WO2023277545A1 - 딥러닝을 이용한 기기의 예지 보전방법 - Google Patents

딥러닝을 이용한 기기의 예지 보전방법 Download PDF

Info

Publication number
WO2023277545A1
WO2023277545A1 PCT/KR2022/009255 KR2022009255W WO2023277545A1 WO 2023277545 A1 WO2023277545 A1 WO 2023277545A1 KR 2022009255 W KR2022009255 W KR 2022009255W WO 2023277545 A1 WO2023277545 A1 WO 2023277545A1
Authority
WO
WIPO (PCT)
Prior art keywords
real
driving unit
model grouping
time
time point
Prior art date
Application number
PCT/KR2022/009255
Other languages
English (en)
French (fr)
Inventor
이영규
Original Assignee
주식회사 아이티공간
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티공간 filed Critical 주식회사 아이티공간
Publication of WO2023277545A1 publication Critical patent/WO2023277545A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/027Alarm generation, e.g. communication protocol; Forms of alarm
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms

Definitions

  • the present invention relates to a method for predictive maintenance of a device using deep learning, and more particularly, converts graph waveforms for various energy values collected through a driving unit in a normal state into image data, and converts a large amount of image data into image data. Characteristics are learned through a deep learning method, and based on the learning result, model grouping is built on coordinates, and the result of the graph waveform of the energy value collected from the real-time drive unit is reflected in the model grouping to determine the state of the drive unit in real time. Predictive maintenance of devices using deep learning that can prevent enormous economic loss due to failure of the drive unit by alerting when an abnormality of the drive unit is suspected by detecting it and inducing maintenance and replacement of the drive unit at the right time It's about how.
  • the present invention has been proposed to solve the various problems as described above, and its purpose is to convert graph waveforms for various energy values collected through a drive unit in a normal state into image data, and to convert a large amount of the converted image data. Characteristics are learned through a deep learning method, and based on the learning result, model grouping is built on coordinates, and the result of the graph waveform of the energy value collected from the real-time drive unit is reflected in the model grouping to determine the state of the drive unit in real time. Predictive maintenance of devices using deep learning that can prevent enormous economic loss due to failure of the drive unit by alerting when an abnormality of the drive unit is suspected by detecting it and inducing maintenance and replacement of the drive unit at the right time in providing a way.
  • the manager can accurately recognize the state of the driving unit, and deep learning can induce efficient management of the driving unit by setting the inspection timing and plan of the driving unit. It is to provide a predictive maintenance method for used equipment.
  • a method for predictive maintenance of a device using deep learning is a current consumed to perform an operation in a driving unit in a normal operating state, a voltage value, vibration generated in the driving unit, noise, temperature, A base information collection step (S10) of repeatedly collecting a waveform graph representing at least two energy values selected from pressure and humidity over time; and, each energy value collected in the base information collection step (S10).
  • Measure and collect real-time waveform graphs convert each of the collected real-time waveform graphs into real-time image data, and transmit the data to the control unit, wherein the measurement unit has the same energy as the energy value selected and collected in the base information collection step (S10).
  • the model grouping built in the construction step (S40) is displayed as a predetermined area including a region with a high density of points based on the distribution of a large number of points displayed on the coordinates, and the detection step (S60)
  • the driving unit is detected as normal, and the real-time point is out of the model grouping area but the model grouping If the separation distance from the model grouping exceeds the first threshold distance value, the drive unit is detected as an alarm state, and the drive unit is in a dangerous state when the distance from the model grouping exceeds the first threshold distance value while the real-time point is out of the model grouping area. It is characterized by detecting as.
  • model grouping is built with the location having the highest density of points as the center point based on a large number of point distributions displayed on coordinates, and the detection step (S60) sets a second threshold distance value for the distance from the model grouping built with the center point, and if the distance between the center point and the real-time point appearing in the coordinates is less than the second threshold distance value, the drive unit is detected in a normal state, , When the separation distance between the real-time point and the central point exceeds the second threshold distance value, the driving unit is detected as an alarm state.
  • the model grouping built in the construction step (S40) is constructed by displaying the center point together with a predetermined area, and in the detection step (S60), the first threshold distance value and the center point for the model grouping built in the predetermined area A second threshold distance value for the model grouping built with is set together, so that the detection unit is located in the model grouping where the real-time point appearing in the coordinates is built as an area, and at the same time, the distance between the real-time point and the center point is equal to or less than the second threshold distance value.
  • the surface driving part is detected in a stable state, and the real-time point is located within the model grouping constructed as an area, but the distance between the real-time point and the central point exceeds the second threshold distance value, or the real-time point is out of the area of the model grouping but the real-time point and If the separation distance of the center point is less than the second threshold distance value, the driving unit is detected as normal, and the real-time point separation distance from the model grouping constructed as an area is less than the first separation distance value while leaving the model grouping.
  • the driving unit When the separation distance between the real-time point and the central point exceeds the second threshold distance value, the driving unit is detected as an alarm state, and the distance between the model grouping and the real-time point is the first separation distance while leaving the model grouping in which the real-time point is built as an area. If the value is exceeded, the driving unit is detected as a dangerous state.
  • graph waveforms for various energy values collected through a drive unit in a normal state are converted into image data, and a large amount of the converted image data Characteristics are learned through a deep learning method, and based on the learning result, model grouping is built on coordinates, and the result of the graph waveform of the energy value collected from the real-time drive unit is reflected in the model grouping to determine the state of the drive unit in real time. It is effective in preventing enormous economic loss due to failure of the driving unit by inducing maintenance and replacement of the driving unit at an appropriate time by alerting if abnormal signs of the driving unit are suspected by the detection method.
  • the manager can accurately recognize the state of the driving unit, and thus, it is possible to induce efficient management of the driving unit by setting the inspection timing and plan of the driving unit appropriately.
  • FIG. 1 is a block diagram of a method for predictive maintenance of a device using deep learning according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a method for predictive maintenance of a device using deep learning shown in FIG. 1 .
  • 3 to 10 are views for explaining a method for predictive maintenance of a device using deep learning shown in FIG. 1 .
  • FIG. 1 to 10 show a method for predictive maintenance of a device using deep learning according to an embodiment of the present invention
  • FIG. 1 is a block diagram of a method for predictive maintenance of a device using deep learning according to an embodiment of the present invention
  • 2 is a conceptual diagram of a method for predictive maintenance of a device using deep learning shown in FIG. 1
  • FIGS. 3 to 10 are diagrams for explaining the method for predictive maintenance of a device using deep learning shown in FIG. will be.
  • the predictive maintenance method 100 of a device using deep learning includes a base information collection step (S10), a conversion step (S20), a learning step (S30), , It includes a construction step (S40), a real-time measurement step (S50), and a detection step (S60).
  • the base information collection step (S10) includes current and voltage values consumed to perform an operation in the driving unit 1 in a normal driving state, vibration, noise, and temperature generated in the driving unit 1. This is a step of repeatedly collecting waveform graphs showing at least two energy values selected from among , pressure, and humidity over time.
  • the waveform graphs collected as described above are collected as data (information) for the control unit 10 to learn by the deep learning method in the learning step (S30) to be described later, and the learned result is the construction step to be described later
  • desirable (normal) waveform graphs are collected in the normal drive unit 1 as described above due to the characteristics that are the basis for building the model grouping, which is the criterion for detecting the state of the real-time drive unit 1.
  • the control unit 10 can more easily learn the characteristics of the graph waveform.
  • the conversion step (S20) is a step of taking a picture of the waveform graph for each energy value collected in the base information collection step (S10) and converting each into image data.
