WO2023277564A1 - Self-extinguishing microcapsule composition and manufacturing method therefor - Google Patents

Self-extinguishing microcapsule composition and manufacturing method therefor Download PDF

Info

Publication number
WO2023277564A1
WO2023277564A1 PCT/KR2022/009302 KR2022009302W WO2023277564A1 WO 2023277564 A1 WO2023277564 A1 WO 2023277564A1 KR 2022009302 W KR2022009302 W KR 2022009302W WO 2023277564 A1 WO2023277564 A1 WO 2023277564A1
Authority
WO
WIPO (PCT)
Prior art keywords
extinguishing
extinguishing agent
self
microcapsule composition
agent
Prior art date
Application number
PCT/KR2022/009302
Other languages
French (fr)
Korean (ko)
Inventor
김재문
김재윤
황득규
Original Assignee
주식회사 가온테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 가온테크놀러지 filed Critical 주식회사 가온테크놀러지
Publication of WO2023277564A1 publication Critical patent/WO2023277564A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0007Solid extinguishing substances
    • A62D1/0021Microcapsules
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons

Definitions

  • the present invention relates to a self-extinguishing microcapsule composition and a method for manufacturing the same, and more particularly, a desired decapsulation temperature can be set by adjusting the mixing ratio of two or more types of liquid fire extinguishing agents having different boiling points, the manufacturing process is simple, and the fire It relates to a self-extinguishing microcapsule composition for fire suppression with excellent fire extinguishing performance due to rapid decapsulation upon occurrence and a manufacturing method thereof.
  • microcapsules containing liquid fire extinguishing agents are gradually increasing.
  • solid state microcapsules are excellent in utilization in that they can be added to various polymer resins and commercialized for various purposes such as films, fabrics and pads.
  • fire extinguishing agents are low-boiling point, water-immiscible liquid, and lyophilic substances that evaporate at high temperatures, and these substances are manufactured into capsules by the coacervation method.
  • the fire extinguishing agent is first emulsified using a surfactant, water-soluble polymer particles are formed, and then these particles are adsorbed on the surface of the fire extinguishing agent to finally form a solid shell.
  • microcapsules are composed of spherical particles with a diameter of 50 to 400 ⁇ m containing 75 to 95% by weight of a fire extinguishing agent. Since the thickness of the shell is relatively thin, the mechanical properties of the polymer constituting the shell are weak. Otherwise, if a porous shell is formed, there is a problem in that the fire extinguishing agent inside escapes over time and the self-extinguishing capsule does not function properly.
  • microdigestive capsules For example, a method of increasing the strength of the shell by injecting montmorllonite, a type of earth mineral, or a technique of suppressing the outflow of the internal fire extinguishing agent by creating a microcapsule with a double shell structure is known.
  • hydrophilic plasticizers such as glycerol and triethylene glycol to improve the flexibility of the shell or by filling the encapsulated fire extinguishing agent in the polymer matrix, the decapsulation speed and temperature can be increased and the thermal stability of the capsule can be improved. A possible method has also been reported.
  • digestive capsules can be commercialized for various purposes by being added to various polymer resins or products in liquid state, and play an important role in the initial stage of fire when a fire occurs. It is necessary to be able to control the decapsulation temperature of For example, in the case of a multi-tap, if overcurrent flows beyond the rated capacity, the temperature rises to 80°C or more, increasing the risk of fire. In the case of an ESS (Energy Storage system), microcapsules having a sufficiently high decapsulation temperature of 100 ° C or more must be used in order for the equipment to be maintained without malfunction.
  • ESS Electronicgy Storage system
  • the ejection process of the fire extinguishing agent goes through a process in which the internal pressure of the microcapsule increases as the external temperature rises (internal pressure build-up), and when the internal pressure reaches a critical point enough to destroy the outer shell, it is ejected instantaneously.
  • the decapsulation temperature at which the fire extinguishing agent is released from the shell is determined by a wide variety of factors. In other words, the decapsulation temperature varies depending on various factors such as the boiling point of the extinguishing agent, the content of the extinguishing agent, the type and thickness of the shell, and the particle size of the microcapsule. I mean it's not easy.
  • the extinguishing agent contained in the microcapsule contains only a specific extinguishing agent, it eventually becomes a state similar to the case of simply mixing two types of microcapsules with different decapsulation, and therefore has two decapsulation temperatures or There is a disadvantage of causing a problem in that the decapsulation temperature range is widened.
  • An object of the present invention is to provide a self-extinguishing microcapsule composition for fire suppression and a manufacturing method thereof, in which the decapsulation temperature can be controlled by adjusting the mixing ratio of two or more kinds of liquid fire extinguishing agents having different boiling points, and the manufacturing process is simple.
  • Another object of the present invention is to provide a self-extinguishing microcapsule composition that exhibits excellent fire extinguishing performance, is stable and reliable with little leakage of fire extinguishing agents, and can be manufactured with various fire extinguishing devices.
  • the core is selected from halogenated hydrocarbons and has a different boiling point. It includes a fire extinguishing agent and a second fire extinguishing agent, and the shell provides a self-extinguishing microcapsule composition made of a polymer formed on the outer surface of the core.
  • the first extinguishing agent and the second extinguishing agent provide a self-extinguishing microcapsule composition, characterized in that they satisfy the following [Formula 1] and [Formula 2]:
  • ⁇ 1 and ⁇ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and ⁇ 1 and ⁇ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm).
  • the specific gravity of the first extinguishing agent and the second extinguishing agent is preferably less than 2 g / cm 3 .
  • the weight ratio of the first extinguishing agent and the second extinguishing agent may be in the range of 3:7 to 5:5, and accordingly, the decapsulation temperature may be controlled in the range of 105 to 155 ° C.
  • the core may be made of an emulsion composition in which the first extinguishing agent, the second extinguishing agent and the surfactant are dispersed in water, and the average size of the microcapsules is 200 to 350 ⁇ m range can
  • the first fire extinguishing agent and the second fire extinguishing agent may be hydrocarbons substituted with fluorine or bromine.
  • specific examples include 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone, ethyl nonafluorobutyl ether, 1,1, 1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)pentane, 2-(trifluoromethyl)-3-ethoxydodeca It may be selected from fluorohexane, but is not particularly limited thereto, and any compound satisfying the above [Formula 1] and [Formula 2] may be used.
  • the polymer may be one or more selected from urea-formaldehyde-resorcinol, gelatin, epoxy, polyurethane, and polyurea, but is not particularly limited thereto.
  • the present invention is selected from fluorinated hydrocarbons or brominated hydrocarbons, and the first extinguishing agent and the second extinguishing agent having different boiling points are mixed in water with a surfactant to prepare an emulsion composition for core, the emulsion A core-shell structure comprising the steps of mixing the composition with an aqueous polymer solution forming a shell, adding an acid to adjust the pH, and raising the temperature of the pH-adjusted mixed solution and then cooling it to prepare a microcapsule. It provides a method for producing a self-extinguishing microcapsule composition for fire suppression having
  • the self-extinguishing microcapsule composition for fire suppression having a core-shell structure according to the present invention is characterized by including two or more types of liquid fire extinguishing agents having different boiling points in the core, and the decapsulation temperature by adjusting the mixing ratio of the two types of fire extinguishing agents. It has the advantage that it can be set to suit the purpose.
  • the manufacturing method of the self-extinguishing microcapsule composition according to the present invention has a simple process and changes the type and mixing ratio of the fire extinguishing agent contained in the core while using the existing shell, so that whenever the structure of the shell changes, the polymer matrix and It can be freed from the inconvenience of having to conduct a new evaluation of compatibility and adhesiveness.
  • the fire extinguishing microcapsule composition according to the present invention rapidly decapsulates, in which the fire extinguishing agent destroys and releases the shell within a short time during the decapsulation process of the fire extinguishing agent, and extinguishes fire when the ambient temperature rises above a predetermined temperature in the event of a fire.
  • the drug is released in a short time, so it can extinguish the fire at an early stage or prevent the fire from spreading.
  • the fire extinguishing microcapsule composition according to the present invention exhibits excellent fire extinguishing performance for fire suppression, and has excellent long-term preservation and safety with little leakage of the fire extinguishing agent.
  • the fire extinguishing microcapsule composition according to the present invention has high operational reliability and can be applied to various fire extinguishing devices.
  • thermogravimetric analyzer TGA
  • Figure 2 is an optical microscope photograph taken in an emulsion state (a) and a microcapsule state (b) of a self-extinguishing microcapsule composition according to an embodiment of the present invention.
  • the self-extinguishing microcapsule composition for fire suppression has a core-shell structure, is decapsulated at high temperature, the core is selected from halogenated hydrocarbons, and the first extinguishing agent and the second extinguishing agent having different boiling points are selected.
  • a drug may be included, and the shell may be made of a high molecular weight polymer formed on the outer surface of the core.
  • the first extinguishing agent and the second extinguishing agent preferably satisfy the following [Formula 1] and [Formula 2]:
  • ⁇ 1 and ⁇ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and ⁇ 1 and ⁇ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm).
  • the specific gravity of the first extinguishing agent and the second extinguishing agent is less than 2g/cm 3 .
  • a method for producing a self-extinguishing microcapsule composition for fire suppression is a core emulsion composition by mixing a first extinguishing agent and a second extinguishing agent selected from halogenated hydrocarbons and having different boiling points in water with a surfactant Preparing a step, mixing the emulsion composition with an aqueous polymer solution for forming a shell, adjusting the pH by adding an acid, and raising the temperature of the pH-adjusted mixed solution and then cooling it to prepare microcapsules.
  • the present invention relates to a self-extinguishing microcapsule composition for fire suppression, in particular, to provide self-extinguishing microcapsules having shells of the same chemical structure but having different decapsulation temperatures. It is evenly contained during use to provide a self-extinguishing microcapsule composition having only one decapsulation temperature.
  • the self-extinguishing microcapsule composition for fire suppression has a core-shell structure, is decapsulated at high temperature, the core is selected from halogenated hydrocarbons, and a first extinguishing agent having a different boiling point and a second fire extinguishing agent, and the shell may be made of a polymer formed on the outer surface of the core.
  • the self-extinguishing microcapsule composition according to the present invention is characterized by using two or more types of fire extinguishing agents having different boiling points, and the weight ratio of the first fire extinguishing agent and the second fire extinguishing agent may be mixed in the range of 3:7 to 5:5. there is.
  • the decapsulation temperature can be set by adjusting the weight ratio of the two fire extinguishing agents, and the temperature range is about 105 to 155 °C.
  • the core of the microcapsule composition may be an emulsion composition in which a first extinguishing agent, a second extinguishing agent, and a surfactant are dispersed in water.
  • the first extinguishing agent and the second extinguishing agent included in the core are halogenated hydrocarbons, and may be selected from hydrocarbons substituted with fluorine or bromine.
  • fire extinguishing agents 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)pentane, 2-(trifluoromethyl)-3- Ethoxydodecafluorohexane etc. are mentioned.
  • the first extinguishing agent and the second extinguishing agent may be selected from the above compounds, but are not particularly limited thereto, and any compound satisfying the following [Formula 1] and [Formula 2] may be used.
  • the polymer forming the outer shell of the self-extinguishing microcapsule composition according to an embodiment of the present invention may be at least one selected from, for example, urea-formaldehyde-resorcinol, gelatin, epoxy, polyurethane, and polyurea. , but is not particularly limited thereto.
  • the self-extinguishing microcapsule composition according to the present invention can be prepared by a coacervation mechanism.
  • the first step of this manufacturing method is to emulsify the fire extinguishing agent in water using a surfactant.
  • stirring or ultrasonic treatment is performed to form uniform droplets.
  • the specific gravity and surface tension of the fire extinguishing agent play a very important role. Therefore, it is necessary to optimize manufacturing conditions such as selection of surfactant suitable for the extinguishing agent used, input content, mixing temperature and stirring speed.
  • the situation is more complicated when two or more types of extinguishing agents with different boiling points, specific gravity and surface tension are used. Therefore, it is very difficult to form a stable emulsion, and as a result, it is difficult to prepare microcapsules with excellent properties.
  • the present invention has found that when two or more types of fire extinguishing agents are used, when the emulsification reaction, which is the first step, is stabilized, microcapsules with excellent characteristics can be obtained, and a stable emulsion can be obtained. It was found that the fire extinguishing agents must have similar specific gravity and surface tension for this purpose.
  • the first extinguishing agent and the second extinguishing agent included in the self-extinguishing microcapsule composition according to the present invention satisfy the following [Formula 1] and [Formula 2].
  • ⁇ 1 and ⁇ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and ⁇ 1 and ⁇ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm).
  • the specific gravity of the first extinguishing agent and the second extinguishing agent is less than 2g/cm 3 .
  • the type and structure are not particularly limited, but when the difference in specific gravity of the two types of fire extinguishing agents is greater than 0.5 or the difference in surface tension is greater than 10 The emulsification process does not proceed stably. For example, when the difference in specific gravity is large, it is difficult to completely uniformly mix the two types of fire extinguishing agents even if sufficiently stirred, and thus independent emulsion particles are formed.
  • the specific gravity of each fire extinguishing agent is not particularly limited, but it is preferable that the specific gravity is less than 2 g / cm 3, because if the specific gravity is too large compared to water, some fire extinguishing agents may sink to the bottom of the reactor.
  • the difference in surface tension of the two types of fire extinguishing agents is also very important.
  • Surface tension means the thermodynamic stability of emulsion particles, which has a close relationship with the type and content of surfactant. Therefore, even if the same surfactant is used, when two fire extinguishing agents having too large a difference in surface tension are used, it is difficult to completely uniformly mix the two fire extinguishing agents, and thus there is a problem in that independent emulsion particles are formed.
  • a method for producing a self-extinguishing microcapsule composition for fire suppression is a core emulsion composition by mixing a first extinguishing agent and a second extinguishing agent selected from halogenated hydrocarbons and having different boiling points in water with a surfactant Preparing; adjusting the pH by adding an acid after mixing the emulsion composition with an aqueous solution of a polymer to form a shell; and preparing microcapsules by raising the temperature of the pH-adjusted mixed solution and then cooling it.
  • the heating temperature is in the range of 45 to 60 ° C
  • the pH is preferably in the range of 2 to 4.
  • the first fire extinguishing agent and the second fire extinguishing agent satisfy the above [Formula 1] and [Formula 2], and the two kinds of mixed fire extinguishing agents are mixed with a surfactant. After emulsification, water-soluble polymer particles are formed, the particles are adsorbed on the surface of the mixed fire extinguishing agent, and finally a solid shell is formed to complete the self-extinguishing microcapsule.
  • Surfactants used in the preparation of the core emulsion composition may include polyvinyl alcohol (PVA), ethylene maleic anhydride (EMA), sodium dodecyl benzene sulfonate (SDBS), etc., but are not particularly limited thereto.
  • PVA polyvinyl alcohol
  • EMA ethylene maleic anhydride
  • SDBS sodium dodecyl benzene sulfonate
  • the average size of the self-extinguishing microcapsules prepared according to the manufacturing method of the present invention is preferably in the range of 200 to 350 ⁇ m, but is not limited to this range, and the size can be adjusted in the capsule manufacturing process to suit the field to which the microcapsules are applied. can be adjusted
  • the fire extinguishing agents used in the examples of the present invention were purchased from TCI, and basic information on each compound is shown in [Table 1].
  • the fire extinguishing agent was mixed in the ratio shown in Table 1, stirred at 200 rpm for 30 minutes at room temperature, and then left for 30 minutes.
  • a mixed fire extinguishing agent was prepared using 50 g of 1,2,2,3,4,5,5,5-Decafluoro-3-methoxy-4-(trifluoromethyl)pentane (A-3). After putting 88g of PVA (Polyvinyl alcohol) aqueous solution having a solid content of 30%, the mixed fire extinguishing agent prepared above, and 63g of distilled water into the reactor, it was stirred at 32 ° C. for 2 hours.
  • PVA Polyvinyl alcohol
  • a mixed fire extinguishing agent was prepared using 50 g of 1,2,2,3,4,5,5,5-Decafluoro-3-methoxy-4-(trifluoromethyl)pentane (A-3).
  • 9 g of gelatin was added to 143 g of distilled water and heated to 50 ° C. for 30 minutes, and then mixed with 100 g of the mixed fire extinguishing agent prepared above at room temperature.
  • Example 1 when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 70 g of the fire extinguishing agent A1 and 30 g of the fire extinguishing agent A3 were used.
  • Example 1 when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 30 g of the fire extinguishing agent A1 and 70 g of the fire extinguishing agent A3 were used.
  • Example 1 when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent A1 and 50 g of the fire extinguishing agent B1 were used.
  • Example 1 when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent A1 and 50 g of the fire extinguishing agent B3 were used.
  • Example 1 when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent A1 and 50 g of the fire extinguishing agent B2 were used.
  • Example 1 when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent B1 and 50 g of the fire extinguishing agent B3 were used.
  • the characteristics of the microcapsules prepared in Examples and Comparative Examples according to the present invention were evaluated through the following experiments, and the results are shown in Table 2.
  • the specific gravity of the fire extinguishing agent was calculated and measured using the relative gravity method for distilled water using a pycnometer, and the surface tension was measured using a surface tension meter (Tensiometer, KRUSS Model K100).
  • the yield of the prepared microcapsules was calculated through the theoretical yield versus the yield of microcapsules obtained after washing and drying. , TA instrument's Q500) was measured.
  • microcapsules with uniform particle distribution can be obtained by 90% or more. It is produced in high yield, and it can be seen that the decapsulation temperature can be controlled by adjusting the blending ratio of the two types of fire extinguishing agents. In addition, it was confirmed that microcapsules having a desired decapsulation temperature were prepared even when the polymer material constituting the shell was changed (Example 2).
  • the present invention prepares a self-extinguishing microcapsule composition that equally contains two or more types of liquid fire extinguishing agents having the same chemical structure and different boiling points, thereby adjusting the mixing ratio of the fire extinguishing agents to decapsulate the temperature. can be adjusted to the desired temperature.
  • the manufacturing method of the self-extinguishing microcapsule composition according to the present invention has a simple manufacturing process and high work efficiency. It eliminates the inconvenience of having to conduct a new evaluation of compatibility and adhesiveness with the polymer matrix whenever the structure of the shell is changed, and provides a self-extinguishing microcapsule composition with improved operational reliability by securing long-term preservation and safety. can do.
  • the fire extinguishing agent in the process of decapsulating the fire extinguishing agent, decapsulation in which the fire extinguishing agent destroys and releases the shell occurs quickly, and when the ambient temperature rises above a predetermined temperature in the event of a fire, the fire extinguishing agent is released at the beginning of the fire.
  • Excellent fire extinguishing function such as suppressing fire or preventing the spread of fire, exhibits excellent fire extinguishing performance such as enabling fire suppression in a short time, and stable and reliable with little leakage of fire extinguishing agent It can be manufactured with a variety of high fire extinguishing devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Dispersion Chemistry (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

The present invention relates to a self-extinguishing microcapsule composition and a manufacturing method therefor. In particular, the present invention relates to: a self-extinguishing microcapsule composition for fire suppression, in which a mixing ratio of two or more liquid extinguishing agents having different boiling points is adjusted such that a desired decapsulation temperature can be set, the manufacturing process thereof is simple, and the extinguishing performance thereof is excellent due to rapid decapsulation in the event of fire; and a manufacturing method therefor.

Description

자기 소화 마이크로캡슐 조성물 및 이의 제조 방법Self-extinguishing microcapsule composition and method for its preparation
본 발명은 자기 소화 마이크로캡슐 조성물 및 이의 제조 방법에 관한 것으로서, 보다 상세하게는 비점이 다른 두 종류 이상의 액상 소화약제의 혼합비를 조절함으로써 원하는 탈캡슐화 온도를 설정할 수 있으며, 제조 공정이 단순하고, 화재 발생시 신속한 탈캡슐화로 소화 성능이 우수한 화재 진압용 자기 소화 마이크로캡슐 조성물 및 그 제조 방법에 관한 것이다.The present invention relates to a self-extinguishing microcapsule composition and a method for manufacturing the same, and more particularly, a desired decapsulation temperature can be set by adjusting the mixing ratio of two or more types of liquid fire extinguishing agents having different boiling points, the manufacturing process is simple, and the fire It relates to a self-extinguishing microcapsule composition for fire suppression with excellent fire extinguishing performance due to rapid decapsulation upon occurrence and a manufacturing method thereof.
액체, 기체 또는 에어로졸 상태의 소화약제의 경우 운송 및 보관에 어려움이 있을 뿐만 아니라 고분자 소재에는 적용하기 어렵다는 단점이 있기 때문에 최근 액상의 소화약제를 포함하는 마이크로캡슐의 활용도가 점차 증가하고 있다. 또한 고체상태의 마이크로캡슐은 각종 고분자 수지에 첨가하여 필름, 원단 및 패드 등 다양한 용도로 제품화가 가능하다는 점에서 활용도가 우수하다. In the case of liquid, gas, or aerosol fire extinguishing agents, not only are they difficult to transport and store, but also have disadvantages that they are difficult to apply to polymer materials, so the utilization of microcapsules containing liquid fire extinguishing agents is gradually increasing. In addition, solid state microcapsules are excellent in utilization in that they can be added to various polymer resins and commercialized for various purposes such as films, fabrics and pads.
대부분의 소화약제는 고온에서 증발하는 저비점(low-boiling point), 비수용성(water-immiscible liquid), 친유성(lyophilic) 물질이며 이러한 물질은 코아세르베이션(coacervation) 방법에 의하여 캡슐을 제조하게 된다. 이 방법에 따르면 우선 소화약제를 계면활성제를 이용하여 에멀젼화시키고, 수용성 고분자 입자를 형성시킨 후 이 입자들이 소화약제 표면에 흡착되어 최종적으로 고체 쉘(shell)을 형성하는 과정을 거치게 된다. 이렇게 제조된 마이크로캡슐은 화재가 발생할 경우, 좁은 온도범위에서 소화약제가 외피로부터 방출되는 탈캡슐(Decapsulation)화가 일어나며 결국 초기 화재 진압 효율을 증대시킬 수 있게 된다. Most fire extinguishing agents are low-boiling point, water-immiscible liquid, and lyophilic substances that evaporate at high temperatures, and these substances are manufactured into capsules by the coacervation method. . According to this method, the fire extinguishing agent is first emulsified using a surfactant, water-soluble polymer particles are formed, and then these particles are adsorbed on the surface of the fire extinguishing agent to finally form a solid shell. When a fire occurs in the microcapsules prepared in this way, decapsulation occurs in which the extinguishing agent is released from the outer shell in a narrow temperature range, and eventually the initial fire suppression efficiency can be increased.
종래 마이크로캡슐의 경우 75 ~ 95중량%의 소화약제를 포함하는 직경 50~400㎛의 구형 입자로 이루어져 있는데, 쉘의 두께가 상대적으로 얇기 때문에 쉘을 구성하는 고분자의 기계적인 물성이 약하다는 단점이 있거나, 아니면 다공성의 쉘을 형성할 경우 시간이 지남에 따라 내부에 있는 소화약제가 빠져나와 자기소화캡슐이 제 역할을 못하게 되는 문제가 있다.Conventional microcapsules are composed of spherical particles with a diameter of 50 to 400 μm containing 75 to 95% by weight of a fire extinguishing agent. Since the thickness of the shell is relatively thin, the mechanical properties of the polymer constituting the shell are weak. Otherwise, if a porous shell is formed, there is a problem in that the fire extinguishing agent inside escapes over time and the self-extinguishing capsule does not function properly.
최근 마이크로 소화캡슐의 안정성을 높이기 위해 여러 기술들이 보고되고 있다. 예를 들어, 토광물의 일종인 montmorllonite를 투입하여 쉘의 강도를 증가시키는 방법이나 이중 쉘 구조의 마이크로캡슐을 만들어 내부 소화약제의 외부 유출을 억제하는 기술이 알려져 있다. Recently, several technologies have been reported to increase the stability of microdigestive capsules. For example, a method of increasing the strength of the shell by injecting montmorllonite, a type of earth mineral, or a technique of suppressing the outflow of the internal fire extinguishing agent by creating a microcapsule with a double shell structure is known.
또한 글리세롤, 트리에틸렌글리콜과 같은 친수성 가소제를 사용하여 쉘의 유연성을 향상 시키는 방법이나 캡슐화된 소화약제를 고분자 매크릭스에 충전시킴으로써 탈캡슐화 속도 및 온도를 증가시킴과 동시에 캡슐의 열안전성을 향상시킬 수 있다는 방법도 보고되었다.In addition, by using hydrophilic plasticizers such as glycerol and triethylene glycol to improve the flexibility of the shell or by filling the encapsulated fire extinguishing agent in the polymer matrix, the decapsulation speed and temperature can be increased and the thermal stability of the capsule can be improved. A possible method has also been reported.
한편 소화캡슐은 각종 고분자 수지 또는 액상 상태의 제품에 첨가되어 다양한 용도로 제품화가 가능하며 화재가 발생할 시 화재 초기단계에서 중요한 역할을 하게 되는데, 이때 화재가 발생하는 환경이 각각 다르므로 이에 맞게 소화캡슐의 탈캡슐화 온도를 조절할 수 있어야 한다. 예를 들면 멀티탭의 경우 정격용량을 초과하여 과전류가 흐를 경우 온도가 80℃ 이상으로 급상승하여 화재 위험성이 커지므로 이러한 응용처의 경우 탈캡슐 온도가 80~90℃ 정도가 되어야 하는반면, 2차 전지 및 ESS(Energy Storage system)과 같은 경우 장비가 오작동이 없이 유지되기 위해서는 100℃ 이상의 충분히 높은 탈캡슐화 온도를 가지는 마이크로캡슐을 사용해야 한다.On the other hand, digestive capsules can be commercialized for various purposes by being added to various polymer resins or products in liquid state, and play an important role in the initial stage of fire when a fire occurs. It is necessary to be able to control the decapsulation temperature of For example, in the case of a multi-tap, if overcurrent flows beyond the rated capacity, the temperature rises to 80℃ or more, increasing the risk of fire. In the case of an ESS (Energy Storage system), microcapsules having a sufficiently high decapsulation temperature of 100 ° C or more must be used in order for the equipment to be maintained without malfunction.
소화약제의 분출과정은 마이크로캡슐의 내부 압력이 외부 온도상승에 따라 증가(internal pressure build-up) 하다가 내부 압력이 외부껍질을 파괴할 정도의 임계점에 다다르게 되면 순간적으로 분출되는 과정을 거치게 되기 때문에, 소화약제가 외피로부터 방출되는 탈캡슐화 온도의 경우 매우 다양한 요인에 의해 결정된다. 다시 말해서, 탈캡슐화 온도는 소화약제의 비점, 소화약제의 함량, 쉘의 종류 및 쉘의 두께, 그리고 마이크로캡슐의 입자 크기 등 다양한 요인에 의해 달라지는데 이는 탈캡슐화 온도를 임의로 정교하게 조절하는 것이 기술적으로 쉬운 일이 아님을 의미한다.The ejection process of the fire extinguishing agent goes through a process in which the internal pressure of the microcapsule increases as the external temperature rises (internal pressure build-up), and when the internal pressure reaches a critical point enough to destroy the outer shell, it is ejected instantaneously. The decapsulation temperature at which the fire extinguishing agent is released from the shell is determined by a wide variety of factors. In other words, the decapsulation temperature varies depending on various factors such as the boiling point of the extinguishing agent, the content of the extinguishing agent, the type and thickness of the shell, and the particle size of the microcapsule. I mean it's not easy.
쉘의 구조를 달리하면서 탈캡슐화 온도를 조절하는 경우 쉘의 종류에 따라 반응 조건 및 쉘의 밀도 등이 달라지므로 제조방법이 복잡 해 질뿐만 아니라 이렇게 제조된 마이크로캡슐을 이용해서 고분자 복합시트 등을 제조할 때 고분자 매트릭스와의 상용성도 완전히 달라지는 등 최종제품의 물성 조절에 어려움을 발생시키는 단점이 있다.When the decapsulation temperature is controlled while changing the structure of the shell, the reaction conditions and density of the shell vary depending on the type of shell, which complicates the manufacturing method and manufactures a polymer composite sheet using the microcapsules thus prepared. There is a disadvantage that causes difficulties in controlling the physical properties of the final product, such as completely changing the compatibility with the polymer matrix when processing.
또한, 만약 마이크로캡슐 속에 함유된 소화약제가 특정 소화약제만을 포함하게 될 경우 이는 결국 탈캡슐화가 다른 두 종류의 마이크로캡슐을 단순 혼합한 경우와 유사한 상태가 되며 따라서 두개의 탈캡슐화 온도를 가지거나 아니면 탈캡슐화 온도 범위가 넓어지는 문제를 발생시키는 단점이 있다.In addition, if the extinguishing agent contained in the microcapsule contains only a specific extinguishing agent, it eventually becomes a state similar to the case of simply mixing two types of microcapsules with different decapsulation, and therefore has two decapsulation temperatures or There is a disadvantage of causing a problem in that the decapsulation temperature range is widened.
본 발명의 목적은 비점이 다른 두 종류 이상의 액상 소화약제의 혼합비를 조절하여 탈캡슐화 온도를 조절할 수 있으며, 제조 공정이 단순한 화재 진압용 자기 소화 마이크로캡슐 조성물 및 이의 제조 방법을 제공하는 것이다. An object of the present invention is to provide a self-extinguishing microcapsule composition for fire suppression and a manufacturing method thereof, in which the decapsulation temperature can be controlled by adjusting the mixing ratio of two or more kinds of liquid fire extinguishing agents having different boiling points, and the manufacturing process is simple.
또한 본 발명의 다른 목적은 소화성능 발현이 뛰어나고, 소화약제의 누출이 적어 안정적이고 신뢰성 높으며, 다양한 소화장치로 제조가 가능한 자기 소화 마이크로캡슐 조성물을 제공하는 것이다.Another object of the present invention is to provide a self-extinguishing microcapsule composition that exhibits excellent fire extinguishing performance, is stable and reliable with little leakage of fire extinguishing agents, and can be manufactured with various fire extinguishing devices.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일실시예로서 코어-쉘 구조를 가지며, 고온에서 탈캡슐화되는 화재 진압용 자기 소화 마이크로캡슐로서, 상기 코어는 할로겐화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제와 제2소화약제를 포함하고, 상기 쉘은 상기 코어의 외각에 형성된 고분자 중합체로 이루어진 자기 소화 마이크로캡슐 조성물을 제공한다.In order to solve the above technical problem, as an embodiment of the present invention, as a self-extinguishing microcapsule for fire suppression that has a core-shell structure and is decapsulated at high temperature, the core is selected from halogenated hydrocarbons and has a different boiling point. It includes a fire extinguishing agent and a second fire extinguishing agent, and the shell provides a self-extinguishing microcapsule composition made of a polymer formed on the outer surface of the core.
본 발명의 일실시예에로서, 상기 제1소화약제와 제2소화약제는 하기의 [식 1] 과 [식 2]를 만족하는 것을 특징으로 하는 자기 소화 마이크로캡슐 조성물을 제공한다:As an embodiment of the present invention, the first extinguishing agent and the second extinguishing agent provide a self-extinguishing microcapsule composition, characterized in that they satisfy the following [Formula 1] and [Formula 2]:
[식 1] … △ρ = |ρ1 - ρ2|< 0.5 [Equation 1] … Δρ = |ρ 1 - ρ 2 |< 0.5
[식 2] … △γ = |γ1 - γ2|< 10[Equation 2] … Δγ = |γ 1 - γ 2 |< 10
상기 [식 1] 및 [식 2]에 있어서, ρ1, ρ2 는 각각 제1소화약제 및 제2소화약제의 비중(g/cm3)이며, γ1, γ2 는 각각 제1소화약제 및 제2소화약제의 표면장력(dyne/cm)이다. 여기서, 상기 제1소화약제와 제2소화약제의 비중은 2g/㎤ 미만인 것이 바람직하다.In [Formula 1] and [Formula 2], ρ 1 and ρ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and γ 1 and γ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm). Here, the specific gravity of the first extinguishing agent and the second extinguishing agent is preferably less than 2 g / cm 3 .
또한 본 발명의 다른 일실시예에로서, 상기 제1소화약제와 제2소화약제의 중량비는 3:7 내지 5:5 범위일 수 있으며, 이에 따라 상기 탈캡슐화 온도를 105 내지 155 ℃ 범위에서 조절할 수 있다. In addition, as another embodiment of the present invention, the weight ratio of the first extinguishing agent and the second extinguishing agent may be in the range of 3:7 to 5:5, and accordingly, the decapsulation temperature may be controlled in the range of 105 to 155 ° C. can
또한 본 발명의 다른 일실시예에로서, 상기 코어는 제1소화약제, 제2소화약제 및 계면활성제가 수중에 분산된 에멀젼 조성물로 이루어질 수 있으며, 마이크로캡슐의 평균 크기는 200 내지 350 ㎛ 범위일 수 있다. In addition, as another embodiment of the present invention, the core may be made of an emulsion composition in which the first extinguishing agent, the second extinguishing agent and the surfactant are dispersed in water, and the average size of the microcapsules is 200 to 350 ㎛ range can
또한 본 발명의 다른 일실시예에로서, 상기 제1소화약제와 제2소화약제는 불소 또는 브롬으로 치환된 탄화수소일 수 있다. 구체적인 예로서 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논, 에틸 노나플루오로부틸 에테르, 1,1,1,2,2,3,4,5,5,5-데카플루오로-3-메톡시-4-(트리플루오로메틸)펜탄, 2-(트리플루오로메틸)-3-에톡시도데카플루오로헥산 중에서 각각 선택될 수 있으나, 이에 특별히 제한되는 것은 아니며, 상기 [식 1] 및 [식 2]를 만족하는 화합물이면 어느 것이나 사용가능하다. In addition, as another embodiment of the present invention, the first fire extinguishing agent and the second fire extinguishing agent may be hydrocarbons substituted with fluorine or bromine. Specific examples include 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone, ethyl nonafluorobutyl ether, 1,1, 1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)pentane, 2-(trifluoromethyl)-3-ethoxydodeca It may be selected from fluorohexane, but is not particularly limited thereto, and any compound satisfying the above [Formula 1] and [Formula 2] may be used.
또한 상기 고분자는 우레아-포름알데하이드-레소시놀, 젤라틴, 에폭시, 폴리우레탄, 폴리우레아 중에서 1종 이상 선택될 수 있으나, 특별히 이에 제한되는 것은 아니다. In addition, the polymer may be one or more selected from urea-formaldehyde-resorcinol, gelatin, epoxy, polyurethane, and polyurea, but is not particularly limited thereto.
한편 본 발명은 다른 일실시예로서, 불소화 탄화수소 또는 브롬화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제 및 제2소화약제를 계면활성제와 수중에서 혼합하여 코어용 에멀젼 조성물을 제조하는 단계, 상기 에멀젼 조성물을 쉘을 형성하는 고분자 수용액에 혼합한 후 산을 첨가하여 pH를 조절하는 단계 및 상기 pH가 조절된 혼합 용액을 승온한 후 냉각시켜 마이크로캡슐을 제조하는 단계를 포함하는, 코어-쉘 구조를 갖는 화재 진압용 자기 소화 마이크로캡슐 조성물의 제조 방법을 제공한다. On the other hand, in another embodiment, the present invention is selected from fluorinated hydrocarbons or brominated hydrocarbons, and the first extinguishing agent and the second extinguishing agent having different boiling points are mixed in water with a surfactant to prepare an emulsion composition for core, the emulsion A core-shell structure comprising the steps of mixing the composition with an aqueous polymer solution forming a shell, adding an acid to adjust the pH, and raising the temperature of the pH-adjusted mixed solution and then cooling it to prepare a microcapsule. It provides a method for producing a self-extinguishing microcapsule composition for fire suppression having
본 발명에 따른 코어-쉘 구조를 갖는 화재 진압용 자기 소화 마이크로캡슐 조성물은 비점이 다른 두 종류 이상의 액상 소화약제를 코어에 포함하는 것이 특징이며, 2종의 소화약제의 혼합비를 조절하여 탈캡슐화 온도를 용도에 맞도록 설정할 수 있다는 장점이 있다. The self-extinguishing microcapsule composition for fire suppression having a core-shell structure according to the present invention is characterized by including two or more types of liquid fire extinguishing agents having different boiling points in the core, and the decapsulation temperature by adjusting the mixing ratio of the two types of fire extinguishing agents. It has the advantage that it can be set to suit the purpose.
또한 본 발명에 따른 자기 소화 마이크로캡슐 조성물의 제조 방법은 공정이 간단하면서 기존에 사용되고 있는 쉘을 이용하면서 코어에 포함되는 소화약제의 종류와 배합비를 변경함으로써, 쉘의 구조가 바뀔 때마다 고분자 매트릭스와의 상용성, 접착성 등의 평가를 새로 실시해야 하는 불편함에서 벗어날 수 있다. In addition, the manufacturing method of the self-extinguishing microcapsule composition according to the present invention has a simple process and changes the type and mixing ratio of the fire extinguishing agent contained in the core while using the existing shell, so that whenever the structure of the shell changes, the polymer matrix and It can be freed from the inconvenience of having to conduct a new evaluation of compatibility and adhesiveness.
또한 본 발명에 따른 소화 마이크로캡슐 조성물은 소화약제의 탈캡슐화 과정에서 짧은 시간 내에 소화약제가 쉘을 파괴 및 방출되는 탈캡슐화가 신속하게 일어나, 화재시 소정의 온도 이상으로 주변 온도가 상승할 경우 소화약제가 빠른 시간 내에 방출되어 초기에 화재를 진압하거나 화재가 번지는 것을 예방할 수 있다. 이와 같이 본 발명에 따른 소화 마이크로캡슐 조성물은 화재 진압을 위한 탁월한 소화 성능을 나타내면서도, 소화약제의 누출이 적어 장기 보존성과 안전성이 우수하다. 또한 본 발명에 따른 소화 마이크로캡슐 조성물은 작동의 신뢰성이 높으며, 다양한 소화 장치에 적용할 수 있다.In addition, the fire extinguishing microcapsule composition according to the present invention rapidly decapsulates, in which the fire extinguishing agent destroys and releases the shell within a short time during the decapsulation process of the fire extinguishing agent, and extinguishes fire when the ambient temperature rises above a predetermined temperature in the event of a fire. The drug is released in a short time, so it can extinguish the fire at an early stage or prevent the fire from spreading. As described above, the fire extinguishing microcapsule composition according to the present invention exhibits excellent fire extinguishing performance for fire suppression, and has excellent long-term preservation and safety with little leakage of the fire extinguishing agent. In addition, the fire extinguishing microcapsule composition according to the present invention has high operational reliability and can be applied to various fire extinguishing devices.
도 1은 본 발명의 실시예에 따른 자기 소화 마이크로캡슐 조성물을 열중량분석기(TGA: Thermo Gravimetric Analyzer)를 이용하여 분석한 결과를 나타내는 그래프이다.1 is a graph showing the results of analyzing a self-extinguishing microcapsule composition according to an embodiment of the present invention using a thermogravimetric analyzer (TGA).
도 2는 본 발명의 실시예에 따른 자기 소화 마이크로캡슐 조성물의 에멀젼 상태(a)와 마이크로캡슐 상태(b)를 촬영한 광학현미경 사진이다.Figure 2 is an optical microscope photograph taken in an emulsion state (a) and a microcapsule state (b) of a self-extinguishing microcapsule composition according to an embodiment of the present invention.
본 발명의 일실시예에 따른 화재 진압용 자기 소화 마이크로캡슐 조성물은 코어-쉘 구조를 가지며, 고온에서 탈캡슐화되고, 상기 코어는 할로겐화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제와 제2소화약제를 포함하고, 상기 쉘은 상기 코어의 외각에 형성된 고분자 중합체로 이루어지는 것일 수 있다.The self-extinguishing microcapsule composition for fire suppression according to an embodiment of the present invention has a core-shell structure, is decapsulated at high temperature, the core is selected from halogenated hydrocarbons, and the first extinguishing agent and the second extinguishing agent having different boiling points are selected. A drug may be included, and the shell may be made of a high molecular weight polymer formed on the outer surface of the core.
본 발명의 일실시예에 따른 자기 소화 마이크로캡슐 조성물에서, 상기 제1소화약제와 제2소화약제는 하기의 [식 1] 과 [식 2]를 만족하는 것이 바람직하다:In the self-extinguishing microcapsule composition according to an embodiment of the present invention, the first extinguishing agent and the second extinguishing agent preferably satisfy the following [Formula 1] and [Formula 2]:
[식 1] … △ρ = |ρ1 - ρ2|< 0.5 [Equation 1] … Δρ = |ρ 1 - ρ 2 |< 0.5
[식 2] … △γ = |γ1 - γ2|< 10[Equation 2] … Δγ = |γ 1 - γ 2 |< 10
상기 [식 1] 및 [식 2]에 있어서, ρ1, ρ2 는 각각 제1소화약제 및 제2소화약제의 비중(g/cm3)이며, γ1, γ2 는 각각 제1소화약제 및 제2소화약제의 표면장력(dyne/cm)이다. 여기서, 상기 제1소화약제와 제2소화약제의 비중은 2g/㎤ 미만인 것이 적합하다.In [Formula 1] and [Formula 2], ρ 1 and ρ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and γ 1 and γ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm). Here, it is preferable that the specific gravity of the first extinguishing agent and the second extinguishing agent is less than 2g/cm 3 .
본 발명의 일실시예에 따른 화재 진압용 자기 소화 마이크로캡슐 조성물의 제조 방법은 할로겐화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제 및 제2소화약제를 계면활성제와 수중에서 혼합하여 코어용 에멀젼 조성물을 제조하는 단계, 상기 에멀젼 조성물을 쉘 형성용 고분자 수용액에 혼합한 후 산을 첨가하여 pH를 조절하는 단계 및 상기 pH가 조절된 혼합 용액을 승온한 후 냉각시켜 마이크로캡슐을 제조하는 단계를 포함할 수 있다. A method for producing a self-extinguishing microcapsule composition for fire suppression according to an embodiment of the present invention is a core emulsion composition by mixing a first extinguishing agent and a second extinguishing agent selected from halogenated hydrocarbons and having different boiling points in water with a surfactant Preparing a step, mixing the emulsion composition with an aqueous polymer solution for forming a shell, adjusting the pH by adding an acid, and raising the temperature of the pH-adjusted mixed solution and then cooling it to prepare microcapsules. can
이하 실시예와 도면을 참조하여 본 발명을 보다 상세히 설명한다. 그러나 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. The present invention will be described in more detail with reference to the following examples and drawings. However, since the present invention can have various changes and various forms, the present invention is not intended to be limited to specific embodiments, and all changes, equivalents or substitutes included in the spirit and technical scope of the present invention should be understood as including
또한 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In addition, in this application, terms such as "include" or "have" mean that other components may be further included without excluding other components unless otherwise stated.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related art, and unless explicitly defined in this application, it should not be interpreted in an ideal or excessively formal meaning. don't
본 발명은 화재진압을 위한 자기 소화 마이크로캡슐 조성물에 관한 것으로서, 특히 동일한 화학적 구조의 쉘을 가지면서도 탈캡슐화 온도는 상이한 자기 소화 마이크로캡슐을 제공하며, 이를 위해 비점이 다른 두 종류 이상의 액상 소화약제를 사용하면서 균등하게 함유하여 하나의 탈캡슐화 온도만을 가지는 자기 소화 마이크로캡슐 조성물을 제공한다. The present invention relates to a self-extinguishing microcapsule composition for fire suppression, in particular, to provide self-extinguishing microcapsules having shells of the same chemical structure but having different decapsulation temperatures. It is evenly contained during use to provide a self-extinguishing microcapsule composition having only one decapsulation temperature.
보다 구체적으로, 본 발명의 일실시예에 따른 화재 진압용 자기 소화 마이크로캡슐 조성물은 코어-쉘 구조를 가지며, 고온에서 탈캡슐화되고, 상기 코어는 할로겐화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제와 제2소화약제를 포함하고, 상기 쉘은 상기 코어의 외각에 형성된 고분자 중합체로 이루어질 수 있다. More specifically, the self-extinguishing microcapsule composition for fire suppression according to an embodiment of the present invention has a core-shell structure, is decapsulated at high temperature, the core is selected from halogenated hydrocarbons, and a first extinguishing agent having a different boiling point and a second fire extinguishing agent, and the shell may be made of a polymer formed on the outer surface of the core.
본 발명에 따른 자기 소화 마이크로캡슐 조성물은 비점이 다른 두 종류 이상의 소화약제를 사용하는 것이 특징이며, 상기 제1소화약제와 제2소화약제의 중량비는 3:7 내지 5:5 범위에서 배합할 수 있다. 상기 두 소화약제의 중량비를 조절함으로써 탈캡슐화 온도를 설정할 수 있으며, 상기 온도 범위는 약 105 내지 155 ℃ 이다. The self-extinguishing microcapsule composition according to the present invention is characterized by using two or more types of fire extinguishing agents having different boiling points, and the weight ratio of the first fire extinguishing agent and the second fire extinguishing agent may be mixed in the range of 3:7 to 5:5. there is. The decapsulation temperature can be set by adjusting the weight ratio of the two fire extinguishing agents, and the temperature range is about 105 to 155 °C.
본 발명의 실시예에서서, 마이크로캡슐 조성물의 코어는 제1소화약제, 제2소화약제 및 계면활성제가 수중에 분산된 에멀젼 조성물일 수 있다. 이때, 코어에 포함되는 제1소화약제와 제2소화약제는 할로겐화 탄화수소이며, 불소 또는 브롬으로 치환된 탄화수소 중에서 선택할 수 있다. 소화약제의 구체적인 예로서, 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논, 에틸 노나플루오로부틸 에테르, 1,1,1,2,2,3,4,5,5,5-데카플루오로-3-메톡시-4-(트리플루오로메틸)펜탄, 2-(트리플루오로메틸)-3-에톡시도데카플루오로헥산 등을 들 수 있다. 상기 화합물 중에서 제1소화약제와 제2소화약제를 각각 선택할 수 있으나, 특별히 이에 제한되는 것은 아니며, 하기 [식 1] 및 [식 2]를 만족하는 화합물이면 어느 것이나 사용가능하다.In an embodiment of the present invention, the core of the microcapsule composition may be an emulsion composition in which a first extinguishing agent, a second extinguishing agent, and a surfactant are dispersed in water. At this time, the first extinguishing agent and the second extinguishing agent included in the core are halogenated hydrocarbons, and may be selected from hydrocarbons substituted with fluorine or bromine. As specific examples of fire extinguishing agents, 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)pentane, 2-(trifluoromethyl)-3- Ethoxydodecafluorohexane etc. are mentioned. The first extinguishing agent and the second extinguishing agent may be selected from the above compounds, but are not particularly limited thereto, and any compound satisfying the following [Formula 1] and [Formula 2] may be used.
또한 본 발명의 실시예에 따른 자기 소화 마이크로캡슐 조성물의 외각을 형성하는 고분자는 예를 들어, 우레아-포름알데하이드-레소시놀, 젤라틴, 에폭시, 폴리우레탄, 폴리우레아 중에서 1종 이상 선택될 수 있으나, 특별히 이에 제한되는 것은 아니다.In addition, the polymer forming the outer shell of the self-extinguishing microcapsule composition according to an embodiment of the present invention may be at least one selected from, for example, urea-formaldehyde-resorcinol, gelatin, epoxy, polyurethane, and polyurea. , but is not particularly limited thereto.
본 발명에 따른 자기 소화 마이크로캡슐 조성물은 코아세르베이션 방법(Coacervation mechanism)에 의해 제조할 수 있다. 이 제조 방법의 제1단계는 소화약제를 물속에서 계면활성제를 사용하여 에멀젼화시키는 것이다. 이때 균일한 입자 방울(Droplet)을 형성하기 위하여 교반 또는 초음파 처리를 하게 되는데, 안정적인 에멀젼을 달성시키기 위해서는 소화약제의 비중 및 표면장력이 매우 중요한 역할을 하게 된다. 따라서 사용되는 소화약제에 적합한 계면활성제의 선정, 투입함량, 혼합 온도 및 교반 속도 등 제조 조건을 최적화해야 하는데, 비점, 비중 및 표면장력 등이 상이한 두 종류 이상의 소화약제를 사용하는 경우 상황은 더 복잡하게 되므로 이로 인해 안정한 에멀젼을 형성하기가 매우 어려워지며 결과적으로 특성이 우수한 마이크로캡슐을 제조하기 어려운 문제가 있었다.The self-extinguishing microcapsule composition according to the present invention can be prepared by a coacervation mechanism. The first step of this manufacturing method is to emulsify the fire extinguishing agent in water using a surfactant. At this time, stirring or ultrasonic treatment is performed to form uniform droplets. In order to achieve a stable emulsion, the specific gravity and surface tension of the fire extinguishing agent play a very important role. Therefore, it is necessary to optimize manufacturing conditions such as selection of surfactant suitable for the extinguishing agent used, input content, mixing temperature and stirring speed. However, the situation is more complicated when two or more types of extinguishing agents with different boiling points, specific gravity and surface tension are used. Therefore, it is very difficult to form a stable emulsion, and as a result, it is difficult to prepare microcapsules with excellent properties.
이러한 문제를 해결하기 위하여, 본 발명은 두 종류 이상의 소화약제를 사용하는 경우에, 제1단계인 에멀젼화 반응이 안정화될 경우 우수한 특성의 마이크로캡슐을 얻을 수 있다는 사실을 발견하였으며, 안정한 에멀젼을 얻기 위해서는 소화약제들이 비슷한 수준의 비중 및 표면장력을 가져야 한다는 것을 밝혀내었다. In order to solve this problem, the present invention has found that when two or more types of fire extinguishing agents are used, when the emulsification reaction, which is the first step, is stabilized, microcapsules with excellent characteristics can be obtained, and a stable emulsion can be obtained. It was found that the fire extinguishing agents must have similar specific gravity and surface tension for this purpose.
구체적으로, 본 발명에 따른 자기 소화 마이크로캡슐 조성물에 포함되는 상기 제1소화약제와 제2소화약제는 하기의 [식 1] 과 [식 2]를 만족하는 것이 바람직하다.Specifically, it is preferable that the first extinguishing agent and the second extinguishing agent included in the self-extinguishing microcapsule composition according to the present invention satisfy the following [Formula 1] and [Formula 2].
[식 1] … △ρ = |ρ1 - ρ2|< 0.5 [Equation 1] … Δρ = |ρ 1 - ρ 2 |< 0.5
[식 2] … △γ = |γ1 - γ2|< 10[Equation 2] … Δγ = |γ 1 - γ 2 |< 10
상기 [식 1] 및 [식 2]에 있어서, ρ1, ρ2 는 각각 제1소화약제 및 제2소화약제의 비중(g/cm3)이며, γ1, γ2 는 각각 제1소화약제 및 제2소화약제의 표면장력(dyne/cm)이다. 또한 제1소화약제와 제2소화약제의 비중은 2g/㎤ 미만인 것이 적합하다.In [Formula 1] and [Formula 2], ρ 1 and ρ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and γ 1 and γ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm). In addition, it is preferable that the specific gravity of the first extinguishing agent and the second extinguishing agent is less than 2g/cm 3 .
본 발명에서는 할로겐으로 치환된 탄화수소를 소화약제로 사용하는 경우, 종류 및 구조에 대해서는 특별히 제한되지 않으나, 두 종류의 소화약제의 비중의 차이가 0.5 보다 크거나 또는 표면장력의 차이가 10 보다 큰 경우에는 에멀젼화 공정이 안정적으로 진행되지 않는다. 예를 들면, 비중의 차이가 큰 경우 충분히 교반을 시켜도 두 종류의 소화약제가 완전히 균일하게 혼합되기 어려우며, 따라서 각각 독립적인 에멀젼 입자가 형성된다. 이때 각각의 소화약제의 비중은 특별히 제한되지는 않으나 비중이 2g/㎤ 미만인 것이 바람직한데, 왜냐하면 비중이 물에 비해 너무 클 경우 일부 소화약제들이 반응기 하부에 가라앉을 가능성이 있기 때문이다.In the present invention, when halogen-substituted hydrocarbons are used as fire extinguishing agents, the type and structure are not particularly limited, but when the difference in specific gravity of the two types of fire extinguishing agents is greater than 0.5 or the difference in surface tension is greater than 10 The emulsification process does not proceed stably. For example, when the difference in specific gravity is large, it is difficult to completely uniformly mix the two types of fire extinguishing agents even if sufficiently stirred, and thus independent emulsion particles are formed. At this time, the specific gravity of each fire extinguishing agent is not particularly limited, but it is preferable that the specific gravity is less than 2 g / cm 3, because if the specific gravity is too large compared to water, some fire extinguishing agents may sink to the bottom of the reactor.
또한, 본 발명에서는 두 종류의 소화약제의 표면장력 차이도 매우 중요하다. 표면장력이란 에멀젼 입자의 열역학적 안정성(Thermodynamic stability)을 의미하는데, 이는 계면활성제의 종류 및 함량과 밀접한 관계를 가진다. 따라서 동일한 계면활성제를 사용하더라도 표면장력의 차이가 너무 큰 두 소화약제를 사용할 경우 두 소화약제가 완전히 균일하게 혼합되기 어려워지며, 따라서 각각 독립적인 에멀젼 입자가 형성되는 문제가 있다. In addition, in the present invention, the difference in surface tension of the two types of fire extinguishing agents is also very important. Surface tension means the thermodynamic stability of emulsion particles, which has a close relationship with the type and content of surfactant. Therefore, even if the same surfactant is used, when two fire extinguishing agents having too large a difference in surface tension are used, it is difficult to completely uniformly mix the two fire extinguishing agents, and thus there is a problem in that independent emulsion particles are formed.
본 발명의 일실시예에 따른 화재 진압용 자기 소화 마이크로캡슐 조성물의 제조 방법은 할로겐화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제 및 제2소화약제를 계면활성제와 수중에서 혼합하여 코어용 에멀젼 조성물을 제조하는 단계; 상기 에멀젼 조성물을 쉘을 형성하게 될 고분자의 수용액에 혼합한 후 산을 첨가하여 pH를 조절하는 단계; 및 상기 pH가 조절된 혼합 용액을 승온한 후 냉각시켜 마이크로캡슐을 제조하는 단계를 포함할 수 있다. 여기서 승온 온도는 45 내지 60℃ 범위이고, pH는 2 내지 4의 범위인 것이 바람직하다. A method for producing a self-extinguishing microcapsule composition for fire suppression according to an embodiment of the present invention is a core emulsion composition by mixing a first extinguishing agent and a second extinguishing agent selected from halogenated hydrocarbons and having different boiling points in water with a surfactant Preparing; adjusting the pH by adding an acid after mixing the emulsion composition with an aqueous solution of a polymer to form a shell; and preparing microcapsules by raising the temperature of the pH-adjusted mixed solution and then cooling it. Here, the heating temperature is in the range of 45 to 60 ° C, and the pH is preferably in the range of 2 to 4.
본 발명의 자기 소화 마이크로캡슐 조성물의 제조 방법에서, 제1소화약제와 제2소화약제는 상기 [식 1] 및 [식 2]를 만족시키는 것이 바람직하며, 두 종류의 혼합 소화약제를 계면활성제를 이용하여 에멀젼화시킨 다음, 수용성 고분자 입자를 형성시킨 후 이 입자들이 혼합 소화약제 표면에 흡착된 후 최종적으로 고체 쉘(shell)을 형성하여 자기소화 마이크로캡슐을 완성할 수 있다. In the method for producing the self-extinguishing microcapsule composition of the present invention, it is preferable that the first fire extinguishing agent and the second fire extinguishing agent satisfy the above [Formula 1] and [Formula 2], and the two kinds of mixed fire extinguishing agents are mixed with a surfactant. After emulsification, water-soluble polymer particles are formed, the particles are adsorbed on the surface of the mixed fire extinguishing agent, and finally a solid shell is formed to complete the self-extinguishing microcapsule.
상기 코어용 에멀젼 조성물의 제조에 사용되는 계면활성제는 PVA(polyvinyl alcohol), EMA(ethylene maleic anhydride), SDBS(sodium dodecyl benzene sulfonate) 등을 들 수 있으나, 이에 특별히 제한되는 것은 아니다. Surfactants used in the preparation of the core emulsion composition may include polyvinyl alcohol (PVA), ethylene maleic anhydride (EMA), sodium dodecyl benzene sulfonate (SDBS), etc., but are not particularly limited thereto.
본 발명의 제조 방법에 따라 제조된 자기 소화 마이크로캡슐의 평균 크기는 200 내지 350 ㎛ 범위인 것이 바람직하지만, 이 범위에 제한되는 것은 아니며, 마이크로 캡슐이 적용되는 분야에 맞도록 캡슐 제조 과정에서 크기를 조절할 수 있다.The average size of the self-extinguishing microcapsules prepared according to the manufacturing method of the present invention is preferably in the range of 200 to 350 μm, but is not limited to this range, and the size can be adjusted in the capsule manufacturing process to suit the field to which the microcapsules are applied. can be adjusted
이하, 본 발명의 이해를 돕기 위하여 실시예 및 비교예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예 및 비교예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예 및 비교예에 한정되는 것으로 해석되어서는 안 된다. Hereinafter, examples and comparative examples will be described in detail to aid understanding of the present invention. However, the following Examples and Comparative Examples are merely illustrative of the content of the present invention and should not be construed as limiting the scope of the present invention to the following Examples and Comparative Examples.
실시예 Example
본 발명의 실시예에 사용된 소화약제들은 TCI 사로부터 구매하였으며 각 화합물들에 기본 정보는 하기 [표 1]과 같다. 소화약제는 하기 표 1에 기재된 비율로 혼합하였으며 상온에서 30분간 200rpm으로 교반한 후 30분간 방치하였다.The fire extinguishing agents used in the examples of the present invention were purchased from TCI, and basic information on each compound is shown in [Table 1]. The fire extinguishing agent was mixed in the ratio shown in Table 1, stirred at 200 rpm for 30 minutes at room temperature, and then left for 30 minutes.
소화
약제
digestion
drugs
화학명chemical name CAS No.CAS No. 비점℃boiling point ℃
A-1A-1 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoro
methyl)-3-pentanone
1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoro
methyl)-3-pentanone
756-13-8756-13-8 4949
A-2A-2 Ethyl nonafluorobutyl etherEthyl nonafluorobutyl ether 163702-05-4163702-05-4 7676
A-3A-3 (1,1,1,2,2,3,4,5,5,5-Decafluoro-3-methoxy
-4-(trifluoromethyl)-pentane
(1,1,1,2,2,3,4,5,5,5-Decafluoro-3-methoxy
-4-(trifluoromethyl)-pentane
132182-92-4132182-92-4 100100
B-1B-1 Di-bromomethaneDi-bromomethane 74-95-374-95-3 9797
B-2B-2 1,2-Di-bromo-tetra fluoro ethane1,2-Di-bromo-tetrafluoroethane 124-73-2124-73-2 47.247.2
B-3B-3 1,1,2-Tri-bromo ethane1,1,2-Tri-bromo ethane 78-74-078-74-0 189189
[실시예 1][Example 1]
우선 제1소화약제인 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl) -3-pentanone (A-1) 50g과 제2소화약제인 1,1,1,2,2,3,4,5,5,5-Decafluoro-3-methoxy-4-(trifluoromethyl)pentane (A-3) 50g을 사용하여 혼합 소화약제를 제조하였다. 고형분 30%인 PVA(Polyvinyl alcohol) 수용액 88g과 상기에서 제조된 혼합 소화약제, 그리고 증류수 63g을 반응기에 투입한 후 32℃에서 2시간 교반하였다. 다른 반응기에 Urea 0.6g, Resorcinol 3g을 증류수 70g과 혼합하여 32℃에서 30분간 교반하였고 이때 NaOH 수용액을 이용하여 pH가 6~7이 되도록 유지하였다. 여기에 37% Formaldehyde 용액 11g을 투입하여 5분간 교반한 후 제조된 Urea-Resorcinol-Formaldehyde 용액을 미리 제조된 PVA-소화약제 용액에 투입하였다. 10% 황산 용액으로 pH가 2가 되도록 조절한 후 32℃에서 30분간 교반하였다. 온도를 45℃로 승온해서 50분간 반응시킨 후 32℃로 자연 냉각하고 이 온도에서 20시간 유지시켰다. 반응물을 실온으로 냉각한 후 증류수로 세척하여 소화약제가 포함된 자기 소화 마이크로캡슐을 제조하였다.First, 50 g of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl) -3-pentanone (A-1) as the first extinguishing agent and 1,1 as the second extinguishing agent A mixed fire extinguishing agent was prepared using 50 g of 1,2,2,3,4,5,5,5-Decafluoro-3-methoxy-4-(trifluoromethyl)pentane (A-3). After putting 88g of PVA (Polyvinyl alcohol) aqueous solution having a solid content of 30%, the mixed fire extinguishing agent prepared above, and 63g of distilled water into the reactor, it was stirred at 32 ° C. for 2 hours. In another reactor, 0.6 g of Urea and 3 g of Resorcinol were mixed with 70 g of distilled water and stirred at 32 ° C for 30 minutes. At this time, the pH was maintained at 6-7 using NaOH aqueous solution. After adding 11 g of 37% Formaldehyde solution and stirring for 5 minutes, the prepared Urea-Resorcinol-Formaldehyde solution was added to the previously prepared PVA-extinguishing agent solution. After adjusting the pH to 2 with a 10% sulfuric acid solution, the mixture was stirred at 32° C. for 30 minutes. The temperature was raised to 45 ° C. and reacted for 50 minutes, then naturally cooled to 32 ° C. and maintained at this temperature for 20 hours. After cooling the reactant to room temperature, it was washed with distilled water to prepare self-extinguishing microcapsules containing an extinguishing agent.
[실시예 2][Example 2]
우선 제1소화약제인 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone (A-1) 50g과 제2소화약제인 1,1,1,2,2,3,4,5,5,5-Decafluoro-3-methoxy-4-(trifluoromethyl)pentane (A-3) 50g을 사용하여 혼합 소화약제를 제조하였다. 젤라틴 9g을 증류수 143g에 첨가하고 30분 동안 50℃로 가열 한 후, 상기에서 제조된 혼합 소화약제 100g과 상온에서 혼합하였다. 혼합 용액에 고형분 5wt%의 sodium polyphosphate(폴리인산나트륨) 21g을 투입하고 10wt%의 황산용액으로 pH가 4가 되도록 조절하였다. 온도를 서서히 10℃로 낮춘 후 형성된 쉘을 경화하기 위하여 고형분 25wt%의 Glutaraldehyde(글루타르산 알데히드) 수용액 9g을 반응 혼합물에 첨가하고 실온에서 5-6시간 유지한 후 세척하여 소화약제가 포함된 마이크로캡슐을 제조하였다. First, 50 g of 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone (A-1) as the first extinguishing agent and 1,1 as the second extinguishing agent A mixed fire extinguishing agent was prepared using 50 g of 1,2,2,3,4,5,5,5-Decafluoro-3-methoxy-4-(trifluoromethyl)pentane (A-3). 9 g of gelatin was added to 143 g of distilled water and heated to 50 ° C. for 30 minutes, and then mixed with 100 g of the mixed fire extinguishing agent prepared above at room temperature. 21 g of sodium polyphosphate (sodium polyphosphate) with a solid content of 5 wt% was added to the mixed solution, and the pH was adjusted to 4 with a 10 wt% sulfuric acid solution. After slowly lowering the temperature to 10℃, 9g of an aqueous solution of Glutaraldehyde (glutaric acid aldehyde) with a solid content of 25wt% was added to the reaction mixture to cure the formed shell, maintained at room temperature for 5-6 hours, washed, and microcircuit containing a fire extinguishing agent. Capsules were prepared.
[실시예 3][Example 3]
실시예 1에서 혼합 소화약제 제조시 소화약제 A1 70g과 소화약제 A3 30g을 사용한 것을 제외하고는 실시예 1과 동일하다.In Example 1, when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 70 g of the fire extinguishing agent A1 and 30 g of the fire extinguishing agent A3 were used.
[실시예 4][Example 4]
실시예 1에서 혼합 소화약제 제조시 소화약제 A1 30g과 소화약제 A3 70g을 사용한 것을 제외하고는 실시예 1과 동일하다.In Example 1, when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 30 g of the fire extinguishing agent A1 and 70 g of the fire extinguishing agent A3 were used.
[비교예 1][Comparative Example 1]
실시예 1에서 혼합 소화약제 제조시 소화약제 A1 50g과 소화약제 B1 50g을 사용한 것을 제외하고는 실시예 1과 동일하다.In Example 1, when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent A1 and 50 g of the fire extinguishing agent B1 were used.
[비교예 2][Comparative Example 2]
실시예 1에서 혼합 소화약제 제조시 소화약제 A1 50g과 소화약제 B3 50g을 사용한 것을 제외하고는 실시예 1과 동일하다.In Example 1, when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent A1 and 50 g of the fire extinguishing agent B3 were used.
[비교예 3][Comparative Example 3]
실시예 1에서 혼합 소화약제 제조시 소화약제 A1 50g과 소화약제 B2 50g을 사용한 것을 제외하고는 실시예 1과 동일하다.In Example 1, when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent A1 and 50 g of the fire extinguishing agent B2 were used.
[비교예 4][Comparative Example 4]
실시예 1에서 혼합 소화약제 제조시 소화약제 B1 50g과 소화약제 B3 50g을 사용한 것을 제외하고는 실시예 1과 동일하다.In Example 1, when preparing the mixed fire extinguishing agent, it is the same as in Example 1 except that 50 g of the fire extinguishing agent B1 and 50 g of the fire extinguishing agent B3 were used.
[평가예][Evaluation example]
본 발명에 따른 실시예 및 비교예에서 제조된 마이크로캡슐의 특성은 하기 실험을 통해 평가하였으며 그 결과를 표 2에 나타내었다. 우선 소화약제의 비중은 비중병을 이용하여 증류수에 대한 상대비중법을 이용하여 계산하여 측정하였으며 표면장력은 표면장력측정기(Tensiometer, KRUSS 사의 Model K100)를 이용해서 측정하였다. 제조된 마이크로캡슐의 수율은 이론 수득량 대비 세척, 건조 후 얻어진 마이크로캡슐의 수득량을 통해 계산하였으며 마이크로캡슐의 크기 및 탈캡슐화 온도는 각각 광학현미경(Nikon 사의 Eclipse E 200) 및 열중량분석기(TGA, TA instrument 사의 Q500)를 통해 측정하였다. The characteristics of the microcapsules prepared in Examples and Comparative Examples according to the present invention were evaluated through the following experiments, and the results are shown in Table 2. First, the specific gravity of the fire extinguishing agent was calculated and measured using the relative gravity method for distilled water using a pycnometer, and the surface tension was measured using a surface tension meter (Tensiometer, KRUSS Model K100). The yield of the prepared microcapsules was calculated through the theoretical yield versus the yield of microcapsules obtained after washing and drying. , TA instrument's Q500) was measured.
마이크로캡슐 조성Microcapsule composition 혼합 소화약제 특성Characteristics of Mixed Fire Extinguishing Agent
소화약제fire extinguishing agent shell 밀도
(ρ, g/cm3)
density
(ρ, g/cm3)
표면장력
(γ, dyne/cm)
surface tension
(γ, dyne/cm)
제1No. 1 제22nd 함량비content ratio URFURF 제1No. 1 제22nd △ρ△ρ my 제22nd △γ△γ
실시예 1Example 1 A1A1 A3A3 5:55:5 GellatinGelatin 1.621.62 1.691.69 0.070.07 11.111.1 15.215.2 4.14.1
실시예 2Example 2 A1A1 A3A3 5:55:5 URFURF 1.621.62 1.691.69 0.070.07 11.111.1 15.215.2 4.14.1
실시예 3Example 3 A1A1 A3A3 7:37:3 URFURF 1.621.62 1.691.69 0.070.07 11.111.1 15.215.2 4.14.1
실시예 4Example 4 A1A1 A3A3 3:73:7 URFURF 1.621.62 1.691.69 0.070.07 11.111.1 15.215.2 4.14.1
비교예 1Comparative Example 1 A1A1 B1B1 5:55:5 URFURF 1.621.62 2.482.48 0.860.86 11.111.1 38.538.5 27.427.4
비교예 2Comparative Example 2 A1A1 B3B3 5:55:5 URFURF 1.621.62 2.632.63 1.011.01 11.111.1 44.244.2 33.133.1
비교예 3Comparative Example 3 A1A1 B2B2 5:55:5 URFURF 1.621.62 2.192.19 0.570.57 11.111.1 18.018.0 6.96.9
비교예 4Comparative Example 4 B1B1 B3B3 5:55:5 URFURF 2.482.48 2.632.63 0.150.15 38.538.5 44.244.2 5.75.7
마이크로비드 특성Microbead Characteristics
수율transference number 크기size 탈캡슐온도decapsulation temperature
%% micronmicron
실시예 1Example 1 9292 200-350200-350 125125
실시예 2Example 2 9393 200-350200-350 123123
실시예 3Example 3 9191 200-350200-350 110110
실시예 4Example 4 9090 200-350200-350 135135
비교예 1Comparative Example 1 NGNG NGNG NGNG
비교예 2Comparative Example 2 NGNG NGNG NGNG
비교예 3Comparative Example 3 4848 50-40050-400 115115
비교예 4Comparative Example 4 7575 200-350200-350 150150
상기 표 2와 표 3의 결과 및 도 1에서 보이는 바와 같이, 비중의 차이가 0.5 이하이면서 표면장력의 차이가 10 이하인 두 종류의 소화약제를 혼합할 경우 입자 분포가 균일한 마이크로캡슐을 90% 이상의 높은 수율로 제조되며, 두 종류의 소화약제의 배합 비율을 조절함으로써 탈캡슐화 온도를 조절할 수 있음을 알 수 있다. 또한, 쉘을 구성하는 고분자 소재를 변화시키더라도(실시예 2) 원하는 탈캡슐화 온도를 가지는 마이크로캡슐이 제조됨을 확인하였다. As shown in the results of Tables 2 and 3 and FIG. 1, when two types of fire extinguishing agents having a difference in specific gravity of 0.5 or less and a difference in surface tension of 10 or less are mixed, microcapsules with uniform particle distribution can be obtained by 90% or more. It is produced in high yield, and it can be seen that the decapsulation temperature can be controlled by adjusting the blending ratio of the two types of fire extinguishing agents. In addition, it was confirmed that microcapsules having a desired decapsulation temperature were prepared even when the polymer material constituting the shell was changed (Example 2).
반면에, 비중의 차이가 0.5 이상이거나 또는 표면장력의 차이가 10 이상인 두 종류의 소화약제를 혼합할 경우 에멀젼의 안정도가 급격히 떨어져 완전한 형태의 마이크로캡슐이 생성되지 않았다(비교예 1, 2). 또한 비중의 차이가 0.5 보다 약간 크면서 표면장력의 차이가 7 정도인 두 종류의 소화약제를 혼합할 경우(비교예 3) 마이크로캡슐은 얻을 수 있었지만 수율이 급격히 떨어지고, 입자 크기의 분포가 현저히 증가하는 등 생산성이 급격히 저하됨을 알 수 있다. On the other hand, when two types of fire extinguishing agents with a difference in specific gravity of 0.5 or more or a difference in surface tension of 10 or more were mixed, the stability of the emulsion rapidly decreased, and perfect microcapsules were not produced (Comparative Examples 1 and 2). In addition, when two types of fire extinguishing agents having a difference in specific gravity slightly greater than 0.5 and a difference in surface tension of about 7 are mixed (Comparative Example 3), microcapsules could be obtained, but the yield dropped sharply and the particle size distribution significantly increased. It can be seen that productivity decreases rapidly.
한편, 비중의 차이가 0.5 이하이면서 표면장력의 차이가 10 이하인 두 종류의 브롬계 소화약제를 혼합할 경우 캡슐화는 정상적으로 진행되지만 소화약제의 비중이 2 보다 크기 때문에 인해 수득율이 크게 떨어져 경제성에 문제가 있음을 확인하였다(비교예 4).On the other hand, when mixing two types of bromine-based fire extinguishing agents with a difference in specific gravity of 0.5 or less and a difference in surface tension of 10 or less, encapsulation proceeds normally, but the yield is greatly reduced due to the specific gravity of the fire extinguishing agent being greater than 2, resulting in a problem in economic efficiency. It was confirmed that there was (Comparative Example 4).
이와 같이, 본 발명은 동일한 화학적 구조의 쉘을 가지면서 비점이 다른 두 종류 이상의 액상 소화약제를 균등하게 포함한 자기 소화 마이크로캡슐 조성물을 제조함으로써, 소화약제의 혼합비를 조절하여 탈캡슐(Decapsulation)화 온도를 원하는 온도로 조절할 수 있다. 또한 본 발명에 따른 자기 소화 마이크로캡슐 조성물의 제조 방법은 제조 공정이 단순하여 작업의 효율성이 높다. 쉘의 구조가 바뀔 때마다 고분자 매트릭스와의 상용성, 접착성 등의 평가를 새로 실시해야 하는 불편함에서 해소하였으며, 장기 보존성 및 안전성을 확보하여, 작동의 신뢰성이 향상된 자기 소화 마이크로캡슐 조성물을 제공할 수 있다. 이외에도 본 발명은 소화약제의 탈캡슐화 과정에서 짧은 시간 내에 소화약제가 쉘을 파괴 및 방출되는 탈캡슐화가 신속하게 일어나 화재시 소정의 온도 이상으로 주변 온도가 상승하게 되면 소화약제의 방출로 초기에 화재를 진압하거나 화재가 번지는 것을 예방하는 등 출중한 소화(消火)기능을 발휘하여 빠른 시간 내에 화재진압이 가능하도록 하는 등의 우수한 소화성능 발현(發顯)하며 소화약제의 누출이 적어 안정적이고 신뢰성 높은 다양한 소화장치로 제조가 가능하다. As such, the present invention prepares a self-extinguishing microcapsule composition that equally contains two or more types of liquid fire extinguishing agents having the same chemical structure and different boiling points, thereby adjusting the mixing ratio of the fire extinguishing agents to decapsulate the temperature. can be adjusted to the desired temperature. In addition, the manufacturing method of the self-extinguishing microcapsule composition according to the present invention has a simple manufacturing process and high work efficiency. It eliminates the inconvenience of having to conduct a new evaluation of compatibility and adhesiveness with the polymer matrix whenever the structure of the shell is changed, and provides a self-extinguishing microcapsule composition with improved operational reliability by securing long-term preservation and safety. can do. In addition, in the present invention, in the process of decapsulating the fire extinguishing agent, decapsulation in which the fire extinguishing agent destroys and releases the shell occurs quickly, and when the ambient temperature rises above a predetermined temperature in the event of a fire, the fire extinguishing agent is released at the beginning of the fire. Excellent fire extinguishing function, such as suppressing fire or preventing the spread of fire, exhibits excellent fire extinguishing performance such as enabling fire suppression in a short time, and stable and reliable with little leakage of fire extinguishing agent It can be manufactured with a variety of high fire extinguishing devices.

Claims (20)

  1. 코어-쉘 구조를 가지며, 고온에서 탈캡슐화되는 자기 소화 마이크로캡슐 조성물로서, A self-extinguishing microcapsule composition that has a core-shell structure and is decapsulated at high temperature,
    상기 코어는 할로겐화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제와 제2소화약제를 포함하고, The core is selected from halogenated hydrocarbons and includes a first extinguishing agent and a second extinguishing agent having different boiling points,
    상기 쉘은 상기 코어의 외각에 형성된 고분자 중합체로 이루어진, The shell is made of a high-molecular polymer formed on the outer surface of the core,
    화재 진압용 자기 소화 마이크로캡슐 조성물.A self-extinguishing microcapsule composition for fire suppression.
  2. 제1항에 있어서,According to claim 1,
    상기 제1소화약제와 상기 제2소화약제는 하기의 [식 1] 과 [식 2]를 만족하는 것인, 자기 소화 마이크로캡슐 조성물.The first extinguishing agent and the second extinguishing agent satisfy the following [Formula 1] and [Formula 2], the self-extinguishing microcapsule composition.
    [식 1] … △ρ = |ρ1 - ρ2|< 0.5 [Equation 1] … Δρ = |ρ 1 - ρ 2 |< 0.5
    [식 2] … △γ = |γ1 - γ2|< 10[Equation 2] … Δγ = |γ 1 - γ 2 |< 10
    상기 [식 1] 및 [식 2]에 있어서, ρ1, ρ2는 각각 제1소화약제 및 제2소화약제의 비중(g/cm3)이며, γ1, γ2는 각각 제1소화약제 및 제2소화약제의 표면장력(dyne/cm)이다. In [Formula 1] and [Formula 2], ρ 1 and ρ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and γ 1 and γ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm).
  3. 제1항에 있어서,According to claim 1,
    상기 제1소화약제와 상기 제2소화약제의 비중은 2g/㎤ 미만인 것인, 자기 소화 마이크로캡슐 조성물.The self-extinguishing microcapsule composition, wherein the specific gravity of the first extinguishing agent and the second extinguishing agent is less than 2 g / cm 3 .
  4. 제1항에 있어서, According to claim 1,
    상기 제1소화약제와 제2소화약제의 중량비는 3:7 내지 5:5 범위인, 자기 소화 마이크로캡슐 조성물. The weight ratio of the first extinguishing agent and the second extinguishing agent is in the range of 3:7 to 5:5, self-extinguishing microcapsule composition.
  5. 제1항에 있어서, According to claim 1,
    상기 마이크로캡슐의 평균 크기는 200 내지 350 ㎛ 범위인, 자기 소화 마이크로캡슐 조성물.The average size of the microcapsules is in the range of 200 to 350 μm, self-extinguishing microcapsule composition.
  6. 제1항에 있어서, According to claim 1,
    상기 탈캡슐화 온도는 105 내지 155 ℃ ℃ 범위인, 자기 소화 마이크로캡슐 조성물.The self-extinguishing microcapsule composition of claim 1, wherein the decapsulation temperature ranges from 105 to 155 °C.
  7. 제1항에 있어서, According to claim 1,
    상기 코어는 제1소화약제, 제2소화약제 및 계면활성제가 수중에 분산된 에멀젼 조성물인, 자기 소화 마이크로캡슐 조성물.The core is an emulsion composition in which a first extinguishing agent, a second extinguishing agent and a surfactant are dispersed in water, a self-extinguishing microcapsule composition.
  8. 제1항에 있어서, According to claim 1,
    상기 할로겐화 탄화수소는 불소 또는 브롬으로 치환된 탄화수소 중에서 선택되는 것인, 자기 소화 마이크로캡슐 조성물.The halogenated hydrocarbon is selected from hydrocarbons substituted with fluorine or bromine, the self-extinguishing microcapsule composition.
  9. 제1항에 있어서, According to claim 1,
    상기 제1소화약제와 제2소화약제는 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논, 에틸 노나플루오로부틸 에테르, 1,1,1,2,2,3,4,5,5,5-데카플루오로-3-메톡시-4-(트리플루오로메틸)펜탄, 2-(트리플루오로메틸)-3-에톡시도데카플루오로헥산 중에서 각각 선택되는 것인, 자기 소화 마이크로캡슐 조성물. The first and second extinguishing agents are 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone, ethyl nonafluoro Robutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)pentane, 2-(trifluoromethyl ) -3-ethoxydodecafluorohexane, each selected from, self-extinguishing microcapsule composition.
  10. 제1항에 있어서, According to claim 1,
    상기 고분자는 우레아-포름알데하이드-레소시놀, 젤라틴, 에폭시, 폴리우레탄, 폴리우레아 중에서 1종 이상 선택되는 것인, 자기 소화 마이크로캡슐 조성물. The polymer is one or more selected from urea-formaldehyde-resorcinol, gelatin, epoxy, polyurethane, and polyurea, the self-extinguishing microcapsule composition.
  11. 제7항에 있어서, According to claim 7,
    상기 계면활성제는 PVA(polyvinyl alcohol), EMA(ethylene maleic anhydride), SDBS(sodium dodecyl benzene sulfonate) 중에서 1종 이상 선택되는 것인, 자기 소화 마이크로캡슐 조성물. The surfactant is at least one selected from polyvinyl alcohol (PVA), ethylene maleic anhydride (EMA), and sodium dodecyl benzene sulfonate (SDBS), self-extinguishing microcapsule composition.
  12. 할로겐화 탄화수소 중에서 선택되며, 비점이 상이한 제1소화약제 및 제2소화약제를 계면활성제와 수중에서 혼합하여 코어용 에멀젼 조성물을 제조하는 단계;Preparing a core emulsion composition by mixing a first extinguishing agent and a second extinguishing agent selected from halogenated hydrocarbons and having different boiling points in water with a surfactant;
    상기 에멀젼 조성물을 쉘을 형성하는 고분자 수용액에 혼합한 후 산을 첨가하여 pH를 조절하는 단계; 및adjusting the pH by adding an acid after mixing the emulsion composition with an aqueous polymer solution forming a shell; and
    상기 pH가 조절된 혼합 용액을 승온한 후 냉각시켜 마이크로캡슐을 제조하는 단계를 포함하는, 코어-쉘 구조를 갖는 화재 진압용 자기 소화 마이크로캡슐 조성물의 제조 방법. A method for producing a self-extinguishing microcapsule composition for fire suppression having a core-shell structure, comprising the step of raising the temperature of the pH-adjusted mixed solution and then cooling it to prepare microcapsules.
  13. 제12항에 있어서, According to claim 12,
    상기 pH는 2 내지 4의 범위인, 자기 소화 마이크로캡슐 조성물의 제조 방법. The method of producing a self-extinguishing microcapsule composition, wherein the pH ranges from 2 to 4.
  14. 제12항에 있어서, According to claim 12,
    상기 승온 온도는 45 내지 60℃ 범위인, 자기 소화 마이크로캡슐 조성물의 제조 방법. The elevated temperature is in the range of 45 to 60 ° C., a method for producing a self-extinguishing microcapsule composition.
  15. 제12항에 있어서,According to claim 12,
    상기 제1소화약제와 제2소화약제는 하기의 [식 1] 과 [식 2]를 만족하는 것인, 자기 소화 마이크로캡슐 조성물의 제조 방법. The method for producing a self-extinguishing microcapsule composition, wherein the first extinguishing agent and the second extinguishing agent satisfy the following [Formula 1] and [Formula 2].
    [식 1] … △ρ = |ρ1 - ρ2|< 0.5 [Equation 1] … Δρ = |ρ 1 - ρ 2 |< 0.5
    [식 2] … △γ = |γ1 - γ2|< 10[Equation 2] … Δγ = |γ 1 - γ 2 |< 10
    상기 [식 1] 및 [식 2]에 있어서, ρ1, ρ2 는 각각 제1소화약제 및 제2소화약제의 비중(g/cm3)이며, γ1 , γ2 는 각각 제1소화약제 및 제2소화약제의 표면장력(dyne/cm)이다. In [Formula 1] and [Formula 2], ρ 1 and ρ 2 are the specific gravity (g/cm 3 ) of the first extinguishing agent and the second extinguishing agent, respectively, and γ 1 and γ 2 are the first extinguishing agent, respectively. and the surface tension of the second extinguishing agent (dyne/cm).
  16. 제12항에 있어서, According to claim 12,
    상기 제1소화약제와 제2소화약제의 비중은 2g/㎤ 미만인 것인, 자기 소화 마이크로캡슐 조성물의 제조 방법. The specific gravity of the first extinguishing agent and the second extinguishing agent is less than 2 g / cm 3, a method for producing a self-extinguishing microcapsule composition.
  17. 제12항에 있어서, According to claim 12,
    상기 제1소화약제와 제2소화약제의 중량비는 3:7 내지 5:5 범위인, 자기 소화 마이크로캡슐 조성물의 제조 방법. The weight ratio of the first extinguishing agent and the second extinguishing agent is in the range of 3:7 to 5:5.
  18. 제12항에 있어서, According to claim 12,
    상기 할로겐화 탄화수소는 불소 또는 브롬으로 치환된 탄화수소 중에서 선택되는 것인, 자기 소화 마이크로캡슐 조성물의 제조 방법.The method of producing a self-extinguishing microcapsule composition, wherein the halogenated hydrocarbon is selected from hydrocarbons substituted with fluorine or bromine.
  19. 제12항에 있어서, According to claim 12,
    상기 제1소화약제와 제2소화약제는 1,1,1,2,2,4,5,5,5-노나플루오로-4-(트리플루오로메틸)-3-펜타논, 에틸 노나플루오로부틸 에테르, 1,1,1,2,2,3,4,5,5,5-데카플루오로-3-메톡시-4-(트리플루오로메틸)펜탄, 2-(트리플루오로메틸)-3-에톡시도데카플루오로헥산 중에서 각각 선택되는 것인, 자기 소화 마이크로캡슐 조성물의 제조 방법. The first and second extinguishing agents are 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone, ethyl nonafluoro Robutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)pentane, 2-(trifluoromethyl )-3-ethoxydodecafluorohexane, each selected from, a method for producing a self-extinguishing microcapsule composition.
  20. 제12항에 있어서, According to claim 12,
    상기 고분자는 우레아-포름알데하이드-레소시놀, 젤라틴, 에폭시, 폴리우레탄, 폴리우레아 중에서 1종 이상 선택되는 것인, 자기 소화 마이크로캡슐 조성물의 제조 방법. The method of producing a self-extinguishing microcapsule composition, wherein the polymer is at least one selected from urea-formaldehyde-resorcinol, gelatin, epoxy, polyurethane, and polyurea.
PCT/KR2022/009302 2021-07-02 2022-06-29 Self-extinguishing microcapsule composition and manufacturing method therefor WO2023277564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0087076 2021-07-02
KR1020210087076A KR102508290B1 (en) 2021-07-02 2021-07-02 Fire extinguishing microcapsule composition that can self-extinguish in fire

Publications (1)

Publication Number Publication Date
WO2023277564A1 true WO2023277564A1 (en) 2023-01-05

Family

ID=84690460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009302 WO2023277564A1 (en) 2021-07-02 2022-06-29 Self-extinguishing microcapsule composition and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR102508290B1 (en)
WO (1) WO2023277564A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102595797B1 (en) 2023-08-24 2023-11-01 주식회사 가온테크놀러지 Self-extinguishing sheet comprising fire extinguishing microcapsules and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160387A (en) * 2007-12-11 2009-07-23 Vision Development Co Ltd Microencapsulated fire extinguisher and manufacturing method thereof, and fire extinguishing composite material
JP2011072669A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Microcapsule type fire extinguishing agent, resin composition and resin molding
KR101733423B1 (en) * 2016-02-22 2017-05-08 주식회사 지에프아이 Halogen-based gaseous fire extinguishing agent composition and manufacturing method thereof
KR20190106153A (en) * 2018-03-08 2019-09-18 주식회사 지이에스테크 Microencapsulated fire extinguishing composition and fire extinguishing patch containing same
KR102123571B1 (en) * 2019-05-08 2020-06-16 주식회사 지에프아이 Fire extinguishing composition comprising a microcapsule for fire extinguishing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2389525C2 (en) 2006-07-14 2010-05-20 Общество С Ограниченной Ответственностью "Делси" Microcapsulated extinguishing agent and method for making thereof, extinguishing composite, extinguishing paint coating and extinguishing fabric containing said agent
RU2469761C1 (en) 2011-06-23 2012-12-20 Общество С Ограниченной Ответственностью "Делси" Microcapsulated fire-extinguishing agent, method of its obtaining, fire-extinguishing composite material and fire-extinguishing coating
RU2702566C1 (en) 2018-10-12 2019-10-08 Общество С Ограниченной Ответственностью "Делси" Microencapsulated extinguishing agent and a method of producing a microencapsulated extinguishing agent
KR102123554B1 (en) 2019-03-19 2020-06-16 주식회사 지에프아이 Microcapsules for fire extinguishing, manufacturing method and fire extinguishing devices based on it
KR102133958B1 (en) 2019-11-13 2020-07-15 주식회사 지에프아이 Preparing method of fire extinguishing composite materials comprising encapsuled fire extinguishing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160387A (en) * 2007-12-11 2009-07-23 Vision Development Co Ltd Microencapsulated fire extinguisher and manufacturing method thereof, and fire extinguishing composite material
JP2011072669A (en) * 2009-09-30 2011-04-14 Sekisui Chem Co Ltd Microcapsule type fire extinguishing agent, resin composition and resin molding
KR101733423B1 (en) * 2016-02-22 2017-05-08 주식회사 지에프아이 Halogen-based gaseous fire extinguishing agent composition and manufacturing method thereof
KR20190106153A (en) * 2018-03-08 2019-09-18 주식회사 지이에스테크 Microencapsulated fire extinguishing composition and fire extinguishing patch containing same
KR102123571B1 (en) * 2019-05-08 2020-06-16 주식회사 지에프아이 Fire extinguishing composition comprising a microcapsule for fire extinguishing

Also Published As

Publication number Publication date
KR20230006194A (en) 2023-01-10
KR102508290B1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2023277564A1 (en) Self-extinguishing microcapsule composition and manufacturing method therefor
DE69923566T2 (en) YELLOW-COATED MICRO-CAPSULES
EP0198089B1 (en) Encapsulated polymer particles and process for their production
JP7384917B2 (en) Fire extinguishing microcapsules, their manufacturing method, and fire extinguishing equipment containing them
EP2234712B1 (en) Method for producing microcapsules
WO2022227151A1 (en) Lithium-ion battery microcapsule fire-extinguishing agent, and preparation method therefor and application thereof
CN101292965B (en) Beta-carotene microcapsule and preparing method thereof
CN115581884B (en) Fire-proof fire-extinguishing cloth
JPS5858146A (en) Microcapsule with fast releasability and preparation thereof
CN114917521B (en) Temperature response type double-shell microcapsule fire extinguishing agent and preparation method thereof
US20140113992A1 (en) Water redispersible epoxy polymer powder and method for making the same
HU181882B (en) Process for preparing polyvinyl alcohol microcapsules containing liquid, water-insoluble load
CN107802612A (en) A kind of omeprazole enteric-coated micro-pill, capsule and preparation method thereof
KR20150040271A (en) Microcapsule-manufacturing process and microcapsules
KR102189631B1 (en) Wallpaper for fire extinguishing including microcapsules for fire extinguishing, and preparation method thereof
WO2023200095A1 (en) Foaming flame-retardant water-based paint composition for wood, having incipient fire extinguishing function
CN108276965A (en) A kind of phase-change microcapsule and preparation method thereof for cable temperature control
CN113975701A (en) Polyurethane/polyurea composite microcapsule fire extinguishing agent and preparation method thereof
CN111804249A (en) Phase change energy storage microcapsule with shear thickening effect and preparation method and application thereof
CN113214795A (en) Preparation method of ionic liquid phase-change microcapsule
CN113058512A (en) Phase-change microcapsule coated by organic/inorganic composite wall material and preparation method and application thereof
CN111073027A (en) High-temperature-resistant thermal expansion type foaming microcapsule and preparation method thereof
CN102888021B (en) Microencapsulation tetrabromobisphenol A is double(Pi-allyl)Ether flame retardant and its application
KR102230501B1 (en) Flame retardant fiber comprising microcapsulated inorganic flame retardant additive and method of manufacturing same
CN106149095A (en) A kind of fabric lining containing hot energy storage material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833619

Country of ref document: EP

Kind code of ref document: A1