WO2023224235A1 - Static electrcity control device for semiconductor processing system - Google Patents

Static electrcity control device for semiconductor processing system Download PDF

Info

Publication number
WO2023224235A1
WO2023224235A1 PCT/KR2023/003460 KR2023003460W WO2023224235A1 WO 2023224235 A1 WO2023224235 A1 WO 2023224235A1 KR 2023003460 W KR2023003460 W KR 2023003460W WO 2023224235 A1 WO2023224235 A1 WO 2023224235A1
Authority
WO
WIPO (PCT)
Prior art keywords
static electricity
grid
substrate
processing system
semiconductor processing
Prior art date
Application number
PCT/KR2023/003460
Other languages
French (fr)
Korean (ko)
Inventor
박흥균
Original Assignee
(주)넥스틴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220066175A external-priority patent/KR20230162490A/en
Application filed by (주)넥스틴 filed Critical (주)넥스틴
Publication of WO2023224235A1 publication Critical patent/WO2023224235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/06Carrying-off electrostatic charges by means of ionising radiation

Definitions

  • This technology is generally related to a technology that can easily adjust the level of static electricity required by the substrate according to the semiconductor process by injecting static electricity onto the substrate or removing static electricity formed on the substrate.
  • the size of the pattern forming the pattern of the semiconductor device and the thickness of the thin film are decreasing, and in particular, factors that did not have a significant influence in the past are emerging as important factors in the development of semiconductor devices.
  • One of these factors is static electricity formed on the substrate, and a process to control the static electricity formed on the substrate is being applied.
  • the static electricity formed on the substrate is mainly generated by charges during processes using deionized water, charge transfer from charged plastic materials, or induction charging or plasma.
  • positive charges (ions) or negative charges (electrons) are pre-charged (injected) into the insulator (thin film) of the substrate from several nanometers to tens of nanometers before the pattern formation process, cleaning process, or plasma treatment process. ), it is used to control fine patterns such as local pattern uniformity and local edge placement errors during the multiple patterning process, and to control (trade-off) static electricity generated during other processes.
  • This is called an electrostatic charger.
  • static electricity on the substrate is mainly generated during the photo process or cleaning process using rotational movement, and it is known that the most static electricity is concentrated in the center due to the difference in centrifugal force.
  • the concentration of air flow in the center of the substrate increases by more than three times compared to the outside, and static electricity is formed around the center where centrifugal force is relatively weak.
  • Static electricity caused by a strong electric field formed in the center of the substrate is charged to the inside of the multilayer insulating film or to the surface of the wafer and the photoresist pattern formed on the surface.
  • a method for efficiently removing static electricity formed on a substrate is needed, and a device that removes static electricity already generated on the substrate or generated during the process is called a static electricity discharger.
  • Figure 1 (A) illustrates a shape in which electrostatic voltages of -50V, -30V, and -10V appear from the central part of the substrate 1 to the outer side.
  • FIG. 1(A) when charged with a high voltage around the center of the substrate 1, the area corresponding to the center of the substrate in FIG. 1(B) (static electricity in FIG. 1(A) In the area where the voltage is -50V, charges are charged not only on the surface of the substrate (1) such as insulating P/R (Photo Resist) or oxide, but also to a certain depth (D) of the substrate surface, resulting in neutralization by ions with low kinetic energy. An impossible situation may occur.
  • P/R Photo Resist
  • the electrostatic voltage charged to the substrate has many variables, such as the type of process, material, and pattern shape, and is generally between -100V and +100V.
  • charging of 100V or less is applied to the substrate 1 on which an insulating film in a fine circuit of less than 10 nm or a pattern P having an aspect ratio of "5" or more is formed.
  • a voltage is formed, but because the pattern width is narrow, it is difficult to remove static electricity accumulated inside the thin film due to the self-neutralizing effect between positive and negative ions generated in the ionizer and the reduction of ion collisions due to the low electromotive force due to the low voltage difference between the substrate and ions. there is.
  • the ion density of the ionizer is generally 10 6
  • a conventional ionizer is used to irradiate the substrate (1). ) cannot be removed.
  • One of the problems to be solved with this technology is to solve the difficulties of the prior art described above.
  • One of the challenges to be solved with this technology is to create a semiconductor processing system that can accurately and quickly inject static electricity onto a substrate or easily remove static electricity formed on the substrate using a simple method of controlling the voltage applied to the grid and substrate support. The purpose is to provide a static electricity control device.
  • the static electricity control device of the semiconductor processing system is a static electricity control device of the semiconductor processing system that injects static electricity onto a substrate disposed in a vacuum chamber or removes static electricity formed on the substrate, and is disposed on the upper side of the vacuum chamber.
  • a charged particle generation unit that generates charged particles including positive ions and electrons by generating VUV (Vacuum Ultraviolet Ray) and reacting this VUV with the process gas inside the vacuum chamber, and is disposed below the charged particle generation unit to input
  • VUV Vauum Ultraviolet Ray
  • It includes a substrate support that induces density toward the substrate, and a static electricity control control unit that supplies a voltage in the form of a pulse to at least one of the grid and the substrate support to control static electricity of the substrate, wherein the grid and the substrate support depend on environmental conditions of the vacuum chamber. It is arranged to have a separation distance of less than 4 times the free stroke distance of the process gas.
  • the static electricity control unit applies the bias voltage applied to the substrate support to be higher than the voltage applied to the grid in the static electricity injection mode, and applies the voltage applied to the grid in the static electricity removal mode. Apply the bias voltage applied to the substrate support so that it is within a similar preset range.
  • the electrostatic control control unit adjusts the voltage level by adjusting the pulse period applied to the grid and fingerboard support.
  • the charged particle generator includes one or more VUV lamps that emit VUV.
  • a beam generator is further provided below the VUV lamp to emit an ion beam in the form of a line through the side of the vacuum chamber, so that charged particles, ion beams, and the process are generated by the reaction of the VUV and the process gas. Charged particles are simultaneously generated through gas reaction to increase charged particle density.
  • the charged particle generator includes a plasma generator that generates plasma, and a separator that transmits only VUV below the plasma generator, and the charged particle generation unit generates charged particles by a reaction between the VUV generated in the plasma generator and the process gas. creates .
  • the plasma generator includes at least one micro plasma device that generates plasma using a power source in the range of 10 to 200 W in a vacuum environment where the volume of the vacuum chamber is in the range of 500 to 1000 cc.
  • the static electricity control unit adjusts the static electricity of the substrate by controlling at least one of the type of process gas injected into the vacuum chamber of the micro plasma device or the plasma power source.
  • the plasma generator includes a plurality of micro plasma devices, and the electrostatic control control unit individually controls the type of process gas or plasma power injected into the vacuum chamber of each micro plasma device to control the plasma power of the substrate. Control static electricity.
  • the plasma generator includes a plurality of micro plasma devices, the separation plate is disposed in a one-to-one correspondence with each micro plasma device, and the static electricity adjustment control unit controls the vacuum chamber of each micro plasma device.
  • the static electricity of the substrate is adjusted by individually controlling the type of process gas injected or the plasma power, and each separator plate includes lenses having different divergence angles.
  • the grid and the substrate support are of a multi-zone type in which multiple areas are electrically separated, and the static electricity control unit individually supplies voltages at different levels to each region of the grid and the substrate support.
  • the static electricity control unit supplies voltage to each area of the grid and the substrate support to inject static electricity into a certain portion of the substrate and remove static electricity from another portion of the substrate.
  • the grid includes an upper grid and a lower grid disposed below the upper grid, and the static electricity adjustment control unit supplies voltages at different levels to the upper grid and the lower grid.
  • the diameter of the hole formed in the lower grid is set to be different from the diameter of the hole formed in the upper grid
  • the electrostatic control control unit applies a negative voltage of the first level to the lower grid to create a gap between the lower grid and the substrate.
  • a negative voltage greater than the first level is applied to the upper grid so that the ions introduced through the lower grid collide with the lower surface of the upper grid to generate secondary electrons. It is controlled to emit higher density electrons toward the substrate through the holes in the lower grid.
  • the hole opening ratio in the center of the grid is formed to be higher than the hole opening ratio in the peripheral area.
  • the grid and the substrate support are further provided with a distance adjusting unit that moves up and down within the vacuum chamber, and the static electricity adjusting control unit adjusts the distance based on the process gas free stroke distance calculated according to the environmental conditions of the vacuum chamber.
  • the distance adjustment unit is controlled to change the position of at least one of the grid or the substrate support to the upper or lower side.
  • the surface of the grid is coated or sputtered with a film containing carbon components including carbon, CNT, and glassy carbon to prevent arc generation.
  • the grid surface is coated or sputtered with one of silicon oxide (SiO2), aluminum oxide (Al2O3), silicon nitride (Si3N4), and an oxide-based thin film to prevent arc generation.
  • the present technology provides the advantage of being able to accurately and quickly inject static electricity onto a substrate or easily remove static electricity formed on the substrate. Therefore, it is possible to minimize the defect rate due to the semiconductor manufacturing process and to manufacture more reliable semiconductor devices.
  • 1 is a diagram to explain the problem of removing static electricity in a semiconductor.
  • Figure 2 is a diagram for explaining the static electricity removal characteristics of the natural drop method using an ionizer.
  • FIG. 3 is a diagram schematically showing a semiconductor processing system equipped with a static electricity control device according to the first embodiment.
  • FIG. 4 is a diagram illustrating the configuration of the charged particle generation unit illustrated in FIG. 3.
  • FIG. 5 is a diagram for explaining the multi-zone structure of the grid and substrate support illustrated in FIG. 3.
  • FIG. 6 is a diagram for explaining the dual grid structure of the grid illustrated in FIG. 3.
  • FIG. 7 is a diagram showing the results of electrostatic injection and static electricity removal experiments according to the distance between the grid illustrated in FIG. 3 and the substrate support.
  • FIG. 8 is a diagram for explaining the operation of the static electricity control device of the semiconductor processing system illustrated in FIG. 3.
  • Figure 3 is a diagram schematically showing a semiconductor processing system equipped with a static electricity control device according to a first embodiment of the present invention.
  • the charged particle generation unit 100 is disposed on the inside upper side of the vacuum chamber C where the substrate 10 is placed, and the charged particle generation unit 100
  • the grid 200 and the substrate support 300 are sequentially arranged on the lower side, and charged particles are generated in the vacuum chamber (C) through the charged particle generator 100 and applied to the grid 200 and the substrate support 300.
  • Static electricity that is controlled to inject static electricity onto the substrate 10 or remove static electricity formed on the substrate 10 by controlling the density of charged particles emitted toward the substrate 10 through the grid 200. Includes an adjustment control unit 400.
  • the distance between the grid 200 and the substrate support 300 is adjusted up and down by adjusting the position of at least one of the grid 200 and the substrate support 300 according to the control of the electrostatic control control unit 400. It may further include an adjustment unit 500.
  • charged particles generated in the vacuum chamber (C) are selectively transmitted through the grid 200, and a bias voltage is applied to the substrate support 300 that supports the substrate 10 to form the grid 200.
  • the charged particles that have passed through are guided toward the substrate 10 to inject static electricity into the substrate 10 or to neutralize (remove) the static electricity formed on the substrate 10.
  • the vacuum chamber (C) is equipment that performs a semiconductor process on the substrate 10. Although not shown, it includes a vacuum forming part to maintain the inside of the chamber in a vacuum state and a gas supply part to supply gas into the chamber. do.
  • the vacuum forming unit may include a vacuum pump that discharges the material inside the chamber to the outside of the chamber, a vacuum gauge that can detect the degree of internal vacuum, a valve that controls the inflow and outflow of materials, and piping connecting each component. You can. And, the vacuum forming unit preferably maintains the degree of vacuum inside the chamber at 10 -1 to 10 -4 Torr.
  • the gas supply unit can supply different gases depending on the process, and can provide gases such as helium (He), nitrogen (N2), and argon (Ar) into the chamber, and the flow rate of the gas is It can be set from 10 to 1000 sccm.
  • gases such as helium (He), nitrogen (N2), and argon (Ar) into the chamber, and the flow rate of the gas is It can be set from 10 to 1000 sccm.
  • the charged particle generator 100 is a device that generates VUV (Vacuum Ultraviolet Ray) and reacts the VUV with a process gas to generate charged particles containing positive ions and electrons.
  • the charged particle generator 100 includes at least one of a VUV lamp and a plasma generator, and can additionally generate a line-shaped ion beam or a large-area electron beam using plasma to generate charged particles containing electrons and ions. .
  • Figure 4 illustrates the configuration of the charged particle generator 100.
  • the charged particle generation unit 100 may have a VUV lamp 110 located on the upper side of the vacuum chamber (C), and a large area from the side of the vacuum chamber (C) below the VUV lamp 110.
  • a beam generator 120 that emits a beam (B), that is, an ion beam or an electron beam, into the vacuum chamber (C) may be additionally provided.
  • the VUV lamp 110 may be arranged in plural numbers. That is, the VUV lamp 110 generates and irradiates VUV light in the 110nm to 400nm wavelength band into the vacuum chamber (C). VUV reacts with the process gas inside the vacuum chamber (C), decomposes the gas particles, and generates charged particles containing positive ions and electrons.
  • the beam generator 120 dissociates the process gas inside the vacuum chamber C through an ion beam or an electron beam to generate additional positive ions and electrons, thereby further increasing the density of electrons and positive ions emitted toward the grid 200.
  • the configuration of the beam generator 120 that generates a line-shaped beam is disclosed in Korean Patent Nos. 10-1911542, 10-1989847, 10-1998774, and 10-2118604, which are patents of the inventor of the present application. All of which is included in this application, and detailed description thereof will be omitted.
  • the charged particle generator 100 includes a plasma generator 130 disposed inside the vacuum chamber (C), as shown in FIG. 4(B).
  • the plasma generator 130 may generate charged particles including positive ions and electrons by reacting VUV formed in plasma with a process gas.
  • a VUV lamp 140 may be additionally disposed to emit VUV into the vacuum chamber (C) from the side of the vacuum chamber (C).
  • a plurality of VUV lamps 140 may be disposed, and may be located on both sides of the vacuum chamber (C), respectively, as shown in FIG. 4(B).
  • Electrons excited in the plasma formed in the plasma generator 130 return to the ground state and emit light having energy corresponding to the energy difference between the excited state and the ground state to the outside.
  • the wavelength band of light formed in this way is an ultraviolet band that can dissociate the gas provided by the gas supply unit to form particles with a negative charge and/or particles with a positive charge.
  • the plasma generator 130 may be an inductively coupled plasma (ICP) generating device or a capacitively coupled plasma (CCP) generating device.
  • the electrical signal supplied to the plasma generator 130 may be a pulse or continuous wave (CW).
  • the ultraviolet ray band includes near ultraviolet rays (NEAR UV, 300 nm to 380 nm), far ultraviolet rays (FAR UV, 200 nm to 300 nm), and vacuum ultraviolet rays (VUV, 70 nm to 70 nm) that have a shorter wavelength than the far ultraviolet band. 200 nm), and in the present invention, the plasma generator 130 can form ultraviolet rays in the vacuum ultraviolet (VUV) band.
  • the plasma generator 130 may be a micro-plasma source that generates plasma using DC, RF, and pulse power in the range of 10-200 W in an environment where the volume of the vacuum chamber is in the range of 500-1000 cc.
  • the micro-plasma source is It is equipped with a separate vacuum chamber for forming plasma, and is provided with means for performing gas injection, gas exhaust processing, vacuum processing, and power supply processing into this vacuum chamber under the control of the static electricity control control unit 400. .
  • the micro plasma source consists of one of the atmospheric pressure plasma devices using ICP, CCP, TCP, hollow cathode, and DBD, and generates plasma using various process gases including oxygen, nitrogen, argon, and helium.
  • the micro plasma source Compared to VUV lamps, which typically require a preheating time of about 30 seconds and cannot control the output of the light source, the micro plasma source has a vacuum chamber volume in the range of 500 to 1000 CC, so the plasma can be turned on/off freely and process conditions can be easily changed. It has the advantage of having a short plasma turn on time. When using a microplasma source, it takes more processing time than necessary for the semiconductor multilayer thin film, so it is possible to prevent deterioration of thin film properties and to more quickly and adaptively inject or remove static electricity on the substrate.
  • the plasma generator 130 can be configured with a plurality of micro plasma sources.
  • Figure 4(C) illustrates the first to third micro plasma sources 131, 132, and 133.
  • the first to third micro plasma sources 131, 132, and 133 are each implemented on independent vacuum chambers, and the static electricity adjustment control unit 400 operates on the first to third micro plasma sources 131, 132, and 133.
  • the static electricity adjustment control unit 400 can be configured to individually control the vacuum environment, process gas type, plasma power, etc. to perform different static electricity injection or static electricity removal treatments in different areas of the substrate 10.
  • the static electricity adjustment control unit 400 sets the pressure or power of the micro plasma source corresponding to that location differently from the pressure or power of the micro plasma source at other locations. You can set it. This allows a more precise static electricity control process to be performed compared to VUV lamps, which cannot control the wavelength of the output VUV light.
  • the wavelength of VUV generated from the micro plasma source depends on the type of process gas.
  • the main wavelength is 58.4 nm
  • oxygen gas is used as the process gas
  • the main wavelength is 130.5 nm
  • argon gas is used
  • the main wavelength is 58.4 nm.
  • the static electricity adjustment control unit 400 can select a desired VUV wavelength by varying or mixing the types of process gases supplied to the vacuum chambers of the first to third micro plasma sources 131, 132, and 133, and through this, the desired VUV wavelength can be selected on the substrate 10.
  • the level of static electricity injected or removed can be set differently for each area. For example, when the band gap energy of the semiconductor thin film formed on the substrate 10 is large, helium gas can be used, and when the band gap energy is small, nitrogen gas can be used.
  • the static electricity control control unit 400 can selectively operate only the micro plasma source at a location corresponding to the area of the substrate 10 that requires static electricity control.
  • the first to third micro plasma sources 131, 132, and 133 may be implemented as different types of atmospheric pressure plasma devices using ICP, CCP, TCP, hollow cathode, and DBD. .
  • a separator plate 150 made of MgF2 glass or CaF2 glass is placed on the lower side of the plasma generator 130 as shown in FIG. 4(B) to generate the VUV wavelength generated in the plasma generator 130. It can be configured to block positive ions, electrons, and active species from being emitted downward and to transmit only VUV. At this time, charged particles generated by the reaction of the VUV generated from the plasma generator 130 and the process gas and charged particles generated by the reaction of the VUV and the process gas emitted from the VUV lamp are simultaneously generated.
  • the separation plate 150 may be further equipped with an optical filter coating that selectively transmits only VUV to emit light of 10 to 20 mm in size downward, and may be used as a concave lens or convex lens.
  • the divergence angle of the VUV light emitted downward can be set to a desired shape using the light.
  • the separator plate 150 may be disposed (151, 152, 153) below the first to third micro plasma sources (131, 132, and 133), respectively, They can have different divergence angles.
  • a convex lens may be provided below the first and third micro plasma sources 131 and 133
  • a concave lens may be provided below the second micro plasma source 132.
  • a light diffusion plate (not shown) can be placed on the front of the VUV lamp 140 to diffuse the VUV light into the vacuum chamber (C).
  • the grid 200 is composed of a plate shape made of a conductive material, and a plurality of micro holes are formed to discharge charged particles flowing in from the upper side to the lower side.
  • the electrostatic charging voltage of the substrate 10 is always formed to be higher at the center than the outside after the process, it is preferable that the microhole opening ratio at the center of the grid 200 be formed at least 10% higher than the surrounding area, and the microholes are The diameter can be set in the range of 1 to 10 mm in shapes such as circles and diamonds.
  • the grid 200 selectively emits charged particles toward the substrate 10 according to the voltage supplied through the static electricity adjustment control unit 400.
  • the grid 200 is composed of a multi-zone type in which a plurality of areas are electrically separated, and different voltages (V 1 , V 2 , V 3 ) are individually supplied to each area. It can be configured to be supplied as.
  • the voltage supplied to the center of the grid 200 can be set higher than that of the surrounding area (V 1 >V 2 >V 3 ). That is, a higher density of charged particles can be supplied to the center of the substrate 10.
  • the multi-zone type grid 200 prepares a circular or square graphite or metal plate with a thickness of 5 mm to 10 mm separated into multi zones, and polyimide of 50 ⁇ m to 100 ⁇ m.
  • a copper (Cu) film of 20 to 100 ⁇ m is laminated to a metal plate or graphite.
  • the copper (Cu) film is patterned on both sides and then etched, and the metal plate or graphite is patterned to be electrically separated.
  • a number of holes are formed to have a diameter of 1 to 10 mm, and the insides of the holes are plated.
  • it is desirable for the hole to have an opening ratio of 50% or more of the metal plate or graphite surface, and the inside of the hole can be treated with 20 ⁇ m electroless plating and 30 ⁇ m electrolytic plating.
  • the grid 200 is a film containing carbon components including carbon, CNT, glassy carbon, etc. on the upper surface, but it is also made of a film containing carbon components such as DLC (diamond like carbon), silicon oxide (SiO 2 ), and aluminum oxide (Al 2 It can be configured to prevent arc generation by coating or sputtering one of O 3 ), silicon nitride (Si 3 N 4 ), or oxide-based thin films to a thickness of 100 to 1000 nm. .
  • DLC diamond like carbon
  • SiO 2 silicon oxide
  • Al 2 aluminum oxide
  • the grid 200 may have a dual grid structure consisting of an upper grid 210 and a lower grid 220, as shown in FIG. 6 .
  • the upper grid 210 and the lower grid 220 are provided with different voltages (Vg 1 and Vg 2 ) from the static electricity adjustment control unit 400, respectively. That is, the upper grid 210 is provided with a voltage of, for example, 50-100 V, sufficient to induce the charges inside the vacuum chamber (C) into the grid hole, and the lower grid 220 is provided with a voltage that enters the grid hole.
  • a voltage of 300 to 500 V is provided to have sufficient kinetic energy to be released to the substrate.
  • the grid 200 of the dual grid structure sets the grid hole diameter of the lower grid 220 to be 10 to 20% smaller than the grid hole diameter of the upper grid 210, thereby additionally generating secondary electrons within the grid 200. By doing so, the charge density discharged toward the substrate 10 can be made higher.
  • the upper grid 210 serves as a cathode that emits secondary electrons, and is made of materials such as aluminum or anodized Al, Carbon, CNT, etc., and applies a negative voltage of -50 to -150 V to the lower grid 220.
  • a negative voltage for example, a voltage of -200 to -1000 V.
  • these ions can collide with the lower surface of the upper grid (cathode) and generate secondary electrons.
  • the lower surface of the upper grid 210 can be roughened to make the direction of movement of secondary electrons wider and improve uniformity. Since the generation of secondary electrons through this dual grid structure does not generate active species (radicals) with chemical properties, a process that does not damage the substrate 10 is possible.
  • the electron beam can inject a high density of electrons into a specific area in a short period of time when injecting static electricity, thereby minimizing the physical impact of the substrate 10.
  • the substrate support 300 is composed of a plate shape made of a dielectric material or a conductive material, so that charges emitted from the grid 200 according to the bias voltage supplied from the static electricity adjustment control unit 400 are stored on the substrate 10 at a preset density. Gives kinetic energy to go to the side.
  • the substrate support 300 may be divided into a plurality of regions and configured to individually provide different bias voltages from the static electricity adjustment control unit 400.
  • the substrate support 300 when the areas of the grid 200 are divided and each area is individually supplied with voltage, the substrate support 300 is divided into the same area as the grid 200 and receives the voltage of the grid 200. Each region can receive a bias voltage with the same polarity and equal voltage difference.
  • only the grid 200 may be separated into multiple areas, and the substrate support 200 may not be separated into multiple areas, and the grid 200 and the substrate support 200 may be separated to have areas of different shapes.
  • the static electricity control level for each region is different, the voltage difference between the voltages applied to the grid 200 and the substrate support 300 may be different for each region. Accordingly, static electricity injection and static electricity removal processes can be performed simultaneously in different areas of the substrate 10.
  • a rotating part 310 may be additionally provided on the lower side of the substrate support 300 to rotate the substrate support 300, and the rotating part 310 may be used during the static electricity control process under the control of the static electricity control control unit 400. Rotate the substrate support 300 at 1 to 30 RPM.
  • the distance between the grid 200 and the substrate 10 is preferably set to within 4 times the free stroke distance of the process gas according to the environmental conditions inside the vacuum chamber (C).
  • Equation 1 the process gas free stroke distance ( ⁇ ) can be calculated using Equation 1 below.
  • K Boltmann's constant
  • T temperature
  • P pressure
  • D the process gas particle diameter
  • the distance between the substrate 10 and the grid 200 is set to 10 mm, which is the free stroke distance depending on the process gas and pressure, and a bias voltage of 200V is supplied to the substrate 10. , the substrate 10 voltage was induced to the desired -10 V. Through this, it was confirmed that the distance between the substrate 10 and the grid 200 and the bias voltage to the substrate support 300 are important variables in controlling static electricity on the substrate 10.
  • FIG. 7 is the result of an experiment on the electrostatic injection process, measured using the QC 3000e system of Semilab. As a result, the distance between the grid 200 and the substrate 10 under the above-described process gas conditions is determined by the process gas environment. It was confirmed that the same electrostatic voltage was maintained on the substrate 10 up to 40 mm, which is 4 times the free stroke distance (10 mm).
  • FIG. 7 (B) is the result of an experiment on the static electricity removal process, measured using the QC 3000e system of Semilab, and as a result, the distance between the grid 200 and the substrate 10 under the above-described process gas conditions is depending on the process gas environment. Up to 40 mm, which is four times the free stroke distance (10 mm), static electricity is removed and the static electricity voltage converges to "0", but it can be seen that static electricity is generated again at distances beyond that.
  • the static electricity injection and removal efficiency according to the free path distance of electrons and cations is determined by the difference in the size of molecules compared to the process gas, or selective electron or cation extraction at the top of the grid where ions and electrons are formed by grid voltage, and substrate. It was confirmed to be influenced by the bias electric field of the support and the rapid vacuum evacuation effect.
  • the static electricity control unit 400 controls the voltage supplied to each device so that ions or electrons are supplied to the substrate 10 at a desired density to inject static electricity onto the substrate or to remove static electricity formed on the substrate 10. Control to remove.
  • the electrostatic control control unit 400 adjusts the power level by adjusting the pulse period when power is supplied to the grid 200 and the substrate support 300.
  • the electrostatic control control unit 400 supplies voltage so that the voltage difference between the grid 200 and the substrate support 300 is 2 times or more, for example, 2.5 times or more. That is, the bias voltage applied to the substrate support 300 is set to be 2.5 times higher than the voltage applied to the grid 200.
  • the static electricity adjustment control unit 400 supplies voltage so that the voltage difference between the grid 200 and the substrate support 300 is within a similar preset range, for example, the same, in the static electricity removal mode.
  • the static electricity control unit 400 supplies power such as DC, DC pulse, reverse pulse, AC, RF, etc. to the grid 200 and the fingerboard support 300.
  • power such as DC, DC pulse, reverse pulse, AC, RF, etc.
  • the grid By supplying voltage so that the 200) and the substrate support 300 synchronize with each other, the efficiency of electrostatic injection and removal can be increased.
  • the density of ions and electrons may change depending on changes in the gas flow rate, vacuum degree, pumping speed, etc. in the vacuum chamber (C), so fine control of the density is not possible with direct current power, so the static electricity control control unit 400 is grid-controlled.
  • the electrostatic voltage By controlling the electrostatic voltage more accurately by adjusting the pulse on / off period or polarity of the pulse-type power applied to (200) and the substrate support 300, overshooting on the substrate 10 is prevented. You can prevent it from happening.
  • the charged particles passing through the grid 200 are accelerated toward the substrate 10 by electrical attraction, and the charged particles accelerated toward the substrate 10 are toward the substrate 10.
  • the static electricity is charged or the static electricity formed on the substrate 10 is neutralized.
  • the static electricity control control unit 400 may increase or decrease the bias voltage and supply it to the substrate support 300 in a stepwise manner.
  • the electrostatic control control unit 400 adjusts the voltage level of the voltage supplied to the grid 200 or the substrate support 300 in a certain time unit (several seconds) or stops the voltage supply at a certain interval (interval). ) By setting the automatic neutralization time, it is possible to prevent overcharge on the surface without affecting the nano-sized ultrafine pattern formed on the surface of the substrate 10.
  • the substrate 10 on which an insulating film is formed is placed on the upper surface of the substrate support 300 provided in the vacuum chamber C.
  • the insulating film formed on the surface of the substrate 10 is made of materials such as SiO 2 , Si 3 N 4 , Poly-si, and doped oxide using plasma or atomic layer deposition, and has a thickness of It can vary from 10 nm to 200 nm.
  • the static electricity control control unit 400 calculates the process gas free stroke distance corresponding to the environmental conditions of the vacuum chamber using Equation 1 (ST100).
  • various information including temperature, pressure, and process gas molecule size for calculating the process gas free stroke distance can be input in advance by the administrator.
  • the static electricity control control unit 400 controls the distance control unit 500 to adjust the grid 200 so that the distance between the grid 200 and the substrate 10 is within 4 times the process gas free stroke distance calculated in the ST100 step. ) or the position of at least one of the substrate supports 300 is adjusted upward or downward (ST200).
  • the static electricity control unit 400 sets a vacuum environment by supplying process gas under preset environmental conditions into the vacuum chamber (C).
  • the static electricity control unit 400 generates VUV through the charged particle generation unit 100 and generates charged particles such as positive ions and electrons through a reaction between the VUV and the process gas.
  • the ion density by VUV is determined by pressure. Although there is a lot of variation, it is approximately 10 3 to 10 4 /cm 2 , whereas the capacity of static electricity required for the substrate 10 is approximately 10 8 to 10 9 cm 2 , and a lot of process time is required for electrostatic injection.
  • the process time can be reduced by additionally using a line beam-shaped ion beam using plasma to increase the ion density to 10 6 ⁇ 10 7 cm 2 . As shown in FIG.
  • the static electricity control control unit 400 applies a preset voltage to the grid 200 and the substrate support 300, but also applies the voltage to the substrate support 300.
  • the bias voltage is supplied to be more than twice as high as the voltage applied to the grid 200 (ST400).
  • the voltage applied to the grid 200 is set higher than the voltage applied to the grid 200 in the static electricity removal mode, and the voltage in the form of a pulse can be supplied to at least one of the grid 200 and the substrate support 300.
  • the manager sets the electrostatic voltage to be injected into the substrate 10, and the electrostatic control control unit 400 stores the grid 200 and the substrate support 300 to correspond to the electrostatic voltage required by the manager. ), and the corresponding power is supplied to the grid 200 and the substrate support 300 accordingly.
  • the charged particles generated in the charged particle generator 100 are generated by the voltage of the grid 200.
  • the charged particles selectively pass through the microholes and move toward the substrate 10, and are emitted at a higher density toward the substrate 10 by the high voltage applied to the substrate support 300.
  • the static electricity control unit 400 applies a preset voltage to the grid 200 and the substrate support 300, and sets the voltage applied to the grid 200 and the bias voltage applied to the substrate support 300 to be the same or within a similar range (ST600) ).
  • a voltage in the form of a pulse may be supplied to at least one of the grid 200 and the substrate support 300.
  • the manager sets the static electricity removal voltage of the substrate 10, and the static electricity control control unit 400 uses the previously stored grid 200 and the substrate support 300 to correspond to the static electricity removal voltage required by the manager. ), and the corresponding power is supplied to the grid 200 and the substrate support 300 accordingly.
  • removing static electricity from the surface of the substrate is the same as during the electrostatic injection process, but the static electricity embedded inside the multilayer film of the substrate 10 causes VUV of 100 nm to 200 nm, which has an energy greater than the band gap of each insulating film, to penetrate the multilayer film.
  • VUV energy in the 120 nm wavelength band is 10.33 eV
  • the silicon energy is 1.1 eV
  • the SiO 2 energy is 9 to 10 eV.
  • the static electricity control unit 400 injects and removes static electricity into each area of the grid 200 and the substrate support 300. By supplying corresponding different voltages, it can be controlled to inject static electricity into a certain part of the substrate 10 and remove static electricity from another part of the substrate 10.

Abstract

A static electricity control device for injecting static electricity into a substrate disposed in a vacuum chamber or removing static electricity formed on the substrate in a semiconductor processing system, according to an embodiment, comprises: a charged particle generation unit, disposed on an upper side inside the vacuum chamber, that generates charged particles including positive ions and electrons by generating a vacuum ultraviolet ray (VUV) and reacting the VUV with a process gas inside the vacuum chamber; a grid provided with a plurality of holes, disposed on a lower side of the charged particle generation unit, that selectively pass the type of charged particles downward according to an input voltage; a substrate support, disposed below the grid and having the substrate positioned thereon, that is made of a conductive material and guides the charged particles passing through the grid toward the substrate at a predetermined density according to an input bias voltage; and a static electricity control unit that controls the static electricity of the substrate by supplying a pulsed voltage to at least one of the grid and the substrate support, wherein the grid and the substrate support are arranged so as to have a separation distance that is within four times the mean free path of the process gas according to environmental conditions of the vacuum chamber.

Description

반도체 공정 시스템의 정전기 조절 장치Electrostatic control devices in semiconductor processing systems
본 기술은 일반적으로 기판상에 정전기를 주입하거나 기판상에 형성된 정전기를 제거하여 반도체 공정에 따라 기판이 요구하는 정전기 레벨을 용이하게 조절할 수 있는 기술과 관련된다.This technology is generally related to a technology that can easily adjust the level of static electricity required by the substrate according to the semiconductor process by injecting static electricity onto the substrate or removing static electricity formed on the substrate.
최근, 반도체 산업의 집적화가 높아질수록 반도체 소자의 크기와 면적이 감소하고 있는 추세이다.Recently, as the integration of the semiconductor industry increases, the size and area of semiconductor devices tend to decrease.
이에 따라 반도체 소자의 패턴을 형성하는 패턴의 크기와 박막의 두께가 감소하고 있고, 특히 종래에는 크게 영향을 미치지 않았던 요인들이 반도체 소자 개발에서 중요한 요소로 대두되고 있다. 이러한 요소들 중 하나로는 기판에 형성되는 정전기가 있으며, 이로 인해 기판에 형성되는 정전기를 조절하는 공정이 적용되고 있다.Accordingly, the size of the pattern forming the pattern of the semiconductor device and the thickness of the thin film are decreasing, and in particular, factors that did not have a significant influence in the past are emerging as important factors in the development of semiconductor devices. One of these factors is static electricity formed on the substrate, and a process to control the static electricity formed on the substrate is being applied.
반도체 공정 중 플라즈마를 이용하는 증착, 식각 혹은 기판의 세정 공정 중에는 정전기가 기판에 형성되는데, 이의 전압이 너무 크거나 기판 내부에서 충전 후 갑자기 방전을 하게 되면, 아크(Arc) 등의 현상으로 패턴 변형 등이 발생할 수 있다. During the semiconductor process, static electricity is formed on the substrate during deposition, etching, or substrate cleaning processes using plasma. If the voltage is too high or the substrate is suddenly discharged after charging, it can cause pattern deformation due to phenomena such as arcs. This can happen.
또한 기판에 형성되는 정전기는 이온이 제거된 용수(Deionized water) 이용 및 대전된 플라스틱 재료로부터 전하 이전(charge transfer), 또는 인덕션 차징(induction charge) 혹은 플라즈마를 이용한 공정시 전하에 의해 주로 발생된다.In addition, the static electricity formed on the substrate is mainly generated by charges during processes using deionized water, charge transfer from charged plastic materials, or induction charging or plasma.
이러한 정전기의 발생을 방지하고자 패턴 형성 공정전이나, 세정 공정 전 혹은, 플라즈마 처리 공정전에 기판의 절연체(박막)의 수nm -수십nm 내부에 양전하(이온) 혹은 음전하(전자)를 미리 차징(주입)하여, 다중 패터닝 공정시의 국소 패턴 균일도 및 국소 에지 배치 오류 등의 미세 패턴 조절 및, 기타 공정시 발생하는 정전기를 조절(trade-off)하는 목적으로 이용하고 있다. 이를 정전기 차저 (charger) 라고 한다. To prevent the generation of such static electricity, positive charges (ions) or negative charges (electrons) are pre-charged (injected) into the insulator (thin film) of the substrate from several nanometers to tens of nanometers before the pattern formation process, cleaning process, or plasma treatment process. ), it is used to control fine patterns such as local pattern uniformity and local edge placement errors during the multiple patterning process, and to control (trade-off) static electricity generated during other processes. This is called an electrostatic charger.
한편, 기판의 정전기는 회전운동을 이용하는 포토 공정이나 세정 공정에서 주로 발생하며 이는 원심력 차이에 의하여 중앙부에 가장 많은 정전기가 집중하는 것으로 알려져 있다. 즉, 포토 레지스트(photo resist)코팅 공정에서 웨이퍼(wafer)의 고속 회전으로 기판 중심부의 공기 흐름 집중도는 외곽에 비해 3 배 이상 높아져서 상대적으로 원심력이 약한 중심부를 중심으로 정전기가 형성된다. 기판의 중심부에 형성되는 강한 전기장에 의한 정전기는 다층 절연막의 내부 혹은 웨이퍼 표면 및 표면에 형성된 포토 레지스트 패턴에 충전(charge)된다. Meanwhile, static electricity on the substrate is mainly generated during the photo process or cleaning process using rotational movement, and it is known that the most static electricity is concentrated in the center due to the difference in centrifugal force. In other words, due to the high-speed rotation of the wafer in the photo resist coating process, the concentration of air flow in the center of the substrate increases by more than three times compared to the outside, and static electricity is formed around the center where centrifugal force is relatively weak. Static electricity caused by a strong electric field formed in the center of the substrate is charged to the inside of the multilayer insulating film or to the surface of the wafer and the photoresist pattern formed on the surface.
이에, 기판상에 형성된 정전기를 효율적으로 제거하는 방법이 필요한데, 이와 같이 기판상에 이미 생성되었거나 공정 중 생성되는 정전기를 제거하는 장치를 정전기 디스차저(discharger) 라고 한다. Accordingly, a method for efficiently removing static electricity formed on a substrate is needed, and a device that removes static electricity already generated on the substrate or generated during the process is called a static electricity discharger.
도1 (A)에는 기판(1)의 중앙부분으로부터 외곽측으로 -50V, -30V, -10V의 정전기 전압이 나타난 형상이 예시되어 있다. Figure 1 (A) illustrates a shape in which electrostatic voltages of -50V, -30V, and -10V appear from the central part of the substrate 1 to the outer side.
그러나, 도 1(A)에 도시된 바와 같이 기판(1)의 중심부를 중심으로 높은 전압으로 차징되는 경우, 도 1(B)에서 기판의 중앙부분에 해당하는 영역(도 1(A)에서 정전기 전압이 -50V 인 영역)에는 절연체인 P/R(Photo Resist) 혹은 옥사이드 등의 기판(1) 표면 뿐 아니라 기판 표면의 일정 깊이(D)까지 전하가 차징되어 낮은 운동 에너지를 갖는 이온에 의한 중화가 불가능한 상태가 발생될 수 있다. However, as shown in FIG. 1(A), when charged with a high voltage around the center of the substrate 1, the area corresponding to the center of the substrate in FIG. 1(B) (static electricity in FIG. 1(A) In the area where the voltage is -50V, charges are charged not only on the surface of the substrate (1) such as insulating P/R (Photo Resist) or oxide, but also to a certain depth (D) of the substrate surface, resulting in neutralization by ions with low kinetic energy. An impossible situation may occur.
또한, 기판에 차징되는 정전기 전압은 공정의 종류와 재료 및 패턴 형상 등의 많은 변수가 있으며, 일반적으로 -100V ~ +100V 사이로 형성된다.Additionally, the electrostatic voltage charged to the substrate has many variables, such as the type of process, material, and pattern shape, and is generally between -100V and +100V.
예컨대, 도 1(B)에 도시된 바와 같이, 10nm 이내의 미세 회로내의 절연막 또는 "5" 이상의 종횡비(aspect ratio)를 갖는 패턴(P)이 형성되는 등의 기판(1)에 100V 이하의 차징 전압이 형성되는데, 패턴폭이 좁아서 이오나이저에서 발생되는 양이온과 음이온간의 자체 중화 효과 및 기판과 이온간의 낮은 전압차에 따른 낮은 기전력으로 인한 이온의 충돌 감소로 박막 내부에 축적된 정전기 제거에 어려움이 있다.For example, as shown in FIG. 1(B), charging of 100V or less is applied to the substrate 1 on which an insulating film in a fine circuit of less than 10 nm or a pattern P having an aspect ratio of "5" or more is formed. A voltage is formed, but because the pattern width is narrow, it is difficult to remove static electricity accumulated inside the thin film due to the self-neutralizing effect between positive and negative ions generated in the ionizer and the reduction of ion collisions due to the low electromotive force due to the low voltage difference between the substrate and ions. there is.
종래에는 이오나이저를 이용하여 기판의 정전기를 제거하였다. 그러나, 이오나이저를 이용하는 방식은 도 2에 도시된 바와 같이, 기판에 1000V로 정전기가 차장된 경우, 이를 소프트 엑스레이(soft Xray) 이오나이저로 100V 내로 줄이는 것은 1~2초 내의 디케이(Decay) 타임을 가지나, 초기 100V 이하의 차징 전압이 형성되는 경우에는 차징 전압을 그 이하로 감소시키는데 오랜 시간이 소요된다. Conventionally, static electricity from the substrate was removed using an ionizer. However, in the method using an ionizer, as shown in FIG. 2, when static electricity is charged to the substrate at 1000V, reducing it to within 100V with a soft Xray ionizer requires a decay time of 1 to 2 seconds. However, when a charging voltage of 100 V or less is initially formed, it takes a long time to reduce the charging voltage to that level.
또한, 일반적으로 이오나이저의 이온 밀도가 106 인 것을 고려할 때, 기판내 PR 하부의 실리콘 옥사이드층 내부에도 차징이 발생하여 이온 밀도가 108 이상으로 되는 경우에는 종래 이오나이저를 이용하여 기판(1)의 내부에 형성된 정전기를 제거할 수 없다. In addition, considering that the ion density of the ionizer is generally 10 6 , if charging also occurs inside the silicon oxide layer below the PR in the substrate and the ion density becomes 10 8 or more, a conventional ionizer is used to irradiate the substrate (1). ) cannot be removed.
본 기술로 해결하고자 하는 과제 중 하나는 상기한 종래 기술의 난점을 해소하기 위한 것이다. 본 기술로 해결하고자 하는 과제 중 하나는 그리드 및 기판지지대로 인가되는 전압을 제어하는 간단한 방법으로 기판상에 정확하고 신속하게 정전기를 주입하거나 기판상에 형성된 정전기를 용이하게 제거할 수 있는 반도체 공정 시스템의 정전기 조절 장치를 제공하기 위한 것이다.One of the problems to be solved with this technology is to solve the difficulties of the prior art described above. One of the challenges to be solved with this technology is to create a semiconductor processing system that can accurately and quickly inject static electricity onto a substrate or easily remove static electricity formed on the substrate using a simple method of controlling the voltage applied to the grid and substrate support. The purpose is to provide a static electricity control device.
본 실시예에 의한 반도체 공정 시스템의 정전기 조절 장치는 진공챔버 내에 배치된 기판상에 정전기를 주입하거나 기판상에 형성된 정전기를 제거하는 반도체 공정 시스템의 정전기 조절 장치로, 상기 진공챔버 내부 상측에 배치되면서, VUV(Vacuum Ultraviolet Ray)를 발생시켜 이 VUV와 진공챔버 내부의 공정가스가 반응함으로써, 양이온 및 전자를 포함하는 하전입자를 생성하는 하전입자 생성부와,상기 하전입자 생성부의 하측에 배치되어 입력 전압에 따라 하전입자를 선택적으로 하측으로 통과시키는 다수의 홀이 구비된 그리드, 상기 그리드의 하측에 배치되면서 그 상면에 상기 기판이 위치되고, 입력 바이어스 전압에 따라 그리드를 통과한 하전입자를 기 설정된 밀도로 기판측으로 유도하는 기판지지대 및 상기 그리드 및 상기 기판지지대 중 적어도 하나로 펄스 형태의 전압을 공급하여 기판의 정전기를 조절하는 정전기 조절 제어부를 포함하고, 상기 그리드와 기판지지대는 진공챔버 환경조건에 따른 공정가스 자유행정거리의 4배 이내의 이격 거리를 갖도록 배치된다.The static electricity control device of the semiconductor processing system according to this embodiment is a static electricity control device of the semiconductor processing system that injects static electricity onto a substrate disposed in a vacuum chamber or removes static electricity formed on the substrate, and is disposed on the upper side of the vacuum chamber. , a charged particle generation unit that generates charged particles including positive ions and electrons by generating VUV (Vacuum Ultraviolet Ray) and reacting this VUV with the process gas inside the vacuum chamber, and is disposed below the charged particle generation unit to input A grid provided with a plurality of holes that selectively allow charged particles to pass downward according to voltage, the substrate is placed on the lower side of the grid, and the charged particles passing through the grid according to the input bias voltage are preset. It includes a substrate support that induces density toward the substrate, and a static electricity control control unit that supplies a voltage in the form of a pulse to at least one of the grid and the substrate support to control static electricity of the substrate, wherein the grid and the substrate support depend on environmental conditions of the vacuum chamber. It is arranged to have a separation distance of less than 4 times the free stroke distance of the process gas.
본 실시예의 어느 한 측면에서, 상기 정전기 조절 제어부는, 정전기 주입모드에서는 기판지지대로 인가되는 바이어스 전압을 그리드로 인가되는 전압보다 일정 레벨 이상 높게 되도록 인가하고, 정전기 제거모드에서는 그리드로 인가되는 전압과 기판지지대로 인가되는 바이어스 전압이 기 설정된 유사범위내가 되도록 인가한다.In one aspect of this embodiment, the static electricity control unit applies the bias voltage applied to the substrate support to be higher than the voltage applied to the grid in the static electricity injection mode, and applies the voltage applied to the grid in the static electricity removal mode. Apply the bias voltage applied to the substrate support so that it is within a similar preset range.
본 실시예의 어느 한 측면에서, 상기 정전기 조절 제어부는, 상기 그리드 및 지판지지대로 인가되는 펄스 주기를 조절하여 전압 레벨을 조절한다.In one aspect of this embodiment, the electrostatic control control unit adjusts the voltage level by adjusting the pulse period applied to the grid and fingerboard support.
본 실시예의 어느 한 측면에서, 상기 하전입자 생성부는, VUV를 방출하는 VUV 램프를 하나 이상 포함한다. In one aspect of this embodiment, the charged particle generator includes one or more VUV lamps that emit VUV.
본 실시예의 어느 한 측면에서, 상기 VUV 램프의 하측에는, 진공챔버의 측면을 통해 라인형태의 이온빔을 방출하는 빔 발생기를 추가로 구비하여, VUV와 공정가스 반응에 의한 하전입자와, 이온빔과 공정가스 반응에 의한 하전입자를 동시에 생성하여 하전입자 밀도를 증가시킨다.In one aspect of this embodiment, a beam generator is further provided below the VUV lamp to emit an ion beam in the form of a line through the side of the vacuum chamber, so that charged particles, ion beams, and the process are generated by the reaction of the VUV and the process gas. Charged particles are simultaneously generated through gas reaction to increase charged particle density.
본 실시예의 어느 한 측면에서, 상기 하전입자 생성부는 플라즈마를 생성하는 플라즈마 발생기와, 플라즈마 발생기의 하측에 VUV만을 투과시키는 분리판을 구비하여, 플라즈마 발생기에서 발생된 VUV와 공정가스 반응에 의해 하전입자를 생성한다.In one aspect of the present embodiment, the charged particle generator includes a plasma generator that generates plasma, and a separator that transmits only VUV below the plasma generator, and the charged particle generation unit generates charged particles by a reaction between the VUV generated in the plasma generator and the process gas. creates .
본 실시예의 어느 한 측면에서, 상기 플라즈마 발생기는 진공챔버의 볼륨이 500~1000cc 범위인 진공환경에서 10 ~200W 범위의 전원을 이용하여 플라즈마를 생성하는 적어도 하나의 마이크로 플라즈마 장치를 포함한다.In one aspect of this embodiment, the plasma generator includes at least one micro plasma device that generates plasma using a power source in the range of 10 to 200 W in a vacuum environment where the volume of the vacuum chamber is in the range of 500 to 1000 cc.
본 실시예의 어느 한 측면에서, 상기 정전기 조절 제어부는, 마이크로 플라즈마 장치의 진공챔버로 주입하는 공정가스의 종류 또는 플라즈마 전원 중 적어도 하나를 조절하여 기판의 정전기를 조절한다.In one aspect of this embodiment, the static electricity control unit adjusts the static electricity of the substrate by controlling at least one of the type of process gas injected into the vacuum chamber of the micro plasma device or the plasma power source.
본 실시예의 어느 한 측면에서, 상기 플라즈마 발생기는 다수의 마이크로 플라즈마 장치를 포함하고, 상기 정전기 조절 제어부는 각 마이크로 플라즈마 장치의 진공챔버로 주입하는 공정가스의 종류 또는 플라즈마 전원을 개별적으로 제어하여 기판의 정전기를 조절한다.In one aspect of this embodiment, the plasma generator includes a plurality of micro plasma devices, and the electrostatic control control unit individually controls the type of process gas or plasma power injected into the vacuum chamber of each micro plasma device to control the plasma power of the substrate. Control static electricity.
본 실시예의 어느 한 측면에서, 상기 플라즈마 발생기는 다수의 마이크로 플라즈마 장치를 포함하고, 상기 분리판은 각 마이크로 플라즈마 장치에 대해 일대일 대응되게 각각 배치되며, 상기 정전기 조절 제어부는 각 마이크로 플라즈마 장치의 진공챔버로 주입하는 공정가스의 종류 또는 플라즈마 전원을 개별적으로 제어하여 기판의 정전기를 조절하되,상기 각 분리판에는 서로 다른 발산 각도를 갖는 렌즈ㄹ를 포함한다.In one aspect of this embodiment, the plasma generator includes a plurality of micro plasma devices, the separation plate is disposed in a one-to-one correspondence with each micro plasma device, and the static electricity adjustment control unit controls the vacuum chamber of each micro plasma device. The static electricity of the substrate is adjusted by individually controlling the type of process gas injected or the plasma power, and each separator plate includes lenses having different divergence angles.
본 실시예의 어느 한 측면에서, 상기 그리드와 기판지지대는 다수 영역이 전기적으로 분리되는 멀티 존 타입이고, 상기 정전기 조절 제어부는 그리드와 기판지지대의 각 영역으로 서로 다른 레벨의 전압을 개별적으로 공급한다.In one aspect of this embodiment, the grid and the substrate support are of a multi-zone type in which multiple areas are electrically separated, and the static electricity control unit individually supplies voltages at different levels to each region of the grid and the substrate support.
본 실시예의 어느 한 측면에서, 상기 정전기 조절 제어부는 기판의 일정 부분에는 정전기를 주입하고, 기판의 다른 부분에는 정전기를 제거하도록 그리드와 기판지지대의 각 영역으로 전압을 공급한다. In one aspect of this embodiment, the static electricity control unit supplies voltage to each area of the grid and the substrate support to inject static electricity into a certain portion of the substrate and remove static electricity from another portion of the substrate.
본 실시예의 어느 한 측면에서, 상기 그리드는 상부 그리드와 상부 그리드와 하측에 배치되는 하부 그리드를 포함하고, 상기 정전기 조절 제어부는 상부 그리드와 하부 그리드로 서로 다른 레벨의 전압을 공급한다.In one aspect of this embodiment, the grid includes an upper grid and a lower grid disposed below the upper grid, and the static electricity adjustment control unit supplies voltages at different levels to the upper grid and the lower grid.
본 실시예의 어느 한 측면에서, 상기 하부 그리드에 형성된 홀의 직경은 상부 그리드에 형성된 홀의 직경과 다르게 설정되고, 정전기 조절 제어부는 제1 레벨의 음의 전압을 하부 그리드로 인가하여 하부 그리드와 기판 사이의 이온을 하부 그리드의 홀을 통해 상부 그리드 측으로 유도한 후, 상부 그리드로 제1 레벨보다 큰 음의 전압을 인가하여 하부 그리드를 통해 유입된 이온이 상부 그리드의 하면에 충돌하여 이차전자를 발생시킴으로써, 보다 높은 밀도의 전자를 하부 그리드의 홀을 통해 기판측으로 방출하도록 제어한다.In one aspect of this embodiment, the diameter of the hole formed in the lower grid is set to be different from the diameter of the hole formed in the upper grid, and the electrostatic control control unit applies a negative voltage of the first level to the lower grid to create a gap between the lower grid and the substrate. After guiding ions to the upper grid through the holes in the lower grid, a negative voltage greater than the first level is applied to the upper grid so that the ions introduced through the lower grid collide with the lower surface of the upper grid to generate secondary electrons. It is controlled to emit higher density electrons toward the substrate through the holes in the lower grid.
본 실시예의 어느 한 측면에서, 상기 그리드 중심부의 홀 개구율은 주변 영역의 홀 개구율보다 높게 형성된다.In one aspect of this embodiment, the hole opening ratio in the center of the grid is formed to be higher than the hole opening ratio in the peripheral area.
본 실시예의 어느 한 측면에서, 상기 그리드와 기판지지대를 진공챔버 내에서 상하 이동시키는 거리 조정부를 추가로 구비하고, 상기 정전기 조절 제어부는 진공챔버의 환경조건에 의해 산출된 공정가스 자유행정거리를 근거로 그리드 또는 기판지지대 중 적어도 하나의 위치를 상측 또는 하측으로 변경하도록 거리 조정부를 제어한다. In one aspect of the present embodiment, the grid and the substrate support are further provided with a distance adjusting unit that moves up and down within the vacuum chamber, and the static electricity adjusting control unit adjusts the distance based on the process gas free stroke distance calculated according to the environmental conditions of the vacuum chamber. The distance adjustment unit is controlled to change the position of at least one of the grid or the substrate support to the upper or lower side.
본 실시예의 어느 한 측면에서, 상기 그리드 표면에는 Carbon, CNT, glassy carbon를 포함한 carbon 성분을 함유하는 막을 코팅하거나 스퍼터링 처리하여 아크 발생을 방지한다.In one aspect of this embodiment, the surface of the grid is coated or sputtered with a film containing carbon components including carbon, CNT, and glassy carbon to prevent arc generation.
본 실시예의 어느 한 측면에서, 상기 그리드 표면에는 실리콘 옥사이드(SiO2), 알루미늄 옥사이드(Al2O3),실리콘 나이트라이드(Si3N4 ), 산화물계 박막 중 하나를 코팅하거나 스퍼터링 처리하여 아크 발생을 방지한다.In one aspect of this embodiment, the grid surface is coated or sputtered with one of silicon oxide (SiO2), aluminum oxide (Al2O3), silicon nitride (Si3N4), and an oxide-based thin film to prevent arc generation.
본 기술에 의하면, 기판상에 정확하고 신속하게 정전기를 주입하거나 기판상에 형성된 정전기를 용이하게 제거할 수 있다는 장점이 제공된다. 따라서, 반도체 제조 공정에 의한 불량률을 최소화함은 물론, 보다 신뢰성있는 반도체 소자의 제조가 가능하다.The present technology provides the advantage of being able to accurately and quickly inject static electricity onto a substrate or easily remove static electricity formed on the substrate. Therefore, it is possible to minimize the defect rate due to the semiconductor manufacturing process and to manufacture more reliable semiconductor devices.
도 1은 반도체 정전기 제거 문제점을 설명하기 위한 도면이다.1 is a diagram to explain the problem of removing static electricity in a semiconductor.
도 2는 이오나이저를 이용한 자연 낙하 방식의 정전기 제거 특성을 설명하기 위한 도면이다.Figure 2 is a diagram for explaining the static electricity removal characteristics of the natural drop method using an ionizer.
도 3은 제1 실시예에 따른 정전기 조절 장치가 구비된 반도체 공정 시스템을 개략적으로 도시한 도면이다.FIG. 3 is a diagram schematically showing a semiconductor processing system equipped with a static electricity control device according to the first embodiment.
도 4는 도 3으로 예시된 하전입자 생성부의 구성을 예시한 도면이다.FIG. 4 is a diagram illustrating the configuration of the charged particle generation unit illustrated in FIG. 3.
도 5는 도 3으로 예시된 그리드와 기판지지대의 멀티 존 구조를 설명하기 위한 도면이다.FIG. 5 is a diagram for explaining the multi-zone structure of the grid and substrate support illustrated in FIG. 3.
도 6은 도 3으로 예시된 그리드의 듀얼 그리드 구조를 설명하기 위한 도면이다.FIG. 6 is a diagram for explaining the dual grid structure of the grid illustrated in FIG. 3.
도 7은 도 3으로 예시된 그리드와 기판지지대 사이의 거리에 따른 정전기 주입 및 정전기 제거 실험 결과를 나타낸 도면이다.FIG. 7 is a diagram showing the results of electrostatic injection and static electricity removal experiments according to the distance between the grid illustrated in FIG. 3 and the substrate support.
도 8은 도 3으로 예시된 반도체 공정 시스템의 정전기 조절 장치 동작을 설명하기 위한 도면이다. FIG. 8 is a diagram for explaining the operation of the static electricity control device of the semiconductor processing system illustrated in FIG. 3.
본 발명에 기재된 실시예 및 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 표현하는 것은 아니므로, 본 발명의 권리범위는 본문에 설명된 실시예 및 도면에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.The embodiments described in the present invention and the configurations shown in the drawings are only preferred embodiments of the present invention and do not express the entire technical idea of the present invention. Therefore, the scope of rights of the present invention is limited to the embodiments and drawings described in the text. It should not be construed as limited by. In other words, since the embodiments can be modified in various ways and can have various forms, the scope of rights of the present invention should be understood to include equivalents that can realize the technical idea. In addition, the purpose or effect presented in the present invention does not mean that a specific embodiment must include all or only such effects, so the scope of the present invention should not be understood as limited thereby.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein, unless otherwise defined, have the same meaning as commonly understood by a person of ordinary skill in the field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as consistent with the meaning in the context of the related technology, and cannot be interpreted as having an ideal or excessively formal meaning that is not clearly defined in the present invention.
도 3은 본 발명의 제1 실시예에 따른 정전기 조절 장치가 구비된 반도체 공정 시스템을 개략적으로 도시한 도면이다.Figure 3 is a diagram schematically showing a semiconductor processing system equipped with a static electricity control device according to a first embodiment of the present invention.
도 3을 참조하면, 본 발명에 따른 반도체 공정 시스템은, 기판(10)이 배치되는 진공 챔버(C)의 내부 상측에 하전입자 생성부(100)가 배치되고, 하전입자 생성부(100)의 하측에는 그리드(200)와 기판지지대(300)가 순차적으로 배치되며, 하전입자 생성부(100)를 통해 진공챔버(C)내에 하전입자를 생성하고 그리드(200)와 기판지지대(300)로 인가되는 전압을 제어하여 그리드(200)를 통해 기판(10)측으로 방출되는 하전입자의 밀도를 조절함으로써, 기판(10)상에 정전기를 주입하거나 또는 기판(10)에 형성된 정전기를 제거하도록 제어하는 정전기 조절 제어부(400)를 포함한다. Referring to FIG. 3, in the semiconductor processing system according to the present invention, the charged particle generation unit 100 is disposed on the inside upper side of the vacuum chamber C where the substrate 10 is placed, and the charged particle generation unit 100 The grid 200 and the substrate support 300 are sequentially arranged on the lower side, and charged particles are generated in the vacuum chamber (C) through the charged particle generator 100 and applied to the grid 200 and the substrate support 300. Static electricity that is controlled to inject static electricity onto the substrate 10 or remove static electricity formed on the substrate 10 by controlling the density of charged particles emitted toward the substrate 10 through the grid 200. Includes an adjustment control unit 400.
또한, 정전기 조절 제어부(400)의 제어에 따라 그리드(200)와 기판지지대(300) 중 적어도 하나의 위치를 상,하 조절하여 그리드(200)와 기판지지대(300) 사이의 거리를 조절하는 거리 조정부(500)를 더 포함할 수 있다.In addition, the distance between the grid 200 and the substrate support 300 is adjusted up and down by adjusting the position of at least one of the grid 200 and the substrate support 300 according to the control of the electrostatic control control unit 400. It may further include an adjustment unit 500.
즉, 본 실시예는 진공챔버(C) 내에 생성된 하전입자를 그리드(200)를 통해 선택적으로 투과하고, 기판(10)을 지지하는 기판지지대(300)로 바이어스 전압을 인가하여 그리드(200)를 통과한 하전입자를 상기 기판(10)측으로 유도하여 기판(10)상에 정전기를 주입하거나 또는 기판(10)상에 형성된 정전기를 중화(제거)한다. That is, in this embodiment, charged particles generated in the vacuum chamber (C) are selectively transmitted through the grid 200, and a bias voltage is applied to the substrate support 300 that supports the substrate 10 to form the grid 200. The charged particles that have passed through are guided toward the substrate 10 to inject static electricity into the substrate 10 or to neutralize (remove) the static electricity formed on the substrate 10.
이어, 본 실시예를 보다 상세히 설명한다.Next, this embodiment will be described in more detail.
진공챔버(C)는 기판(10)에 대한 반도체 공정을 수행하는 장비로서, 도시되지는 않았지만, 챔버 내부를 진공상태로 유지하기 위한 진공 형성부 및, 챔버 내부로 가스를 공급하는 가스 공급부를 포함한다. The vacuum chamber (C) is equipment that performs a semiconductor process on the substrate 10. Although not shown, it includes a vacuum forming part to maintain the inside of the chamber in a vacuum state and a gas supply part to supply gas into the chamber. do.
이때, 진공 형성부는 챔버 내부의 물질을 챔버 외부로 배출하는 진공 펌프와, 내부 진공도를 검출할 수 있는 진공 게이지, 물질의 유입 및 유출을 단속하는 밸브 및, 각 구성 요소를 연결하는 배관을 포함할 수 있다. 그리고, 진공 형성부는 바람직하게 챔버 내부의 진공도를 10-1 내지 10-4 Torr 로 유지한다.At this time, the vacuum forming unit may include a vacuum pump that discharges the material inside the chamber to the outside of the chamber, a vacuum gauge that can detect the degree of internal vacuum, a valve that controls the inflow and outflow of materials, and piping connecting each component. You can. And, the vacuum forming unit preferably maintains the degree of vacuum inside the chamber at 10 -1 to 10 -4 Torr.
가스 공급부는 공정에 따라 서로 다른 가스를 공급할 수 있으며, 챔버 내부로 헬륨(He), 질소(N2), 및 아르곤(Ar) 등의 가스를 제공할 수 있고, 가스의 유량은 10 ~ 1000 sccm 로 설정될 수 있다.The gas supply unit can supply different gases depending on the process, and can provide gases such as helium (He), nitrogen (N2), and argon (Ar) into the chamber, and the flow rate of the gas is It can be set from 10 to 1000 sccm.
하전입자 생성부(100)는 VUV(Vacuum Ultraviolet Ray)를 발생시켜 VUV와 공정가스를 반응시켜 양이온과 전자를 포함하는 하전입자를 생성하는 장치이다. 하전 입자 생성부(100)는 VUV 램프와 플라즈마 발생기 중 적어도 하나를 포함하고, 플라즈마를 이용한 라인 형상의 이온빔, 대면적 전자빔 등을 추가로 생성하여 전자와 이온을 포함하는 하전입자를 생성할 수 있다. The charged particle generator 100 is a device that generates VUV (Vacuum Ultraviolet Ray) and reacts the VUV with a process gas to generate charged particles containing positive ions and electrons. The charged particle generator 100 includes at least one of a VUV lamp and a plasma generator, and can additionally generate a line-shaped ion beam or a large-area electron beam using plasma to generate charged particles containing electrons and ions. .
도 4에는 하전입자 생성부(100)의 구성이 예시되어 있다.Figure 4 illustrates the configuration of the charged particle generator 100.
하전입자 생성부(100)는 도 4(A)에 도시된 바와 같이, 진공챔버(C)의 상측에 VUV 램프(110)가 위치할 수 있고, 그 하측에 진공챔버(C) 측면으로부터 대면적의 빔(B) 즉, 이온빔 또는 전자빔을 진공챔버(C) 내측으로 방출하는 빔 발생기(120)를 추가로 구비할 수 있다. 이때, VUV 램프(110)는 복수개로 배치될 수 있다. 즉, VUV 램프(110)는 진공챔버(C) 내부로 110nm~400nm 파장대역의 VUV 광을 발생하여 조사한다. VUV는 진공챔버(C) 내부의 공정가스와 반응하여 가스 입자를 분해하여 양이온과 전자를 포함하는 하전입자를 발생시킨다. As shown in FIG. 4 (A), the charged particle generation unit 100 may have a VUV lamp 110 located on the upper side of the vacuum chamber (C), and a large area from the side of the vacuum chamber (C) below the VUV lamp 110. A beam generator 120 that emits a beam (B), that is, an ion beam or an electron beam, into the vacuum chamber (C) may be additionally provided. At this time, the VUV lamp 110 may be arranged in plural numbers. That is, the VUV lamp 110 generates and irradiates VUV light in the 110nm to 400nm wavelength band into the vacuum chamber (C). VUV reacts with the process gas inside the vacuum chamber (C), decomposes the gas particles, and generates charged particles containing positive ions and electrons.
빔 발생기(120)는 이온빔 또는 전자빔을 통해 진공챔버(C) 내부의 공정가스를 해리하여 양이온과 전자를 추가적으로 생성함으로써, 그리드(200)측으로 방출되는 전자와 양이온의 밀도를 보다 증가시킬 수 있다. 여기서, 라인 형상의 빔을 발생하는 빔 발생기(120) 구성은 본 출원의 발명자의 특허인 한국 특허 제10-1911542호, 제10-1989847호, 제10-1998774호 및 제10-2118604호 등에 개시되며, 본 출원에 그 일체가 포함되어 그 상세한 설명은 생략한다. The beam generator 120 dissociates the process gas inside the vacuum chamber C through an ion beam or an electron beam to generate additional positive ions and electrons, thereby further increasing the density of electrons and positive ions emitted toward the grid 200. Here, the configuration of the beam generator 120 that generates a line-shaped beam is disclosed in Korean Patent Nos. 10-1911542, 10-1989847, 10-1998774, and 10-2118604, which are patents of the inventor of the present application. All of which is included in this application, and detailed description thereof will be omitted.
또한, 하전입자 생성부(100)는 도 4(B)에 도시된 바와 같이, 진공챔버(C)의 내측에 플라즈마 발생기(130)가 배치된다. 플라즈마 발생기(130)는 플라즈마에서 형성된 VUV와 공정가스가 반응하여 양이온과 전자를 포함하는 하전 입자를 생성할 수 있다. In addition, the charged particle generator 100 includes a plasma generator 130 disposed inside the vacuum chamber (C), as shown in FIG. 4(B). The plasma generator 130 may generate charged particles including positive ions and electrons by reacting VUV formed in plasma with a process gas.
플라즈마 발생기(130)의 하측에는 진공챔버(C)의 측면에서 VUV를 진공챔버(C) 내측으로 방출하는 VUV 램프(140)를 추가로 배치하여 구성될 수 있다. 이때, VUV 램프(140)는 복수개가 배치될 수 있으며, 도 4(B)와 같이 진공챔버(C)의 양 측면에 각각 위치할 수 있다. On the lower side of the plasma generator 130, a VUV lamp 140 may be additionally disposed to emit VUV into the vacuum chamber (C) from the side of the vacuum chamber (C). At this time, a plurality of VUV lamps 140 may be disposed, and may be located on both sides of the vacuum chamber (C), respectively, as shown in FIG. 4(B).
플라즈마 발생기(130)에서 형성된 플라즈마에서 여기된 전자들은 다시 바닥 상태로 내려오며, 여기 상태와 바닥 상태 사이의 에너지 차이에 상응하는 에너지를 가지는 광을 외부로 방출한다. 이와 같이 형성되는 광의 파장 대역은 가스 공급부가 제공한 가스를 해리하여 음의 전하를 가진 입자 및/또는 양의 전하를 가진 입자를 형성할 수 있는 자외선 대역이다. Electrons excited in the plasma formed in the plasma generator 130 return to the ground state and emit light having energy corresponding to the energy difference between the excited state and the ground state to the outside. The wavelength band of light formed in this way is an ultraviolet band that can dissociate the gas provided by the gas supply unit to form particles with a negative charge and/or particles with a positive charge.
플라즈마 발생기(130)는 유도 결합성 플라즈마(ICP, inductively coupled plasma)생성 장치, 용량 결합성 플라즈마(CCP capacitively coupled plasma)일 수 있다. 플라즈마 발생기(130)로 공급되는 전기적 신호는 펄스(pulse), 연속파(CW, continuous wave)일 수 있다. 일 예로, 자외선 대역은 그 파장 대역 별로 근자외선(NEAR UV, 300nm ~ 380nm), 원자외선(FAR UV, 200nm ~ 300nm) 및 원자외선 대역보다 짧은 파장을 가지는 진공 자외선(VUV, vacuum UV,70nm ~ 200nm)으로 구별될 수 있으며, 본 발명에서 플라즈마 발생부(130)는 진공 자외선(VUV) 대역의 자외선을 형성할 수 있다. The plasma generator 130 may be an inductively coupled plasma (ICP) generating device or a capacitively coupled plasma (CCP) generating device. The electrical signal supplied to the plasma generator 130 may be a pulse or continuous wave (CW). For example, the ultraviolet ray band includes near ultraviolet rays (NEAR UV, 300 nm to 380 nm), far ultraviolet rays (FAR UV, 200 nm to 300 nm), and vacuum ultraviolet rays (VUV, 70 nm to 70 nm) that have a shorter wavelength than the far ultraviolet band. 200 nm), and in the present invention, the plasma generator 130 can form ultraviolet rays in the vacuum ultraviolet (VUV) band.
플라즈마 발생부(130)는 진공챔버의 체적이 500~1000 cc 범위인 환경에서 10~200W 범위의 DC,RF, 펄스 전원을 이용하여 플라즈마를 생성하는 마이크로 플라즈마 소스로 이루어질 수 있으며, 마이크로 플라즈마 소스는 플라즈마를 형성하기 위한 별도의 진공챔버를 구비하고, 정전기 조절 제어부(400)의 제어에 따라 이 진공챔버로 가스 주입 및 가스 배기 처리와 진공 처리 및, 전원 공급처리를 수행하는 수단들을 구비하여 구성된다. The plasma generator 130 may be a micro-plasma source that generates plasma using DC, RF, and pulse power in the range of 10-200 W in an environment where the volume of the vacuum chamber is in the range of 500-1000 cc. The micro-plasma source is It is equipped with a separate vacuum chamber for forming plasma, and is provided with means for performing gas injection, gas exhaust processing, vacuum processing, and power supply processing into this vacuum chamber under the control of the static electricity control control unit 400. .
이때, 마이크로 플라즈마 소스는 ICP, CCP, TCP, 할로우 캐소드, DBD를 이용한 대기압 플라즈마 장치 중 하나로 구성되며, 산소, 질소, 아르곤, 헬륨 을 포함한 다양한 공정가스를 이용하여 플라즈마를 생성한다. At this time, the micro plasma source consists of one of the atmospheric pressure plasma devices using ICP, CCP, TCP, hollow cathode, and DBD, and generates plasma using various process gases including oxygen, nitrogen, argon, and helium.
마이크로 플라즈마 소스는 통상 30초 정도의 예열 시간이 요구되고 광원의 출력 조절이 불가능한 VUV 램프에 비해, 진공챔버의 볼륨이 500 ~ 1000 CC 범위이므로 플라즈마 온/오프가 자유롭고, 공정조건 변화가 용이하며, 플라즈마 턴 온(turn on) 시간이 짧은 장점이 있다. 마이크로 플라즈마 소스를 이용하는 경우, 반도체 다층 박막에 필요 이상의 공정 시간이 소요되므로, 박막 특성 열화가 발생되는 것을 방지함은 물론, 보다 신속하고 적응적으로 기판상에 정전기를 주입하거나 제거하는 것이 가능하다.Compared to VUV lamps, which typically require a preheating time of about 30 seconds and cannot control the output of the light source, the micro plasma source has a vacuum chamber volume in the range of 500 to 1000 CC, so the plasma can be turned on/off freely and process conditions can be easily changed. It has the advantage of having a short plasma turn on time. When using a microplasma source, it takes more processing time than necessary for the semiconductor multilayer thin film, so it is possible to prevent deterioration of thin film properties and to more quickly and adaptively inject or remove static electricity on the substrate.
또한, 본 발명에 있어서는 도 4(C)에 도시된 바와 같이 플라즈마 발생기(130)를 복수의 마이크로 플라즈마 소스로 구성할 수 있다. 도 4(C)에는 제1 내지 제3 마이크로 플라즈마 소스(131,132,133)이 예시되어 있다.Additionally, in the present invention, as shown in FIG. 4(C), the plasma generator 130 can be configured with a plurality of micro plasma sources. Figure 4(C) illustrates the first to third micro plasma sources 131, 132, and 133.
도4(C)로 예시된 실시예에서 제1 내지 제3 마이크로 플라즈마 소스(131,132,133)는 각각 독립적인 진공챔버상에 구현되고, 정전기 조절 제어부(400)는 제1 내지 제3 마이크로 플라즈마 소스(131,132,133)의 진공 환경과 공정가스 종류 및 플라즈마 전원 등을 각각 개별적으로 제어하여 기판(10)의 서로 다른 영역에 서로 다른 정전기 주입 또는 정전기 제거 처리를 수행하도록 구성할 수 있다. In the embodiment illustrated in Figure 4 (C), the first to third micro plasma sources 131, 132, and 133 are each implemented on independent vacuum chambers, and the static electricity adjustment control unit 400 operates on the first to third micro plasma sources 131, 132, and 133. ) can be configured to individually control the vacuum environment, process gas type, plasma power, etc. to perform different static electricity injection or static electricity removal treatments in different areas of the substrate 10.
즉, 정전기 조절 제어부(400)는 기판(10)의 주변부에 비하여 중심부에 정전기가 많이 형성된 경우, 해당 위치에 대응되는 마이크로 플라즈마 소스의 압력 또는 전원을 다른 위치의 마이크로 플라즈마 소스의 압력 또는 전원과 다르게 설정할 수 있다. 이는 출력되는 VUV 광의 파장대 조절이 불가능한 VUV 램프에 비해 보다 정밀한 정전기 조절 공정의 수행이 가능하도록 한다.That is, when more static electricity is formed in the center than in the peripheral part of the substrate 10, the static electricity adjustment control unit 400 sets the pressure or power of the micro plasma source corresponding to that location differently from the pressure or power of the micro plasma source at other locations. You can set it. This allows a more precise static electricity control process to be performed compared to VUV lamps, which cannot control the wavelength of the output VUV light.
또한, 마이크로 플라즈마 소스에서 발생되는 VUV 의 파장은 공정가스의 종류에 따라 헬륨가스를 공정가스로 이용하는 경우 주 파장은 58.4nm 이고, 산소 가스를 공정가스로 이용하는 경우 주 파장은 130.5nm 이며, 아르곤가스를 공정가스로 이용하는 경우에는 104.8nm 이다. 이에, 정전기 조절 제어부(400)는 제1 내지 제3 마이크로 플라즈마 소스(131,132,133)의 진공챔버로 공급되는 공정가스 종류를 가변 또는 혼합하여 목적하는 VUV 파장을 선택할 수 있으며, 이를 통해 기판(10)상에 주입되는 정전기 레벨 또는 제거되는 정전기 레벨을 영역별로 다르게 설정할 수 있다. 예컨대, 기판(10)에 형성된 반도체 박막의 밴드 갭 에너지(band gap energy)가 클 경우에는 헬륨 가스를 이용하며, 밴드 갭 에너지가 작은 경우에는 질소 가스를 이용할 수 있다.In addition, the wavelength of VUV generated from the micro plasma source depends on the type of process gas. When helium gas is used as the process gas, the main wavelength is 58.4 nm, when oxygen gas is used as the process gas, the main wavelength is 130.5 nm, and when argon gas is used, the main wavelength is 58.4 nm. When used as a process gas, it is 104.8nm. Accordingly, the static electricity adjustment control unit 400 can select a desired VUV wavelength by varying or mixing the types of process gases supplied to the vacuum chambers of the first to third micro plasma sources 131, 132, and 133, and through this, the desired VUV wavelength can be selected on the substrate 10. The level of static electricity injected or removed can be set differently for each area. For example, when the band gap energy of the semiconductor thin film formed on the substrate 10 is large, helium gas can be used, and when the band gap energy is small, nitrogen gas can be used.
또한, 정전기 조절 제어부(400)는 정전기 조절이 필요한 기판(10) 영역에 대응되는 위치의 마이크로 플라즈마 소스만을 선택적으로 동작시킬 수 있다. Additionally, the static electricity control control unit 400 can selectively operate only the micro plasma source at a location corresponding to the area of the substrate 10 that requires static electricity control.
그리고, 정전기 조절 대상 기판의 종류를 포함한 사용 환경에 따라 제1 내지 제3 마이크로 플라즈마 소스(131,132,133)는 ICP, CCP, TCP, 할로우 캐소드, DBD를 이용한 대기압 플라즈마 장치 중 서로 다른 종류로 구현될 수 있다. In addition, depending on the usage environment including the type of substrate subject to static electricity control, the first to third micro plasma sources 131, 132, and 133 may be implemented as different types of atmospheric pressure plasma devices using ICP, CCP, TCP, hollow cathode, and DBD. .
한편, 플라즈마에서 형성된 VUV 파장을 이용하기 위해서는 도 4(B)와 같이 플라즈마 발생기(130)의 하측에는 MgF2 glass, CaF2 glass 재질의 분리판(150)을 배치하여 플라즈마 발생기(130)에서 생성되는 양이온, 전자, 활성종이 하측으로 방출되는 것은 차단하고 VUV 만을 투과하도록 구성할 수 있다. 이때, 플라즈마 발생기(130)에서 발생된 VUV와 공정가스 반응에 의해 생성된 하전입자와 VUV램프에서 방출되는 VUV와 공정가스 반응에 의한 하전입자가 동시에 생성된다. Meanwhile, in order to use the VUV wavelength formed in the plasma, a separator plate 150 made of MgF2 glass or CaF2 glass is placed on the lower side of the plasma generator 130 as shown in FIG. 4(B) to generate the VUV wavelength generated in the plasma generator 130. It can be configured to block positive ions, electrons, and active species from being emitted downward and to transmit only VUV. At this time, charged particles generated by the reaction of the VUV generated from the plasma generator 130 and the process gas and charged particles generated by the reaction of the VUV and the process gas emitted from the VUV lamp are simultaneously generated.
상기 분리판(150)은 VUV 만을 선택적으로 투과하는 광학 필터 코팅부를 추가로 구비하여 10~20mm 크기의 광을 하측으로 방출하도록 할 수 있으며, 콘케이브(concave lens) 또는 콘벡스 렌즈 (convex lens) 등을 이용하여 하측으로 방출되는 VUV 광의 발산 각도를 목적하는 형태로 설정할 수 있다. 도 4(C)로 예시된 실시에에서 분리판(150)을 구현하는 경우, 분리판(150)은 제1 내지 제3 마이크로 플라즈마 소스(131,132,133)의 하측에 각각 배치(151,152,153)될 수 있으며, 서로 다른 발산각도를 가질 수 있다. 예컨대, 제1 및 제3 마이크로 플라즈마 소스(131,133)의 하측에는 콘벡스 렌즈가 구비되고, 제2 마이크로 플라즈마 소스(132)의 하측에는 콘케이브 렌즈가 구비될 수 있다. 물론, 도 4(B)로 예시된 실시예와 같이 하나의 분리판(150)상에 각 마이크로 플라즈마 소스에 대응되게 서로 다른 발산 각도를 갖는 렌즈가 구비되어 구성되는 것도 가능하다.The separation plate 150 may be further equipped with an optical filter coating that selectively transmits only VUV to emit light of 10 to 20 mm in size downward, and may be used as a concave lens or convex lens. The divergence angle of the VUV light emitted downward can be set to a desired shape using the light. When implementing the separator plate 150 in the embodiment illustrated in FIG. 4 (C), the separator plate 150 may be disposed (151, 152, 153) below the first to third micro plasma sources (131, 132, and 133), respectively, They can have different divergence angles. For example, a convex lens may be provided below the first and third micro plasma sources 131 and 133, and a concave lens may be provided below the second micro plasma source 132. Of course, as in the embodiment illustrated in FIG. 4(B), it is also possible to provide lenses with different divergence angles corresponding to each microplasma source on one separator plate 150.
또한, VUV 램프(140)의 전면에는 광 확산판(미도시)을 배치하여 VUV광을 진공챔버(C)로 확산시킬 수 있다. Additionally, a light diffusion plate (not shown) can be placed on the front of the VUV lamp 140 to diffuse the VUV light into the vacuum chamber (C).
한편, 그리드(200)는 전도성 재질로 이루어지는 판 형상으로 구성되며, 상측으로부터 유입되는 하전입자를 하측으로 방출하기 위한 다수의 미세홀들이 형성된다. 기판(10)의 정전기 차징전압은 공정후에 항상 중심부가 그 외측에 비해 높게 형성되는 것을 고려하여 그리드(200) 중심부의 미세홀 개구율은 주위에 비하여 10% 이상 높게 형성하는 것이 바람직하고, 미세홀은 원형, 마름모 등의 형상으로 직경은 1 ~ 10 mm 범위로 설정할 수 있다. Meanwhile, the grid 200 is composed of a plate shape made of a conductive material, and a plurality of micro holes are formed to discharge charged particles flowing in from the upper side to the lower side. Considering that the electrostatic charging voltage of the substrate 10 is always formed to be higher at the center than the outside after the process, it is preferable that the microhole opening ratio at the center of the grid 200 be formed at least 10% higher than the surrounding area, and the microholes are The diameter can be set in the range of 1 to 10 mm in shapes such as circles and diamonds.
그리드(200)는 정전기 조절 제어부(400)를 통해 공급되는 전압에 따라 하전입자를 선택적으로 기판(10)측으로 방출한다.The grid 200 selectively emits charged particles toward the substrate 10 according to the voltage supplied through the static electricity adjustment control unit 400.
또한, 그리드(200)는 도 5로 예시된 바와 같이 복수의 영역이 전기적으로 분리되는 멀티 존(ZONE)타입으로 구성되고, 각 영역으로 서로 다른 전압(V1,V2,V3)이 개별적으로 공급되도록 구성될 수 있다. 이때, 기판(10)의 중심부가 그 외측에 비해 정전기 전압이 높게 형성되는 것을 고려하여 그리드(200)의 중심부로 공급되는 전압을 그 주변보다 보다 높게 설정할 수 있다(V1 >V2 >V3). 즉, 기판(10) 중심부로 보다 높은 밀도의 하전입자가 공급되도록 할 수 있다.In addition, as illustrated in FIG. 5, the grid 200 is composed of a multi-zone type in which a plurality of areas are electrically separated, and different voltages (V 1 , V 2 , V 3 ) are individually supplied to each area. It can be configured to be supplied as. At this time, considering that the center of the substrate 10 has a higher electrostatic voltage than the outside, the voltage supplied to the center of the grid 200 can be set higher than that of the surrounding area (V 1 >V 2 >V 3 ). That is, a higher density of charged particles can be supplied to the center of the substrate 10.
멀티 존 타입의 그리드(200)는 멀티 존으로 분리된 5 mm ~ 10 mm 두께의 원형 혹은 정사각형의 그라파이트(Graphite) 혹은 금속판(metal plate)을 준비하고, 50 μm ~ 100 μm 의 폴리이미드(polyimide)와 20 ~ 100 μm 의 구리(Cu) 필름을 금속 판(meatal Plate) 혹은 그라파이트에 라미네이트(lamination) 한다. 이어, 구리(Cu) 필름을 양면 패터닝 후 식각하고, 금속 판(meatal Plate) 혹은 그라파이트를 전기적으로 분리되게 패터닝한다. 그리고, 1 ~ 10 mm 직경을 갖도록 다수의 홀을 형성하고, 홀 내부를 도금한다. 이때, 홀은 금속 판(meatal Plate) 혹은 그라파이트 면의 50% 이상의 개구율을 갖는 것이 바람직하고, 홀 내부는 20 μm무전해 도금과 30 μm 전해 도금처리될 수 있다. The multi-zone type grid 200 prepares a circular or square graphite or metal plate with a thickness of 5 mm to 10 mm separated into multi zones, and polyimide of 50 μm to 100 μm. A copper (Cu) film of 20 to 100 μm is laminated to a metal plate or graphite. Next, the copper (Cu) film is patterned on both sides and then etched, and the metal plate or graphite is patterned to be electrically separated. Then, a number of holes are formed to have a diameter of 1 to 10 mm, and the insides of the holes are plated. At this time, it is desirable for the hole to have an opening ratio of 50% or more of the metal plate or graphite surface, and the inside of the hole can be treated with 20 μm electroless plating and 30 μm electrolytic plating.
또한, 그리드(200)는 표면 상부에는 카본(Carbon), CNT, glassy carbon 등을 포함하는 카본 성분이 함유된 막이나, DLC(diamond like carbon), 실리콘 옥사이드(SiO2), 알루미늄 옥사이드(Al2O3), 실리콘 나이트라이드(Si3N4), 산화물계 박막 등 중 하나를 100 ~ 1000 nm 두께로 코팅(coating)하거나 스퍼터링(sputtering) 처리하여 아크(Arc) 발생을 방지하도록 구성할 수 있다. 이로부터 그리드(200) 상부의 이온과 전자의 집중현상 문제로 인한 부분적인 집중 현상으로 그리드(200) 표면상에서 발생하는 아크로 인해 기판(10)상에 형성된 수nm 크기의 극미세 패턴의 패턴 변형(distortion), 패턴 수축(shirinkage), LER(line edge roughness) 등의 하자가 발생하는 문제를 방지할 수 있다.In addition, the grid 200 is a film containing carbon components including carbon, CNT, glassy carbon, etc. on the upper surface, but it is also made of a film containing carbon components such as DLC (diamond like carbon), silicon oxide (SiO 2 ), and aluminum oxide (Al 2 It can be configured to prevent arc generation by coating or sputtering one of O 3 ), silicon nitride (Si 3 N 4 ), or oxide-based thin films to a thickness of 100 to 1000 nm. . From this, the pattern deformation of the ultra-fine pattern of several nm in size formed on the substrate 10 due to the arc occurring on the surface of the grid 200 due to the partial concentration phenomenon due to the problem of concentration of ions and electrons on the upper part of the grid 200 ( It is possible to prevent problems such as distortion, pattern shrinkage, and line edge roughness (LER).
또한, 그리드(200)는 도 6에 도시된 바와 같이, 상부 그리드(210)와 하부 그리드(220)로 이루어지는 듀얼 그리드 구조로 이루어질 수 있다. 이때, 상부 그리드(210)와 하부 그리드(220)는 정전기 조절 제어부(400)로부터 서로 다른 전압(Vg1,Vg2)이 각각 제공된다. 즉, 상부 그리드(210)는 진공 챔버(C) 내부의 전하를 그리드 홀로 유도할 수 있는 정도의 예컨대, 50-100V 전압이 제공되고, 하부 그리드(220)는 그리드 홀 내부에 진입한 전하를 하부의 기판으로 방출할 충분한 운동에너지를 갖도록 300 ~ 500 V 전압이 제공된다. Additionally, the grid 200 may have a dual grid structure consisting of an upper grid 210 and a lower grid 220, as shown in FIG. 6 . At this time, the upper grid 210 and the lower grid 220 are provided with different voltages (Vg 1 and Vg 2 ) from the static electricity adjustment control unit 400, respectively. That is, the upper grid 210 is provided with a voltage of, for example, 50-100 V, sufficient to induce the charges inside the vacuum chamber (C) into the grid hole, and the lower grid 220 is provided with a voltage that enters the grid hole. A voltage of 300 to 500 V is provided to have sufficient kinetic energy to be released to the substrate.
듀얼 그리드 구조에서는 하전입자 발생부(100)와 그리드(200) 사이의 전하가 그리드(200)의 표면에 충돌시 상부 그리드(210)의 낮은 전압에 의하여 그리드 홀로 인도되기 때문에 그리드 상부에서 ARC 등의 현상이 발생하는 것을 방지할 수 있다. 또한, 일정 거리(dg) 이격되게 배치된 상부 그리드(210)와 하부 그리드(220)의 홀을 통해 전하가 보다 넓게 분산되어 기판(10)측으로 방출되는 전하의 균일도를 높일 수 있다.In the dual grid structure, when the charge between the charged particle generator 100 and the grid 200 collides with the surface of the grid 200, it is guided to the grid hole by the low voltage of the upper grid 210, so that ARC, etc., is generated at the top of the grid. This phenomenon can be prevented from occurring. In addition, charges can be distributed more widely through the holes in the upper grid 210 and the lower grid 220 that are spaced apart by a certain distance (d g ), thereby increasing the uniformity of charges discharged to the substrate 10.
또한, 듀얼 그리드 구조의 그리드(200)는 하부 그리드(220)의 그리드 홀 직경을 상부 그리드(210)의 그리드 홀 직경보다 10~20% 이상 작게 설정하여 그리드(200) 내에서 이차 전자를 추가적으로 발생시킴으로써, 기판(10)측으로 방출되는 전하 밀도를 보다 높게 형성하도록 실시할 수 있다.In addition, the grid 200 of the dual grid structure sets the grid hole diameter of the lower grid 220 to be 10 to 20% smaller than the grid hole diameter of the upper grid 210, thereby additionally generating secondary electrons within the grid 200. By doing so, the charge density discharged toward the substrate 10 can be made higher.
즉, 상부 그리드(210)는 이차전자를 방출하는 캐소드 역할을 하는 것으로, 알루미늄 혹은 anodized Al, Carbon, CNT 등의 재료로 구성되고, 하부 그리드(220)에 -50 ~ -150 V의 음의 전압이 인가되어 하부 그리드(220)와 기판(10) 사이에 형성된 이온이 상부 그리드(210)로 제공되고, 상부 그리드(210)로 더 큰 음의 전압, 예컨대 -200 ~ -1000 V의 전압이 인가되면, 이 이온이 상부 그리드 (캐소드) 하측 표면에 충돌하여 이차전자를 발생시킬 수 있다. 이에 따라 VUV에 의하여 하부 그리드(220)와 기판(10) 사이에 형성된 103 cm2 정도의 전자와, 그리드(200) 내부에서 추가로 생성된 이차전자를 동시에 기판(10)측으로 방출됨으로써, 기판(10)측으로 인가되는 전자 밀도는 106 ~ 108 cm2 로 높아지게 되어, 결과적으로 공정 효율을 높인다.That is, the upper grid 210 serves as a cathode that emits secondary electrons, and is made of materials such as aluminum or anodized Al, Carbon, CNT, etc., and applies a negative voltage of -50 to -150 V to the lower grid 220. When this is applied, the ions formed between the lower grid 220 and the substrate 10 are provided to the upper grid 210, and a larger negative voltage, for example, a voltage of -200 to -1000 V, is applied to the upper grid 210. When this happens, these ions can collide with the lower surface of the upper grid (cathode) and generate secondary electrons. Accordingly, electrons of about 10 3 cm 2 formed between the lower grid 220 and the substrate 10 by VUV and secondary electrons additionally generated inside the grid 200 are simultaneously emitted toward the substrate 10, thereby The electron density applied to the (10) side increases to 10 6 ~ 10 8 cm 2 , resulting in increased process efficiency.
상부 그리드(210)의 하측 표면에는 도 6(B)에 도시된 바와 같이 거칠기를 형성하여 이차전자의 운동 방향을 보다 넓게 형성하여 균일도를 향상시키도록 구성할 수 있다. 이러한 듀얼 그리드 구조를 통한 이차전자의 발생은 화학적 특성을 갖는 활성종(radical)을 발생시키지 않기 때문에, 기판(10)을 훼손하지 않는 공정이 가능하다. 특히, 전자빔은 정전기 주입시 짧은 시간에 높은 밀도의 전자를 특정 부위에 주입할 수 있기 때문에, 기판(10)의 물리적 충격을 최소화 할 수 있다.As shown in FIG. 6(B), the lower surface of the upper grid 210 can be roughened to make the direction of movement of secondary electrons wider and improve uniformity. Since the generation of secondary electrons through this dual grid structure does not generate active species (radicals) with chemical properties, a process that does not damage the substrate 10 is possible. In particular, the electron beam can inject a high density of electrons into a specific area in a short period of time when injecting static electricity, thereby minimizing the physical impact of the substrate 10.
한편, 기판지지대(300)는 유전성 재질 또는 전도성 재질로 이루어지는 판형상으로 구성되어 정전기 조절 제어부(400)로부터 공급되는 바이어스 전압에 따라 그리드(200)에서 방출되는 전하들이 기 설정된 밀도로 기판(10)측으로 향하도록 운동에너지를 부여한다. Meanwhile, the substrate support 300 is composed of a plate shape made of a dielectric material or a conductive material, so that charges emitted from the grid 200 according to the bias voltage supplied from the static electricity adjustment control unit 400 are stored on the substrate 10 at a preset density. Gives kinetic energy to go to the side.
이때, 기판지지대(300)는 다수의 영역으로 분리되어 정전기 조절 제어부(400)로부터 서로 다른 바이어스 전압이 개별적으로 제공되도록 구성될 수 있다. 일 예로 도 5에 도시된 바와 같이 그리드(200)의 영역이 구분되어 각 영역이 개별적으로 전압을 공급받는 경우, 기판지지대(300)는 그리드(200)와 동일한 영역으로 구분되어 그리드(200)의 각 영역별로 서로 동일한 극성으로 동일 전압차를 같도록 바이어스 전압을 공급받을 수 있다. 또한, 그리드(200)만 다수의 영역으로 분리되고, 기판지지대(200)는 다수의 영역으로 분리되지 않을 수 있으며, 그리드(200)와 기판지지대(200)는 서로 다른 형태의 영역을 갖도록 분리될 수 있고, 영역별 정전기 조절 레벨이 다른 경우 그리드(200)와 기판지지대(300)로 인가되는 전압은 영역별로 서로 그 전압차가 다를 수 있다. 이에 따라 기판(10)의 서로 다른 영역별로 정전기 주입과 정전기 제거 공정이 동시에 이루어질 수 있다. At this time, the substrate support 300 may be divided into a plurality of regions and configured to individually provide different bias voltages from the static electricity adjustment control unit 400. For example, as shown in FIG. 5, when the areas of the grid 200 are divided and each area is individually supplied with voltage, the substrate support 300 is divided into the same area as the grid 200 and receives the voltage of the grid 200. Each region can receive a bias voltage with the same polarity and equal voltage difference. Additionally, only the grid 200 may be separated into multiple areas, and the substrate support 200 may not be separated into multiple areas, and the grid 200 and the substrate support 200 may be separated to have areas of different shapes. When the static electricity control level for each region is different, the voltage difference between the voltages applied to the grid 200 and the substrate support 300 may be different for each region. Accordingly, static electricity injection and static electricity removal processes can be performed simultaneously in different areas of the substrate 10.
또한, 기판지지대(300)의 하측에는 기판지지대(300)를 회전시키기 위한 회전부(310)가 추가로 구비될 수 있으며, 회전부(310)는 정전기 조절 제어부(400)의 제어에 따라 정전기 조절 공정시 1~30RPM 으로 기판지지대(300)를 회전시킨다. In addition, a rotating part 310 may be additionally provided on the lower side of the substrate support 300 to rotate the substrate support 300, and the rotating part 310 may be used during the static electricity control process under the control of the static electricity control control unit 400. Rotate the substrate support 300 at 1 to 30 RPM.
또한, 본 실시예에서 상기 그리드(200)와 기판(10) 사이의 거리는 진공챔버(C) 내부 환경조건에 따른 공정가스 자유행정거리의 4배 이내로 설정되는 것이 바람직하다.Additionally, in this embodiment, the distance between the grid 200 and the substrate 10 is preferably set to within 4 times the free stroke distance of the process gas according to the environmental conditions inside the vacuum chamber (C).
이때, 공정가스 자유행정거리(λ)는 하기 수학식 1에 의해 산출될 수 있다.At this time, the process gas free stroke distance (λ) can be calculated using Equation 1 below.
Figure PCTKR2023003460-appb-img-000001
Figure PCTKR2023003460-appb-img-000001
여기서, K 는 볼트만 상수, T 는 온도, P 는 압력, D 는 공정가스 입자 직경이다.Here, K is Boltmann's constant, T is temperature, P is pressure, and D is the process gas particle diameter.
본 발명자가 일반 반도체 제조장치의 챔버 크기인 330 mm (직경) X 150 mm (높이)에 터보 진공 펌프를 이용하여 300mm 실리콘 웨이퍼를 이용한 정전기 차징 실험을 수행한 결과, 그리드(200)와 기판(10) 사이의 거리가 자유행정거리(10 mm) 일정 이상 벗어나게 배치되고 기판지지대(300)로 바이어스 전원을 공급하지 않는 경우, 300 mm silicon . SiO2 100 nm 증착 wafer 이용시 공정 조건 압력 30 mtorr, 5 sccm , 기판과 그리드 사이의 거리 100 mm, 그리드 전압 + 250 V 공정 조건에서 30 초 진행 후의 기판(10) 전압은 + 80 volts 로 예상한 전압인 -10V 와는 많은 차이를 보임을 알 수 있었다.As a result of the present inventor performing an electrostatic charging experiment using a 300 mm silicon wafer using a turbo vacuum pump in the chamber size of a general semiconductor manufacturing equipment, 330 mm (diameter) ), if the distance between them is placed beyond a certain free stroke distance (10 mm) and bias power is not supplied to the substrate support 300, 300 mm silicon. Process conditions when using a SiO 2 100 nm deposited wafer: pressure 30 mtorr, 5 sccm, distance between substrate and grid 100 mm, grid voltage + 250 V. The voltage of the substrate 10 after 30 seconds under process conditions is expected to be + 80 volts. It was found that there was a significant difference from -10V.
이에 반해, 상기와 동일한 공정 조건 환경에서 기판(10)과 그리드(200)간의 거리를 공정 가스와 압력에 따르는 자유행정거리인 10 mm로 설정하고, 기판(10) 200V 의 바이어스 전압을 공급하는 경우, 기판(10) 전압은 목적하는 -10 V로 유도 되었다. 이를 통해 기판(10)과 그리드(200) 간의 거리 및 기판지지대(300)로의 바이어스 전압이 기판(10)상의 정전기 조절에 중요한 변수임을 확인할 수 있었다.On the other hand, under the same process conditions as above, the distance between the substrate 10 and the grid 200 is set to 10 mm, which is the free stroke distance depending on the process gas and pressure, and a bias voltage of 200V is supplied to the substrate 10. , the substrate 10 voltage was induced to the desired -10 V. Through this, it was confirmed that the distance between the substrate 10 and the grid 200 and the bias voltage to the substrate support 300 are important variables in controlling static electricity on the substrate 10.
또한, 도 7에 도시된 바와 같이 그리드(200)와 기판(10) 사이의 거리를 공정 가스 환경에 따른 자유행정거리(10mm)의 4배인 40mm 까지 증가한 경우에도 정전기 주입 및 제거 효율이 일정 범위를 만족하게 나타남을 확인할 수 있었다. 도 7에서 (A)는 정전기 주입 공정에 대한 실험 결과로서 semilab 사의 QC 3000e system 이용하여 측정한 결과, 상술한 공정 가스 조건에서 그리드(200)와 기판(10) 사이의 거리가 공정 가스 환경에 따른 자유행정거리(10mm)의 4배인 40mm 까지는 기판(10)상에 동일한 상태의 정전기 전압이 유지됨이 확인되었다. In addition, as shown in FIG. 7, even when the distance between the grid 200 and the substrate 10 is increased to 40 mm, which is 4 times the free stroke distance (10 mm) according to the process gas environment, the static electricity injection and removal efficiency remains within a certain range. It was confirmed that it appeared satisfactorily. In FIG. 7 (A) is the result of an experiment on the electrostatic injection process, measured using the QC 3000e system of Semilab. As a result, the distance between the grid 200 and the substrate 10 under the above-described process gas conditions is determined by the process gas environment. It was confirmed that the same electrostatic voltage was maintained on the substrate 10 up to 40 mm, which is 4 times the free stroke distance (10 mm).
도 7에서 (B)는 정전기 제거 공정에 대한 실험 결과로서 semilab 사의 QC 3000e system 이용하여 측정한 결과, 상술한 공정 가스 조건에서 그리드(200)와 기판(10) 사이의 거리가 공정 가스 환경에 따른 자유행정거리(10mm)의 4배인 40mm 까지는 정전기가 제거되어 정전기 전압이 "0"에 수렴하고 있으나, 그 이상의 거리에서는 정전기가 다시 생성됨을 알 수 있다. In FIG. 7 (B) is the result of an experiment on the static electricity removal process, measured using the QC 3000e system of Semilab, and as a result, the distance between the grid 200 and the substrate 10 under the above-described process gas conditions is depending on the process gas environment. Up to 40 mm, which is four times the free stroke distance (10 mm), static electricity is removed and the static electricity voltage converges to "0", but it can be seen that static electricity is generated again at distances beyond that.
이는 전자, 양이온의 자유행정거리에 따른 정전기 주입 및 제거 효율은 공정가스 대비 분자(molecule)의 크기 차이, 또는 그리드 전압에 의한 이온과 전자가 형성된 그리드 상부에서의 선택적인 전자, 혹은 양이온 추출, 기판지지대의 바이어스 전계, 빠른 진공 배기 효과에 의한 영향으로 확인되었다 .This means that the static electricity injection and removal efficiency according to the free path distance of electrons and cations is determined by the difference in the size of molecules compared to the process gas, or selective electron or cation extraction at the top of the grid where ions and electrons are formed by grid voltage, and substrate. It was confirmed to be influenced by the bias electric field of the support and the rapid vacuum evacuation effect.
한편, 정전기 조절 제어부(400)는 기판(10)로 이온 또는 전자가 목적하는 밀도로 공급되도록 각 장치로 공급되는 전압을 제어하여 기판상에 정전기를 주입하거나 또는 기판(10)상에 형성된 정전기를 제거하도록 제어한다. 정전기 조절 제어부(400)는 그리드(200) 및 기판 지지대(300)로 전원 공급시 펄스 주기를 조절하여 전원 레벨을 조절한다. Meanwhile, the static electricity control unit 400 controls the voltage supplied to each device so that ions or electrons are supplied to the substrate 10 at a desired density to inject static electricity onto the substrate or to remove static electricity formed on the substrate 10. Control to remove. The electrostatic control control unit 400 adjusts the power level by adjusting the pulse period when power is supplied to the grid 200 and the substrate support 300.
정전기 조절 제어부(400)는 정전기 주입모드에서는 그리드(200)와 기판지지대(300)간 전압 차이가 2배 이상, 예컨대 2.5배 이상이 되도록 전압 공급을 수행한다. 즉, 기판지지대(300)로 인가되는 바이어스 전압은 그리드(200)로 인가되는 전압보다 2.5배 이상 높게 설정된다. In the electrostatic injection mode, the electrostatic control control unit 400 supplies voltage so that the voltage difference between the grid 200 and the substrate support 300 is 2 times or more, for example, 2.5 times or more. That is, the bias voltage applied to the substrate support 300 is set to be 2.5 times higher than the voltage applied to the grid 200.
또한, 정전기 조절 제어부(400)는 정전기 제거모드에서는 그리드(200)와 기판지지대(300)간 전압 차이가 기 설정된 유사범위, 예컨대 동일하도록 전압 공급을 수행한다.In addition, the static electricity adjustment control unit 400 supplies voltage so that the voltage difference between the grid 200 and the substrate support 300 is within a similar preset range, for example, the same, in the static electricity removal mode.
또한, 정전기 조절 제어부(400)는 DC, DC Pulse, 혹은 Reverse pulse, AC, RF 등의 전원을 그리드(200)와 지판 지지대(300)로 공급하며, Pulse 형태로 전압을 공급하는 경우, 그리드(200)와 기판 지지대(300)가 서로 동조하도록 전압을 공급하여 정전기 주입 및 제거 효율을 높일 수 있다. In addition, the static electricity control unit 400 supplies power such as DC, DC pulse, reverse pulse, AC, RF, etc. to the grid 200 and the fingerboard support 300. When supplying voltage in the form of a pulse, the grid ( By supplying voltage so that the 200) and the substrate support 300 synchronize with each other, the efficiency of electrostatic injection and removal can be increased.
또한, 진공 챔버(C) 내의 가스 유량, 진공도, 펌핑 스피드 등의 변화에 따라 이온과 전자의 밀도가 바뀔 수 있어 직류 전원으로는 밀도의 미세한 조절이 불가 한 바, 정전기 조절 제어부(400)는 그리드(200)와 기판지지대(300)로 인가되는 펄스 형태의 전원에서 pulse on /off 주기를 조절하거나 극성을 조절하여 보다 정확하게 정전기 전압을 조절함으로서, 기판(10)상에 오버슈팅(over schooting)이 발생하는 것을 방지할 수 있다. In addition, the density of ions and electrons may change depending on changes in the gas flow rate, vacuum degree, pumping speed, etc. in the vacuum chamber (C), so fine control of the density is not possible with direct current power, so the static electricity control control unit 400 is grid-controlled. By controlling the electrostatic voltage more accurately by adjusting the pulse on / off period or polarity of the pulse-type power applied to (200) and the substrate support 300, overshooting on the substrate 10 is prevented. You can prevent it from happening.
즉, 기판지지대(300)로 바이어스 전압이 공급되면 그리드(200)를 투과한 하전입자가 전기적 인력으로 기판(10) 방향으로 가속화되고, 기판(10) 방향으로 가속된 하전입자는 기판(10)에 정전기를 차징(charging)하거나 또는 기판(10)상에 형성된 정전기 중화시킨다. That is, when a bias voltage is supplied to the substrate support 300, the charged particles passing through the grid 200 are accelerated toward the substrate 10 by electrical attraction, and the charged particles accelerated toward the substrate 10 are toward the substrate 10. The static electricity is charged or the static electricity formed on the substrate 10 is neutralized.
전자를 이용하여 정전기 제거하는 경우, 전자의 이동속도가 양이온에 비해 빠르기 때문에, 기판(10) 표면의 절연박막에 음(-)의 과차지 현상 즉, 과도하게 정전기가 차징되는 경우가 발생할 수 있다. 이에, 정전기 조절 제어부(400)는 기판지지대(300)로 계단식 형태로 바이어스 전압을 증감하여 공급할 수 있다.When removing static electricity using electrons, since the moving speed of electrons is faster than that of positive ions, a negative overcharge phenomenon, that is, excessive static electricity charging, may occur in the insulating thin film on the surface of the substrate 10. . Accordingly, the static electricity control control unit 400 may increase or decrease the bias voltage and supply it to the substrate support 300 in a stepwise manner.
또한, 정전기 조절 제어부(400)는 정전기 주입시에는 그리드(200) 또는 기판지지대(300)로 공급되는 전압을 일정 시간 단위(수 초)로 전압 레벨을 조정하거나 전압 공급을 중단하여 일정 간격(interval)의 자동 중화 시간을 설정하게 됨으로써, 기판(10) 표면에 형성된 수 nano size의 극미세 패턴에 영향을 주지 않으면서, 표면의 과차지(over charge) 발생을 방지할 수 있다.In addition, when electrostatic electricity is injected, the electrostatic control control unit 400 adjusts the voltage level of the voltage supplied to the grid 200 or the substrate support 300 in a certain time unit (several seconds) or stops the voltage supply at a certain interval (interval). ) By setting the automatic neutralization time, it is possible to prevent overcharge on the surface without affecting the nano-sized ultrafine pattern formed on the surface of the substrate 10.
이어, 상기한 구성으로 된 반도체 공정 시스템의 정전기 조절 장치의 동작을 도 8을 참조하여 설명한다.Next, the operation of the static electricity control device of the semiconductor processing system configured as described above will be described with reference to FIG. 8.
먼저, 진공챔버(C) 내에 구비된 기판지지대(300)의 상면에 절연막이 형성된 기판(10)을 배치한다. 이때, 기판(10) 표면에 형성된 절연막은 플라즈마를 이용하거나 혹은 원자층 증착(Atomic layer deposition)방식을 이용한 SiO2, Si3N4, Poly-si, Doped oxide 등의 재질로 이루어지며, 두께는 10 nm ~ 200 nm로 다양할 수 있다.First, the substrate 10 on which an insulating film is formed is placed on the upper surface of the substrate support 300 provided in the vacuum chamber C. At this time, the insulating film formed on the surface of the substrate 10 is made of materials such as SiO 2 , Si 3 N 4 , Poly-si, and doped oxide using plasma or atomic layer deposition, and has a thickness of It can vary from 10 nm to 200 nm.
이어, 정전기 조절 제어부(400)는 상기 수학식 1을 이용하여 진공챔버 환경조건에 대응되는 공정가스 자유행정거리를 산출한다(ST100). 이때, 공정가스 자유행정거리 산출을 위한 온도, 압력, 공정가스 분자 크기를 포함한 각종 정보는 관리자에 의해 미리 입력될 수 있다.Next, the static electricity control control unit 400 calculates the process gas free stroke distance corresponding to the environmental conditions of the vacuum chamber using Equation 1 (ST100). At this time, various information including temperature, pressure, and process gas molecule size for calculating the process gas free stroke distance can be input in advance by the administrator.
그리고, 정전기 조절 제어부(400)는 거리 조정부(500)를 제어하여 그리드(200)와 기판(10) 사이의 거리가 상기 ST100 단계에서 산출된 공정가스 자유행정거리의 4배 이내가 되도록 그리드(200) 또는 기판지지대(300) 중 적어도 하나의 위치를 상측 또는 하측으로 조정한다(ST200).In addition, the static electricity control control unit 400 controls the distance control unit 500 to adjust the grid 200 so that the distance between the grid 200 and the substrate 10 is within 4 times the process gas free stroke distance calculated in the ST100 step. ) or the position of at least one of the substrate supports 300 is adjusted upward or downward (ST200).
상기한 상태에서 정전기 조절 제어부(400)는 진공챔버(C) 내부로 기 설정된 환경조건으로 공정가스를 공급하여 진공환경을 설정한다. In the above state, the static electricity control unit 400 sets a vacuum environment by supplying process gas under preset environmental conditions into the vacuum chamber (C).
또한, 정전기 조절 제어부(400)는 하전입자 생성부(100)를 통해 VUV를 발생시키고 VUV와 공정가스간 반응을 통해 양이온과 전자 등의 하전입자를 생성한다.통상 VUV 에 의한 이온 밀도는 압력에 따라 많은 편차가 있으나, 대략 103 ~ 104 /cm2 정도인데 반해, 기판(10)에서 요구되는 정전기의 용량은 대략 108 ~ 109 cm2 로, 정전기 주입에 많은 공정 시간을 요한다. 플라즈마를 이용한 라인빔 형상의 이온빔을 추가적으로 이용하여 이온 밀도를 106 ~ 107 cm2로 높게 형성하여 공정 시간을 줄일 수 있다. 도 4(A)에 도시된 바와 같이 진공챔버(C)의 측면으로부터 라인형상의 빔을 방출하는 경우, 진공 챔버(C)내에 화학적 특성을 갖는 활성종(radical)이 발생하지 않아 기판(10)을 훼손하지 않고 정전기 주입 공정을 수행하는 것이 가능하며, 공정 시간이 단축됨에 따라 VUV이 절연막에 접촉되는 시간을 최소화하여 절연막의 절연 특성 등의 변화를 줄일 수 있음은 물론, 생산성을 향상시킬 수 있다.In addition, the static electricity control unit 400 generates VUV through the charged particle generation unit 100 and generates charged particles such as positive ions and electrons through a reaction between the VUV and the process gas. Typically, the ion density by VUV is determined by pressure. Although there is a lot of variation, it is approximately 10 3 to 10 4 /cm 2 , whereas the capacity of static electricity required for the substrate 10 is approximately 10 8 to 10 9 cm 2 , and a lot of process time is required for electrostatic injection. The process time can be reduced by additionally using a line beam-shaped ion beam using plasma to increase the ion density to 10 6 ~ 10 7 cm 2 . As shown in FIG. 4 (A), when a line-shaped beam is emitted from the side of the vacuum chamber (C), active species (radicals) with chemical properties are not generated in the vacuum chamber (C), so the substrate 10 It is possible to perform the electrostatic injection process without damaging the material, and as the process time is shortened, the time that VUV is in contact with the insulating film can be minimized, which can reduce changes in the insulating properties of the insulating film and improve productivity. .
상기한 상태에서, 관리자에 의해 정전기 주입모드가 설정되면(ST300), 정전기 조절 제어부(400)는 그리드(200)와 기판지지대(300)로 기 설정된 전압을 인가하되, 기판지지대(300)로 인가되는 바이어스 전압이 그리드(200)로 인가되는 전압보다 2배 이상 높은 전압을 갖도록 공급한다(ST400). 이때, 그리드(200)로 인가되는 전압은 정전기 제거 모드에서 그리드(200)로 인가되는 전압보다 높게 설정되며, 그리드(200) 및 기판지지대(300) 중 적어도 하나로 펄스 형태의 전압을 공급할 수 있다.In the above state, when the electrostatic injection mode is set by the manager (ST300), the static electricity control control unit 400 applies a preset voltage to the grid 200 and the substrate support 300, but also applies the voltage to the substrate support 300. The bias voltage is supplied to be more than twice as high as the voltage applied to the grid 200 (ST400). At this time, the voltage applied to the grid 200 is set higher than the voltage applied to the grid 200 in the static electricity removal mode, and the voltage in the form of a pulse can be supplied to at least one of the grid 200 and the substrate support 300.
또한, 상기 ST300 단계에서 관리자는 기판(10)에 주입할 정전기 전압을 설정하는 바, 정전기 조절 제어부(400)는 관리자에 의해 요구되는 정전기 전압에 대응되도록 기 저장된 그리드(200)와 기판지지대(300)로 공급할 전압정보를 호출하고, 이에 따라 그리드(200)와 기판지지대(300)로 해당 전원을 공급한다.In addition, in the ST300 step, the manager sets the electrostatic voltage to be injected into the substrate 10, and the electrostatic control control unit 400 stores the grid 200 and the substrate support 300 to correspond to the electrostatic voltage required by the manager. ), and the corresponding power is supplied to the grid 200 and the substrate support 300 accordingly.
즉, 그리드(200)와 기판지지대(300) 사이 거리가 공정가스 자유행정거리의 4배 이내로 배치된 상태에서, 하전입자 생성부(100)에서 생성된 하전입자는 그리드(200)의 전압에 의해 미세홀을 선택적으로 통과하여 기판(10)측으로 이동하고 기판지지대(300)에 인가되는 고전압에 의해 해당 하전입자가 기판(10)측을 향하여 보다 높은 밀도로 방출된다.That is, in a state where the distance between the grid 200 and the substrate support 300 is within 4 times the free stroke distance of the process gas, the charged particles generated in the charged particle generator 100 are generated by the voltage of the grid 200. The charged particles selectively pass through the microholes and move toward the substrate 10, and are emitted at a higher density toward the substrate 10 by the high voltage applied to the substrate support 300.
한편, 그리드(200)와 기판지지대(300)간의 거리가 공정가스 자유행정거리의 4배 이내로 조정된 상태에서(ST200), 관리자에 의해 정전기 제거모드가 설정되면(ST500), 정전기 조절 제어부(400)는 그리드(200)와 기판지지대(300)로 기 설정된 전압을 인가하되, 그리드(200)로 인가되는 전압과 기판지지대(300)로 인가되는 바이어스 전압이 동일하거나 유사 범위내가 되도록 설정한다(ST600). 여기서, 그리드(200) 및 기판지지대(300) 중 적어도 하나로 펄스 형태의 전압을 공급할 수 있다.Meanwhile, when the distance between the grid 200 and the substrate support 300 is adjusted to within 4 times the free stroke distance of the process gas (ST200), and the static electricity removal mode is set by the manager (ST500), the static electricity control unit 400 ) applies a preset voltage to the grid 200 and the substrate support 300, and sets the voltage applied to the grid 200 and the bias voltage applied to the substrate support 300 to be the same or within a similar range (ST600) ). Here, a voltage in the form of a pulse may be supplied to at least one of the grid 200 and the substrate support 300.
이때, 상기 ST500 단계에서 관리자는 기판(10)의 제거 정전기 전압을 설정하는 바, 정전기 조절 제어부(400)는 관리자에 의해 요구되는 정전기 제거 전압에 대응되도록 기 저장된 그리드(200)와 기판지지대(300)로 공급할 전압정보를 호출하고, 이에 따라 그리드(200)와 기판지지대(300)로 해당 전원을 공급한다. At this time, in the ST500 step, the manager sets the static electricity removal voltage of the substrate 10, and the static electricity control control unit 400 uses the previously stored grid 200 and the substrate support 300 to correspond to the static electricity removal voltage required by the manager. ), and the corresponding power is supplied to the grid 200 and the substrate support 300 accordingly.
즉, 기판 표면의 정전기를 제거하는 것은 정전기 주입 공정시와 동일하지만, 기판(10)의 다층막 내부에 임베드된 정전기는 각 절연막의 band gap보다 큰 에너지를 갖는 100 nm ~ 200 nm의 VUV가 다층막을 통과하여 정전기를 hole과 전자의 pair로 분리하여 정전기를 중화시키는 한편, 기판(10) 상부의 정전기는 VUV, 전자빔, 이온빔에 의하여 형성된 전자와 이온들을 이용하여 중화된다. 예컨대, 120 nm 파장대역의 VUV 에너지는 10.33 eV 이고, silicon 에너지는 1.1 eV 이며, SiO2 에너지는 9 ~ 10 eV 이다.In other words, removing static electricity from the surface of the substrate is the same as during the electrostatic injection process, but the static electricity embedded inside the multilayer film of the substrate 10 causes VUV of 100 nm to 200 nm, which has an energy greater than the band gap of each insulating film, to penetrate the multilayer film. As it passes through, static electricity is separated into pairs of holes and electrons to neutralize static electricity, while static electricity on the top of the substrate 10 is neutralized using electrons and ions formed by VUV, electron beam, and ion beam. For example, the VUV energy in the 120 nm wavelength band is 10.33 eV, the silicon energy is 1.1 eV, and the SiO 2 energy is 9 to 10 eV.
한편, 본 발명에서 그리드(200)와 기판지지대(300)가 멀티 존 구조로 이루어지는 경우, 정전기 조절 제어부(400)는 그리드(200)와 기판지지대(300)의 각 영역으로 정전기 주입 및 정전기 제거에 대응되는 서로 다른 전압을 공급함으로써, 기판(10)의 일정 부분에는 정전기를 주입하고, 기판(10)의 다른 부분에는 정전기를 제거하도록 제어할 수 있다. Meanwhile, in the present invention, when the grid 200 and the substrate support 300 have a multi-zone structure, the static electricity control unit 400 injects and removes static electricity into each area of the grid 200 and the substrate support 300. By supplying corresponding different voltages, it can be controlled to inject static electricity into a certain part of the substrate 10 and remove static electricity from another part of the substrate 10.

Claims (18)

  1. 진공챔버 내에 배치된 기판상에 정전기를 주입하거나 기판상에 형성된 정전기를 제거하는 반도체 공정 시스템의 정전기 조절 장치에 있어서, A static electricity control device for a semiconductor processing system that injects static electricity onto a substrate placed in a vacuum chamber or removes static electricity formed on the substrate, comprising:
    상기 진공챔버 내부 상측에 배치되면서, VUV(Vacuum Ultraviolet Ray)를 발생시켜 이 VUV와 진공챔버 내부의 공정가스가 반응함으로써, 양이온 및 전자를 포함하는 하전입자를 생성하는 하전입자 생성부와,A charged particle generator disposed on the upper side of the vacuum chamber and generating charged particles including positive ions and electrons by generating VUV (Vacuum Ultraviolet Ray) and reacting the VUV with the process gas inside the vacuum chamber;
    상기 하전입자 생성부의 하측에 배치되어 입력 전압에 따라 하전입자를 선택적으로 하측으로 통과시키는 다수의 홀이 구비된 그리드,A grid disposed below the charged particle generator and provided with a plurality of holes that selectively allow charged particles to pass downward depending on the input voltage,
    상기 그리드의 하측에 배치되면서 그 상면에 상기 기판이 위치되고, 입력 바이어스 전압에 따라 그리드를 통과한 하전입자를 기 설정된 밀도로 기판측으로 유도하는 기판지지대 및,A substrate supporter disposed below the grid, on which the substrate is positioned, and guiding charged particles passing through the grid to the substrate at a preset density according to an input bias voltage;
    상기 그리드 및 상기 기판지지대 중 적어도 하나로 펄스 형태의 전압을 공급하여 기판의 정전기를 조절하는 정전기 조절 제어부를 포함하고,A static electricity control control unit that supplies pulse-shaped voltage to at least one of the grid and the substrate support to control static electricity of the substrate,
    상기 그리드와 기판지지대는 진공챔버 환경조건에 따른 공정가스 자유행정거리의 4배 이내의 이격 거리를 갖도록 배치되는 반도체 공정 시스템의 정전기 조절 장치.A static electricity control device for a semiconductor processing system in which the grid and the substrate support are arranged to have a separation distance of less than 4 times the free stroke distance of the process gas according to the environmental conditions of the vacuum chamber.
  2. 제1항에 있어서,According to paragraph 1,
    상기 정전기 조절 제어부는, The static electricity control control unit,
    정전기 주입모드에서는 기판지지대로 인가되는 바이어스 전압을 그리드로 인가되는 전압보다 일정 레벨 이상 높게 되도록 인가하고, 정전기 제거모드에서는 그리드로 인가되는 전압과 기판지지대로 인가되는 바이어스 전압이 기 설정된 유사범위내가 되도록 인가하는 반도체 공정 시스템의 정전기 조절 장치.In the electrostatic injection mode, the bias voltage applied to the substrate support is applied to be higher than the voltage applied to the grid by a certain level, and in the static electricity removal mode, the voltage applied to the grid and the bias voltage applied to the substrate support are set to be within a similar range. A static electricity control device for the semiconductor processing system that applies it.
  3. 제2항에 있어서,According to paragraph 2,
    상기 정전기 조절 제어부는, The static electricity control control unit,
    상기 그리드 및 지판지지대로 인가되는 펄스 주기를 조절하여 전압 레벨을 조절하는 반도체 공정 시스템의 정전기 조절 장치.A static electricity control device for a semiconductor processing system that adjusts the voltage level by adjusting the pulse period applied to the grid and the fingerboard support.
  4. 제1항에 있어서,According to paragraph 1,
    상기 하전입자 생성부는, The charged particle generator,
    VUV를 방출하는 VUV 램프를 하나 이상 구비하는 반도체 공정 시스템의 정전기 조절 장치. An electrostatic control device in a semiconductor processing system comprising one or more VUV lamps that emit VUV.
  5. 제4항에 있어서,According to paragraph 4,
    상기 VUV 램프의 하측에는, Below the VUV lamp,
    진공챔버의 측면을 통해 라인형태의 이온빔을 방출하는 빔 발생기를 추가로 구비하여, VUV와 공정가스 반응에 의한 하전입자와, 이온빔과 공정가스 반응에 의한 하전입자를 동시에 생성하여 하전입자 밀도를 증가시키는 반도체 공정 시스템의 정전기 조절 장치. It is additionally equipped with a beam generator that emits a line-shaped ion beam through the side of the vacuum chamber, increasing the charged particle density by simultaneously generating charged particles by the reaction of VUV and the process gas, and charged particles by the reaction of the ion beam and the process gas. A static electricity control device for semiconductor processing systems.
  6. 제1항에 있어서,According to paragraph 1,
    상기 하전입자 생성부는 플라즈마를 생성하는 플라즈마 발생기와, 플라즈마 발생기의 하측에 VUV만을 투과시키는 분리판을 구비하여, 플라즈마 발생기에서 발생된 VUV와 공정가스 반응에 의해 하전입자를 생성하는 것을 특징으로 하는 반도체 공정 시스템의 정전기 조절 장치.The charged particle generator is a semiconductor device that includes a plasma generator that generates plasma and a separator that transmits only VUV below the plasma generator, and generates charged particles by reacting the VUV generated in the plasma generator with the process gas. Electrostatic control devices in process systems.
  7. 제6항에 있어서,According to clause 6,
    상기 플라즈마 발생기는 진공챔버의 볼륨이 500~1000cc 범위인 진공환경에서 10 ~200W 범위의 전원을 이용하여 플라즈마를 생성하는 적어도 하나의 마이크로 플라즈마 장치를 포함하는 반도체 공정 시스템의 정전기 조절 장치.The plasma generator is a static electricity control device for a semiconductor processing system including at least one micro plasma device that generates plasma using a power source in the range of 10 to 200 W in a vacuum environment where the volume of the vacuum chamber is in the range of 500 to 1000 cc.
  8. 제7항에 있어서,In clause 7,
    상기 정전기 조절 제어부는, The static electricity control control unit,
    마이크로 플라즈마 장치의 진공챔버로 주입하는 공정가스의 종류 또는 플라즈마 전원 중 적어도 하나를 조절하여 기판의 정전기를 조절하는 반도체 공정 시스템의 정전기 조절 장치.A static electricity control device in a semiconductor processing system that controls the static electricity of a substrate by controlling at least one of the type of process gas injected into the vacuum chamber of the micro plasma device or the plasma power source.
  9. 제7항 또는 제8항에 있어서,According to clause 7 or 8,
    상기 플라즈마 발생기는 다수의 마이크로 플라즈마 장치를 포함하고,The plasma generator includes a plurality of micro plasma devices,
    상기 정전기 조절 제어부는 각 마이크로 플라즈마 장치의 진공챔버로 주입하는 공정가스의 종류 또는 플라즈마 전원을 개별적으로 제어하여 기판의 정전기를 조절하는 반도체 공정 시스템의 정전기 조절 장치.The static electricity control unit is a static electricity control device in a semiconductor processing system that controls static electricity of a substrate by individually controlling the type of process gas or plasma power injected into the vacuum chamber of each micro plasma device.
  10. 제7항 또는 제8항에 있어서,According to paragraph 7 or 8,
    상기 플라즈마 발생기는 다수의 마이크로 플라즈마 장치를 포함하고,The plasma generator includes a plurality of micro plasma devices,
    상기 분리판은 각 마이크로 플라즈마 장치에 대해 일대일 대응되게 각각 배치되며,The separation plates are arranged in a one-to-one correspondence with each microplasma device,
    상기 정전기 조절 제어부는 각 마이크로 플라즈마 장치의 진공챔버로 주입하는 공정가스의 종류 또는 플라즈마 전원을 개별적으로 제어하여 기판의 정전기를 조절하되,The static electricity control unit adjusts the static electricity of the substrate by individually controlling the type of process gas or plasma power injected into the vacuum chamber of each micro plasma device,
    상기 각 분리판에는 서로 다른 발산 각도를 갖는 렌즈를 추가로 구비되는 반도체 공정 시스템의 정전기 조절 장치.A static electricity control device for a semiconductor processing system, wherein each separator plate is additionally provided with lenses having different divergence angles.
  11. 제1항에 있어서,According to paragraph 1,
    상기 그리드와 기판지지대는 다수 영역이 전기적으로 분리되는 멀티 존 타입이고, 상기 정전기 조절 제어부는 그리드와 기판지지대의 각 영역으로 서로 다른 레벨의 전압을 개별적으로 공급하는 반도체 공정 시스템의 정전기 조절 장치.The grid and the substrate support are of a multi-zone type in which multiple regions are electrically separated, and the static electricity control control unit individually supplies voltages of different levels to each region of the grid and the substrate support. A static electricity control device in a semiconductor processing system.
  12. 제11항에 있어서In paragraph 11
    상기 정전기 조절 제어부는 기판의 일정 부분에는 정전기를 주입하고, 기판의 다른 부분에는 정전기를 제거하도록 그리드와 기판지지대의 각 영역으로 전압을 공급하는 반도체 공정 시스템의 정전기 조절 장치. The static electricity control unit is a static electricity control device in a semiconductor processing system that supplies voltage to each area of the grid and the substrate support to inject static electricity into a certain part of the substrate and remove static electricity from another part of the substrate.
  13. 제1항에 있어서,According to paragraph 1,
    상기 그리드는 상부 그리드와 상부 그리드와 하측에 배치되는 하부 그리드를 포함하고, The grid includes an upper grid and a lower grid disposed below the upper grid,
    상기 정전기 조절 제어부는 상부 그리드와 하부 그리드로 서로 다른 레벨의 전압을 공급하는 반도체 공정 시스템의 정전기 조절 장치.The static electricity control unit is a static electricity control device in a semiconductor processing system that supplies voltages of different levels to an upper grid and a lower grid.
  14. 제13항에 있어서,According to clause 13,
    상기 하부 그리드에 형성된 홀의 직경은 상부 그리드에 형성된 홀의 직경과 다르게 설정되고, The diameter of the hole formed in the lower grid is set to be different from the diameter of the hole formed in the upper grid,
    정전기 조절 제어부는 제1 레벨의 음의 전압을 하부 그리드로 인가하여 하부 그리드와 기판 사이의 이온을 하부 그리드의 홀을 통해 상부 그리드 측으로 유도한 후, 상부 그리드로 제1 레벨보다 큰 음의 전압을 인가하여 하부 그리드를 통해 유입된 이온이 상부 그리드의 하면에 충돌하여 이차전자를 발생시킴으로써, 보다 높은 밀도의 전자를 하부 그리드의 홀을 통해 기판측으로 방출하도록 제어하는 반도체 공정 시스템의 정전기 조절 장치.The electrostatic control control unit applies a negative voltage of the first level to the lower grid to induce ions between the lower grid and the substrate to the upper grid through the holes in the lower grid, and then applies a negative voltage greater than the first level to the upper grid. A static electricity control device in a semiconductor processing system that controls electrons with a higher density to be emitted toward the substrate through holes in the lower grid by causing ions introduced through the lower grid to collide with the lower surface of the upper grid to generate secondary electrons.
  15. 제1항 또는 제11항 또는 제13항 중 어느 한 항에 있어서,According to any one of claims 1 or 11 or 13,
    상기 그리드 중심부의 홀 개구율은 주변 영역의 홀 개구율보다 높게 형성되는 반도체 공정 시스템의 정전기 조절 장치.A static electricity control device for a semiconductor processing system in which the hole opening ratio in the center of the grid is formed to be higher than the hole opening ratio in the surrounding area.
  16. 제1항에 있어서,According to paragraph 1,
    상기 그리드와 기판지지대를 진공챔버 내에서 상하 이동시키는 거리 조정부를 추가로 구비하고,It is further provided with a distance adjustment unit that moves the grid and the substrate support up and down within the vacuum chamber,
    상기 정전기 조절 제어부는 진공챔버의 환경조건에 의해 산출된 공정가스 자유행정거리를 근거로 그리드 또는 기판지지대 중 적어도 하나의 위치를 상측 또는 하측으로 변경하도록 거리 조정부를 제어하는 반도체 공정 시스템의 정전기 조절 장치. The static electricity control unit is a static electricity control device in a semiconductor processing system that controls the distance adjustment unit to change the position of at least one of the grid or the substrate support to the upper or lower side based on the process gas free stroke distance calculated by the environmental conditions of the vacuum chamber. .
  17. 제1항에 있어서,According to paragraph 1,
    상기 그리드 표면에는 Carbon, CNT, glassy carbon를 포함한 carbon 성분을 함유하는 막을 코팅하거나 스퍼터링 처리하여 아크 발생을 방지하는 반도체 공정 시스템의 정전기 조절장치.A static electricity control device for a semiconductor processing system that prevents arc generation by coating or sputtering a film containing carbon, including carbon, CNT, and glassy carbon, on the surface of the grid.
  18. 제1항에 있어서,According to paragraph 1,
    상기 그리드 표면에는 실리콘 옥사이드(SiO2), 알루미늄 옥사이드(Al2O3),실리콘 나이트라이드(Si3N4 ), 산화물계 박막 중 하나를 코팅하거나 스퍼터링 처리하여 아크 발생을 방지하는 반도체 공정 시스템의 정전기 조절장치.A semiconductor processing system that prevents arcing by coating or sputtering the surface of the grid with one of silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), and an oxide-based thin film. Electrostatic control device.
PCT/KR2023/003460 2022-05-20 2023-03-15 Static electrcity control device for semiconductor processing system WO2023224235A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0061887 2022-05-20
KR20220061887 2022-05-20
KR10-2022-0066175 2022-05-30
KR1020220066175A KR20230162490A (en) 2022-05-20 2022-05-30 Electrostatic control apparatus in semiconductor processing system

Publications (1)

Publication Number Publication Date
WO2023224235A1 true WO2023224235A1 (en) 2023-11-23

Family

ID=88835375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003460 WO2023224235A1 (en) 2022-05-20 2023-03-15 Static electrcity control device for semiconductor processing system

Country Status (1)

Country Link
WO (1) WO2023224235A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216583A (en) * 2005-02-01 2006-08-17 Olympus Corp Static electricity eliminating method and substrate processing apparatus
KR20100114718A (en) * 2009-04-16 2010-10-26 삼성모바일디스플레이주식회사 Apparatus and method for removing static electricity
KR102118604B1 (en) * 2018-12-14 2020-06-03 박흥균 Line Type Ion Beam Emission Device
KR102322101B1 (en) * 2021-06-24 2021-11-04 주식회사 자이시스 Semiconductor manufacturing apparatus
KR102358914B1 (en) * 2021-02-24 2022-02-08 박흥균 Electro static charge removal apparatus in semiconductor processing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216583A (en) * 2005-02-01 2006-08-17 Olympus Corp Static electricity eliminating method and substrate processing apparatus
KR20100114718A (en) * 2009-04-16 2010-10-26 삼성모바일디스플레이주식회사 Apparatus and method for removing static electricity
KR102118604B1 (en) * 2018-12-14 2020-06-03 박흥균 Line Type Ion Beam Emission Device
KR102358914B1 (en) * 2021-02-24 2022-02-08 박흥균 Electro static charge removal apparatus in semiconductor processing system
KR102322101B1 (en) * 2021-06-24 2021-11-04 주식회사 자이시스 Semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US8840753B2 (en) Plasma etching unit
US7179752B2 (en) Dry etching method
US7651586B2 (en) Particle removal apparatus and method and plasma processing apparatus
US6174370B1 (en) Semiconductor wafer chucking device and method for stripping semiconductor wafer
US7419613B2 (en) Method and device for plasma-etching organic material film
US7431796B2 (en) Method and apparatus for low energy electron enhanced etching of substrates in an AC or DC plasma environment
US6909087B2 (en) Method of processing a surface of a workpiece
WO2022270945A1 (en) Semiconductor manufacturing apparatus
KR100445105B1 (en) Ultra surface smoothing device of ito thin film and method thereof using gas cluster ion beam
JPH10189544A (en) Apparatus and method for removal of electrostatic charge in substrate
KR20010033406A (en) Improved techniques for etching with a photoresist mask
WO2023224235A1 (en) Static electrcity control device for semiconductor processing system
US6033587A (en) Method and apparatus for low energy electron enhanced etching and cleaning of substrates in the positive column of a plasma
US20040129220A1 (en) Plasma processing method and apparatus
WO2023277450A1 (en) Semiconductor manufacturing device
JP2004319972A (en) Etching method and etching device
US20060196846A1 (en) Plasma processing method and apparatus, and method for measuring a density of fluorine in plasma
KR20230162490A (en) Electrostatic control apparatus in semiconductor processing system
TW202412057A (en) Static charge control device of semiconductor processing system
US7189653B2 (en) Etching method and etching apparatus
KR100234902B1 (en) Plasma treatment apparatus in a cvd
WO2023017998A1 (en) Apparatus for removing static electricity of semiconductor substrate
JP5227734B2 (en) Method and apparatus for low energy electron enhanced etching and cleaning of substrates
KR100360177B1 (en) Method for controlling an etching process of semiconductor
JP4607328B2 (en) Method and apparatus for low energy electron enhanced etching and cleaning of substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807758

Country of ref document: EP

Kind code of ref document: A1