  • a total of three waveform graphs for current, voltage, and vibration for one operation of the driving unit 1 are converted into image files such as pictures, and in the learning step (S30)
  • the control unit 10 learns the characteristics of a waveform graph of a normal driving unit by learning an image such as a photograph.
  • the image data of each energy value for one motion of the driving unit converted in the conversion step (S20) is converted into deep learning by the control unit 10. ) learning based on the learning method, and representing a learning result for one operation of the driving unit 1 as a single point on the coordinates.
  • control unit 10 when the image data converted in the conversion step (S20) is input, the control unit 10 performs learning while extracting features of the image.
  • the control unit 10 is Learning is performed through CNN (convolutional neural networks) models of learning, but it is not limited to these models, and learning is performed through deep learning models such as RNN (Recurrent Neural Network) and ANN (Artificail Neural Network). can do.
  • control unit 10 learns waveform graphs for thousands or tens of thousands of operations of the driving unit.
  • the result of the waveform graph for the operation of the driving unit 1 learned by the control unit 10 is displayed on coordinates. Since it is the information obtained from (1), it can be seen that a predetermined group is formed in a specific area of coordinates.
  • the coordinates are implemented in two dimensions (X, Y) for convenience of explanation, but it is of course possible to implement them in a three-dimensional form such as three dimensions (X, Y, Z).
  • a large amount of learning results for the operation of the driving unit 1 are stored in the coordinates through the repetitive learning process of the control unit 10 in the learning step (S30). It is indicated by a dot of , and the control unit 10 builds a model grouping that is a criterion for determining the state of the driving unit 1 based on a large number of points displayed on the coordinates.
  • the group formed at the coordinates as a result of the learning of the control unit 10 is a group extracted from the waveform graph of the normal driving unit 1 and means a very desirable (stable) result, the real-time driving unit based on the group ( Build a model grouping that can determine the state of 1).
  • the model grouping constructed in the predictive maintenance method 100 of a device using deep learning of the present invention includes a region with a high density of points based on a distribution map of a large number of points displayed on coordinates It is constructed as a predetermined area, because the points displayed on the coordinates are extracted from the drive unit 1 in a normal state, and the drive unit 1 is in a very stable state as the points are concentrated.
  • model grouping including a region having a high density of points indicated on the coordinates, excellent reliability of the state result of the real-time driving unit 1 detected through the model grouping can be secured.
  • the width of the region can be selectively established in consideration of the type of device in which the driving unit 1 is used, the overall density of points distributed in coordinates, and the like.
  • the real-time measuring step (S50) is the current and voltage value consumed to perform an operation in the driving unit 1 driven in real time, the vibration, noise, temperature, and pressure generated in the driving unit.
  • At least two or more energy values selected from humidity are measured and collected as real-time waveform graphs by the measuring unit 20, and each of the collected real-time waveform graphs are converted into real-time image data and transmitted to the control unit 10,
  • the same energy as the energy value selected and collected in the base information collection step (S10) is selected.
  • the energy collected from the driving unit 1 in the measurement unit 20 is selected and measured as current, voltage, and vibration values selected as an example in the base information collection step (S10).
  • the image data for the energy values measured and collected by the measurement unit 20 is used as information for detecting the state of the driving unit 1 in the detection step S60 to be described later. For this, the following detection step S60 ) to be explained in detail.
  • the control unit 10 learns the real-time image data transmitted from the measurement unit 20, and the result is displayed as a real-time point on coordinates
  • the detection unit 30 is a step of detecting the state of the real-time driving unit 1 based on real-time points appearing on the coordinates and model grouping.
  • the detection unit 30 is configured to set a first threshold distance value for a distance separated from the circumference of the model grouping having a predetermined area built in the construction step (S40).
  • the detection unit 30 detects the driving unit 1 in a normal state when a real-time point appearing in the coordinates as a learning result of the control unit 10 for the waveform graph of the real-time driving unit 1 is located inside the model grouping area. And, if the real-time point gets out of the model grouping area but the separation distance from the model grouping is less than the first threshold distance value, the driving unit 1 is detected as an alarm state, and the real-time point gets out of the model grouping area and the model grouping When the separation distance exceeds the first threshold distance value, the state of the driving unit 1 is detected in real time by detecting the driving unit 1 in a dangerous state.
  • the alarm state is a degree that requires attention and attention of the driving unit 1
  • the dangerous state can be regarded as a state in which repair, inspection, or replacement of the driving unit is immediately required.
  • the manager can induce stable inspection and management of the drive unit 1 based on the real-time status of the drive unit 1 detected in the detection step (S60), and the overall operation of the facility due to a sudden failure of the drive unit 1 This can prevent huge economic losses that may occur due to interruption.
  • a second threshold distance value for a distance away from the central point set by model grouping is set.
  • the detection unit 30 determines that the separation distance between the center point and the real-time point indicated in the coordinates as the learning result of the control unit 10 for the waveform graph of the operation of the real-time driving unit 1 is the second threshold. If it is less than the distance value, the drive unit 1 is detected in a normal state, and if the separation distance between the real-time point and the central point exceeds the second threshold distance value, the drive unit 1 is detected in an alarm state.
  • the model grouping built in the construction step (S40) is constructed by marking the center point with a predetermined area
  • a first threshold distance value for model grouping constructed in a predetermined area and a second threshold distance value for model grouping constructed in a central point are set together.
  • the detection unit 30 is located in a model grouping in which real-time points appearing in coordinates as learning results of the control unit 10 for the waveform graph of the operation of the real-time driving unit 1 are constructed as regions, and at the same time, the distance between the real-time points and the center point If is less than the second threshold distance value, the driving unit 1 is detected in a stable state,
  • the real-time point is located within the model grouping constructed as an area, but the distance between the real-time point and the center point exceeds the second threshold distance value, or the real-time point is out of the area of the model grouping, but the distance between the real-time point and the center point exceeds the second threshold distance value. If it is less than the distance value, the drive unit 1 is detected in a normal state,
  • the drive unit 1 When the distance between the model grouping and the real-time point is less than the first distance value and the distance between the real-time point and the center point exceeds the second threshold distance value, the drive unit 1 is detected as an alarm state,
  • the driving unit 1 When the distance between the model grouping and the real-time point exceeds the first distance value while leaving the model grouping in which the real-time point is constructed as an area, the driving unit 1 is detected as a dangerous state.
  • the stable state means a state in which the driving unit 1 is more stable than a normal state.
  • the detection unit 30 can detect the state of the driving unit 1 in real time in a step-by-step manner and provide the information to a manager, leading to efficient inspection and management of the driving unit 1 .
  • the predictive maintenance method 100 of a device using deep learning of the present invention consisting of the above process converts graph waveforms for various energy values collected through the drive unit 1 in a normal state into image data, and converts the converted Characteristics of large amounts of image data are learned through deep learning, and model grouping is built on coordinates based on the learned results, and the results of graph waveforms of energy values collected from real-time drivers are reflected in model grouping to achieve real-time
  • This is a method of detecting the state of the driving unit (1), and if an abnormality of the driving unit (1) is suspected, an alarm is issued to induce maintenance and replacement of the driving unit (1) at an appropriate time, thereby preventing the failure of the driving unit (1). It has the effect of preventing huge economic losses.
  • the administrator can accurately recognize the state of the driving unit 1, and thus the inspection time and plan of the driving unit 1 can be set appropriately so that the driving unit can be efficiently operated. It has the effect of inducing management.
  • the present invention can be used for various devices used for automated processes of facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Human Computer Interaction (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 발명은 딥러닝을 이용한 기기의 예지 보전방법으로서, 베이스 정보 수집단계, 변환단계, 학습단계, 구축단계, 실시간 측정단계, 및 검출단계를 포함할 수 있다.

