WO2023276924A1 - System for estimating tire state quantity, program for estimating tire state quantity, and method for estimating tire state quantity - Google Patents

System for estimating tire state quantity, program for estimating tire state quantity, and method for estimating tire state quantity Download PDF

Info

Publication number
WO2023276924A1
WO2023276924A1 PCT/JP2022/025492 JP2022025492W WO2023276924A1 WO 2023276924 A1 WO2023276924 A1 WO 2023276924A1 JP 2022025492 W JP2022025492 W JP 2022025492W WO 2023276924 A1 WO2023276924 A1 WO 2023276924A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
tire
state quantity
information
raw information
Prior art date
Application number
PCT/JP2022/025492
Other languages
French (fr)
Japanese (ja)
Inventor
洋光 市川
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2023276924A1 publication Critical patent/WO2023276924A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present invention relates to a tire state quantity estimation system, a tire state quantity estimation program, and a tire state quantity estimation method applicable to a vehicle.
  • the present invention has been made in view of the above problems, and a tire state quantity estimation system capable of suppressing the amount of data communication while ensuring the accuracy of estimating the tire state quantity including the degree of wear. , to provide a tire state quantity estimation program and a tire state quantity estimation method.
  • the first data may include a time integrated value component of the vehicle acceleration information.
  • the tire state quantity may include a tire wear amount or a tire remaining durability value.
  • a tire state quantity estimation program includes a vehicle information acquisition step of acquiring first raw information about a vehicle, a tire information acquisition step of acquiring second raw information about tires of the vehicle, a first data calculation step of preliminarily calculating first data used for estimating the state quantity of the tire based on part of the acquired first raw information and second raw information; A transmission step of transmitting second data composed of information not used in the calculation process in the first data calculation step out of the second raw information and the first data to an external device; and in the external device, a receiving step of receiving the first data and the second data; and a third data calculation of calculating, in the external device, third data used for estimating the state quantity of the tire based on the received second data. and a tire state quantity estimating step of estimating the state quantity of the tire based on the received first data and the calculated third data in the external device, wherein the tire state quantity It is gist to be implemented in an estimation system.
  • part of the process of estimating the state quantity of the tire is performed on the vehicle side using part of the raw data obtained in the vehicle information obtaining step and the tire information obtaining step, and only the other raw data is sent to the external device side.
  • a part of the process of transmitting and estimating the state quantity of the tire can be performed on the external device side. Therefore, compared with the case where all the raw data acquired in the vehicle information acquisition step and the tire information acquisition step are transmitted to an external device, the amount of data communication can be suppressed, and the tire state quantity including the degree of wear can be estimated. Cost can be reduced while ensuring accuracy.
  • part of the process of estimating the tire state quantity is performed on the vehicle side using part of the raw data obtained in the vehicle information acquisition process and the tire information acquisition process, and only the other raw data is sent to the external device side.
  • a part of the process of transmitting and estimating the state quantity of the tire can be performed on the external device side. Therefore, compared to the case where all the raw data acquired in the vehicle information acquisition process and the tire information acquisition process are transmitted to an external device, the amount of data communication can be suppressed, and the tire state quantity including the degree of wear can be estimated. Cost can be reduced while ensuring accuracy.
  • a tire state quantity estimation system capable of suppressing the amount of data communication while ensuring the accuracy of estimating the tire state quantity including the degree of wear. can provide a method.
  • FIG. 1 is a schematic configuration diagram showing a schematic configuration of a tire state quantity estimation system according to an embodiment
  • FIG. 1 is a functional block diagram showing the functional configuration of a tire state quantity estimation system according to an embodiment
  • FIG. 4 is an explanatory diagram showing an outline of processing of the tire state quantity estimation system according to the embodiment
  • 4 is a flowchart showing an example of a procedure of tire state quantity estimation processing executed by the tire state quantity estimation system according to the embodiment
  • a tire state quantity estimation system S1 according to an embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 shows the cross-sectional shape of the tire 10 assembled to the rim wheel 90 along the tire width direction.
  • the tread portion 20 is a portion that contacts the road surface when the tire 10 mounted on the vehicle V rolls on the road surface.
  • a tread pattern is formed on the tread portion 20 according to the type of vehicle and required performance.
  • a sensor unit SU is provided on the inner surface 10a of the tire 10 to detect temperature information, internal pressure information, etc. of the tire 10 as the second raw information d2.
  • the sensor unit SU is provided on the inner surface 10a facing the tread portion 20. More specifically, the sensor unit SU is attached to the surface of an inner liner (not shown) that prevents gas such as air filled in the internal space of the pneumatic tire 10 assembled to the rim wheel 90 from leaking.
  • the sensor unit SU may be provided not only on the inner surface 10a facing the tread portion 20, but also on the inner surface of the tire 10 on the sidewall 30 side.
  • the sensor unit SU does not necessarily have to be attached to the inner surface of the tire 10.
  • a part or all of the sensor unit SU may be embedded inside the tire 10.
  • the second raw information d2 acquired by the sensor unit SU is transmitted to the processing device 200 via the wireless line N1.
  • the processing device 200 includes a vehicle information acquisition unit 101 that acquires the first raw information d1 regarding the vehicle V.
  • the first raw information d1 regarding the vehicle V includes vehicle speed information, longitudinal acceleration information, and the like.
  • the processing device 200 preliminarily calculates the first data D1 used for estimating the state quantity (amount of wear, etc.) of the tire 10 based on part of the acquired first raw information d1 and second raw information d2.
  • a first data calculator 102 is provided.
  • the processing device 200 converts the first data D1 and the second data D2 composed of the information that is not used for the calculation process in the first data calculation unit 102 out of the first raw information d1 and the second raw information d2.
  • a transmission unit 103 is provided for transmitting data to the cloud computing system CL1 as an external device via a wireless line (for example, mobile phone network, packet communication, Internet communication network, etc.) N2.
  • part of the first raw information d1 and the second raw information d2 used in the calculation process in the first data calculation unit 102 has a predetermined frequency component of the signal included in the first raw information and the second raw information. It can be information containing variables less than or equal to a value.
  • the information including variables whose frequency component of the signal is equal to or less than a predetermined value can include vehicle acceleration information obtained by the vehicle sensor 101 as the vehicle information obtaining unit.
  • part or all of the cloud computing system CL1 may incorporate edge computing, which is a distributed architecture.
  • the cloud computing system CL1 includes a receiving section 301 that receives the first data D1 and the second data D2 via the wireless line N2.
  • the cloud computing system CL1 also includes a tire state quantity estimation unit 303 that estimates state quantities such as the amount of wear of the tire 10 based on the received first data D1 and the calculated third data D3.
  • the first data D1 can include the time integrated value component of the vehicle acceleration information of the vehicle V. A more specific calculation formula and the like will be described later.
  • examples of the first raw information acquired by the vehicle information acquisition unit 101 include the static load estimated value d1a of the vehicle V and the vehicle-side longitudinal acceleration d1b.
  • tire internal pressure and temperature information d2 are given as examples of the second raw information d2 acquired by the sensor unit SU.
  • first raw information and the second raw information described above are merely examples, and are not limited to these.
  • the vehicle-side longitudinal acceleration d1b corresponds to information with a relatively small time constant (the time constant is less than seconds and changes relatively rapidly). Therefore, it corresponds to the first raw information d1 which is pre-calculated by the first data calculation unit 102 of the processing device 200 on the vehicle side.
  • the cloud computing system CL1 side calculates the dynamic load estimated value, the instantaneous wear amount, and the like. , the amount of wear is estimated based on the calculated third data D3.
  • the amount of data communication can be suppressed compared to the case where all the raw data acquired by the vehicle information acquisition unit (vehicle sensor) 101 and the tire information acquisition unit (sensor unit) SU are transmitted to an external device. It is possible to reduce the communication cost and the like while ensuring the accuracy of estimating the state quantity of the tire including the degree of wear.
  • Wear amount (A) ⁇ Instantaneous wear amount (M) can be calculated by
  • variable f longitudinal acceleration
  • variable g lateral acceleration
  • the coefficients a1, b1, a2, and b2 are constants derived using variables with relatively long time constants (for example, the time constant is several minutes or longer and changes relatively slowly).
  • the first raw information d1 and the second raw information d2 correspond to the second data D2 composed of information not used in the calculation process in the first data calculation unit 102.
  • coefficients a1, b1, a2, and b2 can be obtained using a well-known regression analysis method (for example, the method of least squares, etc.).
  • the amount of data communication can be suppressed. Communication costs and the like can be reduced while ensuring the accuracy of estimating tire state quantities including the amount of wear.
  • Wear amount (A) ⁇ Instantaneous wear amount (M) can be calculated by
  • Equation 1 is obtained by mathematically decomposing the instantaneous wear amount with the speed of change.
  • tire static load is a value that changes due to loading and unloading of cargo, etc., and is estimated from information acquired by the sensor unit SU of the tire 10 .
  • r(t) coefficient due to lateral force depends on the ground contact area, etc., and is the amount of change in the lateral direction (lateral direction) among those that change over time due to, for example, the amount of wear. It is estimated from the acquired information.
  • f(t) longitudinal acceleration is estimated from information obtained directly by the vehicle information obtaining section (vehicle sensor) 101 or obtained by the sensor unit SU of the tire 10, or the like.
  • Equation 2 the B1 part and B2 part of Equation 2 are integrals where t is within 1 minute, and can be calculated by edge computing.
  • the integrated value may be simply transmitted, the linear function, quadratic function (squared), and cubic function (cubic) of acceleration may be used as the time-integrated value component of acceleration according to the embodiment. It is also possible to transmit each integral value and correct it on the vehicle side (that is, correct it with the values of c1 to c3 obtained in advance).
  • cubic function cubic
  • quadratic function squared
  • quartic quartic
  • correction not only correction but also correction and summation may be performed. Also, the processing associated with the correction can be performed by the vehicle V or the cloud.
  • part of the raw data acquired by the vehicle information acquisition unit (vehicle sensor) 101 and the tire information acquisition unit (sensor unit) SU (raw data relating to relatively fast time constants) is used to obtain the state quantity of the tire.
  • Part of the process to be estimated is performed on the vehicle side, and only other raw data (raw data related to the amount with a relatively slow time constant) is sent to the external device (cloud computing system CL1) side, and the state quantity of the tire 10 part of the process of estimating can be performed on the external device side.
  • steps S10 to S13 of this process are executed by the processing device 200 on the vehicle side, and steps S14 to S16 are executed by the cloud computing system CL1 as an external device.
  • first raw information d1 regarding the vehicle V is acquired from the vehicle information acquisition unit (vehicle sensor) 101 in step S10.
  • step S11 the second raw information d2 regarding the tire 10 is obtained from the tire information obtaining section (sensor unit) SU, and the process proceeds to step S12.
  • step S12 based on a part of the first raw information d1 and the second raw information d2, the processing device 200 on the vehicle side preliminarily calculates the first data D1 used for estimating the state quantity of the tire 10, and performs step S13. transition to
  • step S14 it is determined whether or not the cloud computing system CL1 has received the first data D1 and the second data D2.
  • step S10 the process returns to step S10, and when the determination result is "Yes", the process proceeds to step S15.
  • step S15 the third data D3 used for estimating the state quantity of the tire 10 is calculated based on the received second data D2, and the process proceeds to step S16.
  • step S16 the state quantity (wear amount, etc.) of the tire 10 is estimated based on the received first data D1 and the calculated third data D3, and the process ends.
  • the present invention is not limited to this, and the configuration of each part is , can be replaced by any configuration having similar functionality.
  • Tire state quantity estimation system d1 First raw information d2 Second raw information CL1 External device (cloud computing system) D1 First data D2 Second data D3 Third data SU Tire information acquisition unit (sensor unit) V vehicle 10 tire 101 vehicle information acquisition unit (vehicle sensor) 102 First data calculator 103 Transmitter 200 Processor 301 Receiver 302 Third data calculator 303 Tire state quantity estimator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)

Abstract

The present invention provides a system comprising: a vehicle information acquisition unit 101 that acquires first raw information d1 regarding a vehicle V; a tire information acquisition unit SU which is mounted on a tire 10 and which acquires second raw information regarding the tire; a first data computation unit 102 that computes, in advance on the basis of a portion of the first raw information and the second raw information, first data D1 to be used for estimating a state quantity of the tire; a transmission unit 103 that transmits, to an external device CL1, second data D2 formed of information which is of the first raw information and second raw information and was not used in the computational processing by the first data computation unit and the first data; a third data computation unit 302 that computes, on the basis of the received second data, third data D3 to be used for estimating the state quantity of the tire; and a tire state quantity estimation unit 303 that estimates the state quantity of the tire on the basis of the received first data and the third data.

Description

タイヤ状態量推定システム、タイヤ状態量推定プログラムおよびタイヤ状態量推定方法Tire state quantity estimation system, tire state quantity estimation program, and tire state quantity estimation method
 本発明は、車両に適用可能なタイヤ状態量推定システム、タイヤ状態量推定プログラムおよびタイヤ状態量推定方法に関する。 The present invention relates to a tire state quantity estimation system, a tire state quantity estimation program, and a tire state quantity estimation method applicable to a vehicle.
 一般的に車両のタイヤの摩耗が進むと制動距離が長くなり、安全性が低下する。 In general, as vehicle tires wear out, the braking distance becomes longer and safety decreases.
 そこで、摩耗の程度を含むタイヤの状態量を推定して、安全性等の確保に資する技術が従来より種々提案されている(特許文献1、2)。 Therefore, various technologies have been proposed in the past to contribute to ensuring safety by estimating tire state quantities including the degree of wear (Patent Documents 1 and 2).
 これにより、タイヤの状態量を把握して、車両の安全性確保およびタイヤ故障の予防や効率的な車両運用を図っている。 By doing this, we are able to ascertain the state of the tires, ensure the safety of the vehicle, prevent tire failures, and operate the vehicle efficiently.
特開2009- 19950号公報Japanese Patent Application Laid-Open No. 2009-19950 特開2020-164127号公報JP 2020-164127 A
 ここで、特許文献1では、車両に搭載した装置で摩耗の推定をおこなっている。しかしながら、特許文献1に開示の技術では、推定アルゴリズムを変更する際に車両側のソフトウェア等のアップデートなどが必要となり、即時の対応が難しいという不都合があった。 Here, in Patent Document 1, wear is estimated by a device mounted on a vehicle. However, with the technique disclosed in Patent Document 1, when changing the estimation algorithm, it is necessary to update the software on the vehicle side, etc., and there is an inconvenience that immediate response is difficult.
 一方、特許文献2では、センサで取得したタイヤ等に関するデータを無線回線を介して外部ソフトウェアに送信し、車両外でタイヤの摩耗等を推定する技術が開示されている。当該技術では、アルゴリズムの更新を比較的容易に行うことはできるという利点がある。 On the other hand, Patent Document 2 discloses a technology for estimating wear of tires outside the vehicle by transmitting data related to tires, etc. acquired by a sensor to external software via a wireless line. This technique has the advantage that the algorithm can be updated relatively easily.
 しかしながら、センサ出力値の全てを含む膨大なデータを外部に送信することは通信量の増大を招き、コストが嵩むという難点があった。 However, sending a large amount of data, including all sensor output values, to the outside caused an increase in communication volume and cost.
 そこで、本発明は、上記課題に鑑みてなされたものであり、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつ、データの通信量を抑制することが可能なタイヤ状態量推定システム、タイヤ状態量推定プログラムおよびタイヤ状態量推定方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and a tire state quantity estimation system capable of suppressing the amount of data communication while ensuring the accuracy of estimating the tire state quantity including the degree of wear. , to provide a tire state quantity estimation program and a tire state quantity estimation method.
 本発明の一態様に係るタイヤ状態量推定システムは、車両に有って、当該車両に関する第1生情報を取得する車両情報取得部と、前記車両のタイヤに搭載されて、前記タイヤに関する第2生情報を取得するタイヤ情報取得部と、取得された前記第1生情報および前記第2生情報の一部に基づいて、前記タイヤの状態量の推定に用いる第1データを予め算出する第1データ算出部と、前記第1生情報および前記第2生情報のうち前記第1データ算出部における算出処理に用いなかった情報で構成される第2データと、前記第1データとを外部装置に送信する送信部と、前記外部装置に有って、前記第1データおよび前記第2データを受信する受信部と、前記外部装置において、受信した前記第2データに基づいて、前記タイヤの状態量の推定に用いる第3データを算出する第3データ算出部と、前記外部装置において、受信した前記第1データと、算出された前記第3データとに基づいて、前記タイヤの状態量を推定するタイヤ状態量推定部と、を備えることを要旨とする。 A tire state quantity estimation system according to an aspect of the present invention is provided in a vehicle, and includes a vehicle information acquisition unit that acquires first raw information related to the vehicle; a tire information acquisition unit that acquires raw information; and a first tire information acquisition unit that preliminarily calculates first data used for estimating the state quantity of the tire based on a part of the acquired first raw information and the second raw information. a data calculation unit, second data composed of information not used for calculation processing in the first data calculation unit out of the first raw information and the second raw information, and the first data to an external device a transmitting unit for transmitting; a receiving unit in the external device for receiving the first data and the second data; and a state quantity of the tire in the external device based on the received second data. estimating the state quantity of the tire based on the received first data and the calculated third data in the third data calculation unit that calculates the third data used for estimating the and a tire state quantity estimator.
 なお、本態様に係るタイヤ状態量推定システムにおいて、タイヤ情報取得部で第1生情報を取得する対象としてのタイヤには、ホイールを含むようにできる。 It should be noted that in the tire state quantity estimation system according to this aspect, wheels can be included in the tires as targets for which the tire information acquisition unit acquires the first raw information.
 これにより、車両情報取得部およびタイヤ情報取得部で取得した生データの一部を用いてタイヤの状態量を推定する処理の一部を車両側で行い、その他の生データのみを外部装置側に送信し、タイヤの状態量を推定する処理の一部を外部装置側で行うことができる。そのため、車両情報取得部とタイヤ情報取得部で取得した生データを全て外部装置に送信する場合に比してデータの通信量を抑制することができ、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつコストを低減することができる。 As a result, part of the process of estimating the tire state quantity is performed on the vehicle side using part of the raw data obtained by the vehicle information acquisition unit and the tire information acquisition unit, and only the other raw data is sent to the external device side. Part of the process of transmitting and estimating the state quantity of the tire can be performed on the external device side. Therefore, compared with the case where all the raw data acquired by the vehicle information acquisition unit and the tire information acquisition unit are transmitted to an external device, the amount of data communication can be suppressed, and the tire state quantity including the degree of wear can be estimated. Cost can be reduced while ensuring accuracy.
 また、前記第1データ算出部における算出処理に用いられる前記第1生情報および前記第2生情報の一部は、当該第1生情報および当該第2生情報に含まれる信号の周波数成分が所定値以下の変数を含む情報であるようにできる。 Further, part of the first raw information and the second raw information used in the calculation process in the first data calculation unit has a predetermined frequency component of the signal included in the first raw information and the second raw information. It can be information containing variables less than or equal to a value.
 これにより、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつ、データの通信量を抑制することが可能なタイヤ状態量推定システムを実現することができる。 As a result, it is possible to realize a tire state quantity estimation system that can reduce the amount of data communication while ensuring the accuracy of estimating tire state quantities, including the degree of wear.
 また、前記信号の周波数成分が所定値以下の変数を含む情報は、前記車両情報取得部で取得される車両加速度の情報を含むようにできる。 Further, the information including variables whose frequency component of the signal is equal to or less than a predetermined value can include information on vehicle acceleration acquired by the vehicle information acquisition unit.
 これにより、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつ、データの通信量を抑制することが可能なタイヤ状態量推定システムを容易に実現することができる。 As a result, it is possible to easily realize a tire state quantity estimation system that can reduce the amount of data communication while ensuring the accuracy of estimating tire state quantities, including the degree of wear.
 また、前記第1データは、前記車両加速度の情報の時間積算値成分を含むようにできる。 Also, the first data may include a time integrated value component of the vehicle acceleration information.
 これにより、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつ、データの通信量を抑制することが可能なタイヤ状態量推定システムを実現することができる。 As a result, it is possible to realize a tire state quantity estimation system that can reduce the amount of data communication while ensuring the accuracy of estimating tire state quantities, including the degree of wear.
 また、前記タイヤの状態量は、タイヤ摩耗量またはタイヤの残耐久値を含むようにできる。 Also, the tire state quantity may include a tire wear amount or a tire remaining durability value.
 これにより、タイヤ摩耗量またはタイヤの残耐久値を含むタイヤの状態量の推定精度を確保しつつ、データの通信量を抑制することが可能なタイヤ状態量推定システムを実現することができる。 As a result, it is possible to realize a tire state quantity estimation system capable of suppressing the amount of data communication while ensuring the accuracy of estimating the tire state quantity including the tire wear amount or remaining durability value of the tire.
 また、前記タイヤ摩耗量は、次式
 摩耗量(A)=Σ瞬間摩耗量(M)
 で算出し、
 前記瞬間摩耗量(M)は、次式
 瞬間摩耗量(M)=(転動分p(t))+(加減速分q(t)×f(t))+(横力分r(t)×g(t))
         =数1
Further, the tire wear amount is calculated by the following formula: wear amount (A) = Σ instantaneous wear amount (M)
Calculated by
The instantaneous wear amount (M) is calculated by the following formula: Instantaneous wear amount (M)=(Rolling amount p(t))+(Acceleration/deceleration amount q(t)×f(t))+(Lateral force amount r(t) )×g(t))
= number 1
Figure JPOXMLDOC01-appb-M000003
          ≒数2
Figure JPOXMLDOC01-appb-M000003
≒ number 2
Figure JPOXMLDOC01-appb-M000004
 (但し、p(t):タイヤ静荷重、q(t):加減速による係数、r(t):横力による係数、f(t):前後方向加速度、g(t):左右方向加速度)
 で算出するようにしてもよい。
Figure JPOXMLDOC01-appb-M000004
(where p(t): static tire load, q(t): coefficient due to acceleration/deceleration, r(t): coefficient due to lateral force, f(t): longitudinal acceleration, g(t): lateral acceleration)
You may make it calculate by .
 これにより、タイヤ摩耗量を含むタイヤの状態量の推定精度を確保しつつ、データの通信量を抑制することが可能なタイヤ状態量推定システムを実現することができる。 As a result, it is possible to realize a tire state quantity estimation system capable of suppressing the amount of data communication while ensuring the accuracy of estimating the tire state quantity including the tire wear amount.
 また、本発明の他の態様に係るタイヤ状態量推定プログラムは、車両に関する第1生情報を取得する車両情報取得ステップと、前記車両のタイヤに関する第2生情報を取得するタイヤ情報取得ステップと、取得された前記第1生情報および前記第2生情報の一部に基づいて、前記タイヤの状態量の推定に用いる第1データを予め算出する第1データ算出ステップと、前記第1生情報および前記第2生情報のうち前記第1データ算出ステップにおける算出処理に用いなかった情報で構成される第2データと、前記第1データとを外部装置に送信する送信ステップと、前記外部装置において、前記第1データおよび前記第2データを受信する受信ステップと、前記外部装置において、受信した前記第2データに基づいて、前記タイヤの状態量の推定に用いる第3データを算出する第3データ算出ステップと、前記外部装置において、受信した前記第1データと、算出された前記第3データとに基づいて、前記タイヤの状態量を推定するタイヤ状態量推定ステップと、を有し、タイヤ状態量推定システムで実行されることを要旨とする。 Further, a tire state quantity estimation program according to another aspect of the present invention includes a vehicle information acquisition step of acquiring first raw information about a vehicle, a tire information acquisition step of acquiring second raw information about tires of the vehicle, a first data calculation step of preliminarily calculating first data used for estimating the state quantity of the tire based on part of the acquired first raw information and second raw information; A transmission step of transmitting second data composed of information not used in the calculation process in the first data calculation step out of the second raw information and the first data to an external device; and in the external device, a receiving step of receiving the first data and the second data; and a third data calculation of calculating, in the external device, third data used for estimating the state quantity of the tire based on the received second data. and a tire state quantity estimating step of estimating the state quantity of the tire based on the received first data and the calculated third data in the external device, wherein the tire state quantity It is gist to be implemented in an estimation system.
 これにより、車両情報取得ステップおよびタイヤ情報取得ステップで取得した生データの一部を用いてタイヤの状態量を推定する処理の一部を車両側で行い、その他の生データのみを外部装置側に送信し、タイヤの状態量を推定する処理の一部を外部装置側で行うようにできる。そのため、車両情報取得ステップとタイヤ情報取得ステップで取得した生データを全て外部装置に送信する場合に比してデータの通信量を抑制することができ、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつコストを低減することができる。 As a result, part of the process of estimating the state quantity of the tire is performed on the vehicle side using part of the raw data obtained in the vehicle information obtaining step and the tire information obtaining step, and only the other raw data is sent to the external device side. A part of the process of transmitting and estimating the state quantity of the tire can be performed on the external device side. Therefore, compared with the case where all the raw data acquired in the vehicle information acquisition step and the tire information acquisition step are transmitted to an external device, the amount of data communication can be suppressed, and the tire state quantity including the degree of wear can be estimated. Cost can be reduced while ensuring accuracy.
 また、本発明の他の態様に係るタイヤ状態量推定方法は、車両に関する第1生情報を取得する車両情報取得過程と、前記車両のタイヤに関する第2生情報を取得するタイヤ情報取得過程と、取得された前記第1生情報および前記第2生情報の一部に基づいて、前記タイヤの状態量の推定に用いる第1データを予め算出する第1データ算出過程と、前記第1生情報および前記第2生情報のうち前記第1データ算出過程における算出処理に用いなかった情報で構成される第2データと、前記第1データとを外部装置に送信する送信過程と、前記外部装置において、前記第1データおよび前記第2データを受信する受信過程と、前記外部装置において、受信した前記第2データに基づいて、前記タイヤの状態量の推定に用いる第3データを算出する第3データ算出過程と、前記外部装置において、受信した前記第1データと、算出された前記第3データとに基づいて、前記タイヤの状態量を推定するタイヤ状態量推定過程と、を有することを要旨とする。 Further, a tire state quantity estimation method according to another aspect of the present invention includes a vehicle information acquisition process of acquiring first raw information related to a vehicle, a tire information acquisition process of acquiring second raw information related to tires of the vehicle, a first data calculation step of pre-calculating first data used for estimating the state quantity of the tire based on part of the acquired first raw information and second raw information; A transmission step of transmitting second data composed of information not used in the calculation process in the first data calculation step among the second raw information and the first data to an external device, and in the external device, a receiving step of receiving the first data and the second data; and a third data calculation of calculating, in the external device, third data used for estimating the state quantity of the tire based on the received second data. and a tire state quantity estimation step of estimating the state quantity of the tire in the external device based on the received first data and the calculated third data. .
 これにより、車両情報取得過程およびタイヤ情報取得過程で取得した生データの一部を用いてタイヤの状態量を推定する処理の一部を車両側で行い、その他の生データのみを外部装置側に送信し、タイヤの状態量を推定する処理の一部を外部装置側で行うようにできる。そのため、車両情報取得過程とタイヤ情報取得過程で取得した生データを全て外部装置に送信する場合に比してデータの通信量を抑制することができ、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつコストを低減することができる。 As a result, part of the process of estimating the tire state quantity is performed on the vehicle side using part of the raw data obtained in the vehicle information acquisition process and the tire information acquisition process, and only the other raw data is sent to the external device side. A part of the process of transmitting and estimating the state quantity of the tire can be performed on the external device side. Therefore, compared to the case where all the raw data acquired in the vehicle information acquisition process and the tire information acquisition process are transmitted to an external device, the amount of data communication can be suppressed, and the tire state quantity including the degree of wear can be estimated. Cost can be reduced while ensuring accuracy.
 本発明によれば、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつ、データの通信量を抑制することが可能なタイヤ状態量推定システム、タイヤ状態量推定プログラムおよびタイヤ状態量推定方法を提供することができる。 According to the present invention, a tire state quantity estimation system, a tire state quantity estimation program, and a tire state quantity estimation capable of suppressing the amount of data communication while ensuring the accuracy of estimating the tire state quantity including the degree of wear. can provide a method.
実施形態に係るタイヤ状態量推定システムの概略構成を示す概略構成図である。1 is a schematic configuration diagram showing a schematic configuration of a tire state quantity estimation system according to an embodiment; FIG. 実施形態に係るタイヤ状態量推定システムの機能構成を示す機能ブロック図である。1 is a functional block diagram showing the functional configuration of a tire state quantity estimation system according to an embodiment; FIG. 実施形態に係るタイヤ状態量推定システムの処理の概要を示す説明図である。FIG. 4 is an explanatory diagram showing an outline of processing of the tire state quantity estimation system according to the embodiment; 実施形態に係るタイヤ状態量推定システムで実行されるタイヤ状態量推定処理の処理手順の例を示すフローチャートである。4 is a flowchart showing an example of a procedure of tire state quantity estimation processing executed by the tire state quantity estimation system according to the embodiment;
 図1および図2を参照して、本発明の実施形態に係るタイヤ状態量推定システムS1について説明する。 A tire state quantity estimation system S1 according to an embodiment of the present invention will be described with reference to FIGS.
 なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。 In addition, in the description of the drawings below, the same or similar parts are given the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the ratio of each dimension is different from the actual one.
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Therefore, specific dimensions should be determined with reference to the following explanation. In addition, it goes without saying that there are portions with different dimensional relationships and ratios between the drawings.
 (タイヤ状態量推定システムの概略構成)
 図1の概略構成図および図2の機能ブロック図を参照して、実施形態に係るタイヤ状態量推定システムS1の概略構成について説明する。
(Schematic configuration of tire state quantity estimation system)
A schematic configuration of a tire state quantity estimation system S1 according to the embodiment will be described with reference to a schematic configuration diagram of FIG. 1 and a functional block diagram of FIG.
 タイヤ状態量推定システムS1は、図1等に示すように、車両Vに搭載されているマイクロコンピュータ等で構成される処理装置200と、車両Vに装着されるタイヤに搭載されるタイヤ情報取得部としてのセンサユニットSUと、外部装置としてのクラウドコンピューティングシステムCL1とから構成される。 The tire state quantity estimation system S1 includes, as shown in FIG. and a cloud computing system CL1 as an external device.
 (センサユニットについて)
 図1を参照して、タイヤ10に搭載されるセンサユニットSUについて説明する。
(About the sensor unit)
The sensor unit SU mounted on the tire 10 will be described with reference to FIG.
 図1には、リムホイール90に組み付けられたタイヤ10のタイヤ幅方向に沿った断面形状が示されている。 FIG. 1 shows the cross-sectional shape of the tire 10 assembled to the rim wheel 90 along the tire width direction.
 また、トレッド部20は、車両Vに装着されたタイヤ10が路面を転動する際に路面と接する部分である。トレッド部20には、車両の種別及び要求される性能に応じたトレッドパターンが形成される。 Further, the tread portion 20 is a portion that contacts the road surface when the tire 10 mounted on the vehicle V rolls on the road surface. A tread pattern is formed on the tread portion 20 according to the type of vehicle and required performance.
 そして、タイヤ10の内面10aには、第2生情報d2としてタイヤ10の温度情報、内圧情報等を検出するセンサユニットSUが設けられている。 A sensor unit SU is provided on the inner surface 10a of the tire 10 to detect temperature information, internal pressure information, etc. of the tire 10 as the second raw information d2.
 図1に示す構成例では、センサユニットSUは、トレッド部20と対向する内面10aに設けられている。より具体的には、センサユニットSUは、リムホイール90に組み付けられた空気入りタイヤ10の内部空間に充填された空気などの気体の漏れを防止するインナーライナー(図示省略)の表面に取り付けられる。 In the configuration example shown in FIG. 1, the sensor unit SU is provided on the inner surface 10a facing the tread portion 20. More specifically, the sensor unit SU is attached to the surface of an inner liner (not shown) that prevents gas such as air filled in the internal space of the pneumatic tire 10 assembled to the rim wheel 90 from leaking.
 なお、センサユニットSUは、トレッド部20と対向する内面10aに限らず、タイヤ10のサイドウォール30側の内面に設けるようにしてもよい。 The sensor unit SU may be provided not only on the inner surface 10a facing the tread portion 20, but also on the inner surface of the tire 10 on the sidewall 30 side.
 センサユニットSUは、車両Vに装着される各タイヤ10に設けられることが好ましい。車両の安全性確保には各タイヤ10の摩耗状況等を監視することが望ましいためである。 The sensor unit SU is preferably provided for each tire 10 mounted on the vehicle V. This is because it is desirable to monitor the wear condition of each tire 10 in order to ensure the safety of the vehicle.
 また、センサユニットSUは、必ずしもタイヤ10の内側面に貼付されていなくてもよく、例えば、センサユニットSUの一部または全部がタイヤ10の内部に埋設される構成としてもよい。 Further, the sensor unit SU does not necessarily have to be attached to the inner surface of the tire 10. For example, a part or all of the sensor unit SU may be embedded inside the tire 10.
 なお、センサユニットSUで取得した第2生情報d2は、無線回線N1を介して処理装置200側に送信される。 The second raw information d2 acquired by the sensor unit SU is transmitted to the processing device 200 via the wireless line N1.
 (処理装置について)
 図2を参照して、車両Vに搭載される処理装置200の構成例について説明する。
(About processing equipment)
A configuration example of the processing device 200 mounted on the vehicle V will be described with reference to FIG.
 処理装置200は、マイクロコンピュータ等のハードウェアおよび当該マイクロコンピュータ等で実行可能に格納されるプログラムおよびデータ等で構成される。 The processing device 200 is composed of hardware such as a microcomputer, and programs and data that are stored so as to be executable by the microcomputer.
 処理装置200は、車両Vに関する第1生情報d1を取得する車両情報取得部101を備える。なお、車両Vに関する第1生情報d1としては、車速情報、前後加速度情報等が挙げられる。 The processing device 200 includes a vehicle information acquisition unit 101 that acquires the first raw information d1 regarding the vehicle V. The first raw information d1 regarding the vehicle V includes vehicle speed information, longitudinal acceleration information, and the like.
 また、処理装置200は、取得された第1生情報d1および第2生情報d2の一部に基づいて、タイヤ10の状態量(摩耗量等)の推定に用いる第1データD1を予め算出する第1データ算出部102を備える。 In addition, the processing device 200 preliminarily calculates the first data D1 used for estimating the state quantity (amount of wear, etc.) of the tire 10 based on part of the acquired first raw information d1 and second raw information d2. A first data calculator 102 is provided.
 また、処理装置200は、第1生情報d1および第2生情報d2のうち第1データ算出部102における算出処理に用いなかった情報で構成される第2データD2と、第1データD1とを外部装置としてのクラウドコンピューティングシステムCL1に無線回線(例えば、携帯電話網、パケット通信、インターネット通信網等)N2を介して送信する送信部103を備える。 In addition, the processing device 200 converts the first data D1 and the second data D2 composed of the information that is not used for the calculation process in the first data calculation unit 102 out of the first raw information d1 and the second raw information d2. A transmission unit 103 is provided for transmitting data to the cloud computing system CL1 as an external device via a wireless line (for example, mobile phone network, packet communication, Internet communication network, etc.) N2.
 なお、第1データ算出部102における算出処理に用いられる第1生情報d1および第2生情報d2の一部は、当該第1生情報および当該第2生情報に含まれる信号の周波数成分が所定値以下の変数を含む情報であるようにできる。 Note that part of the first raw information d1 and the second raw information d2 used in the calculation process in the first data calculation unit 102 has a predetermined frequency component of the signal included in the first raw information and the second raw information. It can be information containing variables less than or equal to a value.
 また、信号の周波数成分が所定値以下の変数を含む情報は、車両情報取得部としての車両センサ101で取得される車両加速度の情報を含むようにできる。 Also, the information including variables whose frequency component of the signal is equal to or less than a predetermined value can include vehicle acceleration information obtained by the vehicle sensor 101 as the vehicle information obtaining unit.
 なお、より具体的な計算式等については、後述する。 A more specific calculation formula will be described later.
 (外部装置について)
 図2を参照して、外部装置としてのクラウドコンピューティングシステムCL1の構成例について説明する。
(Regarding external devices)
A configuration example of the cloud computing system CL1 as an external device will be described with reference to FIG.
 なお、ここでいうクラウドコンピューティングとはネットワーク経由で提供されているコンピューティング資源を広く含む意である。 Note that cloud computing here broadly includes computing resources provided via networks.
 また、クラウドコンピューティングシステムCL1の一部または全部には、分散型アーキテクチャであるエッジコンピューティングを取り入れてもよい。 Also, part or all of the cloud computing system CL1 may incorporate edge computing, which is a distributed architecture.
 なお、エッジコンピューティングとは、IoT端末などのデバイスや、比較的近くに設置されたサーバにより、データ処理・分析等を行う分散コンピューティングの概念をいう。 Note that edge computing refers to the concept of distributed computing that performs data processing and analysis using devices such as IoT terminals and servers installed relatively nearby.
 ここで、クラウドコンピューティングシステムCL1は、第1データD1および第2データD2を無線回線N2を介して受信する受信部301を備える。 Here, the cloud computing system CL1 includes a receiving section 301 that receives the first data D1 and the second data D2 via the wireless line N2.
 また、クラウドコンピューティングシステムCL1は、受信した第2データD2に基づいて、タイヤ10の状態量の推定に用いる第3データD3を算出する第3データ算出部302を備える。 The cloud computing system CL1 also includes a third data calculator 302 that calculates the third data D3 used for estimating the state quantity of the tire 10 based on the received second data D2.
 また、クラウドコンピューティングシステムCL1は、受信した第1データD1と、算出された第3データD3とに基づいて、タイヤ10について摩耗量等の状態量を推定するタイヤ状態量推定部303を備える。 The cloud computing system CL1 also includes a tire state quantity estimation unit 303 that estimates state quantities such as the amount of wear of the tire 10 based on the received first data D1 and the calculated third data D3.
 なお、第1データD1には、車両Vの車両加速度の情報の時間積算値成分を含むようにできる。より具体的な計算式等については、後述する。 It should be noted that the first data D1 can include the time integrated value component of the vehicle acceleration information of the vehicle V. A more specific calculation formula and the like will be described later.
 また、タイヤの状態量には、タイヤ摩耗量またはタイヤの残耐久値を含むようにできる。 Also, the tire state quantity can include the amount of tire wear or the remaining durability value of the tire.
 (タイヤ状態量推定システムの処理の概要)
 図3を参照して、本実施形態に係るタイヤ状態量推定システムS1の処理の概要について説明する。
(Outline of tire state quantity estimation system processing)
An overview of the processing of the tire state quantity estimation system S1 according to the present embodiment will be described with reference to FIG.
 図3に示す例では、車両情報取得部101で取得される第1生情報の例として、車両Vの静止荷重推定値d1aと、車両側前後加速度d1bを挙げている。 In the example shown in FIG. 3, examples of the first raw information acquired by the vehicle information acquisition unit 101 include the static load estimated value d1a of the vehicle V and the vehicle-side longitudinal acceleration d1b.
 また、センサユニットSUで取得した第2生情報d2の例として、タイヤ内圧、温度情報d2を挙げている。 In addition, tire internal pressure and temperature information d2 are given as examples of the second raw information d2 acquired by the sensor unit SU.
 なお、上述の第1生情報および第2生情報の具体例は、一例であり、これらには限定されない。 It should be noted that the specific examples of the first raw information and the second raw information described above are merely examples, and are not limited to these.
 ここで、車両側前後加速度d1bは、時定数が比較的小さい(時定数が秒未満であり比較的変化が激しい)情報に相当する。そのため、車両側の処理装置200の第1データ算出部102で予め計算処理を行う第1生情報d1に該当する。 Here, the vehicle-side longitudinal acceleration d1b corresponds to information with a relatively small time constant (the time constant is less than seconds and changes relatively rapidly). Therefore, it corresponds to the first raw information d1 which is pre-calculated by the first data calculation unit 102 of the processing device 200 on the vehicle side.
 一方、静止荷重推定値d1aと、タイヤ内圧、温度情報d2は、時定数が比較的長い(例えば、時定数が数分以上であり比較的変化が緩やか)情報に相当する。そのため、第1生情報d1および第2生情報d2のうち第1データ算出部102における算出処理に用いなかった情報で構成される第2データD2に該当する。 On the other hand, the static load estimated value d1a, the tire internal pressure, and the temperature information d2 correspond to information with a relatively long time constant (for example, the time constant is several minutes or longer and changes relatively slowly). Therefore, the first raw information d1 and the second raw information d2 correspond to the second data D2 composed of information not used in the calculation process in the first data calculation unit 102 .
 そして、外部装置(クラウドコンピューティングシステムCL1)に送信された第1データD1および第2データD2に基づいて、クラウドコンピューティングシステムCL1側で動的荷重推定値、瞬間摩耗量等の算出が行われ、算出された第3データD3に基づいて摩耗量推定が行われる。 Then, based on the first data D1 and the second data D2 transmitted to the external device (cloud computing system CL1), the cloud computing system CL1 side calculates the dynamic load estimated value, the instantaneous wear amount, and the like. , the amount of wear is estimated based on the calculated third data D3.
 なお、タイヤ10の耐久判定についても同様の処理を行うことが可能である。 It should be noted that the same processing can be performed for the durability determination of the tire 10 as well.
 これにより、車両情報取得部(車両センサ)101およびタイヤ情報取得部(センサユニット)SUで取得した生データを全て外部装置に送信する場合に比してデータの通信量を抑制することができ、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつ通信コスト等を低減することが可能となる。 As a result, the amount of data communication can be suppressed compared to the case where all the raw data acquired by the vehicle information acquisition unit (vehicle sensor) 101 and the tire information acquisition unit (sensor unit) SU are transmitted to an external device. It is possible to reduce the communication cost and the like while ensuring the accuracy of estimating the state quantity of the tire including the degree of wear.
 (タイヤ摩耗量算出の第1実施例)
 タイヤ10の状態量の一種であるタイヤ摩耗量算出の第1実施例について述べる。
(First example of tire wear amount calculation)
A first example of tire wear amount calculation, which is one type of state quantity of the tire 10, will be described.
 タイヤ摩耗量は、次式
 摩耗量(A)=Σ瞬間摩耗量(M)
 で算出することができる。
The amount of tire wear is calculated by the following formula: Wear amount (A) = Σ Instantaneous wear amount (M)
can be calculated by
 そして、瞬間摩耗量(M)は、次式
 瞬間摩耗量(M)=係数×複合摩擦エネルギー(E)
 で算出することが可能である。
The instantaneous wear amount (M) is calculated by the following formula: Instantaneous wear amount (M) = Coefficient x Complex frictional energy (E)
It is possible to calculate with
 また、複合摩擦エネルギー(E)は、次式
 複合摩擦エネルギー(E)=摩耗エネルギー(E1)+合成摩耗エネルギー(E2)
             =a1×f+b1+a2×g+b2
 (但し、係数a1、b1、a2、b2は、時定数が比較的長い変数を用いて導出される定数であり、fは説明変数として用いられる前後方向加速度、gは説明変数として用いられる横速度である)
 で算出することができる。
The composite frictional energy (E) is expressed by the following formula: composite frictional energy (E)=wear energy (E1)+composite wear energy (E2)
=a1×f+b1+a2×g+b2
(However, the coefficients a1, b1, a2, and b2 are constants derived using variables with relatively long time constants, f is the longitudinal acceleration used as an explanatory variable, and g is the lateral velocity used as an explanatory variable. is)
can be calculated by
 ここで、上記の変数f(前後方向加速度)および変数g(横加速度)は、時定数が比較的小さい(例えば、時定数が秒未満であり比較的変化が激しい)情報に相当する。そのため、車両側の処理装置200の第1データ算出部102で予め計算処理を行う第1生情報d1に該当する。 Here, the above variable f (longitudinal acceleration) and variable g (lateral acceleration) correspond to information with a relatively small time constant (for example, the time constant is less than seconds and changes relatively rapidly). Therefore, it corresponds to the first raw information d1 which is pre-calculated by the first data calculation unit 102 of the processing device 200 on the vehicle side.
 一方、係数a1、b1、a2、b2は、時定数が比較的長い(例えば、時定数が数分以上であり比較的変化が緩やか)変数を用いて導出される定数である。 On the other hand, the coefficients a1, b1, a2, and b2 are constants derived using variables with relatively long time constants (for example, the time constant is several minutes or longer and changes relatively slowly).
 そのため、第1生情報d1および第2生情報d2のうち第1データ算出部102における算出処理に用いなかった情報で構成される第2データD2に該当する。 Therefore, the first raw information d1 and the second raw information d2 correspond to the second data D2 composed of information not used in the calculation process in the first data calculation unit 102.
 なお、係数a1、b1、a2、b2は、周知の回帰分析法(例えば、最小二乗法等)を用いて求めることができる。 Note that the coefficients a1, b1, a2, and b2 can be obtained using a well-known regression analysis method (for example, the method of least squares, etc.).
 これにより、車両情報取得部(車両センサ)101およびタイヤ情報取得部(センサユニット)SUで取得した生データの一部を用いてタイヤの状態量を推定する処理の一部を車両側で行い、その他の生データのみを外部装置(クラウドコンピューティングシステムCL1)側に送信し、タイヤ10の状態量を推定する処理の一部を外部装置側で行うことができる。 As a result, part of the processing for estimating the state quantity of the tire is performed on the vehicle side using part of the raw data acquired by the vehicle information acquisition unit (vehicle sensor) 101 and the tire information acquisition unit (sensor unit) SU, Only other raw data can be transmitted to the external device (cloud computing system CL1) side, and part of the process of estimating the state quantity of the tire 10 can be performed on the external device side.
 そのため、車両情報取得部(車両センサ)101およびタイヤ情報取得部(センサユニット)SUで取得した生データを全て外部装置に送信する場合に比してデータの通信量を抑制することができ、瞬間摩耗量を含むタイヤの状態量の推定精度を確保しつつ通信コスト等を低減することができる。 Therefore, compared to the case where all the raw data acquired by the vehicle information acquisition unit (vehicle sensor) 101 and the tire information acquisition unit (sensor unit) SU are transmitted to an external device, the amount of data communication can be suppressed. Communication costs and the like can be reduced while ensuring the accuracy of estimating tire state quantities including the amount of wear.
 (タイヤ摩耗量算出の第2実施例)
 タイヤ10の状態量の一種であるタイヤ摩耗量算出の第2実施例について述べる。
(Second embodiment of tire wear amount calculation)
A second embodiment of tire wear amount calculation, which is one type of state quantity of the tire 10, will be described.
 タイヤ摩耗量は、次式
 摩耗量(A)=Σ瞬間摩耗量(M)
 で算出することができる。
The amount of tire wear is calculated by the following formula: Wear amount (A) = Σ Instantaneous wear amount (M)
can be calculated by
 瞬間摩耗量(M)は、次式
 瞬間摩耗量(M)=(転動分p(t))+(加減速分q(t)×f(t))+(横力分r(t)×g(t))
         =数1
Instantaneous wear amount (M) is calculated by the following formula: Instantaneous wear amount (M) = (Rolling amount p (t)) + (Acceleration/deceleration amount q (t) x f (t)) + (Lateral force amount r (t) ×g(t))
= number 1
Figure JPOXMLDOC01-appb-M000005
         ≒数2
Figure JPOXMLDOC01-appb-M000005
≒ number 2
Figure JPOXMLDOC01-appb-M000006
 (但し、p(t):タイヤ静荷重、q(t):加減速による係数、r(t):横力による係数、f(t):前後方向加速度、g(t):左右方向加速度)
 で算出することができる。
Figure JPOXMLDOC01-appb-M000006
(where p(t): static tire load, q(t): coefficient due to acceleration/deceleration, r(t): coefficient due to lateral force, f(t): longitudinal acceleration, g(t): lateral acceleration)
can be calculated by
 なお、数1は、瞬間摩耗量を変化の速さで数式分解したものである。 Note that Equation 1 is obtained by mathematically decomposing the instantaneous wear amount with the speed of change.
 ここで、p(t):タイヤ静荷重は、荷物の積み下ろし等で変化する値であり、タイヤ10のセンサユニットSUで取得された情報から推定される。 Here, p(t): tire static load is a value that changes due to loading and unloading of cargo, etc., and is estimated from information acquired by the sensor unit SU of the tire 10 .
 また、q(t):加減速による係数は、接地面積などに依存し、例えば摩耗量によって経時的に変化するもののうち前後方向の変化量であり、タイヤ10のセンサユニットSUで取得された情報等から推定される。 Also, q(t): the coefficient due to acceleration/deceleration, which depends on the ground contact area, etc., and is the amount of change in the longitudinal direction among those that change over time due to, for example, the amount of wear. etc.
 また、r(t):横力による係数は、接地面積などに依存し、例えば摩耗量によって経時的に変化するもののうち横方向(左右方向)の変化量であり、タイヤ10のセンサユニットSUで取得された情報等から推定される。 Also, r(t): coefficient due to lateral force depends on the ground contact area, etc., and is the amount of change in the lateral direction (lateral direction) among those that change over time due to, for example, the amount of wear. It is estimated from the acquired information.
 また、f(t):前後方向加速度は、車両情報取得部(車両センサ)101で直接取得、或いはタイヤ10のセンサユニットSUで取得された情報等から推定される。 In addition, f(t): longitudinal acceleration is estimated from information obtained directly by the vehicle information obtaining section (vehicle sensor) 101 or obtained by the sensor unit SU of the tire 10, or the like.
 なお、p(t)、q(t)、r(t)は、時定数が数分以上の比較的ゆっくりした変化をする量に該当する。 Note that p(t), q(t), and r(t) correspond to quantities that change relatively slowly with a time constant of several minutes or longer.
 また、f(t)、g(t)は、時定数が秒未満の比較的早い変化をする量に該当する。 Also, f(t) and g(t) correspond to quantities that change relatively quickly with a time constant of less than a second.
 また、数2のB1部およびB2部は、tが1分以内の積分であり、エッジコンピューティングで計算するようにできる。 In addition, the B1 part and B2 part of Equation 2 are integrals where t is within 1 minute, and can be calculated by edge computing.
 なお、単純に積分値を送信するようにしてもよいが、実施例に係る加速度の時間積算値成分として、加速度の1次関数、2次関数(2乗)、3次関数(3乗)の積分値をそれぞれ送信し、車両側で補正(即ち、予め求めたc1~c3の値で補正)することも可能である。 Although the integrated value may be simply transmitted, the linear function, quadratic function (squared), and cubic function (cubic) of acceleration may be used as the time-integrated value component of acceleration according to the embodiment. It is also possible to transmit each integral value and correct it on the vehicle side (that is, correct it with the values of c1 to c3 obtained in advance).
 また、3次関数(3乗)成分までには限定されない。例えば、2次関数(2乗)成分、4次関数(4乗)成分としてもよい。 Also, it is not limited to cubic function (cubic) components. For example, it may be a quadratic function (squared) component or a quartic function (quartic) component.
 また、上記の補正に用いるc1~c3は、予め車両やタイヤ情報に基づき求めた複数の定数である。なお、c1~c3に限らず、4個以上の補正値を用いるようにしてもよい。 Also, c1 to c3 used for the above correction are a plurality of constants obtained in advance based on vehicle and tire information. Note that four or more correction values may be used without being limited to c1 to c3.
 また、補正に限らず、補正や合算を行うようにしてもよい。また、補正に伴う処理は車両Vもしくはクラウドで行うようにできる。 Further, not only correction but also correction and summation may be performed. Also, the processing associated with the correction can be performed by the vehicle V or the cloud.
 これにより、車両情報取得部(車両センサ)101およびタイヤ情報取得部(センサユニット)SUで取得した生データの一部(時定数が比較的早い量に関する生データ)を用いてタイヤの状態量を推定する処理の一部を車両側で行い、その他の生データ(時定数が比較的ゆっくりした量に関する生データ)のみを外部装置(クラウドコンピューティングシステムCL1)側に送信し、タイヤ10の状態量を推定する処理の一部を外部装置側で行うことができる。 As a result, part of the raw data acquired by the vehicle information acquisition unit (vehicle sensor) 101 and the tire information acquisition unit (sensor unit) SU (raw data relating to relatively fast time constants) is used to obtain the state quantity of the tire. Part of the process to be estimated is performed on the vehicle side, and only other raw data (raw data related to the amount with a relatively slow time constant) is sent to the external device (cloud computing system CL1) side, and the state quantity of the tire 10 part of the process of estimating can be performed on the external device side.
 そのため、車両情報取得部(車両センサ)101およびタイヤ情報取得部(センサユニット)SUで取得した生データを全て外部装置に送信する場合に比してデータの通信量を抑制することができ、瞬間摩耗量を含むタイヤの状態量の推定精度を確保しつつ通信コスト等を低減することができる。 Therefore, compared to the case where all the raw data acquired by the vehicle information acquisition unit (vehicle sensor) 101 and the tire information acquisition unit (sensor unit) SU are transmitted to an external device, the amount of data communication can be suppressed. Communication costs and the like can be reduced while ensuring the accuracy of estimating tire state quantities including the amount of wear.
 (タイヤ状態量推定処理)
 図4のフローチャートを参照して、本実施形態に係るタイヤ状態量推定システムS1で実行されるタイヤ状態量推定処理の処理手順について説明する。
(Tire state quantity estimation process)
A processing procedure of the tire state quantity estimation process executed by the tire state quantity estimation system S1 according to the present embodiment will be described with reference to the flowchart of FIG.
 なお、本処理のうちステップS10~S13までは、車両側の処理装置200で実行され、ステップS14~S16までは、外部装置としてのクラウドコンピューティングシステムCL1で実行される。 Note that steps S10 to S13 of this process are executed by the processing device 200 on the vehicle side, and steps S14 to S16 are executed by the cloud computing system CL1 as an external device.
 この処理が開始されると、まずステップS10において車両情報取得部(車両センサ)101から車両Vに関する第1生情報d1を取得する。 When this process is started, first raw information d1 regarding the vehicle V is acquired from the vehicle information acquisition unit (vehicle sensor) 101 in step S10.
 次いで、ステップS11では、タイヤ情報取得部(センサユニット)SUからタイヤ10に関する第2生情報d2を取得してステップS12に移行する。 Next, in step S11, the second raw information d2 regarding the tire 10 is obtained from the tire information obtaining section (sensor unit) SU, and the process proceeds to step S12.
 ステップS12では、第1生情報d1および第2生情報d2の一部に基づいて、車両側の処理装置200により、タイヤ10の状態量の推定に用いる第1データD1を予め算出してステップS13に移行する。 In step S12, based on a part of the first raw information d1 and the second raw information d2, the processing device 200 on the vehicle side preliminarily calculates the first data D1 used for estimating the state quantity of the tire 10, and performs step S13. transition to
 ステップS13では、第1生情報d1および第2生情報d2のうち第1データD1を算出するステップS12の算出処理に用いなかった情報で構成される第2データD2と、第1データD1とを外部装置としてのクラウドコンピューティングシステムCL1に送信してステップS14に移行する。 In step S13, the first data D1 and the second data D2 composed of information not used in the calculation process in step S12 for calculating the first data D1 out of the first raw information d1 and the second raw information d2 are combined. It is transmitted to the cloud computing system CL1 as an external device, and the process proceeds to step S14.
 ステップS14では、クラウドコンピューティングシステムCL1において第1データD1および第2データD2を受信したか否かが判定される。 In step S14, it is determined whether or not the cloud computing system CL1 has received the first data D1 and the second data D2.
 そして、判定結果が「No」の場合にはステップS10に戻り、「Yes」の場合にはステップS15に移行する。 Then, when the determination result is "No", the process returns to step S10, and when the determination result is "Yes", the process proceeds to step S15.
 ステップS15では、受信した第2データD2に基づいて、タイヤ10の状態量の推定に用いる第3データD3を算出してステップS16に移行する。 In step S15, the third data D3 used for estimating the state quantity of the tire 10 is calculated based on the received second data D2, and the process proceeds to step S16.
 ステップS16では、受信した第1データD1と、算出された第3データD3とに基づいて、タイヤ10の状態量(摩耗量等)を推定して処理を終了する。 In step S16, the state quantity (wear amount, etc.) of the tire 10 is estimated based on the received first data D1 and the calculated third data D3, and the process ends.
 この処理により、取得した生データの一部を用いてタイヤの状態量を推定する処理の一部を車両側で行い、その他の生データのみをクラウドコンピューティングシステムCL1側に送信し、タイヤの状態量を推定する処理の一部をクラウドコンピューティングシステムCL1側で行うことができる。そのため、取得した生データを全て外部装置に送信する場合に比してデータの通信量を抑制することができ、摩耗の程度を含むタイヤの状態量の推定精度を確保しつつコストを低減することができる。 By this process, part of the process of estimating the state quantity of the tire is performed on the vehicle side using part of the acquired raw data, only the other raw data is transmitted to the cloud computing system CL1 side, and the tire state Part of the process of estimating the amount can be performed on the cloud computing system CL1 side. Therefore, compared with the case where all the acquired raw data is transmitted to an external device, the amount of data communication can be suppressed, and the cost can be reduced while ensuring the accuracy of estimating the state quantity of the tire including the degree of wear. can be done.
 以上、本発明のタイヤ状態量推定システム、タイヤ状態量推定プログラムおよびタイヤ状態量推定方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。 Although the tire state quantity estimation system, the tire state quantity estimation program, and the tire state quantity estimation method of the present invention have been described above based on the illustrated embodiments, the present invention is not limited to this, and the configuration of each part is , can be replaced by any configuration having similar functionality.
S1 タイヤ状態量推定システム
d1 第1生情報
d2 第2生情報
CL1 外部装置(クラウドコンピューティングシステム)
D1 第1データ
D2 第2データ
D3 第3データ
SU タイヤ情報取得部(センサユニット)
V 車両
10 タイヤ
101 車両情報取得部(車両センサ)
102 第1データ算出部
103 送信部
200 処理装置
301 受信部
302 第3データ算出部
303 タイヤ状態量推定部
S1 Tire state quantity estimation system d1 First raw information d2 Second raw information CL1 External device (cloud computing system)
D1 First data D2 Second data D3 Third data SU Tire information acquisition unit (sensor unit)
V vehicle 10 tire 101 vehicle information acquisition unit (vehicle sensor)
102 First data calculator 103 Transmitter 200 Processor 301 Receiver 302 Third data calculator 303 Tire state quantity estimator

Claims (8)

  1.  車両に有って、当該車両に関する第1生情報を取得する車両情報取得部と、
     前記車両のタイヤに搭載されて、前記タイヤに関する第2生情報を取得するタイヤ情報取得部と、
     取得された前記第1生情報および前記第2生情報の一部に基づいて、前記タイヤの状態量の推定に用いる第1データを予め算出する第1データ算出部と、
     前記第1生情報および前記第2生情報のうち前記第1データ算出部における算出処理に用いなかった情報で構成される第2データと、前記第1データとを外部装置に送信する送信部と、
     前記外部装置に有って、前記第1データおよび前記第2データを受信する受信部と、
     前記外部装置において、受信した前記第2データに基づいて、前記タイヤの状態量の推定に用いる第3データを算出する第3データ算出部と、
     前記外部装置において、受信した前記第1データと、算出された前記第3データとに基づいて、前記タイヤの状態量を推定するタイヤ状態量推定部と、
     を備えることを特徴とするタイヤ状態量推定システム。
    A vehicle information acquisition unit that is in a vehicle and acquires first raw information about the vehicle;
    a tire information acquisition unit mounted on a tire of the vehicle and acquiring second raw information about the tire;
    a first data calculation unit that preliminarily calculates first data used for estimating the state quantity of the tire based on part of the acquired first raw information and second raw information;
    a transmission unit configured to transmit second data composed of information not used for calculation processing in the first data calculation unit among the first raw information and the second raw information, and the first data to an external device; ,
    a receiving unit in the external device that receives the first data and the second data;
    In the external device, a third data calculation unit for calculating third data used for estimating the state quantity of the tire based on the received second data;
    In the external device, a tire state quantity estimating unit for estimating the state quantity of the tire based on the received first data and the calculated third data;
    A tire state quantity estimation system comprising:
  2.  前記第1データ算出部における算出処理に用いられる前記第1生情報および前記第2生情報の一部は、当該第1生情報および当該第2生情報に含まれる信号の周波数成分が所定値以下の変数を含む情報であることを特徴とする請求項1に記載のタイヤ状態量推定システム。 A part of the first raw information and the second raw information used for calculation processing in the first data calculation unit has a frequency component of a signal included in the first raw information and the second raw information that is equal to or less than a predetermined value. 2. The tire state quantity estimation system according to claim 1, wherein the information includes variables of .
  3.  前記信号の周波数成分が所定値以下の変数を含む情報は、前記車両情報取得部で取得される車両加速度の情報を含むことを特徴とする請求項2に記載のタイヤ状態量推定システム。 The tire state quantity estimation system according to claim 2, wherein the information including a variable whose frequency component of the signal is equal to or less than a predetermined value includes vehicle acceleration information obtained by the vehicle information obtaining unit.
  4.  前記第1データは、前記車両加速度の情報の時間積算値成分を含むことを特徴とする請求項3に記載のタイヤ状態量推定システム。 The tire state quantity estimation system according to claim 3, wherein the first data includes a time integrated value component of the vehicle acceleration information.
  5.  前記タイヤの状態量は、タイヤ摩耗量またはタイヤの残耐久値を含むことを特徴とする請求項1から請求項4の何れか1項に記載のタイヤ状態量推定システム。 The tire state quantity estimation system according to any one of claims 1 to 4, wherein the tire state quantity includes a tire wear amount or a tire remaining durability value.
  6.  前記タイヤ摩耗量は、次式
     摩耗量(A)=Σ瞬間摩耗量(M)
     で算出し、
     前記瞬間摩耗量(M)は、次式
     瞬間摩耗量(M)=(転動分p(t))+(加減速分q(t)×f(t))+(横力分r(t)×g(t))
             =数1
    Figure JPOXMLDOC01-appb-M000001
             ≒数2
    Figure JPOXMLDOC01-appb-M000002
     (但し、p(t):タイヤ静荷重、q(t):加減速による係数、r(t):横力による係数、f(t):前後方向加速度、g(t):左右方向加速度)
     で算出することを特徴とする請求項5に記載のタイヤ状態量推定システム。
    The tire wear amount is expressed by the following formula: wear amount (A) = Σ instantaneous wear amount (M)
    Calculated by
    The instantaneous wear amount (M) is calculated by the following formula: Instantaneous wear amount (M)=(Rolling amount p(t))+(Acceleration/deceleration amount q(t)×f(t))+(Lateral force amount r(t) )×g(t))
    = number 1
    Figure JPOXMLDOC01-appb-M000001
    ≒ number 2
    Figure JPOXMLDOC01-appb-M000002
    (where p(t): static tire load, q(t): coefficient due to acceleration/deceleration, r(t): coefficient due to lateral force, f(t): longitudinal acceleration, g(t): lateral acceleration)
    The tire state quantity estimation system according to claim 5, wherein the calculation is performed by:
  7.  車両に関する第1生情報を取得する車両情報取得ステップと、
     前記車両のタイヤに関する第2生情報を取得するタイヤ情報取得ステップと、
     取得された前記第1生情報および前記第2生情報の一部に基づいて、前記タイヤの状態量の推定に用いる第1データを予め算出する第1データ算出ステップと、
     前記第1生情報および前記第2生情報のうち前記第1データ算出ステップにおける算出処理に用いなかった情報で構成される第2データと、前記第1データとを外部装置に送信する送信ステップと、
     前記外部装置において、前記第1データおよび前記第2データを受信する受信ステップと、
     前記外部装置において、受信した前記第2データに基づいて、前記タイヤの状態量の推定に用いる第3データを算出する第3データ算出ステップと、
     前記外部装置において、受信した前記第1データと、算出された前記第3データとに基づいて、前記タイヤの状態量を推定するタイヤ状態量推定ステップと、
     を有し、
     タイヤ状態量推定システムで実行されることを特徴とするタイヤ状態量推定プログラム。
    a vehicle information acquisition step of acquiring first raw information about the vehicle;
    a tire information acquisition step of acquiring second raw information about tires of the vehicle;
    a first data calculation step of preliminarily calculating first data used for estimating the state quantity of the tire based on part of the acquired first raw information and second raw information;
    a transmitting step of transmitting the first raw information and the second data composed of information not used in the calculation process in the first data calculating step out of the first raw information and the second raw information, and the first data to an external device; ,
    a receiving step of receiving the first data and the second data in the external device;
    a third data calculation step of calculating, in the external device, third data used for estimating the state quantity of the tire based on the received second data;
    a tire state quantity estimation step of estimating a state quantity of the tire in the external device based on the received first data and the calculated third data;
    has
    A tire state quantity estimation program executed by a tire state quantity estimation system.
  8.  車両に関する第1生情報を取得する車両情報取得過程と、
     前記車両のタイヤに関する第2生情報を取得するタイヤ情報取得過程と、
     取得された前記第1生情報および前記第2生情報の一部に基づいて、前記タイヤの状態量の推定に用いる第1データを予め算出する第1データ算出過程と、
     前記第1生情報および前記第2生情報のうち前記第1データ算出過程における算出処理に用いなかった情報で構成される第2データと、前記第1データとを外部装置に送信する送信過程と、
     前記外部装置において、前記第1データおよび前記第2データを受信する受信過程と、
     前記外部装置において、受信した前記第2データに基づいて、前記タイヤの状態量の推定に用いる第3データを算出する第3データ算出過程と、
     前記外部装置において、受信した前記第1データと、算出された前記第3データとに基づいて、前記タイヤの状態量を推定するタイヤ状態量推定過程と、
     を有することを特徴とするタイヤ状態量推定方法。
    a vehicle information acquisition process for acquiring first raw information about the vehicle;
    a tire information obtaining step of obtaining second raw information about tires of the vehicle;
    a first data calculation step of preliminarily calculating first data used for estimating the state quantity of the tire based on part of the acquired first raw information and second raw information;
    a transmitting step of transmitting the first raw information and the second data composed of information not used in the calculation process in the first data calculating step out of the first raw information and the second raw information, and the first data to an external device; ,
    a receiving process of receiving the first data and the second data in the external device;
    a third data calculation step of calculating, in the external device, third data used for estimating the state quantity of the tire based on the received second data;
    a tire state quantity estimation process for estimating the state quantity of the tire based on the received first data and the calculated third data in the external device;
    A tire state quantity estimation method, comprising:
PCT/JP2022/025492 2021-07-01 2022-06-27 System for estimating tire state quantity, program for estimating tire state quantity, and method for estimating tire state quantity WO2023276924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021110157A JP2023007118A (en) 2021-07-01 2021-07-01 Tire state quantity estimation system, tire state quantity estimation program, and tire state quantity estimation method
JP2021-110157 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023276924A1 true WO2023276924A1 (en) 2023-01-05

Family

ID=84689844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025492 WO2023276924A1 (en) 2021-07-01 2022-06-27 System for estimating tire state quantity, program for estimating tire state quantity, and method for estimating tire state quantity

Country Status (2)

Country Link
JP (1) JP2023007118A (en)
WO (1) WO2023276924A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215175A (en) * 1999-12-03 2001-08-10 Trw Inc System and method for monitoring vehicle state exerting effect on tire
JP2003182476A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Device for estimating road surface condition and tire traveling condition, and vehicle control device
JP2007055284A (en) * 2005-08-22 2007-03-08 Bridgestone Corp Road surface state estimation method, tire for road surface state estimation, road surface state estimation device and vehicle control device
US20100274441A1 (en) * 2007-11-30 2010-10-28 Volvo Lastvagnar Ab Method of identifying positions of wheel modules
US20120319832A1 (en) * 2010-03-24 2012-12-20 Continental Automotive Gmbh Method and unit for the optimized transmission of measurement of paramaters of vehicle tyres
US20210049445A1 (en) * 2019-08-12 2021-02-18 Micron Technology, Inc. Predictive maintenance of automotive tires
US20210125428A1 (en) * 2019-10-23 2021-04-29 Applied Mechatronic Products, Llc Apparatus and Method for Tire Separation Monitoring
US20210229670A1 (en) * 2020-01-28 2021-07-29 The Goodyear Tire & Rubber Company Method for estimating tire grip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215175A (en) * 1999-12-03 2001-08-10 Trw Inc System and method for monitoring vehicle state exerting effect on tire
JP2003182476A (en) * 2001-12-21 2003-07-03 Bridgestone Corp Device for estimating road surface condition and tire traveling condition, and vehicle control device
JP2007055284A (en) * 2005-08-22 2007-03-08 Bridgestone Corp Road surface state estimation method, tire for road surface state estimation, road surface state estimation device and vehicle control device
US20100274441A1 (en) * 2007-11-30 2010-10-28 Volvo Lastvagnar Ab Method of identifying positions of wheel modules
US20120319832A1 (en) * 2010-03-24 2012-12-20 Continental Automotive Gmbh Method and unit for the optimized transmission of measurement of paramaters of vehicle tyres
US20210049445A1 (en) * 2019-08-12 2021-02-18 Micron Technology, Inc. Predictive maintenance of automotive tires
US20210125428A1 (en) * 2019-10-23 2021-04-29 Applied Mechatronic Products, Llc Apparatus and Method for Tire Separation Monitoring
US20210229670A1 (en) * 2020-01-28 2021-07-29 The Goodyear Tire & Rubber Company Method for estimating tire grip

Also Published As

Publication number Publication date
JP2023007118A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
EP1757464B1 (en) Method and device for estimating dynamic state quantity of tire, and tire with sensor
KR102218144B1 (en) Method for determining the location of a remote transmitter positioned near a vehicle
US20130261991A1 (en) Method and system for estimating the load acting on a tire
US20130263655A1 (en) Method and system for estimating the inflation pressure of a tire
US10377358B2 (en) Methods of learning long term brake corner specific torque variation
US11827229B2 (en) Method for estimating tire grip
US11981163B2 (en) Tire wear state estimation system and method employing footprint shape factor
WO2023276924A1 (en) System for estimating tire state quantity, program for estimating tire state quantity, and method for estimating tire state quantity
CN111479711B (en) Tire mounting position detection system, tire mounting position detection method, and tire mounting position detection program
WO2014185012A1 (en) Tire air pressure adjustment system, transmitter and receiver constituting same
EP3815931B1 (en) Tire mounting position detection system, tire mounting position detection method, and tire mounting position detection program
KR20190036734A (en) Apparatus and method for deciding air pressure defects of tire
WO2020040088A1 (en) Object detection device
KR20200083026A (en) System and method for mornitoring condition of tire and road surface during vehicle driving
JP2021158443A (en) In-tire sensor data compression method and in-tire sensor data compression device
EP3640063A1 (en) Tire mounting position detecting system, tire mounting position detecting method, and tire mounting position detecting program
EP4140838A1 (en) Road condition monitoring system and method
US20240019328A1 (en) Tire air pressure monitoring system and tire air pressure monitoring program
WO2020110748A1 (en) Communication device and communication system
CN118149857A (en) System for determining calibration of inertial measurement unit in real time
EP4197821A1 (en) Tire stiffness estimation system and method
US20240043012A1 (en) Friction-coefficient-computing device
US20240192022A1 (en) System for real-time determination of calibration of an inertial measurement unit
CN115723765A (en) Road condition monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833071

Country of ref document: EP

Kind code of ref document: A1