口343所形成的直线段,且最靠近第四轨迹线54的始端处的第二断口343所在的第二导电线341,与最靠近第四轨迹线54的末端处的第二断口343所在的第二导电线341平行。
具体的,第三轨迹线53的延伸方向与第一方向相交,且任意相邻的两条第三轨迹线53的延伸方向也相交;相应的,第四轨迹线54的延伸方向与第二方向相交,且任意相邻的两条第四轨迹线54的延伸方向也相交。
如图7和图9所示,是将两个第一虚设电极226之间相邻的三个第一断口223所形成的直线段称为第三轨迹线53,如图8和图10所示,是将两个第二虚设电极346之间相邻的三个第二断口343所形成的直线段称为第四轨迹线54。
如图7和图9所示,所有的第一虚设电极226中的至少部分第一虚设电极226包括至少一个封闭的第一导电网格222;如图8和图10所示,所有的第二虚设电极346中的至少部分第二虚设电极346也包括至少一个封闭的第二导电网格342。
在相关技术中,第一虚设电极和第二虚设电极的内部也存在断口,断口密度较大,使得第一虚设电极不包括完整的第一导电网格,以及第二虚设电极也不包括完整的第二导电网格,在强光反射下容易出现明暗条纹。而本申请实施例通过改变第一虚设电极226和第二虚设电极346内的断口设计,使得至少部分第一虚设电极226包括至少一个封闭的第一导电网格222,以及 至少部分第二虚设电极346也包括至少一个封闭的第二导电网格342,从而降低第一虚设电极226和第二虚设电极346内的断口密度,以减轻强光反射下出现的明暗条纹。
如图11所示,多个第一导电结构或多个第二导电结构还包括多个第三虚设电极227和多个第四虚设电极228,每个第三虚设电极227和每个第四虚设电极228,均与第一触控电极224和电极主体部225同层设置;每个第三虚设电极227位于第一触控电极224所围成的区域内,且每个第三虚设电极227与第一触控电极224之间通过目标断口绝缘;每个第四虚设电极228位于电极主体部225所围成的区域内,且每个第四虚设电极228与电极主体部225之间也通过目标断口绝缘;并且,第一触控电极224与电极主体部225之间以及沿第一方向上相邻的两个电极主体部225之间,也通过目标断口绝缘;其中,目标断口为第一断口223或第二断口343。
具体的,当多个第一导电结构包括多条沿第一方向延伸的第一触控电极224和多个电极主体部225,多个第二导电结构包括多个桥接电极345时,多个第一导电结构还包括第三虚设电极227和第四虚设电极228,此时的目标断口为第一断口223;而当多个第一导电结构包括多个桥接电极,多个第二导电结构包括多条沿第一方向延伸的第一触控电极和多个电极主体部,多个第二导电结构还包括第三虚设电极227和第四虚设电极228,此时的目标断口为第二断口343。
通过在第一触控电极224所围成的区域内设置第三虚设电极227,并在电极主体部225所围成的区域内设置第四虚设电极228,第三虚设电极227和第四虚设电极228可以遮挡或引走触控驱动电极产生的部分电场线,从而减小触控感应电极接收到的电场线,使得触控驱动电极与触控感应电极之间的参考电容减小,相应的可增大手指触摸引起的电容变化量相对于参考电容的占比,从而提升触控面板的触控灵敏度和检测结果的准确性。
可选的,在第一触控电极224与电极主体部225之间,任意相邻的至少两个目标断口所形成的第五轨迹线55的延伸方向与第一方向相交,且任意相邻的两个第五轨迹线55的延伸方向相交,第五轨迹线55为第一触控电极224与电极主体部225之间相邻的至少两个目标断口所形成的直线段,且最 靠近第五轨迹线55的始端处的目标断口所在的目标导电线,与最靠近第五轨迹线55的末端处的目标断口所在的目标导电线平行,目标导电线为第一导电线221或第二导电线341。
此时,将第一触控电极224与电极主体部225之间相邻的至少两个目标断口所形成的直线段称为第五轨迹线55,目标断口为第一断口223或第二断口343,当目标断口为第一断口223时,目标导电线为第一导电线221,当目标断口为第二断口343时,目标导电线为第二导电线341;如图11所示,是相邻的四个第一断口223形成第五轨迹线55。
其中,每条第五轨迹线55的延伸方向与第一方向相交,且任意相邻的两个第五轨迹线55的延伸方向相交,因此,每条第一触控电极224与各个电极主体部225之间的各条第五轨迹线55组合起来不是沿着第一方向的直线,使得第一触控电极224与各个电极主体部225之间的目标断口呈现无规律、随机化的设计,从而避免强光反射下明显的、规律性的条纹的现象,提高产品的光学性能。
在图11中,每个第一断口223均位于第一导电网格222中的第一导电线221的1/2处,且每条第五轨迹线55中的四个第一断口223所在的第一导电线221相互平行,相邻两条第五轨迹线55的延伸方向之间的夹角为90°。
另外,以第一触控电极224和多个电极主体部225位于第一导电层22,桥接电极345位于第二导电层34为例,在图11中,每个第三虚设电极227与第一触控电极224之间通过第一断口223所形成的第六轨迹线56间隔设置,第六轨迹线56为第三虚设电极227与第一触控电极224之间相邻的至少两个第一断口223所形成的直线段,且最靠近第六轨迹线56的始端处的第一断口223所在的第一导电线221,与最靠近第六轨迹线56的末端处的第一断口223所在的第一导电线221平行;相应的,每个第四虚设电极228与电极主体部225之间也通过第一断口223所形成的第七轨迹线57间隔设置,第七轨迹线57为第四虚设电极228与电极主体部225之间相邻的至少两个第一断口223所形成的直线段,且最靠近第七轨迹线57的始端处的第一断口223所在的第一导电线221,与最靠近第七轨迹线57的末端处的第一断口223所在的第一导电线221平行;而每个电极主体部225也通过第一断口223 所形成的第八轨迹线58与其相邻的电极主体部225间隔设置,第八轨迹线58为两个电极主体部225之间相邻的至少两个第一断口223所形成的直线段,且最靠近第八轨迹线58的始端处的第一断口223所在的第一导电线221,与最靠近第八轨迹线58的末端处的第一断口223所在的第一导电线221平行。
值的注意的是,本文中涉及到的平行指的是基本平行,涉及到的垂直指的是基本垂直,其均允许在工艺允许误差范围内的变动。
可选的,所有的第三虚设电极227中的至少部分第三虚设电极227包括至少一个封闭的目标导电网格;所有的第四虚设电极228中的至少部分第四虚设电极228也包括至少一个封闭的目标导电网格;其中,目标导电网格为第一导电网格222或第二导电网格342。
其中,当多个第一导电结构包括第三虚设电极227和第四虚设电极228时,此时的目标导电网格为第一导电网格222,而当多个第二导电结构包括第三虚设电极227和第四虚设电极228时,此时的目标导电网格为第二导电网格342。
通过合理设计第三虚设电极227与第一触控电极224之间的目标断口,以及第四虚设电极228与电极主体部225之间的目标断口,使得至少部分的第三虚设电极227和至少部分的第四虚设电极228均包括至少一个封闭的目标导电网格,从而降低第三虚设电极227和第四虚设电极228的断口密度,以减轻强光反射下出现的明暗条纹。
在本申请实施例中,通过在基材上设置第一承载结构、第一导电层和第一消影层,通过第一消影层对第一导电层进行遮挡,降低第一导电层的反射率,减轻强光反射下第一导电层的图案被观察到,提高产品的视觉效果。
在本申请实施例中,若要形成如图1至图5所示的触控面板,具体可参照如下制作顺序制作得到。
步骤S1:在基材10的其中一侧依次形成第一承载结构、第一导电层22和第一消影层24。
下面以第一承载结构包括第一承载层21和第二承载层23为例,说明具体的形成过程。
首先,在基材10的其中一侧表面先形成第一承载层21,第一承载层21具有多个第一凹槽。具体的,在基材10的一侧表面采用涂覆工艺形成第一承载膜,并对第一承载膜进行固化以降低其流动性,然后,采用第一模具对第一承载膜进行压印,将第一模具上的图案转移到第一承载膜上,以得到第一承载层21。
然后,在第一承载层21的第一凹槽内形成第一导电层22,第一导电层22包括多条第一导电线221。具体的,是在第一承载层21的第一凹槽内填充导电银浆,并对导电银浆进行固化处理,以得到第一导电层22,或者,是在第一承载层21远离基材10的表面和第一凹槽内沉积金属层,并对金属层进行图案化处理,以形成第一导电层22,该金属层的材料可以为铜、钼、铝和钛中的至少一者。
在第一承载层21的第一凹槽内形成第一导电层22之后,在第一承载层21远离基材10的一侧形成第二承载层23,第二承载层23具有多个第二凹槽。具体的,是在第一承载层21和第一导电层22远离基材10的表面采用涂覆工艺形成第二承载膜,并对第二承载膜进行固化以降低其流动性,然后,采用第二模具对第二承载膜进行压印,将第二模具上的图案转移到第二承载膜上,以得到第二承载层23。其中,第二模具与第一模具可以是同一模具。
在形成第二承载层23之后,在第二承载层23的第二凹槽内填充第一消影层24,并对第一消影层24进行固化,第一消影层24在基材10上的正投影覆盖第一导电层22在基材10上的正投影。
步骤S2:在基材10的其中一侧分别形成第二承载结构和第二导电层34。
下面以第一承载结构包括第四承载层31和第五承载层33为例,说明具体的形成过程。
一种可选的实施方式中,是在基材10的另一侧的表面依次形成第四承载层31、第二消影层32、第五承载层33和第二导电层34。
首先,形成第四承载层31,第四承载层31具有多个第四凹槽。具体的,在基材10的另一侧的表面采用涂覆工艺形成第四承载膜,并对第四承载膜进行固化以降低其流动性,然后,采用第三模具对第四承载膜进行压印,将第三模具上的图案转移到第四承载膜上,以得到第四承载层31。其中,第三 模具与第一模具不同。
接着,在第四承载层31的第四凹槽内形成第二消影层32,并对第二消影层32进行固化。
然后,在第四承载层31远离基材10的一侧形成第五承载层33,第五承载层33具有多个第五凹槽。具体的,是在第四承载层31和第二消影层32远离基材10的表面采用涂覆工艺形成第五承载膜,并对第五承载膜进行固化以降低其流动性,然后,采用第四模具对第五承载膜进行压印,将第四模具上的图案转移到第五承载膜上,以得到第五承载层33。其中,第四模具与第三模具可以是同一模具。
最后,在第五承载层33的第五凹槽内形成第二导电层34,第二导电层34包括多条第二导电线341,且第二消影层32在基材10上的正投影覆盖第二导电层34在基材10上的正投影。第二导电层34与第一导电层22的形成工艺类似,在此不再赘述。
需要说明的是,针对异侧设置的第一导电层22和第二导电层34,也可以在基材10的相对设置的表面上分别采用涂覆工艺形成第一承载膜和第四承载膜,并对第一承载膜和第四承载膜进行固化,固化后对第一承载膜和第四承载膜进行压印,得到如图15所示的结构,即在基材10的其中一侧表面形成第一承载层21,第一承载层21具有多个第一凹槽221,在基材10的另一侧表面形成第四承载层31,第四承载层31具有多个第四凹槽311;接着,在第一承载层21的第一凹槽211内形成第一导电层22,并在第四承载层31的第四凹槽311内形成第二消影层32,得到如图16所示的结构;然后,在第一承载层21和第一导电层22远离基材10的表面采用涂覆工艺形成第二承载膜,以及在第四承载层31和第二消影层32远离基材10的表面采用涂覆工艺形成第五承载膜,并对第二承载膜和第五承载膜进行固化,固化后对第二承载膜和第五承载膜进行压印,得到如图17所示的结构,即实现在第一承载层21远离基材10的一侧形成第二承载层23,以及在第四承载层31远离基材10的一侧形成第五承载层33,第二承载层23具有多个第二凹槽231,第五承载层33具有多个第五凹槽331;最后,在第二承载层23的第二凹槽231内形成第一消影层24,并在第五承载层33的第五凹槽331内形成 第二导电层34,得到如图1所示的触控面板。
另一种可选的实施方式中,在基材10的其中一侧依次形成第一承载层21、第一导电层22、第二承载层23和第一消影层24之后,先形成覆盖第二承载层23和第一消影层24的绝缘层40,然后,在绝缘层40远离基材10一侧的表面依次形成第五承载层33、第二导电层34、第四承载层31和第二消影层32,得到如图2所示的触控面板。
参照图18,示出了本申请实施例的一种触控显示装置的结构示意图。
本申请实施例还公开了一种触控显示装置,包括显示面板61以及上述的触控面板,显示面板61位于基材10远离第一承载结构的一侧。此时,显示面板61的出光面是朝向触控面板的。
其中,该显示面板61可以为OLED(OrganicLight-Emitting Diode,有机发光二极管)显示面板、LCD(Liquid Crystal Display,液晶显示器)显示面板或QLED(Quantum Dots Light-Emitting Diode,量子点发光二极管)显示面板等。
在实际产品中,显示面板包括多个阵列分布的子像素,第一导电线221和第二导电线341在显示面板61上的正投影,与各个子像素的像素开口区至少存在部分非重合区域,以保证显示面板的光线可以正常穿过触控面板出射出去。
可选的,当触控面板时采用On-cell技术设置在显示面板61的出光侧时,此时,对显示面板61和触控面板的对位精度要求很高,在高对位精度下,可将第一导电线221和第二导电线341在显示面板61上的正投影,设置在各个子像素的像素开口区以外的区域,即子像素的像素开口区位于第一导电线221和第二导电线341形成的网格空隙中,以提高显示面板的光线的出射率。
如图18所示,触控显示装置还包括:偏光片62,位于显示面板61的出光面上;第一粘接层63,位于偏光片62与触控面板之间;第二粘接层64,位于触控面板远离第一粘接层63的一侧;以及盖板65,位于第二粘接层64远离触控面板的一侧。其中,第一粘接层63和第二粘接层64的材料可以为OCA(Optically Clear Adhesive,光学胶),盖板65可以为玻璃盖板。
在具体实施时,本申请实施例提供的上述触控显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有触控和显示功能的产品或部件。
此外,关于触控显示装置中的触控面板的具体结构,可参照上述触控面板的描述,且效果与上述触控面板达到的效果类似,为避免重复,在此不再赘述。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种触控面板,包括:
    基材;
    第一承载结构,位于所述基材的其中的一侧,所述第一承载结构具有多个第一容纳凹槽;
    第一导电层,包括多条第一导电线,每条所述第一导电线位于所述第一容纳凹槽内;
    第一消影层,位于所述第一容纳凹槽内,且所述第一消影层在所述基材上的正投影至少覆盖部分的所述第一导电层在所述基材上的正投影。
  2. 根据权利要求1所述的触控面板,其中,所述第一承载结构包括:
    第一承载层,所述第一承载层具有多个第一凹槽;
    第二承载层,位于所述第一承载层远离所述基材的一侧,所述第二承载层具有多个第二凹槽;
    其中,所述第一容纳凹槽包括所述第一凹槽和所述第二凹槽,所述第一导电线位于所述第一凹槽内,所述第一消影层位于所述第二凹槽内;并且,所述第一承载层与所述第一导电层绝缘,所述第二承载层与所述第一消影层绝缘。
  3. 根据权利要求1所述的触控面板,其中,所述第一承载结构包括第三承载层,所述第三承载层具有多个第三凹槽;
    所述第一容纳凹槽为所述第三凹槽,所述第一导电线和所述第一消影层均位于所述第三凹槽内,且所述第一消影层位于所述第一导电线远离所述基材的一侧;并且,所述第三承载层与所述第一导电层和所述第一消影层均绝缘。
  4. 根据权利要求1至3中任一项所述的触控面板,其中,所述触控面板还包括:
    第二承载结构,位于所述基材的其中一侧,所述第二承载结构具有多个第二容纳凹槽;
    第二导电层,包括多条第二导电线,每条所述第二导电线位于所述第二容纳凹槽内。
  5. 根据权利要求4所述的触控面板,其中,所述触控面板还包括:
    第二消影层,位于所述第二容纳凹槽内,且所述第二消影层在所述基材上的正投影至少覆盖部分的所述第二导电层在所述基材上的正投影。
  6. 根据权利要求5所述的触控面板,其中,所述第二承载结构包括:
    第四承载层,所述第四承载层具有多个第四凹槽;
    第五承载层,与所述第四承载层位于所述基材的同一侧,所述第五承载层具有多个第五凹槽;
    其中,所述第二容纳凹槽包括所述第四凹槽和所述第五凹槽,所述第二消影层位于所述第四凹槽内,所述第二导电线位于所述第五凹槽内;并且,所述第四承载层与所述第二消影层绝缘,所述第五承载层与所述第二导电层绝缘。
  7. 根据权利要求5所述的触控面板,其中,所述第二承载结构包括第六承载层,所述第六承载层具有多个第六凹槽;
    所述第二容纳凹槽为所述第六凹槽,所述第二消影层和所述第二导电线均位于所述第六凹槽内;并且,所述第六承载层与所述第二消影层和所述第二导电层均绝缘。
  8. 根据权利要求4至7中任一项所述的触控面板,其中,所述第一承载结构位于所述基材的第一侧,所述第二承载结构位于所述基材的第二侧,所述第一侧和所述第二侧为所述基材上相对的两侧。
  9. 根据权利要求4至7中任一项所述的触控面板,其中,所述第一承载结构和所述第二承载结构位于所述基材的同一侧,且所述第二承载结构位于所述第一承载结构远离所述基材的一侧,在所述第一承载结构与所述第二承载结构之间设置有绝缘层。
  10. 根据权利要求5所述的触控面板,其中,所述第一消影层在所述基材上的正投影覆盖全部的所述第一导电层在所述基材上的正投影;
    所述第二消影层在所述基材上的正投影覆盖全部的所述第二导电层在所述基材上的正投影。
  11. 根据权利要求4至10中任一项所述的触控面板,其中,所述多条第一导电线构成多个第一导电网格,所述多个第一导电网格中的至少部分所 述第一导电网格对应的所述第一导电线具有第一断口,所述第一断口将所述第一导电层分隔出多个第一导电结构;
    所述多条第二导电线构成多个第二导电网格,所述多个第二导电网格中的至少部分所述第二导电网格对应的所述第二导电线具有第二断口,所述第二断口将所述第二导电层分隔出多个第二导电结构;
    其中,所述多个第一导电结构和所述多个第二导电结构共同构成网格状的第一触控电极和网格状的第二触控电极。
  12. 根据权利要求11所述的触控面板,其中,所述多个第一导电结构包括多条沿第一方向延伸的所述第一触控电极,所述多个第二导电结构包括多条沿第二方向延伸的所述第二触控电极;所述第一方向和所述第二方向相交。
  13. 根据权利要求11所述的触控面板,其中,所述多个第一导电结构和所述多个第二导电结构中的一者包括多条沿第一方向延伸的所述第一触控电极和多个电极主体部,另一者包括多个桥接电极;
    每个所述桥接电极通过贯穿介质层的过孔,与第二方向上相邻的两个所述电极主体部连接,以形成多条沿所述第二方向延伸的所述第二触控电极;所述第一方向和所述第二方向相交;
    其中,所述介质层为所述第一导电层与所述第二导电层之间的膜层。
  14. 根据权利要求4至13中任一项所述的触控面板,其中,所述第一导电线的线宽小于或等于所述第二导电线的线宽。
  15. 根据权利要求4至14中任一项所述的触控面板,其中,所述第一承载结构和所述第二承载结构的材料均为光固化胶。
  16. 根据权利要求5所述的触控面板,其中,所述第一消影层和所述第二消影层均为遮光油墨层或遮光氧化物层,且所述第一消影层和所述第二消影层的透过率小于或等于10%。
  17. 根据权利要求4至16中任一项所述的触控面板,其中,所述第一导电层和所述第二导电层为导电银浆层;或者,
    所述第一导电层和所述第二导电层的材料为铜、钼、铝和钛中的至少一者。
  18. 根据权利要求11至13中任一项所述的触控面板,其中,所述第一导电网格和所述第二导电网格交错设置。
  19. 根据权利要求5所述的触控面板,其中,所述第一导电线、每个所述第一容纳凹槽内的所述第一消影层、所述第二导电线以及每个所述第二容纳凹槽内的所述第二消影层,沿着目标截面上的截面形状均为近似梯形;
    并且,每个所述第一容纳凹槽内的所述第一消影层和所述第一导电线的组合结构沿着所述目标截面上的截面形状也为近似梯形;每个所述第二容纳凹槽内的所述第二消影层和所述第二导电线的组合结构沿着所述目标截面上的截面形状也为近似梯形;
    其中,所述目标截面垂直于所述基材所在的平面,且与对应容纳凹槽内的导电线的线宽方向平行。
  20. 根据权利要求5所述的触控面板,其中,所述第一导电层和所述第一消影层的厚度之和与所述第一承载结构的厚度基本一致;
    所述第二导电层和所述第二消影层的厚度之和与所述第二承载结构的厚度基本一致。
  21. 根据权利要求2所述的触控面板,其中,所述第一导电层远离所述基材一侧的表面与所述第一承载层远离所述基材一侧的表面基本位于同一平面;
    所述第一消影层远离所述基材一侧的表面与所述第二承载层远离所述基材一侧的表面基本位于同一平面。
  22. 根据权利要求6所述的触控面板,其中,所述第二消影层远离所述基材一侧的表面与所述第四承载层远离所述基材一侧的表面基本位于同一平面;
    所述第二导电层远离所述基材一侧的表面与所述第五承载层远离所述基材一侧的表面基本位于同一平面。
  23. 根据权利要求12所述的触控面板,其中,所述多个第一导电结构还包括设置在相邻两条所述第一触控电极之间的多个第一虚设电极,每个所述第一虚设电极与所述第一触控电极之间通过所述第一断口绝缘;
    所述多个第二导电结构还包括设置在相邻两条所述第二触控电极之间 的多个第二虚设电极,每个所述第二虚设电极与所述第二触控电极之间通过第二断口绝缘。
  24. 根据权利要求23所述的触控面板,其中,在所述第一虚设电极与所述第一触控电极之间,任意相邻的至少两个所述第一断口所形成的第一轨迹线的延伸方向与所述第一方向相交,且任意相邻的两个所述第一轨迹线的延伸方向相交;所述第一轨迹线为所述第一虚设电极与所述第一触控电极之间相邻的至少两个所述第一断口所形成的直线段,且最靠近所述第一轨迹线的始端处的所述第一断口所在的第一导电线,与最靠近所述第一轨迹线的末端处的所述第一断口所在的第一导电线平行;
    在所述第二虚设电极与所述第二触控电极之间,任意相邻的至少两个所述第二断口所形成的第二轨迹线的延伸方向与所述第二方向相交,且任意相邻的两个所述第二轨迹线的延伸方向相交;所述第二轨迹线为所述第二虚设电极与所述第二触控电极之间相邻的至少两个所述第二断口所形成的直线段,且最靠近所述第二轨迹线的始端处的所述第二断口所在的第二导电线,与最靠近所述第二轨迹线的末端处的所述第二断口所在的第二导电线平行。
  25. 根据权利要求23所述的触控面板,其中,每个所述第一虚设电极也通过所述第一断口所形成的第三轨迹线,与其相邻的所述第一虚设电极间隔设置,所述第三轨迹线为两个所述第一虚设电极之间相邻的至少两个所述第一断口所形成的直线段,且最靠近所述第三轨迹线的始端处的所述第一断口所在的第一导电线,与最靠近所述第三轨迹线的末端处的所述第一断口所在的第一导电线平行;
    每个所述第二虚设电极也通过所述第二断口所形成的第四轨迹线,与其相邻的所述第二虚设电极间隔设置,所述第四轨迹线为两个所述第二虚设电极之间相邻的至少两个所述第二断口所形成的直线段,且最靠近所述第四轨迹线的始端处的所述第二断口所在的第二导电线,与最靠近所述第四轨迹线的末端处的所述第二断口所在的第二导电线平行。
  26. 根据权利要求23所述的触控面板,其中,所有的所述第一虚设电极中的至少部分所述第一虚设电极包括至少一个封闭的所述第一导电网格;
    所有的所述第二虚设电极中的至少部分所述第二虚设电极也包括至少 一个封闭的所述第二导电网格。
  27. 根据权利要求13所述的触控面板,其中,所述多个第一导电结构或所述多个第二导电结构还包括多个第三虚设电极和多个第四虚设电极,每个所述第三虚设电极和每个所述第四虚设电极,均与所述第一触控电极和所述电极主体部同层设置;
    每个所述第三虚设电极位于所述第一触控电极所围成的区域内,且每个所述第三虚设电极与所述第一触控电极之间通过目标断口绝缘;
    每个所述第四虚设电极位于所述电极主体部所围成的区域内,且每个所述第四虚设电极与所述电极主体部之间也通过所述目标断口绝缘;
    并且,所述第一触控电极与所述电极主体部之间以及沿所述第一方向上相邻的两个所述电极主体部之间,也通过所述目标断口绝缘;
    其中,所述目标断口为所述第一断口或所述第二断口。
  28. 根据权利要求27所述的触控面板,其中,在所述第一触控电极与所述电极主体部之间,任意相邻的至少两个所述目标断口所形成的第五轨迹线的延伸方向与所述第一方向相交,且任意相邻的两个所述第五轨迹线的延伸方向相交;所述第五轨迹线为所述第一触控电极与所述电极主体部之间相邻的至少两个所述目标断口所形成的直线段,且最靠近所述第五轨迹线的始端处的所述目标断口所在的目标导电线,与最靠近所述第五轨迹线的末端处的所述目标断口所在的目标导电线平行,所述目标导电线为所述第一导电线或所述第二导电线。
  29. 根据权利要求27所述的触控面板,其中,所有的所述第三虚设电极中的至少部分所述第三虚设电极包括至少一个封闭的目标导电网格;
    所有的所述第四虚设电极中的至少部分所述第四虚设电极也包括至少一个封闭的所述目标导电网格;
    其中,所述目标导电网格为所述第一导电网格或所述第二导电网格。
  30. 一种触控显示装置,包括显示面板以及如权利要求1至29中任一项所述的触控面板,所述显示面板位于所述基材远离所述第一承载结构的一侧。
PCT/CN2021/104462 2021-07-05 2021-07-05 触控面板及触控显示装置 WO2023279234A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180001796.0A CN115812349A (zh) 2021-07-05 2021-07-05 触控面板及触控显示装置
PCT/CN2021/104462 WO2023279234A1 (zh) 2021-07-05 2021-07-05 触控面板及触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/104462 WO2023279234A1 (zh) 2021-07-05 2021-07-05 触控面板及触控显示装置

Publications (1)

Publication Number Publication Date
WO2023279234A1 true WO2023279234A1 (zh) 2023-01-12

Family

ID=84801141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104462 WO2023279234A1 (zh) 2021-07-05 2021-07-05 触控面板及触控显示装置

Country Status (2)

Country Link
CN (1) CN115812349A (zh)
WO (1) WO2023279234A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425992A (zh) * 2014-09-17 2016-03-23 宸鸿科技(厦门)有限公司 触控面板和触控显示模组
WO2016201891A1 (zh) * 2015-06-15 2016-12-22 京东方科技集团股份有限公司 触控基板及其制备方法、显示装置
CN106298861A (zh) * 2016-10-24 2017-01-04 上海天马微电子有限公司 有机发光显示面板及其制造方法
CN109669578A (zh) * 2018-12-26 2019-04-23 厦门天马微电子有限公司 显示面板及其制造方法和显示装置
CN110828698A (zh) * 2019-11-21 2020-02-21 昆山工研院新型平板显示技术中心有限公司 显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105425992A (zh) * 2014-09-17 2016-03-23 宸鸿科技(厦门)有限公司 触控面板和触控显示模组
WO2016201891A1 (zh) * 2015-06-15 2016-12-22 京东方科技集团股份有限公司 触控基板及其制备方法、显示装置
CN106298861A (zh) * 2016-10-24 2017-01-04 上海天马微电子有限公司 有机发光显示面板及其制造方法
CN109669578A (zh) * 2018-12-26 2019-04-23 厦门天马微电子有限公司 显示面板及其制造方法和显示装置
CN110828698A (zh) * 2019-11-21 2020-02-21 昆山工研院新型平板显示技术中心有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN115812349A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
US9626062B2 (en) Touch sensing apparatus and method for manufacturing the same
CN108133950B (zh) 触摸屏集成显示装置及其制造方法
CN103902095B (zh) 触摸显示装置及其制造方法
US8717333B2 (en) Electrostatic capacity type touch panel, display device and process for producing electrostatic capacity type touch panel
TWI421581B (zh) Input device and manufacturing method thereof
JP4616324B2 (ja) タッチセンサ
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
US9323370B2 (en) Electrode sheet, touch panel, and display device
KR101521681B1 (ko) 터치패널
US20140267953A1 (en) Touch screen panel and method of manufacturing the same
JP2013058180A (ja) タッチパネル
TW201411448A (zh) 觸控面板
KR101337913B1 (ko) 터치 스크린 센서 및 이를 포함하는 터치 스크린 패널
JP5827972B2 (ja) タッチセンサ一体型表示装置
US11782550B2 (en) Input sensing unit and display device including the same
US10496232B2 (en) Capacitive touch panel
JP4882016B2 (ja) タッチセンサ
KR20130119045A (ko) 터치 패널 및 그의 제조 방법
JP2020531932A (ja) タッチパネル、その製造方法及びタッチ表示装置
JP2017084153A (ja) タッチパネル一体型有機エレクトロルミネッセンス表示装置用センサ電極基材、タッチパネル一体型有機エレクトロルミネッセンス表示装置、およびタッチパネル一体型有機エレクトロルミネッセンス表示装置の製造方法
WO2023279234A1 (zh) 触控面板及触控显示装置
US10862077B2 (en) Method of producing display device using imprint layer forming step
KR101414423B1 (ko) 터치 스크린 패널
CN105487702A (zh) 触控显示面板及其制造方法
US20240241609A1 (en) Touch-control panel and touch-control displaying device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17779746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE