WO2023277496A1 - 온실가스 흡수량 산출 장치 및 이를 사용한 온실가스 감축량 거래 플랫폼 - Google Patents
온실가스 흡수량 산출 장치 및 이를 사용한 온실가스 감축량 거래 플랫폼 Download PDFInfo
- Publication number
- WO2023277496A1 WO2023277496A1 PCT/KR2022/009165 KR2022009165W WO2023277496A1 WO 2023277496 A1 WO2023277496 A1 WO 2023277496A1 KR 2022009165 W KR2022009165 W KR 2022009165W WO 2023277496 A1 WO2023277496 A1 WO 2023277496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- greenhouse gas
- unit
- data
- parameter
- correction
- Prior art date
Links
- 239000005431 greenhouse gas Substances 0.000 title claims abstract description 138
- 238000004364 calculation method Methods 0.000 title claims abstract description 99
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 93
- 230000009467 reduction Effects 0.000 title claims description 66
- 238000012937 correction Methods 0.000 claims abstract description 77
- 239000002028 Biomass Substances 0.000 claims abstract description 33
- 238000012545 processing Methods 0.000 claims abstract description 32
- 238000013500 data storage Methods 0.000 claims abstract description 13
- 230000008859 change Effects 0.000 claims abstract description 12
- 238000004422 calculation algorithm Methods 0.000 claims description 38
- 230000006870 function Effects 0.000 claims description 38
- 238000007726 management method Methods 0.000 claims description 18
- 238000010801 machine learning Methods 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 6
- 238000013075 data extraction Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 229910052799 carbon Inorganic materials 0.000 description 18
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- -1 carbon dioxide) Chemical compound 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/80—Management or planning
- Y02P90/84—Greenhouse gas [GHG] management systems
Definitions
- the present invention relates to a greenhouse gas absorption calculation device and a greenhouse gas reduction trading platform using the same.
- the greenhouse gas is carbon dioxide, mainly carbon dioxide
- methane the greenhouse gas
- forest carbon sinks In order to respond to such climate change, the international community recognizes the value of forest carbon sinks, and Article 5 of the Paris Agreement stipulates that forests, which serve as greenhouse gas sinks and storages, need to be preserved and promoted (here , forest carbon sinks refer to standing trees, dead organic matter, soil, wood products, and forest biomass energy that absorb and store forest carbon).
- forests and renewable energy are one solution to respond to climate change, and the function of forests as carbon sinks is drawing attention, as the carbon assimilation of plants is considered the most efficient system for capturing and fixing carbon in the atmosphere. Because.
- the forest carbon offset system is a system in which companies, mountain owners, local governments, etc. voluntarily promote carbon sinks to reduce greenhouse gas emissions, and the government certifies the forest carbon absorbs secured through such activities. Forest carbon absorbs can be traded. You can participate in "transaction type” and “non-transaction type” depending on whether or not.
- One technical problem to be achieved by the present invention is to provide a greenhouse gas absorption calculation device capable of calculating the greenhouse gas absorption amount of a target site through remote sensing data.
- Another technical task to be achieved by the present invention is the greenhouse gas reduction amount that can be traded for the certified greenhouse gas reduction amount using a greenhouse gas absorption calculation device capable of calculating the greenhouse gas absorption amount of the target site through remote sensing data. It is to provide a trading platform.
- a data acquisition unit for acquiring remote sensing data of a destination, a data storage unit for storing the remote sensing data obtained by the data acquisition unit, and the data storage unit
- a data processing unit for processing the stored remote sensing data to calculate a greenhouse gas absorption of the target area
- the data processing unit includes: a parameter calculating unit for calculating a site estimation parameter of the target site from the remote sensing data; A correction unit for correcting the site estimation parameters calculated by the calculation unit, a biomass calculation unit for calculating biomass for each individual based on the correction parameters corrected by the correction unit, and a calculation by the biomass calculation unit
- a greenhouse gas absorption calculation device including an absorption amount calculation unit for calculating the amount of greenhouse gas absorption from the amount of change in biomass by comparing the biomass of each individual with the biomass of the previous time.
- the correction unit includes a correction function f for correcting the target location estimation parameter calculated by the parameter calculation unit, and if there is site sampling survey data of the target location, the The correction unit performs site correction to update the correction function f based on the site sampling survey data for the correction function f.
- the correction unit includes a correction function f for correcting the destination estimation parameter calculated by the parameter calculation unit, and for the correction function f, the correction function f Delta correction is performed to update the correction function f based on the difference between the correction parameter corrected through correction and the destination estimation parameter before correction.
- the parameter calculation unit may include: an edge prediction unit for predicting an edge of an object item from the remote sensing data; and extract data for each entity based on the edge predicted by the edge prediction unit.
- a data extractor for predicting a volume parameter through a regression model from the individual data extracted by the data extractor, and a 3D structure prediction from the individual data extracted by the data extractor It includes a parameter extraction unit for extracting volume parameters through.
- the parameter calculation unit includes a first algorithm capable of machine learning, i) an image rendered by extracting volume parameters from a 3D model of a virtual 3D tree and ii) a remote sensing image And the learning of the first algorithm is performed using geocoding images through parameters derived from actual site surveys.
- the correction unit includes a second algorithm capable of machine learning, and learns the second algorithm using the volume parameter estimated by the parameter calculation unit and the volume parameter of the actual field survey. Through, a correction function f for correcting the destination estimation parameter calculated by the parameter calculation unit is derived.
- the greenhouse gas absorption amount calculation device includes a certification management unit for certification of the greenhouse gas absorption amount calculated by the absorption amount calculation unit as a greenhouse gas reduction amount from an external certification institution, and the authentication A reduction amount processing unit for processing the greenhouse gas reduction amount certified by the management unit is further provided.
- GHG reduction transaction for receiving the certified GHG reduction from the GHG reduction calculation device and performing a transaction between the GHG reduction supplier and the GHG reduction consumer provide a platform.
- the greenhouse gas absorption amount calculated by the greenhouse gas absorption calculation device is certified by an external certification institution as a greenhouse gas reduction amount, and a certification management unit and a greenhouse certified by the certification management unit. It provides a greenhouse gas reduction trading platform having a reduction trading unit for performing transactions between a greenhouse gas reduction supplier and a greenhouse gas reduction demander in terms of gas reduction.
- greenhouse gas reduction that can be traded for certified greenhouse gas reduction using a greenhouse gas absorption calculation device capable of calculating the greenhouse gas absorption of a target site through remote sensing data It has the effect of providing a volume trading platform.
- FIG. 1 is a conceptual diagram of a greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- FIG. 2 is a functional block diagram of a data processing unit of a greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- FIG. 3 is a flowchart for explaining the operation of the greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- FIG. 4 is a functional block diagram of a parameter calculation unit of a greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- 5 is a flowchart for explaining the operation of the first algorithm of the greenhouse gas absorption amount calculation device according to at least one embodiment of the present invention.
- FIG. 6 is an image showing an example of a result according to the first algorithm of the greenhouse gas absorption amount calculation device according to at least one embodiment of the present invention.
- FIG. 7 is a flowchart illustrating a learning process of a first algorithm of a greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- FIG. 8 is an image showing an example of a result according to a learning process of a first algorithm of a greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- FIG. 9 is a table showing an example of parameters extracted in the learning process of the first algorithm of the greenhouse gas absorption amount calculation device according to at least one embodiment of the present invention.
- FIG. 10 is an image showing an example of a result according to a learning process of a first algorithm of a greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- FIG. 11 is a flowchart illustrating a process of deriving a correction function f in the greenhouse gas absorption amount calculation device according to at least one embodiment of the present invention.
- FIG. 12 is a conceptual diagram of a greenhouse gas absorption calculation device according to at least one embodiment of the present invention.
- FIG. 13 and 14 are conceptual diagrams of a greenhouse gas reduction trading platform according to at least one embodiment of the present invention.
- FIG. 1 is a conceptual diagram of a greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- the apparatus 100 for calculating the amount of greenhouse gas absorption provides remote sensing data 200 of a target area for which the amount of greenhouse gas absorption is to be calculated through a wireless communication network 300.
- the remote sensing data 200 of the target area includes forest data (image or spectral data), meteorological data (sunlight, time, etc.), measured data (laboratory and field), and greenhouse gas sinks. (e.g. forests) owners (reduction suppliers) data, and owners (offset consumers) data of GHG sources (e.g. factories).
- the remote sensing data 200 of the target location is obtained regardless of the type of measurement device (e.g., a satellite camera, a spectrograph, a camera mounted on a drone, an image such as a laboratory microscope, a chemical analyzer, etc.) , gas detector, portable measuring device, etc.) Basically, the intensity of the image, spectrum, or The intensity of biochemical change is the result of the flow of electrons (current, voltage, etc.), and the intensity read as an analog signal is converted into a digital value through an AD converter (Analogue-to-Digital Converter) as it is or amplified, and the data storage unit ( 120) is stored.
- the type of measurement device e.g., a satellite camera, a spectrograph, a camera mounted on a drone, an image such as a laboratory microscope, a chemical analyzer, etc.
- gas detector e.g., a portable measuring device, etc.
- the intensity of the image, spectrum, or The intensity of biochemical change is the result of the flow of electron
- the remote sensing data 200 of the target site may be obtained by extracting only necessary data from an external storage or big data that stores data including measurement data.
- FIG. 2 is a functional block diagram of the data processing unit 130 of the greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- the data processing unit 130 includes a parameter calculation unit 131 for calculating target location estimation parameters (Species R , DBH R , HR ) of the target location from the remote sensing data 200, parameter calculation Correction unit 132 for correcting the destination estimation parameters (Species R , DBH R , H R ) calculated by unit 131, correction parameters (Species Cal , DBH Cal , H Cal ) Based on the biomass calculation unit 133 for calculating the biomass of each individual, and the biomass calculated by the biomass calculation unit 133 is compared with the biomass of the previous time, from the change in biomass It includes an absorption calculation unit 134 for calculating the greenhouse gas absorption amount.
- target location estimation parameters Species R , DBH R , HR
- parameter calculation Correction unit 132 for correcting the destination estimation parameters (Species R , DBH R , H R ) calculated by unit 131
- correction parameters Species Cal , DBH Cal , H Cal
- Species represents a species
- DBH Diameter at Breast Height
- H represents height
- the correction unit 132 includes a correction function f for correcting the destination estimation parameters (Species R , DBH R , HR ) calculated by the parameter calculation unit 131 do.
- the correction unit 132 for the correction function f, the target area sampling survey data (Species S ) S , DBH S , HS ) to perform target correction by updating the correction function f.
- the correction unit 132 includes a correction function f for correcting the destination estimation parameters (Species R , DBH R , HR ) calculated by the parameter calculation unit 131 and, for the correction function f, the correction function f based on the difference between the correction parameters (Species Cal , DBH Cal , H Cal ) corrected through the correction function f and the estimated parameters of the site before correction (Species R , DBH R , HR ) Perform a delta correction that updates .
- a correction function f for correcting the destination estimation parameters (Species R , DBH R , HR ) calculated by the parameter calculation unit 131 and, for the correction function f, the correction function f based on the difference between the correction parameters (Species Cal , DBH Cal , H Cal ) corrected through the correction function f and the estimated parameters of the site before correction (Species R , DBH R , HR ) Perform a delta correction that updates .
- FIG. 3 is a flowchart illustrating the operation of the greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- Equation (1) The conventional amount of volume and CO 2 absorption amount are calculated through Equation (1) below.
- CO 2 Absorption is the amount of CO 2 absorbed during the project period (tCO 2 )
- ⁇ V is the amount of volume change (m 3 )
- D is the basic density of wood (tdm/m 3 )
- BEF is the above-ground biomass expansion coefficient
- R is the root content ratio
- CF is the carbon content ratio (tC/tdm)
- 44/12 is the carbon dioxide conversion coefficient (tCO 2 /tC).
- the stock quantity ( ⁇ V) is derived by examining the tree species, breast height diameter, and height of the individual trees existing in the target area and substituting them into the stand yield table, and the rest of the values such as the basic timber density (D) are previously disclosed. The values for each species were used.
- the apparatus 100 for calculating greenhouse gas absorption amount collects data by remote sensing technology, estimates information of an object item through a processing algorithm, and uses a correction function for the estimated value. It has the advantage of being able to collect data more quickly and accurately by applying it.
- the acquisition of remote sensing data means obtaining data directly from the ground, drone, air, satellite, etc., or acquiring previously measured data. Measurement data is included.
- the apparatus 100 for calculating the amount of greenhouse gas absorption first performs a processing algorithm A 1 (first Algorithm) is applied to calculate destination estimation parameters (Species R , DBH R , HR ) by estimating each item information of the destination (steps S301 and S302).
- a processing algorithm A 1 first Algorithm
- destination estimation parameters Species R , DBH R , HR
- the destination estimation parameters (Species R , DBH R , HR R ) can be more accurately corrected using the previously learned correction function f.
- site sample survey data (Species S , DBHS , HS ) can be additionally collected. If such sample survey data (Species S , DBH S , HS ) exists (step S303, Yes), the correction function f is updated using the corresponding data (steps S306 and S307).
- a correction function is obtained by comparing the destination estimation parameters (Species R , DBH R , HR ) and correction parameters (Species Cal , DBH Cal , H Cal ) and calculating the difference between the two parameters (Species ⁇ , DBH ⁇ , H ⁇ ).
- f can be updated (steps S308 and S309).
- the correction parameters (Species Cal , DBH Cal , H Cal ) derived through the above process are put into a predefined calculation formula to derive the biomass for each individual (step S310), and the amount of change from the biomass of the previous period (step S11) Based on this, the final amount of CO 2 absorbed is calculated (step S312).
- a relative growth equation for published tree species can be used, and in the case of CO 2 absorption, it can be calculated by multiplying the change in biomass by the carbon conversion coefficient and the carbon dioxide conversion coefficient.
- biomass is predicted through three parameters of Species, DBH, and H, but information that can be collected and predicted from remote sensing data may be various other (eg, canopy width , shape-based information using LiDAR, reflectance values outside the RGB range using a spectral sensor, etc.), biomass can be predicted more accurately using various information other than Species, DBH, and H.
- information that can be collected and predicted from remote sensing data may be various other (eg, canopy width , shape-based information using LiDAR, reflectance values outside the RGB range using a spectral sensor, etc.), biomass can be predicted more accurately using various information other than Species, DBH, and H.
- FIG. 4 is a functional block diagram of the parameter calculation unit 131 of the greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- the parameter calculation unit 131 includes an edge prediction unit 401 for predicting the edge of an object item from remote sensing data, and each entity based on the edge predicted by the edge prediction unit 401.
- 5 is a flowchart for explaining the operation of the first algorithm of the greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- the frame prediction unit 401 predicts the frame of an object item with respect to remote sensing data acquired through remote sensing of the entire target area (step S501) (step S502).
- the data extracting unit 402 extracts data for each object item based on the frame predicted by the frame predicting unit 401 (step S503).
- the parameter prediction unit 403 predicts volume parameters through a regression model from the data for each item extracted by the data extraction unit 402 (steps S504 and S505), and the parameter extraction unit 404 extracts the data.
- the site estimation parameters (Species R , DBH R , HR ) is calculated.
- FIG. 6 is an image showing an example of a result according to the first algorithm of the greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- the edge prediction unit 401 predicts the edge of an object item with respect to the remote sensing data image 601 to obtain an object item edge prediction image 602 .
- the data extractor 402 extracts data for each item to obtain a data image 603 for each item, and the parameter extractor 404 extracts volume parameters to obtain a 3D structure prediction image 604 .
- FIG. 7 is a flowchart illustrating a learning process of the first algorithm of the greenhouse gas absorption amount calculation device 100 according to at least one embodiment of the present invention.
- the parameter calculation unit 131 includes a first algorithm capable of machine learning (algorithm A 1 ), extracts volume parameters from a 3D model of a virtual 3D tree, and renders the image
- the learning of the first algorithm is performed using remote sensing images and geocoding images through parameters derived from actual field surveys.
- the parameter calculation unit 131 first creates a virtual 3D tree (step S701), and arranges the created virtual 3D tree in a scene suitable for learning of algorithm A 1 , (Step S702), by extracting volume parameters from the 3D model of the virtual 3D tree (Step S703), an image is rendered (Step S704).
- step S705 When a geocoding image is obtained through a remote sensing image (step S705) and a parameter derived from an actual field survey (step S706) (step S707), learning of algorithm A 1 is performed using the rendered image and the geocoding image (step S706). Step S708).
- FIG 8 is an image showing an example of a result according to the learning process of the first algorithm of the greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- an image 803 rendered from an image 802 obtained by arranging a virtual 3D tree image 801 generated by the parameter calculation unit 131 in a scene suitable for learning of algorithm A 1 can be obtained.
- FIG. 9 is a table showing an example of parameters extracted in the learning process of the first algorithm of the greenhouse gas absorption amount calculation device 100 according to at least one embodiment of the present invention.
- the table shown in FIG. 9 shows the parameters extracted directly from the 3D model.
- FIG. 10 is an image showing an example of a result according to the learning process of the first algorithm of the greenhouse gas absorption amount calculation device 100 according to at least one embodiment of the present invention.
- a geocoded image 1003 can be obtained by geocoding a remote sensing image 1001 through a parameter 1002 derived from an actual field survey.
- FIG. 11 is a flowchart for explaining a process of deriving a correction function f in the greenhouse gas absorption calculation device 100 according to at least one embodiment of the present invention.
- the correction unit 132 includes a second algorithm (algorithm A 2 ) capable of machine learning, and the volume parameter estimated by the parameter calculation unit 131 and the actual field survey volume A correction function f for correcting the destination estimation parameters (Species R , DBH R , HR ) calculated by the parameter calculating unit 131 is derived through learning of the second algorithm using the parameters.
- algorithm A 2 the second algorithm capable of machine learning
- data acquired using remote sensing technology may be more precisely corrected using a correction function f. All kinds of algorithms that more accurately correct the entity information estimated from the remote sensing data can be applied to the correction function f.
- statistical models such as regression, simple machine learning models such as decision trees and random forests, or complex machine learning models based on neural networks may be applied.
- the 11 shows a process for learning such a correction function f.
- the purpose of the correction function f is to make the item information (Species R , DBH R , HR ) estimated from remote sensing data as close as possible to the actually surveyed item information (Species T , DBH T , H T ).
- remote sensing data is collected by direct measurement or by utilizing external data (steps S1104 to S1106).
- the collected remote sensing data is estimated as item information through Algorithm A 1 (steps S1107 and S1108), and the estimated item item information (Species R , DBH R , HR R ) is the error of Algorithm A 1 or the error of the measuring device A certain level of difference occurs with the actual entity item information (Species T , DBH T , H T ).
- step S1103 when the actual object item information (Species T , DBH T , H T ) is obtained from data directly measured through field survey and external data through existing survey data (steps S1101 and S1102) (step S1103), obtained in step S1108 A correction function f is derived (step S1110) through learning of algorithm A 2 (step S1109) together with estimated object information (Species R , DBH R , HR ).
- FIG. 12 is a conceptual diagram of a greenhouse gas absorption calculation device 1200 according to at least one embodiment of the present invention.
- the apparatus 1200 for calculating the amount of greenhouse gas absorption acquires remote sensing data of a target area for which the amount of greenhouse gas absorption is to be calculated through a wireless communication network 300.
- a data acquisition unit 1210 for data acquisition a data storage unit 1220 for storing the remote sensing data acquired by the data acquisition unit 1210, and processing the remote sensing data stored in the data storage unit 1220 to process the greenhouse gas emissions of the target area.
- the data acquisition unit 1210, the data storage unit 1220, and the data processing unit 1230 of the greenhouse gas absorption calculation device 1200 shown in FIG. 12 are
- the data acquisition unit 110, the data storage unit 120, and the data processing unit 130 each have similar or identical structures
- the data processing unit 1230, like the data processing unit 130, has a parameter calculation unit 131 and a data processing unit 131. It includes a government 132, a biomass calculation unit 133, and an absorption amount calculation unit 134.
- the authentication management unit 1240 performs authentication management for certification of the greenhouse gas absorption amount calculated by the absorption calculation unit 134 as a greenhouse gas reduction amount from an external certification institution, and the reduction amount processing unit 1250, Reduction amount processing for processing the greenhouse gas reduction amount certified by the authentication management unit 1240 is performed.
- FIG. 13 is a conceptual diagram of a greenhouse gas reduction trading platform 1300 according to at least one embodiment of the present invention.
- the greenhouse gas reduction trading platform 1300 shown in FIG. 13 receives the certified greenhouse gas reduction from the greenhouse gas absorption calculation device 1200 shown in FIG. Organize a system for conducting transactions.
- FIG. 14 is a conceptual diagram of a greenhouse gas reduction trading platform 1400 according to at least one embodiment of the present invention.
- the greenhouse gas reduction trading platform 1400 shown in FIG. 14 is certified for the greenhouse gas absorption calculated by the greenhouse gas absorption calculation device 100 shown in FIG. 1 as greenhouse gas reduction from an external certification authority.
- the management unit 1410 and the reduction amount transaction unit 1420 for performing a transaction between the greenhouse gas reduction amount supplier and the greenhouse gas reduction amount consumer with the greenhouse gas reduction amount certified by the management unit 1410 and the authentication management unit 1410 is provided.
- the "greenhouse gas absorption measurement result through photosynthesis” can be defined as “greenhouse gas reduction amount” through the measuring device, and this "greenhouse gas reduction amount”
- the reduction amount is certified by a certification body
- the “certified greenhouse gas reduction amount” is sold to companies subject to greenhouse gas emission allocation, and the “certified greenhouse gas reduction amount” sold in this way is converted into “greenhouse gas offset credits” by the Ministry of Environment.
- the GHG emission allocator that has been converted and then purchases “certified GHG reductions” provides a structure to trade “converted GHG offset credits” in the emission trading market.
- the GHG Emissions Trading System is a market-based policy that enables businesses that emit a large amount of GHG to set a GHG reduction target in total units and achieve reduction obligations through trading of emission rights. With the right to emit greenhouse gases, it can be said to be similar to “a bag containing greenhouse gases”.
- the Greenhouse Gas Emissions Trading Scheme Offset System refers to a company that conducts a business that reduces, absorbs, or removes greenhouse gases in a way that meets international standards in emission facilities or emission activities outside the boundaries of the company subject to the Emissions Trading Scheme. It is a system that sells certification results to companies subject to allocation of the emission trading system, etc., and the allocation target companies convert purchased external business certification results into offset credits that can be offset or traded in the emission trading system.
- a greenhouse gas absorption calculation device capable of calculating the greenhouse gas absorption amount of a target site through remote sensing data.
- greenhouse gas reduction that can be traded for certified greenhouse gas reduction using a greenhouse gas absorption calculation device capable of calculating the greenhouse gas absorption of a target site through remote sensing data
- a volume trading platform can be provided.
- the present invention provides a greenhouse gas reduction calculation device capable of calculating the greenhouse gas absorption amount of the target site and a greenhouse gas reduction trading platform capable of trading the certified greenhouse gas reduction amount, so it can be applied to the green environment and renewable energy fields.
Landscapes
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- General Physics & Mathematics (AREA)
- Finance (AREA)
- Economics (AREA)
- Tourism & Hospitality (AREA)
- Educational Administration (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Primary Health Care (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
온실가스 흡수량 산출 장치는, 대상지의 원격 탐사 데이터를 취득하기 위한 데이터 취득부, 데이터 취득부에 의해 취득된 원격 탐사 데이터를 저장하기 위한 데이터 저장부, 및 데이터 저장부에 저장된 원격 탐사 데이터를 처리하여 대상지의 온실가스 흡수량을 산출하기 위한 데이터 처리부를 구비한다. 데이터 처리부는, 원격 탐사 데이터로부터 대상지의 대상지 추정 파라미터를 산출하기 위한 파라미터 산출부, 파라미터 산출부에 의해 산출된 대상지 추정 파라미터를 보정하기 위한 보정부, 보정부에 의해 보정된 보정 파라미터를 토대로 개체별 바이오매스를 산출하기 위한 바이오매스 산출부, 및 바이오매스 산출부에 의해 산출된 개체별 바이오매스와 이전 시기의 바이오매스를 비교하여 바이오매스의 변화량으로부터 온실가스 흡수량을 산출하기 위한 흡수량 산출부를 포함한다.
Description
본 발명은 온실가스 흡수량 산출 장치 및 이를 사용한 온실가스 감축량 거래 플랫폼에 관한 것이다.
최근 이슈가 되고 있는 기후변화의 원인으로, 산업혁명 이후의 인간 활동에 의한 대기의 온실가스 농도가 증가하여 지구의 온도가 상승하는 지구온난화를 꼽을 수 있다(여기서, 온실가스는 탄소를 중심으로 하는 이산화탄소, 메탄 등 모든 공인된 온실가스를 포함한다).
온실가스의 증가로 인한 기후변화의 영향으로 해수면 상승, 질병 확산, 재해 발생 등의 위협이 있을 수 있는데, 2010년을 기준으로 지난 100년간 지구의 평균온도는 섭씨 0.75도 상승하였으며, 이로 인해 세계적으로 폭염, 폭우, 열대야 증가 등의 기상 이변 현상이 발생하고 있다.
이러한 기후변화에 대응하기 위해, 국제사회는 산림탄소흡수원의 가치를 인정하여, 파리협정 제5조에서는 온실가스 흡수원과 저장소의 역할을 갖는 산림은 보전 및 증진이 필요하다는 내용을 명시하고 있다(여기서, 산림탄소흡수원이란 산림탄소를 흡수하고 저장하는 입목, 고사유기물, 토양, 목제품, 및 산림바이오매스 에너지를 말한다).
따라서, 숲과 재생에너지는 기후변화에 대응하기 위한 하나의 솔루션으로, 탄소흡수원으로서의 산림의 기능이 주목을 받게 되는데, 이는 식물의 탄소동화 작용이 대기 중의 탄소를 붙잡아 고정시키는 가장 효율적인 시스템으로 여겨지고 있기 때문이다.
산림탄소상쇄제도는 기업, 산주, 지방자치단체 등이 자발적으로 온실가스 배출을 줄이기 위하여 탄소흡수원 증진 활동을 하고, 이를 통해 확보한 산림탄소흡수량을 정부가 인증해주는 제도로, 산림탄소흡수량의 거래가능 여부에 따라 "거래형"과 "비거래형"으로 참여할 수 있다.
이에, 나무를 심거나 보호하는 사업에 투자하면 탄소상쇄권을 얻을 수 있기에, 탄소배출을 상쇄하기 위해 삼림 투자에 뛰어드는 기업도 증가하고 있는 추세이다. 즉, 탄소를 많이 배출하는 기업이 탄소 관리기업이나 삼림 관리기업에 투자하거나 수수료를 지불하면 특정 숲이 흡수한 탄소의 양을 계산해서 해당 기업 명의로 돌려준다.
이를 위해서는, 숲의 단위기간당 탄소흡수량을 보다 현실적으로 정확하게 산출할 필요가 있다(예를 들어, 한국등록특허공보 제10-1255813호, 한국공개특허공보 제10-2016-0002514호, 및 한국등록특허공보 제10-2352273호 참조).
본 발명이 이루고자 하는 하나의 기술적 과제는, 원격 탐사 데이터를 통해 대상지의 온실가스 흡수량을 산출할 수 있는 온실가스 흡수량 산출 장치를 제공하는 데 있다.
본 발명이 이루고자 하는 또 하나의 기술적 과제는, 원격 탐사 데이터를 통해 대상지의 온실가스 흡수량을 산출할 수 있는 온실가스 흡수량 산출 장치를 사용하여 인증 받은 온실가스 감축량을 거래할 수 있는 온실가스 감축량 거래 플랫폼을 제공하는 데 있다.
본 발명의 해결과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당해 기술분야에 있어서의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 최소한 하나의 실시예에 의하면, 대상지의 원격 탐사 데이터를 취득하기 위한 데이터 취득부, 상기 데이터 취득부에 의해 취득된 상기 원격 탐사 데이터를 저장하기 위한 데이터 저장부, 및 상기 데이터 저장부에 저장된 상기 원격 탐사 데이터를 처리하여 상기 대상지의 온실가스 흡수량을 산출하기 위한 데이터 처리부를 구비하고, 상기 데이터 처리부는, 상기 원격 탐사 데이터로부터 상기 대상지의 대상지 추정 파라미터를 산출하기 위한 파라미터 산출부, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정부, 상기 보정부에 의해 보정된 보정 파라미터를 토대로 개체별 바이오매스를 산출하기 위한 바이오매스 산출부, 및 상기 바이오매스 산출부에 의해 산출된 상기 개체별 바이오매스와 이전 시기의 바이오매스를 비교하여 바이오매스의 변화량으로부터 온실가스 흡수량을 산출하기 위한 흡수량 산출부를 포함하는, 온실가스 흡수량 산출 장치를 제공한다.
본 발명의 최소한 하나의 실시예에 있어서, 상기 보정부는, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정함수 f를 포함하고, 상기 대상지의 대상지 표본조사 데이터가 존재하면, 상기 보정부는, 상기 보정함수 f에 대해, 상기 대상지 표본조사 데이터를 토대로 상기 보정함수 f를 업데이트하는 대상지 보정을 수행한다.
본 발명의 최소한 하나의 실시예에 있어서, 상기 보정부는, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정함수 f를 포함하고, 상기 보정함수 f에 대해, 상기 보정함수 f를 통해 보정된 상기 보정 파라미터와 보정 전의 상기 대상지 추정 파라미터의 차를 토대로 상기 보정함수 f를 업데이트하는 델타 보정을 수행한다.
본 발명의 최소한 하나의 실시예에 있어서, 상기 파라미터 산출부는, 상기 원격 탐사 데이터로부터 개체목의 테두리를 예측하기 위한 테두리 예측부, 상기 테두리 예측부에 의해 예측된 상기 테두리를 토대로 개체별 데이터를 추출하기 위한 데이터 추출부, 상기 데이터 추출부에 의해 추출된 상기 개체별 데이터로부터 회귀 모형을 통해 재적 파라미터를 예측하기 위한 파라미터 예측부, 및 상기 데이터 추출부에 의해 추출된 상기 개체별 데이터로부터 3D 구조 예측을 통해 재적 파라미터를 추출하기 위한 파라미터 추출부를 포함한다.
본 발명의 최소한 하나의 실시예에 있어서, 상기 파라미터 산출부는, 머신러닝 가능한 제1 알고리즘을 포함하고, i) 가상의 3D 나무의 3D 모델로부터 재적 파라미터를 추출하여 렌더링 된 이미지와 ii) 원격 탐사 이미지와 실제 현장 조사로부터 도출된 파라미터를 통한 지오코딩 이미지를 사용하여 상기 제1 알고리즘의 학습을 수행한다.
본 발명의 최소한 하나의 실시예에 있어서, 상기 보정부는, 머신러닝 가능한 제2 알고리즘을 포함하고, 상기 파라미터 산출부에 의해 추정된 재적 파라미터와 실제 현장조사 재적 파라미터를 사용하여 상기 제2 알고리즘의 학습을 통해, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정함수 f를 도출한다.
본 발명의 최소한 하나의 실시예에 있어서, 상기 온실가스 흡수량 산출 장치는, 상기 흡수량 산출부에 의해 산출된 상기 온실가스 흡수량을 외부의 인증기관으로부터 온실가스 감축량으로 인증 받기 위한 인증 관리부 및 상기 인증 관리부에 의해 인증 받은 상기 온실가스 감축량을 처리하기 위한 감축량 처리부를 더 구비한다.
본 발명의 최소한 하나의 실시예에 의하면, 상기 온실가스 흡수량 산출 장치로부터 인증된 온실가스 감축량을 수신하여 온실가스 감축량 공급자와 온실가스 감축량 수요자 간의 거래를 수행하기 위한, 온실가스 감축량 거래 플랫폼을 제공한다.
본 발명의 최소한 하나의 실시예에 의하면, 상기 온실가스 흡수량 산출 장치에 의해 산출된 상기 온실가스 흡수량을 외부의 인증기관으로부터 온실가스 감축량으로 인증 받기 위한 인증 관리부 및 상기 인증 관리부에 의해 인증된 온실가스 감축량으로 온실가스 감축량 공급자와 온실가스 감축량 수요자 간의 거래를 수행하기 위한 감축량 거래부를 구비하는, 온실가스 감축량 거래 플랫폼을 제공한다.
본 명세서에서 각각의 실시예는 독립적으로 기재되어 있으나 각각의 실시예는 상호 조합이 가능하며 조합된 실시예도 본 발명의 권리 범위에 포함된다.
상술한 요약은 단지 설명을 위한 것이며 어떠한 방식으로도 제한을 의도하는 것은 아니다. 상술한 설명적 양태, 실시예 및 특징에 덧붙여 추가의 양태, 실시예 및 특징이 도면 및 아래의 상세한 설명을 참조함으로써 명백해질 것이다.
본 발명의 최소한 하나의 실시예에 따르면, 원격 탐사 데이터를 통해 대상지의 온실가스 흡수량을 산출할 수 있는 온실가스 흡수량 산출 장치를 제공할 수 있는 효과가 있다.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 원격 탐사 데이터를 통해 대상지의 온실가스 흡수량을 산출할 수 있는 온실가스 흡수량 산출 장치를 사용하여 인증 받은 온실가스 감축량을 거래할 수 있는 온실가스 감축량 거래 플랫폼을 제공할 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당해 기술분야에 있어서의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 개념도이다.
도 2는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 데이터 처리부의 기능 블록도이다.
도 3은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 동작을 설명하기 위한 흐름도이다.
도 4는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 파라미터 산출부의 기능 블록도이다.
도 5는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 제1 알고리즘의 동작을 설명하기 위한 흐름도이다.
도 6은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 제1 알고리즘에 따른 결과의 일례를 보여주는 이미지이다.
도 7은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 제1 알고리즘의 학습 과정을 설명하기 위한 흐름도이다.
도 8은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 제1 알고리즘의 학습 과정에 따른 결과의 일례를 보여주는 이미지이다.
도 9는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 제1 알고리즘의 학습 과정에서 추출된 파라미터의 일례를 보여주는 표이다.
도 10은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 제1 알고리즘의 학습 과정에 따른 결과의 일례를 보여주는 이미지이다.
도 11은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치에서 보정함수 f의 도출 과정을 설명하기 위한 흐름도이다.
도 12는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치의 개념도이다.
도 13 및 도 14는 본 발명의 최소한 하나의 실시예에 따른 온실가스 감축량 거래 플랫폼의 개념도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 개념도이다.
도 1에 도시된 바와 같이, 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)는, 무선 통신망(300)을 통해 온실가스 흡수량을 산출하고자 하는 대상지의 원격 탐사 데이터(200)를 취득하기 위한 데이터 취득부(110), 데이터 취득부(110)에 의해 취득된 원격 탐사 데이터를 저장하기 위한 데이터 저장부(120), 및 데이터 저장부(120)에 저장된 원격 탐사 데이터를 처리하여 대상지의 온실가스 흡수량을 산출하기 위한 데이터 처리부(130)로 구성된다.
본 발명의 최소한 하나의 실시예에 있어서, 대상지의 원격 탐사 데이터(200)는, 삼림 데이터(이미지 또는 분광 데이터), 기상 데이터(일조량, 시간 등), 실측 데이터(실험실 및 야장), 온실가스 흡수원(예: 삼림)의 소유자(감축량 공급자) 데이터, 온실가스 배출원(예: 공장)의 소유자(상쇄권 소비자) 데이터 등을 포함한다.
본 발명의 최소한 하나의 실시예에 있어서, 대상지의 원격 탐사 데이터(200)는, 측정 장치의 종류에 관계 없이 (예를 들어, 인공위성 카메라, 분광기, 드론 탑재 카메라, 실험실 현미경 등의 이미지, 화학분석기, 가스 검출기, 휴대용 측정기기 등) 기본적으로 샘플(나무 잎 또는 줄기 등)의 일부 또는 그 일부를 물리화학적으로 프로세스한 샘플로부터 방출되는 빛(다양한 파장의 빛)에 의한 이미지, 스펙트럼의 강도, 또는 생화학적 변화의 강도 등이 결과적으로 전자의 흐름(전류, 전압 등)으로 아날로그 신호로 읽은 강도를 그대로 또는 증폭하여 AD 컨버터(Analogue-to-Digital Converter)를 통해 디지털 값으로 변환하여 데이터 저장부(120)에 저장된다.
본 발명의 최소한 하나의 실시예에 있어서, 대상지의 원격 탐사 데이터(200)는, 측정 데이터가 포함된 데이터를 저장하는 외부 저장소 또는 빅데이터로부터 필요한 데이터만 추출하여 취득할 수도 있다.
도 2는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 데이터 처리부(130)의 기능 블록도이다.
도 2에 도시된 바와 같이, 데이터 처리부(130)는, 원격 탐사 데이터(200)로부터 대상지의 대상지 추정 파라미터(SpeciesR, DBHR, HR)를 산출하기 위한 파라미터 산출부(131), 파라미터 산출부(131)에 의해 산출된 대상지 추정 파라미터(SpeciesR, DBHR, HR)를 보정하기 위한 보정부(132), 보정부(132)에 의해 보정된 보정 파라미터(SpeciesCal, DBHCal, HCal)를 토대로 개체별 바이오매스를 산출하기 위한 바이오매스 산출부(133), 및 바이오매스 산출부(133)에 의해 산출된 개체별 바이오매스와 이전 시기의 바이오매스를 비교하여 바이오매스의 변화량으로부터 온실가스 흡수량을 산출하기 위한 흡수량 산출부(134)를 포함한다.
여기서, Species는 종을 나타내고, DBH는 흉고직경(Diameter at Breast Height)을 나타내며, H는 수고(Height)를 나타낸다.
본 발명의 최소한 하나의 실시예에 있어서, 보정부(132)는, 파라미터 산출부(131)에 의해 산출된 대상지 추정 파라미터(SpeciesR, DBHR, HR)를 보정하기 위한 보정함수 f를 포함한다.
본 발명의 최소한 하나의 실시예에 있어서, 대상지의 대상지 표본조사 데이터(SpeciesS, DBHS, HS)가 존재하면, 보정부(132)는, 보정함수 f에 대해, 대상지 표본조사 데이터(SpeciesS, DBHS, HS)를 토대로 보정함수 f를 업데이트하는 대상지 보정을 수행한다.
본 발명의 최소한 하나의 실시예에 있어서, 보정부(132)는, 파라미터 산출부(131)에 의해 산출된 대상지 추정 파라미터(SpeciesR, DBHR, HR)를 보정하기 위한 보정함수 f를 포함하고, 보정함수 f에 대해, 보정함수 f를 통해 보정된 보정 파라미터(SpeciesCal, DBHCal, HCal)와 보정 전의 대상지 추정 파라미터(SpeciesR, DBHR, HR)의 차를 토대로 보정함수 f를 업데이트하는 델타 보정을 수행한다.
도 3은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 동작을 설명하기 위한 흐름도이다.
종래의 재적량 및 CO2 흡수량 산출은 아래의 수식(1)을 통해 산출된다.
CO2 Absorption = △V x D x BEF x (1+R) x CF x 44/12 (1)
여기서, CO2 Absorption은 사업 기간 동안의 CO2 흡수량 (tCO2), △V는 재적량의 변화량 (m3), D는 목재기본밀도 (tdm/m3), BEF는 지상부 바이오매스 확장계수, R은 뿌리 함량비, CF는 탄소함량비 (tC/tdm), 44/12는 이산화탄소 전환계수 (tCO2/tC)이다.
이 때, 재적량(△V)은 대상지 내에 존재하는 개체목에 대해 수종, 흉고직경, 수고를 조사한 뒤 임분수확표에 대입하여 도출하고, 목재기본밀도(D) 등 나머지 값들의 경우 기존에 공개된 각 수종별 값들을 활용한다.
현행 체계에서는, 대상 지역에 존재하는 수목 개체들의 수종, 흉고직경, 수고 정보의 전수조사가 어려울 경우, 전체 면적의 일정 수준의 면적을 표본 추출하여 조사하고 있다. 이렇듯, 일부 면적을 조사하여 도출한 재적량과 CO2 흡수량 조사한 자료를 바탕으로 전체 면적으로 환산하여 대상지 전체의 CO2 흡수량을 산출하는데, 이 과정에서, 조사되지 않은 지역의 개체목 구성이 균일하지 않기 때문에 상당한 오차가 발생하게 된다.
이에 반해, 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)는, 원격 탐사 기술로 데이터를 수집하고, 처리 알고리즘을 통해 개체목의 정보를 추정하며, 추정된 값에 보정함수를 적용하여 보다 빠르고 정확하게 데이터를 수집할 수 있다는 장점이 있다.
이때, 원격 탐사 데이터의 취득은 지상, 드론, 항공, 위성 등에서 직접 자료를 얻거나 기존에 측정된 자료를 취득하는 것을 의미하며, 이러한 데이터에는 가시광선, 분광 또는 초분광 파장대의 반사도, 또는 LiDAR 기반 측정 자료가 포함된다.
도 3에 도시된 바와 같이, 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)는, 먼저 대상지 전체에 대한 원격 탐사를 통해 취득한 원격 탐사 데이터에 대해 처리 알고리즘 A1(제1 알고리즘)을 적용하여 대상지의 각 개체목 정보를 추정한 대상지 추정 파라미터(SpeciesR, DBHR, HR)를 산출한다(스텝 S301 및 S302).
이후, 대상지 추정 파라미터(SpeciesR, DBHR, HR)는 기존에 학습된 보정 함수 f를 이용하여 더욱 정확하게 보정할 수 있다.
대상지의 특성을 반영하기 위해, 대상지 표본 조사 데이터(SpeciesS, DBHS, HS)를 추가로 수집할 수 있다. 이러한 표본 조사 데이터(SpeciesS, DBHS, HS)가 존재하는 경우(스텝 S303, Yes), 해당 데이터를 활용하여 보정함수 f를 업데이트한다(스텝 S306 및 S307).
보정 함수 f를 바탕으로 대상지에 대해 정밀한 보정 파라미터(SpeciesCal, DBHCal, HCal) 값을 구한다(스텝 S304 및 S305).
이 때, 대상지 추정 파라미터(SpeciesR, DBHR, HR)와 보정 파라미터(SpeciesCal, DBHCal, HCal)를 비교하여 두 파라미터의 차(SpeciesΔ, DBHΔ, HΔ)를 통해 보정함수 f를 업데이트할 수 있다(스텝 S308 및 S309).
위의 과정을 거쳐 도출된 보정 파라미터(SpeciesCal, DBHCal, HCal)를 미리 정의된 계산식에 넣어 개체별 바이오매스를 도출하고(스텝 S310), 이전 시기의 바이오매스(스텝 S11)와의 변화량을 바탕으로 최종적인 CO2 흡수량을 산출한다(스텝 S312).
이때, 미리 정의된 바이오매스 계산식의 경우, 공개된 수종에 대한 상대생장식을 이용할 수 있으며, CO2 흡수량의 경우, 바이오매스의 변화량에 탄소 전환 계수 및 이산화탄소 전환계수를 곱하여 산출할 수 있다.
도 3에 도시된 예에서는, Species, DBH, 및 H의 세가지 파라미터를 통해 바이오매스를 예측하고 있으나, 원격 탐사 데이터로부터 수집 및 예측할 수 있는 정보는 이 외에도 다양할 수 있으며(예를 들어, 수관 폭, LiDAR를 이용한 형태 기반 정보, 분광 센서를 이용한 RGB 영역 외의 반사도 값 등), Species, DBH, 및 H 외의 다양한 정보를 사용하여 바이오매스를 보다 정확하게 예측할 수도 있다.
도 4는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 파라미터 산출부(131)의 기능 블록도이다.
도 4에 도시된 바와 같이, 파라미터 산출부(131)는, 원격 탐사 데이터로부터 개체목의 테두리를 예측하기 위한 테두리 예측부(401), 테두리 예측부(401)에 의해 예측된 테두리를 토대로 개체별 데이터를 추출하기 위한 데이터 추출부(402), 데이터 추출부(402)에 의해 추출된 개체별 데이터로부터 회귀 모형을 통해 재적 파라미터를 예측하기 위한 파라미터 예측부(403), 및 데이터 추출부(402)에 의해 추출된 개체별 데이터로부터 3D 구조 예측을 통해 재적 파라미터를 추출하기 위한 파라미터 추출부(404)를 포함한다.
도 5는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 제1 알고리즘의 동작을 설명하기 위한 흐름도이다.
도 5에 도시된 바와 같이, 테두리 예측부(401)가, 대상지 전체에 대한 원격 탐사를 통해 취득한 원격 탐사 데이터(스텝 S501)에 대해 개체목의 테두리를 예측한다(스텝 S502).
이후, 데이터 추출부(402)가, 테두리 예측부(401)에 의해 예측된 테두리를 토대로 개체목별 데이터를 추출한다(스텝 S503).
이후, 파라미터 예측부(403)가, 데이터 추출부(402)에 의해 추출된 개체목별 데이터로부터 회귀 모형을 통해 재적 파라미터를 예측하고(스텝 S504 및 S505), 파라미터 추출부(404)가, 데이터 추출부(402)에 의해 추출된 개체목별 데이터로부터 3D 구조 예측을 통해 재적 파라미터를 추출함으로써(스텝 S506 및 S507), 대상지의 각 개체목 정보를 추정한 대상지 추정 파라미터(SpeciesR, DBHR, HR)를 산출한다.
도 6은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 제1 알고리즘에 따른 결과의 일례를 보여주는 이미지이다.
도 6에 도시된 바와 같이, 원격 탐사 데이터 이미지(601)에 대해 테두리 예측부(401)가 개체목의 테두리를 예측하여 개체목 테두리 예측 이미지(602)가 얻어진다.
이후, 데이터 추출부(402)가 개체목별 데이터를 추출하여 개체목별 데이터 이미지(603)이 얻어지고, 파라미터 추출부(404)가 재적 파라미터를 추출하여 3D 구조 예측 이미지(604)가 얻어진다.
도 7은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 제1 알고리즘의 학습 과정을 설명하기 위한 흐름도이다.
본 발명의 최소한 하나의 실시예에 있어서, 파라미터 산출부(131)는, 머신러닝 가능한 제1 알고리즘(알고리즘 A1)을 포함하고, 가상의 3D 나무의 3D 모델로부터 재적 파라미터를 추출하여 렌더링 된 이미지와 원격 탐사 이미지와 실제 현장 조사로부터 도출된 파라미터를 통한 지오코딩 이미지를 사용하여 제1 알고리즘의 학습을 수행한다.
즉, 도 7에 도시된 바와 같이, 파라미터 산출부(131)는, 먼저 가상의 3D 나무를 생성하고(스텝 S701), 생성된 가상의 3D 나무를 알고리즘 A1의 학습에 적합하도록 Scene에 배치하고(스텝 S702), 가상의 3D 나무의 3D 모델로부터 재적 파라미터를 추출함으로써(스텝 S703) 이미지를 렌더링한다(스텝 S704).
원격 탐사 이미지(스텝 S705)와 실제 현장 조사로부터 도출된 파라미터(스텝 S706)를 통해 지오코딩 이미지를 얻으면(스텝 S707), 렌더링 된 이미지와 지오코딩 이미지를 사용하여 알고리즘 A1의 학습을 수행한다(스텝 S708).
도 8은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 제1 알고리즘의 학습 과정에 따른 결과의 일례를 보여주는 이미지이다.
도 8에 도시된 바와 같이, 파라미터 산출부(131)가 생성한 가상의 3D 나무 이미지(801)를 알고리즘 A1의 학습에 적합하도록 Scene에 배치하여 얻은 이미지(802)로부터 렌더링된 이미지(803)를 얻을 수 있다.
도 9는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 제1 알고리즘의 학습 과정에서 추출된 파라미터의 일례를 보여주는 표이다. 도 9에 도시된 표는, 3D 모델로부터 직접 추출된 파라미터를 보여준다.
도 10은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)의 제1 알고리즘의 학습 과정에 따른 결과의 일례를 보여주는 이미지이다.
도 10에 도시된 바와 같이, 원격 탐사 이미지(1001)를 실제 현장 조사로부터 도출된 파라미터(1002)를 통해 지오코딩 함으로써 지오코딩 이미지(1003)를 얻을 수 있다.
도 11은 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(100)에서 보정함수 f의 도출 과정을 설명하기 위한 흐름도이다.
본 발명의 최소한 하나의 실시예에 있어서, 보정부(132)는, 머신러닝 가능한 제2 알고리즘(알고리즘 A2)을 포함하고, 파라미터 산출부(131)에 의해 추정된 재적 파라미터와 실제 현장조사 재적 파라미터를 사용하여 제2 알고리즘의 학습을 통해, 파라미터 산출부(131)에 의해 산출된 대상지 추정 파라미터(SpeciesR, DBHR, HR)를 보정하기 위한 보정함수 f를 도출한다.
본 발명의 최소한 하나의 실시예에 있어서, 원격 탐사 기술을 활용하여 취득된 데이터를 보정 함수 f를 이용하여 더욱 정밀하게 보정할 수 있다. 보정 함수 f에는 원격 탐사 데이터로부터 추정된 개체목 정보를 더 정확하게 보정해주는 모든 종류의 알고리즘이 적용될 수 있다.
예를 들어, 회귀 등의 통계학적 모형, 의사결정나무, 랜덤 포레스트(Random Forest) 등의 단순 기계 학습 모형 또는 신경망 기반의 복잡한 기계 학습 모형 등이 적용될 수 있다
도 11은 이러한 보정 함수 f를 학습시키기 위한 과정을 보여준다. 보정 함수 f의 목적은 원격 탐사 데이터로부터 추정된 개체목 정보(SpeciesR, DBHR, HR)를 실제 조사된 개체목 정보(SpeciesT, DBHT, HT)에 최대한 가깝도록 하는 것이다.
먼저, 직접 측정하거나 또는 외부 데이터를 활용하는 방법을 통해 원격 탐사 데이터를 수집한다(스텝 S1104 ~ S1106). 수집된 원격 탐사 데이터는 알고리즘 A1을 거쳐 개체목 정보로 추정하는데(스텝 S1107 및 S1108), 추정된 개체목 정보(SpeciesR, DBHR, HR)는 알고리즘 A1의 오차 또는 측정 기기의 오차 등에 의해 실제 개체목 정보(SpeciesT, DBHT, HT)와 일정 수준의 차이가 발생하게 된다.
동일한 지역에 대해 얻어진 실제 개체목 정보(SpeciesT, DBHT, HT)와 추정된 개체목 정보(SpeciesR, DBHR, HR)를 각각 종속 변수(y)와 독립 변수(X)로 가지는 제2 알고리즘(알고리즘 A2)을 도출하여 보정 함수 f를 얻을 수 있다.
즉, 현장 조사를 통해 직접 측정한 데이터와 기존 조사 자료를 통한 외부 데이터로부터(스텝 S1101 및 S1102) 실제 개체목 정보(SpeciesT, DBHT, HT)를 얻으면(스텝 S1103), 스텝 S1108에서 얻어진 추정된 개체목 정보(SpeciesR, DBHR, HR)와 함께 알고리즘 A2의 학습을 통해(스텝 S1109) 보정 함수 f를 도출한다(스텝 S1110).
도 12는 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(1200)의 개념도이다.
도 12에 도시된 바와 같이, 본 발명의 최소한 하나의 실시예에 따른 온실가스 흡수량 산출 장치(1200)는, 무선 통신망(300)을 통해 온실가스 흡수량을 산출하고자 하는 대상지의 원격 탐사 데이터를 취득하기 위한 데이터 취득부(1210), 데이터 취득부(1210)에 의해 취득된 원격 탐사 데이터를 저장하기 위한 데이터 저장부(1220), 데이터 저장부(1220)에 저장된 원격 탐사 데이터를 처리하여 대상지의 온실가스 흡수량을 산출하기 위한 데이터 처리부(1230), 온실가스 흡수량을 외부의 인증기관으로부터 온실가스 감축량으로 인증 받기 위한 인증 관리부(1240), 및 인증 관리부(1240)에 의해 인증 받은 온실가스 감축량을 처리하기 위한 감축량 처리부(1250)로 구성된다.
도 12에 도시된 온실가스 흡수량 산출 장치(1200)의 데이터 취득부(1210), 데이터 저장부(1220), 및 데이터 처리부(1230)는, 도 1에 도시된 온실가스 흡수량 산출 장치(100)의 데이터 취득부(110), 데이터 저장부(120), 및 데이터 처리부(130)와 각각 유사 또는 동일한 구조를 가지며, 데이터 처리부(1230)는 데이터 처리부(130)과 마찬가지로 파라미터 산출부(131), 보정부(132), 바이오매스 산출부(133), 및 흡수량 산출부(134)를 포함한다
따라서, 인증 관리부(1240)는, 흡수량 산출부(134)에 의해 산출된 온실가스 흡수량을 외부의 인증기관으로부터 온실가스 감축량으로 인증 받기 위한 인증 관리를 수행하며, 감축량 처리부(1250)는, 인증 관리부(1240)에 의해 인증 받은 온실가스 감축량을 처리하기 위한 감축량 처리를 수행한다.
도 13은 본 발명의 최소한 하나의 실시예에 따른 온실가스 감축량 거래 플랫폼(1300)의 개념도이다.
도 13에 도시된 온실가스 감축량 거래 플랫폼(1300)은 도 12에 도시된 온실가스 흡수량 산출 장치(1200)로부터 인증된 온실가스 감축량을 수신하여 온실가스 감축량 공급자와 온실가스 감축량 수요자 간의 거래를 수행하기 위한 시스템을 구성한다.
도 14는 본 발명의 최소한 하나의 실시예에 따른 온실가스 감축량 거래 플랫폼(1400)의 개념도이다.
도 14에 도시된 온실가스 감축량 거래 플랫폼(1400)은 도 1에 도시된 온실가스 흡수량 산출 장치(100)에 의해 산출된 온실가스 흡수량을 외부의 인증기관으로부터 온실가스 감축량으로 인증 받기 위한 인증 관리부(1410) 및 인증 관리부(1410)에 의해 인증된 온실가스 감축량으로 온실가스 감축량 공급자와 온실가스 감축량 수요자 간의 거래를 수행하기 위한 감축량 거래부(1420)를 구비한다.
본 발명의 최소한 하나의 실시예에 따른 온실가스 감축량 거래 플랫폼은, 측정 장치를 통해 "광합성을 통한 온실가스 흡수량 측정 결과"는 "온실가스 감축량"으로 정의될 수 있고, 바로 이 "온실가스 감축량을 인증 기관으로부터 인증" 받으면 "인증된 온실가스 감축량"은 온실가스 배출 할당 대상 업체에 판매되고, 이렇게 판매된 "인증된 온실가스 감축량"은 환경부에 의해 "온실가스 상쇄 배출권"으로 전환되고, 이후 "인증된 온실가스 감축량"을 구매한 온실가스 배출 할당 업체는 "전환된 온실가스 상쇄 배출권"을 배출권 거래시장에서 매매할 수 있는 구조를 제공한다.
온실가스 배출권 거래제는, 온실가스 다량 배출 사업장 등을 대상으로 총량 단위의 온실가스 감축 목표를 설정하고 배출권의 거래를 통해 감축 의무를 달성할 수 있도록 하는 시장 기반 정책으로, 배출권이란 특정 기간 동안 일정량의 온실가스를 배출할 수 있는 권한으로 “온실가스를 담는 봉투"와 유사하다고 할 수 있다.
온실가스 배출권 거래제 상쇄제도란, 배출권 거래제 할당 대상 업체 조직 경계 외부의 배출 시설 또는 배출 활동 등에서 국제적 기준에 부합하는 방식으로 온실가스를 감축, 흡수, 또는 제거하는 사업을 수행하는 사업자는 이를 통해 발행 받은 인증 실적을 배출권 거래제 할당 대상 업체 등에 판매하고, 할당 대상 업체는 구매한 외부사업 인증 실적을 상쇄 배출권으로 전환하여 배출권 거래 제도에서 상쇄 또는 거래 할 수 있는 제도라고 할 수 있다.
이상에서 설명한 바와 같이, 본 발명의 최소한 하나의 실시예에 따르면, 원격 탐사 데이터를 통해 대상지의 온실가스 흡수량을 산출할 수 있는 온실가스 흡수량 산출 장치를 제공할 수 있다.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 원격 탐사 데이터를 통해 대상지의 온실가스 흡수량을 산출할 수 있는 온실가스 흡수량 산출 장치를 사용하여 인증 받은 온실가스 감축량을 거래할 수 있는 온실가스 감축량 거래 플랫폼을 제공할 수 있다.
이상 본 발명을 몇 가지 실시예를 사용하여 설명하였으나, 이들 실시예는 예시적인 것이며 한정적인 것이 아니다. 이와 같이, 본 발명이 속하는 기술분야에서 통상의 지식을 지닌 자라면 본 발명의 사상과 첨부된 특허청구범위에 제시된 권리범위에서 벗어나지 않으면서 균등론에 따라 다양한 변화와 수정을 가할 수 있음을 이해할 것이다.
본 발명은, 대상지의 온실가스 흡수량을 산출할 수 있는 온실가스 흡수량 산출 장치 및 인증 받은 온실가스 감축량을 거래할 수 있는 온실가스 감축량 거래 플랫폼을 제공하므로, 녹색환경 및 재생에너지 분야 등에 적용할 수 있다.
Claims (9)
- 대상지의 원격 탐사 데이터를 취득하기 위한 데이터 취득부;상기 데이터 취득부에 의해 취득된 상기 원격 탐사 데이터를 저장하기 위한 데이터 저장부; 및상기 데이터 저장부에 저장된 상기 원격 탐사 데이터를 처리하여 상기 대상지의 온실가스 흡수량을 산출하기 위한 데이터 처리부를 구비하고,상기 데이터 처리부는, 상기 원격 탐사 데이터로부터 상기 대상지의 대상지 추정 파라미터를 산출하기 위한 파라미터 산출부, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정부, 상기 보정부에 의해 보정된 보정 파라미터를 토대로 개체별 바이오매스를 산출하기 위한 바이오매스 산출부, 및 상기 바이오매스 산출부에 의해 산출된 상기 개체별 바이오매스와 이전 시기의 바이오매스를 비교하여 바이오매스의 변화량으로부터 온실가스 흡수량을 산출하기 위한 흡수량 산출부를 포함하는,온실가스 흡수량 산출 장치.
- 제1항에 있어서,상기 보정부는, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정함수 f를 포함하고,상기 대상지의 대상지 표본조사 데이터가 존재하면, 상기 보정부는, 상기 보정함수 f에 대해, 상기 대상지 표본조사 데이터를 토대로 상기 보정함수 f를 업데이트하는 대상지 보정을 수행하는,온실가스 흡수량 산출 장치.
- 제1항에 있어서,상기 보정부는, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정함수 f를 포함하고, 상기 보정함수 f에 대해, 상기 보정함수 f를 통해 보정된 상기 보정 파라미터와 보정 전의 상기 대상지 추정 파라미터의 차를 토대로 상기 보정함수 f를 업데이트하는 델타 보정을 수행하는,온실가스 흡수량 산출 장치.
- 제1항에 있어서,상기 파라미터 산출부는, 상기 원격 탐사 데이터로부터 개체목의 테두리를 예측하기 위한 테두리 예측부, 상기 테두리 예측부에 의해 예측된 상기 테두리를 토대로 개체별 데이터를 추출하기 위한 데이터 추출부, 상기 데이터 추출부에 의해 추출된 상기 개체별 데이터로부터 회귀 모형을 통해 재적 파라미터를 예측하기 위한 파라미터 예측부, 및 상기 데이터 추출부에 의해 추출된 상기 개체별 데이터로부터 3D 구조 예측을 통해 재적 파라미터를 추출하기 위한 파라미터 추출부를 포함하는,온실가스 흡수량 산출 장치.
- 제1항에 있어서,상기 파라미터 산출부는, 머신러닝 가능한 제1 알고리즘을 포함하고, i) 가상의 3D 나무의 3D 모델로부터 재적 파라미터를 추출하여 렌더링 된 이미지와 ii) 원격 탐사 이미지와 실제 현장 조사로부터 도출된 파라미터를 통한 지오코딩 이미지를 사용하여 상기 제1 알고리즘의 학습을 수행하는,온실가스 흡수량 산출 장치.
- 제1항에 있어서,상기 보정부는, 머신러닝 가능한 제2 알고리즘을 포함하고, 상기 파라미터 산출부에 의해 추정된 재적 파라미터와 실제 현장조사 재적 파라미터를 사용하여 상기 제2 알고리즘의 학습을 통해, 상기 파라미터 산출부에 의해 산출된 상기 대상지 추정 파라미터를 보정하기 위한 보정함수 f를 도출하는,온실가스 흡수량 산출 장치.
- 제1항에 있어서,상기 흡수량 산출부에 의해 산출된 상기 온실가스 흡수량을 외부의 인증기관으로부터 온실가스 감축량으로 인증 받기 위한 인증 관리부; 및상기 인증 관리부에 의해 인증 받은 상기 온실가스 감축량을 처리하기 위한 감축량 처리부를 더 구비하는,온실가스 흡수량 산출 장치.
- 제7항에 기재된 온실가스 흡수량 산출 장치로부터 인증된 온실가스 감축량을 수신하여 온실가스 감축량 공급자와 온실가스 감축량 수요자 간의 거래를 수행하기 위한,온실가스 감축량 거래 플랫폼.
- 제1항에서 제6항의 어느 한 항에 기재된 온실가스 흡수량 산출 장치에 의해 산출된 상기 온실가스 흡수량을 외부의 인증기관으로부터 온실가스 감축량으로 인증 받기 위한 인증 관리부; 및상기 인증 관리부에 의해 인증된 온실가스 감축량으로 온실가스 감축량 공급자와 온실가스 감축량 수요자 간의 거래를 수행하기 위한 감축량 거래부를 구비하는,온실가스 감축량 거래 플랫폼.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0084324 | 2021-06-28 | ||
KR20210084324 | 2021-06-28 | ||
KR10-2022-0078489 | 2022-06-27 | ||
KR1020220078489A KR20230001547A (ko) | 2021-06-28 | 2022-06-27 | 온실가스 흡수량 산출 장치 및 이를 사용한 온실가스 감축량 거래 플랫폼 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023277496A1 true WO2023277496A1 (ko) | 2023-01-05 |
Family
ID=84691930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/009165 WO2023277496A1 (ko) | 2021-06-28 | 2022-06-28 | 온실가스 흡수량 산출 장치 및 이를 사용한 온실가스 감축량 거래 플랫폼 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023277496A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3865764B1 (ja) * | 2006-08-15 | 2007-01-10 | アルスマエヤ株式会社 | 森林資源調査方法および森林資源調査装置 |
JP2010097577A (ja) * | 2008-10-16 | 2010-04-30 | Ken Hirokawa | 温暖化ガス排出量取引システム、温暖化ガス排出量取引方法、及びプログラム |
KR20150014020A (ko) * | 2013-07-26 | 2015-02-06 | 주식회사 나라 | 탄소정보시스템 |
KR20150135597A (ko) * | 2014-05-22 | 2015-12-03 | 주식회사 시은트리디 | 멀티센서 융합 측위 시스템을 이용한 가로수 탄소흡수량 산정 시스템 및 이에 이용되는 프로그램을 기록한 컴퓨터판독가능한 기록매체 |
JP6820625B1 (ja) * | 2020-06-18 | 2021-01-27 | 日本森林総研株式会社 | サーバ、森林データ利用システム、森林データ利用方法およびプログラム |
-
2022
- 2022-06-28 WO PCT/KR2022/009165 patent/WO2023277496A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3865764B1 (ja) * | 2006-08-15 | 2007-01-10 | アルスマエヤ株式会社 | 森林資源調査方法および森林資源調査装置 |
JP2010097577A (ja) * | 2008-10-16 | 2010-04-30 | Ken Hirokawa | 温暖化ガス排出量取引システム、温暖化ガス排出量取引方法、及びプログラム |
KR20150014020A (ko) * | 2013-07-26 | 2015-02-06 | 주식회사 나라 | 탄소정보시스템 |
KR20150135597A (ko) * | 2014-05-22 | 2015-12-03 | 주식회사 시은트리디 | 멀티센서 융합 측위 시스템을 이용한 가로수 탄소흡수량 산정 시스템 및 이에 이용되는 프로그램을 기록한 컴퓨터판독가능한 기록매체 |
JP6820625B1 (ja) * | 2020-06-18 | 2021-01-27 | 日本森林総研株式会社 | サーバ、森林データ利用システム、森林データ利用方法およびプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wagle et al. | Comparison of solar‐induced chlorophyll fluorescence, light‐use efficiency, and process‐based GPP models in maize | |
Hogrefe et al. | Evaluating the performance of regional-scale photochemical modeling systems: Part I—meteorological predictions | |
Schepanski et al. | A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels | |
Skartveit et al. | An hourly diffuse fraction model with correction for variability and surface albedo | |
Mohammadi et al. | Possibility investigation of tree diversity mapping using Landsat ETM+ data in the Hyrcanian forests of Iran | |
CN111937016B (zh) | 一种基于街景图片及机器学习的城市内部贫困空间测度方法及系统 | |
US20170140077A1 (en) | Method for assessing efficiency of power generation systems | |
Clark et al. | High-resolution spatiotemporal measurement of air and environmental noise pollution in Sub-Saharan African cities: Pathways to Equitable Health Cities Study protocol for Accra, Ghana | |
Liu et al. | Microclimatic measurements in tropical cities: Systematic review and proposed guidelines | |
Clark et al. | Protocol: high-resolution spatiotemporal measurement of air and environmental noise pollution in sub-saharan African cities: pathways to equitable health cities study protocol for Accra, Ghana | |
WO2024010127A1 (ko) | 이산화탄소 포집량 예측 시스템 | |
CN117893376A (zh) | 一种基于时空碳足迹的社区碳排放监测与调控方法 | |
WO2023277496A1 (ko) | 온실가스 흡수량 산출 장치 및 이를 사용한 온실가스 감축량 거래 플랫폼 | |
CN109063684B (zh) | 一种近地表气温遥感监测方法 | |
Urraca et al. | BQC: A free web service to quality control solar irradiance measurements across Europe | |
Brown et al. | HemiPy: A Python module for automated estimation of forest biophysical variables and uncertainties from digital hemispherical photographs | |
Grant et al. | Spectral and RGB analysis of the light climate and its ecological impacts using an all-sky camera system in the Arctic | |
Fritz et al. | Development of criteria used to establish a background environmental monitoring station | |
Nightingale et al. | Predicting tree diversity across the United States as a function of modeled gross primary production | |
Mi et al. | [Retracted] Residential Environment Pollution Monitoring System Based on Cloud Computing and Internet of Things | |
Fara et al. | New results in forecasting of photovoltaic systems output based on solar radiation forecasting | |
KR20230001547A (ko) | 온실가스 흡수량 산출 장치 및 이를 사용한 온실가스 감축량 거래 플랫폼 | |
Wan et al. | Contribution degree of different surface factors in urban interior to urban thermal environment | |
Zhao et al. | [Retracted] Working Condition Monitoring System of Substation Robot Based on Video Monitoring | |
Wulder et al. | Remote sensing of forest environments, introduction: The transition from theory to information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22833552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.05.2024) |