Description

딥러닝을 이용한 기기의 예지 보전방법
본 발명은 딥러닝을 이용한 기기의 예지 보전방법에 관한 것으로, 더욱 상세하게는 정상적인 상태의 구동부를 통해 수집되는 다양한 에너지 값에 대한 그래프 파형을 이미지 데이터로 변환하고, 그 변환된 대량의 이미지 데이터의 특징을 딥 러닝 방식을 통해 학습하고, 그 학습한 결과치를 기반으로 좌표에 모델 그룹핑을 구축하여 실시간 구동부에서 수집되는 에너지 값의 그래프 파형에 대한 결과치를 모델 그룹팅에 반영하여 실시간으로 구동부의 상태를 검출하는 방식으로 구동부의 이상징후가 의심되면 경보하여 적합한 시기에 구동부의 정비 및 교체를 수행할 수 있도록 유도하여 구동부의 고장으로 인한 막대한 경제적인 손실을 방지할 수 있는 딥러닝을 이용한 기기의 예지 보전방법에 관한 것이다.
일반적으로 설비의 자동화 공정을 위해 사용되는 구동부(모터, 펌프, 컨베이어, 콤프레샤 등)는 안정적인 구동이 매우 중요하다.
일 예로, 대규모의 이송 공장의 설비에는 수백 개의 구동부가 설치되어 서로 연동 동작하면서 이송하고자 하는 자재를 연속 이송하게 되는데, 만약 다수의 구동부 중에서 어느 하나의 구동부가 고장이 발생하면 설비의 동작이 전체적으로 중단되는 엄청난 상황이 발생할 수 있다.
이때는 구동부의 고장으로 인한 다운 타임의 발생으로 구동부의 수리비용뿐만 아니라, 설비가 중단되는 동안 낭비되는 운영비와 비즈니스 효과에 의해 엄청난 손실이 발생될 수밖에 없다.
최근 고용노동부와 산업안전 관리공단의 자료에 따르면 연간 산업 안전사고로 인한 사상자는 총 10만 명 수준으로 집게 되고 있으며, 이를 비용으로 환산시 연간 18조원의 손실이 발생하고 있다고 집계되고 있다.
이러한 예기치 않은 다운 타임 비용을 피하기 위한 방법으로 사전 예지 보전시스템의 도입이 시급한 실정이다.
이미 예지 보전이라는 명목하에 문제점을 개선하고자 노력하고 있으나 보다 효율적인 예지 보전을 위해 더 차원높은 예지 보전방법의 개발이 필요한 실정이다.
본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위하여 제안된 것으로, 그 목적은 정상적인 상태의 구동부를 통해 수집되는 다양한 에너지 값에 대한 그래프 파형을 이미지 데이터로 변환하고, 그 변환된 대량의 이미지 데이터의 특징을 딥 러닝 방식을 통해 학습하고, 그 학습한 결과치를 기반으로 좌표에 모델 그룹핑을 구축하여 실시간 구동부에서 수집되는 에너지 값의 그래프 파형에 대한 결과치를 모델 그룹팅에 반영하여 실시간으로 구동부의 상태를 검출하는 방식으로 구동부의 이상징후가 의심되면 경보하여 적합한 시기에 구동부의 정비 및 교체를 수행할 수 있도록 유도하여 구동부의 고장으로 인한 막대한 경제적인 손실을 방지할 수 있는 딥러닝을 이용한 기기의 예지 보전방법을 제공함에 있다.
또한, 다양한 검출조건을 통해 구동부의 상태를 단계별로 검출하여 관리자는 구동부의 상태를 정밀하게 인지할 수 있어 구동부의 점검 시기 및 계획을 바람직하게 설정하여 구동부의 효율적인 관리를 유도할 수 있는 딥러닝을 이용한 기기의 예지 보전방법을 제공함에 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 딥러닝을 이용한 기기의 예지 보전방법은 정상적인 구동 상태의 구동부에서 일 동작을 수행하는데 소모되는 전류, 전압 값, 구동부에 발생되는 진동, 소음, 온도, 압력, 습도 중에서 선택되는 적어도 둘 이상의 에너지 값을 각각 시간의 흐름에 따라 나타낸 파형 그래프를 반복적으로 수집하는 베이스 정보 수집단계(S10);와, 상기 베이스 정보 수집단계(S10)에서 수집된 각 에너지 값에 대한 파형 그래프를 사진과 같이 찍어 각각 이미지 데이터로 변환하는 변환단계(S20);와, 상기 변환단계(S20)에서 변환된 구동부의 일 동작에 대한 각 에너지 값의 이미지 데이터를 제어부에서 딥러닝(deep learning) 학습 방식을 기반으로 학습하고, 구동부의 일 동작에 대한 학습 결과치를 좌표에 하나의 점(point)으로 나타내는 학습단계(S30);와, 상기 학습단계(S30)에서 제어부의 반복적인 학습 과정을 통해 구동부의 동작에 대한 학습 결과치가 좌표에 대량의 점으로 표시되는데, 상기 제어부는 좌표에 표시되는 대량의 점을 기반으로 구동부의 상태를 판단할 수 있는 기준이 되는 모델 그룹핑을 구축하는 구축단계(S40);와, 실시간 구동되는 구동부에서 일 동작을 수행하는데 소모되는 전류, 전압 값, 구동부에 발생되는 진동, 소음, 온도, 압력, 습도 중에서 선택되는 적어도 둘 이상의 에너지 값을 측정부에서 각각 실시간 파형 그래프로 측정 수집하고, 그 수집된 각각의 실시간 파형 그래프를 실시간 이미지 데이터로 변환하여 상기 제어부로 전송하되, 상기 측정부에서는 상기 베이스 정보 수집단계(S10)에서 선택 수집되는 에너지 값과 동일한 에너지가 선택되도록 하는 실시간 측정단계(S50);와, 상기 제어부는 상기 측정부에서 전송되는 실시간 이미지 데이터를 학습하고, 그 결과치를 좌표에 실시간 점으로 나타내며, 검출부는 좌표에 나타나는 실시간 점과 모델 그룹핑을 기반으로 실시간 구동부의 상태를 검출하는 검출단계(S60);를 포함하는 것을 특징으로 한다.
또한, 상기 구축단계(S40)에서 구축되는 모델 그룹핑은 좌표에 표시되는 대량의 점의 분포도를 기반으로 점의 밀집도가 높은 부위가 포함되는 소정의 영역으로 표시되도록 하며, 상기 검출단계(S60)는 모델 그룹핑 영역의 둘레와 이격되는 거리에 대한 제1임계 거리값을 설정하여 좌표에 나타나는 실시간 점이 모델 그룹핑의 영역 내에 위치되면 구동부를 정상상태로 검출하고, 실시간 점이 모델 그룹핑의 영역에서 벗어나되 모델 그룹핑과의 이격거리가 상기 제1임계 거리값 이하면 구동부를 경보상태로 검출하며, 실시간 점이 모델 그룹핑의 영역에서 벗어나면서 모델 그룹핑과의 이격거리가 상기 제1임계 거리값을 초과하면 구동부를 위험상태로 검출하는 것을 특징으로 한다.
또한, 상기 구축단계(S40)에서 소정의 영역으로 구축되는 모델 그룹핑을 대신하여 좌표에 표시되는 대량의 점 분포도를 기반으로 점의 밀집도가 가장 높은 위치를 중심점으로 모델 그룹핑을 구축하고, 상기 검출단계(S60)는 중심점으로 구축된 모델 그룹핑과 이격되는 거리에 대한 제2임계 거리값을 설정하여 좌표에 나타나는 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부를 정상상태로 검출하고, 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하면 구동부를 경보상태로 검출하는 것을 특징으로 한다.
또한, 상기 구축단계(S40)에서 구축되는 모델 그룹핑을 소정의 영역과 함께 중심점으로 표시하여 구축하며, 상기 검출단계(S60)에는 소정의 영역으로 구축되는 모델 그룹핑에 대한 제1임계 거리값과 중심점으로 구축되는 모델 그룹핑에 대한 제2임계 거리값이 함께 설정되어, 상기 검출부는 좌표에 나타나는 실시간 점이 영역으로 구축되는 모델 그룹핑 내에 위치되면서 동시에 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부를 안정상태로 검출하고, 실시간 점이 영역으로 구축되는 모델 그룹핑 내에 위치되되 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하거나, 실시간 점이 모델 그룹핑의 영역에서 벗어나되 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부를 정상상태로 검출하며, 실시간 점이 영역으로 구축되는 모델 그룹핑을 벗어나면서 모델 그룹핑과 실시간 점의 이격 거리가 상기 제1이격 거리값 이하며 동시에 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하면 구동부를 경보상태로 검출하며, 실시간 점이 영역으로 구축되는 모델 그룹핑을 벗어나면서 모델 그룹핑과 실시간 점의 이격 거리가 상기 제1이격 거리값을 초과하면 구동부를 위험상태로 검출하는 것을 특징으로 한다.
이상에서와 같이 본 발명에 따른 딥러닝을 이용한 기기의 예지 보전방법에 의하면, 정상적인 상태의 구동부를 통해 수집되는 다양한 에너지 값에 대한 그래프 파형을 이미지 데이터로 변환하고, 그 변환된 대량의 이미지 데이터의 특징을 딥 러닝 방식을 통해 학습하고, 그 학습한 결과치를 기반으로 좌표에 모델 그룹핑을 구축하여 실시간 구동부에서 수집되는 에너지 값의 그래프 파형에 대한 결과치를 모델 그룹팅에 반영하여 실시간으로 구동부의 상태를 검출하는 방식으로 구동부의 이상징후가 의심되면 경보하여 적합한 시기에 구동부의 정비 및 교체를 수행할 수 있도록 유도하여 구동부의 고장으로 인한 막대한 경제적인 손실을 방지할 수 있는 효과가 있다.
또한, 다양한 검출조건을 통해 구동부의 상태를 단계별로 검출하여 관리자는 구동부의 상태를 정밀하게 인지할 수 있어 구동부의 점검 시기 및 계획을 바람직하게 설정하여 구동부의 효율적인 관리를 유도할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 딥러닝을 이용한 기기의 예지 보전방법의 블럭도이다.
도 2는 도 1에 도시된 딥러닝을 이용한 기기의 예지 보전방법의 개념도이다.
도 3 내지 도 10은 도 1에 도시된 딥러닝을 이용한 기기의 예지 보전방법을 설명하기 위한 도면이다.
본 발명의 바람직한 실시예에 따른 딥러닝을 이용한 기기의 예지 보전방법을 첨부된 도면에 의거하여 상세히 설명한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.
도 1 내지 도 10은 본 발명의 실시예에 따른 딥러닝을 이용한 기기의 예지 보전방법을 도시한 것으로, 도 1은 본 발명의 실시예에 따른 딥러닝을 이용한 기기의 예지 보전방법의 블럭도를, 도 2는 도 1에 도시된 딥러닝을 이용한 기기의 예지 보전방법의 개념도를, 도 3 내지 도 10은 도 1에 도시된 딥러닝을 이용한 기기의 예지 보전방법을 설명하기 위한 도면을 각각 나타낸 것이다.
상기 도면에 도시한 바와 같이, 본 발명의 실시예에 따른 딥러닝을 이용한 기기의 예지 보전방법(100)은 베이스 정보 수집단계(S10)와, 변환단계(S20)와, 학습단계(S30)와, 구축단계(S40)와, 실시간 측정단계(S50)와, 검출단계(S60)를 포함하고 있다.
도 1에 도시된 바와 같이, 상기 베이스 정보 수집단계(S10)는 정상적인 구동 상태의 구동부(1)에서 한 동작을 수행하는데 소모되는 전류, 전압 값, 구동부(1)에 발생되는 진동, 소음, 온도, 압력, 습도 중에서 선택되는 적어도 둘 이상의 에너지 값을 각각 시간의 흐름에 따라 나타낸 파형 그래프를 반복적으로 수집하는 단계이다.
여기서, 상기와 같이 수집되는 파형 그래프들은 후설될 상기 학습단계(S30)에서 제어부(10)가 딥 러닝 방식으로 학습하기 위한 자료(정보)로 수집되는 것이며, 이렇게 학습된 결과치는 후설될 상기 구축단계(S40)에서 실시간 구동부(1)의 상태를 검출하기 위한 기준이 되는 모델 그룹핑을 구축하기 위한 기반이 되는 특성상, 상기와 같이 정상적인 구동부(1)에서 바람직한(정상적인) 파형 그래프들을 수집하도록 한다.
본 발명의 딥러닝을 이용한 기기의 예지 보전방법(100)에서는 설명의 편의를 위해, 도 3에 도시된 바와 같이 구동부(1)에서 소모되는 전류와 전압 및 진동 값에 대한 각각의 파형 그래프를 반복적으로 수집하도록 하나, 이러한 3가지 에너지로 한정하여 파형 그래프를 수집하는 것은 아니다.
물론, 구동부(1)가 동작을 수행하는데 발생하는 많은 종류의 에너지에 대한 파형 그래프를 수집할수록 상기 제어부(10)에서 그래프 파형에 대한 특징을 더욱 용이하게 학습할 수 있을 것이다.
도 1에 도시된 바와 같이, 상기 변환단계(S20)는 상기 베이스 정보 수집단계(S10)에서 수집된 각 에너지 값에 대한 파형 그래프를 사진과 같이 찍어 각각 이미지 데이터로 변환하는 단계이다.
즉, 도 4에 도시된 바와 같이 상기 구동부(1)의 한 동작에 대해 전류와 전압 및 진동에 대한 총 3가지의 파형 그래프를 사진과 같은 이미지 파일로 변환하여, 상기 학습단계(S30)에서 상기 제어부(10)는 사진과 같은 이미지를 학습하여 정상적인 구동부의 파형 그래프에 대한 특징을 학습할 수 있도록 한다.
도 1과 도 2에 도시된 바와 같이, 상기 학습단계(S30)는 상기 변환단계(S20)에서 변환된 구동부의 한 동작에 대한 각 에너지 값의 이미지 데이터를 제어부(10)에서 딥러닝(deep learning) 학습 방식을 기반으로 학습하고, 구동부(1)의 한 동작에 대한 학습 결과치를 좌표에 하나의 점(point)으로 나타내는 단계이다.
즉, 도 5에 도시된 바와 같이 상기 변환단계(S20)에서 변환된 이미지 데이터가 입력되면 상기 제어부(10)는 이미지의 특징을 추출하면서 학습을 수행하게 되는데, 본 발명에서 제어부(10)는 딥 러닝의 CNN(convolutional neural networks) 모델을 통하여 학습을 수행하도록 하나, 이러한 모델로 한정하는 것은 물론 아니며, 딥 러닝의 RNN(Recurrent Neural Network), ANN(Artificail Neural Network) 등의 모델을 통하여 학습을 수행할 수 있다.
여기서, 상기 제어부(10)는 구동부의 수천, 수만 번의 동작에 대한 파형 그래프들을 학습하게 되는데, 이러한 파형 그래프들의 정보가 풍부할수록 상기 제어부(10)에서 구동부(1)의 동작에 대한 파형 그래프의 특징을 효과적으로 파악하고 학습할 수 있으므로 상기 베이스 정보 수집단계(S10)에서 많은 파형 그래프 정보를 수집함이 바람직할 것이다.
도 6에 도시된 바와 같이, 상기 제어부(10)에서 학습한 구동부(1)의 동작에 대한 파형 그래프의 결과치는 좌표에 표시하였는데, 살펴보면 상기 제어부(10)가 학습한 파형 그래프는 정상적인 상태의 구동부(1)로부터 획득한 정보이므로 좌표의 특정 영역에 소정의 그룹을 형성함을 알 수 있다.
여기서, 상기 좌표는 설명의 편의를 위해 2차원(X,Y)으로 구현하였으나, 3차원(X,Y,Z)과 같은 입체로 구현될 수 있음은 물론이다.
도 1과 도 2에 도시된 바와 같이, 상기 구축단계(S40)는 상기 학습단계(S30)에서 제어부(10)의 반복적인 학습 과정을 통해 구동부(1)의 동작에 대한 학습 결과치가 좌표에 대량의 점으로 표시되는데, 상기 제어부(10)는 좌표에 표시되는 대량의 점을 기반으로 구동부(1)의 상태를 판단할 수 있는 기준이 되는 모델 그룹핑을 구축하는 단계이다.
즉, 상기 제어부(10)의 학습을 결과치로 상기 좌표에 형성된 그룹은 정상적인 구동부(1)의 파형 그래프로부터 추출된 것으로 매우 바람직한(안정적인) 결과를 의미하는 그룹이므로, 그 그룹을 기반으로 실시간 구동부(1)의 상태를 판단할 수 있는 모델 그룹핑을 구축하도록 한다.
도 6에 도시된 바와 같이, 본 발명의 딥러닝을 이용한 기기의 예지 보전방법(100)에서 구축되는 모델 그룹핑은 좌표에 표시되는 대량의 점의 분포도를 기반으로 점의 밀집도가 높은 부위가 포함되는 소정의 영역으로 구축하는데, 그 이유는 좌표에 표시되는 점들은 정상적인 상태의 구동부(1)로부터 추출되는 것이므로 점들이 밀집되는 부분일수록 구동부(1)가 매우 안정적인 상태이기 때문이다.
따라서 상기 모델 그룹핑을 좌표에 표시된 점의 밀집도가 높은 영역을 포함하여 구축함으로 상기 모델 그룹핑을 통해 검출되는 실시간 구동부(1)의 상태 결과에 대한 우수한 신뢰도가 확보될 수 있다.
여기서, 상기 구동부(1)가 사용되는 기기의 종류, 좌표에 분포되는 점의 전체적인 밀집도 등을 고려하여 영역의 넓이를 선택적으로 구축할 수 있음은 물론이다.
도 1과 도 2에 도시된 바와 같이, 상기 실시간 측정단계(S50)은 실시간 구동되는 구동부(1)에서 한 동작을 수행하는데 소모되는 전류, 전압 값, 구동부에 발생되는 진동, 소음, 온도, 압력, 습도 중에서 선택되는 적어도 둘 이상의 에너지 값을 측정부(20)에서 각각 실시간 파형 그래프로 측정 수집하고, 그 수집된 각각의 실시간 파형 그래프를 실시간 이미지 데이터로 변환하여 상기 제어부(10)로 전송하되, 상기 측정부(20)에서는 상기 베이스 정보 수집단계(S10)에서 선택 수집되는 에너지 값과 동일한 에너지가 선택되도록 한다.
여기서, 상기 측정부(20)에서 구동부(1)로부터 수집되는 에너지는 상기 베이스 정보 수집단계(S10)에서 일 예로 선택된 전류와 전압 및 진동 값으로 선택 측정됨은 물론이다.
즉, 상기 측정부(20)에서 측정 수집된 에너지 값에 대한 이미지 데이터는 후설될 상기 검출단계(S60)에서 구동부(1)의 상태를 검출하는 정보로 사용되는데, 이에 대해서는 아래의 검출단계(S60)에서 상세히 설명하도록 한다.
도 1과 도 2에 도시된 바와 같이, 상기 검출단계(S60)는 상기 제어부(10)는 상기 측정부(20)에서 전송되는 실시간 이미지 데이터를 학습하고, 그 결과치를 좌표에 실시간 점으로 나타내며, 검출부(30)는 좌표에 나타나는 실시간 점과 모델 그룹핑을 기반으로 실시간 구동부(1)의 상태를 검출하는 단계이다.
여기서, 도 7에 도시된 바와 같이 상기 검출부(30)에는 상기 구축단계(S40)에서 구축된 소정의 영역을 갖는 모델 그룹핑의 둘레와 이격되는 거리에 대한 제1임계 거리값이 설정되도록 한다.
즉, 상기 검출부(30)는 실시간 구동부(1) 동작의 파형 그래프에 대한 상기 제어부(10)의 학습 결과치로 좌표에 나타나는 실시간 점이 모델 그룹핑의 영역 내부에 위치되면 구동부(1)를 정상상태로 검출하고, 실시간 점이 모델 그룹핑의 영역에서 벗어나되 모델 그룹핑과의 이격거리가 상기 제1임계 거리값 이하면 구동부(1)를 경보상태로 검출하며, 실시간 점이 모델 그룹핑의 영역에서 벗어나면서 모델 그룹핑과의 이격거리가 상기 제1임계 거리값을 초과하면 구동부(1)를 위험상태로 검출하는 방식으로 실시간 구동부(1)의 상태를 검출하도록 한다.
여기서, 상기 경보상태라 함은 구동부(1)의 관심과 주의가 요구되는 정도이고, 상기 위험상태라 함은 구동부의 수리, 점검이나 교체가 즉시 요구되는 상태로 볼 수 있다.
따라서 관리자는 상기 검출단계(S60)에서 검출되는 구동부(1)의 실시간 상태를 기반으로 구동부(1)의 안정적인 점검 및 관리를 유도할 수 있어 갑작스럽게 구동부(1)의 고장으로 인해 설비의 전체적인 가동이 중단되어 발생할 수 있는 막대한 경제적인 손실을 방지할 수 있다.
한편, 도 8에 도시된 바와 같이 상기 구축단계(S40)에서 소정의 영역으로 구축되는 모델 그룹핑을 대신하여 좌표에 표시되는 대량의 점의 분포도를 기반으로 점의 밀집도가 가장 높은 위치의 한 점을 중심점으로 모델 그룹핑을 구축하고,
상기 검출단계(S60)는 모델 그룹핑으로 설정된 중심점과 이격되는 거리에 대한 제2임계 거리값을 설정하도록 한다.
즉, 도 9에 도시된 바와 같이 상기 검출부(30)는 실시간 구동부(1) 동작의 파형 그래프에 대한 상기 제어부(10)의 학습 결과치로 좌표에 나타나는 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하이면 구동부(1)를 정상상태로 검출하고, 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하면 구동부(1)를 경보상태로 검출하도록 한다.
한편, 도 10에 도시된 바와 같이 상기 구축단계(S40)에서 구축되는 모델 그룹핑을 소정의 영역과 함께 중심점으로 표시하여 구축하며,
상기 검출단계(S60)에는 소정의 영역으로 구축되는 모델 그룹핑에 대한 제1임계 거리값과 중심점으로 구축되는 모델 그룹핑에 대한 제2임계 거리값이 함께 설정되도록 한다.
즉, 상기 검출부(30)는 실시간 구동부(1) 동작의 파형 그래프에 대한 상기 제어부(10)의 학습 결과치로 좌표에 나타나는 실시간 점이 영역으로 구축되는 모델 그룹핑 내에 위치되면서 동시에 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부(1)를 안정상태로 검출하고,
실시간 점이 영역으로 구축되는 모델 그룹핑 내에 위치되되 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하거나, 실시간 점이 모델 그룹핑의 영역에서 벗어나되 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부(1)를 정상상태로 검출하며,
실시간 점이 영역으로 구축되는 모델 그룹핑을 벗어나면서 모델 그룹핑과 실시간 점의 이격 거리가 상기 제1이격 거리값 이하며 동시에 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하면 구동부(1)를 경보상태로 검출하며,
실시간 점이 영역으로 구축되는 모델 그룹핑을 벗어나면서 모델 그룹핑과 실시간 점의 이격 거리가 상기 제1이격 거리값을 초과하면 구동부(1)를 위험상태로 검출하도록 한다.
여기서, 상기 안정상태는 정상상태보다 상기 구동부(1)가 더욱 안정된 상태를 의미한다.
따라서 상기 검출부(30)는 실시간 구동부(1)의 상태를 단계별로 매우 정밀하게 검출하여 관리자에게 제공할 수 있어 구동부(1)의 효율적인 점검 및 관리를 유도할 수 있다.
상기와 같은 과정으로 이루어지는 본 발명의 딥러닝을 이용한 기기의 예지 보전방법(100)은 정상적인 상태의 구동부(1)를 통해 수집되는 다양한 에너지 값에 대한 그래프 파형을 이미지 데이터로 변환하고, 그 변환된 대량의 이미지 데이터의 특징을 딥 러닝 방식을 통해 학습하고, 그 학습한 결과치를 기반으로 좌표에 모델 그룹핑을 구축하여 실시간 구동부에서 수집되는 에너지 값의 그래프 파형에 대한 결과치를 모델 그룹팅에 반영하여 실시간으로 구동부(1)의 상태를 검출하는 방식으로 구동부(1)의 이상징후가 의심되면 경보하여 적합한 시기에 구동부(1)의 정비 및 교체를 수행할 수 있도록 유도하여 구동부(1)의 고장으로 인한 막대한 경제적인 손실을 방지할 수 있는 효과가 있다.
또한, 다양한 검출조건을 통해 구동부(1)의 상태를 단계별로 검출하여 관리자는 구동부(1)의 상태를 정밀하게 인지할 수 있어 구동부(1)의 점검 시기 및 계획을 바람직하게 설정하여 구동부의 효율적인 관리를 유도할 수 있는 효과가 있다.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것으로 상술한 실시예에 한정되지 않으며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 수 있을 것이다. 또한, 본 발명의 사상을 해치지 않는 범위 내에서 당업자에 의한 변형이 가능함은 물론이다. 따라서, 본 발명에서 권리를 청구하는 범위는 상세한 설명의 범위 내로 정해지는 것이 아니라 후술되는 청구범위와 이의 기술적 사상에 의해 한정될 것이다.
본 발명은 설비의 자동화 공정을 위해 사용되는 각종 기기에 이용가능하다.

Claims (4)

  1. 정상적인 구동 상태의 구동부에서 일 동작을 수행하는데 소모되는 전류, 전압 값, 구동부에 발생되는 진동, 소음, 온도, 압력, 습도 중에서 선택되는 적어도 둘 이상의 에너지 값을 각각 시간의 흐름에 따라 나타낸 파형 그래프를 반복적으로 수집하는 베이스 정보 수집단계;
    상기 베이스 정보 수집단계에서 수집된 각 에너지 값에 대한 파형 그래프를 사진과 같이 찍어 각각 이미지 데이터로 변환하는 변환단계;
    상기 변환단계에서 변환된 구동부의 일 동작에 대한 각 에너지 값의 이미지 데이터를 제어부에서 딥러닝 학습 방식을 기반으로 학습하고, 구동부의 일 동작에 대한 학습 결과치를 좌표에 하나의 점(point)으로 나타내는 학습단계;
    상기 학습단계에서 제어부의 반복적인 학습 과정을 통해 구동부의 동작에 대한 학습 결과치가 좌표에 대량의 점으로 표시되는데, 상기 제어부는 좌표에 표시되는 대량의 점을 기반으로 구동부의 상태를 판단할 수 있는 기준이 되는 모델 그룹핑을 구축하는 구축단계;
    실시간 구동되는 구동부에서 일 동작을 수행하는데 소모되는 전류, 전압 값, 구동부에 발생되는 진동, 소음, 온도, 압력, 습도 중에서 선택되는 적어도 둘 이상의 에너지 값을 측정부에서 각각 실시간 파형 그래프로 측정 수집하고, 그 수집된 각각의 실시간 파형 그래프를 실시간 이미지 데이터로 변환하여 상기 제어부로 전송하되, 상기 측정부에서는 상기 베이스 정보 수집단계에서 선택 수집되는 에너지 값과 동일한 에너지가 선택되도록 하는 실시간 측정단계; 및
    상기 제어부는 상기 측정부에서 전송되는 실시간 이미지 데이터를 학습하고, 그 결과치를 좌표에 실시간 점으로 나타내며, 검출부는 좌표에 나타나는 실시간 점과 모델 그룹핑을 기반으로 실시간 구동부의 상태를 검출하는 검출단계;를 포함하는 것을 특징으로 하는 딥러닝을 이용한 기기의 예지 보전방법.
  2. 제 1 항에 있어서,
    상기 구축단계에서 구축되는 모델 그룹핑은 좌표에 표시되는 대량의 점의 분포도를 기반으로 점의 밀집도가 높은 부위가 포함되는 소정의 영역으로 표시되도록 하며,
    상기 검출단계는 모델 그룹핑 영역의 둘레와 이격되는 거리에 대한 제1임계 거리값을 설정하여 좌표에 나타나는 실시간 점이 모델 그룹핑의 영역 내에 위치되면 구동부를 정상상태로 검출하고, 실시간 점이 모델 그룹핑의 영역에서 벗어나되 모델 그룹핑과의 이격거리가 상기 제1임계 거리값 이하면 구동부를 경보상태로 검출하며, 실시간 점이 모델 그룹핑의 영역에서 벗어나면서 모델 그룹핑과의 이격거리가 상기 제1임계 거리값을 초과하면 구동부를 위험상태로 검출하는 것을 특징으로 하는 딥러닝을 이용한 기기의 예지 보전방법.
  3. 제 2 항에 있어서,
    상기 구축단계에서 소정의 영역으로 구축되는 모델 그룹핑을 대신하여 좌표에 표시되는 대량의 점 분포도를 기반으로 점의 밀집도가 가장 높은 위치를 중심점으로 모델 그룹핑을 구축하고,
    상기 검출단계는 중심점으로 구축된 모델 그룹핑과 이격되는 거리에 대한 제2임계 거리값을 설정하여 좌표에 나타나는 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부를 정상상태로 검출하고, 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하면 구동부를 경보상태로 검출하는 것을 특징으로 하는 딥러닝을 이용한 기기의 예지 보전방법.
  4. 제 3 항에 있어서,
    상기 구축단계에서 구축되는 모델 그룹핑을 소정의 영역과 함께 중심점으로 표시하여 구축하며, 상기 검출단계에는 소정의 영역으로 구축되는 모델 그룹핑에 대한 제1임계 거리값과 중심점으로 구축되는 모델 그룹핑에 대한 제2임계 거리값이 함께 설정되어,
    상기 검출부는 좌표에 나타나는 실시간 점이 영역으로 구축되는 모델 그룹핑 내에 위치되면서 동시에 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부를 안정상태로 검출하고,
    실시간 점이 영역으로 구축되는 모델 그룹핑 내에 위치되되 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하거나, 실시간 점이 모델 그룹핑의 영역에서 벗어나되 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값 이하면 구동부를 정상상태로 검출하며,
    실시간 점이 영역으로 구축되는 모델 그룹핑을 벗어나면서 모델 그룹핑과 실시간 점의 이격 거리가 상기 제1이격 거리값 이하며 동시에 실시간 점과 중심점의 이격 거리가 상기 제2임계 거리값을 초과하면 구동부를 경보상태로 검출하며,
    실시간 점이 영역으로 구축되는 모델 그룹핑을 벗어나면서 모델 그룹핑과 실시간 점의 이격 거리가 상기 제1이격 거리값을 초과하면 구동부를 위험상태로 검출하는 것을 특징으로 하는 딥러닝을 이용한 기기의 예지 보전방법.
PCT/KR2022/009255 2021-07-01 2022-06-28 딥러닝을 이용한 기기의 예지 보전방법 WO2023277545A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0086488 2021-07-01
KR1020210086488A KR102510099B1 (ko) 2021-07-01 2021-07-01 딥러닝을 이용한 기기의 예지 보전방법

Publications (1)

Publication Number Publication Date
WO2023277545A1 true WO2023277545A1 (ko) 2023-01-05

Family

ID=84690421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009255 WO2023277545A1 (ko) 2021-07-01 2022-06-28 딥러닝을 이용한 기기의 예지 보전방법

Country Status (2)

Country Link
KR (1) KR102510099B1 (ko)
WO (1) WO2023277545A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222002A (ja) * 2010-03-23 2011-11-04 Metawater Co Ltd グラフ編集型シミュレーション装置、グラフ編集型シミュレーションプログラム、及びプラント維持管理システム
US20190101876A1 (en) * 2017-09-30 2019-04-04 Intel Corporation Machine diagnostics based on overall system energy state
KR20200006695A (ko) * 2018-07-11 2020-01-21 주식회사 아이센스 인공지능 딥러닝 학습을 이용한 생체측정물 농도 측정방법
JP2020137974A (ja) * 2019-03-03 2020-09-03 レキオ・パワー・テクノロジー株式会社 超音波プローブ用ナビゲートシステム、および、そのナビゲート表示装置
KR20200137832A (ko) * 2019-05-31 2020-12-09 주식회사 포스코아이씨티 제어데이터 이상 검출을 위한 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222002A (ja) * 2010-03-23 2011-11-04 Metawater Co Ltd グラフ編集型シミュレーション装置、グラフ編集型シミュレーションプログラム、及びプラント維持管理システム
US20190101876A1 (en) * 2017-09-30 2019-04-04 Intel Corporation Machine diagnostics based on overall system energy state
KR20200006695A (ko) * 2018-07-11 2020-01-21 주식회사 아이센스 인공지능 딥러닝 학습을 이용한 생체측정물 농도 측정방법
JP2020137974A (ja) * 2019-03-03 2020-09-03 レキオ・パワー・テクノロジー株式会社 超音波プローブ用ナビゲートシステム、および、そのナビゲート表示装置
KR20200137832A (ko) * 2019-05-31 2020-12-09 주식회사 포스코아이씨티 제어데이터 이상 검출을 위한 시스템

Also Published As

Publication number Publication date
KR102510099B9 (ko) 2023-08-04
KR102510099B1 (ko) 2023-03-14
KR20230005590A (ko) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2021075842A1 (ko) 분포도를 통한 기기의 예지 보전방법
WO2021112577A1 (ko) 인공지능을 통한 기기의 이상 부위 학습 검출방법
WO2021075855A1 (ko) 분포도를 통한 기기의 예지 보전방법
WO2020138695A1 (ko) 구동부의 건전성 지수 검출방법
WO2020076081A1 (ko) 신경망 모델을 이용한 비정상 운전 상태 판단 장치 및 방법
CN113176462A (zh) 一种基于大数据的变频设备运行故障监测系统
WO2019177236A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177240A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177237A1 (ko) 구동부의 정밀 예지 보전방법
WO2022114654A1 (ko) 공정 모니터링 시스템 및 방법
CN116185757B (zh) 机房能耗智能监测系统
WO2019177238A1 (ko) 구동부의 정밀 예지 보전방법
WO2019177239A1 (ko) 구동부의 정밀 예지 보전방법
WO2021075845A1 (ko) 분포도를 통한 기기의 예지 보전방법
WO2023277545A1 (ko) 딥러닝을 이용한 기기의 예지 보전방법
WO2023277546A1 (ko) 딥러닝을 이용한 기기의 예지 보전방법
WO2021075857A1 (ko) 분포도를 통한 기기의 건전성 지수 검출방법
CN113159503B (zh) 一种远程遥控智能安全评估系统和方法
CN106682847A (zh) 一种铁塔维护人员应急选择方法及系统
CN110148290A (zh) 智能感知矿山安全生产预警与防控监管信息化大数据系统
WO2021118218A1 (ko) 기기의 동작 추적을 통한 기기의 가상 모니터링 관리방법
WO2023033567A1 (ko) 피크에 대한 각도를 통한 기기의 예지 보전방법
WO2019221461A1 (ko) 네트워크 장애 원인 분석 장치 및 방법
CN111199219A (zh) 一种隔离开关状态分布式监测方法、系统及介质
CN110806727A (zh) 一种带岗位指示的化工厂安全监管、培训和考核系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE