WO2023277450A1 - Semiconductor manufacturing device - Google Patents

Semiconductor manufacturing device Download PDF

Info

Publication number
WO2023277450A1
WO2023277450A1 PCT/KR2022/008953 KR2022008953W WO2023277450A1 WO 2023277450 A1 WO2023277450 A1 WO 2023277450A1 KR 2022008953 W KR2022008953 W KR 2022008953W WO 2023277450 A1 WO2023277450 A1 WO 2023277450A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
ultraviolet
semiconductor manufacturing
substrate
ultraviolet rays
Prior art date
Application number
PCT/KR2022/008953
Other languages
French (fr)
Korean (ko)
Inventor
나성주
박흥균
Original Assignee
(주)넥스틴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)넥스틴 filed Critical (주)넥스틴
Publication of WO2023277450A1 publication Critical patent/WO2023277450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Definitions

  • the present technology relates to semiconductor manufacturing equipment.
  • the size and area of semiconductor devices tend to decrease. Accordingly, the size of the pattern forming the semiconductor device and the thickness of the thin film are decreasing, and in particular, factors that have not had a significant impact in the prior art are emerging as important factors in the development of semiconductor devices.
  • One of these factors is static electricity built up on the substrate.
  • the causes of static electricity formed on the semiconductor substrate include the use of deionized water, charge transfer from a charged plastic material, or induction charge.
  • the static electricity of the semiconductor substrate is mainly generated in a photo process or a cleaning process using a rotational motion, and the most static electricity is concentrated in the center due to a difference in centrifugal force. That is, in the photo resist coating process, the high-speed rotation of the wafer increases the concentration of airflow in the center of the substrate by more than three times compared to the outer area, so that static electricity is formed around the center where the centrifugal force is relatively weak. Static electricity caused by a strong electric field formed in the center is charged on the surface of the wafer, inside the surface multilayer film, and on the photoresist pattern formed on the surface.
  • the area corresponding to the center of the substrate is charged not only to the surface of the semiconductor substrate such as the photoresist pattern or oxide film, which is an insulator, but also to a certain depth on the substrate surface, resulting in low kinetic energy. A state in which neutralization by ions having is impossible may occur.
  • the electrostatic voltage charged on the semiconductor substrate has many variables such as the type of process, material, and pattern shape, and is generally formed between -100V and +100V.
  • the pattern width is narrow and the ionizer It is difficult to remove the static electricity accumulated inside the thin film due to the self-neutralizing effect between the generated positive and negative ions and the low electromotive force caused by the low voltage difference between the semiconductor substrate and the ions.
  • Decay time within 1 to 2 seconds is required to reduce the static electricity charged at 1000V on the semiconductor substrate to within 100V using a soft Xray ionizer.
  • an initial charging voltage of 100V or less it takes a long time to reduce the charging voltage to a target voltage or less.
  • the ion density of the ionizer is generally 106
  • the static electricity formed on the semiconductor substrate can be removed using the conventional ionizer.
  • microcircuits may be formed in an irregular pattern on the semiconductor substrate, and static electricity of different voltages may be charged in each part according to the characteristics of the pattern. That is, an electrostatic voltage of ⁇ 20 to ⁇ 50 V or higher may be distributed depending on the portion of the semiconductor substrate.
  • ions when an electric charge is charged inside the oxide film and/or pattern, ions must be provided with high energy to neutralize static electricity, but when reactive radicals and/or reactive ions are irradiated to the substrate with high energy, the substrate and It may cause damage by colliding with the pattern formed on the surface of the substrate.
  • Prior Document 1 Korean Patent Registration No. 10-1698273
  • Prior Document 2 Korean Patent Publication No. 10-2004-0040106
  • This embodiment is intended to solve the above-mentioned difficulties of the prior art. That is, one of the problems to be solved in the present embodiment is to provide a device for neutralizing static electricity formed on a semiconductor substrate and a pattern located on the substrate.
  • the semiconductor manufacturing apparatus includes: an ultraviolet ray forming unit located in an ultraviolet ray forming chamber and irradiating an electron beam (e-beam) to form ultraviolet ray of a desired wavelength; a substrate driving unit including a chuck for supporting the loaded substrate located in a processing chamber where the loaded substrate is treated with the ultraviolet rays, and an axis for rotating the chuck; and a window positioned between the ultraviolet generation chamber and the processing chamber to transmit the formed ultraviolet rays into the processing chamber.
  • an ultraviolet ray forming unit located in an ultraviolet ray forming chamber and irradiating an electron beam (e-beam) to form ultraviolet ray of a desired wavelength
  • a substrate driving unit including a chuck for supporting the loaded substrate located in a processing chamber where the loaded substrate is treated with the ultraviolet rays, and an axis for rotating the chuck; and a window positioned between the ultraviolet generation chamber and the processing chamber to transmit the formed ultraviolet rays into the processing chamber.
  • the ultraviolet ray generator further includes one or more reflective members that reflect the formed ultraviolet rays to the processing chamber.
  • the UV forming unit may include an electron beam irradiation unit for irradiating the electron beam; A gas supply unit and a vacuum forming unit configured to form a desired vacuum degree inside the ultraviolet generation chamber, wherein the electron beam collides with the provided gas to form ultraviolet rays having the desired wavelength.
  • the gas supply unit provides any one or more of helium (He), oxygen (O2), and argon (Ar) gas.
  • the electron beam irradiator includes an electron gun and an electron beam steering device for steering the electron beam.
  • the ultraviolet ray forming chamber includes a plurality of regions in which a plurality of the ultraviolet ray forming units are respectively disposed.
  • the electron beam irradiator irradiates a concentrated linear electron beam (e-beam), and linear plasma is formed by the concentrated linear electron beam in the ultraviolet generation chamber to form ultraviolet rays.
  • e-beam concentrated linear electron beam
  • the window has a pattern formed on at least one side of the window, or a filter is formed on at least one side of the window.
  • At least a part of the window is formed of a material containing any one of sapphire, magnesium fluoride (MgF 2 ), lithium fluoride (LiF 2 ) and calcium fluoride (CaF 2 ).
  • the semiconductor manufacturing apparatus includes: an ultraviolet ray forming unit located in an ultraviolet ray forming chamber and irradiating an electron beam (e-beam) to form ultraviolet ray of a desired wavelength; a substrate driving unit including a chuck for supporting the loaded substrate located in a processing chamber where the loaded substrate is treated with the ultraviolet rays, and an axis for rotating the chuck; a window positioned between the ultraviolet generation chamber and the processing chamber to transmit the ultraviolet rays into the processing chamber, and a grid plate accelerating and providing charged particles to the substrate, wherein the grid plate has a plurality of different radii. It includes electrode lines of, and a grid electrode in which a plurality of holes are formed in each electrode line.
  • the grid plate further includes a grid electrode extending in a first direction and a grid electrode extending in a second direction different from the first direction.
  • the semiconductor manufacturing apparatus further includes a grid plate control unit supplying a voltage corresponding to the electrostatic voltage formed on the substrate to the grid plate.
  • the UV forming unit irradiates the concentrated electron beam, and linear plasma is formed in the UV forming chamber by the concentrated linear electron beam to form ultraviolet rays.
  • an advantage of neutralizing static electricity formed on a semiconductor substrate and a pattern located on the substrate is provided.
  • FIG. 1 is a cross-sectional view showing the outline of a semiconductor manufacturing apparatus 10 according to the present embodiment.
  • FIG. 2(a) is a diagram showing the transmittance of magnesium fluoride (MgF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band.
  • 2(b) is a diagram showing the transmittance of calcium fluoride (CaF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band.
  • FIG. 3(a) is a diagram illustrating a state in which a pattern is formed on one surface of the window 300.
  • FIG. 3( b ) is a diagram illustrating a state in which a filter 310 is formed on one side of the window 300 .
  • FIG. 4 is a diagram illustrating another embodiment of a semiconductor manufacturing apparatus.
  • 5(a) to 5(d) are plan views of window embodiments.
  • Figure 6 (a) is an exploded perspective view showing the outline of the grid plate
  • Figure 6 (b) is a plan view of the grid plate.
  • FIG. 7 is a diagram schematically illustrating a manufacturing process of a first grid electrode.
  • FIG. 8 is a view illustrating a shape in which first to third grid electrodes are stacked and disposed when viewed from above.
  • FIG. 9 is a diagram for explaining the operation of the semiconductor manufacturing apparatus.
  • FIG. 1 is a cross-sectional view showing the outline of a semiconductor manufacturing apparatus 10 according to the present embodiment.
  • a semiconductor manufacturing apparatus 10 according to the present embodiment is located in an ultraviolet forming chamber 11 and irradiates a concentrated electron beam (e-beam) to form linear plasma to form ultraviolet rays of a desired wavelength.
  • e-beam concentrated electron beam
  • An ultraviolet ray forming unit 100 forming an ultraviolet ray, a chuck 210 for supporting the loaded substrate positioned in the processing chamber 21 where the loaded substrate S is treated with the ultraviolet ray, and an axis for rotating the chuck a substrate driving unit 220 including (axis, 220); and a window 300 disposed between the ultraviolet generation chamber 11 and the processing chamber 21 and transmitting the formed ultraviolet rays into the processing chamber 21 .
  • the ultraviolet ray generator 100 irradiates a concentrated electron beam (e-beam) to form linear plasma to form ultraviolet rays of a desired wavelength.
  • the ultraviolet ray forming unit 100 includes an electron beam irradiation unit 110 for irradiating electron beams, a gas supply unit 120, and a vacuum forming unit 130 for forming the inside of the ultraviolet ray forming chamber 11 to a desired degree of vacuum. and, for example, a reflective member 140 that reflects and provides formed ultraviolet rays to the processing chamber 21 .
  • the vacuum forming unit 130 maintains a vacuum inside the UV forming chamber 11 .
  • the vacuum forming unit 130 includes a vacuum pump (not shown) for discharging materials inside the UV forming chamber 11 to the outside of the chamber, a vacuum gauge (not shown) for detecting the degree of internal vacuum, and inflow of materials. And it may include a valve (not shown) for controlling the outflow and a pipe (not shown) connecting each component.
  • the vacuum forming unit 130 preferably maintains a degree of vacuum inside the UV forming chamber 11 at 10 ⁇ 1 to 10 ⁇ 4 Torr.
  • the gas supply unit 120 provides gas.
  • the wavelength of the ultraviolet light formed by the ultraviolet ray generator 100 may be adjusted according to the gas provided by the gas supply unit 120 .
  • the gas supply unit 120 may provide gases such as helium (He), oxygen (O 2 ), and argon (Ar), and the flow rate of the provided gas is It may be 10 to 1000 sccm.
  • the electron beam irradiator 110 radiates an electron beam into the ultraviolet forming chamber 11 .
  • one electron beam irradiator 110 is disposed in the ultraviolet forming chamber 11, but according to an embodiment not shown, a plurality of electron beam irradiators 110 are disposed in the ultraviolet forming chamber 11. It can be.
  • the electron beam irradiation unit 110 includes an electron gun that forms, accelerates, and provides thermal electrons, and an electron beam steering device that steers the electron beam.
  • An electron gun forms and collimates and provides thermal electrons.
  • linear plasma is formed to uniformly emit ultraviolet rays, and ultraviolet rays are emitted in a predictable area.
  • the electron beam may use electrons in the plasma, secondary electrons, or electrons of a hollow cathode, and plasma is formed using a linear beam shape electron beam.
  • the electron beam steering device includes an electromagnetic coil and the like, and can steer an electron beam formed using an electric field and a magnetic field in a desired direction.
  • the electron beam irradiated by the electron beam irradiator 110 is irradiated to the gas in the ultraviolet forming chamber 11 .
  • Plasma is formed in the process gas by an electron beam having high energy, and light having a wavelength formed according to the type of gas is emitted to the outside.
  • the wavelength band of the light thus formed may be in the infrared region, the visible ray region, and the ultraviolet region, but the energy must be at least equal to or greater than the ultraviolet region in order to neutralize the charges trapped in the semiconductor substrate and/or the pattern formed on the semiconductor substrate.
  • the ultraviolet band consists of near ultraviolet rays (NEAR UV, 300 nm ⁇ 380 nm), far ultraviolet rays (FAR UV, 200 nm ⁇ 300 nm), and vacuum ultraviolet rays (VUV, vacuum UV, 70 nm ⁇ 200 nm) having a shorter wavelength than the far ultraviolet band. It can be distinguished, and in a preferred embodiment, the ultraviolet ray forming unit can form ultraviolet rays in the vacuum ultraviolet (VUV) band.
  • the ultraviolet rays formed by the ultraviolet ray shaping unit are provided from the ultraviolet ray forming chamber 11 to the processing chamber 21 through the window 300 .
  • the ultraviolet ray generator further includes a reflective member 140 . Since the ultraviolet rays formed by the ultraviolet rays generator are radiated radially, the reflective member 140 reflects the emitted ultraviolet rays toward the substrate S and provides the reflected rays.
  • the reflective member 140 may be a distributed Bragg's reflector (DBR) in which a plurality of material layers having different refractive indices are alternately stacked. Also, a plurality of reflective members 140 may be disposed in the UV forming chamber 11 .
  • DBR distributed Bragg's reflector
  • the ultraviolet rays formed by the ultraviolet ray generator are transmitted through the window 300 and provided to the processing chamber 11 .
  • Ultraviolet rays with high energy have a short wavelength and are highly linear, and energy is lost by being absorbed by an air layer of only a few cm. Therefore, the window 300 is preferably formed of a material having high transmittance of ultraviolet rays of a desired wavelength band.
  • FIG. 2(a) is a diagram showing the transmittance of magnesium fluoride (MgF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band.
  • magnesium fluoride having a thickness of 5 mm has a transmittance of 70% in a wavelength range of 140 nm, and the transmittance increases from 70% to 90% as the wavelength increases from 140 nm to 200 nm. Able to know.
  • FIG. 2(b) is a diagram showing the transmittance of calcium fluoride (CaF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band.
  • CaF 2 calcium fluoride
  • FIG. 2 (b) it can be seen that calcium fluoride having a thickness of 5 mm has a transmittance of approximately 65% in a wavelength range of 140 nm, and the transmittance increases from 65% to 90% as the wavelength increases from 140 nm to 200 nm. can know that
  • any one of sapphire and lithium fluoride (LiF) may be used as a material for the window 300 .
  • Sapphire and lithium fluoride (LiF) have transmittances in a range similar to those of magnesium fluoride and calcium fluoride illustrated in FIGS. 2(a) and 2(b). Therefore, the window 300 can be formed using these.
  • FIG. 3(a) is a diagram illustrating a state in which a pattern is formed on one surface of the window 300.
  • a surface area may be increased by forming a pattern on one or more surfaces of the window 300 .
  • the light receiving area can be increased, and the amount of light transmitted therefrom can be increased.
  • a wave reflected from the surface of the window 300 may be re-incident and transmitted through the rear surface, thereby increasing the amount of transmitted light.
  • the pattern formed on the surface of the window 300 may be formed by an etching profile designed according to the structure and characteristics of the substrate S, and the efficiency of the process may be improved by applying the pattern.
  • FIG. 3( b ) is a diagram illustrating a state in which a filter 310 is formed on one side of the window 300 .
  • the filter 310 may be a cut-off filter that blocks light of a band other than a target wavelength band.
  • the filter 310 may be formed on one or more surfaces of the window 300 by a method such as coating.
  • the substrate S loaded into the processing chamber 21 is placed on a chuck 210 .
  • the chuck 210 is driven by a chuck driving unit 220 connected to an axis 222 .
  • the chuck 210 fixes and holds the loaded substrate S.
  • a recess and a jaw are formed in the chuck 210, and the substrate S located in the recess may be fixed to the substrate using the jaw.
  • a suction hole may be formed in the chuck 210 , and a contact surface with the substrate S may be suctioned through the suction hole to fix the substrate.
  • the substrate S may be fixed to the chuck in other ways.
  • the chuck 210 is connected to the chuck drive unit 220 through a shaft 222 .
  • the chuck driving unit 220 may raise or lower the shaft 222 to raise or lower the chuck 210 on which the substrate S is disposed to adjust the distance from the ultraviolet ray forming unit.
  • the substrate S may be fixed to the chuck 210 by using a spacer (not shown) or a carrier plate (not shown).
  • the chuck driver 220 may rotate the shaft 222 to rotate the chuck 210 on which the substrate S is disposed. By rotating the shaft, the ultraviolet rays formed in the ultraviolet forming chamber 11 may be evenly irradiated onto the substrate S, as will be described later.
  • a vacuum forming unit and a gas supply unit may be formed in the processing chamber 21 .
  • ultraviolet light provided through the window 300 may be absorbed by air in the processing chamber 21 and may not be provided to the substrate. Accordingly, the vacuum forming unit 130 located in the processing chamber 21 maintains the degree of vacuum inside the processing chamber 11 to 100 mT or less.
  • a gas supply unit for injecting a desired gas may be formed in the processing chamber 21 .
  • the gas provided by the gas supplier may be ionized by the energy of the ultraviolet light entering the processing chamber 21 to form charged particles.
  • FIG. 4 is a diagram illustrating another embodiment of a semiconductor manufacturing apparatus.
  • a plurality of ultraviolet ray forming units 100 may be located in the ultraviolet ray forming chamber 11 .
  • Each ultraviolet forming unit 100 may be separated by a blocking wall 600 .
  • the blocking wall 600 and the window 300 do not contact each other, but in an embodiment not shown, the blocking wall 600 and the window 300 contact each other.
  • the blocking wall 600 partitioning each region may include, for example, a dielectric material of any one of alumina ceramic, quartz, and glass, metal, and polymer.
  • different gases may be provided to the respective ultraviolet ray generators 100 to form ultraviolet rays of different wavelengths and may be provided to the substrate S.
  • a plurality of ultraviolet forming units 100 may be arranged to perform ultraviolet treatment on the substrate S.
  • 5(a) to 5(d) are plan views of window 300 embodiments.
  • 5(a) illustrates a state in which the window 300 is formed of a single material that is not separated. Window 300 may be supported by frame 310 .
  • 5( b ) illustrates a case in which one window is divided into a central region 300a and a peripheral region 300b, and both the central region 300a and the peripheral region 300b are supported by the frame 310.
  • the substrate S rotates around the axis 222 as the chuck 210 rotates. do. Accordingly, as the substrate S rotates, ultraviolet rays provided through the window 300 may be provided to the front surface of the substrate.
  • the center of one window 300c may be located eccentrically from the center C of rotation of the substrate, and the diameter of the window 300c may be greater than or equal to the radius of the substrate S. can Accordingly, although the diameter of the window 300c is smaller than that of the substrate S, the substrate S is rotated about the center C, so that ultraviolet rays are provided to the entire surface of the substrate.
  • the window may include a plurality of window elements 300d, 300e, and 300f each having a smaller diameter than the radius of the substrate S.
  • the plurality of window elements 300d, 300e, and 300f may be positioned so that the substrate is eccentric from the rotation center C. Therefore, even though the diameter of the window 300 is smaller than the diameter of the substrate S, the substrate S is rotated about the center C as a rotation center, so that ultraviolet rays are provided to the entire surface of the substrate.
  • the window elements 300d, 300e, and 300f may be arranged such that there is no portion of the substrate to which UV rays are not provided when the substrate rotates.
  • the window element 300e since the amount of charges trapped near the center C of the substrate S is large, the window element 300e may be disposed so that a large amount of ultraviolet light is irradiated to the center portion.
  • Implementations further include a grid plate 400 .
  • Figure 6 (a) is an exploded perspective view showing the outline of the grid plate
  • Figure 6 (b) is a plan view of the grid plate.
  • 7 is a diagram schematically illustrating a manufacturing process of the first grid electrode 410 .
  • the grid plate 400 may include only the first grid electrode 410 having a circular structure illustrated in FIG.
  • a three-grid electrode 430 may be further included.
  • the grid plate 400 is made of a metal material such as aluminum (Al) or copper (Cu) or carbon, etc. positioned on an insulating layer 411 such as polyimide (PI) or epoxy. and a plurality of electrode lines LX made of a conductive material including graphite.
  • the first grid electrode 410 includes a plurality of electrode lines LX.
  • the electrode line LX may be formed by patterning the metal layer 412 to have different radii, and is formed by forming a plurality of holes H having a predetermined diameter in the patterned metal layer 412 .
  • the second grid electrode 420 includes a plurality of electrode lines LY made of a conductive material that are spaced a certain distance apart in one direction, and the third grid electrode 430 is formed a certain distance apart in the second direction. It includes electrode lines LZ made of a conductive material.
  • the electrode lines LX made of conductive material spaced apart from each other, the electrode lines LY made of conductive material, and the electrode lines LZ made of conductive material are spaced apart from each other at a predetermined distance and are stacked and disposed so as not to electrically contact each other. .
  • positions of the first grid electrode 410, the second grid electrode 420, and the third grid electrode 430 may be changed.
  • a plurality of electrode lines LX having different radii and a plurality of insulating layers are alternately disposed so that each electrode line is insulated from each other and a plurality of holes can be formed on each electrode line. there is.
  • the first grid electrode 410 may be formed on the insulating layer 411 .
  • the insulating layer 411 may have a thickness of 1 mm to 30 mm
  • the thickness of the metal layer 412 may be 1 to 10 mm
  • the width of the electrode line LX formed on the metal layer 412 may be 10 mm to 50 mm.
  • the separation distance between the electrode lines LX may be 10 mm to 50 mm.
  • the electrode line LX in the central part of the metal layer 412 is configured to have a certain area so that more holes H are formed in the central part of the first grid electrode 410, and the diameter of the hole H is It may be set to a size of 0.1 to 5 mm.
  • a metal plate made of copper (Cu) or aluminum (Al) may be provided at the center of the insulating layer 411 . This can increase adhesion and make the grid electrode more robust when plating the wall of the hole H.
  • the distance between the first grid electrode 410 and the adjacent second grid electrode 420 is such that ions or electrons emitted through the holes H of the first grid electrode 410 are diffused in a certain range, and the second grid electrode 420 is It is preferable to have a separation distance greater than or equal to a predetermined distance so that the grid electrode 420 can flow into the grid electrode 420 .
  • Each electrode line LX of the first grid electrode 410, each electrode line LY of the second grid electrode 420, and each electrode line LZ of the third grid electrode 430 are connected to the grid control device 500. ), respectively. That is, the grid control device 500 independently supplies power to each of the electrode lines LX, LY, and LZ.
  • first to third grid electrodes 410, 420, and 430 are fixed to the inside of the processing chamber 21 by a supporting means (not shown) provided therein and arranged to form a certain distance, or to the third grid electrodes 410, 420, 430 by additionally providing a spacer (not shown) having a height corresponding to the separation distance in a predetermined unit including the edge portion or the edge portion to form the separation distance, thereby electrically They are stacked in an insulated manner.
  • the first grid electrode 410 a plurality of circular electrode lines LX having a predetermined area in the form of ellipses or concentric circles having different diameters are arranged at a predetermined distance apart from each other in an outward direction based on the same central point. From this, the first grid electrode 410 may be formed to correspond to the static electricity pattern formed on the semiconductor substrate 1 .
  • the electrode lines LY and LZ of the second and third grid electrodes 420 and 330 are arranged to form an arbitrary crossing angle in the range of 10° to 90°.
  • each electrode line of the second grid electrode 410 and the third grid electrode 420 cross each other, as illustrated in FIG. 6( b ), so that it has a mesh shape.
  • the electrode lines of the second and third grid electrodes 420 and 430 may be formed in an X-axis direction and a Y-axis direction to form a grid pattern.
  • FIG. 8 is a view illustrating a shape in which the first to third grid electrodes 410, 420, and 430 are stacked and disposed when viewed from the top.
  • Ions or electrons located on the upper side of the grid plate 500 are emitted downward through holes H formed in the electrode line LX.
  • a first electrostatic region T1 of positive voltage and a second electrostatic region T2 of negative voltage exist.
  • a negative voltage which is a reverse voltage of the first electrostatic region T1
  • a positive voltage which is a reverse voltage of the second electrostatic region T2 is supplied to the electrode lines LX1, LX2, LY2, LY3, LY4, LZ5, LZ6, and LZ7 corresponding to the second electrostatic region T3.
  • a reverse voltage of "-20V" is supplied to the electrode line of the first electrostatic region T1, which is "+20V”
  • a reverse voltage of "+” is supplied to the electrode line of the second electrostatic region T2, which is "-50V”.
  • a voltage having an opposite polarity to the corresponding electrostatic voltage and having a level different from that of the electrostatic voltage by less than a certain level is supplied to the electrode lines corresponding to the first electrostatic region T1 and the second electrostatic region T2.
  • This may be appropriately set considering the distance between the grid plate 500 and the semiconductor substrate 1 and the fact that the intensity of ions or electrons is reduced in the semiconductor substrate 1 .
  • the vacuum forming unit 130 is driven so that the inside of the UV forming chamber 11 has a desired degree of vacuum. As described above, the UV forming chamber 11 is maintained at, for example, 10 -1 to 10 -4 Torr.
  • the gas supply unit 120 injects gas so that the target ultraviolet ray forming unit forms the wavelength of ultraviolet ray.
  • the processing chamber 21 may also include a vacuum forming unit and a gas injection unit, and the vacuum forming unit included in the processing chamber 21 also forms the processing chamber to have a desired degree of vacuum. Gas is injected so that charged particles are generated from the ultraviolet light entering into (21).
  • Table 1 is a table illustrating the gas injected when forming ultraviolet rays and the wavelengths of ultraviolet rays generated accordingly.
  • He Helium
  • Ar Argon
  • a desired gas is supplied to the ultraviolet ray forming unit 100, and the ultraviolet ray forming unit radiates an electron beam.
  • the electron gun included in the electron beam emitter 110 may uniform the ultraviolet rays formed by irradiating the collimated electron beam.
  • the electron beam irradiator 110 irradiates the electron ratio, electrons in the gas are excited, and electrons in an excited state descend to a ground state to form ultraviolet rays having a corresponding wavelength.
  • the formed ultraviolet rays directly pass through the window 300 or are reflected by the reflective member 140 and provided to the substrate S through the window 300 .
  • the substrate S is moved by controlling the distance and rotational speed of the substrate S from the window 400 by the chuck driving unit 220 .
  • the silicon oxide film generally has a band gap energy of 8.4 eV to 11 eV, and in order to neutralize electrons trapped in the silicon oxide film as holes, ultraviolet rays having energy corresponding to at least the band gap must be irradiated so that the holes are in the forbidden band ( It crosses the forbidden band and enters the conduction band to neutralize electrons.
  • the grid plate 400 receives power from the grid plate controller 500, and accelerates and provides charged particles formed in this way to the substrate S to neutralize static electricity formed on the substrate S.
  • the grid plate control unit 500 can receive information on the region where a lot of static electricity is located on the substrate S, and can neutralize the static electricity formed on the substrate S with high efficiency by providing charged particles corresponding to the information.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A semiconductor manufacturing device according to the present embodiment comprises: an ultraviolet ray forming unit which is located in an ultraviolet ray forming chamber and forms ultraviolet rays of desired wavelengths by irradiating an intensive electron beam (e-beam) to form a linear plasma; a substrate driving unit which is located in a processing chamber in which a charged substrate is processed with the ultraviolet rays and comprises a chuck that supports the charged substrate, and an axis for rotating the chuck; and a window which is located between the ultraviolet ray forming unit and the processing chamber and allows the formed ultraviolet rays to pass through the processing chamber.

Description

반도체 제조 장치semiconductor manufacturing equipment
본 기술은 반도체 제조 장치와 관련된다. The present technology relates to semiconductor manufacturing equipment.
최근, 반도체 산업의 집적화가 높아질수록 반도체 소자의 크기와 면적이 감소하는 추세이다. 이에 따라 반도체 소자를 형성하는 패턴의 크기와 박막의 두께가 감소하고 있으며, 특히 종래에는 크게 영향을 미치지 않은 요인들이 반도체 소자 개발에서 중요한 요소로 대두되는 추세이다. 이러한 요소들 중 하나로는 기판에 형성된 정전기가 있다. Recently, as the integration of the semiconductor industry increases, the size and area of semiconductor devices tend to decrease. Accordingly, the size of the pattern forming the semiconductor device and the thickness of the thin film are decreasing, and in particular, factors that have not had a significant impact in the prior art are emerging as important factors in the development of semiconductor devices. One of these factors is static electricity built up on the substrate.
반도체 기판에 형성되는 정전기의 발생 원인은 이온이 제거된 용수(Deionized water) 이용 및 대전된 플라스틱 재료로부터 차지 이전(charge transfer), 또는 인덕션 차징(induction charge) 등이 있다.The causes of static electricity formed on the semiconductor substrate include the use of deionized water, charge transfer from a charged plastic material, or induction charge.
이러한 반도체 기판의 정전기는 회전운동을 이용하는 포토 공정이나 세정 공정에서 주로 발생하며 이는 원심력 차이에 의하여 중앙부에 가장 많은 정전기가 집중하는 것으로 알려져 있다. 즉, 포토 레지스트(photo resist) 코팅 공정에서 웨이퍼(wafer)의 고속 회전으로 기판 중심부의 공기 흐름 집중도는 외곽에 비해 3배 이상 높아져서 상대적으로 원심력이 약한 중심부를 중심으로 정전기가 형성된다. 중심부에 형성되는 강한 전기장에 의한 정전기는 웨이퍼 표면, 표면 다층막 내부 및 표면에 형성된 포토 레지스트 패턴에 충전(charge)된다. It is known that the static electricity of the semiconductor substrate is mainly generated in a photo process or a cleaning process using a rotational motion, and the most static electricity is concentrated in the center due to a difference in centrifugal force. That is, in the photo resist coating process, the high-speed rotation of the wafer increases the concentration of airflow in the center of the substrate by more than three times compared to the outer area, so that static electricity is formed around the center where the centrifugal force is relatively weak. Static electricity caused by a strong electric field formed in the center is charged on the surface of the wafer, inside the surface multilayer film, and on the photoresist pattern formed on the surface.
반도체 기판의 중심부를 중심으로 높은 전압으로 차징되는 경우, 기판의 중앙부분에 해당하는 영역에는 절연체인 포토 레지스트 패턴 혹은 산화막 등의 반도체 기판 표면 뿐 아니라 기판 표면의 일정 깊이까지 전하가 충전되어 낮은 운동 에너지를 갖는 이온에 의한 중화가 불가능한 상태가 발생될 수 있다. 반도체 기판에 차징되는 정전기 전압은 공정의 종류와 재료 및 패턴 형상 등의 많은 변수가 있으며, 일반적으로 -100V ~ +100V 사이로 형성된다.When the center of the semiconductor substrate is charged with a high voltage, the area corresponding to the center of the substrate is charged not only to the surface of the semiconductor substrate such as the photoresist pattern or oxide film, which is an insulator, but also to a certain depth on the substrate surface, resulting in low kinetic energy. A state in which neutralization by ions having is impossible may occur. The electrostatic voltage charged on the semiconductor substrate has many variables such as the type of process, material, and pattern shape, and is generally formed between -100V and +100V.
일 예로, 10nm 이내의 미세 회로내의 절연막 또는 "5" 이상의 종횡비(aspect ratio)를 갖는 패턴(P)이 형성되는 등의 반도체 기판에 100V 이하의 차징 전압이 형성되면, 패턴폭이 좁아서 이오나이저에서 발생되는 양이온과 음이온간의 자체 중화 효과 및 반도체 기판과 이온 간의 낮은 전압차에 따른 낮은 기전력으로 인한 이온의 충돌 감소로 박막 내부에 축적된 정전기 제거에 어려움이 있다.For example, when a charging voltage of 100 V or less is formed on an insulating film in a microcircuit within 10 nm or a semiconductor substrate in which a pattern P having an aspect ratio of “5” or more is formed, the pattern width is narrow and the ionizer It is difficult to remove the static electricity accumulated inside the thin film due to the self-neutralizing effect between the generated positive and negative ions and the low electromotive force caused by the low voltage difference between the semiconductor substrate and the ions.
반도체 기판에 1000V로 충전된 정전기를 소프트 엑스레이(soft Xray) 이오나이저를 이용하여 100V 내로 감소시키는 데에는 1 ~ 2초 내의 디케이(Decay) 타임이 요구된다. 그러나, 초기 100V 이하의 차징 전압이 형성될 때 차징 전압을 목적하는 전압 이하로 감소시키는 데에는 장시간이 소요된다.Decay time within 1 to 2 seconds is required to reduce the static electricity charged at 1000V on the semiconductor substrate to within 100V using a soft Xray ionizer. However, when an initial charging voltage of 100V or less is formed, it takes a long time to reduce the charging voltage to a target voltage or less.
또한, 일반적으로 이오나이저의 이온 밀도가 106 인 것을 고려할 때, 반도체 기판 내 포토레지스트 하부의 산화막 내부에 이온 밀도가 108 이상으로 차징되는 경우에는 종래 이오나이저를 이용하여 반도체 기판에 형성된 정전기를 제거할 수 없다.In addition, considering that the ion density of the ionizer is generally 106, when the ion density inside the oxide film under the photoresist in the semiconductor substrate is charged to 108 or higher, the static electricity formed on the semiconductor substrate can be removed using the conventional ionizer. can't
이러한 경우에는 진공 챔버 내에 109 이상의 고밀도 플라즈마를 발생하여 반도체 기판의 정전기를 제거하는 방법이 있을 수 있다.In this case, there may be a method of generating high-density plasma of 10 9 or more in a vacuum chamber to remove static electricity from the semiconductor substrate.
그러나, 진공 챔버 구성의 경우, 플라즈마 타입에 따른 셀프 바이어스와 플라즈마 균일도에 의해 전면에 이온들이 추가로 차징되는 문제가 발생될 수 있다. 또한, 반도체 기판에는 미세 회로가 일정하지 않은 패턴으로 형성될 수 있고, 패턴의 특성에 따라 각 부분별로 서로 다른 전압의 정전기가 차징될 수 있다. 즉, 반도체 기판의 부분에 따라 -20 ~ -50V 이상의 정전기 전압이 분포될 수 있다.However, in the case of a vacuum chamber configuration, there may be a problem in that ions are additionally charged on the front surface due to self-bias and plasma uniformity according to the plasma type. In addition, microcircuits may be formed in an irregular pattern on the semiconductor substrate, and static electricity of different voltages may be charged in each part according to the characteristics of the pattern. That is, an electrostatic voltage of −20 to −50 V or higher may be distributed depending on the portion of the semiconductor substrate.
따라서, 기판에 균일하게 이온을 제공하면 기판의 표면 전체에 동일한 세기의 이온이 반도체 기판으로 방출되고, 이에 따라 반도체 기판에 발생된 정전기 전압보다 높은 전압 레벨이 인가된 영역에서는 오버 슈팅의 의한 차징이 추가로 발생할 수 있다.Therefore, when ions are uniformly supplied to the substrate, ions of the same intensity are emitted to the semiconductor substrate over the entire surface of the substrate, and accordingly, charging by overshooting is prevented in a region where a voltage level higher than the electrostatic voltage generated in the semiconductor substrate is applied. additional may occur.
나아가, 산화막 및/또는 패턴의 내부에 전하가 충전된 경우에는 정전기를 중화시키기 위하여 높은 에너지로 이온을 제공하여야 하나, 높은 에너지로 반응성 라디칼(radical) 및/또는 반응성 이온들을 기판에 조사하면 기판과 기판의 표면에 형성된 패턴에 충돌하여 손상을 일으킬 수 있다. Furthermore, when an electric charge is charged inside the oxide film and/or pattern, ions must be provided with high energy to neutralize static electricity, but when reactive radicals and/or reactive ions are irradiated to the substrate with high energy, the substrate and It may cause damage by colliding with the pattern formed on the surface of the substrate.
특히, 패턴이 10nm 이하의 극 미세화 구조인 반도체 기판의 경우, 양이온 또는 음이온 또는 전자에 의한 차징에 의해 반도체 소자의 성능 및 수율에 더욱더 많은 영향을 끼치게 된다.In particular, in the case of a semiconductor substrate having a micronized structure with a pattern of 10 nm or less, charging by positive ions, negative ions, or electrons has a greater influence on the performance and yield of semiconductor devices.
이와 관련하여 선행문헌1(한국등록특허 10-1698273호)과 선행문헌2 (한국공개특허 10-2004-0040106호)에는 이오나이저를 이용하여 반도체 기판의 정전기를 제거하는 구성이 개시되어 있다.In this regard, Prior Document 1 (Korean Patent Registration No. 10-1698273) and Prior Document 2 (Korean Patent Publication No. 10-2004-0040106) disclose a configuration for removing static electricity from a semiconductor substrate using an ionizer.
본 실시예는 상술한 종래 기술의 난점을 해소하기 위한 것이다. 즉, 본 실시예는 반도체 기판 및 기판에 위치하는 패턴에 형성된 정전기를 중화하는 장치를 제공하는 것을 해결하고자 하는 과제중 하나로 한다. This embodiment is intended to solve the above-mentioned difficulties of the prior art. That is, one of the problems to be solved in the present embodiment is to provide a device for neutralizing static electricity formed on a semiconductor substrate and a pattern located on the substrate.
본 실시예에 의한 반도체 제조 장치는: 자외선 형성 챔버에 위치하고, 전자빔(e-beam)을 조사하여 목적하는 파장의 자외선을 형성하는 자외선 형성부; 상기 장입된 기판이 상기 자외선으로 처리되는 처리 챔버에 위치하여 장입된 기판을 지지하는 척과, 상기 척을 회전시키는 축(axis)을 포함하는 기판 구동부; 및 상기 자외선 형성 챔버와 상기 처리 챔버 사이에 위치하여 형성된 상기 자외선을 상기 처리 챔버로 투과하는 윈도우를 포함한다. The semiconductor manufacturing apparatus according to the present embodiment includes: an ultraviolet ray forming unit located in an ultraviolet ray forming chamber and irradiating an electron beam (e-beam) to form ultraviolet ray of a desired wavelength; a substrate driving unit including a chuck for supporting the loaded substrate located in a processing chamber where the loaded substrate is treated with the ultraviolet rays, and an axis for rotating the chuck; and a window positioned between the ultraviolet generation chamber and the processing chamber to transmit the formed ultraviolet rays into the processing chamber.
본 실시예의 일 측면에 의하면 상기 자외선 형성부는, 형성된 상기 자외선을 상기 처리 챔버로 반사하는 하나 이상의 반사 부재를 더 포함한다.According to an aspect of the present embodiment, the ultraviolet ray generator further includes one or more reflective members that reflect the formed ultraviolet rays to the processing chamber.
본 실시예의 일 측면에 의하면 상기 자외선 형성부는, 상기 전자빔을 조사하는 전자빔 조사부; 가스 공급부 및 상기 자외선 형성 챔버 내부를 목적하는 진공도로 형성하는 진공 형성부를 포함하며, 상기 전자빔은 제공된 가스와 충돌하여 상기 목적하는 파장의 자외선을 형성한다.According to an aspect of the present embodiment, the UV forming unit may include an electron beam irradiation unit for irradiating the electron beam; A gas supply unit and a vacuum forming unit configured to form a desired vacuum degree inside the ultraviolet generation chamber, wherein the electron beam collides with the provided gas to form ultraviolet rays having the desired wavelength.
본 실시예의 일 측면에 의하면 상기 가스 공급부는, 헬륨(He), 산소(O2) 및 아르곤(Ar) 가스 중 어느 하나 이상을 제공한다.According to one aspect of this embodiment, the gas supply unit provides any one or more of helium (He), oxygen (O2), and argon (Ar) gas.
본 실시예의 일 측면에 의하면 상기 전자빔 조사부는, 전자총(electron gun) 및 전자빔을 조향하는 전자빔 조향 장치를 포함한다.According to one aspect of the present embodiment, the electron beam irradiator includes an electron gun and an electron beam steering device for steering the electron beam.
본 실시예의 일 측면에 의하면 상기 자외선 형성 챔버는, 복수의 상기 자외선 형성부들이 각각 배치되는 복수의 영역들을 포함한다.According to an aspect of the present embodiment, the ultraviolet ray forming chamber includes a plurality of regions in which a plurality of the ultraviolet ray forming units are respectively disposed.
본 실시예의 일 측면에 의하면 상기 전자빔 조사부는, 집중화된 선형 전자빔(e-beam)을 조사하고, 상기 자외선 형성 챔버에는 상기 집중화된 선형 전자빔에 의하여 선형 플라즈마가 형성되어 자외선이 형성된다.According to an aspect of the present embodiment, the electron beam irradiator irradiates a concentrated linear electron beam (e-beam), and linear plasma is formed by the concentrated linear electron beam in the ultraviolet generation chamber to form ultraviolet rays.
본 실시예의 일 측면에 의하면 상기 윈도우는, 상기 윈도우의 적어도 어느 한 면에 패턴이 형성되거나, 상기 윈도우의 적어도 어느 한 면에 필터가 형성된다.According to an aspect of the present embodiment, the window has a pattern formed on at least one side of the window, or a filter is formed on at least one side of the window.
본 실시예의 일 측면에 의하면 상기 윈도우는 적어도 일부가 사파이어, 불화마그네슘(MgF2), 불화리튬(LiF2) 및 불화칼슘(CaF2) 중 어느 하나를 포함하는 재질로 형성된다.According to one aspect of this embodiment, at least a part of the window is formed of a material containing any one of sapphire, magnesium fluoride (MgF 2 ), lithium fluoride (LiF 2 ) and calcium fluoride (CaF 2 ).
본 실시예에 의한 반도체 제조 장치는: 자외선 형성 챔버에 위치하고, 전자빔(e-beam)을 조사하여 목적하는 파장의 자외선을 형성하는 자외선 형성부; 상기 장입된 기판이 상기 자외선으로 처리되는 처리 챔버에 위치하여 장입된 기판을 지지하는 척과, 상기 척을 회전시키는 축(axis)을 포함하는 기판 구동부; 상기 자외선 형성 챔버와 상기 처리 챔버 사이에 위치하여 형성된 상기 자외선을 상기 처리 챔버로 투과하는 윈도우 및 하전 입자를 상기 기판으로 가속시켜 제공하는 그리드 플레이트를 포함하며, 상기 그리드 플레이트는 서로 다른 반경을 갖는 복수의 전극라인들을 포함하고, 각 전극라인에는 복수의 홀들이 형성되는 그리드 전극을 포함한다.The semiconductor manufacturing apparatus according to the present embodiment includes: an ultraviolet ray forming unit located in an ultraviolet ray forming chamber and irradiating an electron beam (e-beam) to form ultraviolet ray of a desired wavelength; a substrate driving unit including a chuck for supporting the loaded substrate located in a processing chamber where the loaded substrate is treated with the ultraviolet rays, and an axis for rotating the chuck; a window positioned between the ultraviolet generation chamber and the processing chamber to transmit the ultraviolet rays into the processing chamber, and a grid plate accelerating and providing charged particles to the substrate, wherein the grid plate has a plurality of different radii. It includes electrode lines of, and a grid electrode in which a plurality of holes are formed in each electrode line.
본 실시예의 일 측면에 의하면, 상기 그리드 플레이트는, 제1 방향으로 연장된 그리드 전극과 상기 제1 방향과 서로 다른 방향인 제2 방향으로 연장된 그리드 전극을 더 포함한다.According to one aspect of the present embodiment, the grid plate further includes a grid electrode extending in a first direction and a grid electrode extending in a second direction different from the first direction.
본 실시예의 일 측면에 의하면 상기 반도체 제조 장치는 상기 그리드 플레이트로 상기 기판에 형성된 정전기 전압에 대응되는 전압을 공급하는 그리드 플레이트 제어부를 더 포함한다.According to one aspect of the present embodiment, the semiconductor manufacturing apparatus further includes a grid plate control unit supplying a voltage corresponding to the electrostatic voltage formed on the substrate to the grid plate.
본 실시예의 일 측면에 의하면 상기 자외선 형성부는 집중화된 상기 전자빔을 조사하고, 상기 자외선 형성 챔버에는 상기 집중화된 선형 전자빔에 의하여 선형 플라즈마가 형성되어 자외선이 형성된다.According to an aspect of the present embodiment, the UV forming unit irradiates the concentrated electron beam, and linear plasma is formed in the UV forming chamber by the concentrated linear electron beam to form ultraviolet rays.
본 실시예에 의하면 반도체 기판 및 기판에 위치하는 패턴에 형성된 정전기를 중화할 수 있다는 장점이 제공된다. According to the present embodiment, an advantage of neutralizing static electricity formed on a semiconductor substrate and a pattern located on the substrate is provided.
도 1은 본 실시예에 의한 반도체 제조 장치(10)의 개요를 도시한 단면도이다. 1 is a cross-sectional view showing the outline of a semiconductor manufacturing apparatus 10 according to the present embodiment.
도 2(a)는 윈도우(300)의 재질 중의 하나인 불화마그네슘(MgF2)의 자외선 파장 대역별 투과율을 도시한 도면이다. 도 2(b)는 윈도우(300)의 재질 중 하나인 불화칼슘(CaF2)의 자외선 파장 대역별 투과율을 도시한 도면이다.FIG. 2(a) is a diagram showing the transmittance of magnesium fluoride (MgF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band. 2(b) is a diagram showing the transmittance of calcium fluoride (CaF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band.
도 3(a)는 윈도우(300)의 일면에 패턴이 형성된 상태를 예시한 도면이다. 도 3(b)는 윈도우(300)의 어느 한 면에 필터(310)가 형성된 상태를 예시한 도면이다. 3(a) is a diagram illustrating a state in which a pattern is formed on one surface of the window 300. Referring to FIG. 3( b ) is a diagram illustrating a state in which a filter 310 is formed on one side of the window 300 .
도 4는 반도체 제조 장치의 다른 실시예를 예시한 도면이다. 4 is a diagram illustrating another embodiment of a semiconductor manufacturing apparatus.
도 5(a) 내지 도 5(d)는 윈도우 실시예들의 평면도이다. 5(a) to 5(d) are plan views of window embodiments.
도 6(a)는 그리드 플레이트의 개요를 도시한 분해 사시도면이고, 도 6(b)는 그리드 플레이트의 평면도이다. Figure 6 (a) is an exploded perspective view showing the outline of the grid plate, Figure 6 (b) is a plan view of the grid plate.
도 7은 제1 그리드 전극의 제조 과정을 개요적으로 도시한 도면이다. 7 is a diagram schematically illustrating a manufacturing process of a first grid electrode.
도 8은 제1 내지 제3 그리드 전극이 적층 배치된 형태를 상측에서 바라본 형상을 예시한 도면이다. 8 is a view illustrating a shape in which first to third grid electrodes are stacked and disposed when viewed from above.
도 9는 반도체 제조 장치의 동작을 설명하기 위한 도면이다. 9 is a diagram for explaining the operation of the semiconductor manufacturing apparatus.
이하에서는 첨부된 도면들을 참조하여 본 실시예를 설명한다. 도 1은 본 실시예에 의한 반도체 제조 장치(10)의 개요를 도시한 단면도이다. 도 1을 참조하면, 본 실시예에 의한 반도체 제조 장치(10)는: 자외선 형성 챔버(11)에 위치하고, 집중화된 전자빔(e-beam)을 조사하여 선형의 플라즈마를 형성하여 목적하는 파장의 자외선을 형성하는 자외선 형성부(100)와, 상기 장입된 기판(S)이 상기 자외선으로 처리되는 처리 챔버(21)에 위치하여 장입된 기판을 지지하는 척(210)과, 상기 척을 회전시키는 축(axis, 220)을 포함하는 기판 구동부(220); 및 상기 자외선 형성 챔버(11)와 상기 처리 챔버(21) 사이에 위치하여 형성된 상기 자외선을 상기 처리 챔버(21)로 투과하는 윈도우(300)를 포함한다. Hereinafter, this embodiment will be described with reference to the accompanying drawings. 1 is a cross-sectional view showing the outline of a semiconductor manufacturing apparatus 10 according to the present embodiment. Referring to FIG. 1 , a semiconductor manufacturing apparatus 10 according to the present embodiment is located in an ultraviolet forming chamber 11 and irradiates a concentrated electron beam (e-beam) to form linear plasma to form ultraviolet rays of a desired wavelength. An ultraviolet ray forming unit 100 forming an ultraviolet ray, a chuck 210 for supporting the loaded substrate positioned in the processing chamber 21 where the loaded substrate S is treated with the ultraviolet ray, and an axis for rotating the chuck a substrate driving unit 220 including (axis, 220); and a window 300 disposed between the ultraviolet generation chamber 11 and the processing chamber 21 and transmitting the formed ultraviolet rays into the processing chamber 21 .
자외선 형성부(100)는 집중화된 전자빔(e-beam)을 조사하여 선형의 플라즈마를 형성하여 목적하는 파장의 자외선을 형성한다. 자외선 형성부(100)는 일 실시예로, 전자빔을 조사하는 전자빔 조사부(110)와, 가스 공급부(120) 및 자외선 형성 챔버(11) 내부를 목적하는 진공도로 형성하는 진공 형성부(130)를 포함하며, 일 예로, 형성된 자외선을 처리 챔버(21)로 반사하여 제공하는 반사 부재(140)를 포함할 수 있다. The ultraviolet ray generator 100 irradiates a concentrated electron beam (e-beam) to form linear plasma to form ultraviolet rays of a desired wavelength. In one embodiment, the ultraviolet ray forming unit 100 includes an electron beam irradiation unit 110 for irradiating electron beams, a gas supply unit 120, and a vacuum forming unit 130 for forming the inside of the ultraviolet ray forming chamber 11 to a desired degree of vacuum. and, for example, a reflective member 140 that reflects and provides formed ultraviolet rays to the processing chamber 21 .
일 실시예로, 진공 형성부(130)는 자외선 형성 챔버(11) 내를 진공으로 유지한다. 일 예로, 진공 형성부(130)는 자외선 형성 챔버(11) 내부의 물질을 챔버 외부로 배출하는 진공 펌프(미도시)와, 내부 진공도를 검출할 수 있는 진공 게이지(미도시), 물질의 유입 및 유출을 제어하는 밸브(미도시) 및 각 구성 요소를 연결하는 배관(미도시)를 포함할 수 있다. 진공 형성부(130)는 바람직하게 자외선 형성 챔버(11) 내부의 진공도를 10-1 내지 10-4 Torr 로 유지한다. In one embodiment, the vacuum forming unit 130 maintains a vacuum inside the UV forming chamber 11 . For example, the vacuum forming unit 130 includes a vacuum pump (not shown) for discharging materials inside the UV forming chamber 11 to the outside of the chamber, a vacuum gauge (not shown) for detecting the degree of internal vacuum, and inflow of materials. And it may include a valve (not shown) for controlling the outflow and a pipe (not shown) connecting each component. The vacuum forming unit 130 preferably maintains a degree of vacuum inside the UV forming chamber 11 at 10 −1 to 10 −4 Torr.
가스 공급부(120)는 가스를 제공한다. 가스 공급부(120)가 제공하는 가스에 따라 자외선 형성부(100)가 형성하는 자외선의 파장을 조절할 수 있다. 일 예로, 가스 공급부(120)는 헬륨(He), 산소(O2) 및 아르곤(Ar) 등의 가스를 제공할 수 있으며, 제공하는 가스의 유량은 10 ~ 1000 sccm 일 수 있다. The gas supply unit 120 provides gas. The wavelength of the ultraviolet light formed by the ultraviolet ray generator 100 may be adjusted according to the gas provided by the gas supply unit 120 . For example, the gas supply unit 120 may provide gases such as helium (He), oxygen (O 2 ), and argon (Ar), and the flow rate of the provided gas is It may be 10 to 1000 sccm.
전자빔 조사부(110)는 자외선 형성 챔버(11) 내에 전자빔을 조사한다. 도 1로 예시된 실시예에서, 전자빔 조사부(110)는 자외선 형성 챔버(11) 내에 하나가 배치되었으나, 도시되지 않은 실시예에 의하면 전자빔 조사부(110)는 자외선 형성 챔버(11) 내에 복수개가 배치될 수 있다. The electron beam irradiator 110 radiates an electron beam into the ultraviolet forming chamber 11 . In the embodiment illustrated in FIG. 1 , one electron beam irradiator 110 is disposed in the ultraviolet forming chamber 11, but according to an embodiment not shown, a plurality of electron beam irradiators 110 are disposed in the ultraviolet forming chamber 11. It can be.
전자빔 조사부(110)의 실시예에서, 전자빔 조사부(110)는 열 전자를 형성하고 가속하여 제공하는 전자총(electron gun)과, 전자빔을 조향하는 전자빔 조향 장치를 포함한다. 전자총(electron gun)은 열 전자를 형성하여 시준(collimate)하여 제공한다. 전자빔 조사부(110)가 시준된 전자빔을 제공함에 따라 선형의 플라즈마가 형성되어 자외선이 균일하게 방출되며, 예측 가능한 영역에서 자외선이 방출된다. 전자빔은 플라즈마 내의 전자 혹은 2 차 전자 , 혹은 할로우 캐소드(hallow cathode)의 전자를 이용할 수 있으며 선형 빔 형상의 전자빔을 이용하여 플라즈마를 형성한다. 전자빔 조향 장치는 전자기 코일 등을 포함하며, 전기장 및 자기장을 이용하여 형성된 전자빔을 목적하는 방향으로 조향할 수 있다. In an embodiment of the electron beam irradiation unit 110, the electron beam irradiation unit 110 includes an electron gun that forms, accelerates, and provides thermal electrons, and an electron beam steering device that steers the electron beam. An electron gun forms and collimates and provides thermal electrons. As the electron beam emitter 110 provides a collimated electron beam, linear plasma is formed to uniformly emit ultraviolet rays, and ultraviolet rays are emitted in a predictable area. The electron beam may use electrons in the plasma, secondary electrons, or electrons of a hollow cathode, and plasma is formed using a linear beam shape electron beam. The electron beam steering device includes an electromagnetic coil and the like, and can steer an electron beam formed using an electric field and a magnetic field in a desired direction.
전자빔 조사부(110)가 조사한 전자빔은 자외선 형성 챔버(11) 내의 가스에 조사된다. 공정 가스는 높은 에너지를 가지는 전자빔에 의하여 플라즈마가 형성되고, 가스의 종류에 따라 형성되는 파장을 갖는 광을 외부로 방출한다. 이와 같이 형성되는 광의 파장 대역은 적외선 영역, 가시광선 영역 및 자외선 영역일 수 있으나, 반도체 기판 및/또는 반도체 기판에 형성된 패턴 내에 트랩된 전하들을 중화시키기 위하여 적어도 자외선 대역의 에너지 이상이어야 한다.The electron beam irradiated by the electron beam irradiator 110 is irradiated to the gas in the ultraviolet forming chamber 11 . Plasma is formed in the process gas by an electron beam having high energy, and light having a wavelength formed according to the type of gas is emitted to the outside. The wavelength band of the light thus formed may be in the infrared region, the visible ray region, and the ultraviolet region, but the energy must be at least equal to or greater than the ultraviolet region in order to neutralize the charges trapped in the semiconductor substrate and/or the pattern formed on the semiconductor substrate.
자외선 대역은 그 파장 대역 별로 근자외선(NEAR UV, 300nm ~ 380nm), 원자외선(FAR UV, 200nm ~ 300nm) 및 원자외선 대역보다 짧은 파장을 가지는 진공 자외선(VUV, vacuum UV, 70nm ~ 200nm)으로 구별될 수 있으며, 바람직한 실시예에서, 자외선 형성부는 진공 자외선(VUV) 대역의 자외선을 형성할 수 있다. The ultraviolet band consists of near ultraviolet rays (NEAR UV, 300 nm ~ 380 nm), far ultraviolet rays (FAR UV, 200 nm ~ 300 nm), and vacuum ultraviolet rays (VUV, vacuum UV, 70 nm ~ 200 nm) having a shorter wavelength than the far ultraviolet band. It can be distinguished, and in a preferred embodiment, the ultraviolet ray forming unit can form ultraviolet rays in the vacuum ultraviolet (VUV) band.
자외선 형성부가 형성한 자외선은 자외선 형성 챔버(11)에서 윈도우(300)를 거쳐 처리 챔버(21)로 제공된다. 일 실시예로, 자외선 형성부는 반사 부재(140)를 더 포함한다. 자외선 형성부가 형성한 자외선은 방사상으로 방사(radiate)되므로, 반사 부재(140)는 방사된 자외선을 기판(S) 방향으로 반사하여 제공한다. The ultraviolet rays formed by the ultraviolet ray shaping unit are provided from the ultraviolet ray forming chamber 11 to the processing chamber 21 through the window 300 . In one embodiment, the ultraviolet ray generator further includes a reflective member 140 . Since the ultraviolet rays formed by the ultraviolet rays generator are radiated radially, the reflective member 140 reflects the emitted ultraviolet rays toward the substrate S and provides the reflected rays.
반사 부재(140)는 일 실시예로 서로 다른 굴절률을 가진 복수의 물질층이 교번하여 적층된 분산 브래그 반사 장치(DBR, distributed Bragg's reflector)일 수 있다. 또한, 자외선 형성 챔버(11) 내에는 복수개의 반사 부재(140)들이 배치될 수 있다.In one embodiment, the reflective member 140 may be a distributed Bragg's reflector (DBR) in which a plurality of material layers having different refractive indices are alternately stacked. Also, a plurality of reflective members 140 may be disposed in the UV forming chamber 11 .
자외선 형성부가 형성한 자외선은 윈도우(300)에서 투과되어 처리 챔버(11)로 제공된다. 에너지가 높은 자외선은 파장이 짧아 직진성이 높고, 불과 수cm의 공기층에 의하여 흡수되어 에너지가 소실된다. 따라서, 윈도우(300)는 목적하는 파장 대역의 자외선의 투과율이 높은 재질로 형성하는 것이 바람직하다. 도 2(a)는 윈도우(300)의 재질 중의 하나인 불화마그네슘(MgF2)의 자외선 파장 대역별 투과율을 도시한 도면이다. 도 2(a)를 참조하면, 두께 5mm의 불화마그네슘은 140nm 파장대역에서 70%의 투과율을 가지는 것을 알 수 있으며, 파장이 140nm에서 200nm까지 증가함에 따라 투과율이 70%에서 90%까지 증가하는 것을 알 수 있다. The ultraviolet rays formed by the ultraviolet ray generator are transmitted through the window 300 and provided to the processing chamber 11 . Ultraviolet rays with high energy have a short wavelength and are highly linear, and energy is lost by being absorbed by an air layer of only a few cm. Therefore, the window 300 is preferably formed of a material having high transmittance of ultraviolet rays of a desired wavelength band. FIG. 2(a) is a diagram showing the transmittance of magnesium fluoride (MgF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band. Referring to FIG. 2 (a), it can be seen that magnesium fluoride having a thickness of 5 mm has a transmittance of 70% in a wavelength range of 140 nm, and the transmittance increases from 70% to 90% as the wavelength increases from 140 nm to 200 nm. Able to know.
도 2(b)는 윈도우(300)의 재질 중 하나인 불화칼슘(CaF2)의 자외선 파장 대역별 투과율을 도시한 도면이다. 도 2(b)를 참조하면, 두께 5mm의 불화칼슘은 140nm 파장대역에서 대략 65%의 투과율을 가지는 것을 알 수 있으며, 파장이 140nm에서 200nm까지 증가함에 따라 투과율이 65%에서 90%까지 증가하는 것을 알 수 있다. 2(b) is a diagram showing the transmittance of calcium fluoride (CaF 2 ), which is one of the materials of the window 300, for each ultraviolet wavelength band. Referring to FIG. 2 (b), it can be seen that calcium fluoride having a thickness of 5 mm has a transmittance of approximately 65% in a wavelength range of 140 nm, and the transmittance increases from 65% to 90% as the wavelength increases from 140 nm to 200 nm. can know that
도시되지는 않았지만, 윈도우(300)의 재질로 사파이어(sapphire) 및 불화리튬(LiF) 중 어느 하나를 사용할 수 있다. 사파이어 및 불화리튬(LiF)은 도 2(a) 및 도 2(b)로 예시된 불화마그네슘, 불화칼슘과 유사한 범위의 투과율을 가진다. 따라서, 이들을 이용하여 윈도우(300)를 형성할 수 있다. Although not shown, any one of sapphire and lithium fluoride (LiF) may be used as a material for the window 300 . Sapphire and lithium fluoride (LiF) have transmittances in a range similar to those of magnesium fluoride and calcium fluoride illustrated in FIGS. 2(a) and 2(b). Therefore, the window 300 can be formed using these.
도 3(a)는 윈도우(300)의 일면에 패턴이 형성된 상태를 예시한 도면이다. 도 3(a)를 참조하면, 윈도우(300)의 어느 한 면 이상에 패턴을 형성하여 표면적을 증가시킬 수 있다. 윈도우(300)의 표면적을 증가시켜 수광 면적을 증가시키고, 이로부터 투과하는 광량을 증가시킬 수 있다. 나아가, 윈도우(300)의 표면에서 반사되는 파(wave)를 재입사시키고 배면을 투과시켜 투과되는 광량을 증가시킬 수 있다. 윈도우(300)의 표면에 형성된 패턴은 기판(S)의 구조와 특성에 따라 설계된 식각 프로파일(etching profile)에 의하여 형성될 수 있으며, 이를 적용하여 공정의 효율을 향상시킬 수 있다. 3(a) is a diagram illustrating a state in which a pattern is formed on one surface of the window 300. Referring to FIG. Referring to FIG. 3(a) , a surface area may be increased by forming a pattern on one or more surfaces of the window 300 . By increasing the surface area of the window 300, the light receiving area can be increased, and the amount of light transmitted therefrom can be increased. Furthermore, a wave reflected from the surface of the window 300 may be re-incident and transmitted through the rear surface, thereby increasing the amount of transmitted light. The pattern formed on the surface of the window 300 may be formed by an etching profile designed according to the structure and characteristics of the substrate S, and the efficiency of the process may be improved by applying the pattern.
도 3(b)는 윈도우(300)의 어느 한 면에 필터(310)가 형성된 상태를 예시한 도면이다. 도 3(b)로 예시된 실시예에서, 필터(310)는 목적하는 파장 대역 이외의 대역의 광을 차단하는 컷 오프 필터(cut-off filter)일 수 있다. 일 예로, 필터(310)는 코팅 등의 방법으로 윈도우(300)의 어느 한 면 이상에 형성될 수 있다. 3( b ) is a diagram illustrating a state in which a filter 310 is formed on one side of the window 300 . In the embodiment illustrated in FIG. 3( b ), the filter 310 may be a cut-off filter that blocks light of a band other than a target wavelength band. For example, the filter 310 may be formed on one or more surfaces of the window 300 by a method such as coating.
다시 도 1을 참조하면, 처리 챔버(21)에 장입된 기판(S)은 척(chuck, 210)에 배치된다. 척(210)은 축(axis, 222)과 연결된 척 구동부(220)에 의하여 구동된다. 척(210)은 장입된 기판(S)을 고정 및 유지(hold)한다. 일 예로, 척(210)에는 리세스(recess)와 죠(jaw)가 형성되고, 죠를 이용하여 리세스 내에 위치한 기판(S)을 기판을 고정할 수 있다. 다른 예로, 척(210)에는 석션 홀(suction hole)이 형성될 수 있으며, 석션 홀로 기판(S)과의 접촉면을 흡입하여 기판을 고정시킬 수 있다. 다만, 이는 일 실시예일 따름으로, 다른 방식으로 기판(S)을 척에 고정시킬 수 있음은 물론이다. Referring back to FIG. 1 , the substrate S loaded into the processing chamber 21 is placed on a chuck 210 . The chuck 210 is driven by a chuck driving unit 220 connected to an axis 222 . The chuck 210 fixes and holds the loaded substrate S. For example, a recess and a jaw are formed in the chuck 210, and the substrate S located in the recess may be fixed to the substrate using the jaw. As another example, a suction hole may be formed in the chuck 210 , and a contact surface with the substrate S may be suctioned through the suction hole to fix the substrate. However, since this is only an embodiment, it goes without saying that the substrate S may be fixed to the chuck in other ways.
척(210)은 축(222)을 통해 척 구동부(220)에 연결된다. 척 구동부(220)는 축(222)을 상승시키거나, 하강시켜 기판(S)이 배치된 척(210)을 상승시키거나 하강시켜 자외선 형성부와의 거리를 조절할 수 있다. 다른 실시예로, 기판(S)은 스페이서(미도시) 혹은 캐리어 플레이트(미도시)를 두고 척(210)에 고정될 수 있다.The chuck 210 is connected to the chuck drive unit 220 through a shaft 222 . The chuck driving unit 220 may raise or lower the shaft 222 to raise or lower the chuck 210 on which the substrate S is disposed to adjust the distance from the ultraviolet ray forming unit. In another embodiment, the substrate S may be fixed to the chuck 210 by using a spacer (not shown) or a carrier plate (not shown).
또한, 척 구동부(220)는 축(222)을 회전시켜 기판(S)이 배치된 척(210)을 회전시킬 수 있다. 축을 회전시켜 후술할 바와 같이 자외선 형성 챔버(11)에서 형성된 자외선을 기판(S) 상에 고르게 조사할 수 있다. Also, the chuck driver 220 may rotate the shaft 222 to rotate the chuck 210 on which the substrate S is disposed. By rotating the shaft, the ultraviolet rays formed in the ultraviolet forming chamber 11 may be evenly irradiated onto the substrate S, as will be described later.
도시되지 않은 실시예로, 처리 챔버(21)에 진공 형성부와 가스 공급부가 형성될 수 있다. 처리 챔버(21)가 대기압으로 유지되면 윈도우(300)를 통해 제공된 자외선이 처리 챔버(21)의 공기에 흡수되어 기판에 제공되지 않을 수 있다. 따라서, 처리 챔버(21)에 위치하는 진공 형성부(130)는 처리 챔버(11) 내부의 진공도를 100mT 이하로 유지한다. In an embodiment not shown, a vacuum forming unit and a gas supply unit may be formed in the processing chamber 21 . When the processing chamber 21 is maintained at atmospheric pressure, ultraviolet light provided through the window 300 may be absorbed by air in the processing chamber 21 and may not be provided to the substrate. Accordingly, the vacuum forming unit 130 located in the processing chamber 21 maintains the degree of vacuum inside the processing chamber 11 to 100 mT or less.
또한, 처리 챔버(21)에서 기판(S)에 트랩된 전하를 중화시킬 때, 양이온, 음이온, 전자 등의 하전 입자가 필요할 수 있다. 따라서, 처리 챔버(21)에는 목적하는 가스를 주입하는 가스 공급부가 형성될 수 있다. 가스 공급부가 제공한 가스는 처리 챔버(21)로 진입한 자외선의 에너지에 의하여 이온화 되어 하전 입자를 형성할 수 있다. In addition, charged particles such as positive ions, negative ions, and electrons may be needed to neutralize the charges trapped in the substrate S in the processing chamber 21 . Accordingly, a gas supply unit for injecting a desired gas may be formed in the processing chamber 21 . The gas provided by the gas supplier may be ionized by the energy of the ultraviolet light entering the processing chamber 21 to form charged particles.
도 4는 반도체 제조 장치의 다른 실시예를 예시한 도면이다. 도 4를 참조하면, 자외선 형성 챔버(11)에는 복수의 자외선 형성부(100)들이 위치할 수 있다. 각각의 자외선 형성부(100)는 차단벽(600)에 의하여 구분될 수 있다. 예시된 실시예는 차단벽(600)과 윈도우(300)가 접촉하지 않으나, 도시되지 않은 실시예에서 차단벽(600)과 윈도우(300)는 접촉한다. 각 영역을 구획하는 차단벽(600)은 일 예로, 알루미나 세라믹(alumina ceramic), 쿼츠(quartz), 유리(glass) 중 어느 하나의 유전체 재질, 금속 및 폴리머(polymer)등의 을 포함할 수 있다. 또한 각각의 자외선 형성부(100)에는 서로 다른 가스가 제공되어 서로 다른 파장의 자외선을 형성하고, 이들을 기판(S)에 제공할 수 있다. 4 is a diagram illustrating another embodiment of a semiconductor manufacturing apparatus. Referring to FIG. 4 , a plurality of ultraviolet ray forming units 100 may be located in the ultraviolet ray forming chamber 11 . Each ultraviolet forming unit 100 may be separated by a blocking wall 600 . In the illustrated embodiment, the blocking wall 600 and the window 300 do not contact each other, but in an embodiment not shown, the blocking wall 600 and the window 300 contact each other. The blocking wall 600 partitioning each region may include, for example, a dielectric material of any one of alumina ceramic, quartz, and glass, metal, and polymer. . In addition, different gases may be provided to the respective ultraviolet ray generators 100 to form ultraviolet rays of different wavelengths and may be provided to the substrate S.
자외선 형성부(100)가 형성한 자외선의 파장이 짧을수록 자외선의 직진성이 커져 기판(S)의 전체 면적에 고르게 자외선을 조사하는 것이 곤란할 수 있다. 따라서, 본 실시예에서는 복수의 자외선 형성부(100)들을 배치하여 기판(S)에 자외선 처리를 수행할 수 있다. As the wavelength of the ultraviolet rays formed by the ultraviolet forming unit 100 becomes shorter, the linearity of the ultraviolet rays increases, and thus it may be difficult to uniformly irradiate the entire area of the substrate S. Therefore, in this embodiment, a plurality of ultraviolet forming units 100 may be arranged to perform ultraviolet treatment on the substrate S.
도 5(a) 내지 도 5(d)는 윈도우(300) 실시예들의 평면도이다. 도 5(a)는 분리되지 않은 단일한 재질로 윈도우(300)를 형성한 상태를 예시한다. 윈도우(300)는 프레임(310)에 의하여 지지될 수 있다. 도 5(b)는 하나의 윈도우가 중심 영역(300a)과 주변 영역(300b)로 분할되는 경우를 예시하며, 중심 영역(300a)과 주변 영역(300b)은 모두 프레임(310)에 의하여 지지될 수 있다. 5(a) to 5(d) are plan views of window 300 embodiments. 5(a) illustrates a state in which the window 300 is formed of a single material that is not separated. Window 300 may be supported by frame 310 . 5( b ) illustrates a case in which one window is divided into a central region 300a and a peripheral region 300b, and both the central region 300a and the peripheral region 300b are supported by the frame 310. can
도 1로 예시된 것과 같이 기판(S)이 고정된 척(210)은 척 구동부(220)에 의하여 회전하므로, 기판(S)은 척(210)이 회전함에 따라 축(222)을 중심으로 회전한다. 따라서, 기판(S)이 회전함에 따라 윈도우(300)를 통해 제공되는 자외선이 기판 앞면의 전면에 제공될 수 있다. 도 5(c)를 참조하면, 하나의 윈도우(300c)의 중심은 기판이 회전하는 중심(C)으로부터 편심되어 위치할 수 있으며, 윈도우(300c)의 직경은 기판(S) 반지름보다 크거나 같을 수 있다. 따라서, 윈도우(300c)의 직경이 비록 기판(S)의 직경보다 작으나, 기판(S)이 중심(C)를 중심으로 회전함으로써 기판 전면(全面)에 자외선이 제공된다.As illustrated in FIG. 1 , since the chuck 210 to which the substrate S is fixed rotates by the chuck driving unit 220, the substrate S rotates around the axis 222 as the chuck 210 rotates. do. Accordingly, as the substrate S rotates, ultraviolet rays provided through the window 300 may be provided to the front surface of the substrate. Referring to FIG. 5(c), the center of one window 300c may be located eccentrically from the center C of rotation of the substrate, and the diameter of the window 300c may be greater than or equal to the radius of the substrate S. can Accordingly, although the diameter of the window 300c is smaller than that of the substrate S, the substrate S is rotated about the center C, so that ultraviolet rays are provided to the entire surface of the substrate.
도 5(d)를 참조하면, 윈도우는 각각이 기판(S)의 반지름보다 작은 직경을 가지는 복수개의 윈도우 요소들(300d, 300e, 300f)을 포함할 수 있다. 복수개의 윈도우 요소들(300d, 300e, 300f)은 기판이 회전 중심(C)로부터 편심되어 위치할 수 있다. 따라서, 따라서, 윈도우(300)의 직경이 비록 기판(S)의 직경보다 작으나, 기판(S)이 중심(C)을 회전 중심으로 회전함으로써 기판 전면(全面)에 자외선이 제공된다. 윈도우 요소들(300d, 300e, 300f)은 기판이 회전할 때, 기판에 자외선이 제공되지 않는 부분이 없도록 배치될 수 있다. 또한, 기판(S)의 중심(C) 부근에 트랩된 전하량이 많으므로 중심부분에 많은 양의 자외선이 조사되도록 윈도우 요소(300e)를 배치할 수 있다. Referring to FIG. 5(d) , the window may include a plurality of window elements 300d, 300e, and 300f each having a smaller diameter than the radius of the substrate S. The plurality of window elements 300d, 300e, and 300f may be positioned so that the substrate is eccentric from the rotation center C. Therefore, even though the diameter of the window 300 is smaller than the diameter of the substrate S, the substrate S is rotated about the center C as a rotation center, so that ultraviolet rays are provided to the entire surface of the substrate. The window elements 300d, 300e, and 300f may be arranged such that there is no portion of the substrate to which UV rays are not provided when the substrate rotates. In addition, since the amount of charges trapped near the center C of the substrate S is large, the window element 300e may be disposed so that a large amount of ultraviolet light is irradiated to the center portion.
이하에서는 첨부된 도면들을 참조하여 반도체 제조 장치의 바람직한 구현예를 설명한다. 구현예는 그리드 플레이트(400)를 더 포함한다. 도 6(a)는 그리드 플레이트의 개요를 도시한 분해 사시도면이고, 도 6(b)는 그리드 플레이트의 평면도이다. 도 7은 제1 그리드 전극(410)의 제조 과정을 개요적으로 도시한 도면이다. 도 6 내지 도 7을 참조하면, 그리드 플레이트(400)는 도 6(a)로 예시된 원형 구조의 제1 그리드 전극(410)만을 포함할 수 있으며, 나아가, 제2 그리드 전극(420) 및 제3 그리드 전극(430)을 더 포함할 수 있다. Hereinafter, a preferred embodiment of a semiconductor manufacturing apparatus will be described with reference to the accompanying drawings. Implementations further include a grid plate 400 . Figure 6 (a) is an exploded perspective view showing the outline of the grid plate, Figure 6 (b) is a plan view of the grid plate. 7 is a diagram schematically illustrating a manufacturing process of the first grid electrode 410 . 6 to 7, the grid plate 400 may include only the first grid electrode 410 having a circular structure illustrated in FIG. A three-grid electrode 430 may be further included.
그리드 플레이트(400)는 도 6(a)로 예시된 바와 같이 폴리이미드(PI)나 에폭시 등의 절연층(411)상에 위치하는 알루미늄(Al)이나 구리(Cu) 등의 금속 재질이나 카본 등의 그래파이트를 포함하는 전도성 재료로 이루어지는 복수의 전극 라인(LX)을 포함한다. As illustrated in FIG. 6(a), the grid plate 400 is made of a metal material such as aluminum (Al) or copper (Cu) or carbon, etc. positioned on an insulating layer 411 such as polyimide (PI) or epoxy. and a plurality of electrode lines LX made of a conductive material including graphite.
제1 그리드 전극(410)은 복수의 전극 라인(LX)들을 포함한다. 전극 라인(LX)은 메탈층(412)을 서로 다른 반경을 가지도록 패턴하여 형성될 수 있고, 패턴된 메탈층(412)에 일정 직경을 갖는 다수의 홀(H)들을 형성하여 이루어진다. The first grid electrode 410 includes a plurality of electrode lines LX. The electrode line LX may be formed by patterning the metal layer 412 to have different radii, and is formed by forming a plurality of holes H having a predetermined diameter in the patterned metal layer 412 .
제2 그리드 전극(420)은 1 방향으로 일정 거리 이격되게 형성되는 복수의 도전성 재질의 전극 라인(LY)들을 포함하고, 제3 그리드 전극(430)은 이 제2 방향으로 일정거리 이격되게 형성되는 도전성 재질의 전극 라인(LZ)들을 포함한다. The second grid electrode 420 includes a plurality of electrode lines LY made of a conductive material that are spaced a certain distance apart in one direction, and the third grid electrode 430 is formed a certain distance apart in the second direction. It includes electrode lines LZ made of a conductive material.
서로 이격된 전도성 재질의 전극 라인(LX)들 전도성 재질의 전극 라인(LY)들 및 전도성 재질의 전극 라인(LZ)들은 각각 서로 일정 거리 이격되어 적층 배치되는 형태로 전기적으로 상호 접촉되지 않도록 구성된다. 여기서, 제1 그리드 전극(410)과 제2 그리드 전극(420) 및 제3 그리드 전극(430)의 위치는 서로 변경이 가능하다.The electrode lines LX made of conductive material spaced apart from each other, the electrode lines LY made of conductive material, and the electrode lines LZ made of conductive material are spaced apart from each other at a predetermined distance and are stacked and disposed so as not to electrically contact each other. . Here, positions of the first grid electrode 410, the second grid electrode 420, and the third grid electrode 430 may be changed.
제1 그리드 전극(410)은 서로 다른 반경을 갖는 다수의 전극라인(LX)들과 다수의 절연층이 교번되게 배치되어 각 전극라인이 상호 절연됨과 더불어 각 전극 라인 상에는 다수의 홀이 형성될 수 있다.In the first grid electrode 410, a plurality of electrode lines LX having different radii and a plurality of insulating layers are alternately disposed so that each electrode line is insulated from each other and a plurality of holes can be formed on each electrode line. there is.
제1 그리드 전극(410)은 절연층(411) 상에 형성될 수 있다. 또한, 절연층(411)의 두께는 1mm ~ 30mm 일 수 있고, 메탈층(412) 두께는 1~ 10mm 일 수 있고, 메탈층(412)에 형성되는 전극라인(LX)의 폭은 10mm ~ 50mm 일 수 있다. 전극라인(LX) 간의 이격거리는 10mm ~ 50mm일 수 있다. 메탈층(412)의 중앙 부분 전극 라인(LX)은 일정 면적을 갖도록 구성하여 제1 그리드 전극(410)의 중앙 부분에 보다 많은 홀(H)을 형성하도록 구성되며, 홀(H)의 직경은 0.1~5mm의 크기로 설정될 수 있다.The first grid electrode 410 may be formed on the insulating layer 411 . In addition, the insulating layer 411 may have a thickness of 1 mm to 30 mm, the thickness of the metal layer 412 may be 1 to 10 mm, and the width of the electrode line LX formed on the metal layer 412 may be 10 mm to 50 mm. can be The separation distance between the electrode lines LX may be 10 mm to 50 mm. The electrode line LX in the central part of the metal layer 412 is configured to have a certain area so that more holes H are formed in the central part of the first grid electrode 410, and the diameter of the hole H is It may be set to a size of 0.1 to 5 mm.
절연층(411)의 중앙부에는 구리(Cu)나 알루미늄(Al) 등의 메탈 플레이트를 구비할 수 있다. 이는 홀(H) 벽면 도금시 접착력 증가 및 그리드 전극을 보다 견고하게 할 수 있다.A metal plate made of copper (Cu) or aluminum (Al) may be provided at the center of the insulating layer 411 . This can increase adhesion and make the grid electrode more robust when plating the wall of the hole H.
또한, 제1 그리드 전극(410)과 인접한 제2 그리드 전극(420)간의 이격 거리는 제1 그리드 전극(410)의 홀(H)을 통해 방출되는 이온 또는 전자들이 일정 범위로 확산된 상태로 제2 그리드 전극(420)에 유입될 수 있도록 일정 이상의 이격 거리를 갖는 것이 바람직하다.In addition, the distance between the first grid electrode 410 and the adjacent second grid electrode 420 is such that ions or electrons emitted through the holes H of the first grid electrode 410 are diffused in a certain range, and the second grid electrode 420 is It is preferable to have a separation distance greater than or equal to a predetermined distance so that the grid electrode 420 can flow into the grid electrode 420 .
제1 그리드 전극(410)의 각 전극라인(LX)과 제2 그리드 전극(420)의 각 전극라인(LY) 및 제3 그리드 전극(430)의 각 전극라인(LZ)은 그리드 제어장치(500)에 각각 결합된다. 즉, 그리드 제어장치(500)는 각 전극 라인(LX, LY, LZ)에 대해 독립적으로 전원을 공급한다.Each electrode line LX of the first grid electrode 410, each electrode line LY of the second grid electrode 420, and each electrode line LZ of the third grid electrode 430 are connected to the grid control device 500. ), respectively. That is, the grid control device 500 independently supplies power to each of the electrode lines LX, LY, and LZ.
또한, 제1 내지 제3 그리드 전극(410, 420, 430)은 처리 챔버(21) 내부에 구비된 지지수단(미도시)에 의해 챔버 내부에 고정되어 일정 이격 거리를 형성하도록 배치되거나, 제1 내지 제3 그리드 전극(410, 420, 430) 사이의 테두리 부분이나 테두리 부분을 포함한 일정 단위로 이격 거리에 대응되는 높이를 갖는 스페이서(미도시)를 추가로 구비하여 이격 거리를 형성함으로써, 전기적으로 절연되게 적층 배치된다.In addition, the first to third grid electrodes 410, 420, and 430 are fixed to the inside of the processing chamber 21 by a supporting means (not shown) provided therein and arranged to form a certain distance, or to the third grid electrodes 410, 420, 430 by additionally providing a spacer (not shown) having a height corresponding to the separation distance in a predetermined unit including the edge portion or the edge portion to form the separation distance, thereby electrically They are stacked in an insulated manner.
제1 그리드 전극(410)은 서로 다른 직경을 갖는 타원이나 동심원형태로 일정 면적을 갖는 다수의 원형 전극라인(LX)이 동일 중심점을 기준으로 외측방향으로 일정 거리 이격된 형태로 배치된다. 이로부터 반도체 기판(1)상에 형성되는 정전기 패턴에 상응하도록 제1 그리드 전극(410)을 형성할 수 있다.In the first grid electrode 410, a plurality of circular electrode lines LX having a predetermined area in the form of ellipses or concentric circles having different diameters are arranged at a predetermined distance apart from each other in an outward direction based on the same central point. From this, the first grid electrode 410 may be formed to correspond to the static electricity pattern formed on the semiconductor substrate 1 .
제2 및 제3 그리드 전극(420,330)의 전극 라인(LY,LZ)은 10°~ 90°범위에서 임의의 교차 각도를 형성하도록 배치된다. 이를 상측에서 바라보면, 도 6(b)로 예시된 것과 같이 제2 그리드 전극(410)과 제3 그리드 전극(420)의 각 전극 라인이 교차함으로 인해 메쉬 형태를 가진다. 바람직하게는 제2 및 제3 그리드 전극(420,430)의 전극 라인은 X축 방향과 Y축 방향으로 이루어져 격자패턴을 형성하도록 구성될 수 있다.The electrode lines LY and LZ of the second and third grid electrodes 420 and 330 are arranged to form an arbitrary crossing angle in the range of 10° to 90°. When viewed from above, each electrode line of the second grid electrode 410 and the third grid electrode 420 cross each other, as illustrated in FIG. 6( b ), so that it has a mesh shape. Preferably, the electrode lines of the second and third grid electrodes 420 and 430 may be formed in an X-axis direction and a Y-axis direction to form a grid pattern.
한편, 도 8은 제1 내지 제3 그리드 전극(410, 420, 430)이 적층 배치된 형태를 상측에서 바라본 형상을 예시한 도면이다. 도 8을 참조하면, 제1 그리드 전극(410)의 전극 라인(LX)에 형성된 홀(H)과 제2 및 제3 그리드 전극(420, 430)의 전극 라인(LY, LZ)이 교차함에 따라 그리드 플레이트(500)의 상측에 위치한 이온이나 전자가 전극 라인(LX)에 형성된 홀(H)을 통해 하측으로 방출된다.Meanwhile, FIG. 8 is a view illustrating a shape in which the first to third grid electrodes 410, 420, and 430 are stacked and disposed when viewed from the top. Referring to FIG. 8 , as the hole H formed in the electrode line LX of the first grid electrode 410 and the electrode lines LY and LZ of the second and third grid electrodes 420 and 430 intersect, Ions or electrons located on the upper side of the grid plate 500 are emitted downward through holes H formed in the electrode line LX.
즉, 도 8에 도시된 것과 같이, 반도체 공정이 완료된 상태에서 반도체 기판(1)의 정전기 특성 측정 결과, 양 전압의 제1 정전기 영역(T1)과 음 전압의 제2 정전기 영역(T2)이 존재하는 경우, 제1 정전기 영역(T1)에 해당하는 전극 라인(LX4, LX5, LY7, LY8, LY9, LZ1, LZ2, LZ3)으로 제1 정전기 영역(T1)의 역전압인 음 전압을 공급하고, 제2 정전기 영역(T3)에 해당하는 전극 라인(LX1, LX2, LY2, LY3, LY4, LZ5, LZ6, LZ7)으로는 제2 정전기 영역(T2)의 역전압인 양 전압을 공급한다. That is, as shown in FIG. 8 , as a result of measuring the electrostatic characteristics of the semiconductor substrate 1 after the semiconductor process is completed, a first electrostatic region T1 of positive voltage and a second electrostatic region T2 of negative voltage exist. In this case, a negative voltage, which is a reverse voltage of the first electrostatic region T1, is supplied to the electrode lines LX4, LX5, LY7, LY8, LY9, LZ1, LZ2, and LZ3 corresponding to the first electrostatic region T1; A positive voltage, which is a reverse voltage of the second electrostatic region T2, is supplied to the electrode lines LX1, LX2, LY2, LY3, LY4, LZ5, LZ6, and LZ7 corresponding to the second electrostatic region T3.
예컨대, "+20V"인 제1 정전기 영역(T1)의 전극라인으로는 "-20V"의 역전압을 공급함과 동시에, "-50V"인 제2 정전기 영역(T2)의 전극라인으로는 "+50V"의 역전압을 공급하여, 반도체 기판(1)에 형성된 서로 다른 위치의 서로 다른 전압의 정전기 영역에 서로 다른 세기의 이온이나 전자들이 방출됨으로써, 서로 다른 영역에 형성된 서로 다른 특성의 정전기를 동시에 제거한다.For example, a reverse voltage of "-20V" is supplied to the electrode line of the first electrostatic region T1, which is "+20V", and a reverse voltage of "+" is supplied to the electrode line of the second electrostatic region T2, which is "-50V". By supplying a reverse voltage of 50V, ions or electrons of different intensities are emitted to the electrostatic areas of different voltages at different locations formed on the semiconductor substrate 1, thereby generating static electricity of different characteristics formed in different areas at the same time. Remove.
또한, 도 8에서 제1 정전기 영역(T1) 및 제2 정전기 영역(T2)에 해당하는 전극라인으로는 해당 정전기 전압과 반대극성을 가지면서 정전기 전압보다 일정 레벨 미만으로 차이나는 레벨의 전압을 공급할 수 있다. 이는 그리드 플레이트(500)과 반도체 기판(1) 간의 거리를 고려하여 이온이나 전자의 세기가 반도체 기판(1)에서 감소되는 것을 고려하여 적절하게 설정될 수 있다.In addition, in FIG. 8 , a voltage having an opposite polarity to the corresponding electrostatic voltage and having a level different from that of the electrostatic voltage by less than a certain level is supplied to the electrode lines corresponding to the first electrostatic region T1 and the second electrostatic region T2. can This may be appropriately set considering the distance between the grid plate 500 and the semiconductor substrate 1 and the fact that the intensity of ions or electrons is reduced in the semiconductor substrate 1 .
이하에서는 상술한 바람직한 구현예에 따른 반도체 제조 장치의 동작을 도 9를 참조하여 설명한다. 진공 형성부(130)는 자외선 형성 챔버(11) 내부가 목적하는 진공도를 가지도록 구동된다. 상술한 바와 같이 자외선 형성 챔버(11)는 일 예로, 10-1 내지 10-4 Torr로 유지된다. 가스 공급부(120)는 목적하는 자외선 형성부가 자외선의 파장을 형성하도록 가스를 주입한다. Hereinafter, an operation of the semiconductor manufacturing apparatus according to the above-described preferred embodiment will be described with reference to FIG. 9 . The vacuum forming unit 130 is driven so that the inside of the UV forming chamber 11 has a desired degree of vacuum. As described above, the UV forming chamber 11 is maintained at, for example, 10 -1 to 10 -4 Torr. The gas supply unit 120 injects gas so that the target ultraviolet ray forming unit forms the wavelength of ultraviolet ray.
상술한 바와 같이 처리 챔버(21)도 진공 형성부와 가스 주입부를 포함할 수 있으며, 처리 챔버(21)에 포함된 진공 형성부도 처리 챔버를 목적하는 진공도를 가지도록 형성하고, 가스 주입부는 처리 챔버(21)로 유입한 자외선으로부터 하전 입자가 발생하도록 가스를 주입한다. As described above, the processing chamber 21 may also include a vacuum forming unit and a gas injection unit, and the vacuum forming unit included in the processing chamber 21 also forms the processing chamber to have a desired degree of vacuum. Gas is injected so that charged particles are generated from the ultraviolet light entering into (21).
아래의 표 1은 자외선을 형성할 때 주입되는 가스와 그에 따라 발생하는 자외선의 파장을 예시한 표이다. Table 1 below is a table illustrating the gas injected when forming ultraviolet rays and the wavelengths of ultraviolet rays generated accordingly.
헬륨(He))Helium (He) 산소(O2)Oxygen (O 2 ) 아르곤(Ar)Argon (Ar)
58.4 nm58.4 nm 130.5 nm130.5 nm 104.8 nm104.8 nm
목적하는 가스를 자외선 형성부(100)에 제공하고, 자외선 형성부는 전자빔을 조사한다. 상술한 바와 같이 전자빔 조사부(110)에 포함된 전자총은 시준된 전자빔을 조사하여 형성된 자외선을 균일하게 할 수 있다. 전자빔 조사부(110)가 전자비을 조사함에 따라 가스의 전자는 여기되고, 여기 상태의 전자들이 바닥 상태로 내려오면서 상응하는 파장을 가지는 자외선을 형성한다.A desired gas is supplied to the ultraviolet ray forming unit 100, and the ultraviolet ray forming unit radiates an electron beam. As described above, the electron gun included in the electron beam emitter 110 may uniform the ultraviolet rays formed by irradiating the collimated electron beam. As the electron beam irradiator 110 irradiates the electron ratio, electrons in the gas are excited, and electrons in an excited state descend to a ground state to form ultraviolet rays having a corresponding wavelength.
형성된 자외선은 직접 윈도우(300)를 통하거나, 반사 부재(140)에 의하여 반사되고, 윈도우(300)를 통하여 기판(S)에 제공된다. 기판(S)은 상술한 바와 같이 척 구동부(220)에 의하여 윈도우(400)와의 거리 및 회전속도가 제어되어 움직인다. The formed ultraviolet rays directly pass through the window 300 or are reflected by the reflective member 140 and provided to the substrate S through the window 300 . As described above, the substrate S is moved by controlling the distance and rotational speed of the substrate S from the window 400 by the chuck driving unit 220 .
기판(S)의 표면에 자외선이 제공되면, 기판(S)의 표면 및 기판(S)상의 다층막(multi layered film) 내부에 형성된 미세 패턴들에 트랩된 전하가 중화된다. 일 예로, 기판(S)에 실리콘 산화막이 형성되어 있고, 실리콘 산화막에 전자가 트랩된 경우를 가정한다. When ultraviolet rays are applied to the surface of the substrate S, charges trapped in fine patterns formed on the surface of the substrate S and inside a multi-layered film on the substrate S are neutralized. As an example, it is assumed that a silicon oxide film is formed on the substrate S and electrons are trapped in the silicon oxide film.
실리콘 산화막은 일반적으로 8.4 eV ~ 11 eV의 밴드갭 에너지를 가지며, 실리콘 산화막에 트랩된 전자를 홀(hole)로 중화하기 위하여 적어도 밴드갭에 상응하는 에너지를 가지는 자외선을 조사하여야 홀이 금지 대역(forbidden band)를 넘어 전도 대역(conduction band)에 진입하여 전자를 중화한다. The silicon oxide film generally has a band gap energy of 8.4 eV to 11 eV, and in order to neutralize electrons trapped in the silicon oxide film as holes, ultraviolet rays having energy corresponding to at least the band gap must be irradiated so that the holes are in the forbidden band ( It crosses the forbidden band and enters the conduction band to neutralize electrons.
또한, 처리 챔버(21)로 자외선이 조사됨에 따라 자외선에 의하여 처리 챔버(21) 내의 가스가 이온화되어 하전 입자를 형성한다. 그리드 플레이트(400)는 그리드 플레이트 제어부(500)로부터 전력을 제공받고, 이와 같이 형성된 하전 입자를 기판(S)으로 가속시켜 제공하여 기판(S)에 형성된 정전기를 중화시킬 수 있다. In addition, as ultraviolet rays are irradiated into the processing chamber 21 , gas in the processing chamber 21 is ionized by the ultraviolet rays to form charged particles. The grid plate 400 receives power from the grid plate controller 500, and accelerates and provides charged particles formed in this way to the substrate S to neutralize static electricity formed on the substrate S.
그리드 플레이트 제어부(500)는 기판(S) 상에 정전기가 다수 위치한 영역에 대한 정보를 제공받고, 이에 상응하도록 하전 입자를 제공하여 높은 효율로 기판(S)에 형성된 정전기를 중화시킬 수 있다. The grid plate control unit 500 can receive information on the region where a lot of static electricity is located on the substrate S, and can neutralize the static electricity formed on the substrate S with high efficiency by providing charged particles corresponding to the information.
본 발명에 대한 이해를 돕기 위하여 도면에 도시된 실시 예를 참고로 설명되었으나, 이는 실시를 위한 실시예로, 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.Although it has been described with reference to the embodiments shown in the drawings to aid understanding of the present invention, this is an embodiment for implementation and is only exemplary, and those having ordinary knowledge in the field can make various modifications and equivalents therefrom. It will be appreciated that other embodiments are possible. Therefore, the true technical scope of protection of the present invention will be defined by the appended claims.

Claims (13)

  1. 반도체 제조 장치로, 상기 장치는:A semiconductor manufacturing device, the device comprising:
    자외선 형성 챔버에 위치하고, 전자빔(e-beam)을 조사하여 목적하는 파장의 자외선을 형성하는 자외선 형성부;an ultraviolet ray forming unit located in the ultraviolet ray forming chamber and irradiating an electron beam (e-beam) to form ultraviolet ray of a desired wavelength;
    장입된 기판이 상기 자외선으로 처리되는 처리 챔버에 위치하여 장입된 기판을 지지하는 척과, 상기 척을 회전시키는 축(axis)을 포함하는 기판 구동부; 및 a substrate driving unit including a chuck for supporting the loaded substrate positioned in the processing chamber where the loaded substrate is treated with the ultraviolet rays, and an axis for rotating the chuck; and
    상기 자외선 형성 챔버와 상기 처리 챔버 사이에 위치하여 형성된 상기 자외선을 상기 처리 챔버로 투과하는 윈도우를 포함하는 반도체 제조 장치.and a window positioned between the ultraviolet generation chamber and the processing chamber to transmit the formed ultraviolet rays into the processing chamber.
  2. 제1항에 있어서,According to claim 1,
    상기 자외선 형성부는, The ultraviolet rays forming unit,
    형성된 상기 자외선을 상기 처리 챔버로 반사하는 하나 이상의 반사 부재를 더 포함하는 반도체 제조 장치.The semiconductor manufacturing apparatus further includes one or more reflective members that reflect the formed ultraviolet rays to the processing chamber.
  3. 제1항에 있어서,According to claim 1,
    상기 자외선 형성부는,The ultraviolet rays forming unit,
    상기 전자빔을 조사하는 전자빔 조사부;an electron beam irradiator for irradiating the electron beam;
    가스 공급부 및 gas supply and
    상기 자외선 형성 챔버 내부를 목적하는 진공도로 형성하는 진공 형성부를 포함하며, A vacuum forming unit configured to form a desired vacuum degree inside the ultraviolet ray forming chamber;
    상기 전자빔은 제공된 가스와 충돌하여 상기 목적하는 파장의 자외선을 형성하는 반도체 제조 장치.The semiconductor manufacturing apparatus of claim 1, wherein the electron beam collides with a provided gas to form ultraviolet rays of the target wavelength.
  4. 제3항에 있어서,According to claim 3,
    상기 가스 공급부는, The gas supply unit,
    헬륨(He), 산소(O2) 및 아르곤(Ar) 가스 중 어느 하나 이상을 제공하는 반도체 제조 장치.A semiconductor manufacturing apparatus providing at least one of helium (He), oxygen (O2), and argon (Ar) gases.
  5. 제3항에 있어서,According to claim 3,
    상기 전자빔 조사부는,The electron beam irradiator,
    전자총(electron gun) 및 electron gun and
    전자빔을 조향하는 전자빔 조향 장치를 포함하는 반도체 제조 장치.A semiconductor manufacturing apparatus comprising an electron beam steering device for steering an electron beam.
  6. 제3항에 있어서,According to claim 3,
    상기 자외선 형성 챔버는, The UV forming chamber,
    복수의 상기 자외선 형성부들이 각각 배치되는 복수의 영역들을 포함하는 반도체 제조 장치.A semiconductor manufacturing apparatus including a plurality of regions in which a plurality of the ultraviolet forming parts are respectively disposed.
  7. 제3항에 있어서,According to claim 3,
    상기 전자빔 조사부는, The electron beam irradiator,
    집중화된 선형 전자빔(e-beam)을 조사하고, A focused linear electron beam (e-beam) is irradiated,
    상기 자외선 형성 챔버에는 상기 집중화된 선형 전자빔에 의하여 선형 플라즈마가 형성되어 자외선이 형성되는 반도체 제조 장치.A semiconductor manufacturing apparatus wherein a linear plasma is formed in the ultraviolet forming chamber by the focused linear electron beam to form ultraviolet rays.
  8. 제1항에 있어서,According to claim 1,
    상기 윈도우는, the window,
    상기 윈도우의 적어도 어느 한 면에 패턴이 형성되거나, A pattern is formed on at least one side of the window,
    상기 윈도우의 적어도 어느 한 면에 필터가 형성된 반도체 제조 장치.A semiconductor manufacturing apparatus in which a filter is formed on at least one surface of the window.
  9. 제1항에 있어서,According to claim 1,
    상기 윈도우는 the window
    적어도 일부가 사파이어, 불화마그네슘(MgF2), 불화리튬(LiF2) 및 불화칼슘(CaF2) 중 어느 하나를 포함하는 재질로 형성된 반도체 제조 장치.At least a portion of a semiconductor manufacturing device formed of a material containing any one of sapphire, magnesium fluoride (MgF 2 ), lithium fluoride (LiF 2 ) and calcium fluoride (CaF 2 ).
  10. 반도체 제조 장치로, 상기 장치는:A semiconductor manufacturing device, the device comprising:
    자외선 형성 챔버에 위치하고, 전자빔(e-beam)을 조사하여 목적하는 파장의 자외선을 형성하는 자외선 형성부;an ultraviolet ray forming unit located in the ultraviolet ray forming chamber and irradiating an electron beam (e-beam) to form ultraviolet ray of a desired wavelength;
    상기 장입된 기판이 상기 자외선으로 처리되는 처리 챔버에 위치하여 장입된 기판을 지지하는 척과, 상기 척을 회전시키는 축(axis)을 포함하는 기판 구동부; a substrate driving unit including a chuck for supporting the loaded substrate located in a processing chamber where the loaded substrate is treated with the ultraviolet rays, and an axis for rotating the chuck;
    상기 자외선 형성 챔버와 상기 처리 챔버 사이에 위치하여 형성된 상기 자외선을 상기 처리 챔버로 투과하는 윈도우 및a window positioned between the ultraviolet generation chamber and the processing chamber to transmit the formed ultraviolet rays into the processing chamber; and
    하전 입자를 상기 기판으로 가속시켜 제공하는 그리드 플레이트를 포함하며, A grid plate for accelerating and providing charged particles to the substrate;
    상기 그리드 플레이트는 서로 다른 반경을 갖는 복수의 전극라인들을 포함하고, 각 전극라인에는 복수의 홀들이 형성되는 그리드 전극을 포함하는 반도체 제조 장치.The grid plate includes a plurality of electrode lines having different radii, and a semiconductor manufacturing apparatus including a grid electrode in which a plurality of holes are formed in each electrode line.
  11. 제10항에 있어서,According to claim 10,
    상기 그리드 플레이트는, The grid plate,
    제1 방향으로 연장된 그리드 전극과 A grid electrode extending in the first direction and
    상기 제1 방향과 서로 다른 방향인 제2 방향으로 연장된 그리드 전극을 더 포함하는 반도체 제조 장치.The semiconductor manufacturing apparatus further includes a grid electrode extending in a second direction that is different from the first direction.
  12. 제10항 및 제11항 중 어느 한 항에 있어서,According to any one of claims 10 and 11,
    상기 반도체 제조 장치는 The semiconductor manufacturing device
    상기 그리드 플레이트로 상기 기판에 형성된 정전기 전압에 대응되는 전압을 공급하는 그리드 플레이트 제어부를 더 포함하는 반도체 제조 장치.and a grid plate controller supplying a voltage corresponding to the electrostatic voltage formed on the substrate to the grid plate.
  13. 제10항에 있어서,According to claim 10,
    상기 자외선 형성부는 The UV forming unit
    집중화된 상기 전자빔을 조사하고, irradiating the focused electron beam;
    상기 자외선 형성 챔버에는 상기 집중화된 선형 전자빔에 의하여 선형 플라즈마가 형성되어 자외선이 형성되는 반도체 제조 장치.A semiconductor manufacturing apparatus wherein a linear plasma is formed in the ultraviolet forming chamber by the focused linear electron beam to form ultraviolet rays.
PCT/KR2022/008953 2021-06-29 2022-06-23 Semiconductor manufacturing device WO2023277450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210084591A KR102374482B1 (en) 2021-06-29 2021-06-29 Semiconductor manufacturing apparatus
KR10-2021-0084591 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023277450A1 true WO2023277450A1 (en) 2023-01-05

Family

ID=80937562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008953 WO2023277450A1 (en) 2021-06-29 2022-06-23 Semiconductor manufacturing device

Country Status (2)

Country Link
KR (1) KR102374482B1 (en)
WO (1) WO2023277450A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102374482B1 (en) * 2021-06-29 2022-03-16 주식회사 자이시스 Semiconductor manufacturing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480372A (en) * 1990-07-24 1992-03-13 Fujitsu Ltd Microwave plasma device
JPH04181647A (en) * 1990-11-14 1992-06-29 Mitsubishi Electric Corp Microwave discharge light source device
JP2001052645A (en) * 1999-08-05 2001-02-23 Toshiba Corp Ultraviolet ray generating device
US20160379802A1 (en) * 2015-06-25 2016-12-29 Samsung Electronics Co., Ltd. Apparatus for monitoring vacuum ultraviolet and plasma process equipment including the same
KR20210075254A (en) * 2019-12-12 2021-06-23 세메스 주식회사 Substrate processing apparatus and substrate processing method
KR102374482B1 (en) * 2021-06-29 2022-03-16 주식회사 자이시스 Semiconductor manufacturing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322101B1 (en) * 2021-06-24 2021-11-04 주식회사 자이시스 Semiconductor manufacturing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480372A (en) * 1990-07-24 1992-03-13 Fujitsu Ltd Microwave plasma device
JPH04181647A (en) * 1990-11-14 1992-06-29 Mitsubishi Electric Corp Microwave discharge light source device
JP2001052645A (en) * 1999-08-05 2001-02-23 Toshiba Corp Ultraviolet ray generating device
US20160379802A1 (en) * 2015-06-25 2016-12-29 Samsung Electronics Co., Ltd. Apparatus for monitoring vacuum ultraviolet and plasma process equipment including the same
KR20210075254A (en) * 2019-12-12 2021-06-23 세메스 주식회사 Substrate processing apparatus and substrate processing method
KR102374482B1 (en) * 2021-06-29 2022-03-16 주식회사 자이시스 Semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
KR102374482B1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2022270945A1 (en) Semiconductor manufacturing apparatus
US6861643B2 (en) Neutral particle beam processing apparatus
US5904780A (en) Plasma processing apparatus
KR970005035B1 (en) Method and apparatus for generating highly dense uniform plasma by use of a high frequency rotating electric field
WO2012169747A2 (en) Plasma-generating source comprising a belt-type magnet, and thin-film deposition system using same
WO2023277450A1 (en) Semiconductor manufacturing device
TWI830683B (en) A film structure for electric field guided photoresist patterning process
US20150197853A1 (en) Substrate processing apparatus
US6881969B2 (en) Electron beam treatment device
KR20050051195A (en) Neutral particle beam processing apparatus
US4400235A (en) Etching apparatus and method
TW201807742A (en) Method for processing an object
KR101050443B1 (en) Plasma processing apparatus including multi-stacked dielecric window for uniform plasma density
US20040129220A1 (en) Plasma processing method and apparatus
KR102358914B1 (en) Electro static charge removal apparatus in semiconductor processing system
WO2023017998A1 (en) Apparatus for removing static electricity of semiconductor substrate
TW201711529A (en) Substrate processing apparatus
KR0141465B1 (en) Plasma generating method & apparatus
JPS59144133A (en) Plasma dry processing apparatus
WO2023224235A1 (en) Static electrcity control device for semiconductor processing system
KR102358908B1 (en) Electro static charge removal apparatus in semiconductor processing system
JP3281545B2 (en) Plasma processing equipment
KR102605711B1 (en) Apparatus For Neutralizing Surface Charge Of Object
JPH03222415A (en) Discharge reactive device based on rotation magnetic field
WO2013162267A1 (en) Ion treatment apparatus using position control of ion beam source including pole-type antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE