WO2023277220A1 - Solid binder for refractory material and refractory material comprising same - Google Patents

Solid binder for refractory material and refractory material comprising same Download PDF

Info

Publication number
WO2023277220A1
WO2023277220A1 PCT/KR2021/008296 KR2021008296W WO2023277220A1 WO 2023277220 A1 WO2023277220 A1 WO 2023277220A1 KR 2021008296 W KR2021008296 W KR 2021008296W WO 2023277220 A1 WO2023277220 A1 WO 2023277220A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
magnesia
refractory material
solid binder
weight
Prior art date
Application number
PCT/KR2021/008296
Other languages
French (fr)
Korean (ko)
Inventor
파쉬바프 자하니모르테자
Original Assignee
주식회사 토요케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 토요케미칼 filed Critical 주식회사 토요케미칼
Priority to PCT/KR2021/008296 priority Critical patent/WO2023277220A1/en
Priority to CN202180003039.7A priority patent/CN116568653A/en
Priority to KR1020217020957A priority patent/KR20230005723A/en
Publication of WO2023277220A1 publication Critical patent/WO2023277220A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Definitions

  • the present invention relates to a solid binder for a refractory material capable of producing a refractory material of excellent quality with less generation of harmful gases and a refractory material including the same.
  • Refractory materials having high heat resistance and high corrosion resistance are used in industries where high-temperature melts are used, such as iron and steel manufacturing. These refractory materials are applied to an electric furnace, a ladle, a converter, a mixed car, etc., and are used in refining processes such as steelmaking and ironmaking.
  • a conventional carbon-containing refractory material includes a carbon-containing refractory material aggregate and a binder. At this time, a phenol resin has been generally used as a binder.
  • the refractory material containing a binder containing an organic material such as phenolic resin is thermally decomposed when exposed to high temperature or fired, resulting in reduced bonding strength, and volatile organic compounds (VOCs) such as phenol are released to the surroundings during the thermal decomposition process.
  • VOC volatile organic compounds
  • the VOC is a substance that easily volatilizes into the air at room temperature due to its high vapor pressure and causes air pollution. ) and chemical reactivity, and is known to cause odor and some carcinogens. As a result, the health of workers in iron and steel factories and residents living near the factories is threatened.
  • Patent Document 1 discloses a carbon-containing refractory composition comprising a carbon-containing refractory aggregate and a binder, wherein the binder is composed of magnesium sulfate, lignosulfonate, and water. has been initiated.
  • the refractory material containing magnesium sulfate, lignosulfonate, etc. has thermal decomposition when exposed to high temperatures, resulting in poor physical properties and poor erosion resistance.
  • an object of the present invention is to provide a solid binder for a refractory material capable of producing a refractory material having excellent physical properties such as thermal properties, strength, and erosion resistance with little generation of harmful gases when exposed to high temperatures, and a refractory material including the same.
  • the present invention is a basic refractory raw material; And an organic acid containing three or more functional groups; it provides a solid binder for fireproof materials, including a primary reactant of.
  • the present invention is a solid binder for the fireproof material; And refractory material; to provide a refractory material, including.
  • the present invention is a solid binder for fireproof materials; And a refractory material; to provide a refractory brick comprising a.
  • the solid binder for fireproof materials according to the present invention does not contain organic resins such as phenolic resins, so it is environmentally friendly because it does not generate harmful gases when exposed to high temperatures.
  • the solid binder for refractory materials has excellent kneading properties and shortens kneading time, resulting in excellent economic efficiency.
  • aging time of 3 to 24 hours is required after kneading and drying at high temperature for a long time is required after molding due to the nature of thermosetting resin.
  • the drying time is also shortened, so there is an energy saving effect.
  • the refractory material and / or refractory brick containing the solid binder for refractory material has excellent physical properties such as hot properties, strength, and erosion resistance, so that it can be applied to industrial fields in which high-temperature melts such as iron and steel are used.
  • the refractory materials and/or refractory bricks have excellent fire resistance performance and can be applied in various processes and fields such as electric furnaces, ladles, converters, mixed-line cars, refining processes such as steel making and iron making.
  • Example 2 is a SEM photograph of a solid binder for fireproof materials according to the binder of Example 1.
  • Example 8 is a photograph of residual linear expansion of the neck region of Example 25.
  • the solid binder for fireproof materials according to the present invention includes a basic fireproof material; and an organic acid containing three or more functional groups.
  • the solid binder for the refractory material may be in the form of a simple mixture of a refractory raw material and an organic acid, but this may cause problems such as reaction due to moisture in storage and deterioration in hot properties due to unreacted binder after completion of molding.
  • the solid binder for the refractory material includes a primary reactant obtained by reacting a refractory raw material with an organic acid.
  • the primary reactant is in the form of a hydrate, which can secure storage stability and improve kneadability with refractory materials, thereby preventing problems such as deterioration in hot properties due to unreacted binders during product manufacturing.
  • the basic refractory raw material reacts with organic acid to impart viscosity to the binder.
  • the basic refractory raw material may include at least one selected from the group consisting of magnesia, quicklime (CaO), slaked lime (Ca(OH) 2 ), and calcined dolomite (MgO ⁇ CaO).
  • the basic refractory raw material may be a product obtained by reacting water with one or more reactants selected from the group consisting of magnesium oxide, quicklime (CaO), slaked lime (Ca(OH) 2 ), and calcined dolomite (MgO CaO). .
  • magnesia may be at least one selected from the group consisting of acustic calcined magnesia, fused magnesia, sintered magnesia, and dead burned magnesia.
  • the basic refractory raw material may include magnesia and at least one reaction rate regulator selected from the group consisting of quicklime (CaO), slaked lime (Ca(OH) 2 ), and calcined dolomite (MgO CaO).
  • the magnesia and the reaction rate regulator may be included in a weight ratio of 1:0.005 to 1:0.1, or 1:0.01 to 1:0.05. When the weight ratio of magnesia and the reaction rate regulator is within the above range, the reaction rate between the refractory raw material and the organic acid can be appropriately controlled.
  • the weight ratio of magnesia and the reaction rate regulator exceeds the above range, that is, when the weight of the reaction rate regulator is excessive with respect to the weight of magnesia, the physical properties of the refractory prepared by volume expansion or differentiation during the hydration process are poor, or the binder The properties of the binder may be deteriorated due to precipitation occurring therein.
  • the content of the reaction rate regulator can be adjusted based on the content of calcium oxide (CaO) contained in magnesia, for example, 0.5 to 10 parts by weight, or 1 to 10 parts by weight based on 100 parts by weight of calcium oxide (CaO) in magnesia. 5 parts by weight.
  • the reaction rate regulator may have an average diameter of less than 0.3 mm, 0.045 mm to 0.3 mm, or 0.045 mm to 0.1 mm.
  • the average diameter of the reaction rate regulator When the average diameter of the reaction rate regulator is within the above range, it serves as a catalyst for the reaction through a high specific surface area, thereby reducing the reaction time.
  • the average diameter of the reaction rate controller exceeds the above range, the reaction activity is lowered and the reaction rate controller cannot properly perform the role, and the unreacted reaction rate controller adversely affects product properties such as hot strength. can happen
  • the organic acid reacts with the basic refractory raw material to impart viscosity to the binder.
  • the organic acid contains three or more functional groups.
  • the functional group may be a carboxyl group (COOH).
  • COOH carboxyl group
  • the organic acid may include at least one selected from the group consisting of citric acid and ethylenediaminetetraacetic acid.
  • the solid binder for the refractory material may include a refractory raw material and an organic acid at a weight ratio of 1:0.25 to 4.0, 1:0.5 to 2.0, or 1:0.8 to 1.2.
  • the weight ratio of the refractory raw material to the organic acid is less than the above range, that is, when a small amount of organic acid is included based on the weight of the refractory raw material, it is difficult to express sufficient viscosity conducive to molding after the reaction, and when it exceeds the above range, that is, When an excessive amount of organic acid is included based on the weight of the refractory raw material, deterioration in physical properties may occur due to unreacted organic acid.
  • the solid binder for the refractory material may include a basic refractory material, an organic acid containing three or more functional groups, and a primary reactant in the form of a hydrate reacted with water.
  • the primary reactant is a refractory raw material, organic acid and water in a weight ratio of 1: 0.25 to 4.0: 0.2 to 1.5, 1: 0.5 to 2.0: 0.3 to 0.9, or 1: 0.8 to 1.2: 0.3 to 0.7.
  • the weight ratio of the refractory raw material to the water is less than the above range, that is, when a small amount of water is included based on the weight of the refractory raw material, there occurs a problem in that the production of binder hydrate is reduced due to moisture evaporation due to heat generation, and In this case, that is, when an excessive amount of water is included based on the weight of the refractory raw material, a drying process due to residual moisture after the reaction may occur unnecessarily.
  • the solid binder for fireproof materials may further include at least one selected from the group consisting of a stabilizer and a visible time regulator.
  • the stabilizer serves to improve the stability of the binder by preventing cracks caused by evaporation of organic acids and/or moisture.
  • the stabilizer may include at least one selected from the group consisting of inorganic salts and inorganic acids.
  • the stabilizer may include at least one selected from the group consisting of magnesium sulfate, aluminum sulfate, magnesium phosphate, aluminum phosphate, phosphoric acid, and boric acid.
  • the stabilizer is a group consisting of MgSO 4 , MgSO 4 7H 2 O, Mg 3 (PO 4 ) 2 , H 3 PO 4 , Al 2 (SO 4 ) 3 , H 3 BO 3 , and AlPO 4 It may include one or more selected from.
  • the stabilizer may be included in an amount of 5 to 30% by weight or 7.0 to 20% by weight based on the total weight of the solid binder for fireproof materials. If the content of the stabilizer is less than the above range, cracks may occur on the surface of the binder during the drying process, and if it exceeds the above range, hot strength and forming strength may be reduced.
  • the pot life regulator serves to prevent stability deterioration due to moisture evaporation of the solid binder for fireproof materials and to control pot life of the binder by adjusting the water content of the binder.
  • the pot life regulator may include at least one selected from the group consisting of glycerin, ethylene glycol, propylene glycol, stearic acid, carbomer, xanthan gum, cellulose, and methyl cellulose.
  • the pot life regulator may be included in an amount of 0.2 to 5% by weight, or 0.5 to 3.0% by weight based on the total weight of the solid binder for fireproof materials. If the content of the pot life adjuster is less than the above range, it cannot properly function as a pot life adjuster, and if it exceeds the above range, problems such as reduced molding specific gravity and dry strength of the manufactured product may occur.
  • the solid binder for fireproof materials according to the present invention as described above may further include coke powder.
  • coke powder When coke powder is additionally included as described above, the solid binder may be used as a binder for surface treatment of a refractory material, in particular, a coating binder.
  • the content of the coke powder may be used without particular limitation as long as it has viscosity and workability suitable for use for surface treatment, particularly for coating.
  • the solid binder for refractory materials according to the present invention has excellent kneading properties and shortens kneading time compared to phenolic resins, which are conventionally used binders, and thus has excellent economic efficiency.
  • phenolic resin aging time of 3 to 24 hours is required after kneading, and after molding, due to the nature of thermosetting resin, long drying is required at a high drying temperature, whereas the solid binder for refractories according to the present invention can be molded immediately after kneading Productivity can be improved, and due to the nature of the water-based binder, the drying time is also shortened, so there is an energy saving effect.
  • a refractory material according to the present invention includes a solid binder for the refractory material; and refractory materials;
  • the refractory material may be used without particular limitation as long as it is commonly used as a raw material for refractory materials, and includes, for example, at least one selected from the group consisting of magnesia-based, alumina-based, chromium-based, silica-based, and graphite-based refractory materials. can do.
  • the graphite-based refractory material may include natural graphite, impression graphite, or expanded graphite.
  • the refractory materials include magnesia-carbon refractories, magnesia-alumina-carbon refractories, alumina-magnesia-carbon refractories, magnesia-based refractories, magnesia-chromium refractories, magnesia-spinel refractories, alumina-silicon carbide- It may include at least one selected from the group consisting of carbon-based refractories.
  • the refractory material may include 100 parts by weight of the refractory material and 1 to 5 parts by weight of a solid binder for the refractory material.
  • the weight of the solid binder for refractory materials is less than the above range, that is, when a small amount of the solid binder for refractory materials is included based on the refractory material, the erosion resistance of the refractory material is reduced due to a decrease in molding strength, an increase in porosity and an increase in water absorption
  • the weight of the solid binder exceeds the above range, that is, when an excessive amount of the solid binder for the refractory material is included based on the refractory material, the durability of the refractory material is reduced due to the volatilization of the binder at high temperature and the increase in porosity, resulting in a decrease in the lifespan of the refractory material (decreased erosion resistance) ) can cause problems.
  • the fireproof material may further include at least one selected from the group consisting of a stabilizer and a pot life regulator.
  • the stabilizer and the pot life regulator are the same as those described in the solid binder for fireproof materials.
  • the fireproof material may include 100 parts by weight of the fireproof material, 0.1 to 5 parts by weight or 0.1 to 2 parts by weight of a stabilizer, and 0.2 to 5 parts by weight or 0.5 to 3.0 parts by weight of a pot life regulator.
  • a stabilizer When the content of the stabilizer is less than the above range, cracks may occur on the surface of the refractory material during the drying process, and when it exceeds the above range, hot strength and forming strength of the refractory material may be reduced.
  • the content of the pot life regulator is less than the above range, the moisture content in the refractory material may be excessive, and when the content exceeds the above range, molding specific gravity and dry strength of the refractory material may be reduced.
  • the refractory material may further include a hot property improving agent.
  • the hot property improver serves to improve the hot strength, erosion resistance, and oxidation resistance of the refractory material.
  • the hot property improver may be used without particular limitation as long as it can be added to the refractory material to improve hot property, for example, pitch, silicon nitride (Si 3 N 4 ), boron carbide (B 4 C ) and at least one selected from the group consisting of carbon black.
  • the hot property improving agent may be included in an amount of 0.1 to 3 parts by weight or 0.1 to 1.0 parts by weight based on 100 parts by weight of the refractory material. If the content of the hot properties improving agent is less than the above range, a problem of not properly expressing the hot property improvement effect occurs, and if it exceeds the above range, the molding strength and dry properties of the refractory material may be reduced or the steel type may be affected.
  • Firebrick according to the present invention includes a solid binder for the refractory material; and refractory materials;
  • the refractory material is as described in the refractory material.
  • the refractory brick may be a magnesia-carbon refractory brick, a magnesia-alumina-carbon refractory brick, an alumina-silica refractory brick, a magnesia-chromium refractory brick, an alumina-carbon refractory brick or a magnesia-based refractory brick.
  • the refractory bricks may be reduced-fired bricks, fired bricks, or unfired bricks.
  • the refractory material and/or fire brick according to the present invention does not contain organic resins such as phenolic resins, and thus does not generate volatile organic compounds (VOCs) during the manufacturing process, and thus is environmentally friendly.
  • the refractory materials and/or refractory bricks have excellent physical properties required for refractory materials, such as compressive strength, porosity, erosion resistance, spalling resistance, and the like.
  • a solid binder for a refractory material was prepared using each component in an amount as shown in Table 1, and SEM pictures of the prepared solid binder for a refractory material are shown in FIGS. 1 and 2 .
  • 1 is a SEM picture of the binder of Comparative Example 1
  • FIG. 2 is a SEM picture of the binder of Example 1.
  • a solid binder for a refractory material was prepared by simply mixing the refractory raw material and the organic acid.
  • water was added and reacted to obtain a first reactant, and then the first reactant was dried at 80 ⁇ 20 ° C. for 12 hours, and then an impact mill was used as a grinding facility. It was pulverized to prepare a solid binder for fireproof materials having an average particle diameter of 0.074 mm.
  • Example 1 Light burned magnesia (refractory raw material) 100 100 Citric acid (organic acid) 100 100 water 0 60 Reaction temperature (°C) 60.9 26.7
  • the binder of Comparative Example 1 prepared by simple mixing reacted with the moisture added for clay and kneading, and increased by 37 ° C compared to the initial temperature of 25 ° C.
  • Example 1 prepared by pulverizing the reactants subjected to the first reaction showed no significant change as the initial temperature increased by 2 ° C compared to 25 ° C.
  • the rise in temperature during kneading is a factor that greatly affects the surface drying and formability of the refractory material, and in Example 1 compared to Comparative Example 1, there is little change in temperature to maintain stable mixing and sufficient pot life of the refractory material.
  • a solid binder for a refractory material was prepared using each component in an amount as shown in Table 2.
  • the primary reactant was dried at 80 ⁇ 20 ° C. for 12 hours, and then pulverized with an impact mill, which is a grinding facility, to prepare a solid binder for refractories having an average particle diameter of 0.074 mm.
  • EDTA in Table 2 is ethylenediaminetetraacetic acid (Ethylenediaminetetraacetic acid), and the reaction temperature and reaction time were measured by using a digital thermometer to measure the maximum temperature, and the reaction time was measured by visually checking the reaction start time.
  • the reaction rate between the refractory material and the organic acid was in the order of quicklime, slaked lime, calcined dolomite, light-burnt magnesia, small-medium magnesia (DBM), calcined magnesia, and molten magnesia, which is related to the hydration rate of the refractory raw material. was found to be determined by From this, it was also found that the reaction rate can be controlled by adding quicklime, slaked lime, calcined dolomite, etc. to magnesia such as pre-melted magnesia, calcined magnesia, DBM, and light-burnt magnesia.
  • reaction temperature and reaction time can be controlled by adjusting the mixing ratio of calcined magnesia and light-burnt magnesia, which are refractory raw materials.
  • a refractory material was prepared using each component in an amount as shown in Table 3.
  • a primary reactant was added and reacted to obtain a primary reactant. Thereafter, the primary reactant was dried at 80 ⁇ 20 ° C. for 12 hours, and then a stabilizer was added and pulverized with an impact mill, which is a grinding facility, to prepare a solid binder for refractories having an average particle diameter of 0.074 mm.
  • refractory materials such as magnesia, aluminum, and impression graphite were mixed, a solid binder for refractories was added, kneaded at 25 to 30 ° C for 15 minutes, molded into a size of 60 mmX60 mm X 60 mm, and dried at 200 ° C for 12 hours to prepare a refractory material. .
  • the prepared refractory material was subjected to a rapid heating test at 900 ° C. Specifically, the refractory material was charged into an electric furnace at 900 ° C. and rapidly heated for 4 minutes, and then whether or not cracks occurred on the exterior of the refractory material was visually observed.
  • a refractory material was prepared using each component in an amount as shown in Table 4.
  • refractory materials such as magnesia, aluminum, and impression graphite are mixed, a solid binder for refractory materials is added, kneaded at 25 to 35°C for 15 minutes, molded into a size of 60mmX60mmX60mm, dried at 200°C for 12 hours, and then dried at 1000°C for 12 hours.
  • a refractory material was prepared by time firing.
  • a product having a bulk specific gravity of 0.98 g/cm 3 , a specific surface area of 1 m 2 /g, and an average particle diameter of 350 ⁇ m was used as the impression graphite, and a product having an average particle diameter of 4 mm was used as magnesia.
  • 8027 of Gangnam Hwaseong Co., Ltd. was used as a phenol resin, and molasses from Daesang Co., Ltd. (total solid content: 80% by weight or more) was used as molasses.
  • the physical properties of the prepared refractory materials were measured in the following manner, and specific gravity after molding, physical properties after drying, physical properties after firing, and erosion resistance were compared as the amount of citric acid added during binder preparation was increased.
  • Equation 1 the bulk specific gravity was calculated after drying or firing using Equation 1 below.
  • the compressive strength of the dried refractory material having a size of 60mmX60mmX60mm was measured using a hydraulic compressive strength tester according to the method described in KS L 3115.
  • Equation 2 the apparent porosity after drying or firing was calculated using Equation 2 below.
  • the refractory material was heated to 1,650 ⁇ 1,700 ° C with a burner, and steel and steelmaking slag as an erosion agent were mixed at a weight ratio of 1: 1 to measure the erosion resistance of the mixture. .
  • the erosion resistance was expressed as a relative erosion index, with the erosion amount of Example 20 being 100. In this case, the lower the erosion index, the better the erosion resistance.
  • FIGS. 5 and 6 Thermal analysis and mass spectrometry (STA-MS) was used to analyze the components of the gas (decomposition gas) released when the weight is reduced during thermal decomposition analysis of the binder, and the analysis results are shown in FIGS. 5 and 6 .
  • 5 is a gas component analysis result of Comparative Example 2
  • FIG. 6 is a gas component analysis result of Example 18.
  • Examples 18 to 22 exhibited the molding specific gravity, physical properties after drying, and physical properties after firing at the same level as those of Comparative Examples 2 and 3.
  • Example 20 in which the weight ratio of the refractory raw material to citric acid was 1:1 was excellent in corrosion resistance compared to Comparative Example 2 using a phenol resin.
  • Example 17 the organic acid content compared to the total amount of refractory raw materials was low, resulting in poor binder properties.
  • Example 23 due to the excessive amount of organic acid compared to the content of the refractory material, it reacted with the clay and caused surface drying, resulting in a decrease in the molding strength of the refractory material.
  • Example 18 As shown in FIG. 5, in Comparative Example 2, benzene (C 6 H 6 ), toluene (C 7 H 8 ), and phenol (C 6 H 5 OH) were released. On the other hand, as shown in FIG. 6, the binder of Example 18 is environmentally friendly because no harmful substances such as benzene (C 6 H 6 ), toluene (C 7 H 8 ), and phenol (C 6 H 5 OH) are emitted. did.
  • a refractory material was prepared using each component in an amount as shown in Table 5.
  • refractory materials such as magnesia, aluminum, and impression graphite were mixed, solid binder-1 for refractory materials was added, kneaded at 25 to 30°C for 15 minutes, molded into a size of 60mmX60mmX60mm, dried at 200°C for 12 hours, and then dried at 1000°C. It was fired for 12 hours to prepare a refractory material.
  • pitch (pitch) of CABORES-P of RUTGERS was used as a hot property improving agent, and carbon black having an average diameter of 0.01 mm was used.
  • phenol resin 8027 of Gangnam Chemical Co., Ltd. was used.
  • refractory material of size 230mmX40mmX40mm is immersed in molten steel for 60 seconds and then cooled in air for 5 minutes, which is a cycle until spalling (crack) occurs in the refractory material. number was recorded. The greater the number of cycles measured, the better the spalling resistance.
  • FIGS. 7 and 8 pictures of the refractory material before and after firing are shown in FIGS. 7 and 8, FIG. 7 is a picture of the refractory material of Comparative Example 2, and FIG. 8 is a picture of the refractory material of Example 24.
  • Example 25 to 28 were superior in erosion resistance and spalling resistance to Comparative Example 2.
  • Example 28 including silicon nitride (Si 3 N 4 ) has improved corrosion resistance by 10% or more compared to Comparative Example 2, and residual linear expansion is greatly improved compared to Comparative Example 2 using the existing phenolic resin.
  • the refractory material of Example 24 compared to the refractory material of Comparative Example 2 to which a phenolic resin, a conventional binder, was applied had excellent residual linear expansion property, preventing penetration of molten steel in the wood paper (brick bonding) part, Erosion of the site was prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

The present invention relates to a solid binder for a refractory material, and a refractory material and a refractory brick comprising same, the solid binder comprising a primary reaction product of: a basic refractory raw material; and an organic acid containing three or more functional groups.

Description

내화재용 고형 바인더 및 이를 포함하는 내화재Solid binder for refractory material and refractory material containing the same
본 발명은 유해 가스 발생이 적고 품질이 우수한 내화재를 제조할 수 있는 내화재용 고형 바인더 및 이를 포함하는 내화재에 관한 것이다.The present invention relates to a solid binder for a refractory material capable of producing a refractory material of excellent quality with less generation of harmful gases and a refractory material including the same.
제철, 제강 등의 고온의 용융물이 사용되는 산업 분야에서는 고내열성 및 고내식성을 갖는 내화재가 사용되고 있다. 이러한 내화재는 전기로, 래들(ladle), 전로, 혼선차 등에 적용되고, 제강, 제철 등의 정련 공정에서 사용되고 있다. 종래 카본 함유 내화재는 카본 함유 내화재 골재 및 결합제를 포함한다. 이때, 결합제로 일반적으로 페놀 수지가 사용되어 왔다.Refractory materials having high heat resistance and high corrosion resistance are used in industries where high-temperature melts are used, such as iron and steel manufacturing. These refractory materials are applied to an electric furnace, a ladle, a converter, a mixed car, etc., and are used in refining processes such as steelmaking and ironmaking. A conventional carbon-containing refractory material includes a carbon-containing refractory material aggregate and a binder. At this time, a phenol resin has been generally used as a binder.
그러나, 페놀 수지 등의 유기물을 포함하는 결합제를 함유하는 내화재는 고온 노출시 또는 소성시에 유기물이 열분해되어 결합력이 감소하고, 열분해 과정에서 주변으로 페놀 등의 휘발성 유기 화합물(VOC)을 방출한다. 상기 VOC는 증기압이 높아 상온에서 대기 중으로 쉽게 휘발되어 대기오염을 일으키는 물질로, 고유한 생체 독성(증기 또는 연무는 코, 목구멍 및 폐에 자극을 줄 수 있고 눈과 피부를 부식시켜 실명을 초래할 수 있음) 및 화학 반응성을 내재하고 있고, 악취, 일부 발암물질 등을 유발하는 것으로 알려져 있다. 이로인해 제철, 제강공장 근무 근로자 및 공장 인근 거주 주민들은 건강의 위협을 받고 있다. However, the refractory material containing a binder containing an organic material such as phenolic resin is thermally decomposed when exposed to high temperature or fired, resulting in reduced bonding strength, and volatile organic compounds (VOCs) such as phenol are released to the surroundings during the thermal decomposition process. The VOC is a substance that easily volatilizes into the air at room temperature due to its high vapor pressure and causes air pollution. ) and chemical reactivity, and is known to cause odor and some carcinogens. As a result, the health of workers in iron and steel factories and residents living near the factories is threatened.
이에 대한 대안으로, 한국 등록특허 제967408호(특허문헌 1)에는 카본 함유 내화성 골재 및 결합제를 포함하는 카본 함유 내화재 조성물로서, 상기 결합제가 황산마그네슘, 리그노설폰산염 및 물로 이루어지는 카본 함유 내화재 조성물이 개시되어 있다. 그러나, 특허문헌 1과 같이 황산마그네슘, 리그노설폰산염 등을 포함하는 내화재는 고온 노출시 열분해가 발생하여 열간 물성이 부족하고, 내침식성 등이 부족한 문제가 있었다. As an alternative to this, Korean Patent Registration No. 967408 (Patent Document 1) discloses a carbon-containing refractory composition comprising a carbon-containing refractory aggregate and a binder, wherein the binder is composed of magnesium sulfate, lignosulfonate, and water. has been initiated. However, as in Patent Document 1, the refractory material containing magnesium sulfate, lignosulfonate, etc. has thermal decomposition when exposed to high temperatures, resulting in poor physical properties and poor erosion resistance.
따라서, 고온 노출시 유해 가스 발생이 적고 열간 특성, 강도, 내침식성 등의 물성이 우수한 내화재를 제조할 수 있는 내화재용 바인더 및 이를 포함하는 내화재에 대한 연구개발이 필요한 실정이다.Therefore, there is a need for research and development on binders for refractory materials capable of producing refractory materials that generate less harmful gases when exposed to high temperatures and have excellent physical properties such as hot properties, strength, and erosion resistance, and refractory materials including the same.
이에, 본 발명은 고온 노출시 유해 가스 발생이 적고 열간 특성, 강도, 내침식성 등의 물성이 우수한 내화재를 제조할 수 있는 내화재용 고형 바인더 및 이를 포함하는 내화재를 제공하고자 한다.Accordingly, an object of the present invention is to provide a solid binder for a refractory material capable of producing a refractory material having excellent physical properties such as thermal properties, strength, and erosion resistance with little generation of harmful gases when exposed to high temperatures, and a refractory material including the same.
본 발명은 염기성의 내화 원료; 및 3개 이상의 작용기를 함유하는 유기산;의 1차 반응물을 포함하는, 내화재용 고형 바인더를 제공한다.The present invention is a basic refractory raw material; And an organic acid containing three or more functional groups; it provides a solid binder for fireproof materials, including a primary reactant of.
또한, 본 발명은 상기 내화재용 고형 바인더; 및 내화 재료;를 포함하는, 내화재를 제공한다.In addition, the present invention is a solid binder for the fireproof material; And refractory material; to provide a refractory material, including.
또한, 본 발명은 내화재용 고형 바인더; 및 내화 재료;를 포함하는, 내화 벽돌을 제공한다.In addition, the present invention is a solid binder for fireproof materials; And a refractory material; to provide a refractory brick comprising a.
본 발명에 따른 내화재용 고형 바인더는 페놀 수지와 같은 유기 수지를 포함하지 않아 고온 노출시 유해 가스 발생이 적어 친환경적이다. 또한, 종래 통상적으로 사용하던 바인더인 페놀 수지에 비해, 상기 내화재용 고형 바인더는 혼련성이 우수하여 혼련 시간이 단축되어 경제성이 우수하다. 또한, 페놀 수지의 경우 혼련 후 3 내지 24 시간의 숙성 시간이 필요하고 성형 이후 열경화성 수지의 특성상 고온에서 장시간 건조가 필요한 반면, 본 발명에 따른 내화재용 고형 바인더는 혼련 즉시 성형이 가능하여 생산성도 향상시킬 수 있고, 수계 결합제 특성상 건조 시간도 단축되어 에너지 절감 효과도 있다.The solid binder for fireproof materials according to the present invention does not contain organic resins such as phenolic resins, so it is environmentally friendly because it does not generate harmful gases when exposed to high temperatures. In addition, compared to phenolic resins, which are conventionally used binders, the solid binder for refractory materials has excellent kneading properties and shortens kneading time, resulting in excellent economic efficiency. In addition, in the case of phenolic resin, aging time of 3 to 24 hours is required after kneading and drying at high temperature for a long time is required after molding due to the nature of thermosetting resin. And, due to the nature of the water-based binder, the drying time is also shortened, so there is an energy saving effect.
또한, 상기 내화재용 고형 바인더를 포함하는 내화재 및/또는 내화 벽돌은 열간 특성, 강도, 내침식성 등의 물성이 우수하여 제철, 제강 등의 고온의 용융물이 사용되는 산업 분야에 적용 가능하다. 특히, 상기 내화재 및/또는 내화 벽돌은 내화 성능이 우수하여 전기로, 래들(ladle), 전로, 혼선차, 제강, 제철 등의 정련 공정 등 다양한 공정 및 분야에서 적용할 수 있다.In addition, the refractory material and / or refractory brick containing the solid binder for refractory material has excellent physical properties such as hot properties, strength, and erosion resistance, so that it can be applied to industrial fields in which high-temperature melts such as iron and steel are used. In particular, the refractory materials and/or refractory bricks have excellent fire resistance performance and can be applied in various processes and fields such as electric furnaces, ladles, converters, mixed-line cars, refining processes such as steel making and iron making.
도 1은 비교예 1의 바인더에 따른 내화재용 고형 바인더의 SEM 사진이다.1 is a SEM photograph of a solid binder for fireproof materials according to the binder of Comparative Example 1.
도 2는 실시예 1의 바인더에 따른 내화재용 고형 바인더의 SEM 사진이다.2 is a SEM photograph of a solid binder for fireproof materials according to the binder of Example 1.
도 3 및 4는 실시예 1 또는 비교예 1의 바인더에 물을 첨가한 후 측정한 반응 온도 측정 사진이다. 3 and 4 are pictures of the reaction temperature measured after adding water to the binder of Example 1 or Comparative Example 1.
도 5 및 6은 실시예 19 및 비교예 1의 유해가스 분석 결과이다.5 and 6 are harmful gas analysis results of Example 19 and Comparative Example 1.
도 7은 비교예 1의 목지 부위의 잔존 선팽창 시험 사진이다.7 is a photograph of the residual linear expansion test of the neck region of Comparative Example 1.
도 8은 실시예 25의 목지 부위의 잔존 선팽창 사진이다. 8 is a photograph of residual linear expansion of the neck region of Example 25.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
내화재용 고형 바인더 Solid binder for refractory materials
본 발명에 따른 내화재용 고형 바인더는 염기성의 내화 원료; 및 3개 이상의 작용기를 함유하는 유기산;의 1차 반응물을 포함한다.The solid binder for fireproof materials according to the present invention includes a basic fireproof material; and an organic acid containing three or more functional groups.
상기 내화재용 고형 바인더는 내화 원료와 유기산이 단순 혼합한 형태일 수 있으나, 이는 보관상 수분에 의한 반응, 성형 완료 이후 미반응 바인더에 의한 열간 특성 저하 등의 문제가 발생할 수 있다. 이에, 상기 내화재용 고형 바인더는 내화 원료와 유기산을 반응시킨 1차 반응물을 포함한다. 이때, 상기 1차 반응물은 수화물 형태로서, 보관상의 안정성을 확보할 수 있고 내화 재료와의 혼련성을 향상시켜 제품 제조시 미반응 바인더에 의한 열간 특성 저하 등의 문제를 방지할 수 있다.The solid binder for the refractory material may be in the form of a simple mixture of a refractory raw material and an organic acid, but this may cause problems such as reaction due to moisture in storage and deterioration in hot properties due to unreacted binder after completion of molding. Accordingly, the solid binder for the refractory material includes a primary reactant obtained by reacting a refractory raw material with an organic acid. At this time, the primary reactant is in the form of a hydrate, which can secure storage stability and improve kneadability with refractory materials, thereby preventing problems such as deterioration in hot properties due to unreacted binders during product manufacturing.
염기성의 내화 원료basic refractory raw material
염기성의 내화 원료는 유기산과 반응하여 바인더에 점성을 부여하는 역할을 한다.The basic refractory raw material reacts with organic acid to impart viscosity to the binder.
상기 염기성의 내화 원료는 마그네시아, 생석회(CaO), 소석회(Ca(OH)2), 소성 돌로마이트(MgO·CaO)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 염기성 내화 원료는 산화마그네슘, 생석회(CaO), 소석회(Ca(OH)2), 소성 돌로마이트(MgO·CaO)로 이루어진 군으로부터 선택된 1종 이상의 반응물과 물이 반응한 생성물일 수 있다.The basic refractory raw material may include at least one selected from the group consisting of magnesia, quicklime (CaO), slaked lime (Ca(OH) 2 ), and calcined dolomite (MgO·CaO). Specifically, the basic refractory raw material may be a product obtained by reacting water with one or more reactants selected from the group consisting of magnesium oxide, quicklime (CaO), slaked lime (Ca(OH) 2 ), and calcined dolomite (MgO CaO). .
이때, 상기 마그네시아는 경소(acustic calcined) 마그네시아, 전융(fused) 마그네시아, 소성(sintered) 마그네시아 및 중소(dead burned) 마그네시아로 이루어진 군으로부터 선택된 1종 이상일 수 있다.In this case, the magnesia may be at least one selected from the group consisting of acustic calcined magnesia, fused magnesia, sintered magnesia, and dead burned magnesia.
보다 구체적으로, 상기 염기성의 내화 원료는 마그네시아와, 생석회(CaO), 소석회(Ca(OH)2), 소성 돌로마이트(MgO·CaO)로 이루어진 군으로부터 선택된 1종 이상의 반응 속도 조절제를 포함할 수 있다. 이때, 상기 마그네시아와 반응 속도 조절제는 1:0.005 내지 1:0.1의 중량비, 또는 1:0.01 내지 1:0.05의 중량비로 포함할 수 있다. 마그네시아와 반응 속도 조절제의 중량비가 상기 범위 내일 경우, 내화 원료와 유기산의 반응 속도가 적절히 조절될 수 있다. 마그네시아와 반응 속도 조절제의 중량비가 상기 범위 초과인 경우 즉, 마그네시아 중량에 대하여 반응 속도 조절제의 중량이 과량인 경우, 수화 과정 중 부피 팽창 또는 분화에 의해 제조된 내화제의 물성이 열세해지거나, 바인더에 침전이 발생하여 바인더의 특성이 저하될 수 있다. More specifically, the basic refractory raw material may include magnesia and at least one reaction rate regulator selected from the group consisting of quicklime (CaO), slaked lime (Ca(OH) 2 ), and calcined dolomite (MgO CaO). . In this case, the magnesia and the reaction rate regulator may be included in a weight ratio of 1:0.005 to 1:0.1, or 1:0.01 to 1:0.05. When the weight ratio of magnesia and the reaction rate regulator is within the above range, the reaction rate between the refractory raw material and the organic acid can be appropriately controlled. When the weight ratio of magnesia and the reaction rate regulator exceeds the above range, that is, when the weight of the reaction rate regulator is excessive with respect to the weight of magnesia, the physical properties of the refractory prepared by volume expansion or differentiation during the hydration process are poor, or the binder The properties of the binder may be deteriorated due to precipitation occurring therein.
상기 반응 속도 조절제의 함량은 마그네시아에 포함되는 산화 칼슘(CaO)의 함량을 기준으로 조절 가능하며, 예를 들어, 마그네시아 내 산화 칼슘(CaO) 100중량부를 기준으로 0.5 내지 10 중량부, 또는 1 내지 5 중량부로 포함될 수 있다. The content of the reaction rate regulator can be adjusted based on the content of calcium oxide (CaO) contained in magnesia, for example, 0.5 to 10 parts by weight, or 1 to 10 parts by weight based on 100 parts by weight of calcium oxide (CaO) in magnesia. 5 parts by weight.
또한, 상기 반응 속도 조절제는 평균 직경이 0.3mm 미만, 0.045mm 내지 0.3mm, 또는 0.045mm 내지 0.1mm일 수 있다. 반응 속도 조절제의 평균 직경이 상기 범위 내인 경우 높은 비표면적을 통한 반응의 촉매역할을 하여 반응시간 단축의 효과가 있다. 또한, 상기 반응 속도 조절제의 평균 직경이 상기 범위 초과인 경우 반응 활성도가 떨어져 반응 속도 조절제의 역할을 제대로 수행할 수 없고, 미반응 반응 속도 조절제로 의한 열간 강도 등의 제품 물성에 악영향을 끼치는 문제가 발생할 수 있다. In addition, the reaction rate regulator may have an average diameter of less than 0.3 mm, 0.045 mm to 0.3 mm, or 0.045 mm to 0.1 mm. When the average diameter of the reaction rate regulator is within the above range, it serves as a catalyst for the reaction through a high specific surface area, thereby reducing the reaction time. In addition, when the average diameter of the reaction rate controller exceeds the above range, the reaction activity is lowered and the reaction rate controller cannot properly perform the role, and the unreacted reaction rate controller adversely affects product properties such as hot strength. can happen
유기산organic acid
유기산은 염기성의 내화 원료와 반응하여 바인더에 점성을 부여하는 역할을 한다. The organic acid reacts with the basic refractory raw material to impart viscosity to the binder.
상기 유기산은 3개 이상의 작용기를 함유한다. 이때, 상기 작용기는 카르복실기(COOH)일 수 있다. 상술한 바와 같이 3개 이상의 작용기를 함유하는 유기산을 사용하면, 내화 원료 수화시 생성되는 MgOH+, CaOH+ 등의 염기성 작용기와 반응하여 강한 점성을 발휘할 수 있다. The organic acid contains three or more functional groups. In this case, the functional group may be a carboxyl group (COOH). As described above, when an organic acid containing three or more functional groups is used, strong viscosity can be exhibited by reacting with basic functional groups such as MgOH + and CaOH + generated during hydration of a refractory raw material.
구체적으로, 상기 유기산은 구연산 및 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic Acid)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Specifically, the organic acid may include at least one selected from the group consisting of citric acid and ethylenediaminetetraacetic acid.
상기 내화재용 고형 바인더는 내화 원료와 유기산을 1: 0.25 내지 4.0의 중량비, 1: 0.5 내지 2.0의 중량비, 또는 1: 0.8 내지 1.2의 중량비로 포함할 수 있다. 내화 원료와 유기산의 중량비가 상기 범위 미만인 경우, 즉 내화 원료의 중량을 기준으로 소량의 유기산을 포함하는 경우, 반응 이후 성형에 도움이 되는 충반한 점력의 발현이 어렵고, 상기 범위 초과인 경우, 즉 내화 원료의 중량을 기준으로 과량의 유기산을 포함하는 경우, 미반응 유기산으로 인한 물성 저하가 발생할 수 있다.The solid binder for the refractory material may include a refractory raw material and an organic acid at a weight ratio of 1:0.25 to 4.0, 1:0.5 to 2.0, or 1:0.8 to 1.2. When the weight ratio of the refractory raw material to the organic acid is less than the above range, that is, when a small amount of organic acid is included based on the weight of the refractory raw material, it is difficult to express sufficient viscosity conducive to molding after the reaction, and when it exceeds the above range, that is, When an excessive amount of organic acid is included based on the weight of the refractory raw material, deterioration in physical properties may occur due to unreacted organic acid.
구체적으로, 상기 내화재용 고형 바인더는 염기성의 내화 원료, 3개 이상의 작용기를 함유하는 유기산 및 물이 반응한 수화물 형태의 1차 반응물을 포함할 수 있다. 이때, 상기 1차 반응물은 내화 원료, 유기산 및 물을 1: 0.25 내지 4.0 : 0.2 내지 1.5 의 중량비, 1: 0.5 내지 2.0 : 0.3 내지 0.9 의 중량비, 또는 1: 0.8 내지 1.2 : 0.3 내지 0.7의 중량비로 반응된 것일 수 있다. 내화 원료와 물의 중량비가 상기 범위 미만인 경우, 즉 내화 원료의 중량을 기준으로 소량의 물을 포함하는 경우, 발열에 의한 수분 증발로 인한 결합제 수화물의 생성이 저하되는 문제가 발생하고, 상기 범위 초과인 경우, 즉 내화 원료의 중량을 기준으로 과량의 물을 포함하는 경우, 반응 후 잔류 수분에 의한 건조 과정이 불필요하게 발생할 수 있다.Specifically, the solid binder for the refractory material may include a basic refractory material, an organic acid containing three or more functional groups, and a primary reactant in the form of a hydrate reacted with water. At this time, the primary reactant is a refractory raw material, organic acid and water in a weight ratio of 1: 0.25 to 4.0: 0.2 to 1.5, 1: 0.5 to 2.0: 0.3 to 0.9, or 1: 0.8 to 1.2: 0.3 to 0.7. may have reacted with When the weight ratio of the refractory raw material to the water is less than the above range, that is, when a small amount of water is included based on the weight of the refractory raw material, there occurs a problem in that the production of binder hydrate is reduced due to moisture evaporation due to heat generation, and In this case, that is, when an excessive amount of water is included based on the weight of the refractory raw material, a drying process due to residual moisture after the reaction may occur unnecessarily.
상기 내화재용 고형 바인더는 안정화제 및 가시시간 조절제로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있다.The solid binder for fireproof materials may further include at least one selected from the group consisting of a stabilizer and a visible time regulator.
안정화제stabilizer
상기 안정화제는 유기산 및/또는 수분의 증발에 의해 발생하는 깨짐(crack)을 방지하여 바인더의 안정성을 향상시키는 역할을 한다.The stabilizer serves to improve the stability of the binder by preventing cracks caused by evaporation of organic acids and/or moisture.
또한, 상기 안정화제는 무기염 및 무기산으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 안정화제는 황산 마그네슘, 황산 알루미늄, 인산 마그네슘, 인산 알루미늄, 인산 및 붕산으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. In addition, the stabilizer may include at least one selected from the group consisting of inorganic salts and inorganic acids. Specifically, the stabilizer may include at least one selected from the group consisting of magnesium sulfate, aluminum sulfate, magnesium phosphate, aluminum phosphate, phosphoric acid, and boric acid.
보다 구체적으로, 상기 안정화제는 MgSO4, MgSO4ㆍ7H2O, Mg3(PO4)2, H3PO4, Al2(SO4)3, H3BO3, 및 AlPO4로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.More specifically, the stabilizer is a group consisting of MgSO 4 , MgSO 4 7H 2 O, Mg 3 (PO 4 ) 2 , H 3 PO 4 , Al 2 (SO 4 ) 3 , H 3 BO 3 , and AlPO 4 It may include one or more selected from.
상기 안정화제는 내화재용 고형 바인더 총 중량에 대하여 5 내지 30 중량%, 또는 7.0 내지 20 중량%의 함량으로 포함될 수 있다. 안정화제의 함량이 상기 범위 미만인 경우, 건조 과정 중 바인더의 표면에 깨짐(crack)이 발생할 가능성이 있고, 상기 범위 초과인 경우, 열간 강도 및 성형 강도 저하가 발생할 수 있다. The stabilizer may be included in an amount of 5 to 30% by weight or 7.0 to 20% by weight based on the total weight of the solid binder for fireproof materials. If the content of the stabilizer is less than the above range, cracks may occur on the surface of the binder during the drying process, and if it exceeds the above range, hot strength and forming strength may be reduced.
가사시간 조절제pot life regulator
상기 가사시간 조절제는 내화재용 고형 바인더의 수분 증발로 인한 안정성 저하를 방지하고, 바인더의 수분 함량을 조절하여 바인더의 가사시간을 조절하는 역할을 한다.The pot life regulator serves to prevent stability deterioration due to moisture evaporation of the solid binder for fireproof materials and to control pot life of the binder by adjusting the water content of the binder.
또한, 상기 가사시간 조절제는 글리세린, 에틸렌글리콜, 프로필렌글리콜, 스테아르산, 카보머, 잔탄검, 셀룰로오스 및 메틸셀룰로오스로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. In addition, the pot life regulator may include at least one selected from the group consisting of glycerin, ethylene glycol, propylene glycol, stearic acid, carbomer, xanthan gum, cellulose, and methyl cellulose.
상기 가사시간 조절제는 내화재용 고형 바인더 총 중량에 대하여 0.2 내지 5 중량%, 또는 0.5 내지 3.0 중량%의 함량으로 포함될 수 있다. 가사시간 조절제의 함량이 상기 범위 미만인 경우, 가사시간 조절제로서의 역할을 제대로 수행할 수가 없으며, 상기 범위 초과인 경우, 제조된 제품의 성형 비중 및 건조 강도가 저하되는 문제가 발생 할 수 있다.The pot life regulator may be included in an amount of 0.2 to 5% by weight, or 0.5 to 3.0% by weight based on the total weight of the solid binder for fireproof materials. If the content of the pot life adjuster is less than the above range, it cannot properly function as a pot life adjuster, and if it exceeds the above range, problems such as reduced molding specific gravity and dry strength of the manufactured product may occur.
또한, 상술한 바와 같은 본 발명에 따른 내화재용 고형 바인더는 코크스 분말을 추가로 포함할 수 있다. 이와 같이 코크스 분말을 추가로 포함하는 경우, 상기 고형 바인더는 내화재의 표면 처리용, 특히, 코팅용 바인더로 사용될 수 있다. 이때, 상기 코크스 분말의 함량은 표면 처리용, 특히 코팅용으로 사용하기에 적절한 점도 및 작업성을 갖는 정도라면 특별한 제한없이 사용할 수 있다.In addition, the solid binder for fireproof materials according to the present invention as described above may further include coke powder. When coke powder is additionally included as described above, the solid binder may be used as a binder for surface treatment of a refractory material, in particular, a coating binder. At this time, the content of the coke powder may be used without particular limitation as long as it has viscosity and workability suitable for use for surface treatment, particularly for coating.
상술한 바와 같은 본 발명에 따른 내화재용 고형 바인더는 종래 통상적으로 사용하던 바인더인 페놀 수지에 비해, 혼련성이 우수하여 혼련 시간이 단축되어 경제성이 우수하다. 또한, 페놀 수지의 경우 혼련 후 3 내지 24 시간의 숙성 시간이 필요하고 성형 이후 열경화성 수지의 특성상 고온의 건조온도에서 장시간 건조가 필요한 반면, 본 발명에 따른 내화재용 고형 바인더는 혼련 즉시 성형이 가능하여 생산성도 향상시킬 수 있고, 수계 바인더의 특성상 건조 시간도 단축되어 에너지 절감 효과도 있다.As described above, the solid binder for refractory materials according to the present invention has excellent kneading properties and shortens kneading time compared to phenolic resins, which are conventionally used binders, and thus has excellent economic efficiency. In addition, in the case of phenolic resin, aging time of 3 to 24 hours is required after kneading, and after molding, due to the nature of thermosetting resin, long drying is required at a high drying temperature, whereas the solid binder for refractories according to the present invention can be molded immediately after kneading Productivity can be improved, and due to the nature of the water-based binder, the drying time is also shortened, so there is an energy saving effect.
내화재fireproof material
본 발명에 따른 내화재는 상기 내화재용 고형 바인더; 및 내화 재료;를 포함한다.A refractory material according to the present invention includes a solid binder for the refractory material; and refractory materials;
상기 내화 재료는 통상적으로 내화재에 원료로 사용되는 것이라면 특별한 제한없이 사용할 수 있으며, 예를 들어, 마그네시아계, 알루미나계, 크롬계, 실리카계 및 흑연계 내화 재료로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 이때, 상기 흑연계 내화 재료는 천연 흑연, 인상 흑연 또는 팽창 흑연 등을 들 수 있다.The refractory material may be used without particular limitation as long as it is commonly used as a raw material for refractory materials, and includes, for example, at least one selected from the group consisting of magnesia-based, alumina-based, chromium-based, silica-based, and graphite-based refractory materials. can do. In this case, the graphite-based refractory material may include natural graphite, impression graphite, or expanded graphite.
구체적으로, 상기 내화 재료는 마그네시아-카본계 내화물, 마그네시아-알루미나-카본계 내화물, 알루미나-마그네시아-카본계 내화물, 마그네시아계 내화물, 마그네시아-크롬질계 내화물, 마그네시아-스피넬계 내화물, 알루미나-탄화규소-카본계 내화물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. Specifically, the refractory materials include magnesia-carbon refractories, magnesia-alumina-carbon refractories, alumina-magnesia-carbon refractories, magnesia-based refractories, magnesia-chromium refractories, magnesia-spinel refractories, alumina-silicon carbide- It may include at least one selected from the group consisting of carbon-based refractories.
상기 내화재는 100중량부의 내화 재료 및 1 내지 5 중량부의 내화재용 고형 바인더를 포함할 수 있다. 내화재용 고형 바인더의 중량이 상기 범위 미만인 경우, 즉 내화 재료를 기준으로 소량의 내화재용 고형 바인더를 포함하는 경우, 성형 강도 저하, 기공율 상승 및 흡수율 상승으로 인해 내화재의 내침식성이 저하되고, 내화재용 고형 바인더의 중량이 상기 범위 초과인 경우, 즉 내화 재료를 기준으로 과량의 내화재용 고형 바인더를 포함하는 경우, 고온에서 바인더의 휘발로 의한 강도 저하 및 기공율 상승으로 인해 내화재의 수명 저하(내침식성 저하) 문제가 발생할 수 있다. The refractory material may include 100 parts by weight of the refractory material and 1 to 5 parts by weight of a solid binder for the refractory material. When the weight of the solid binder for refractory materials is less than the above range, that is, when a small amount of the solid binder for refractory materials is included based on the refractory material, the erosion resistance of the refractory material is reduced due to a decrease in molding strength, an increase in porosity and an increase in water absorption, When the weight of the solid binder exceeds the above range, that is, when an excessive amount of the solid binder for the refractory material is included based on the refractory material, the durability of the refractory material is reduced due to the volatilization of the binder at high temperature and the increase in porosity, resulting in a decrease in the lifespan of the refractory material (decreased erosion resistance) ) can cause problems.
또한, 상기 내화재는 안정화제 및 가사시간 조절제로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있다. 이때, 상기 안정화제 및 가사시간 조절제는 상기 내화재용 고형 바인더에서 설명한 바와 같다.In addition, the fireproof material may further include at least one selected from the group consisting of a stabilizer and a pot life regulator. In this case, the stabilizer and the pot life regulator are the same as those described in the solid binder for fireproof materials.
상기 내화재는 상기 100중량부의 내화 재료, 0.1 내지 5 중량부 또는 0.1 내지 2 중량부의 안정화제 및 0.2 내지 5 중량부 또는 0.5 내지 3.0 중량부의 가사시간 조절제를 포함할 수 있다. 안정화제의 함량이 상기 범위 미만인 경우, 건조 과정 중 내화재의 표면에 깨짐(crack)이 발생할 가능성이 있고, 상기 범위 초과인 경우, 내화재의 열간 강도 및 성형 강도가 저하될 수 있다. 또한, 상기 가사시간 조절제의 함량이 상기 범위 미만인 경우, 내화재 내 수분 함량이 과도할 수 있고, 상기 범위 초과인 경우, 내화재의 성형 비중 및 건조 강도가 저하될 수 있다. The fireproof material may include 100 parts by weight of the fireproof material, 0.1 to 5 parts by weight or 0.1 to 2 parts by weight of a stabilizer, and 0.2 to 5 parts by weight or 0.5 to 3.0 parts by weight of a pot life regulator. When the content of the stabilizer is less than the above range, cracks may occur on the surface of the refractory material during the drying process, and when it exceeds the above range, hot strength and forming strength of the refractory material may be reduced. In addition, when the content of the pot life regulator is less than the above range, the moisture content in the refractory material may be excessive, and when the content exceeds the above range, molding specific gravity and dry strength of the refractory material may be reduced.
상기 내화재는 열간 특성 개선제를 추가로 포함할 수 있다.The refractory material may further include a hot property improving agent.
열간 특성 개선제Hot property improver
상기 열간 특성 개선제는 내화재의 열간 강도, 내침식성, 내산화성 등을 개선하는 역할을 한다.The hot property improver serves to improve the hot strength, erosion resistance, and oxidation resistance of the refractory material.
이때, 상기 열간 특성 개선제는 통상적으로 내화재에 열간 특성 개선을 위해 첨가 가능한 것이라면 특별한 제한없이 사용할 수 있으며, 예를 들어, 피치(Pitch), 질화 규소(Si3N4), 보론 카바이드(B4C) 및 카본 블랙으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.At this time, the hot property improver may be used without particular limitation as long as it can be added to the refractory material to improve hot property, for example, pitch, silicon nitride (Si 3 N 4 ), boron carbide (B 4 C ) and at least one selected from the group consisting of carbon black.
상기 열간 특성 개선제는 100중량부의 내화 재료에 대하여 0.1 내지 3 중량부, 또는 0.1 내지 1.0 중량부의 함량으로 포함될 수 있다. 열간 특성 개선제의 함량이 상기 범위 미만인 경우, 열간 특성 개선 효과를 제대로 발현하지 못하는 문제가 발생하며, 상기 범위 초과인 경우, 내화재의 성형 강도 및 건조 물성이 저하되거나 강종에 영향을 줄 수 있다. The hot property improving agent may be included in an amount of 0.1 to 3 parts by weight or 0.1 to 1.0 parts by weight based on 100 parts by weight of the refractory material. If the content of the hot properties improving agent is less than the above range, a problem of not properly expressing the hot property improvement effect occurs, and if it exceeds the above range, the molding strength and dry properties of the refractory material may be reduced or the steel type may be affected.
내화 벽돌firebrick
본 발명에 따른 내화 벽돌은 상기 내화재용 고형 바인더; 및 내화 재료;를 포함한다.Firebrick according to the present invention includes a solid binder for the refractory material; and refractory materials;
이때, 상기 내화 재료는 상기 내화재에서 설명한 바와 같다.At this time, the refractory material is as described in the refractory material.
상기 내화 벽돌은 마그네시아-카본질 내화 벽돌, 마그네시아-알루미나-카본질 내화 벽돌, 알루미나-실리카질 내화 벽돌, 마그네시아-크롬질 내화 벽돌, 알루미나-카본질 내화 벽돌 또는 마그네시아계 내화 벽돌일 수 있다.The refractory brick may be a magnesia-carbon refractory brick, a magnesia-alumina-carbon refractory brick, an alumina-silica refractory brick, a magnesia-chromium refractory brick, an alumina-carbon refractory brick or a magnesia-based refractory brick.
또한, 상기 내화 벽돌은 환원 소성 벽돌, 소성 벽돌 또는 불소성 벽돌일 수 있다.In addition, the refractory bricks may be reduced-fired bricks, fired bricks, or unfired bricks.
상술한 바와 같은 본 발명에 따른 내화재 및/또는 내화 벽돌은 페놀 수지 등의 유기 수지를 포함하지 않아 제조 과정에서 휘발성 유기화합물(VOC)이 발생시키지 않아 친환경적이다. 또한, 상기 내화재 및/또는 내화 벽돌은 내화재에 필요 물성, 예를 들면, 압축 강도, 기공율, 내침식성, 내스폴링성 등이 우수하다.As described above, the refractory material and/or fire brick according to the present invention does not contain organic resins such as phenolic resins, and thus does not generate volatile organic compounds (VOCs) during the manufacturing process, and thus is environmentally friendly. In addition, the refractory materials and/or refractory bricks have excellent physical properties required for refractory materials, such as compressive strength, porosity, erosion resistance, spalling resistance, and the like.
이하, 하기 실시예를 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나, 하기 실시예에 의한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들 실시예에 기재된 내용으로 한정하거나 제한 해석하고자 의도하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the description by the following examples is only intended to specifically describe specific embodiments of the present invention, and is not intended to limit or limit the scope of the present invention to the content described in these examples.
[실시예][Example]
실시예 1 및 비교예 1. 내화재용 고형 바인더의 제조Example 1 and Comparative Example 1. Preparation of solid binder for refractory materials
표 1에 기재된 바와 같은 함량으로 각 성분을 사용하여 내화재용 고형 바인더를 제조하였으며, 제조된 내화재용 고형 바인더의 SEM 사진을 도 1 및 2에 나타냈다. 도 1은 비교예 1의 바인더의 SEM 사진이고, 도 2는 실시예 1의 바인더의 SEM 사진이다.A solid binder for a refractory material was prepared using each component in an amount as shown in Table 1, and SEM pictures of the prepared solid binder for a refractory material are shown in FIGS. 1 and 2 . 1 is a SEM picture of the binder of Comparative Example 1, and FIG. 2 is a SEM picture of the binder of Example 1.
구체적으로, 비교예 1은 내화 원료와 유기산을 단순 혼합하여 내화재용 고형바인더를 제조하였다. 또한, 실시예 1은 내화 원료와 유기산을 혼합한 후 물을 첨가하고 반응시켜 1차 반응물을 얻은 후 상기 1차 반응물을 80±20℃에서 12시간 동안 건조시킨 후 분쇄 설비로 임팩트밀을 이용하여 분쇄하여 평균 입경 0.074mm의 내화재용 고형 바인더를 제조하였다. Specifically, in Comparative Example 1, a solid binder for a refractory material was prepared by simply mixing the refractory raw material and the organic acid. In addition, in Example 1, after mixing the refractory raw material and organic acid, water was added and reacted to obtain a first reactant, and then the first reactant was dried at 80 ± 20 ° C. for 12 hours, and then an impact mill was used as a grinding facility. It was pulverized to prepare a solid binder for fireproof materials having an average particle diameter of 0.074 mm.
이후 상기 내화재용 고형 바인더 200중량부에 물 200중량부를 첨가한 후, 디지털 온도계를 사용하여 온도의 최대치(반응 온도)를 측정하였으며, 이때 시험 결과를 도 3 및 4에 나타냈다. Thereafter, 200 parts by weight of water was added to 200 parts by weight of the solid binder for the refractory material, and then the maximum temperature (reaction temperature) was measured using a digital thermometer. At this time, the test results are shown in FIGS. 3 and 4 .
구분(중량부)Classification (parts by weight) 비교예 1Comparative Example 1 실시예 1Example 1
경소 마그네시아(내화 원료) Light burned magnesia (refractory raw material) 100100 100100
구연산(유기산) Citric acid (organic acid) 100100 100100
water 00 6060
반응 온도(℃)Reaction temperature (℃) 60.960.9 26.726.7
표 1에서 보는 바와 같이 단순 혼합에 의해 제조된 비교예 1의 바인더는 배토와 혼련을 위해 첨가되는 수분과 반응하여 초기 온도인 25℃ 대비 37℃ 상승하였다. As shown in Table 1, the binder of Comparative Example 1 prepared by simple mixing reacted with the moisture added for clay and kneading, and increased by 37 ° C compared to the initial temperature of 25 ° C.
반면, 1차 반응시킨 반응물을 분쇄하여 제조한 실시예 1의 바인더는 초기 온도인 25℃ 대비 2℃ 상승하여 큰 변화를 보이지 않았다. 내화재 제조 공정상 혼련시의 온도의 상승은 내화 재료의 겉마름 및 성형성에 큰 영향을 주는 인자로 비교예 1 대비 실시예 1은 온도의 변화가 거의 없어 안정적인 혼련 및 충분한 내화 재료의 가사 시간을 유지할 수 있다. On the other hand, the binder of Example 1 prepared by pulverizing the reactants subjected to the first reaction showed no significant change as the initial temperature increased by 2 ° C compared to 25 ° C. In the refractory manufacturing process, the rise in temperature during kneading is a factor that greatly affects the surface drying and formability of the refractory material, and in Example 1 compared to Comparative Example 1, there is little change in temperature to maintain stable mixing and sufficient pot life of the refractory material. can
실시예 2 내지 11. 내화재용 고형 바인더의 제조Examples 2 to 11. Preparation of solid binder for refractory materials
표 2에 기재된 바와 같은 함량으로 각 성분을 사용하여 내화재용 고형 바인더를 제조하였다.A solid binder for a refractory material was prepared using each component in an amount as shown in Table 2.
구체적으로, 내화 원료와 유기산을 혼합한 후 물을 첨가하고 반응시켜 1차 반응물을 얻었다. 이후 상기 1차 반응물을 80±20℃에서 12시간 동안 건조시킨 후 분쇄 설비인 임팩트밀로 분쇄하여 평균 입경 0.074mm의 내화재용 고형 바인더를 제조하였다. Specifically, after mixing the refractory material and the organic acid, water was added and reacted to obtain a primary reactant. Thereafter, the primary reactant was dried at 80 ± 20 ° C. for 12 hours, and then pulverized with an impact mill, which is a grinding facility, to prepare a solid binder for refractories having an average particle diameter of 0.074 mm.
이때, 표 2의 EDTA는 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic Acid)이며, 반응 온도 및 반응 시간은 디지털 온도계를 사용하여 온도의 최대치를 측정하였고 반응 시간은 반응이 시작되는 시점을 육안으로 확인하여 측정하였다.At this time, EDTA in Table 2 is ethylenediaminetetraacetic acid (Ethylenediaminetetraacetic acid), and the reaction temperature and reaction time were measured by using a digital thermometer to measure the maximum temperature, and the reaction time was measured by visually checking the reaction start time.
(중량부)(parts by weight) 실시예Example
22 33 44 55 66 77 88 99 1010 1111
내화 원료refractory raw materials 전융 마그네시아full-blown magnesia 100100 -- -- -- -- -- -- -- -- --
소성 마그네시아calcined magnesia -- 100100 -- -- -- -- -- 8080 5050 2020
중소 마그네시아small and medium magnesia -- -- 100100 -- -- -- -- -- -- --
경소 마그네시아light burned magnesia -- -- -- 100100 -- -- -- 2020 5050 8080
생석회quicklime -- -- -- -- 100100 -- -- -- -- --
소석회slaked lime -- -- -- -- -- 100100 -- -- -- --
소성 돌로마이트calcined dolomite -- -- -- -- -- -- 100100 -- -- --
유기산organic acid 구연산 citric acid 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100
EDTAEDTA -- -- -- -- -- -- -- -- -- --
water 6060 6060 6060 6060 6060 6060 6060 6060 6060 6060
반응 온도(℃)Reaction temperature (℃) 9898 9797 9595 106106 120120 112112 118118 9898 100100 103103
반응 시간(초)Response time (seconds) 510510 330330 325325 3030 77 1616 1212 6060 4444 3636
표 2에서 보는 바와 같이, 내화 재료와 유기산의 반응 속도는 생석회, 소석회, 소성 돌로마이트, 경소 마그네시아, 중소 마그네시아(DBM), 소성 마그네시아, 전융 마그네시아 순으로 나타났으며, 이는 상기 내화 원료의 수화 속도에 따라 결정되는 것을 알 수 있었다. 이로부터 전융 마그네시아, 소성 마그네시아, DBM, 경소 마그네시아 등의 마그네시아에 생석회, 소석회, 소성 돌로마이트 등의 첨가하여 반응 속도 조절이 가능함도 알 수 있었다.As shown in Table 2, the reaction rate between the refractory material and the organic acid was in the order of quicklime, slaked lime, calcined dolomite, light-burnt magnesia, small-medium magnesia (DBM), calcined magnesia, and molten magnesia, which is related to the hydration rate of the refractory raw material. was found to be determined by From this, it was also found that the reaction rate can be controlled by adding quicklime, slaked lime, calcined dolomite, etc. to magnesia such as pre-melted magnesia, calcined magnesia, DBM, and light-burnt magnesia.
또한, 내화 원료인 소성 마그네시아와 경소 마그네시아의 혼합비를 조절함으로써 반응 온도 및 반응 시간 조절이 가능함도 알 수 있었다.In addition, it was found that the reaction temperature and reaction time can be controlled by adjusting the mixing ratio of calcined magnesia and light-burnt magnesia, which are refractory raw materials.
실시예 12 내지 16. 내화재의 제조Examples 12 to 16. Preparation of refractory materials
표 3에 기재된 바와 같은 함량으로 각 성분을 사용하여 내화재를 제조하였다. A refractory material was prepared using each component in an amount as shown in Table 3.
구체적으로, 내화 원료와 유기산을 1:1의 중량비로 혼합한 후 물을 첨가하고 반응시켜 1차 반응물을 얻었다. 이후 상기 1차 반응물을 80±20℃에서 12시간 동안 건조시킨 후 안정화제를 첨가하고 분쇄 설비인 임팩트밀로 분쇄하여 평균 입경 0.074mm의 내화재용 고형 바인더를 제조하였다. Specifically, after mixing the refractory material and the organic acid in a weight ratio of 1:1, water was added and reacted to obtain a primary reactant. Thereafter, the primary reactant was dried at 80 ± 20 ° C. for 12 hours, and then a stabilizer was added and pulverized with an impact mill, which is a grinding facility, to prepare a solid binder for refractories having an average particle diameter of 0.074 mm.
이후 내화 재료인 마그네시아, 알루미늄, 인상 흑연을 혼합하고, 내화재용 고형 바인더를 첨가하고, 25~30℃에서 15분 동안 혼련한 후 크기 60mmX60mmX60mm로 성형하고, 200℃에서 12시간 건조하여 내화재를 제조하였다.Thereafter, refractory materials such as magnesia, aluminum, and impression graphite were mixed, a solid binder for refractories was added, kneaded at 25 to 30 ° C for 15 minutes, molded into a size of 60 mmX60 mm X 60 mm, and dried at 200 ° C for 12 hours to prepare a refractory material. .
이후 제조된 내화재는 900℃ 급가열 테스트를 진행하였으며, 구체적으로, 900℃의 전기로 내에 내화재를 장입하고 4분 동안 급가열한 후 내화재의 외관에 크랙 발생 여부를 육안으로 관찰하였다. Thereafter, the prepared refractory material was subjected to a rapid heating test at 900 ° C. Specifically, the refractory material was charged into an electric furnace at 900 ° C. and rapidly heated for 4 minutes, and then whether or not cracks occurred on the exterior of the refractory material was visually observed.
구분(중량부)Classification (parts by weight) 실시예Example
1212 1313 1414 1515 1616
내화 재료fireproof material 마그네시아magnesia 8282 8282 8282 8282 8282
알루미늄 aluminum 33 33 33 33 33
인상 흑연impression graphite 1515 1515 1515 1515 1515
내화재용 고형 바인더Solid binder for refractory materials 경소 마그네시아(내화 원료)Light burned magnesia (refractory raw material) 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5
구연산(유기산)Citric acid (organic acid) 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5
MgSO4 (안정화제)MgSO 4 (stabilizer) -- 0.450.45 -- -- 0.50.5
Al2(SO4)3 (안정화제)Al 2 (SO 4 ) 3 (stabilizer) -- -- 0.450.45 -- --
H3BO3 (안정화제)H 3 BO 3 (stabilizer) -- -- -- 0.450.45 0.250.25
내화재의 물성Properties of refractory materials 부피 비중(g/cm3)Bulk Specific Gravity (g/cm 3 ) 33 3.013.01 33 3.013.01 3.013.01
기공율(%)Porosity (%) 4.54.5 4.24.2 4.24.2 4.34.3 4.14.1
압축 강도(kg/cm2)Compressive strength (kg/cm 2 ) 350350 375375 372372 369369 371371
900℃ 급가열 테스트900℃ rapid heating test 표면 미세 그랙surface fine grain 크랙 없음no crack 크랙 없음no crack 크랙 없음no crack 크랙 없음no crack
표 3에서 보는 바와 같이, 내화재용 바인더에 안정화제인 MgSO4, Al2(SO4)3, 또는 H3BO3를 첨가시 무첨가인 실시예 12에 비하여 급가열시 표면 미세 크랙(Crack)의 발생이 감소하는 경향을 나타내고 전체적으로 건조 물성의 향상을 보였다.As shown in Table 3, when the stabilizer MgSO 4 , Al 2 (SO 4 ) 3 , or H 3 BO 3 is added to the refractory binder, surface fine cracks occur during rapid heating compared to Example 12, which is not added. showed a decreasing trend, and overall dry properties were improved.
실시예 17 내지 23 및 비교예 2 및 3. 내화재의 제조Examples 17 to 23 and Comparative Examples 2 and 3. Preparation of refractory materials
표 4에 기재된 바와 같은 함량으로 각 성분을 사용하여 내화재를 제조하였다.A refractory material was prepared using each component in an amount as shown in Table 4.
구체적으로, 내화 원료와 유기산을 혼합한 후 물을 첨가하고 반응시켜 1차 반응물을 얻었다. 이후 상기 1차 반응물을 80±20℃에서 12시간 동안 건조시킨 후 안정화제인 붕산(H3BO3)를 첨가하고 분쇄 설비인 임팩트밀로 분쇄히여 입경 0.074mm의 내화재용 고형 바인더를 제조하였다. Specifically, after mixing the refractory material and the organic acid, water was added and reacted to obtain a primary reactant. Thereafter, the primary reactant was dried at 80 ± 20 ° C. for 12 hours, and then boric acid (H 3 BO 3 ) as a stabilizer was added and pulverized with an impact mill, which is a grinding facility, to prepare a solid binder for refractory materials having a particle size of 0.074 mm.
이후 내화 재료인 마그네시아, 알루미늄 및 인상 흑연을 혼합하고, 내화재용 고형 바인더를 첨가하고, 25~35℃에서 15분 동안 혼련한 후 크기 60mmX60mmX60mm로 성형하고, 200℃에서 12시간 건조하고 1000℃에서 12시간 소성하여 내화재를 제조하였다.Thereafter, refractory materials such as magnesia, aluminum, and impression graphite are mixed, a solid binder for refractory materials is added, kneaded at 25 to 35°C for 15 minutes, molded into a size of 60mmX60mmX60mm, dried at 200°C for 12 hours, and then dried at 1000°C for 12 hours. A refractory material was prepared by time firing.
이때, 인상 흑연으로는 부피 비중 0.98g/cm3, 비표면적 1m2/g, 및 평균 입경 350㎛인 제품을 사용하고, 마그네시아는 평균 입경 4mm인 제품을 사용했다. 또한, 페놀 수지로는 ㈜강남 화성의 8027을 사용하고, 당밀로는 ㈜대상의 당밀(총 고형분 함량: 80중량% 이상)을 사용하였다. At this time, a product having a bulk specific gravity of 0.98 g/cm 3 , a specific surface area of 1 m 2 /g, and an average particle diameter of 350 μm was used as the impression graphite, and a product having an average particle diameter of 4 mm was used as magnesia. In addition, 8027 of Gangnam Hwaseong Co., Ltd. was used as a phenol resin, and molasses from Daesang Co., Ltd. (total solid content: 80% by weight or more) was used as molasses.
제조된 내화재의 물성은 하기와 같은 방법으로 측정하였으며, 바인더 제조시 구연산의 첨가량을 증량함에 따라 성형 후 비중, 건조 후 물성, 소성 후 물성, 및 내침식성을 비교하였다. The physical properties of the prepared refractory materials were measured in the following manner, and specific gravity after molding, physical properties after drying, physical properties after firing, and erosion resistance were compared as the amount of citric acid added during binder preparation was increased.
1) 부피 비중1) Volume specific gravity
KSL 3114(2010)에 의거하여 백등유(함침액)에 내화재를 넣고 하기 수학식 1을 이용하여 건조 후, 또는 소성 후 부피 비중을 계산하였다. In accordance with KSL 3114 (2010), the refractory material was put in white kerosene (impregnation liquid), and the bulk specific gravity was calculated after drying or firing using Equation 1 below.
[수학식 1][Equation 1]
ρb(부피 비중) = m1/ (m3-m2) X ρliq ρ b (volume specific gravity) = m 1 / (m 3 -m 2 ) X ρ liq
m1: 내화재의 건조 질량(g)m 1 : dry mass of refractory material (g)
m2: 함침된 내화재의 겉보기 질량(g)m 2 : Apparent mass of impregnated refractory material (g)
m3: 함침된 시편의 질량(g)m 3 : Mass of impregnated specimen (g)
ρliq: 함침액의 밀도ρ liq : Density of impregnating liquid
2) 압축 강도2) Compressive strength
크기 60mmX60mmX60mm의 건조된 내화재를 유압 압축강도 시험기를 이용하여 KS L 3115에 기재된 방법에 따라 압축 강도를 측정하였다.The compressive strength of the dried refractory material having a size of 60mmX60mmX60mm was measured using a hydraulic compressive strength tester according to the method described in KS L 3115.
3) 기공율3) Porosity
KSL 3114(2010)에 의거하여 백등유(함침액)에 내화재를 넣고 하기 수학식 2를 이용하여 건조 후, 또는 소성 후 겉보기 기공율을 계산하였다.In accordance with KSL 3114 (2010), the refractory material was put in white kerosene (impregnation liquid), and the apparent porosity after drying or firing was calculated using Equation 2 below.
[수학식 2][Equation 2]
πa(기공율) = (m3-m1)/(m3-m2) X 100π a (porosity) = (m 3 -m 1 )/(m 3 -m 2 ) X 100
m1: 내화재의 건조 질량(g)m 1 : dry mass of refractory material (g)
m2: 함침된 내화재의 겉보기 질량(g)m 2 : Apparent mass of impregnated refractory material (g)
m3: 함침된 시편의 질량(g)m 3 : Mass of impregnated specimen (g)
4) 내침식성4) Corrosion resistance
회전식 침식성 시험기를 이용하고, 버너로 내화재를 1,650~1,700℃로 가열하고, 강(Steel)과 침식제로서 제강 슬래그(slag)를 1:1의 중량비로 혼합하여 혼합물을 대상으로 내침식성을 측정하였다. Using a rotary erosion tester, the refractory material was heated to 1,650 ~ 1,700 ° C with a burner, and steel and steelmaking slag as an erosion agent were mixed at a weight ratio of 1: 1 to measure the erosion resistance of the mixture. .
구체적으로, 내침식성은 실시예 20의 침식량을 100으로 상대적인 침식 지수로 나타내었다. 이때, 침식 지수는 낮을수록 내침식성이 우수함을 나타낸다.Specifically, the erosion resistance was expressed as a relative erosion index, with the erosion amount of Example 20 being 100. In this case, the lower the erosion index, the better the erosion resistance.
5) 유해가스 분석5) Harmful gas analysis
열분석 및 질량분석기(STA-MS)를 이용하여 바인더의 열분해 분석시 중량이 감소할 때 방출되는 가스(분해가스)의 성분을 분석하였으며, 분석 결과를 도 5 및 6에 나타냈다. 도 5는 비교예 2의 가스 성분 분석 결과이고, 도 6은 실시예 18의 가스 성분 분석 결과이다.Thermal analysis and mass spectrometry (STA-MS) was used to analyze the components of the gas (decomposition gas) released when the weight is reduced during thermal decomposition analysis of the binder, and the analysis results are shown in FIGS. 5 and 6 . 5 is a gas component analysis result of Comparative Example 2, and FIG. 6 is a gas component analysis result of Example 18.
구분(중량부)Classification (parts by weight) 비교예comparative example 실시예Example
22 33 1717 1818 1919 2020 2121 2222 2323
내화 재료fireproof material 마그네시아magnesia 8282 8282 8282 8282 8282 8282 8282 8282 8282
알루미늄aluminum 33 33 33 33 33 33 33 33 33
인상 흑연impression graphite 1515 1515 1515 1515 1515 1515 1515 1515 1515
페놀 수지phenolic resin 33 -- -- -- -- -- -- -- --
당밀molasses -- 33 -- -- -- -- -- -- --
바인더bookbinder 소성 마그네시아calcined magnesia -- -- 2.042.04 1.6081.608 1.341.34 1.0051.005 0.670.67 0.4020.402 0.320.32
경소마그네시아lightly burned magnesia -- -- 0.510.51 0.7920.792 0.660.66 0.4950.495 0.330.33 0.1980.198 0.080.08
마그네시아의 총량Total amount of magnesia -- -- 2.552.55 2.42.4 22 1.51.5 1One 0.60.6 0.40.4
구연산(유기산)Citric acid (organic acid) -- -- 0.450.45 0.60.6 1One 1.51.5 22 2.42.4 2.62.6
H3BO3(안정화제)H 3 BO 3 (stabilizer)     0.450.45 0.450.45 0.450.45 0.450.45 0.450.45 0.450.45 0.450.45
성형 후 비중specific gravity after molding 33 2.982.98 2.972.97 2.992.99 33 3.013.01 2.992.99 2.992.99 2.992.99
건조 후after drying 부피 비중(g/cm3)Bulk Specific Gravity (g/cm 3 ) 2.982.98 2.972.97 2.962.96 2.982.98 2.992.99 2.992.99 2.972.97 2.982.98 2.972.97
기공율(%)Porosity (%) 4.74.7 5.65.6 6.26.2 4.94.9 4.84.8 4.24.2 4.94.9 4.64.6 5.25.2
압축 강도(kg/cm2)Compressive strength (kg/cm 2 ) 370370 315315 294294 362362 371371 392392 366366 374374 325325
소성 후 after firing 부피 비중(g/cm3)Bulk Specific Gravity (g/cm 3 ) 2.962.96 2.942.94 2.942.94 2.962.96 2.952.95 2.972.97 2.962.96 2.952.95 2.942.94
기공율(%)Porosity (%) 9.59.5 13.613.6 16.216.2 9.69.6 9.49.4 9.29.2 9.89.8 9.79.7 10.510.5
압축 강도(kg/cm2)Compressive strength (kg/cm 2 ) 343343 214214 198198 331331 329329 352352 331331 338338 254254
내침식성erosion resistance 115115 135135 140140 150150 110110 100100 110110 120120 140140
표 4에서 보는 바와 같이, 실시예 18 내지 22는 비교예 2 및 3과 비교하여 성형 비중, 건조 후 물성, 소성 후 물성은 동등 수준으로 나타냈다. 특히, 내화 원료와 구연산의 중량비가 1:1인 실시예 20은 페놀 수지를 사용한 비교예 2에 비해 내침식성이 우수했다.As shown in Table 4, Examples 18 to 22 exhibited the molding specific gravity, physical properties after drying, and physical properties after firing at the same level as those of Comparative Examples 2 and 3. In particular, Example 20 in which the weight ratio of the refractory raw material to citric acid was 1:1 was excellent in corrosion resistance compared to Comparative Example 2 using a phenol resin.
실시예 17은 내화 원료의 총량 대비 유기산 함량이 낮아 바인더의 특성이 떨어지는 결과를 보였다. 또한, 실시예 23은 내화 원료 함량 대비 유기산의 과량으로 인해 배토와 반응하여 겉마름의 발생하여 내화재의 성형 강도가 저하되었다. In Example 17, the organic acid content compared to the total amount of refractory raw materials was low, resulting in poor binder properties. In addition, in Example 23, due to the excessive amount of organic acid compared to the content of the refractory material, it reacted with the clay and caused surface drying, resulting in a decrease in the molding strength of the refractory material.
도 5에서 보는 바와 같이 비교예 2는 벤젠(C6H6), 톨루엔(C7H8), 및 페놀(C6H5OH)이 방출되었다. 반면, 도 6에서 보는 바와 같이 실시예 18의 바인더는 유해 물질인 벤젠(C6H6), 톨루엔(C7H8), 및 페놀(C6H5OH)이 전혀 방출되지 친환경성이 우수했다. As shown in FIG. 5, in Comparative Example 2, benzene (C 6 H 6 ), toluene (C 7 H 8 ), and phenol (C 6 H 5 OH) were released. On the other hand, as shown in FIG. 6, the binder of Example 18 is environmentally friendly because no harmful substances such as benzene (C 6 H 6 ), toluene (C 7 H 8 ), and phenol (C 6 H 5 OH) are emitted. did.
실시예 24 내지 28. 내화재의 제조Examples 24 to 28. Preparation of refractory materials
표 5에 기재된 바와 같은 함량으로 각 성분을 사용하여 내화재를 제조하였다. A refractory material was prepared using each component in an amount as shown in Table 5.
구체적으로, 소성 마그네시아 34중량부, 경소 마그네시아 16중량부 및 구연산 50중량부를 혼합한 후 물을 첨가하고 반응시켜 1차 반응물을 얻었다. 이후 80±20℃에서 12시간 동안 건조 후 1차 반응물에 안정화제로 붕산 10중량부 및 황산 마그네슘 5중량부를 첨가하고, 분쇄 설비인 임팩트밀로 분쇄하여 평균 입경 0.074mm의 내화재용 고형 바인더-1을 제조하였다.Specifically, after mixing 34 parts by weight of calcined magnesia, 16 parts by weight of calcined magnesia, and 50 parts by weight of citric acid, water was added and reacted to obtain a primary reactant. Then, after drying at 80 ± 20 ° C. for 12 hours, 10 parts by weight of boric acid and 5 parts by weight of magnesium sulfate were added to the primary reactant as a stabilizer, and pulverized with an impact mill, an average particle diameter of 0.074 mm. did
이후 내화 재료인 마그네시아, 알루미늄 및 인상 흑연을 혼합하고, 내화재용 고형 바인더-1을 첨가하고, 25~30℃에서 15분 동안 혼련한 후 크기 60mmX60mmX60mm로 성형하고, 200℃에서 12시간 건조하고 1000℃에서 12시간 소성하여 내화재를 제조하였다. Thereafter, refractory materials such as magnesia, aluminum, and impression graphite were mixed, solid binder-1 for refractory materials was added, kneaded at 25 to 30°C for 15 minutes, molded into a size of 60mmX60mmX60mm, dried at 200°C for 12 hours, and then dried at 1000°C. It was fired for 12 hours to prepare a refractory material.
이때, 열간 특성 개선제로는 RUTGERS사의 CABORES-P인 피치(pitch)를 사용하고, 카본 블랙은 평균 직경이 0.01mm인 것을 사용하였다. 또한, 페놀 수지는 ㈜강남화성의 8027을 사용하였다. At this time, pitch (pitch) of CABORES-P of RUTGERS was used as a hot property improving agent, and carbon black having an average diameter of 0.01 mm was used. In addition, phenol resin 8027 of Gangnam Chemical Co., Ltd. was used.
제조된 내화재의 건조 후 물성, 소성 후 물성 및 내침식성은 실시예 17과 동일한 방법으로 측정하였으며, 내스폴링성 및 잔존 선팽창성은 하기와 같은 방법으로 측정하였다.Physical properties after drying, physical properties after firing, and erosion resistance of the prepared refractory material were measured in the same manner as in Example 17, and spalling resistance and residual linear expansion were measured in the following manner.
1) 내스폴링성1) Spalling resistance
고주파 유도로를 사용하여 1,650℃에서 지금을 녹여 용강을 만든 이후 크기 230mmX40mmX40mm의 내화재를 60초간 용강에 침지시킨 후 5분간 공냉하는 것을 1사이클로하여, 내화재에 스폴링(균열)이 생길 때까지의 사이클의 수를 기록하였다. 측정된 사이클의 횟수가 많을수록 내스폴링성이 우수함을 나타낸다. After making molten steel by melting metal at 1,650℃ using a high-frequency induction furnace, refractory material of size 230mmX40mmX40mm is immersed in molten steel for 60 seconds and then cooled in air for 5 minutes, which is a cycle until spalling (crack) occurs in the refractory material. number was recorded. The greater the number of cycles measured, the better the spalling resistance.
2) 잔존 선팽창성2) Residual linear expansion
소성 이후 재화재의 선변화율을 측정하였으며, 크기 50mmX40mmX60mm의 내화재를 환원 분위기를 유도하기 위해 코크스가 채워져 있는 도가니에 장입한 후, 1,500℃에서 5시간 동안 소성 후 상온으로 냉각한 후 내화재의 초기 길이 대비 변화된 길이를 측정하여 선변화율을 측정했다. 이때, 소성 전·후 내화재의 사진을 도 7 및 8에 나타냈으며, 도 7은 비교예 2의 내화재 사진이고, 도 8은 실시예 24의 내화재 사진이다.After firing, the linear change rate of the refractory material was measured. A refractory material with a size of 50mmX40mmX60mm was charged into a crucible filled with coke to induce a reducing atmosphere, fired at 1,500℃ for 5 hours, cooled to room temperature, and then compared to the initial length of the refractory material. The linear change rate was measured by measuring the changed length. At this time, pictures of the refractory material before and after firing are shown in FIGS. 7 and 8, FIG. 7 is a picture of the refractory material of Comparative Example 2, and FIG. 8 is a picture of the refractory material of Example 24.
구분(중량부)Classification (parts by weight) 비교예comparative example 실시예Example
22 2424 2525 2626 2727 2828
내화 재료fireproof material 마그네시아magnesia 8282 8282 8282 8282 8282 8282
알루미늄 aluminum 33 33 33 33 33 33
인상 흑연impression graphite 1515 1515 1515 1515 1515 1515
내화재용 고형 바인더-1Solid binder for refractory material-1 -- 33 33 33 33 33
페놀 수지phenolic resin 33 -- -- -- -- --
열간 특성 개선제Hot property improver 피치(pitchi)pitch -- -- 0.40.4 -- -- --
카본 블랙carbon black -- -- -- 0.40.4 -- --
B4C B4C -- -- -- -- 0.40.4 --
Si3N4 Si 3 N 4 -- -- -- -- -- 0.40.4
성형 비중molding specific gravity 3.003.00 2.992.99 3.003.00 3.003.00 3.013.01 3.013.01
건조 후after drying 부피 비중(g/cm3)Bulk Specific Gravity (g/cm 3 ) 2.982.98 2.982.98 2.992.99 2.992.99 3.003.00 2.992.99
기공율(%)Porosity (%) 4.704.70 4.804.80 4.204.20 4.304.30 4.104.10 4.204.20
압축 강도(kg/cm2)Compressive strength (kg/cm 2 ) 370370 371371 391391 389389 381381 379379
소성 후after firing 부피 비중(g/cm3)Bulk Specific Gravity (g/cm 3 ) 2.962.96 2.962.96 2.982.98 2.972.97 2.982.98 2.982.98
기공율(%)Porosity (%) 9.509.50 10.1010.10 8.908.90 9.409.40 9.409.40 9.209.20
압축 강도(kg/cm2)Compressive strength (kg/cm 2 ) 343343 331331 344344 351351 337337 334334
내침식성erosion resistance 115115 100100 9797 9898 9494 9191
내스폴링성resistance to spalling 1414 1313 1515 1616 1414 1414
잔존 선팽창성Residual linear expansion 0.43%0.43% 0.74%0.74% 0.65%0.65% 0.61%0.61% 0.69%0.69% 0.51%0.51%
표 5에서 보는 바와 같이, 피치, 카본 블랙 등의 열간 특성 개선제를 첨가한 실시예 26 내지 30의 내화재는 성형 비중, 건조 후 물성 및 소성 후 물성 모두 열간 특성 개선제를 미포함하는 실시예 25보다 향상되었다. 특히, 실시예 25 내지 28은 비교예 2보다 내침식성 및 내스폴링성이 우수했다. 또한, 질화 규소(Si3N4)를 포함하는 실시예 28은 비교예 2보다 내침식성이 10% 이상 향상되고, 잔존선팽창은 기존 페놀 수지를 적용한 비교예 2 대비 매우 향상되었다. As shown in Table 5, the refractory materials of Examples 26 to 30 to which a hot property improver such as pitch or carbon black was added improved molding specific gravity, physical properties after drying, and physical properties after firing than Example 25 without a hot property improver. . In particular, Examples 25 to 28 were superior in erosion resistance and spalling resistance to Comparative Example 2. In addition, Example 28 including silicon nitride (Si 3 N 4 ) has improved corrosion resistance by 10% or more compared to Comparative Example 2, and residual linear expansion is greatly improved compared to Comparative Example 2 using the existing phenolic resin.
도 7 및 8, 및 표 5에서 보는 바와 같이 종래 바인더인 페놀 수지를 적용한 비교예 2의 내화재 대비 실시예 24의 내화재는 잔존 선팽창성이 우수하여 목지(벽돌 결합) 부위의 용강 침투를 저지하여 목지 부위의 침식 현상이 방지되었다.As shown in FIGS. 7 and 8 and Table 5, the refractory material of Example 24 compared to the refractory material of Comparative Example 2 to which a phenolic resin, a conventional binder, was applied had excellent residual linear expansion property, preventing penetration of molten steel in the wood paper (brick bonding) part, Erosion of the site was prevented.

Claims (20)

  1. 염기성의 내화 원료; 및 3개 이상의 작용기를 함유하는 유기산;의 1차 반응물을 포함하는, 내화재용 고형 바인더.basic refractory raw materials; And an organic acid containing three or more functional groups; comprising a primary reactant, a solid binder for fireproof materials.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 내화 원료는 마그네시아, 생석회(CaO), 소석회(Ca(OH)2) 및 소성 돌로마이트(MgO·CaO)로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화재용 고형 바인더. The refractory raw material includes at least one selected from the group consisting of magnesia, quicklime (CaO), slaked lime (Ca(OH) 2 ) and calcined dolomite (MgO CaO).
  3. 청구항 2에 있어서,The method of claim 2,
    상기 마그네시아는 경소(acustic calcined) 마그네시아, 전융(fused) 마그네시아, 소성(sintered) 마그네시아 및 중소(dead burned) 마그네시아로 이루어진 군으로부터 선택된 1종 이상인, 내화재용 고형 바인더.The magnesia is at least one selected from the group consisting of acustic calcined magnesia, fused magnesia, sintered magnesia, and dead burned magnesia.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 유기산은 구연산 및 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic Acid)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화재용 고형 바인더. The organic acid is a solid binder for fireproof materials comprising at least one selected from the group consisting of citric acid and ethylenediaminetetraacetic acid.
  5. 청구항 1에 있어서,The method of claim 1,
    내화 원료와 유기산을 1: 0.25 내지 4.0의 중량비로 포함하는, 내화재용 고형 바인더.A solid binder for fireproof materials comprising a refractory raw material and an organic acid in a weight ratio of 1:0.25 to 4.0.
  6. 청구항 1에 있어서,The method of claim 1,
    안정화제 및 가사시간 조절제로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함하는, 내화재용 고형 바인더.A solid binder for fireproof materials, further comprising at least one selected from the group consisting of a stabilizer and a pot life regulator.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 안정화제는 무기염 및 무기산으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화재용 고형 바인더. The stabilizer comprises at least one selected from the group consisting of inorganic salts and inorganic acids, a solid binder for fireproof materials.
  8. 청구항 6에 있어서,The method of claim 6,
    내화재용 고형 바인더 총 중량에 대하여 5 내지 20 중량%의 안정화제를 포함하는, 내화재용 고형 바인더. A solid binder for fireproof materials comprising a stabilizer of 5 to 20% by weight based on the total weight of the solid binder for fireproof materials.
  9. 청구항 6에 있어서,The method of claim 6,
    상기 가사시간 조절제는 글리세린, 에틸렌글리콜, 프로필렌글리콜, 스테아르산, 카보머, 잔탄검, 셀룰로오스 및 메틸셀룰로오스로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화재용 고형 바인더.The pot life regulator includes at least one selected from the group consisting of glycerin, ethylene glycol, propylene glycol, stearic acid, carbomer, xanthan gum, cellulose, and methyl cellulose.
  10. 청구항 1 내지 청구항 9 중 어느 한 항의 내화재용 고형 바인더; 및 A solid binder for fireproof materials according to any one of claims 1 to 9; and
    내화 재료;를 포함하는, 내화재.A refractory material comprising; a refractory material.
  11. 청구항 10에 있어서,The method of claim 10,
    상기 내화 재료는 마그네시아계, 알루미나계, 크롬계, 실리카계 및 흑연계 내화 재료로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화재.The refractory material includes at least one selected from the group consisting of magnesia-based, alumina-based, chromium-based, silica-based, and graphite-based refractory materials.
  12. 청구항 10에 있어서,The method of claim 10,
    안정화제 및 가사시간 조절제로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함하는, 내화재.A fireproof material further comprising at least one selected from the group consisting of a stabilizer and a pot life regulator.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 안정화제는 무기염 및 무기산으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화재. The stabilizer includes at least one selected from the group consisting of inorganic salts and inorganic acids.
  14. 청구항 12에 있어서,The method of claim 12,
    상기 가시시간 조절제는 글리세린, 에틸렌글리콜, 프로필렌글리콜, 스테아르산, 카보머, 잔탄검, 셀룰로오스 및 메틸셀룰로오스로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화재. The visible time regulator includes at least one selected from the group consisting of glycerin, ethylene glycol, propylene glycol, stearic acid, carbomer, xanthan gum, cellulose, and methyl cellulose.
  15. 청구항 12에 있어서,The method of claim 12,
    100중량부의 내화 재료, 5 내지 20 중량부의 안정화제 및 0.2 내지 5 중량부의 가사시간 조절제를 포함하는, 내화재. A fire resistant material comprising 100 parts by weight of a fire resistant material, 5 to 20 parts by weight of a stabilizer and 0.2 to 5 parts by weight of a pot life regulator.
  16. 청구항 10에 있어서,The method of claim 10,
    100중량부의 내화 재료 및 1 내지 5 중량부의 내화재용 고형 바인더를 포함하는, 내화재. A refractory material comprising 100 parts by weight of a refractory material and 1 to 5 parts by weight of a solid binder for the refractory material.
  17. 청구항 1 내지 청구항 9 중 어느 한 항의 내화재용 고형 바인더; 및 내화 재료;를 포함하는, 내화 벽돌.A solid binder for fireproof materials according to any one of claims 1 to 9; And a refractory material; including, refractory bricks.
  18. 청구항 17에 있어서,The method of claim 17
    상기 내화 재료는 마그네시아계, 알루미나계, 크롬계, 실리카계 및 흑연계 내화 재료로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 내화 벽돌.The refractory material includes at least one selected from the group consisting of magnesia-based, alumina-based, chromium-based, silica-based, and graphite-based refractory materials.
  19. 청구항 17에 있어서,The method of claim 17
    마그네시아-카본질 내화 벽돌, 마그네시아-알루미나-카본질 내화 벽돌, 알루미나-실리카질 내화 벽돌, 마그네시아-크롬질 내화 벽돌, 알루미나-카본질 내화 벽돌 또는 마그네시아계 내화 벽돌인, 내화 벽돌.Refractory brick, which is a magnesia-carbonaceous refractory brick, a magnesia-alumina-carbonaceous refractory brick, an alumina-silica refractory brick, a magnesia-chromium refractory brick, an alumina-carbonaceous refractory brick or a magnesia-based refractory brick.
  20. 청구항 17에 있어서,The method of claim 17
    환원 소성 벽돌, 소성 벽돌 또는 불소성 벽돌인, 내화 벽돌.Refractory bricks, which are reduced fired bricks, fired bricks or unfired bricks.
PCT/KR2021/008296 2021-06-30 2021-06-30 Solid binder for refractory material and refractory material comprising same WO2023277220A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2021/008296 WO2023277220A1 (en) 2021-06-30 2021-06-30 Solid binder for refractory material and refractory material comprising same
CN202180003039.7A CN116568653A (en) 2021-06-30 2021-06-30 Solid binder for refractory and refractory containing solid binder
KR1020217020957A KR20230005723A (en) 2021-06-30 2021-06-30 Solid binder for refractory material and refractory material containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/008296 WO2023277220A1 (en) 2021-06-30 2021-06-30 Solid binder for refractory material and refractory material comprising same

Publications (1)

Publication Number Publication Date
WO2023277220A1 true WO2023277220A1 (en) 2023-01-05

Family

ID=84692790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008296 WO2023277220A1 (en) 2021-06-30 2021-06-30 Solid binder for refractory material and refractory material comprising same

Country Status (3)

Country Link
KR (1) KR20230005723A (en)
CN (1) CN116568653A (en)
WO (1) WO2023277220A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923534A (en) * 1972-05-22 1975-12-02 Ici Ltd Cold-setting refractory compositions
US20050103235A1 (en) * 2000-01-27 2005-05-19 Harrison Aubry J.W. Reactive magnesium oxide cements
KR20060065660A (en) * 2003-07-31 2006-06-14 블루 멤브레인스 게엠베하 Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems
KR101367790B1 (en) * 2013-11-27 2014-02-28 주식회사 은성콘크리트 Echo-functional and low-alkali compositions for concrete forming
KR20180088658A (en) * 2015-12-01 2018-08-06 케르네오스 Refractory Magnesia Cement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923534A (en) * 1972-05-22 1975-12-02 Ici Ltd Cold-setting refractory compositions
US20050103235A1 (en) * 2000-01-27 2005-05-19 Harrison Aubry J.W. Reactive magnesium oxide cements
KR20060065660A (en) * 2003-07-31 2006-06-14 블루 멤브레인스 게엠베하 Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems
KR101367790B1 (en) * 2013-11-27 2014-02-28 주식회사 은성콘크리트 Echo-functional and low-alkali compositions for concrete forming
KR20180088658A (en) * 2015-12-01 2018-08-06 케르네오스 Refractory Magnesia Cement

Also Published As

Publication number Publication date
CN116568653A (en) 2023-08-08
KR20230005723A (en) 2023-01-10

Similar Documents

Publication Publication Date Title
US4331773A (en) Refractory composition
RU2587194C2 (en) Method of making lining in industrial furnace of large volume, as well as industrial furnace with lining, refractory brick for such lining
US5283215A (en) Refractories for casting process
WO2020013662A1 (en) Magnesia-carbon basic castable for secondary refining furnace
WO2023277220A1 (en) Solid binder for refractory material and refractory material comprising same
KR0126863B1 (en) Refractory ceramic mass
CN109020504A (en) A kind of magnesium silicon carbide brick and its production method
WO2013147354A1 (en) Cementless high strength amorphous refractory material
Zhou et al. Effect of microsilica content on microstructure and properties of foamed ceramics with needle-like mullite
WO2023277216A1 (en) Refractory liquid binder and refractory brick comprising same
JP5501629B2 (en) Magnesia clinker
CN113698186A (en) Alumina-based cordierite explosion-proof castable
Hubble Steel plant refractories
KR100342390B1 (en) Castable batch composition for blow pipe of blast furnace
KR101262077B1 (en) Low Cement Corrosion-Resistive Unshaped Refractories
JP2021147275A (en) Magnesia-spinel refractory brick
JP3268303B2 (en) Non-oxide refractory raw materials and refractories with excellent oxidation resistance
JPH06172045A (en) Refractory for casting process
JP2006143517A (en) Carbon-containing unburned refractory and method of manufacturing the same
KR20030052342A (en) Composition of Al2O3-SiC-C brick for charging ladle
JP2003171182A (en) Carbon-containing unburned brick
JP2018015763A (en) Lining refractory material for continuous casting tundish
JP2007290930A (en) Basic brick
JPH04280858A (en) Production of unburned magnesia-carbon brick
JP3238592B2 (en) Irregular cast refractory moldings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003039.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE