WO2023276888A1 - Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, production method for laminate, and electronic device - Google Patents

Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, production method for laminate, and electronic device Download PDF

Info

Publication number
WO2023276888A1
WO2023276888A1 PCT/JP2022/025343 JP2022025343W WO2023276888A1 WO 2023276888 A1 WO2023276888 A1 WO 2023276888A1 JP 2022025343 W JP2022025343 W JP 2022025343W WO 2023276888 A1 WO2023276888 A1 WO 2023276888A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
polyimide
weight
polyimide film
organic group
Prior art date
Application number
PCT/JP2022/025343
Other languages
French (fr)
Japanese (ja)
Inventor
博文 中山
友貴 白井
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020247003339A priority Critical patent/KR20240027771A/en
Priority to CN202280046631.XA priority patent/CN117580893A/en
Priority to JP2023531905A priority patent/JPWO2023276888A1/ja
Publication of WO2023276888A1 publication Critical patent/WO2023276888A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to polyamic acids, polyamic acid compositions, polyimides, polyimide films, laminates, methods for producing laminates, and electronic devices.
  • the present invention further provides electronic device materials using polyimide, thin film transistor (TFT) substrates, flexible display substrates, color filters, printed matter, optical materials, image display devices (more specifically, liquid crystal display devices, organic EL, electronic paper, etc.), 3D displays, solar cells, touch panels, transparent conductive film substrates, and substitute materials for members currently using glass.
  • TFT thin film transistor
  • various electronic elements such as thin film transistors and transparent electrodes, are formed on the substrate, and high-temperature processes are required to form these electronic elements.
  • Polyimide has sufficient heat resistance to adapt to high-temperature processes, and its coefficient of thermal expansion (CTE) is similar to that of glass substrates and electronic devices. be.
  • Aromatic polyimides are generally colored yellowish brown due to intramolecular conjugation and formation of charge transfer (CT) complexes. Transparency is not required, and conventional aromatic polyimides have been used. However, in cases where the light emitted from the display element passes through the substrate, such as in transparent displays, bottom-emission organic EL, and liquid crystal displays, and in smartphones, etc., where full-screen displays (notchless) are required, sensors and When the camera module is arranged on the back surface of the substrate, the substrate is also required to have high optical properties (more specifically, transparency, etc.).
  • CT charge transfer
  • Patent Documents 1 and 2 In order to reduce the coloring of polyimide, a technique for suppressing the formation of a CT complex using an aliphatic monomer (Patent Documents 1 and 2), a technique for increasing transparency using a monomer having a fluorene skeleton (Patent Document 3), and a technique of increasing transparency by using a monomer having a fluorine atom (Patent Document 4).
  • Patent Documents 1 and 2 have high transparency and a low CTE, but because they have an aliphatic structure, they have a low thermal decomposition temperature and are difficult to apply to high-temperature processes when forming electronic elements.
  • the polyimide described in Patent Document 3 has high transparency and high heat resistance due to the introduction of a fluorene skeleton.
  • the polyimide described in Patent Document 3 has a high coefficient of thermal expansion (CTE). internal stress tends to increase. For this reason, when a laminate is formed using the polyimide described in Patent Document 3, the laminate is likely to warp, which may make it difficult to apply to electronic devices.
  • CTE coefficient of thermal expansion
  • Patent Document 4 also reduces the internal stress between the support and the polyimide film (hereinafter sometimes simply referred to as "internal stress"), while the polyimide having excellent transparency and heat resistance is difficult to obtain.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a polyimide having excellent transparency and heat resistance while reducing internal stress, and a polyamic acid as a precursor thereof. Another object of the present invention is to provide a product or member that is produced using the polyimide and polyamic acid and that requires heat resistance and transparency. In particular, it is an object of the present invention to provide a product or member in which the polyimide film of the present invention is formed on the surface of an inorganic material such as glass, metal, metal oxide, or single crystal silicon.
  • the present invention includes the following aspects.
  • R 1 and R 2 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group, and X 1 represents a divalent organic group.
  • X 1 is a divalent organic group represented by the following chemical formula (2-1) and a divalent organic group represented by the following general formula (2-2) Polyamic acid according to the above [1] or [2], which is one or more selected from the group consisting of.
  • Y 1 is a divalent organic group represented by the following chemical formula (3-1), a divalent organic group represented by the following chemical formula (3-2), a divalent organic group represented by (3-3), a divalent organic group represented by the following chemical formula (3-4), a divalent organic group represented by the following chemical formula (3-5), and It is one or more selected from the group consisting of divalent organic groups represented by the following chemical formula (3-6).
  • R 3 and R 4 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group
  • X 2 represents a divalent organic group
  • Y 2 is a tetravalent organic group represented by the following chemical formula (5-1), a tetravalent organic group represented by the following chemical formula (5-2), or a tetravalent organic group represented by the following chemical formula (5-3). It is one or more selected from the group consisting of a valent organic group and a tetravalent organic group represented by the following chemical formula (5-4).
  • a polyimide which is an imidized polyamic acid according to any one of [1] to [5].
  • the support is a glass substrate, The laminate according to [14], wherein the internal stress between the polyimide film and the glass substrate is 40 MPa or less.
  • a method for producing a laminate having a support and a polyimide film By applying the polyamic acid composition according to any one of [6] to [8] on a support, a coating film containing the polyamic acid is formed, and the coating film is heated to obtain the polyamide A method for producing a laminate by imidating an acid.
  • the polyimide produced using the polyamic acid according to the present invention has excellent transparency and heat resistance while reducing internal stress. Therefore, the polyimide produced using the polyamic acid according to the present invention is suitable as a material for electronic devices that require transparency and heat resistance and are produced through high-temperature processes.
  • a “structural unit” refers to a repeating unit that constitutes a polymer.
  • a “polyamic acid” is a polymer containing a structural unit represented by the following general formula (6) (hereinafter sometimes referred to as “structural unit (6)").
  • structural unit (6) a structural unit represented by the following general formula (6)
  • polyamic acid esters polyamic acid alkyl esters, polyamic acid aryl esters, etc.
  • R 5 and R 6 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group
  • a 1 is, for example, a tetracarboxylic dianhydride residue group (tetravalent organic group derived from tetracarboxylic dianhydride)
  • A2 represents, for example, a diamine residue (divalent organic group derived from diamine).
  • the content of the structural unit (6) with respect to all structural units constituting the polyamic acid is, for example, 50 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol%. 100 mol % or more, more preferably 80 mol % or more and 100 mol % or less, even more preferably 90 mol % or more and 100 mol % or less, and may be 100 mol %.
  • 1% weight loss temperature is the measurement temperature when the weight of polyimide at a measurement temperature of 150°C is taken as the reference (100% by weight), and the weight is reduced by 1% by weight with respect to the reference weight.
  • the method for measuring the 1% weight loss temperature is the same method as in Examples described later or a method based thereon.
  • m/z is a measurement that can be read from the horizontal axis of the mass spectrum, which is the result of mass spectrometry, and is "a dimensionless quantity obtained by dividing the mass of an ion by the unified atomic mass unit (Dalton). is further divided by the absolute value of the ion charge number.
  • system may be added after the name of the compound to generically refer to the compound and its derivatives.
  • polymer name is expressed by adding "system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative.
  • a tetracarboxylic dianhydride may be described as an "acid dianhydride”.
  • the components, functional groups, and the like exemplified in this specification may be used alone or in combination of two or more.
  • the polyamic acid according to the present embodiment includes a structural unit represented by the following general formula (1) (hereinafter sometimes referred to as "structural unit (1)”), and has a fluorine atom content of 5% by weight or less. is.
  • R 1 and R 2 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group, and X 1 represents a divalent organic group.
  • R 1 and R 2 each independently preferably represent a hydrogen atom, a methyl group or an ethyl group, and more preferably both R 1 and R 2 represent a hydrogen atom.
  • structural unit (1) a structural unit in which R 1 and R 2 in general formula (1) each represent a hydrogen atom is referred to as structural unit (1).
  • Structural unit (1) is spiro[11H-diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1,3,7,9-tetrone ( hereinafter, it may be referred to as “SFDA”). That is, structural unit ( 1 ) has an SFDA residue as A1 in general formula (6) described above.
  • the polyamic acid according to the present embodiment contains the structural unit (1) and has a fluorine atom content of 5% by weight or less
  • the polyimide produced using the polyamic acid according to the present embodiment has internal stress. Excellent transparency and heat resistance while reducing The reason is presumed as follows.
  • SFDA has a rigid structure derived from the xanthene skeleton, it is suitable as a raw material (monomer) for polyimide with a high glass transition temperature (excellent in heat resistance), and is also a raw material (monomer) for polyimide with a low CTE. ) is suitable as In addition, SFDA is suitable as a raw material (monomer) for highly transparent polyimide due to its fluorene skeleton.
  • the polyamic acid containing the structural unit (1) has a xanthene skeleton in the main chain and a fluorene skeleton in the side chain. Therefore, the polyimide film produced using the polyamic acid containing the structural unit (1) Shows low retardation.
  • the polyamic acid according to the present embodiment has an SFDA residue that contributes to a low CTE and has a fluorine atom content of 5% by weight or less, so that a polyimide film is formed on the support to form a laminate It is possible to reduce the internal stress generated when obtaining Therefore, the polyimide produced using the polyamic acid according to the present embodiment can have reduced internal stress.
  • the polyamic acid according to the present embodiment has an SFDA residue that contributes to transparency and heat resistance
  • the polyimide produced using the polyamic acid according to the present embodiment has excellent transparency and heat resistance.
  • the fluorine atom content of the polyamic acid (hereinafter sometimes referred to as "polyamic acid (1)") according to the present embodiment is preferably less than 1% by weight. , more preferably less than 0.5% by weight, more preferably less than 0.1% by weight, and substantially 0% by weight (polyamic acid (1) contains residues derived from fluorine-containing monomers not included) is particularly preferred.
  • the fluorine atom content (unit: % by weight) is the ratio of the fluorine atom weight to the total weight of the polyamic acid.
  • Polyamic acid is a polyadduct of diamine and tetracarboxylic dianhydride, and the total weight of diamine and tetracarboxylic dianhydride before polymerization is equal to the weight of polyamic acid after polymerization. That is, the fluorine atom content of the polyamic acid is the value obtained by dividing the "total weight of fluorine atoms contained in the monomers for forming the polyamic acid" by the "total weight of the monomers for forming the polyamic acid". obtained by multiplying Therefore, the fluorine atom content of polyamic acid can be calculated based on the following formula.
  • ni is the amount (unit: mol) of diamine component i
  • nj is the amount (unit: mol) of tetracarboxylic dianhydride j
  • M i is the molecular weight of diamine component i
  • M j is the molecular weight of tetracarboxylic dianhydride j
  • F i is the number of fluorine atoms contained in one molecule of diamine component i
  • F j is the number of fluorine atoms contained in one molecule of tetracarboxylic dianhydride j.
  • 19.00 is the atomic weight of fluorine.
  • Structural unit (1) has an SFDA residue and a diamine residue (a divalent organic group represented by X 1 in general formula (1)).
  • diamines containing no fluorine atoms are preferred as the diamines that give X 1 in the general formula (1).
  • diamines containing no fluorine atom examples include p-phenylenediamine (hereinafter sometimes referred to as "PDA”) and 4-aminophenyl-4-aminobenzoate (hereinafter referred to as "4-BAAB").
  • PDA p-phenylenediamine
  • 4-BAAB 4-aminophenyl-4-aminobenzoate
  • DABA 4,4′-diaminobenzanilide
  • BABB 1,4-bis(4-aminobenzoyloxy)benzene
  • PBAB N,N'-(1,4-phenylene)bis(4-aminobenzamide)
  • BATP bis(4-aminophenyl) terephthalate
  • DATA N,N'-di(4-aminophenyl)terephthalamide
  • PAM-E 1,4-diaminocyclohexane, m-phenylenediamine, 9,9-bis(4-aminophenyl)fluorene, 4,4'-oxydianiline , 3,4
  • X 1 in general formula (1) is a PDA residue, a 4-BAAB residue, a DABA residue, a BABB residue. , PBAB residues, BATP residues and DATA residues.
  • a PDA residue is a divalent organic group represented by the following chemical formula (2-1).
  • 4-BAAB residue is a divalent organic group represented by the following general formula (2-2), and represented by the following chemical formula (3-1) as Y 1 in the general formula (2-2) It has a divalent organic group that DABA residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-2) as Y 1 in general formula (2-2) have a valent organic group.
  • BABB residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-3) as Y 1 in general formula (2-2) have a valent organic group.
  • the PBAB residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-4) as Y 1 in the general formula (2-2) have a valent organic group.
  • BATP residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-5) as Y 1 in the general formula (2-2) have a valent organic group.
  • DATA residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-6) as Y 1 in general formula (2-2) have a valent organic group.
  • X 1 in general formula (1) is preferably a PDA residue.
  • X 1 in the general formula (1) is preferably one or more selected from the group consisting of 4-BAAB residues, BABB residues and BATP residues, 4-BAAB residues are more preferred.
  • X 1 in general formula (1) is preferably one or more selected from the group consisting of DABA residues, PBAB residues and DATA residues. A residue is more preferred.
  • PDA residues In order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, PDA residues, 4-BAAB residues, DABA residues,
  • the content of one or more residues selected from the group consisting of BABB residues, PBAB residues, BATP residues and DATA residues is 30 mol% or more. is preferably 40 mol% or more, more preferably 50 mol% or more, even more preferably 60 mol% or more, 70 mol% or more, 80 mol% or more, or 90 mol % or more, or 100 mol %.
  • the polyamic acid (1) preferably contains a PAM-E residue. More preferably, the content of PAM-E residues relative to diamine residues is 0.01 mol % or more and 1 mol % or less.
  • an acid dianhydride other than SFDA may be used as a monomer.
  • acid dianhydrides other than SFDA are preferably acid dianhydrides containing no fluorine atoms.
  • Acid dianhydrides containing no fluorine atom include, for example, pyromellitic dianhydride (hereinafter sometimes referred to as "PMDA") and 3,3',4,4'-biphenyltetracarboxylic dianhydride.
  • PMDA pyromellitic dianhydride
  • 3,3',4,4'-biphenyltetracarboxylic dianhydride 3,3',4,4'-biphenyltetracarboxylic dianhydride.
  • BPDA 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride
  • BPAF 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride
  • ODPA 4,4 '-Oxydiphthalic anhydride
  • 2,3,6,7-naphthalenetetracarboxylic dianhydride 1,2,5,6-naphthalenetetracarboxylic dianhydride 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, dicyclohexyl-3,3′,4,4′- Tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride and derivatives thereof, which may be used alone or Two or more types may be used alone
  • polyamic acid (1) contains, as acid dianhydride residues other than SFDA residues, PMDA residues, BPDA residues, It preferably contains one or more selected from the group consisting of BPAF residues and ODPA residues.
  • the polyamic acid (1) is a structural unit represented by the following general formula (4) (hereinafter, “structural unit ( 4)”) is preferably further included.
  • R 3 and R 4 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group
  • X 2 represents a divalent organic group
  • Y 2 is a tetravalent organic group represented by the following chemical formula (5-1), a tetravalent organic group represented by the following chemical formula (5-2), a tetravalent organic group represented by the following chemical formula (5-3) and a tetravalent organic group represented by the following chemical formula (5-4).
  • a PMDA residue is a tetravalent organic group represented by the chemical formula (5-1).
  • a BPDA residue is a tetravalent organic group represented by the chemical formula (5-2).
  • a BPAF residue is a tetravalent organic group represented by the chemical formula (5-3).
  • the ODPA residue is a tetravalent organic group represented by chemical formula (5-4).
  • preferred groups for R 3 , R 4 and X 2 are, for example, the same as the preferred groups for R 1 , R 2 and X 1 in general formula (1). .
  • the content of SFDA residues with respect to all acid dianhydride residues constituting polyamic acid (1) is 5 mol% or more. is preferably 10 mol% or more, more preferably 15 mol% or more, even more preferably 20 mol% or more, 30 mol% or more, 40 mol% or more, or It may be 50 mol % or more, or 100 mol %.
  • PMDA residue, BPDA residue, BPAF residue for all acid dianhydride residues constituting polyamic acid (1) and the content of one or more residues selected from the group consisting of ODPA residues (if two or more are included, the total content) is preferably 5 mol% or more, and 10 mol% or more. is more preferably 20 mol% or more, even more preferably 30 mol% or more, 40 mol% or more, 50 mol% or more, 60 mol% or more, 70 mol% or more or 80 mol% or more.
  • the content of one or more residues selected from the group consisting of residues and ODPA residues is preferably 95 mol% or less, and 90 mol% or less. It is more preferable to have
  • the polyamic acid (1) may contain a BPDA residue as an acid dianhydride residue other than the SFDA residue.
  • a BPDA residue as an acid dianhydride residue other than the SFDA residue.
  • the substance amount ratio of the SFDA residue to the BPDA residue is preferably 10/90 or more and 50/50 or less, more preferably 10/90 or more and 40/60 or less, and further preferably 10/90 or more and 35/65 or less. It is more preferably 10/90 or more and 30/70 or less.
  • the polyamic acid (1) may contain only the structural unit (1) as a structural unit, or may contain only the structural unit (1) and the structural unit (4), and the structural unit (1) and the structural A structural unit (another structural unit) other than the unit (4) may be included.
  • the content of the structural unit (1) with respect to the total structural units constituting the polyamic acid (1) is 5 mol% or more. is preferably 10 mol% or more, more preferably 15 mol% or more, even more preferably 20 mol% or more, 30 mol% or more, 40 mol% or more, or 50 mol% % or more, or 100 mol %.
  • the total content of structural unit (1) and structural unit (4) is preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol% or more and 100 mol% or less, and 80 mol% or more. It is more preferably 100 mol % or less, even more preferably 90 mol % or more and 100 mol % or less, and may be 100 mol %.
  • the polyamic acid (1) preferably satisfies the following condition 1, more preferably satisfies the following condition 2. It is more preferable to satisfy condition 3.
  • Condition 1 Polyamic acid (1) contains a BPDA residue as an acid dianhydride residue other than an SFDA residue, and does not contain a residue derived from a fluorine-containing monomer.
  • Condition 2 satisfying condition 1 above, and polyamic acid (1) is selected from the group consisting of a PDA residue, a 4-BAAB residue, a DABA residue, a BABB residue, a PBAB residue, a BATP residue and a DATA residue It contains one or more selected diamine residues.
  • Condition 3 Satisfies Condition 2 above, and the substance amount ratio of SFDA residues to BPDA residues (SFDA residues/BPDA residues) is 10/90 or more and 35/65 or less.
  • Polyamic acid (1) can be synthesized by a known general method, and can be obtained, for example, by reacting a diamine and a tetracarboxylic dianhydride in an organic solvent.
  • An example of a specific method for synthesizing polyamic acid (1) will be described.
  • a diamine solution is prepared by dissolving or dispersing a diamine in an organic solvent in an inert gas atmosphere such as argon or nitrogen.
  • the tetracarboxylic dianhydride is added to the diamine solution after dissolving it in an organic solvent or dispersing it in a slurry state, or in a solid state.
  • the substance amount of the diamine when using multiple types of diamines, the substance amount of each diamine
  • the tetracarboxylic dianhydride By adjusting the amount of substance (when using multiple types of tetracarboxylic dianhydrides, the amount of each tetracarboxylic dianhydride), the desired polyamic acid (1) (diamine and tetracarboxylic acid dianhydride polymer with anhydride) can be obtained.
  • the molar fraction of each residue in polyamic acid (1) matches, for example, the molar fraction of each monomer (diamine and tetracarboxylic dianhydride) used in synthesizing polyamic acid (1).
  • Polyamic acid (1) containing multiple types of tetracarboxylic dianhydride residues and multiple types of diamine residues can also be obtained by blending two types of polyamic acid.
  • the temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthesis reaction of the polyamic acid (1) are not particularly limited, but are, for example, in the range of 20°C or higher and 150°C or lower.
  • the reaction time for the synthetic reaction of polyamic acid (1) is, for example, in the range of 10 minutes or more and 30 hours or less.
  • the organic solvent used for synthesizing polyamic acid (1) is preferably a solvent capable of dissolving the tetracarboxylic dianhydride and diamine used, and more preferably a solvent capable of dissolving polyamic acid (1) to be produced.
  • organic solvents used for synthesizing polyamic acid (1) include urea-based solvents such as tetramethylurea and N,N-dimethylethylurea; sulfoxide-based solvents such as dimethylsulfoxide; diphenylsulfone and tetramethylsulfone.
  • Sulfone-based solvents such as; N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 3-methoxy-N , N-dimethylpropanamide (MPA), hexamethylphosphoric triamide and other amide solvents; ⁇ -butyrolactone and other ester solvents; chloroform, methylene chloride and other halogenated alkyl solvents; benzene, toluene and other aromatic carbonization Hydrogen-based solvents; phenolic solvents such as phenol and cresol; ketone-based solvents such as cyclopentanone; Ether-based solvents such as cresol methyl ether are included.
  • DMAC N,N-dimethylacetamide
  • DMF N,N-dimethylformamide
  • NMP N,N-diethylacetamide
  • NMP N-methyl-2-pyr
  • the organic solvent used in the synthetic reaction of the polyamic acid (1) consists of amide solvents, ketone solvents, ester solvents and ether solvents.
  • amide solvents more specifically, DMF, DMAC, NMP, MPA, etc.
  • the synthetic reaction of polyamic acid (1) is preferably carried out in an inert gas atmosphere such as argon or nitrogen.
  • the weight average molecular weight of the polyamic acid (1) is preferably in the range of 10,000 or more and 1,000,000 or less, and more preferably in the range of 20,000 or more and 500,000 or less, depending on the application. More preferably, it is in the range of 30,000 or more and 200,000 or less. If the weight-average molecular weight is 10,000 or more, polyamic acid (1) or polyimide obtained using polyamic acid (1) can be easily formed into a coating film or a polyimide film (film). On the other hand, when the weight-average molecular weight is 1,000,000 or less, it exhibits sufficient solubility in a solvent, so a coating film or polyimide film having a smooth surface and a uniform thickness using a polyamic acid composition described later is obtained.
  • the weight average molecular weight used here means a polyethylene oxide equivalent value measured using gel permeation chromatography (GPC).
  • a method for controlling the molecular weight of the polyamic acid (1) a method of using either an acid dianhydride or a diamine in excess, a monofunctional acid anhydride such as phthalic anhydride or aniline, or an amine A method of quenching the reaction by reacting is included.
  • a polyimide film having sufficient strength can be obtained if the molar ratio of these charged is between 0.95 and 1.05.
  • the molar ratio of the charge is the ratio of the total amount of diamines used in the synthesis of polyamic acid (1) to the total amount of acid dianhydrides used in the synthesis of polyamic acid (1) (total amount of diamines amount/total substance amount of acid dianhydride). Further, by terminal-capping with phthalic anhydride, maleic anhydride, aniline, or the like, coloring of the polyimide obtained using the polyamic acid (1) can be further reduced.
  • the polyamic acid composition according to the present embodiment contains polyamic acid (1) and an organic solvent.
  • the organic solvent contained in the polyamic acid composition include the organic solvents exemplified as the organic solvent that can be used in the synthesis reaction of the polyamic acid (1), and include amide solvents, ketone solvents, ester solvents and One or more solvents selected from the group consisting of ether solvents are preferable, and amide solvents (more specifically, DMF, DMAC, NMP, MPA, etc.) are more preferable.
  • the reaction solution solution after reaction itself may be used as the polyamic acid composition according to the present embodiment.
  • the solid polyamic acid (1) obtained by removing the solvent from the reaction solution may be dissolved in an organic solvent to prepare the polyamic acid composition according to the present embodiment.
  • the content of polyamic acid (1) in the polyamic acid composition according to the present embodiment is not particularly limited, but is, for example, 1% by weight or more and 80% by weight or less based on the total amount of the polyamic acid composition.
  • the polyamic acid composition according to the present embodiment may contain an imidization accelerator and/or a dehydration catalyst in order to shorten the heating time and develop properties.
  • a tertiary amine can be used as the imidization accelerator.
  • a heterocyclic tertiary amine is preferred as the tertiary amine.
  • Preferable specific examples of heterocyclic tertiary amines include pyridine, picoline, quinoline, isoquinoline and imidazoles.
  • Preferred specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride.
  • the amount of the imidization accelerator is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
  • the amount of the dehydration catalyst is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
  • imidazoles are preferable.
  • imidazoles refer to compounds having a 1,3-diazole ring (1,3-diazole ring structure).
  • the imidazoles added to the polyamic acid composition according to the present embodiment are not particularly limited, but examples include 1H-imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like.
  • 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole are preferred, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are more preferred. .
  • the content of the imidazole is preferably 0.005 mol or more and 0.1 mol or less, and 0.01 mol or more and 0.08 mol or less, relative to 1 mol of the amide group of the polyamic acid (1). is more preferably 0.015 mol or more and 0.050 mol or less.
  • a polymerization solvent such as NMP forms a complex by hydrogen bonding with the carboxy group of polyamic acid (1).
  • amide group of polyamic acid (1) refers to an amide group produced by a polymerization reaction of diamine and tetracarboxylic dianhydride.
  • the method of mixing polyamic acid (1) and imidazoles is not particularly limited. From the viewpoint of ease of controlling the molecular weight of polyamic acid (1), it is preferable to add imidazoles to polyamic acid (1) after polymerization. At this time, the imidazole may be added as it is to the polyamic acid (1), or the imidazole may be dissolved in a solvent in advance and this solution may be added to the polyamic acid (1). Not restricted.
  • the polyamic acid composition according to the present embodiment may be prepared by adding imidazoles to a solution containing polyamic acid (1) after polymerization (solution after reaction).
  • additives may be added as additives to the polyamic acid composition according to the present embodiment.
  • additives include plasticizers, antioxidants, dyes, surfactants, leveling agents, silicones, fine particles, and sensitizers.
  • the fine particles include organic fine particles made of polystyrene, polytetrafluoroethylene, etc., inorganic fine particles made of colloidal silica, carbon, layered silicate, etc. They may have a porous structure or a hollow structure.
  • the function and form of the fine particles are not particularly limited, and may be, for example, pigments, fillers, or fibrous particles.
  • the plasticizer is preferably a compound that dissolves in the organic solvent used for polymerization of the polyamic acid (1) and that exists as a liquid during imidization. Moreover, the plasticizer preferably does not volatilize at low temperatures in order to impart sufficient molecular mobility to the polyamic acid (1) during imidization. Therefore, the boiling point of the plasticizer is preferably 50°C or higher, more preferably 100°C or higher, and even more preferably 150°C or higher. Moreover, the plasticizer preferably does not have a decomposition temperature below the boiling point in order to impart sufficient molecular mobility to the polyamic acid (1) during imidization.
  • the amount of the plasticizer is 0.001 part by weight or more with respect to 100 parts by weight of the polyamic acid (1), from the viewpoint of imparting sufficient molecular mobility to the polyamic acid (1) and avoiding decomposition of the plasticizer itself. It is preferably 20 parts by weight or less, more preferably 0.01 parts by weight or more and 15 parts by weight or less, still more preferably 0.05 parts by weight or more and 10 parts by weight or less, and 0.05 parts by weight or more. Even more preferably, it is 5 parts by weight or less.
  • the plasticizer not only improves molecular motion when polyamic acid (1) undergoes dehydration ring closure to polyimide, but can also add functions such as adjustment of the glass transition temperature and flame retardancy.
  • the plasticizer for example, one or more of known plasticizers can be appropriately selected and used.
  • the plasticizer is preferably one or more selected from the group consisting of phosphorus-containing compounds, polyalkylene glycols and aliphatic dibasic acid esters.
  • Preferred examples of phosphorus-containing compounds include phosphoric acid compounds, phosphorous acid compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine compounds, phosphine oxide compounds, phosphorane compounds, phosphazene compounds, and the like.
  • the phosphorus-containing compound may be an ester of the compounds listed above or a condensate thereof, may contain a cyclic structure, or may form a salt with an amine or the like. Further, some of these phosphorus-containing compounds have a tautomeric relationship, such as a phosphorous acid-based compound and a phosphonic acid-based compound, but they may exist in either state.
  • phosphoric acid compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri(2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris(isopropylphenyl ) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl acid phosphate, 2-methacryloyl oxyethyl acid phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-meth
  • phosphorous acid compounds include triphenylphosphite, trisnonylphenylphosphite, tricresylphosphite, triethylphosphite, triisobutylphosphite, tris(2-ethylhexyl)phosphite and tridecylphosphite.
  • trilauryl phosphite tris (tridecyl) phosphite, diphenyl phosphite, diethyl phosphite, dibutyl phosphite, dimethyl phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite, diphenyl mono (tridecyl) phosphites, trilauryl trithiophosphite, diethyl hydrogen phosphite, bis(2-ethylhexyl) hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, diphenyl hydrogen phosphite, tetraphenyl dipropylene glycol diphosphite, Bis (decyl) pentaerythritol diphosphite, bis (tridecy
  • condensates examples include condensed phosphate esters.
  • specific examples of the condensed phosphate include trialkyl polyphosphate, resorcinol polyphenyl phosphate, resorcinol poly(di-2,6-xylyl) phosphate, hydroquinone poly(2,6-xylyl) phosphate, and the like.
  • Commercially available condensed phosphate esters include, for example, “CR-733S” manufactured by Daihachi Chemical Industry Co., Ltd., “CR-741” manufactured by Daihachi Chemical Industry Co., Ltd., and “FP-600” manufactured by ADEKA Corporation.
  • phosphazene-based compounds include phenoxycyclophosphazene (“FP-110” manufactured by Fushimi Pharmaceutical Co., Ltd.), cyclic cyanophenoxyphosphazene (“FP-300” manufactured by Fushimi Pharmaceutical Co., Ltd.), and the like.
  • Polyalkylene glycol includes polypropylene glycol, polyethylene glycol, and the like.
  • aliphatic dibasic acid esters include dibutyl adipate, diisobutyl adipate, bis(2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis[2-(2-butoxyethoxy)ethyl]adipate, bis(2- ethylhexyl)azelate, dibutyl sebacate, bis(2-ethylhexyl) sebacate, diethyl succinate and the like.
  • the plasticizer may be a low-molecular-weight organic compound or a thermoplastic resin as long as it exhibits a plasticizing effect.
  • the low-molecular-weight organic compounds include organic compounds having a molecular weight of about 1,000 or less, such as phthalimide compounds such as phthalimide, N-phenylphthalimide, N-glycidylphthalimide, N-hydroxyphthalimide, and cyclohexylthiophthalimide; Examples include maleimide compounds such as N,Np-phenylenebismaleimide and 2,2'-(ethylenedioxy)bis(ethylmaleimide).
  • the thermoplastic resin include polyimide and polyamide having an asymmetric structure.
  • antioxidants examples include phenolic compounds, and phenolic compounds that dissolve in the organic solvent used for polymerization of the polyamic acid (1) and that exist as a liquid during imidization are preferred. From the viewpoint of suppressing the coloring of the polyimide film, it is desirable that it remains during imidization. It is more preferable that it is above. Phenolic compounds that do not have a decomposition temperature below the boiling point are preferred.
  • phenolic compound examples include hindered type, semi-hindered type, less hindered type, etc. Specific examples include dibutylhydroxytoluene, 1,3,5-tris(3,5-di-t-butyl -4-hydroxyphenylmethyl)-2,4,6-trimethylbenzene, 2-t-butyl-4-methyl-6-(2-hydroxy-3-t-butyl-5-methylbenzyl)phenyl acrylate, and the like. mentioned.
  • Phenolic compounds mainly capture peroxy radicals, convert them to hydroperoxides, and function as primary antioxidants that suppress autoxidation of polymers, so they have the function of suppressing coloration due to oxidation of polymers. Furthermore, by combining a phenolic compound with a phosphite or the like that functions as a secondary antioxidant that converts hydroperoxide into a stable alcohol compound, coloration due to oxidation of polyimide can be further suppressed. For example, the coloring of the polyimide can be effectively suppressed by using the phosphite ester in the range of equivalent weight or more and 10 equivalents or less with respect to the phenolic compound.
  • the amount of the phenolic compound is preferably 0.001 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably from 0.02 part by weight to 5 parts by weight, and even more preferably from 0.02 part by weight to 1 part by weight.
  • the phenolic compound may be dissolved in an organic solvent before polymerization of polyamic acid (1), or may be added to the polyamic acid solution after polymerization.
  • nanosilica particles may be used as the additive, and the polyamic acid (1) and the nanosilica particles may be combined.
  • the average primary particle size of the nanosilica particles is preferably 200 nm or less, more preferably 100 nm or less, even more preferably 50 nm or less, and 30 nm or less.
  • the average primary particle size of the nanosilica particles is preferably 5 nm or more, more preferably 10 nm or more.
  • a known method can be used, for example, a method using an organosilica sol in which nanosilica particles are dispersed in an organic solvent.
  • a method of combining polyamic acid (1) and nanosilica particles using organosilica sol after synthesizing polyamic acid (1), a method of mixing synthesized polyamic acid (1) and organosilica sol is used.
  • the nanosilica particles can be surface-treated with a surface treatment agent in order to enhance the interaction with the polyamic acid (1).
  • a surface treatment agent a known agent such as a silane coupling agent can be used.
  • a silane coupling agent an alkoxysilane compound having an amino group, a glycidyl group, or the like as a functional group is widely known, and can be appropriately selected.
  • the silane coupling agent is preferably an amino group-containing alkoxysilane.
  • amino group-containing alkoxysilanes examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-(2-aminoethyl ) aminopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 2-aminophenyltrimethoxysilane and 3-aminophenyltrimethoxysilane.
  • Silanes are preferably used.
  • a method of stirring a mixture obtained by adding a silane coupling agent to a dispersion (organosilica sol) at an ambient temperature of 20° C. or higher and 80° C. or lower may be mentioned.
  • the stirring time at this time is, for example, 1 hour or more and 10 hours or less.
  • a catalyst or the like that promotes the reaction may be added.
  • a nanosilica-polyamic acid composite obtained by combining polyamic acid (1) and nanosilica particles contains 1 part by weight or more and 30 parts by weight or less of nanosilica particles with respect to 100 parts by weight of polyamic acid (1). and more preferably in the range of 1 part by weight or more and 20 parts by weight or less.
  • the content of the nanosilica particles is 1 part by weight or more, the heat resistance of the nanosilica particle-containing polyimide can be improved and the internal stress can be sufficiently reduced. Adverse effects on the mechanical properties of polyimide containing nanosilica particles can be suppressed.
  • the polyamic acid composition according to the present embodiment can contain a silane coupling agent in order to exhibit appropriate adhesion to the support.
  • a silane coupling agent known ones can be used without particular limitation, but compounds containing an amino group are particularly preferred from the viewpoint of reactivity with polyamic acid (1).
  • the mixing ratio of the silane coupling agent to 100 parts by weight of polyamic acid (1) is preferably 0.01 parts by weight or more and 0.50 parts by weight or less, and 0.01 parts by weight or more and 0.10 parts by weight or less. more preferably 0.01 parts by weight or more and 0.05 parts by weight or less.
  • the polyimide according to this embodiment is an imidized product of polyamic acid (1) described above.
  • the polyimide according to this embodiment can be obtained by a known method, and the production method is not particularly limited. An example of a method for imidating the polyamic acid (1) to obtain the polyimide according to the present embodiment will be described below. Imidation is carried out by dehydration and ring closure of polyamic acid (1). This dehydration ring closure can be carried out by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method.
  • imidization of polyamic acid (1) to polyimide can take any ratio of 1% or more and 100% or less. That is, a partially imidized polyamic acid (1) may be synthesized.
  • the dehydration ring closure of the polyamic acid (1) may be performed by heating the polyamic acid (1).
  • the method of heating the polyamic acid (1) is not particularly limited, but for example, the polyamic acid composition according to the present embodiment is applied onto a support such as a glass substrate, a metal plate, or a PET film (polyethylene terephthalate film). After that, the polyamic acid (1) may be heat-treated at a temperature in the range of 40°C or higher and 500°C or lower. According to this method, a laminate according to the present embodiment, which has a support and a polyimide film (specifically, a polyimide film containing an imidized product of polyamic acid (1)) disposed on the support, is obtained. be done.
  • a polyimide film specifically, a polyimide film containing an imidized product of polyamic acid (1)
  • the polyamic acid composition is directly put into a container that has been subjected to release treatment such as coating with a fluororesin, and the polyamic acid composition is heated and dried under reduced pressure to effect dehydration ring closure of the polyamic acid (1).
  • release treatment such as coating with a fluororesin
  • Polyimide can be obtained by dehydration ring closure of polyamic acid (1) by these techniques.
  • the heating time for each of the above treatments varies depending on the amount of the polyamic acid composition to be subjected to dehydration ring closure and the heating temperature, but is generally in the range of 1 minute or more and 300 minutes or less after the treatment temperature reaches the maximum temperature. It is preferable to
  • the polyimide film according to the present embodiment (specifically, the polyimide film containing the imidized product of polyamic acid (1)) is colorless and transparent, has a low degree of yellowness, and has a glass transition temperature (heat resistance) that can withstand the TFT manufacturing process. Therefore, it is suitable as a transparent substrate material for flexible displays.
  • the content of polyimide (specifically, imidized polyamic acid (1)) in the polyimide film according to the present embodiment is, for example, 70% by weight or more, and 80% by weight or more with respect to the total amount of the polyimide film. is preferable, more preferably 90% by weight or more, and may be 100% by weight.
  • components other than polyimide in the polyimide film include the additives described above (more specifically, nanosilica particles and the like).
  • An electronic device (more specifically, a flexible device or the like) according to this embodiment has a polyimide film according to this embodiment and an electronic element directly or indirectly arranged on this polyimide film.
  • an inorganic substrate such as glass is used as a support, and a polyimide film is formed thereon.
  • an electronic device is formed on the support by arranging (forming) an electronic element such as a TFT on the polyimide film.
  • the process of forming a TFT is generally carried out in a wide temperature range of 150° C. or higher and 650° C. or lower. is formed, and in some cases, a-Si or the like is further crystallized by a laser or the like.
  • the 1% weight loss temperature of polyimide is preferably 500° C. or higher because there is a possibility that a barrier film (to be described later) and electronic elements may peel off.
  • the upper limit of the 1% weight loss temperature of polyimide is preferably 600° C., for example, although the higher the better.
  • the 1% weight loss temperature can be adjusted, for example, by changing the content of residues having a rigid structure (more specifically, SFDA residues, BPDA residues, etc.).
  • an inorganic film such as a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film) is formed as a barrier film on the polyimide film.
  • SiOx film silicon oxide film
  • SiNx film silicon nitride film
  • the polyimide and the inorganic film are separated from each other. Therefore, in addition to the 1% weight loss temperature of the polyimide being 500° C. or higher, the weight loss rate when the polyimide is kept isothermally at a temperature within the range of 400° C. or higher and 450° C. or lower must be less than 1%. desirable.
  • the present inventors' studies have revealed that polyimides obtained using fluorine-containing monomers generate corrosive gases such as hydrogen fluoride as outgassing in high-temperature processes such as the fabrication of TFT elements. .
  • the barrier film or the like laminated on the polyimide film corrodes, and peeling or the like may occur at the interface of the laminated body.
  • the fluorine atom content of polyamic acid (1) is preferably less than 1% by weight, more preferably less than 0.5% by weight, and more preferably less than 0.1% by weight. It is more preferably less than % by weight, and particularly preferably substantially 0 % by weight (polyamic acid (1) does not contain residues derived from fluorine-containing monomers).
  • the polyimide according to the present embodiment As an indicator of the amount of hydrogen fluoride gas generated when the imidized product of polyamic acid (1) (the polyimide according to the present embodiment) is used in a high-temperature process, detection intensity obtained from a mass spectrum can be mentioned. Specifically, first, the polyimide is heated from an atmospheric temperature of 60° C. at a rate of 10° C./min under a helium gas stream, and the gas generated from the polyimide when the atmospheric temperature reaches 470° C. Analyze with a type mass spectrometer.
  • the 20 peak intensity tends to increase as the amount of hydrogen fluoride generated increases.
  • the flow rate of the helium gas when analyzing with a quadrupole mass spectrometer may be set so that the gas generated from the polyimide can be analyzed in real time with the quadrupole mass spectrometer. minutes or more and 150 mL/minute or less, preferably 80 mL/minute or more and 120 mL/minute or less.
  • the glass transition temperature (Tg) of the polyimide is significantly lower than the process temperature, there is a possibility that misalignment or the like may occur during the formation of the electronic device. It is more preferably 350° C. or higher, still more preferably 400° C. or higher, and even more preferably 420° C. or higher.
  • the upper limit of Tg of polyimide is preferably 470° C., although the higher the better.
  • the coefficient of thermal expansion of the glass substrate is generally smaller than that of resin, internal stress is generated between the glass substrate and the polyimide film.
  • the laminated body including the polyimide film expands in the TFT formation process at a high temperature and then shrinks when cooled to room temperature.
  • the internal stress between the polyimide film and the glass substrate is preferably 40 MPa or less, more preferably 35 MPa or less.
  • the lower limit of the internal stress is better, and may be 0 MPa.
  • the method for measuring the internal stress is the same method as in Examples described later or a method based thereon.
  • the polyimide according to this embodiment can be suitably used as a material for display substrates such as TFT substrates and touch panel substrates.
  • an electronic device (more specifically, an electronic device having electronic elements formed on a polyimide film) is formed on a support as described above, and then the polyimide film is peeled off from the support. often adopted.
  • alkali-free glass is preferably used as the material of the support.
  • the polyamic acid composition according to the present embodiment is applied (cast) onto a support to form a coated film-containing laminate comprising a coated film containing polyamic acid (1) and the support.
  • the coated film-containing layered product is heated, for example, at a temperature of 40° C. or higher and 200° C. or lower.
  • the heating time at this time is, for example, 3 minutes or more and 120 minutes or less.
  • a multi-step heating process may be provided, such as heating the coating film-containing laminate at a temperature of 50° C. for 30 minutes and then heating it at a temperature of 100° C. for 30 minutes.
  • the coating film-containing laminate is heated, for example, at a maximum temperature of 200° C. or higher and 500° C. or lower.
  • the heating time (heating time at the maximum temperature) at this time is, for example, 1 minute or more and 300 minutes or less. At this time, it is preferable to gradually raise the temperature from the low temperature to the maximum temperature.
  • the heating rate is preferably 2° C./min or more and 10° C./min or less, more preferably 4° C./min or more and 10° C./min or less.
  • the maximum temperature is preferably in the range of 250° C. or higher and 450° C. or lower. When the maximum temperature is 250° C.
  • imidization proceeds sufficiently, and when the maximum temperature is 450° C. or lower, thermal deterioration and coloration of the polyimide can be suppressed. Also, any temperature may be maintained for any length of time until the maximum temperature is reached.
  • the imidization reaction can be carried out under air, under reduced pressure, or in an inert gas such as nitrogen, but in order to develop higher transparency, it is carried out under reduced pressure or in an inert gas such as nitrogen. is preferred.
  • the heating device known devices such as a hot air oven, an infrared oven, a vacuum oven, an inert oven and a hot plate can be used.
  • Polyamic acid (1) in the coating film is imidized through these steps, and a laminate of a support and a polyimide film (a film containing an imidized product of polyamic acid (1)) (that is, according to the present embodiment) laminate) can be obtained.
  • a known method can be used to peel off the polyimide film from the obtained laminate of the support and the polyimide film. For example, it may be peeled off by hand, or may be peeled off using a mechanical device such as a driving roll or a robot. Furthermore, a method of providing a release layer between a support and a polyimide film, a method of forming a silicon oxide film on a substrate having a large number of grooves, forming a polyimide film using the silicon oxide film as a base layer, and oxidizing the substrate and the polyimide film. A method of exfoliating the polyimide film by infiltrating a silicon oxide etchant between it and the silicon film can also be adopted. Alternatively, a method of separating the polyimide film by laser light irradiation may be employed.
  • the transparency of the polyimide film can be evaluated by total light transmittance (TT) according to JIS K7361-1:1997 and haze according to JIS K7136-2000.
  • the total light transmittance of the polyimide film is preferably 75% or more, more preferably 80% or more.
  • the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and 1.0%. It is more preferably less than, and may be 0%.
  • polyimide films are required to have high transmittance over the entire wavelength range. often colored.
  • the polyimide film is less colored.
  • the yellowness index (YI) of the polyimide film is preferably 25 or less, more preferably 20 or less, It can be 0.
  • YI can be measured according to JIS K7373-2006. YI can be adjusted, for example, by changing the content of SFDA residues in polyamic acid (1).
  • the polyimide film with reduced coloration and imparted with transparency is suitable for transparent substrates such as glass substitutes, and substrates on which a sensor or camera module is provided on the back surface.
  • the top emission method in which light is extracted from the front surface of the TFT
  • the bottom emission method in which light is extracted from the back surface of the TFT.
  • the top emission method light is not blocked by the TFT, so it is easy to increase the aperture ratio and obtain high-definition image quality. Characteristic. If the TFT is transparent, it is possible to improve the aperture ratio even in the bottom emission method, so there is a tendency to adopt the bottom emission method, which is easy to manufacture, for large displays. Since the polyimide film according to this embodiment has a low YI and excellent heat resistance, it can be applied to either of the above light extraction methods.
  • a polyamic acid composition is applied to a support such as a glass substrate, heated to imidize, an electronic element or the like is formed, and then the polyimide film is peeled off, the support and the like are used.
  • Adhesion means adhesion strength.
  • the manufacturing process of peeling off the polyimide film on which the electronic elements and the like are formed from the support after forming the electronic elements on the polyimide film on the support if the adhesion between the polyimide film and the support is excellent, the electronic element etc. can be formed or implemented more accurately.
  • the peel strength between the support and the polyimide film should be as high as possible from the viewpoint of improving productivity.
  • the peel strength is preferably 0.05 N/cm or more, more preferably 0.1 N/cm or more.
  • the polyimide film when peeling the polyimide film from the laminate of the support and the polyimide film, the polyimide film is often peeled off from the support by laser irradiation.
  • the cutoff wavelength of the polyimide film is required to be longer than the wavelength of the laser light used for peeling. Since a XeCl excimer laser with a wavelength of 308 nm is often used for laser peeling, the cutoff wavelength of the polyimide film is preferably 312 nm or longer, more preferably 330 nm or longer.
  • the cutoff wavelength of the polyimide film is preferably 390 nm or less.
  • the cutoff wavelength of the polyimide film is preferably 320 nm or more and 390 nm or less, more preferably 330 nm or more and 380 nm or less, from the viewpoint of achieving both transparency (low degree of yellowness) and workability of laser peeling.
  • the term "cutoff wavelength" as used herein means a wavelength at which the transmittance is 0.1% or less as measured by an ultraviolet-visible spectrophotometer.
  • the polyamic acid composition and polyimide according to the present embodiment may be used as they are for coating and molding processes for producing products and members, but the molded product molded in the form of a film is further subjected to coating and other treatments. It can also be used as a material for For use in coating or molding processes, the polyamic acid composition or polyimide, optionally dissolved or dispersed in an organic solvent, and optionally a photocurable component, a thermosetting component, a non-polymeric binder, A composition comprising polyamic acid (1) or polyimide may be prepared by blending the resin and other ingredients.
  • inorganic thin films such as metal oxide thin films and transparent electrodes may be formed on the surface of the polyimide film according to this embodiment.
  • the method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as sputtering, vacuum deposition, and ion plating, and CVD methods.
  • the polyimide film according to the present embodiment In addition to heat resistance, low thermal expansion, and transparency, the polyimide film according to the present embodiment generates little internal stress when forming a laminate with a glass substrate, ensuring adhesion with inorganic materials during high-temperature processes. Therefore, it is preferably used in fields and products where these properties are useful.
  • the polyimide film according to the present embodiment can be used for liquid crystal display devices, organic EL devices, image display devices such as electronic paper, printed matter, color filters, flexible displays, optical films, 3D displays, touch panels, transparent conductive film substrates, solar cells, and the like. It is more preferable to use it as a substitute material for parts where glass is currently used.
  • the thickness of the polyimide film is, for example, 1 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the polyimide film can be measured using a laser hologram.
  • the polyamic acid composition according to the present embodiment is prepared by coating the polyamic acid composition on a support, imidizing it by heating, forming an electronic element or the like, and then peeling off the polyimide film for batch-type device fabrication. It can be suitably used for the process. Therefore, in the present embodiment, a method for producing an electronic device includes a step of applying a polyamic acid composition onto a support, imidizing it by heating, and forming an electronic element or the like on a polyimide film formed on the support. is also included. Moreover, the method for producing such an electronic device may further include a step of peeling off the polyimide film on which the electronic elements and the like are formed from the support.
  • the internal stress generated between the glass substrate and the polyimide film was calculated from the amount of warpage of the glass substrate before the formation of the polyimide film and the amount of warpage of the laminate by the Stoney equation.
  • the internal stress was 40 MPa or less, it was evaluated as "the internal stress can be reduced.”
  • the internal stress exceeded 40 MPa, it was evaluated as "the internal stress cannot be reduced.”
  • Glass transition temperature (Tg) A polyimide film having a width of 3 mm and a length of 10 mm was sampled from each laminate obtained in Examples and Comparative Examples, which will be described later, and used as a sample for Tg measurement. Using a thermal analysis device ("TMA/SS7100" manufactured by Hitachi High-Tech Science), a load of 29.8 mN was applied to the sample, the temperature was raised from 20 ° C. to 500 ° C. at 10 ° C./min, and the temperature and strain amount (elongation ) to obtain the TMA curve. The temperature at the inflection point of the obtained TMA curve (the temperature corresponding to the peak in the differential curve of the TMA curve) was defined as the glass transition temperature (Tg). When Tg was 420°C or higher, it was evaluated as “excellent in heat resistance”. On the other hand, when Tg was less than 420°C, it was evaluated as "not excellent in heat resistance”.
  • TD1 1% weight loss temperature
  • NMP N-methyl-2-pyrrolidone SFDA: spiro[11H-diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1,3,7, 9-Tetrone
  • SFDA 3,3′,4,4′-biphenyltetracarboxylic dianhydride
  • BPAF 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride
  • 6FDA 4,4′-( Hexafluoroisopropylidene) diphthalic anhydride
  • PDA p-phenylenediamine 4-BAAB: 4-aminophenyl-4-aminobenzoate
  • DABA 4,4'-diaminobenzanilide
  • DATA N,N'-di(4-amino Phenyl)terephthalamide
  • PAM-E 1,3-bis(3-aminopropyl)t
  • Example 1 A 300 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen inlet was charged with 88.0 g of NMP as an organic solvent for polymerization. 2.240 g of PDA was then added to the flask and dissolved while stirring the flask contents. After adding 9.760 g of SFDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere of 25° C. to obtain a polyamic acid composition.
  • the resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 1) having a polyimide film having a thickness of 10 ⁇ m on a glass substrate.
  • Example 2 A 300 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen inlet was charged with 88.0 g of NMP as an organic solvent for polymerization. 2.240 g of PDA was then added to the flask and dissolved while stirring the flask contents. After adding 9.760 g of SFDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere at a temperature of 25°C. Next, DMI was added to the contents of the flask to obtain a polyamic acid composition. The amount of DMI added was 1 part by weight per 100 parts by weight of polyamic acid in the contents of the flask.
  • the resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 2) having a polyimide film having a thickness of 10 ⁇ m on a glass substrate.
  • Examples 3 to 17 and Comparative Examples 1 to 8 Examples 3, 5, and 6 were prepared in the same manner as in Example 1, except that the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Tables 1 and 2. , 8, 10, 12, 13, 15 and 17 and the laminates of Comparative Examples 1, 2, 3 and 5, respectively. In addition, in the same manner as in Example 2, except that the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Tables 1 and 2, Examples 4 and 7 , 9, 11, 14 and 16 and the laminates of Comparative Examples 4, 6, 7 and 8, respectively.
  • Table 3 shows the measurement results of the physical properties of Examples 1 to 17 and Comparative Examples 1 to 8.
  • "-" means not measured.
  • the "fluorine atom content” is a calculated value calculated by the above formula.
  • the polyamic acid in the polyamic acid compositions prepared in Examples 1 to 17 contained the structural unit (1) and had a fluorine atom content of 5% by weight or less. As shown in Table 3, in Examples 1 to 17, the internal stress was 40 MPa or less. Therefore, the polyimides obtained in Examples 1 to 17 were able to reduce the internal stress. Examples 1-17 had a haze of less than 1.0%. Therefore, the polyimides obtained in Examples 1 to 17 were excellent in transparency. In Examples 1 to 17, Tg was 420° C. or higher. Therefore, the polyimides obtained in Examples 1 to 17 were excellent in heat resistance.
  • the polyamic acid in the polyamic acid compositions prepared in Comparative Examples 1 and 2 had a fluorine atom content of more than 5% by weight.
  • the polyamic acid in the polyamic acid compositions prepared in Comparative Examples 3-8 did not contain the structural unit (1).
  • the internal stress exceeded 40 MPa. Therefore, the polyimides obtained in Comparative Examples 1, 2 and 6-8 could not reduce the internal stress.
  • the Tg was less than 420°C. Therefore, the polyimides obtained in Comparative Examples 3 to 5 were not excellent in heat resistance.
  • the polyimide obtained from the polyamic acid composition according to the present invention has excellent transparency and heat resistance while reducing internal stress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

According to the present invention, a polyamic acid includes a structural unit represented by general formula (1) and has a fluorine atom content of no more than 5 weight%. In general formula (1), R1 and R2 each independently represent a hydrogen atom, a monovalent aliphatic group, or a monovalent aromatic group, and X1 represents a bivalent organic group. According to the present invention, a polyamic acid composition contains an organic solvent and a polyamic acid that includes a structural unit represented by general formula (1) and has a fluorine atom content of no more than 5 weight%. According to the present invention, a polyimide is an imide compound of a polyamic acid that includes a structural unit represented by general formula (1) and has a fluorine atom content of no more than 5 weight%.

Description

ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイスPolyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
 本発明は、ポリアミド酸、ポリアミド酸組成物、ポリイミド、ポリイミド膜、積層体、積層体の製造方法及び電子デバイスに関する。本発明は、更に、ポリイミドを用いた電子デバイス材料、薄膜トランジスタ(TFT)基板、フレキシブルディスプレイ基板、カラーフィルター、印刷物、光学材料、画像表示装置(より具体的には、液晶表示装置、有機EL、電子ペーパー等)、3Dディスプレイ、太陽電池、タッチパネル、透明導電膜基板、及び現在ガラスが使用されている部材の代替材料に関する。 The present invention relates to polyamic acids, polyamic acid compositions, polyimides, polyimide films, laminates, methods for producing laminates, and electronic devices. The present invention further provides electronic device materials using polyimide, thin film transistor (TFT) substrates, flexible display substrates, color filters, printed matter, optical materials, image display devices (more specifically, liquid crystal display devices, organic EL, electronic paper, etc.), 3D displays, solar cells, touch panels, transparent conductive film substrates, and substitute materials for members currently using glass.
 液晶ディスプレイ、有機EL、電子ペーパー等のディスプレイや、太陽電池、タッチパネル等のエレクトロニクスデバイスの急速な進歩に伴い、デバイスの薄型化や軽量化、フレキシブル化が進んでいる。これらのデバイスではガラス基板に代えてポリイミドが基板材料として用いられている。 With the rapid progress of displays such as liquid crystal displays, organic EL, and electronic paper, as well as electronic devices such as solar cells and touch panels, devices are becoming thinner, lighter, and more flexible. In these devices, polyimide is used as the substrate material instead of the glass substrate.
 これらのデバイスでは、基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されており、これらの電子素子の形成には高温プロセスが必要である。ポリイミドは、高温プロセスに適応できるだけの十分な耐熱性を有しており、熱膨張係数(CTE)もガラス基板や電子素子と近いため、内部応力が生じにくく、フレキシブルディスプレイ等の基板材料に好適である。 In these devices, various electronic elements, such as thin film transistors and transparent electrodes, are formed on the substrate, and high-temperature processes are required to form these electronic elements. Polyimide has sufficient heat resistance to adapt to high-temperature processes, and its coefficient of thermal expansion (CTE) is similar to that of glass substrates and electronic devices. be.
 一般的に芳香族ポリイミドは分子内共役や電荷移動(CT)錯体の形成により黄褐色に着色しているが、トップエミッション型の有機EL等では、基板の反対側から光を取り出すため、基板に透明性は求められず、従前の芳香族ポリイミドが用いられてきた。しかし、透明ディスプレイやボトムエミッション型の有機EL、液晶ディスプレイのように表示素子から発せられる光が基板を通って出射されるような場合や、スマートフォン等を全面ディスプレイ(ノッチレス)にするためにセンサーやカメラモジュールを基板の背面に配置する場合には、基板にも高い光学特性(より具体的には、透明性等)が求められるようになってきた。 Aromatic polyimides are generally colored yellowish brown due to intramolecular conjugation and formation of charge transfer (CT) complexes. Transparency is not required, and conventional aromatic polyimides have been used. However, in cases where the light emitted from the display element passes through the substrate, such as in transparent displays, bottom-emission organic EL, and liquid crystal displays, and in smartphones, etc., where full-screen displays (notchless) are required, sensors and When the camera module is arranged on the back surface of the substrate, the substrate is also required to have high optical properties (more specifically, transparency, etc.).
 このような背景から、既存の芳香族ポリイミドと同等の耐熱性を有しつつ、着色が低減され、透明性に優れる材料が求められている。 Against this background, there is a demand for a material that has the same heat resistance as existing aromatic polyimides, but also has reduced coloration and excellent transparency.
 ポリイミドの着色を低減させるために、脂肪族系モノマーを用いてCT錯体の形成を抑える技術(特許文献1及び2)、フルオレン骨格を有するモノマーを用いて透明性を高める技術(特許文献3)、及びフッ素原子を有するモノマーを用いることで透明性を高める技術(特許文献4)が知られている。 In order to reduce the coloring of polyimide, a technique for suppressing the formation of a CT complex using an aliphatic monomer (Patent Documents 1 and 2), a technique for increasing transparency using a monomer having a fluorene skeleton (Patent Document 3), and a technique of increasing transparency by using a monomer having a fluorine atom (Patent Document 4).
 特許文献1及び2に記載のポリイミドは、透明性が高く、CTEも低いが、脂肪族構造を有するため熱分解温度が低く、電子素子を形成する際の高温プロセスに適用することは難しい。 The polyimides described in Patent Documents 1 and 2 have high transparency and a low CTE, but because they have an aliphatic structure, they have a low thermal decomposition temperature and are difficult to apply to high-temperature processes when forming electronic elements.
特開2016-29177号公報JP 2016-29177 A 特開2012-41530号公報JP 2012-41530 A 台湾特許出願公開第201713726号公報Taiwan Patent Application Publication No. 201713726 国際公開第2019/195148号WO2019/195148
 特許文献3に記載のポリイミドは、フルオレン骨格の導入により透明性が高く、耐熱性も高い。しかし、特許文献3に記載のポリイミドは、熱膨張係数(CTE)が高いため、支持体上にポリイミド膜を形成して積層体を得る際の加熱及び冷却により、支持体とポリイミド膜との界面に生じる内部応力が大きくなる傾向がある。このため、特許文献3に記載のポリイミドを用いて積層体を形成すると、積層体に反りが生じやすくなるため、電子デバイスへの適用が困難となる可能性がある。 The polyimide described in Patent Document 3 has high transparency and high heat resistance due to the introduction of a fluorene skeleton. However, the polyimide described in Patent Document 3 has a high coefficient of thermal expansion (CTE). internal stress tends to increase. For this reason, when a laminate is formed using the polyimide described in Patent Document 3, the laminate is likely to warp, which may make it difficult to apply to electronic devices.
 また、特許文献4に記載の技術でも、支持体とポリイミド膜との間の内部応力(以下、単に「内部応力」と記載することがある)を低減しつつ、透明性及び耐熱性に優れるポリイミドを得ることは難しい。 In addition, the technique described in Patent Document 4 also reduces the internal stress between the support and the polyimide film (hereinafter sometimes simply referred to as "internal stress"), while the polyimide having excellent transparency and heat resistance is difficult to obtain.
 本発明は、上記実情に鑑みて成し遂げられたものであり、内部応力を低減しつつ、透明性及び耐熱性に優れるポリイミド及びその前駆体としてのポリアミド酸を提供することを目的とする。更に、当該ポリイミド及びポリアミド酸を用いて製造された、耐熱性及び透明性が要求される製品又は部材を提供することも目的とする。特に、本発明のポリイミド膜が、ガラス、金属、金属酸化物、単結晶シリコン等の無機物表面に形成された製品又は部材を提供することを目的とする。 The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a polyimide having excellent transparency and heat resistance while reducing internal stress, and a polyamic acid as a precursor thereof. Another object of the present invention is to provide a product or member that is produced using the polyimide and polyamic acid and that requires heat resistance and transparency. In particular, it is an object of the present invention to provide a product or member in which the polyimide film of the present invention is formed on the surface of an inorganic material such as glass, metal, metal oxide, or single crystal silicon.
<本発明の態様>
 本発明には、以下の態様が含まれる。
<Aspect of the present invention>
The present invention includes the following aspects.
[1]下記一般式(1)で表される構造単位を含み、フッ素原子含有率が5重量%以下である、ポリアミド酸。 [1] A polyamic acid containing a structural unit represented by the following general formula (1) and having a fluorine atom content of 5% by weight or less.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 前記一般式(1)中、R及びRは、各々独立に、水素原子、1価の脂肪族基又は1価の芳香族基を表し、Xは、2価の有機基を表す。 In general formula (1), R 1 and R 2 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group, and X 1 represents a divalent organic group.
[2]前記一般式(1)中、R及びRは、いずれも水素原子を表す、前記[1]に記載のポリアミド酸。 [2] The polyamic acid according to [1], wherein both R 1 and R 2 in the general formula (1) represent a hydrogen atom.
[3]前記一般式(1)中、Xは、下記化学式(2-1)で表される2価の有機基、及び下記一般式(2-2)で表される2価の有機基からなる群より選ばれる一種以上である、前記[1]又は[2]に記載のポリアミド酸。 [3] In the general formula (1), X 1 is a divalent organic group represented by the following chemical formula (2-1) and a divalent organic group represented by the following general formula (2-2) Polyamic acid according to the above [1] or [2], which is one or more selected from the group consisting of.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記一般式(2-2)中、Yは、下記化学式(3-1)で表される2価の有機基、下記化学式(3-2)で表される2価の有機基、下記化学式(3-3)で表される2価の有機基、下記化学式(3-4)で表される2価の有機基、下記化学式(3-5)で表される2価の有機基、及び下記化学式(3-6)で表される2価の有機基からなる群より選ばれる一種以上である。 In the general formula (2-2), Y 1 is a divalent organic group represented by the following chemical formula (3-1), a divalent organic group represented by the following chemical formula (3-2), a divalent organic group represented by (3-3), a divalent organic group represented by the following chemical formula (3-4), a divalent organic group represented by the following chemical formula (3-5), and It is one or more selected from the group consisting of divalent organic groups represented by the following chemical formula (3-6).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[4]下記一般式(4)で表される構造単位を更に含む、前記[1]~[3]のいずれか一つに記載のポリアミド酸。 [4] The polyamic acid according to any one of [1] to [3], further comprising a structural unit represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 前記一般式(4)中、R及びRは、各々独立に、水素原子、1価の脂肪族基又は1価の芳香族基を表し、Xは、2価の有機基を表し、Yは、下記化学式(5-1)で表される4価の有機基、下記化学式(5-2)で表される4価の有機基、下記化学式(5-3)で表される4価の有機基、及び下記化学式(5-4)で表される4価の有機基からなる群より選ばれる一種以上である。 In the general formula (4), R 3 and R 4 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group, X 2 represents a divalent organic group, Y 2 is a tetravalent organic group represented by the following chemical formula (5-1), a tetravalent organic group represented by the following chemical formula (5-2), or a tetravalent organic group represented by the following chemical formula (5-3). It is one or more selected from the group consisting of a valent organic group and a tetravalent organic group represented by the following chemical formula (5-4).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[5]フッ素原子含有率が、1重量%未満である、前記[1]~[4]のいずれか一つに記載のポリアミド酸。 [5] The polyamic acid according to any one of [1] to [4], which has a fluorine atom content of less than 1% by weight.
[6]前記[1]~[5]のいずれか一つに記載のポリアミド酸と、有機溶媒とを含有する、ポリアミド酸組成物。 [6] A polyamic acid composition containing the polyamic acid according to any one of [1] to [5] and an organic solvent.
[7]更にイミド化促進剤を含有する、前記[6]に記載のポリアミド酸組成物。 [7] The polyamic acid composition according to [6] above, which further contains an imidization accelerator.
[8]前記イミド化促進剤の量が、前記ポリアミド酸100重量部に対して、10重量部以下である、前記[7]に記載のポリアミド酸組成物。 [8] The polyamic acid composition according to [7], wherein the amount of the imidization accelerator is 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid.
[9]前記[1]~[5]のいずれか一つに記載のポリアミド酸のイミド化物であるポリイミド。 [9] A polyimide which is an imidized polyamic acid according to any one of [1] to [5].
[10]1%重量減少温度が500℃以上である、前記[9]に記載のポリイミド。 [10] The polyimide according to [9] above, which has a 1% weight loss temperature of 500°C or higher.
[11]ガラス転移温度が420℃以上である、前記[9]又は[10]に記載のポリイミド。 [11] The polyimide according to the above [9] or [10], which has a glass transition temperature of 420°C or higher.
[12]前記[9]~[11]のいずれか一つに記載のポリイミドを含むポリイミド膜。 [12] A polyimide film containing the polyimide according to any one of [9] to [11].
[13]黄色度が25以下である、前記[12]に記載のポリイミド膜。 [13] The polyimide film according to [12] above, which has a yellowness index of 25 or less.
[14]支持体と、前記[12]又は[13]に記載のポリイミド膜とを有する積層体。 [14] A laminate comprising a support and the polyimide film described in [12] or [13] above.
[15]前記支持体は、ガラス基板であり、
 前記ポリイミド膜と前記ガラス基板との間の内部応力が、40MPa以下である、前記[14]に記載の積層体。
[15] The support is a glass substrate,
The laminate according to [14], wherein the internal stress between the polyimide film and the glass substrate is 40 MPa or less.
[16]支持体とポリイミド膜とを有する積層体の製造方法であって、
 前記[6]~[8]のいずれか一つに記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
[16] A method for producing a laminate having a support and a polyimide film,
By applying the polyamic acid composition according to any one of [6] to [8] on a support, a coating film containing the polyamic acid is formed, and the coating film is heated to obtain the polyamide A method for producing a laminate by imidating an acid.
[17]前記[12]又は[13]に記載のポリイミド膜と、前記ポリイミド膜上に配置された電子素子とを有する電子デバイス。 [17] An electronic device comprising the polyimide film described in [12] or [13] above, and an electronic element disposed on the polyimide film.
 本発明に係るポリアミド酸を用いて製造されるポリイミドは、内部応力を低減しつつ、透明性及び耐熱性に優れる。そのため、本発明に係るポリアミド酸を用いて製造されるポリイミドは、透明性及び耐熱性が要求され、かつ高温プロセスを経て製造される電子デバイスの材料として好適である。 The polyimide produced using the polyamic acid according to the present invention has excellent transparency and heat resistance while reducing internal stress. Therefore, the polyimide produced using the polyamic acid according to the present invention is suitable as a material for electronic devices that require transparency and heat resistance and are produced through high-temperature processes.
 以下、本発明の好適な実施形態について詳しく説明するが、本発明はこれらに限定されるものではない。 Preferred embodiments of the present invention will be described in detail below, but the present invention is not limited to these.
 まず、本明細書中で使用される用語について説明する。「構造単位」とは、重合体を構成する繰り返し単位のことをいう。「ポリアミド酸」は、下記一般式(6)で表される構造単位(以下、「構造単位(6)」と記載することがある)を含む重合体である。なお、本明細書では、ポリアミド酸だけでなく、ポリアミド酸エステル(ポリアミド酸アルキルエステル、ポリアミド酸アリールエステル等)も「ポリアミド酸」と記載する。 First, the terms used in this specification will be explained. A "structural unit" refers to a repeating unit that constitutes a polymer. A "polyamic acid" is a polymer containing a structural unit represented by the following general formula (6) (hereinafter sometimes referred to as "structural unit (6)"). In this specification, not only polyamic acid but also polyamic acid esters (polyamic acid alkyl esters, polyamic acid aryl esters, etc.) are referred to as "polyamic acid".
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(6)中、R及びRは、各々独立に、水素原子、1価の脂肪族基又は1価の芳香族基を表し、Aは、例えば、テトラカルボン酸二無水物残基(テトラカルボン酸二無水物由来の4価の有機基)を表し、Aは、例えば、ジアミン残基(ジアミン由来の2価の有機基)を表す。 In general formula (6), R 5 and R 6 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group, A 1 is, for example, a tetracarboxylic dianhydride residue group (tetravalent organic group derived from tetracarboxylic dianhydride), and A2 represents, for example, a diamine residue (divalent organic group derived from diamine).
 ポリアミド酸を構成する全構造単位に対する構造単位(6)の含有率は、例えば50モル%以上100モル%以下であり、好ましくは60モル%以上100モル%以下であり、より好ましくは70モル%以上100モル%以下であり、更に好ましくは80モル%以上100モル%以下であり、更により好ましくは90モル%以上100モル%以下であり、100モル%であってもよい。 The content of the structural unit (6) with respect to all structural units constituting the polyamic acid is, for example, 50 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol%. 100 mol % or more, more preferably 80 mol % or more and 100 mol % or less, even more preferably 90 mol % or more and 100 mol % or less, and may be 100 mol %.
 「1%重量減少温度」は、測定温度150℃におけるポリイミドの重量を基準(100重量%)とし、上記基準の重量に対して1重量%減少した際の測定温度である。1%重量減少温度の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 "1% weight loss temperature" is the measurement temperature when the weight of polyimide at a measurement temperature of 150°C is taken as the reference (100% by weight), and the weight is reduced by 1% by weight with respect to the reference weight. The method for measuring the 1% weight loss temperature is the same method as in Examples described later or a method based thereon.
 「m/z」は、質量分析の測定結果であるマススペクトルの横軸から読み取ることのできる測定値であり、「イオンの質量を統一原子質量単位(ダルトン)で割って得られた無次元量を更にイオンの電荷数の絶対値で割って得られる無次元量」である。 "m/z" is a measurement that can be read from the horizontal axis of the mass spectrum, which is the result of mass spectrometry, and is "a dimensionless quantity obtained by dividing the mass of an ion by the unified atomic mass unit (Dalton). is further divided by the absolute value of the ion charge number.
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。また、テトラカルボン酸二無水物を「酸二無水物」と記載することがある。また、本明細書に例示の成分や官能基等は、特記しない限り、単独で用いてもよく、2種以上を併用してもよい。 In the following, "system" may be added after the name of the compound to generically refer to the compound and its derivatives. When the polymer name is expressed by adding "system" after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative. Moreover, a tetracarboxylic dianhydride may be described as an "acid dianhydride". In addition, unless otherwise specified, the components, functional groups, and the like exemplified in this specification may be used alone or in combination of two or more.
<本発明の好適な実施形態>
 本実施形態に係るポリアミド酸は、下記一般式(1)で表される構造単位(以下、「構造単位(1)」と記載することがある)を含み、フッ素原子含有率が5重量%以下である。
<Preferred embodiment of the present invention>
The polyamic acid according to the present embodiment includes a structural unit represented by the following general formula (1) (hereinafter sometimes referred to as "structural unit (1)"), and has a fluorine atom content of 5% by weight or less. is.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(1)中、R及びRは、各々独立に、水素原子、1価の脂肪族基又は1価の芳香族基を表し、Xは、2価の有機基を表す。イミド化を容易に行うためには、R及びRとしては、各々独立に、水素原子、メチル基又はエチル基が好ましく、R及びRが、いずれも水素原子を表すことがより好ましい。以下、特に断りがない限り、一般式(1)中のR及びRが、いずれも水素原子を表す構造単位を、構造単位(1)とする。 In general formula (1), R 1 and R 2 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group, and X 1 represents a divalent organic group. In order to facilitate imidization, R 1 and R 2 each independently preferably represent a hydrogen atom, a methyl group or an ethyl group, and more preferably both R 1 and R 2 represent a hydrogen atom. . Hereinafter, unless otherwise specified, a structural unit in which R 1 and R 2 in general formula (1) each represent a hydrogen atom is referred to as structural unit (1).
 構造単位(1)は、スピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン(以下、「SFDA」と記載することがある)由来の部分構造を有する。つまり、構造単位(1)は、上述した一般式(6)中のAとしてSFDA残基を有する。 Structural unit (1) is spiro[11H-diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1,3,7,9-tetrone ( hereinafter, it may be referred to as “SFDA”). That is, structural unit ( 1 ) has an SFDA residue as A1 in general formula (6) described above.
 本実施形態に係るポリアミド酸は、構造単位(1)を含み、かつフッ素原子含有率が5重量%以下であるため、本実施形態に係るポリアミド酸を用いて製造されるポリイミドは、内部応力を低減しつつ、透明性及び耐熱性に優れる。その理由は、以下のように推測される。 Since the polyamic acid according to the present embodiment contains the structural unit (1) and has a fluorine atom content of 5% by weight or less, the polyimide produced using the polyamic acid according to the present embodiment has internal stress. Excellent transparency and heat resistance while reducing The reason is presumed as follows.
 SFDAは、キサンテン骨格に由来して剛直な構造を有しているため、ガラス転移温度の高い(耐熱性に優れる)ポリイミドの原料(モノマー)として適している上、低CTEのポリイミドの原料(モノマー)として適している。また、SFDAは、フルオレン骨格に由来して、高透明性のポリイミドの原料(モノマー)として適している。また、構造単位(1)を含むポリアミド酸は、主鎖にキサンテン骨格を有するとともに、側鎖にフルオレン骨格を有するため、構造単位(1)を含むポリアミド酸を用いて製造されるポリイミド膜は、低位相差性を示す。 Since SFDA has a rigid structure derived from the xanthene skeleton, it is suitable as a raw material (monomer) for polyimide with a high glass transition temperature (excellent in heat resistance), and is also a raw material (monomer) for polyimide with a low CTE. ) is suitable as In addition, SFDA is suitable as a raw material (monomer) for highly transparent polyimide due to its fluorene skeleton. In addition, the polyamic acid containing the structural unit (1) has a xanthene skeleton in the main chain and a fluorene skeleton in the side chain. Therefore, the polyimide film produced using the polyamic acid containing the structural unit (1) Shows low retardation.
 一方、本発明者らの検討により、ポリアミド酸を合成するためのモノマーとして、SFDAと、フッ素含有モノマーとを併用すると、ポリアミド酸の高分子鎖間の配向性が低下し、CTEが高くなる傾向があることが判明した。これに対し、本実施形態に係るポリアミド酸は、フッ素原子含有率が5重量%以下であるため、高分子鎖間の配向性の低下が抑制される。 On the other hand, according to the studies of the present inventors, when SFDA and a fluorine-containing monomer are used together as monomers for synthesizing polyamic acid, the orientation between polymer chains of polyamic acid tends to decrease and the CTE tends to increase. It turned out that there is In contrast, since the polyamic acid according to the present embodiment has a fluorine atom content of 5% by weight or less, the decrease in orientation between polymer chains is suppressed.
 よって、本実施形態に係るポリアミド酸は、低CTEに寄与するSFDA残基を有し、かつ、フッ素原子含有率が5重量%以下であるため、支持体上にポリイミド膜を形成して積層体を得る際に発生する内部応力を低減できる。従って、本実施形態に係るポリアミド酸を用いて製造されるポリイミドは、内部応力を低減できる。 Therefore, the polyamic acid according to the present embodiment has an SFDA residue that contributes to a low CTE and has a fluorine atom content of 5% by weight or less, so that a polyimide film is formed on the support to form a laminate It is possible to reduce the internal stress generated when obtaining Therefore, the polyimide produced using the polyamic acid according to the present embodiment can have reduced internal stress.
 また、本実施形態に係るポリアミド酸は、透明性及び耐熱性に寄与するSFDA残基を有するため、本実施形態に係るポリアミド酸を用いて製造されるポリイミドは、透明性及び耐熱性に優れる。 In addition, since the polyamic acid according to the present embodiment has an SFDA residue that contributes to transparency and heat resistance, the polyimide produced using the polyamic acid according to the present embodiment has excellent transparency and heat resistance.
 内部応力をより低減するためには、本実施形態に係るポリアミド酸(以下、「ポリアミド酸(1)」と記載することがある)のフッ素原子含有率は、1重量%未満であることが好ましく、0.5重量%未満であることがより好ましく、0.1重量%未満であることが更に好ましく、実質的に0重量%である(ポリアミド酸(1)がフッ素含有モノマー由来の残基を含まない)ことが特に好ましい。なお、フッ素原子含有率(単位:重量%)は、ポリアミド酸の全重量に占めるフッ素原子の重量の割合である。ポリアミド酸は、ジアミンとテトラカルボン酸二無水物との重付加物であり、重合前のジアミン及びテトラカルボン酸二無水物の合計重量は、重合後のポリアミド酸の重量に等しい。つまり、ポリアミド酸のフッ素原子含有率は、「ポリアミド酸を形成するためのモノマーに含まれるフッ素原子の合計重量」を「ポリアミド酸を形成するためのモノマーの合計重量」で除した値に、100を乗じて得られる。従って、ポリアミド酸のフッ素原子含有率は、以下の式に基づいて算出できる。 In order to further reduce the internal stress, the fluorine atom content of the polyamic acid (hereinafter sometimes referred to as "polyamic acid (1)") according to the present embodiment is preferably less than 1% by weight. , more preferably less than 0.5% by weight, more preferably less than 0.1% by weight, and substantially 0% by weight (polyamic acid (1) contains residues derived from fluorine-containing monomers not included) is particularly preferred. The fluorine atom content (unit: % by weight) is the ratio of the fluorine atom weight to the total weight of the polyamic acid. Polyamic acid is a polyadduct of diamine and tetracarboxylic dianhydride, and the total weight of diamine and tetracarboxylic dianhydride before polymerization is equal to the weight of polyamic acid after polymerization. That is, the fluorine atom content of the polyamic acid is the value obtained by dividing the "total weight of fluorine atoms contained in the monomers for forming the polyamic acid" by the "total weight of the monomers for forming the polyamic acid". obtained by multiplying Therefore, the fluorine atom content of polyamic acid can be calculated based on the following formula.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 上記の式において、nはジアミン成分iの量(単位:モル)であり、nはテトラカルボン酸二無水物jの量(単位:モル)である。Mはジアミン成分iの分子量であり、Mはテトラカルボン酸二無水物jの分子量である。Fはジアミン成分iの1分子に含まれるフッ素原子の数であり、Fはテトラカルボン酸二無水物jの1分子に含まれるフッ素原子の数である。なお、19.00はフッ素の原子量である。例えば、ジアミンとして0.05モルの2,2’-ビス(トリフルオロメチル)ベンジジン(分子量:320.2、フッ素原子数:6)及び0.95モルの4-アミノフェニル-4-アミノベンゾエート(分子量:228.3、フッ素原子数:0)を用い、テトラカルボン酸二無水物として0.3モルのSFDA(分子量:472.4、フッ素原子数:0)及び0.7モルの3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(分子量294.2、フッ素原子数:0)を用いて重合したポリアミド酸のフッ素原子含有率は、100×19.00×(0.05×6)/(0.05×320.2+0.95×228.3+0.3×472.4+0.7×294.2)=0.98重量%である。 In the above formula, ni is the amount (unit: mol) of diamine component i , and nj is the amount (unit: mol) of tetracarboxylic dianhydride j . M i is the molecular weight of diamine component i and M j is the molecular weight of tetracarboxylic dianhydride j. F i is the number of fluorine atoms contained in one molecule of diamine component i, and F j is the number of fluorine atoms contained in one molecule of tetracarboxylic dianhydride j. 19.00 is the atomic weight of fluorine. For example, as diamines, 0.05 mol of 2,2′-bis(trifluoromethyl)benzidine (molecular weight: 320.2, number of fluorine atoms: 6) and 0.95 mol of 4-aminophenyl-4-aminobenzoate ( molecular weight: 228.3, number of fluorine atoms: 0), and 0.3 mol of SFDA (molecular weight: 472.4, number of fluorine atoms: 0) and 0.7 mol of 3,3 as tetracarboxylic dianhydride The fluorine atom content of polyamic acid polymerized using ',4,4'-biphenyltetracarboxylic dianhydride (molecular weight 294.2, number of fluorine atoms: 0) is 100 × 19.00 × (0.05 x 6)/(0.05 x 320.2 + 0.95 x 228.3 + 0.3 x 472.4 + 0.7 x 294.2) = 0.98 wt%.
 構造単位(1)は、SFDA残基と、ジアミン残基(一般式(1)中のXで表される2価の有機基)とを有する。内部応力をより低減するためには、一般式(1)中のXを与えるジアミンとしては、フッ素原子を含まないジアミンが好ましい。 Structural unit (1) has an SFDA residue and a diamine residue (a divalent organic group represented by X 1 in general formula (1)). In order to further reduce the internal stress, diamines containing no fluorine atoms are preferred as the diamines that give X 1 in the general formula (1).
 フッ素原子を含まないジアミンとしては、例えば、p-フェニレンジアミン(以下、「PDA」と記載することがある)、4-アミノフェニル-4-アミノベンゾエート(以下、「4-BAAB」と記載することがある)、4,4’-ジアミノベンズアニリド(以下、「DABA」と記載することがある)、1,4-ビス(4-アミノベンゾイルオキシ)ベンゼン(以下、「BABB」と記載することがある)、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)(以下、「PBAB」と記載することがある)、ビス(4-アミノフェニル)テレフタレート(以下、「BATP」と記載することがある)、N,N’-ジ(4-アミノフェニル)テレフタルアミド(以下、「DATA」と記載することがある)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(以下、「PAM-E」と記載することがある)、1,4-ジアミノシクロヘキサン、m-フェニレンジアミン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-オキシジアニリン、3,4’-オキシジアニリン、4,4’-ジアミノジフェニルスルホン、m-トリジン、o-トリジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール、3,5-ジアミノ安息香酸、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、4,4’-メチレンビス(シクロヘキサンアミン)及びこれらの誘導体が挙げられ、これらを単独又は2種類以上用いてもよい。 Examples of diamines containing no fluorine atom include p-phenylenediamine (hereinafter sometimes referred to as "PDA") and 4-aminophenyl-4-aminobenzoate (hereinafter referred to as "4-BAAB"). ), 4,4′-diaminobenzanilide (hereinafter sometimes referred to as “DABA”), 1,4-bis(4-aminobenzoyloxy)benzene (hereinafter referred to as “BABB”) ), N,N'-(1,4-phenylene)bis(4-aminobenzamide) (hereinafter sometimes referred to as "PBAB"), bis(4-aminophenyl) terephthalate (hereinafter "BATP" ), N,N'-di(4-aminophenyl)terephthalamide (hereinafter sometimes referred to as "DATA"), 1,3-bis(3-aminopropyl)tetramethyldi Siloxane (hereinafter sometimes referred to as "PAM-E"), 1,4-diaminocyclohexane, m-phenylenediamine, 9,9-bis(4-aminophenyl)fluorene, 4,4'-oxydianiline , 3,4′-oxydianiline, 4,4′-diaminodiphenylsulfone, m-tolidine, o-tolidine, 4,4′-bis(4-aminophenoxy)biphenyl, 2-(4-aminophenyl)- 6-aminobenzoxazole, 3,5-diaminobenzoic acid, 4,4'-diamino-3,3'-dihydroxybiphenyl, 4,4'-methylenebis(cyclohexanamine) and derivatives thereof, and these alone Alternatively, two or more types may be used.
 内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、一般式(1)中のXは、PDA残基、4-BAAB残基、DABA残基、BABB残基、PBAB残基、BATP残基及びDATA残基からなる群より選ばれる一種以上であることが好ましい。 In order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, X 1 in general formula (1) is a PDA residue, a 4-BAAB residue, a DABA residue, a BABB residue. , PBAB residues, BATP residues and DATA residues.
 PDA残基は、下記化学式(2-1)で表される2価の有機基である。4-BAAB残基は、下記一般式(2-2)で表される2価の有機基であり、かつ一般式(2-2)中のYとして下記化学式(3-1)で表される2価の有機基を有する。DABA残基は、下記一般式(2-2)で表される2価の有機基であり、かつ一般式(2-2)中のYとして下記化学式(3-2)で表される2価の有機基を有する。BABB残基は、下記一般式(2-2)で表される2価の有機基であり、かつ一般式(2-2)中のYとして下記化学式(3-3)で表される2価の有機基を有する。PBAB残基は、下記一般式(2-2)で表される2価の有機基であり、かつ一般式(2-2)中のYとして下記化学式(3-4)で表される2価の有機基を有する。BATP残基は、下記一般式(2-2)で表される2価の有機基であり、かつ一般式(2-2)中のYとして下記化学式(3-5)で表される2価の有機基を有する。DATA残基は、下記一般式(2-2)で表される2価の有機基であり、かつ一般式(2-2)中のYとして下記化学式(3-6)で表される2価の有機基を有する。 A PDA residue is a divalent organic group represented by the following chemical formula (2-1). 4-BAAB residue is a divalent organic group represented by the following general formula (2-2), and represented by the following chemical formula (3-1) as Y 1 in the general formula (2-2) It has a divalent organic group that DABA residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-2) as Y 1 in general formula (2-2) have a valent organic group. BABB residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-3) as Y 1 in general formula (2-2) have a valent organic group. The PBAB residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-4) as Y 1 in the general formula (2-2) have a valent organic group. BATP residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-5) as Y 1 in the general formula (2-2) have a valent organic group. DATA residue is a divalent organic group represented by the following general formula (2-2), and 2 represented by the following chemical formula (3-6) as Y 1 in general formula (2-2) have a valent organic group.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 耐熱性に更に優れるポリイミドを得るためには、一般式(1)中のXがPDA残基であることが好ましい。透明性に更に優れるポリイミドを得るためには、一般式(1)中のXが、4-BAAB残基、BABB残基及びBATP残基からなる群より選ばれる一種以上であることが好ましく、4-BAAB残基であることがより好ましい。内部応力を更に低減できるポリイミドを得るためには、一般式(1)中のXが、DABA残基、PBAB残基及びDATA残基からなる群より選ばれる一種以上であることが好ましく、DATA残基であることがより好ましい。 In order to obtain a polyimide with even better heat resistance, X 1 in general formula (1) is preferably a PDA residue. In order to obtain a polyimide with further excellent transparency, X 1 in the general formula (1) is preferably one or more selected from the group consisting of 4-BAAB residues, BABB residues and BATP residues, 4-BAAB residues are more preferred. In order to obtain a polyimide that can further reduce internal stress, X 1 in general formula (1) is preferably one or more selected from the group consisting of DABA residues, PBAB residues and DATA residues. A residue is more preferred.
 内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)を構成する全ジアミン残基に対する、PDA残基、4-BAAB残基、DABA残基、BABB残基、PBAB残基、BATP残基及びDATA残基からなる群より選ばれる一種以上の残基の含有率(二種以上含まれる場合は、合計含有率)は、30モル%以上であることが好ましく、40モル%以上であることがより好ましく、50モル%以上であることが更に好ましく、60モル%以上であることが更により好ましく、70モル%以上、80モル%以上又は90モル%以上であってもよく、100モル%であっても構わない。 In order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, PDA residues, 4-BAAB residues, DABA residues, The content of one or more residues selected from the group consisting of BABB residues, PBAB residues, BATP residues and DATA residues (if two or more are included, the total content) is 30 mol% or more. is preferably 40 mol% or more, more preferably 50 mol% or more, even more preferably 60 mol% or more, 70 mol% or more, 80 mol% or more, or 90 mol % or more, or 100 mol %.
 また、無機材料(例えば、ガラス基板等)への適度な密着性を付与するためには、ポリアミド酸(1)がPAM-E残基を含むことが好ましく、ポリアミド酸(1)を構成する全ジアミン残基に対するPAM-E残基の含有率が0.01モル%以上1モル%以下であることがより好ましい。 In addition, in order to impart appropriate adhesion to inorganic materials (eg, glass substrates, etc.), the polyamic acid (1) preferably contains a PAM-E residue. More preferably, the content of PAM-E residues relative to diamine residues is 0.01 mol % or more and 1 mol % or less.
 ポリアミド酸(1)を合成する際は、SFDA以外の酸二無水物をモノマーとして用いてもよい。内部応力をより低減するためには、SFDA以外の酸二無水物としては、フッ素原子を含まない酸二無水物が好ましい。 When synthesizing polyamic acid (1), an acid dianhydride other than SFDA may be used as a monomer. In order to further reduce the internal stress, acid dianhydrides other than SFDA are preferably acid dianhydrides containing no fluorine atoms.
 フッ素原子を含まない酸二無水物としては、例えば、ピロメリット酸二無水物(以下、「PMDA」と記載することがある)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下、「BPDA」と記載することがある)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(以下、「BPAF」と記載することがある)、4,4’-オキシジフタル酸無水物(以下、「ODPA」と記載することがある)、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物及びこれらの誘導体が挙げられ、これらを単独又は2種類以上用いてもよい。 Acid dianhydrides containing no fluorine atom include, for example, pyromellitic dianhydride (hereinafter sometimes referred to as "PMDA") and 3,3',4,4'-biphenyltetracarboxylic dianhydride. (hereinafter sometimes referred to as "BPDA"), 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride (hereinafter sometimes referred to as "BPAF"), 4,4 '-Oxydiphthalic anhydride (hereinafter sometimes referred to as "ODPA"), 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride 2,2′,3,3′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, dicyclohexyl-3,3′,4,4′- Tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride and derivatives thereof, which may be used alone or Two or more types may be used.
 内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)は、SFDA残基以外の酸二無水物残基として、PMDA残基、BPDA残基、BPAF残基及びODPA残基からなる群より選ばれる一種以上を含むことが好ましい。つまり、内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)は、下記一般式(4)で表される構造単位(以下、「構造単位(4)」と記載することがある)を更に含むことが好ましい。 In order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, polyamic acid (1) contains, as acid dianhydride residues other than SFDA residues, PMDA residues, BPDA residues, It preferably contains one or more selected from the group consisting of BPAF residues and ODPA residues. In other words, in order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, the polyamic acid (1) is a structural unit represented by the following general formula (4) (hereinafter, “structural unit ( 4)”) is preferably further included.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(4)中、R及びRは、各々独立に、水素原子、1価の脂肪族基又は1価の芳香族基を表し、Xは、2価の有機基を表し、Yは、下記化学式(5-1)で表される4価の有機基、下記化学式(5-2)で表される4価の有機基、下記化学式(5-3)で表される4価の有機基、及び下記化学式(5-4)で表される4価の有機基からなる群より選ばれる一種以上である。 In general formula (4), R 3 and R 4 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group, X 2 represents a divalent organic group, Y 2 is a tetravalent organic group represented by the following chemical formula (5-1), a tetravalent organic group represented by the following chemical formula (5-2), a tetravalent organic group represented by the following chemical formula (5-3) and a tetravalent organic group represented by the following chemical formula (5-4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 PMDA残基は、化学式(5-1)で表される4価の有機基である。BPDA残基は、化学式(5-2)で表される4価の有機基である。BPAF残基は、化学式(5-3)で表される4価の有機基である。ODPA残基は、化学式(5-4)で表される4価の有機基である。 A PMDA residue is a tetravalent organic group represented by the chemical formula (5-1). A BPDA residue is a tetravalent organic group represented by the chemical formula (5-2). A BPAF residue is a tetravalent organic group represented by the chemical formula (5-3). The ODPA residue is a tetravalent organic group represented by chemical formula (5-4).
 一般式(4)中、R、R及びXの好ましい基としては、例えば、それぞれ一般式(1)中のR、R及びXの好ましい基として挙げたものと同じである。 In general formula (4), preferred groups for R 3 , R 4 and X 2 are, for example, the same as the preferred groups for R 1 , R 2 and X 1 in general formula (1). .
 内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)を構成する全酸二無水物残基に対するSFDA残基の含有率は、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、15モル%以上であることが更に好ましく、20モル%以上であることが更により好ましく、30モル%以上、40モル%以上又は50モル%以上であってもよく、100モル%であっても構わない。 In order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, the content of SFDA residues with respect to all acid dianhydride residues constituting polyamic acid (1) is 5 mol% or more. is preferably 10 mol% or more, more preferably 15 mol% or more, even more preferably 20 mol% or more, 30 mol% or more, 40 mol% or more, or It may be 50 mol % or more, or 100 mol %.
 内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)を構成する全酸二無水物残基に対する、PMDA残基、BPDA残基、BPAF残基及びODPA残基からなる群より選ばれる一種以上の残基の含有率(二種以上含まれる場合は、合計含有率)は、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、20モル%以上であることが更に好ましく、30モル%以上であることが更により好ましく、40モル%以上、50モル%以上、60モル%以上、70モル%以上又は80モル%以上であってもよい。また、内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)を構成する全酸二無水物残基に対する、PMDA残基、BPDA残基、BPAF残基及びODPA残基からなる群より選ばれる一種以上の残基の含有率(二種以上含まれる場合は、合計含有率)は、95モル%以下であることが好ましく、90モル%以下であることがより好ましい。 In order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, PMDA residue, BPDA residue, BPAF residue for all acid dianhydride residues constituting polyamic acid (1) and the content of one or more residues selected from the group consisting of ODPA residues (if two or more are included, the total content) is preferably 5 mol% or more, and 10 mol% or more. is more preferably 20 mol% or more, even more preferably 30 mol% or more, 40 mol% or more, 50 mol% or more, 60 mol% or more, 70 mol% or more or 80 mol% or more. In addition, in order to obtain a polyimide that is more excellent in transparency and heat resistance while further reducing internal stress, PMDA residue, BPDA residue, BPAF with respect to all acid dianhydride residues constituting polyamic acid (1) The content of one or more residues selected from the group consisting of residues and ODPA residues (if two or more are included, the total content) is preferably 95 mol% or less, and 90 mol% or less. It is more preferable to have
 内部応力をより低減しつつ、透明性及び耐熱性に更に優れるポリイミドを得るためには、ポリアミド酸(1)は、SFDA残基以外の酸二無水物残基として、BPDA残基を含むことが好ましい。ポリアミド酸(1)がBPDA残基を含む場合、内部応力を更に低減しつつ、透明性及び耐熱性に更に優れるポリイミドを得るためには、BPDA残基に対するSFDA残基の物質量比(SFDA残基/BPDA残基)は、10/90以上50/50以下であることが好ましく、10/90以上40/60以下であることがより好ましく、10/90以上35/65以下であることが更に好ましく、10/90以上30/70以下であることが更により好ましい。 In order to obtain a polyimide having further excellent transparency and heat resistance while further reducing internal stress, the polyamic acid (1) may contain a BPDA residue as an acid dianhydride residue other than the SFDA residue. preferable. When the polyamic acid (1) contains a BPDA residue, in order to obtain a polyimide having further excellent transparency and heat resistance while further reducing the internal stress, the substance amount ratio of the SFDA residue to the BPDA residue (SFDA residue group/BPDA residue) is preferably 10/90 or more and 50/50 or less, more preferably 10/90 or more and 40/60 or less, and further preferably 10/90 or more and 35/65 or less. It is more preferably 10/90 or more and 30/70 or less.
 ポリアミド酸(1)は、構造単位として、構造単位(1)のみを含んでいてもよく、構造単位(1)及び構造単位(4)のみを含んでいてもよく、構造単位(1)及び構造単位(4)以外の構造単位(他の構造単位)を含んでいてもよい。内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)を構成する全構造単位に対する構造単位(1)の含有率は、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、15モル%以上であることが更に好ましく、20モル%以上であることが更により好ましく、30モル%以上、40モル%以上又は50モル%以上であってもよく、100モル%であっても構わない。 The polyamic acid (1) may contain only the structural unit (1) as a structural unit, or may contain only the structural unit (1) and the structural unit (4), and the structural unit (1) and the structural A structural unit (another structural unit) other than the unit (4) may be included. In order to obtain a polyimide having excellent transparency and heat resistance while further reducing internal stress, the content of the structural unit (1) with respect to the total structural units constituting the polyamic acid (1) is 5 mol% or more. is preferably 10 mol% or more, more preferably 15 mol% or more, even more preferably 20 mol% or more, 30 mol% or more, 40 mol% or more, or 50 mol% % or more, or 100 mol %.
 ポリアミド酸(1)が構造単位(4)を含む場合、内部応力をより低減しつつ、透明性及び耐熱性により優れるポリイミドを得るためには、ポリアミド酸(1)を構成する全構造単位に対する、構造単位(1)及び構造単位(4)の合計含有率は、60モル%以上100モル%以下であることが好ましく、70モル%以上100モル%以下であることがより好ましく、80モル%以上100モル%以下であることが更に好ましく、90モル%以上100モル%以下であることが更により好ましく、100モル%であってもよい。 When the polyamic acid (1) contains the structural unit (4), in order to obtain a polyimide having excellent transparency and heat resistance while further reducing the internal stress, for all the structural units constituting the polyamic acid (1), The total content of structural unit (1) and structural unit (4) is preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol% or more and 100 mol% or less, and 80 mol% or more. It is more preferably 100 mol % or less, even more preferably 90 mol % or more and 100 mol % or less, and may be 100 mol %.
 内部応力を更に低減しつつ、透明性及び耐熱性に更に優れるポリイミドを得るためには、ポリアミド酸(1)は、下記条件1を満たすことが好ましく、下記条件2を満たすことがより好ましく、下記条件3を満たすことが更に好ましい。
 条件1:ポリアミド酸(1)が、SFDA残基以外の酸二無水物残基としてBPDA残基を含み、かつフッ素含有モノマー由来の残基を含まない。
 条件2:上記条件1を満たし、かつポリアミド酸(1)が、PDA残基、4-BAAB残基、DABA残基、BABB残基、PBAB残基、BATP残基及びDATA残基からなる群より選ばれる一種以上のジアミン残基を含む。
 条件3:上記条件2を満たし、かつBPDA残基に対するSFDA残基の物質量比(SFDA残基/BPDA残基)が、10/90以上35/65以下である。
In order to obtain a polyimide having further excellent transparency and heat resistance while further reducing the internal stress, the polyamic acid (1) preferably satisfies the following condition 1, more preferably satisfies the following condition 2. It is more preferable to satisfy condition 3.
Condition 1: Polyamic acid (1) contains a BPDA residue as an acid dianhydride residue other than an SFDA residue, and does not contain a residue derived from a fluorine-containing monomer.
Condition 2: satisfying condition 1 above, and polyamic acid (1) is selected from the group consisting of a PDA residue, a 4-BAAB residue, a DABA residue, a BABB residue, a PBAB residue, a BATP residue and a DATA residue It contains one or more selected diamine residues.
Condition 3: Satisfies Condition 2 above, and the substance amount ratio of SFDA residues to BPDA residues (SFDA residues/BPDA residues) is 10/90 or more and 35/65 or less.
 ポリアミド酸(1)は、公知の一般的な方法にて合成することができ、例えば、有機溶媒中でジアミンとテトラカルボン酸二無水物とを反応させることにより得ることができる。ポリアミド酸(1)の具体的な合成方法の一例について説明する。まず、アルゴン、窒素等の不活性ガス雰囲気中において、ジアミンを、有機溶媒中に溶解又はスラリー状に分散させて、ジアミン溶液を調製する。そして、テトラカルボン酸二無水物を、有機溶媒に溶解又はスラリー状に分散させた状態とした後、あるいは固体の状態で、上記ジアミン溶液中に添加する。 Polyamic acid (1) can be synthesized by a known general method, and can be obtained, for example, by reacting a diamine and a tetracarboxylic dianhydride in an organic solvent. An example of a specific method for synthesizing polyamic acid (1) will be described. First, a diamine solution is prepared by dissolving or dispersing a diamine in an organic solvent in an inert gas atmosphere such as argon or nitrogen. Then, the tetracarboxylic dianhydride is added to the diamine solution after dissolving it in an organic solvent or dispersing it in a slurry state, or in a solid state.
 ジアミンとテトラカルボン酸二無水物とを用いてポリアミド酸(1)を合成する場合、ジアミンの物質量(ジアミンを複数種使用する場合は、各ジアミンの物質量)と、テトラカルボン酸二無水物の物質量(テトラカルボン酸二無水物を複数種使用する場合は、各テトラカルボン酸二無水物の物質量)とを調整することで、所望のポリアミド酸(1)(ジアミンとテトラカルボン酸二無水物との重合体)を得ることができる。ポリアミド酸(1)中の各残基のモル分率は、例えば、ポリアミド酸(1)の合成に使用する各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致する。また、2種のポリアミド酸をブレンドすることによって、複数種のテトラカルボン酸二無水物残基及び複数種のジアミン残基を含有するポリアミド酸(1)を得ることもできる。ジアミンとテトラカルボン酸二無水物との反応、即ち、ポリアミド酸(1)の合成反応の温度条件は、特に限定されないが、例えば20℃以上150℃以下の範囲である。ポリアミド酸(1)の合成反応の反応時間は、例えば10分以上30時間以下の範囲である。 When synthesizing polyamic acid (1) using a diamine and a tetracarboxylic dianhydride, the substance amount of the diamine (when using multiple types of diamines, the substance amount of each diamine) and the tetracarboxylic dianhydride By adjusting the amount of substance (when using multiple types of tetracarboxylic dianhydrides, the amount of each tetracarboxylic dianhydride), the desired polyamic acid (1) (diamine and tetracarboxylic acid dianhydride polymer with anhydride) can be obtained. The molar fraction of each residue in polyamic acid (1) matches, for example, the molar fraction of each monomer (diamine and tetracarboxylic dianhydride) used in synthesizing polyamic acid (1). Polyamic acid (1) containing multiple types of tetracarboxylic dianhydride residues and multiple types of diamine residues can also be obtained by blending two types of polyamic acid. The temperature conditions for the reaction between the diamine and the tetracarboxylic dianhydride, that is, the synthesis reaction of the polyamic acid (1) are not particularly limited, but are, for example, in the range of 20°C or higher and 150°C or lower. The reaction time for the synthetic reaction of polyamic acid (1) is, for example, in the range of 10 minutes or more and 30 hours or less.
 ポリアミド酸(1)の合成に使用する有機溶媒は、使用するテトラカルボン酸二無水物及びジアミンを溶解可能な溶媒が好ましく、生成するポリアミド酸(1)を溶解可能な溶媒がより好ましい。ポリアミド酸(1)の合成に使用する有機溶媒としては、例えば、テトラメチル尿素、N,N-ジメチルエチルウレアのようなウレア系溶媒;ジメチルスルホキシドのようなスルホキシド系溶媒;ジフェニルスルホン、テトラメチルスルホンのようなスルホン系溶媒;N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、3-メトキシ-N,N-ジメチルプロパンアミド(MPA)、ヘキサメチルリン酸トリアミド等のアミド系溶媒;γ-ブチロラクトン等のエステル系溶媒;クロロホルム、塩化メチレン等のハロゲン化アルキル系溶媒;ベンゼン、トルエン等の芳香族炭化水素系溶媒;フェノール、クレゾール等のフェノール系溶媒;シクロペンタノン等のケトン系溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、ジメチルエーテル、ジエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、p-クレゾールメチルエーテル等のエーテル系溶媒が挙げられる。通常これらの溶媒を単独で用いるが、必要に応じて2種以上を適宜組み合わせて用いてもよい。ポリアミド酸(1)の溶解性及び反応性を高めるためには、ポリアミド酸(1)の合成反応に使用する有機溶媒としては、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒からなる群より選択される一種以上の溶媒が好ましく、アミド系溶媒(より具体的には、DMF、DMAC、NMP、MPA等)がより好ましい。また、ポリアミド酸(1)の合成反応は、アルゴンや窒素等の不活性ガス雰囲気下で行うことが好ましい。 The organic solvent used for synthesizing polyamic acid (1) is preferably a solvent capable of dissolving the tetracarboxylic dianhydride and diamine used, and more preferably a solvent capable of dissolving polyamic acid (1) to be produced. Examples of organic solvents used for synthesizing polyamic acid (1) include urea-based solvents such as tetramethylurea and N,N-dimethylethylurea; sulfoxide-based solvents such as dimethylsulfoxide; diphenylsulfone and tetramethylsulfone. Sulfone-based solvents such as; N,N-dimethylacetamide (DMAC), N,N-dimethylformamide (DMF), N,N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 3-methoxy-N , N-dimethylpropanamide (MPA), hexamethylphosphoric triamide and other amide solvents; γ-butyrolactone and other ester solvents; chloroform, methylene chloride and other halogenated alkyl solvents; benzene, toluene and other aromatic carbonization Hydrogen-based solvents; phenolic solvents such as phenol and cresol; ketone-based solvents such as cyclopentanone; Ether-based solvents such as cresol methyl ether are included. These solvents are usually used alone, but if necessary, two or more of them may be used in appropriate combination. In order to increase the solubility and reactivity of the polyamic acid (1), the organic solvent used in the synthetic reaction of the polyamic acid (1) consists of amide solvents, ketone solvents, ester solvents and ether solvents. One or more solvents selected from the group are preferred, and amide solvents (more specifically, DMF, DMAC, NMP, MPA, etc.) are more preferred. Further, the synthetic reaction of polyamic acid (1) is preferably carried out in an inert gas atmosphere such as argon or nitrogen.
 ポリアミド酸(1)の重量平均分子量は、その用途にもよるが、10,000以上1,000,000以下の範囲であることが好ましく、20,000以上500,000以下の範囲であることがより好ましく、30,000以上200,000以下の範囲であることが更に好ましい。重量平均分子量が10,000以上であれば、ポリアミド酸(1)、又はポリアミド酸(1)を用いて得られるポリイミドを、塗布膜又はポリイミド膜(フィルム)とすることが容易となる。一方、重量平均分子量が1,000,000以下であると、溶媒に対して十分な溶解性を示すため、後述するポリアミド酸組成物を用いて表面が平滑で厚みが均一な塗布膜又はポリイミド膜が得られる。ここで用いている重量平均分子量とは、ゲルパーミレーションクロマトグラフィー(GPC)を用いて測定したポリエチレンオキシド換算値のことをいう。 The weight average molecular weight of the polyamic acid (1) is preferably in the range of 10,000 or more and 1,000,000 or less, and more preferably in the range of 20,000 or more and 500,000 or less, depending on the application. More preferably, it is in the range of 30,000 or more and 200,000 or less. If the weight-average molecular weight is 10,000 or more, polyamic acid (1) or polyimide obtained using polyamic acid (1) can be easily formed into a coating film or a polyimide film (film). On the other hand, when the weight-average molecular weight is 1,000,000 or less, it exhibits sufficient solubility in a solvent, so a coating film or polyimide film having a smooth surface and a uniform thickness using a polyamic acid composition described later is obtained. The weight average molecular weight used here means a polyethylene oxide equivalent value measured using gel permeation chromatography (GPC).
 また、ポリアミド酸(1)の分子量を制御する方法として、酸二無水物とジアミンのどちらかを過剰にする方法や、フタル酸無水物やアニリンのような一官能性の酸無水物やアミンと反応させることで反応をクエンチさせる方法が挙げられる。酸二無水物とジアミンのどちらかを過剰にして重合する場合、これらの仕込みモル比が0.95から1.05の間であれば、十分な強度を有するポリイミド膜を得ることができる。なお、上記仕込みモル比は、ポリアミド酸(1)の合成に使用した酸二無水物の合計物質量に対する、ポリアミド酸(1)の合成に使用したジアミンの合計物質量の比(ジアミンの合計物質量/酸二無水物の合計物質量)である。また、フタル酸無水物、マレイン酸無水物、アニリン等で末端封止することで、ポリアミド酸(1)を用いて得られるポリイミドの着色をより低減することもできる。 In addition, as a method for controlling the molecular weight of the polyamic acid (1), a method of using either an acid dianhydride or a diamine in excess, a monofunctional acid anhydride such as phthalic anhydride or aniline, or an amine A method of quenching the reaction by reacting is included. When either the acid dianhydride or the diamine is used excessively for polymerization, a polyimide film having sufficient strength can be obtained if the molar ratio of these charged is between 0.95 and 1.05. In addition, the molar ratio of the charge is the ratio of the total amount of diamines used in the synthesis of polyamic acid (1) to the total amount of acid dianhydrides used in the synthesis of polyamic acid (1) (total amount of diamines amount/total substance amount of acid dianhydride). Further, by terminal-capping with phthalic anhydride, maleic anhydride, aniline, or the like, coloring of the polyimide obtained using the polyamic acid (1) can be further reduced.
 本実施形態に係るポリアミド酸組成物は、ポリアミド酸(1)と、有機溶媒とを含有する。ポリアミド酸組成物に含まれる有機溶媒としては、上記ポリアミド酸(1)の合成反応に使用可能な有機溶媒として例示した有機溶媒を挙げることができ、アミド系溶媒、ケトン系溶媒、エステル系溶媒及びエーテル系溶媒からなる群より選択される一種以上の溶媒が好ましく、アミド系溶媒(より具体的には、DMF、DMAC、NMP、MPA等)がより好ましい。上述した方法でポリアミド酸(1)を得た場合、反応溶液(反応後の溶液)自体を本実施形態に係るポリアミド酸組成物としてもよい。また、反応溶液から溶媒を除去して得られた固体のポリアミド酸(1)を、有機溶媒に溶解して、本実施形態に係るポリアミド酸組成物を調製してもよい。なお、本実施形態に係るポリアミド酸組成物中のポリアミド酸(1)の含有率は、特に制限されないが、例えばポリアミド酸組成物全量に対して1重量%以上80重量%以下である。 The polyamic acid composition according to the present embodiment contains polyamic acid (1) and an organic solvent. Examples of the organic solvent contained in the polyamic acid composition include the organic solvents exemplified as the organic solvent that can be used in the synthesis reaction of the polyamic acid (1), and include amide solvents, ketone solvents, ester solvents and One or more solvents selected from the group consisting of ether solvents are preferable, and amide solvents (more specifically, DMF, DMAC, NMP, MPA, etc.) are more preferable. When polyamic acid (1) is obtained by the method described above, the reaction solution (solution after reaction) itself may be used as the polyamic acid composition according to the present embodiment. Alternatively, the solid polyamic acid (1) obtained by removing the solvent from the reaction solution may be dissolved in an organic solvent to prepare the polyamic acid composition according to the present embodiment. The content of polyamic acid (1) in the polyamic acid composition according to the present embodiment is not particularly limited, but is, for example, 1% by weight or more and 80% by weight or less based on the total amount of the polyamic acid composition.
 また、本実施形態に係るポリアミド酸組成物は、加熱時間の短縮や特性発現のために、イミド化促進剤及び/又は脱水触媒を含んでいてもよい。 In addition, the polyamic acid composition according to the present embodiment may contain an imidization accelerator and/or a dehydration catalyst in order to shorten the heating time and develop properties.
 上記イミド化促進剤としては、特に限定されないが、3級アミンを用いることができる。3級アミンとしては複素環式の3級アミンが好ましい。複素環式の3級アミンの好ましい具体例としては、ピリジン、ピコリン、キノリン、イソキノリン、イミダゾール類等を挙げることができる。上記脱水触媒としては、無水酢酸、プロピオン酸無水物、n-酪酸無水物、安息香酸無水物、トリフルオロ酢酸無水物等を好ましい具体例として挙げることができる。 Although not particularly limited, a tertiary amine can be used as the imidization accelerator. A heterocyclic tertiary amine is preferred as the tertiary amine. Preferable specific examples of heterocyclic tertiary amines include pyridine, picoline, quinoline, isoquinoline and imidazoles. Preferred specific examples of the dehydration catalyst include acetic anhydride, propionic anhydride, n-butyric anhydride, benzoic anhydride, and trifluoroacetic anhydride.
 加熱時間の短縮の観点及び特性発現の観点から、イミド化促進剤の量は、100重量部のポリアミド酸(1)に対して、0.1重量部以上10重量部以下であることが好ましく、0.5重量部以上5重量部以下であることがより好ましい。また、加熱時間の短縮の観点及び特性発現の観点から、脱水触媒の量は、100重量部のポリアミド酸(1)に対して、0.1重量部以上10重量部以下であることが好ましく、0.5重量部以上5重量部以下であることがより好ましい。 From the viewpoint of shortening the heating time and the expression of properties, the amount of the imidization accelerator is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less. In addition, from the viewpoint of shortening the heating time and developing properties, the amount of the dehydration catalyst is preferably 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably 0.5 parts by weight or more and 5 parts by weight or less.
 イミド化促進剤としては、イミダゾール類が好ましい。なお、本明細書中においてイミダゾール類とは、1,3-ジアゾール環(1,3-ジアゾール環構造)を有する化合物をさす。本実施形態に係るポリアミド酸組成物に添加するイミダゾール類としては、特に限定されないが、例えば、1H-イミダゾール、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。これらの中では、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾールが好ましく、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾールがより好ましい。 As the imidization accelerator, imidazoles are preferable. In the present specification, imidazoles refer to compounds having a 1,3-diazole ring (1,3-diazole ring structure). The imidazoles added to the polyamic acid composition according to the present embodiment are not particularly limited, but examples include 1H-imidazole, 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like. Among these, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-phenylimidazole are preferred, and 1,2-dimethylimidazole and 1-benzyl-2-methylimidazole are more preferred. .
 イミダゾール類の含有量は、ポリアミド酸(1)のアミド基1モルに対して、0.005モル以上0.1モル以下であることが好ましく、0.01モル以上0.08モル以下であることがより好ましく、0.015モル以上0.050モル以下であることが更に好ましい。イミダゾール類を0.005モル以上含有させることでポリイミドの膜強度及び透明性を向上させることができ、イミダゾール類の含有量を0.1モル以下とすることで、ポリアミド酸(1)の保存安定性を維持しつつ、耐熱性を向上させることができる。透明性の向上について説明すると、NMPのような重合溶媒はポリアミド酸(1)のカルボキシ基と水素結合による錯体を形成することが知られており、イミド化速度が遅い場合、NMP等が、ポリイミド膜中に残存し、酸化や分解することで着色の原因となる可能性がある。イミダゾール類を添加すると、イミダゾール類がポリアミド酸(1)のカルボキシ基に配位し、イミド化を促進させるため、NMP等がポリイミド膜中に残存しにくくなると同時に、熱イミド化過程のポリアミド酸(1)の分解も抑制されるため、透明性が向上すると考えられる。なお、本明細書中において、「ポリアミド酸(1)のアミド基」とは、ジアミンとテトラカルボン酸二無水物との重合反応によって生成したアミド基をさす。 The content of the imidazole is preferably 0.005 mol or more and 0.1 mol or less, and 0.01 mol or more and 0.08 mol or less, relative to 1 mol of the amide group of the polyamic acid (1). is more preferably 0.015 mol or more and 0.050 mol or less. By containing 0.005 mol or more of imidazoles, the film strength and transparency of the polyimide can be improved, and by making the content of imidazoles 0.1 mol or less, polyamic acid (1) can be stored stably. It is possible to improve the heat resistance while maintaining the properties. Regarding the improvement of transparency, it is known that a polymerization solvent such as NMP forms a complex by hydrogen bonding with the carboxy group of polyamic acid (1). It may remain in the film and cause coloration when oxidized or decomposed. When imidazoles are added, the imidazoles coordinate to the carboxy groups of polyamic acid (1) and promote imidization, so that NMP and the like are less likely to remain in the polyimide film, and at the same time polyamic acid ( Since the decomposition of 1) is also suppressed, it is thought that the transparency is improved. In the present specification, "amide group of polyamic acid (1)" refers to an amide group produced by a polymerization reaction of diamine and tetracarboxylic dianhydride.
 また、ポリアミド酸にイミダゾール類を添加することでイミド化が促進され、熱イミド化の初期段階において、イミド化した剛直なユニットを起点として面内配向が誘起される。しかし、BPDAとPDAとからなるポリアミド酸のように、イミダゾール類を使用しないでも高度に配向するようなポリアミド酸にイミダゾール類を添加すると、イミダゾール類が可塑剤として働き、逆に分子鎖の配向を乱すことがある。これに対し、ポリアミド酸(1)は、SFDA残基を有するため、イミダゾール類を添加しても内部応力を低減できる。 In addition, adding imidazoles to polyamic acid promotes imidization, and in the initial stage of thermal imidization, in-plane orientation is induced starting from imidized rigid units. However, when an imidazole is added to a polyamic acid composed of BPDA and PDA, which is highly oriented without using imidazoles, the imidazole acts as a plasticizer and conversely causes the orientation of the molecular chains. sometimes disturb. On the other hand, since polyamic acid (1) has an SFDA residue, the internal stress can be reduced even if imidazoles are added.
 ポリアミド酸(1)とイミダゾール類との混合方法は特に制限されない。ポリアミド酸(1)の分子量制御の容易性の観点から、重合後のポリアミド酸(1)にイミダゾール類を添加することが好ましい。このとき、イミダゾール類をそのままポリアミド酸(1)に添加してもよいし、あらかじめイミダゾール類を溶媒に溶解しておき、この溶液をポリアミド酸(1)に添加してもよく、添加方法は特に制限されない。重合後のポリアミド酸(1)を含む溶液(反応後の溶液)にイミダゾール類を添加して、本実施形態に係るポリアミド酸組成物を調製してもよい。 The method of mixing polyamic acid (1) and imidazoles is not particularly limited. From the viewpoint of ease of controlling the molecular weight of polyamic acid (1), it is preferable to add imidazoles to polyamic acid (1) after polymerization. At this time, the imidazole may be added as it is to the polyamic acid (1), or the imidazole may be dissolved in a solvent in advance and this solution may be added to the polyamic acid (1). Not restricted. The polyamic acid composition according to the present embodiment may be prepared by adding imidazoles to a solution containing polyamic acid (1) after polymerization (solution after reaction).
 本実施形態に係るポリアミド酸組成物には、添加剤として、様々な有機若しくは無機の低分子化合物、又は高分子化合物を配合してもよい。添加剤としては、例えば、可塑剤、酸化防止剤、染料、界面活性剤、レベリング剤、シリコーン、微粒子、増感剤等を用いることができる。微粒子には、ポリスチレン、ポリテトラフルオロエチレン等からなる有機微粒子や、コロイダルシリカ、カーボン、層状珪酸塩等からなる無機微粒子等が含まれ、それらは多孔質構造や中空構造であってもよい。また、微粒子の機能及び形態は、特に限定されず、例えば、顔料であっても、フィラーであってもよく、繊維状粒子であってもよい。 Various organic or inorganic low-molecular-weight compounds or high-molecular-weight compounds may be added as additives to the polyamic acid composition according to the present embodiment. Examples of additives that can be used include plasticizers, antioxidants, dyes, surfactants, leveling agents, silicones, fine particles, and sensitizers. The fine particles include organic fine particles made of polystyrene, polytetrafluoroethylene, etc., inorganic fine particles made of colloidal silica, carbon, layered silicate, etc. They may have a porous structure or a hollow structure. The function and form of the fine particles are not particularly limited, and may be, for example, pigments, fillers, or fibrous particles.
 上記可塑剤としては、ポリアミド酸(1)の重合に使用される有機溶媒に溶解し、かつイミド化時に液体で存在する化合物が好ましい。また、可塑剤は、イミド化の際、ポリアミド酸(1)に十分な分子運動性を付与させるために、低温で揮発しないことが好ましい。よって、可塑剤の沸点は、50℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることが更に好ましい。また、可塑剤は、イミド化の際、ポリアミド酸(1)に十分な分子運動性を付与させるために、沸点以下において分解温度を持たないことが好ましい。 The plasticizer is preferably a compound that dissolves in the organic solvent used for polymerization of the polyamic acid (1) and that exists as a liquid during imidization. Moreover, the plasticizer preferably does not volatilize at low temperatures in order to impart sufficient molecular mobility to the polyamic acid (1) during imidization. Therefore, the boiling point of the plasticizer is preferably 50°C or higher, more preferably 100°C or higher, and even more preferably 150°C or higher. Moreover, the plasticizer preferably does not have a decomposition temperature below the boiling point in order to impart sufficient molecular mobility to the polyamic acid (1) during imidization.
 可塑剤の量は、ポリアミド酸(1)に十分な分子運動性を付与しつつ可塑剤自身の分解を避ける観点から、100重量部のポリアミド酸(1)に対して、0.001重量部以上20重量部以下であることが好ましく、0.01重量部以上15重量部以下であることがより好ましく、0.05重量部以上10重量部以下であることが更に好ましく、0.05重量部以上5重量部以下であることが更により好ましい。 The amount of the plasticizer is 0.001 part by weight or more with respect to 100 parts by weight of the polyamic acid (1), from the viewpoint of imparting sufficient molecular mobility to the polyamic acid (1) and avoiding decomposition of the plasticizer itself. It is preferably 20 parts by weight or less, more preferably 0.01 parts by weight or more and 15 parts by weight or less, still more preferably 0.05 parts by weight or more and 10 parts by weight or less, and 0.05 parts by weight or more. Even more preferably, it is 5 parts by weight or less.
 可塑剤は、ポリアミド酸(1)がポリイミドに脱水閉環する際の分子運動を向上させるだけでなく、ガラス転移温度の調整や難燃性等の機能を付与することもできる。可塑剤としては、例えば公知の可塑剤の中から1種又は2種以上を適宜選択して使用できる。 The plasticizer not only improves molecular motion when polyamic acid (1) undergoes dehydration ring closure to polyimide, but can also add functions such as adjustment of the glass transition temperature and flame retardancy. As the plasticizer, for example, one or more of known plasticizers can be appropriately selected and used.
 ポリアミド酸(1)に十分な分子運動性を付与するためには、可塑剤としては、リン含有化合物、ポリアルキレングリコール及び脂肪族二塩基酸エステルからなる群より選ばれる一種以上が好ましい。 In order to impart sufficient molecular mobility to the polyamic acid (1), the plasticizer is preferably one or more selected from the group consisting of phosphorus-containing compounds, polyalkylene glycols and aliphatic dibasic acid esters.
 リン含有化合物の好ましい例としては、リン酸系化合物、亜リン酸系化合物、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィン系化合物、ホスフィンオキシド系化合物、ホスホラン系化合物、ホスファゼン系化合物等が挙げられる。リン含有化合物は、上記列挙した化合物のエステル体やその縮合体であってもよく、環状構造を含んでいてもよく、アミン等と塩を形成していてもよい。また、これらのリン含有化合物の中には、亜リン酸系化合物とホスホン酸系化合物のように互変異性の関係にあるものも存在するが、どちらの状態で存在していてもよい。 Preferred examples of phosphorus-containing compounds include phosphoric acid compounds, phosphorous acid compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine compounds, phosphine oxide compounds, phosphorane compounds, phosphazene compounds, and the like. . The phosphorus-containing compound may be an ester of the compounds listed above or a condensate thereof, may contain a cyclic structure, or may form a salt with an amine or the like. Further, some of these phosphorus-containing compounds have a tautomeric relationship, such as a phosphorous acid-based compound and a phosphonic acid-based compound, but they may exist in either state.
 リン酸系化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、ビスフェノールAビス(ジフェニルホスフェート)、トリス(β-クロロプロピル)ホスフェート等が挙げられる。 Specific examples of phosphoric acid compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri(2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris(isopropylphenyl ) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl acid phosphate, 2-methacryloyl oxyethyl acid phosphate, diphenyl-2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, melamine phosphate, dimelamine phosphate, bisphenol A bis(diphenyl phosphate), tris(β-chloropropyl) phosphate, etc. .
 亜リン酸系化合物の具体例としては、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリクレジルホスファイト、トリエチルホスファイト、トリイソブチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、ジフェニルホスファイト、ジエチルホスファイト、ジブチルホスファイト、ジメチルホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、トリラウリルトリチオホスファイト、ジエチルハイドロゲンホスファイト、ビス(2-エチルヘキシル)ハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト、テトラフェニルジプロピレングリコールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、トリステアリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリイソデシルホスファイト、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン等が挙げられる。 Specific examples of phosphorous acid compounds include triphenylphosphite, trisnonylphenylphosphite, tricresylphosphite, triethylphosphite, triisobutylphosphite, tris(2-ethylhexyl)phosphite and tridecylphosphite. , trilauryl phosphite, tris (tridecyl) phosphite, diphenyl phosphite, diethyl phosphite, dibutyl phosphite, dimethyl phosphite, diphenyl mono (2-ethylhexyl) phosphite, diphenyl monodecyl phosphite, diphenyl mono (tridecyl) phosphites, trilauryl trithiophosphite, diethyl hydrogen phosphite, bis(2-ethylhexyl) hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, diphenyl hydrogen phosphite, tetraphenyl dipropylene glycol diphosphite, Bis (decyl) pentaerythritol diphosphite, bis (tridecyl) pentaerythritol diphosphite, tristearyl phosphite, distearyl pentaerythritol diphosphite, tris (2,4-di-t-butylphenyl) phosphite, tri isodecylphosphite, 3,9-bis(2,6-di-t-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane and the like mentioned.
 上記縮合体としては、縮合リン酸エステルが挙げられる。縮合リン酸エステルの具体例としては、トリアルキルポリホスフェート、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート等が挙げられる。縮合リン酸エステルの市販品としては、例えば、大八化学工業社製「CR-733S」、大八化学工業社製「CR-741」、ADEKA社製「FP-600」等が挙げられる。 Examples of the condensates include condensed phosphate esters. Specific examples of the condensed phosphate include trialkyl polyphosphate, resorcinol polyphenyl phosphate, resorcinol poly(di-2,6-xylyl) phosphate, hydroquinone poly(2,6-xylyl) phosphate, and the like. Commercially available condensed phosphate esters include, for example, “CR-733S” manufactured by Daihachi Chemical Industry Co., Ltd., “CR-741” manufactured by Daihachi Chemical Industry Co., Ltd., and “FP-600” manufactured by ADEKA Corporation.
 ホスファゼン系化合物の具体例としては、フェノキシシクロホスファゼン(伏見製薬所社製「FP-110」)、環状シアノフェノキシホスファゼン(伏見製薬所社製「FP-300」)等が挙げられる。 Specific examples of phosphazene-based compounds include phenoxycyclophosphazene (“FP-110” manufactured by Fushimi Pharmaceutical Co., Ltd.), cyclic cyanophenoxyphosphazene (“FP-300” manufactured by Fushimi Pharmaceutical Co., Ltd.), and the like.
 ポリアルキレングリコールとしては、ポリプロピレングリコール、ポリエチレングリコール等が挙げられる。 Polyalkylene glycol includes polypropylene glycol, polyethylene glycol, and the like.
 脂肪族二塩基酸エステルの具体例としては、ジブチルアジペート、ジイソブチルアジペート、ビス(2-エチルヘキシル)アジペート、ジイソノニルアジペート、ジイソデシルアジペート、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、ビス(2-エチルヘキシル)アゼレート、ジブチルセバケート、ビス(2-エチルヘキシル)セバケート、ジエチルサクシネート等が挙げられる。 Specific examples of aliphatic dibasic acid esters include dibutyl adipate, diisobutyl adipate, bis(2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis[2-(2-butoxyethoxy)ethyl]adipate, bis(2- ethylhexyl)azelate, dibutyl sebacate, bis(2-ethylhexyl) sebacate, diethyl succinate and the like.
 また、可塑剤は、可塑化効果を発揮するものであれば、低分子有機化合物や熱可塑性樹脂であっても構わない。上記低分子有機化合物としては、分子量が1,000以下程度の有機化合物が挙げられ、例えば、フタルイミド、N-フェニルフタルイミド、N-グリシジルフタルイミド、N-ヒドロキシフタルイミド、シクロヘキシルチオフタルイミド等のフタルイミド系化合物;N,N-p-フェニレンビスマレイミド、2,2’-(エチレンジオキシ)ビス(エチルマレイミド)等のマレイミド系化合物が挙げられる。上記熱可塑性樹脂としては、非対称構造を有するポリイミドやポリアミド等が挙げられる。 In addition, the plasticizer may be a low-molecular-weight organic compound or a thermoplastic resin as long as it exhibits a plasticizing effect. Examples of the low-molecular-weight organic compounds include organic compounds having a molecular weight of about 1,000 or less, such as phthalimide compounds such as phthalimide, N-phenylphthalimide, N-glycidylphthalimide, N-hydroxyphthalimide, and cyclohexylthiophthalimide; Examples include maleimide compounds such as N,Np-phenylenebismaleimide and 2,2'-(ethylenedioxy)bis(ethylmaleimide). Examples of the thermoplastic resin include polyimide and polyamide having an asymmetric structure.
 上記酸化防止剤としては、例えばフェノール系化合物が挙げられ、ポリアミド酸(1)の重合に使用される有機溶媒に溶解し、かつイミド化時に液体で存在するフェノール系化合物が好ましい。ポリイミド膜の着色を抑制する点から、イミド化時に残存していることが望ましいため、フェノール系化合物の沸点は、50℃以上であることが好ましく、100℃以上であることがより好ましく、150℃以上であることが更に好ましい。また、沸点以下において分解温度を持たないフェノール系化合物が好ましい。 Examples of the antioxidant include phenolic compounds, and phenolic compounds that dissolve in the organic solvent used for polymerization of the polyamic acid (1) and that exist as a liquid during imidization are preferred. From the viewpoint of suppressing the coloring of the polyimide film, it is desirable that it remains during imidization. It is more preferable that it is above. Phenolic compounds that do not have a decomposition temperature below the boiling point are preferred.
 フェノール系化合物としては、ヒンダードタイプ、セミヒンダードタイプ、レスヒンダードタイプ等が挙げられ、具体的には、ジブチルヒドロキシトルエン、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン、アクリル酸2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル等が挙げられる。 Examples of the phenolic compound include hindered type, semi-hindered type, less hindered type, etc. Specific examples include dibutylhydroxytoluene, 1,3,5-tris(3,5-di-t-butyl -4-hydroxyphenylmethyl)-2,4,6-trimethylbenzene, 2-t-butyl-4-methyl-6-(2-hydroxy-3-t-butyl-5-methylbenzyl)phenyl acrylate, and the like. mentioned.
 フェノール系化合物は、主としてペルオキシラジカルを捕捉し、ヒドロペルオキシドに変換し、高分子の自動酸化を抑制する一次酸化防止剤として機能するため、ポリマーの酸化による着色を抑制する機能を有する。更に、フェノール系化合物と、ヒドロペルオキシドを安定なアルコール化合物に変換する二次酸化防止剤の機能を持つ亜リン酸エステル等とを組み合わせることで、ポリイミドの酸化による着色をより抑制できる。例えば、フェノール系化合物に対して、亜リン酸エステルを当量以上10当量以下の範囲で使用することにより、ポリイミドの着色を効果的に抑えることができる。 Phenolic compounds mainly capture peroxy radicals, convert them to hydroperoxides, and function as primary antioxidants that suppress autoxidation of polymers, so they have the function of suppressing coloration due to oxidation of polymers. Furthermore, by combining a phenolic compound with a phosphite or the like that functions as a secondary antioxidant that converts hydroperoxide into a stable alcohol compound, coloration due to oxidation of polyimide can be further suppressed. For example, the coloring of the polyimide can be effectively suppressed by using the phosphite ester in the range of equivalent weight or more and 10 equivalents or less with respect to the phenolic compound.
 酸化防止効果を十分に得るためには、フェノール系化合物の量は、100重量部のポリアミド酸(1)に対して、0.001重量部以上10重量部以下であることが好ましく、0.01重量部以上5重量部以下であることがより好ましく、0.02重量部以上1重量部以下であることが更に好ましい。フェノール系化合物は、ポリアミド酸(1)の重合前に有機溶媒に溶かしておいてもよく、重合後にポリアミド酸溶液に添加してもよい。 In order to obtain a sufficient antioxidant effect, the amount of the phenolic compound is preferably 0.001 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid (1). It is more preferably from 0.02 part by weight to 5 parts by weight, and even more preferably from 0.02 part by weight to 1 part by weight. The phenolic compound may be dissolved in an organic solvent before polymerization of polyamic acid (1), or may be added to the polyamic acid solution after polymerization.
 ポリイミド膜の透明性を維持しつつ耐熱性を向上させるため、上記添加剤としてナノシリカ粒子を使用し、ポリアミド酸(1)とナノシリカ粒子とを複合化してもよい。ポリイミド膜の透明性を維持する観点から、ナノシリカ粒子の平均一次粒子径は、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることが更に好ましく、30nm以下であってもよい。一方、ポリアミド酸(1)への分散性を確保する観点から、ナノシリカ粒子の平均一次粒子径は、5nm以上であることが好ましく、10nm以上であることがより好ましい。ポリアミド酸(1)とナノシリカ粒子とを複合化する方法としては、公知の方法を用いることができ、例えば、有機溶媒にナノシリカ粒子を分散させたオルガノシリカゾルを用いる方法が挙げられる。オルガノシリカゾルを用いてポリアミド酸(1)とナノシリカ粒子とを複合化する方法としては、ポリアミド酸(1)を合成した後、合成したポリアミド酸(1)とオルガノシリカゾルとを混合する方法を用いてもよいが、より高度にナノシリカ粒子をポリアミド酸(1)中に分散させるためには、オルガノシリカゾル中でポリアミド酸(1)を合成することが好ましい。 In order to improve the heat resistance while maintaining the transparency of the polyimide film, nanosilica particles may be used as the additive, and the polyamic acid (1) and the nanosilica particles may be combined. From the viewpoint of maintaining the transparency of the polyimide film, the average primary particle size of the nanosilica particles is preferably 200 nm or less, more preferably 100 nm or less, even more preferably 50 nm or less, and 30 nm or less. may On the other hand, from the viewpoint of ensuring dispersibility in the polyamic acid (1), the average primary particle size of the nanosilica particles is preferably 5 nm or more, more preferably 10 nm or more. As a method for combining polyamic acid (1) and nanosilica particles, a known method can be used, for example, a method using an organosilica sol in which nanosilica particles are dispersed in an organic solvent. As a method of combining polyamic acid (1) and nanosilica particles using organosilica sol, after synthesizing polyamic acid (1), a method of mixing synthesized polyamic acid (1) and organosilica sol is used. However, in order to disperse the nanosilica particles in the polyamic acid (1) to a higher degree, it is preferable to synthesize the polyamic acid (1) in an organosilica sol.
 また、ポリアミド酸(1)との相互作用を高めるために、ナノシリカ粒子を表面処理剤で表面処理することもできる。表面処理剤としては、シランカップリング剤等の公知のものを用いることができる。シランカップリング剤としては、官能基としてアミノ基又はグリシジル基等を持つアルコキシシラン化合物等が広く知られており、適宜選択することができる。ポリアミド酸(1)との相互作用をより高めるためには、シランカップリング剤としては、アミノ基含有アルコキシシランが好ましい。アミノ基含有アルコキシシランの例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、2-アミノフェニルトリメトキシシラン及び3-アミノフェニルトリメトキシシラン等が挙げられるが、原料の安定性の観点から3-アミノプロピルトリエトキシシランを用いることが好ましい。ナノシリカ粒子の表面処理方法としては、分散液(オルガノシリカゾル)にシランカップリング剤を添加した混合物を、20℃以上80℃以下の雰囲気温度下で攪拌する方法が挙げられる。この際の攪拌時間は、例えば1時間以上10時間以下である。このとき、反応を促進させる触媒等を添加してもよい。 In addition, the nanosilica particles can be surface-treated with a surface treatment agent in order to enhance the interaction with the polyamic acid (1). As the surface treatment agent, a known agent such as a silane coupling agent can be used. As a silane coupling agent, an alkoxysilane compound having an amino group, a glycidyl group, or the like as a functional group is widely known, and can be appropriately selected. In order to further enhance the interaction with the polyamic acid (1), the silane coupling agent is preferably an amino group-containing alkoxysilane. Examples of amino group-containing alkoxysilanes include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-(2-aminoethyl ) aminopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 2-aminophenyltrimethoxysilane and 3-aminophenyltrimethoxysilane. Silanes are preferably used. As a surface treatment method of nanosilica particles, a method of stirring a mixture obtained by adding a silane coupling agent to a dispersion (organosilica sol) at an ambient temperature of 20° C. or higher and 80° C. or lower may be mentioned. The stirring time at this time is, for example, 1 hour or more and 10 hours or less. At this time, a catalyst or the like that promotes the reaction may be added.
 ポリアミド酸(1)とナノシリカ粒子とを複合化させたナノシリカ-ポリアミド酸複合体は、100重量部のポリアミド酸(1)に対して、ナノシリカ粒子を、1重量部以上30重量部以下の範囲内で含むことが好ましく、1重量部以上20重量部以下の範囲内で含むことがより好ましい。ナノシリカ粒子の含有量が1重量部以上であると、ナノシリカ粒子含有ポリイミドの耐熱性を向上させ、内部応力を十分に低下させることができ、ナノシリカ粒子の含有量が30重量部以下であれば、ナノシリカ粒子含有ポリイミドの機械特性への悪影響を抑制できる。 A nanosilica-polyamic acid composite obtained by combining polyamic acid (1) and nanosilica particles contains 1 part by weight or more and 30 parts by weight or less of nanosilica particles with respect to 100 parts by weight of polyamic acid (1). and more preferably in the range of 1 part by weight or more and 20 parts by weight or less. When the content of the nanosilica particles is 1 part by weight or more, the heat resistance of the nanosilica particle-containing polyimide can be improved and the internal stress can be sufficiently reduced. Adverse effects on the mechanical properties of polyimide containing nanosilica particles can be suppressed.
 また、本実施形態に係るポリアミド酸組成物には、支持体との適切な密着性を発現させるために、シランカップリング剤を含有させることができる。シランカップリング剤の種類は、公知のものを特に制限なく使用できるが、ポリアミド酸(1)との反応性の観点からアミノ基を含有する化合物が特に好ましい。 In addition, the polyamic acid composition according to the present embodiment can contain a silane coupling agent in order to exhibit appropriate adhesion to the support. As the type of silane coupling agent, known ones can be used without particular limitation, but compounds containing an amino group are particularly preferred from the viewpoint of reactivity with polyamic acid (1).
 100重量部のポリアミド酸(1)に対するシランカップリング剤の配合割合は、0.01重量部以上0.50重量部以下であることが好ましく、0.01重量部以上0.10重量部以下であることがより好ましく、0.01重量部以上0.05重量部以下であることが更に好ましい。シランカップリング剤の配合割合を0.01重量部以上とすることで、支持体に対する剥離抑制効果が十分に発揮され、シランカップリング剤の配合割合を0.50重量部以下とすることで、ポリアミド酸(1)の分子量低下が抑制されるため、ポリイミド膜の脆化を抑制できる。 The mixing ratio of the silane coupling agent to 100 parts by weight of polyamic acid (1) is preferably 0.01 parts by weight or more and 0.50 parts by weight or less, and 0.01 parts by weight or more and 0.10 parts by weight or less. more preferably 0.01 parts by weight or more and 0.05 parts by weight or less. By setting the mixing ratio of the silane coupling agent to 0.01 parts by weight or more, the effect of suppressing peeling from the support is sufficiently exhibited, and by setting the mixing ratio of the silane coupling agent to 0.50 parts by weight or less, Since the decrease in the molecular weight of the polyamic acid (1) is suppressed, embrittlement of the polyimide film can be suppressed.
 本実施形態に係るポリイミドは、上述したポリアミド酸(1)のイミド化物である。本実施形態に係るポリイミドは、公知の方法にて得ることができ、その製造方法は、特に制限されない。以下、ポリアミド酸(1)をイミド化して本実施形態に係るポリイミドを得る方法の一例について説明する。イミド化は、ポリアミド酸(1)を脱水閉環することによって行われる。この脱水閉環は、共沸溶媒を用いた共沸法、熱的手法又は化学的手法によって行うことができる。また、ポリアミド酸(1)からポリイミドへのイミド化は、1%以上100%以下の任意の割合をとることができる。つまり、一部がイミド化されたポリアミド酸(1)を合成してもよい。特に加熱昇温によりイミド化する場合は、ポリアミド酸(1)からポリイミドへの閉環反応とポリアミド酸(1)の加水分解が同時に進行しており、ポリイミドにした時の分子量がポリアミド酸(1)の分子量よりも低くなる可能性があるため、後述するポリイミド膜を形成する前に、ポリアミド酸組成物中のポリアミド酸(1)の一部をあらかじめイミド化しておくことが機械特性向上の観点から好ましい。本明細書では、一部がイミド化したポリアミド酸も、「ポリアミド酸」と記載することがある。 The polyimide according to this embodiment is an imidized product of polyamic acid (1) described above. The polyimide according to this embodiment can be obtained by a known method, and the production method is not particularly limited. An example of a method for imidating the polyamic acid (1) to obtain the polyimide according to the present embodiment will be described below. Imidation is carried out by dehydration and ring closure of polyamic acid (1). This dehydration ring closure can be carried out by an azeotropic method using an azeotropic solvent, a thermal method, or a chemical method. In addition, imidization of polyamic acid (1) to polyimide can take any ratio of 1% or more and 100% or less. That is, a partially imidized polyamic acid (1) may be synthesized. In particular, when imidization is performed by heating, the ring closure reaction from polyamic acid (1) to polyimide and the hydrolysis of polyamic acid (1) proceed simultaneously, and the molecular weight of polyamic acid (1) when converted to polyimide is Since there is a possibility that the molecular weight is lower than the molecular weight of the polyamic acid composition, before forming the polyimide film described later, it is preferable to pre-imidize a portion of the polyamic acid (1) in the polyamic acid composition from the viewpoint of improving mechanical properties. preferable. In this specification, a partially imidized polyamic acid may also be referred to as a "polyamic acid".
 ポリアミド酸(1)の脱水閉環は、ポリアミド酸(1)を加熱して行えばよい。ポリアミド酸(1)を加熱する方法は特に制限されないが、例えば、ガラス基板、金属板、PETフィルム(ポリエチレンテレフタレートフィルム)等の支持体上に、上述した本実施形態に係るポリアミド酸組成物を塗布した後、温度40℃以上500℃以下の範囲内でポリアミド酸(1)の熱処理を行えばよい。この方法によれば、支持体と、この支持体上に配置されたポリイミド膜(詳しくは、ポリアミド酸(1)のイミド化物を含むポリイミド膜)とを有する、本実施形態に係る積層体が得られる。あるいは、フッ素系樹脂によるコーティング等の離型処理を施した容器に直接ポリアミド酸組成物を入れ、当該ポリアミド酸組成物を減圧下で加熱・乾燥することによって、ポリアミド酸(1)の脱水閉環を行うこともできる。これらの手法によるポリアミド酸(1)の脱水閉環により、ポリイミドを得ることができる。なお、上記各処理の加熱時間は、脱水閉環を行うポリアミド酸組成物の処理量や加熱温度により異なるが、一般的には、処理温度が最高温度に達してから1分以上300分以下の範囲とすることが好ましい。 The dehydration ring closure of the polyamic acid (1) may be performed by heating the polyamic acid (1). The method of heating the polyamic acid (1) is not particularly limited, but for example, the polyamic acid composition according to the present embodiment is applied onto a support such as a glass substrate, a metal plate, or a PET film (polyethylene terephthalate film). After that, the polyamic acid (1) may be heat-treated at a temperature in the range of 40°C or higher and 500°C or lower. According to this method, a laminate according to the present embodiment, which has a support and a polyimide film (specifically, a polyimide film containing an imidized product of polyamic acid (1)) disposed on the support, is obtained. be done. Alternatively, the polyamic acid composition is directly put into a container that has been subjected to release treatment such as coating with a fluororesin, and the polyamic acid composition is heated and dried under reduced pressure to effect dehydration ring closure of the polyamic acid (1). can also be done. Polyimide can be obtained by dehydration ring closure of polyamic acid (1) by these techniques. The heating time for each of the above treatments varies depending on the amount of the polyamic acid composition to be subjected to dehydration ring closure and the heating temperature, but is generally in the range of 1 minute or more and 300 minutes or less after the treatment temperature reaches the maximum temperature. It is preferable to
 本実施形態に係るポリイミド膜(詳しくは、ポリアミド酸(1)のイミド化物を含むポリイミド膜)は、無色透明で黄色度が低く、TFT作製工程に耐えうるガラス転移温度(耐熱性)を有していることから、フレキシブルディスプレイの透明基板材料に適している。本実施形態に係るポリイミド膜中のポリイミド(詳しくは、ポリアミド酸(1)のイミド化物)の含有率は、ポリイミド膜全量に対して、例えば70重量%以上であり、80重量%以上であることが好ましく、90重量%以上であることがより好ましく、100重量%であってもよい。ポリイミド膜中のポリイミド以外の成分としては、例えば、上述した添加剤(より具体的には、ナノシリカ粒子等)が挙げられる。 The polyimide film according to the present embodiment (specifically, the polyimide film containing the imidized product of polyamic acid (1)) is colorless and transparent, has a low degree of yellowness, and has a glass transition temperature (heat resistance) that can withstand the TFT manufacturing process. Therefore, it is suitable as a transparent substrate material for flexible displays. The content of polyimide (specifically, imidized polyamic acid (1)) in the polyimide film according to the present embodiment is, for example, 70% by weight or more, and 80% by weight or more with respect to the total amount of the polyimide film. is preferable, more preferably 90% by weight or more, and may be 100% by weight. Examples of components other than polyimide in the polyimide film include the additives described above (more specifically, nanosilica particles and the like).
 本実施形態に係る電子デバイス(より具体的には、フレキシブルデバイス等)は、本実施形態に係るポリイミド膜と、このポリイミド膜上に直接的又は間接的に配置された電子素子とを有する。フレキシブルディスプレイ用として本実施形態に係る電子デバイスを製造する場合、まず、ガラス等の無機基材を支持体として、その上にポリイミド膜を形成する。そして、ポリイミド膜上にTFT等の電子素子を配置(形成)することにより、支持体上に電子デバイスを形成する。TFTを形成する工程は、一般的に150℃以上650℃以下の広い温度領域で実施されるが、実際に所望の性能を達成するためには300℃以上で酸化物半導体層やa-Si層を形成し、場合によっては更にレーザー等でa-Si等を結晶化させることもある。 An electronic device (more specifically, a flexible device or the like) according to this embodiment has a polyimide film according to this embodiment and an electronic element directly or indirectly arranged on this polyimide film. When manufacturing the electronic device according to the present embodiment for a flexible display, first, an inorganic substrate such as glass is used as a support, and a polyimide film is formed thereon. Then, an electronic device is formed on the support by arranging (forming) an electronic element such as a TFT on the polyimide film. The process of forming a TFT is generally carried out in a wide temperature range of 150° C. or higher and 650° C. or lower. is formed, and in some cases, a-Si or the like is further crystallized by a laser or the like.
 この際、ポリイミド膜の熱分解温度が低い場合、電子素子形成中にアウトガスが発生し、昇華物としてオーブン内に付着し、炉内汚染の原因となったり、ポリイミド膜上に形成した無機膜(後述するバリア膜等)や電子素子が剥離したりする可能性があるため、ポリイミドの1%重量減少温度は500℃以上であることが好ましい。ポリイミドの1%重量減少温度の上限は、高ければ高いほどよいが、例えば600℃である。1%重量減少温度は、例えば、剛直な構造を有する残基(より具体的には、SFDA残基、BPDA残基等)の含有率を変更することにより、調整できる。更に詳細に説明すると、TFT形成前に、ポリイミド膜上にバリア膜として酸化シリコン膜(SiOx膜)や窒化シリコン膜(SiNx膜)等の無機膜を形成する。この際、ポリイミドの耐熱性が低い場合やイミド化が完全に進行していない場合、あるいは残存溶媒が多い場合には、無機膜積層後の高温プロセスでポリイミドの分解ガス等の揮発成分に起因してポリイミドと無機膜とが剥離する場合がある。このため、ポリイミドの1%重量減少温度が500℃以上であることに加え、ポリイミドを400℃以上450℃以下の範囲内の温度で等温保持した際の重量減少率が1%未満であることが望ましい。 At this time, if the thermal decomposition temperature of the polyimide film is low, outgassing is generated during the formation of the electronic device, and the sublimate adheres to the inside of the oven, causing contamination inside the oven. The 1% weight loss temperature of polyimide is preferably 500° C. or higher because there is a possibility that a barrier film (to be described later) and electronic elements may peel off. The upper limit of the 1% weight loss temperature of polyimide is preferably 600° C., for example, although the higher the better. The 1% weight loss temperature can be adjusted, for example, by changing the content of residues having a rigid structure (more specifically, SFDA residues, BPDA residues, etc.). More specifically, before forming the TFT, an inorganic film such as a silicon oxide film (SiOx film) or a silicon nitride film (SiNx film) is formed as a barrier film on the polyimide film. At this time, if the heat resistance of the polyimide is low, if the imidization has not progressed completely, or if there is a large amount of residual solvent, volatile components such as the decomposition gas of the polyimide in the high-temperature process after lamination of the inorganic film may cause In some cases, the polyimide and the inorganic film are separated from each other. Therefore, in addition to the 1% weight loss temperature of the polyimide being 500° C. or higher, the weight loss rate when the polyimide is kept isothermally at a temperature within the range of 400° C. or higher and 450° C. or lower must be less than 1%. desirable.
 また、本発明者らの検討により、フッ素含有モノマーを用いて得られたポリイミドが、例えばTFT素子の作製等の高温プロセスにおいて、アウトガスとしてフッ化水素等の腐食性ガスを発生することが判明した。高温プロセスにおいて腐食性ガスが発生すると、ポリイミド膜上に積層されたバリア膜等が腐食し、積層体の界面で剥がれ等が発生する場合がある。腐食性ガスの発生を抑制するためには、ポリアミド酸(1)のフッ素原子含有率は、1重量%未満であることが好ましく、0.5重量%未満であることがより好ましく、0.1重量%未満であることが更に好ましく、実質的に0重量%である(ポリアミド酸(1)がフッ素含有モノマー由来の残基を含まない)ことが特に好ましい。 Further, the present inventors' studies have revealed that polyimides obtained using fluorine-containing monomers generate corrosive gases such as hydrogen fluoride as outgassing in high-temperature processes such as the fabrication of TFT elements. . When corrosive gas is generated in a high-temperature process, the barrier film or the like laminated on the polyimide film corrodes, and peeling or the like may occur at the interface of the laminated body. In order to suppress the generation of corrosive gas, the fluorine atom content of polyamic acid (1) is preferably less than 1% by weight, more preferably less than 0.5% by weight, and more preferably less than 0.1% by weight. It is more preferably less than % by weight, and particularly preferably substantially 0 % by weight (polyamic acid (1) does not contain residues derived from fluorine-containing monomers).
 ポリアミド酸(1)のイミド化物(本実施形態に係るポリイミド)を高温プロセスで使用する際のフッ化水素ガスの発生量の指標として、マススペクトルから得られる検出強度が挙げられる。詳しくは、まず、ヘリウムガス気流下、雰囲気温度60℃から10℃/分の昇温速度で上記ポリイミドを加熱して雰囲気温度470℃に到達した際に上記ポリイミドから発生したガスを、四重極型質量分析計で分析する。そして、得られたマススペクトル(詳しくは、雰囲気温度470℃に到達した際に上記ポリイミドから発生したガスの成分を分析した結果を示すマススペクトル)から、フッ化水素に起因すると推定されるm/z=20のピークの検出強度(以下、「20ピーク強度」と記載することがある)を読み取る。フッ化水素の発生量が多くなるほど、20ピーク強度が大きくなる傾向がある。なお、四重極型質量分析計で分析する際のヘリウムガスの流量は、上記ポリイミドから発生したガスをリアルタイムで上記四重極型質量分析計により分析できるように設定すればよく、例えば50mL/分以上150mL/分以下の範囲であり、好ましくは80mL/分以上120mL/分以下の範囲である。 As an indicator of the amount of hydrogen fluoride gas generated when the imidized product of polyamic acid (1) (the polyimide according to the present embodiment) is used in a high-temperature process, detection intensity obtained from a mass spectrum can be mentioned. Specifically, first, the polyimide is heated from an atmospheric temperature of 60° C. at a rate of 10° C./min under a helium gas stream, and the gas generated from the polyimide when the atmospheric temperature reaches 470° C. Analyze with a type mass spectrometer. Then, from the obtained mass spectrum (specifically, the mass spectrum showing the results of analysis of the components of the gas generated from the polyimide when the ambient temperature reached 470 ° C.), m / The detected intensity of the peak at z=20 (hereinafter sometimes referred to as "20 peak intensity") is read. The 20 peak intensity tends to increase as the amount of hydrogen fluoride generated increases. The flow rate of the helium gas when analyzing with a quadrupole mass spectrometer may be set so that the gas generated from the polyimide can be analyzed in real time with the quadrupole mass spectrometer. minutes or more and 150 mL/minute or less, preferably 80 mL/minute or more and 120 mL/minute or less.
 また、ポリイミドのガラス転移温度(Tg)がプロセス温度よりも著しく低い場合は、電子素子形成中に位置ずれ等が生じる可能性があるため、ポリイミドのTgは、300℃以上であることが好ましく、350℃以上であることがより好ましく、400℃以上であることが更に好ましく、420℃以上であることが更により好ましい。ポリイミドのTgの上限は、高ければ高いほどよいが、例えば470℃である。また、一般的に、ガラス基板の熱膨張係数は樹脂に比較して小さいため、ガラス基板とポリイミド膜との間に内部応力が発生する。支持体として用いたガラス基板や電子素子と、ポリイミド膜との積層体の内部応力が高ければ、ポリイミド膜を含む積層体が、高温のTFT形成工程で膨張した後、常温まで冷却する際に収縮し、ガラス基板の反りや破損、ポリイミド膜のガラス基板からの剥離等の問題が生じる。そのため、ポリイミド膜とガラス基板の間の内部応力が、40MPa以下であることが好ましく、35MPa以下であることがより好ましい。内部応力の下限は、低ければ低いほどよく、0MPaであってもよい。内部応力の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 Further, if the glass transition temperature (Tg) of the polyimide is significantly lower than the process temperature, there is a possibility that misalignment or the like may occur during the formation of the electronic device. It is more preferably 350° C. or higher, still more preferably 400° C. or higher, and even more preferably 420° C. or higher. The upper limit of Tg of polyimide is preferably 470° C., although the higher the better. Further, since the coefficient of thermal expansion of the glass substrate is generally smaller than that of resin, internal stress is generated between the glass substrate and the polyimide film. If the internal stress of the laminated body of the glass substrate or electronic element used as a support and the polyimide film is high, the laminated body including the polyimide film expands in the TFT formation process at a high temperature and then shrinks when cooled to room temperature. However, problems such as warping or breakage of the glass substrate and peeling of the polyimide film from the glass substrate arise. Therefore, the internal stress between the polyimide film and the glass substrate is preferably 40 MPa or less, more preferably 35 MPa or less. The lower limit of the internal stress is better, and may be 0 MPa. The method for measuring the internal stress is the same method as in Examples described later or a method based thereon.
 本実施形態に係るポリイミドは、TFT基板やタッチパネル基板等のディスプレイ基板の材料として好適に用いることができる。ポリイミドを上記用途に用いる際、上述したように支持体上に電子デバイス(詳しくは、ポリイミド膜上に電子素子が形成された電子デバイス)を形成した後、ポリイミド膜を支持体から剥離する方法を採用する場合が多い。また、支持体の材料としては、無アルカリガラスが好適に用いられる。以下、ポリイミド膜と支持体との積層体の製造方法の一例について詳述する。 The polyimide according to this embodiment can be suitably used as a material for display substrates such as TFT substrates and touch panel substrates. When polyimide is used for the above applications, an electronic device (more specifically, an electronic device having electronic elements formed on a polyimide film) is formed on a support as described above, and then the polyimide film is peeled off from the support. often adopted. Also, alkali-free glass is preferably used as the material of the support. An example of a method for producing a laminate of a polyimide film and a support will be described in detail below.
 まず、支持体上に本実施形態に係るポリアミド酸組成物を塗布(流延)し、ポリアミド酸(1)を含む塗布膜と、支持体とからなる塗布膜含有積層体を形成する。次に、塗布膜含有積層体を、例えば温度40℃以上200℃以下の条件で加熱する。この際の加熱時間は、例えば3分以上120分以下である。なお、塗布膜含有積層体を、温度50℃にて30分加熱した後、温度100℃にて30分加熱する等のように、多段階の加熱工程を設けてもよい。次に、塗布膜中のポリアミド酸(1)のイミド化を進めるため、塗布膜含有積層体を、例えば、最高温度200℃以上500℃以下の条件で加熱する。この際の加熱時間(最高温度での加熱時間)は、例えば1分以上300分以下である。このとき、低温から最高温度まで徐々に昇温することが好ましい。昇温速度は、2℃/分以上10℃/分以下であることが好ましく、4℃/分以上10℃/分以下であることがより好ましい。また、最高温度は250℃以上450℃以下の範囲であることが好ましい。最高温度が250℃以上であれば、十分にイミド化が進行し、最高温度が450℃以下であれば、ポリイミドの熱劣化や着色を抑制できる。また、最高温度に到達するまでに任意の温度で任意の時間保持してもよい。イミド化反応は、空気下、減圧下、又は窒素等の不活性ガス中で行うことができるが、より高い透明性を発現させるためには、減圧下、又は窒素等の不活性ガス中で行うことが好ましい。また、加熱装置としては、熱風オーブン、赤外オーブン、真空オーブン、イナートオーブン、ホットプレート等の公知の装置を用いることができる。これらの工程を経て塗布膜中のポリアミド酸(1)がイミド化され、支持体と、ポリイミド膜(ポリアミド酸(1)のイミド化物を含む膜)との積層体(即ち、本実施形態に係る積層体)を得ることができる。 First, the polyamic acid composition according to the present embodiment is applied (cast) onto a support to form a coated film-containing laminate comprising a coated film containing polyamic acid (1) and the support. Next, the coated film-containing layered product is heated, for example, at a temperature of 40° C. or higher and 200° C. or lower. The heating time at this time is, for example, 3 minutes or more and 120 minutes or less. A multi-step heating process may be provided, such as heating the coating film-containing laminate at a temperature of 50° C. for 30 minutes and then heating it at a temperature of 100° C. for 30 minutes. Next, in order to promote imidization of polyamic acid (1) in the coating film, the coating film-containing laminate is heated, for example, at a maximum temperature of 200° C. or higher and 500° C. or lower. The heating time (heating time at the maximum temperature) at this time is, for example, 1 minute or more and 300 minutes or less. At this time, it is preferable to gradually raise the temperature from the low temperature to the maximum temperature. The heating rate is preferably 2° C./min or more and 10° C./min or less, more preferably 4° C./min or more and 10° C./min or less. Also, the maximum temperature is preferably in the range of 250° C. or higher and 450° C. or lower. When the maximum temperature is 250° C. or higher, imidization proceeds sufficiently, and when the maximum temperature is 450° C. or lower, thermal deterioration and coloration of the polyimide can be suppressed. Also, any temperature may be maintained for any length of time until the maximum temperature is reached. The imidization reaction can be carried out under air, under reduced pressure, or in an inert gas such as nitrogen, but in order to develop higher transparency, it is carried out under reduced pressure or in an inert gas such as nitrogen. is preferred. As the heating device, known devices such as a hot air oven, an infrared oven, a vacuum oven, an inert oven and a hot plate can be used. Polyamic acid (1) in the coating film is imidized through these steps, and a laminate of a support and a polyimide film (a film containing an imidized product of polyamic acid (1)) (that is, according to the present embodiment) laminate) can be obtained.
 得られた支持体とポリイミド膜との積層体からポリイミド膜を剥離する方法は、公知の方法を用いることができる。例えば、手で引き剥がしてもよいし、駆動ロール、ロボット等の機械装置を用いて引き剥がしてもよい。更には、支持体とポリイミド膜との間に剥離層を設ける方法や、多数の溝を有する基板上に酸化シリコン膜を形成し、酸化シリコン膜を下地層としてポリイミド膜を形成し、基板と酸化シリコン膜との間に酸化シリコンのエッチング液を浸潤させることによって、ポリイミド膜を剥離する方法を採用することもできる。また、レーザー光の照射によってポリイミド膜を分離させる方法を採用することもできる。 A known method can be used to peel off the polyimide film from the obtained laminate of the support and the polyimide film. For example, it may be peeled off by hand, or may be peeled off using a mechanical device such as a driving roll or a robot. Furthermore, a method of providing a release layer between a support and a polyimide film, a method of forming a silicon oxide film on a substrate having a large number of grooves, forming a polyimide film using the silicon oxide film as a base layer, and oxidizing the substrate and the polyimide film. A method of exfoliating the polyimide film by infiltrating a silicon oxide etchant between it and the silicon film can also be adopted. Alternatively, a method of separating the polyimide film by laser light irradiation may be employed.
 ポリイミド膜の透明性は、JIS K7361-1:1997に従った全光線透過率(TT)、及びJIS K7136-2000に従ったヘイズで評価することができる。高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜の全光線透過率は、75%以上であることが好ましく、80%以上であることがより好ましい。また、高い透明性が要求される用途でポリイミド膜を用いる場合、ポリイミド膜のヘイズは、1.5%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%未満であることが更に好ましく、0%であってもよい。高い透明性が要求される用途においては、ポリイミド膜は全波長領域で透過率が高いことが要求されるが、ポリイミド膜は短波長側の光を吸収しやすい傾向があり、膜自体が黄色に着色することが多い。高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の着色が低減されていることが好ましい。具体的には、高い透明性が要求される用途にポリイミド膜を使用するためには、ポリイミド膜の黄色度(YI)は、25以下であることが好ましく、20以下であることがより好ましく、0であってもよい。YIは、JIS K7373-2006に従い測定することができる。YIは、例えばポリアミド酸(1)中のSFDA残基の含有率を変更することにより、調整できる。このように、着色が低減され、透明性が付与されたポリイミド膜は、ガラス代替用途等の透明基板や、背面にセンサーやカメラモジュールが設けられる基板に好適である。 The transparency of the polyimide film can be evaluated by total light transmittance (TT) according to JIS K7361-1:1997 and haze according to JIS K7136-2000. When the polyimide film is used for applications requiring high transparency, the total light transmittance of the polyimide film is preferably 75% or more, more preferably 80% or more. Further, when a polyimide film is used in applications requiring high transparency, the haze of the polyimide film is preferably 1.5% or less, more preferably 1.2% or less, and 1.0%. It is more preferably less than, and may be 0%. For applications that require high transparency, polyimide films are required to have high transmittance over the entire wavelength range. often colored. In order to use the polyimide film in applications requiring high transparency, it is preferable that the polyimide film is less colored. Specifically, in order to use the polyimide film for applications requiring high transparency, the yellowness index (YI) of the polyimide film is preferably 25 or less, more preferably 20 or less, It can be 0. YI can be measured according to JIS K7373-2006. YI can be adjusted, for example, by changing the content of SFDA residues in polyamic acid (1). Thus, the polyimide film with reduced coloration and imparted with transparency is suitable for transparent substrates such as glass substitutes, and substrates on which a sensor or camera module is provided on the back surface.
 また、フレキシブルディスプレイの光取り出し方式には、TFTの表面側から光を取り出すトップエミッション方式とTFTの裏面側から光を取り出すボトムエミッション方式の2種類がある。トップエミッション方式では、TFTに光が遮られないため開口率を上げやすく、高精細な画質が得られるという特徴があり、ボトムエミッション方式はTFTと画素電極との位置合わせが容易で製造しやすいといった特徴がある。TFTが透明であればボトムエミッション方式においても、開口率を向上させることが可能となるため、大型ディスプレイには製造が容易なボトムエミッション方式が採用される傾向がある。本実施形態に係るポリイミド膜は、YIが低く、耐熱性にも優れているため、上記どちらの光取り出し方式にも適用できる。 In addition, there are two types of light extraction methods for flexible displays: the top emission method, in which light is extracted from the front surface of the TFT, and the bottom emission method, in which light is extracted from the back surface of the TFT. In the top emission method, light is not blocked by the TFT, so it is easy to increase the aperture ratio and obtain high-definition image quality. Characteristic. If the TFT is transparent, it is possible to improve the aperture ratio even in the bottom emission method, so there is a tendency to adopt the bottom emission method, which is easy to manufacture, for large displays. Since the polyimide film according to this embodiment has a low YI and excellent heat resistance, it can be applied to either of the above light extraction methods.
 また、ガラス基板等の支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、電子素子等を形成した後、ポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスにおいては、支持体とポリイミド膜との間の密着性に優れることが好ましい。ここでいう密着性とは、密着強度を意味する。支持体上のポリイミド膜に電子素子等を形成した後に、支持体から、電子素子等が形成されたポリイミド膜を剥がすという作製プロセスにおいて、ポリイミド膜と支持体との密着性に優れると、電子素子等をより正確に形成又は実装することができる。支持体上にポリイミド膜を介して電子素子等を配置する製造プロセスにおいて、生産性向上の観点から、支持体とポリイミド膜との間のピール強度は高ければ高いほどよい。具体的には、上記ピール強度は、0.05N/cm以上であることが好ましく、0.1N/cm以上であることがより好ましい。 Further, in a batch-type device manufacturing process in which a polyamic acid composition is applied to a support such as a glass substrate, heated to imidize, an electronic element or the like is formed, and then the polyimide film is peeled off, the support and the like are used. It is preferable to have excellent adhesion to the polyimide film. Adhesion here means adhesion strength. In the manufacturing process of peeling off the polyimide film on which the electronic elements and the like are formed from the support after forming the electronic elements on the polyimide film on the support, if the adhesion between the polyimide film and the support is excellent, the electronic element etc. can be formed or implemented more accurately. In the manufacturing process of arranging an electronic element or the like on a support via a polyimide film, the peel strength between the support and the polyimide film should be as high as possible from the viewpoint of improving productivity. Specifically, the peel strength is preferably 0.05 N/cm or more, more preferably 0.1 N/cm or more.
 上述したような製造プロセスにおいて、支持体とポリイミド膜との積層体からポリイミド膜を剥離する際、レーザー照射によって支持体からポリイミド膜を剥離する場合が多い。この場合、ポリイミド膜にレーザー光を吸収させる必要があるため、ポリイミド膜のカットオフ波長は、剥離に使用するレーザー光の波長よりも長波長であることが求められる。レーザー剥離には、波長308nmのXeClエキシマレーザーが用いられることが多いため、ポリイミド膜のカットオフ波長は、312nm以上であることが好ましく、330nm以上であることがより好ましい。一方、カットオフ波長が長波長であると、ポリイミド膜が黄色に着色する傾向があるため、ポリイミド膜のカットオフ波長は、390nm以下であることが好ましい。透明性(低黄色度合)とレーザー剥離の加工性とを両立させる観点から、ポリイミド膜のカットオフ波長は、320nm以上390nm以下であることが好ましく、330nm以上380nm以下であることがより好ましい。なお、本明細書中におけるカットオフ波長とは、紫外-可視分光光度計によって測定される、透過率が0.1%以下になる波長のことを意味する。 In the manufacturing process described above, when peeling the polyimide film from the laminate of the support and the polyimide film, the polyimide film is often peeled off from the support by laser irradiation. In this case, since the polyimide film needs to absorb the laser light, the cutoff wavelength of the polyimide film is required to be longer than the wavelength of the laser light used for peeling. Since a XeCl excimer laser with a wavelength of 308 nm is often used for laser peeling, the cutoff wavelength of the polyimide film is preferably 312 nm or longer, more preferably 330 nm or longer. On the other hand, if the cutoff wavelength is long, the polyimide film tends to be colored yellow, so the cutoff wavelength of the polyimide film is preferably 390 nm or less. The cutoff wavelength of the polyimide film is preferably 320 nm or more and 390 nm or less, more preferably 330 nm or more and 380 nm or less, from the viewpoint of achieving both transparency (low degree of yellowness) and workability of laser peeling. The term "cutoff wavelength" as used herein means a wavelength at which the transmittance is 0.1% or less as measured by an ultraviolet-visible spectrophotometer.
 本実施形態に係るポリアミド酸組成物及びポリイミドは、そのまま製品や部材を作製するためのコーティングや成形プロセスに使用してもよいが、フィルム状に成形された成形物に更にコーティング等の処理を行うための材料として用いることもできる。コーティング又は成形プロセスに使用するために、ポリアミド酸組成物又はポリイミドを、必要に応じて有機溶媒に溶解又は分散させ、更に、必要に応じて光硬化性成分、熱硬化性成分、非重合性バインダー樹脂及びその他の成分を配合して、ポリアミド酸(1)又はポリイミドを含む組成物を調製してもよい。 The polyamic acid composition and polyimide according to the present embodiment may be used as they are for coating and molding processes for producing products and members, but the molded product molded in the form of a film is further subjected to coating and other treatments. It can also be used as a material for For use in coating or molding processes, the polyamic acid composition or polyimide, optionally dissolved or dispersed in an organic solvent, and optionally a photocurable component, a thermosetting component, a non-polymeric binder, A composition comprising polyamic acid (1) or polyimide may be prepared by blending the resin and other ingredients.
 本実施形態に係るポリイミド膜の表面には、金属酸化物薄膜や透明電極等の各種無機薄膜を形成してもよい。これら無機薄膜の製膜方法としては、特に限定されるものではなく、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法等のPVD法や、CVD法が挙げられる。 Various inorganic thin films such as metal oxide thin films and transparent electrodes may be formed on the surface of the polyimide film according to this embodiment. The method for forming these inorganic thin films is not particularly limited, and examples thereof include PVD methods such as sputtering, vacuum deposition, and ion plating, and CVD methods.
 本実施形態に係るポリイミド膜は、耐熱性、低熱膨張性、透明性に加えて、ガラス基板と積層体を形成した際に生じる内部応力が小さく、高温プロセス中で無機材料との密着性を確保できるため、これらの特性が有効とされる分野及び製品に使用されることが好ましい。例えば、本実施形態に係るポリイミド膜は、液晶表示装置、有機EL、電子ペーパー等の画像表示装置、印刷物、カラーフィルター、フレキシブルディスプレイ、光学フィルム、3Dディスプレイ、タッチパネル、透明導電膜基板、太陽電池等に使用されることが好ましく、更には現在ガラスが使用されている部分の代替材料とすることがより好ましい。これらの用途において、ポリイミド膜の厚みは、例えば1μm以上200μm以下であり、5μm以上100μm以下であることが好ましい。ポリイミド膜の厚みは、レーザホロゲージを用いて測定することができる。 In addition to heat resistance, low thermal expansion, and transparency, the polyimide film according to the present embodiment generates little internal stress when forming a laminate with a glass substrate, ensuring adhesion with inorganic materials during high-temperature processes. Therefore, it is preferably used in fields and products where these properties are useful. For example, the polyimide film according to the present embodiment can be used for liquid crystal display devices, organic EL devices, image display devices such as electronic paper, printed matter, color filters, flexible displays, optical films, 3D displays, touch panels, transparent conductive film substrates, solar cells, and the like. It is more preferable to use it as a substitute material for parts where glass is currently used. In these uses, the thickness of the polyimide film is, for example, 1 μm or more and 200 μm or less, preferably 5 μm or more and 100 μm or less. The thickness of the polyimide film can be measured using a laser hologram.
 また、本実施形態に係るポリアミド酸組成物は、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、電子素子等を形成した後、ポリイミド膜を剥がすという、バッチタイプのデバイス作製プロセスに好適に用いることができる。従って、本実施形態には、支持体上にポリアミド酸組成物を塗布し、加熱してイミド化し、支持体上に形成されたポリイミド膜に電子素子等を形成する工程を含む電子デバイスの製造方法も含まれる。また、かかる電子デバイスの製造方法は、更に、支持体から、電子素子等が形成されたポリイミド膜を剥がす工程を含んでいてもよい。 In addition, the polyamic acid composition according to the present embodiment is prepared by coating the polyamic acid composition on a support, imidizing it by heating, forming an electronic element or the like, and then peeling off the polyimide film for batch-type device fabrication. It can be suitably used for the process. Therefore, in the present embodiment, a method for producing an electronic device includes a step of applying a polyamic acid composition onto a support, imidizing it by heating, and forming an electronic element or the like on a polyimide film formed on the support. is also included. Moreover, the method for producing such an electronic device may further include a step of peeling off the polyimide film on which the electronic elements and the like are formed from the support.
 以下、本発明の実施例について説明するが、本発明の範囲が下記実施例に限定されるものではない。 Examples of the present invention will be described below, but the scope of the present invention is not limited to the following examples.
<物性の測定方法>
 まず、ポリイミド(ポリイミド膜)の物性の測定方法について説明する。
<Method for measuring physical properties>
First, a method for measuring physical properties of polyimide (polyimide film) will be described.
[黄色度(YI)]
 後述する実施例及び比較例で得られた各積層体中のポリイミド膜について、紫外可視近赤外分光光度計(日本分光社製「V-650」)を用いて波長200nm以上800nm以下の光の透過率を測定し、JIS K7373-2006に記載の式から、ポリイミド膜の黄色度(YI)を算出した。
[Yellowness index (YI)]
For the polyimide film in each laminate obtained in Examples and Comparative Examples described later, an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation "V-650") was used to measure light with a wavelength of 200 nm or more and 800 nm or less. The transmittance was measured, and the yellowness index (YI) of the polyimide film was calculated from the formula described in JIS K7373-2006.
[ヘイズ]
 後述する実施例及び比較例で得られた各積層体から剥離したポリイミド膜について、積分球式ヘイズメーター(村上色彩技術研究所社製「HM-150N」)を用いて、JIS K7136-2000に記載の方法によりヘイズを測定した。ヘイズが1.0%未満の場合、「透明性に優れている」と評価した。一方、ヘイズが1.0%以上の場合、「透明性に優れていない」と評価した。
[Haze]
For the polyimide film peeled from each laminate obtained in Examples and Comparative Examples described later, using an integrating sphere haze meter ("HM-150N" manufactured by Murakami Color Research Laboratory), described in JIS K7136-2000. Haze was measured by the method of. When the haze was less than 1.0%, it was evaluated as "excellent in transparency". On the other hand, when the haze was 1.0% or more, it was evaluated as "not excellent in transparency".
[内部応力]
 あらかじめ反り量を計測していたコーニング社製のガラス基板(材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に後述する実施例及び比較例で調製した各ポリアミド酸組成物をスピンコーターで塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体を得た。ポリイミド膜の吸水の影響を排除するために、積層体を120℃で10分乾燥させた後、温度25℃の窒素雰囲気下における積層体の反り量を、薄膜応力測定装置(ケーエルエー・テンコール社製「FLX-2320-S」)を用いて測定した。そして、ポリイミド膜形成前のガラス基板の反り量及び積層体の反り量から、ストーニーの式によりガラス基板とポリイミド膜との間で発生した内部応力を算出した。内部応力が40MPa以下の場合、「内部応力を低減できている」と評価した。一方、内部応力が40MPaを超える場合、「内部応力を低減できていない」と評価した。
[Internal stress]
Each polyamic acid composition prepared in Examples and Comparative Examples described later on a glass substrate manufactured by Corning (material: non-alkali glass, thickness: 0.7 mm, size: 100 mm × 100 mm) whose amount of warpage had been measured in advance. was applied with a spin coater, heated in air at 120° C. for 30 minutes, and then heated at 430° C. in a nitrogen atmosphere for 30 minutes to obtain a laminate having a polyimide film having a thickness of 10 μm on a glass substrate. In order to eliminate the influence of water absorption of the polyimide film, the laminate was dried at 120 ° C. for 10 minutes, and then the amount of warpage of the laminate in a nitrogen atmosphere at a temperature of 25 ° C. was measured using a thin film stress measurement device (manufactured by KLA-Tencor Co., Ltd. "FLX-2320-S"). Then, the internal stress generated between the glass substrate and the polyimide film was calculated from the amount of warpage of the glass substrate before the formation of the polyimide film and the amount of warpage of the laminate by the Stoney equation. When the internal stress was 40 MPa or less, it was evaluated as "the internal stress can be reduced." On the other hand, when the internal stress exceeded 40 MPa, it was evaluated as "the internal stress cannot be reduced."
[ガラス転移温度(Tg)]
 後述する実施例及び比較例で得られた各積層体から幅3mmかつ長さ10mmの大きさにサンプリングしたポリイミド膜を、Tg測定用の試料として用いた。熱分析装置(日立ハイテクサイエンス社製「TMA/SS7100」)を用いて、試料に29.8mNの荷重をかけ、10℃/分で20℃から500℃まで昇温し、温度と歪量(伸び)をプロットしてTMA曲線を得た。得られたTMA曲線の変曲点の温度(TMA曲線の微分曲線におけるピークに対応する温度)をガラス転移温度(Tg)とした。Tgが420℃以上の場合、「耐熱性に優れている」と評価した。一方、Tgが420℃未満の場合、「耐熱性に優れていない」と評価した。
[Glass transition temperature (Tg)]
A polyimide film having a width of 3 mm and a length of 10 mm was sampled from each laminate obtained in Examples and Comparative Examples, which will be described later, and used as a sample for Tg measurement. Using a thermal analysis device ("TMA/SS7100" manufactured by Hitachi High-Tech Science), a load of 29.8 mN was applied to the sample, the temperature was raised from 20 ° C. to 500 ° C. at 10 ° C./min, and the temperature and strain amount (elongation ) to obtain the TMA curve. The temperature at the inflection point of the obtained TMA curve (the temperature corresponding to the peak in the differential curve of the TMA curve) was defined as the glass transition temperature (Tg). When Tg was 420°C or higher, it was evaluated as "excellent in heat resistance". On the other hand, when Tg was less than 420°C, it was evaluated as "not excellent in heat resistance".
[1%重量減少温度(TD1)]
 後述する実施例及び比較例で得られた各ポリイミド膜(詳しくは、重量が10mgとなるように各積層体からサンプリングしたポリイミド膜)を測定用の試料とし、示差熱熱重量同時測定装置(日立ハイテクサイエンス社製「TG/DTA7200」)を用いて、窒素雰囲気下、20℃/分の条件で25℃から650℃まで昇温し、測定温度150℃での試料重量を基準として、この基準の重量に対して1重量%減少した際の測定温度を、1%重量減少温度(TD1)とした。
[1% weight loss temperature (TD1)]
Each polyimide film (specifically, a polyimide film sampled from each laminate so that the weight is 10 mg) obtained in Examples and Comparative Examples to be described later is used as a sample for measurement, and a simultaneous differential thermogravimetric measurement device (Hitachi Hi-tech Science Co., Ltd. "TG / DTA7200"), the temperature is raised from 25 ° C. to 650 ° C. under the conditions of 20 ° C./min under a nitrogen atmosphere, and the weight of the sample at a measurement temperature of 150 ° C. is used as a standard. The measurement temperature when the weight was reduced by 1% was taken as the 1% weight loss temperature (TD1).
[ポリイミド膜から発生したガスの分析]
 熱重量測定装置(NETZSCH社製「STA449 F5」)と四重極型質量分析計(日本電子社製「JMS-Q1500GC」)とを結合させた分析装置を用いて、加熱時にポリイミド膜から発生したガスを分析した。以下、分析手順について説明する。
[Analysis of gas generated from polyimide film]
Using an analysis device that combines a thermogravimetric measurement device (“STA449 F5” manufactured by NETZSCH) and a quadrupole mass spectrometer (“JMS-Q1500GC” manufactured by JEOL Ltd.), the polyimide film generated during heating Gas was analyzed. The analysis procedure will be described below.
 まず、標準物質としてパーフルオロトリブチルアミンを用いて、m/z=69のピークの検出強度が800,000となるように、上記四重極型質量分析計の電圧を調整した。次いで、上記熱重量測定装置を用いて、流量100mL/分のヘリウムガス気流下において雰囲気温度60℃から10℃/分の昇温速度で、後述する比較例で得られた各ポリイミド膜(詳しくは、質量が140mgとなるように各積層体からサンプリングしたポリイミド膜)を加熱して雰囲気温度470℃に到達した際にポリイミド膜から発生したガスを、上記四重極型質量分析計で分析した。なお、上記分析装置を用いてヘリウムガス気流下でポリイミド膜を加熱することで、ヘリウムガスがキャリアガスとなって、ポリイミド膜から発生したガスをリアルタイムで上記四重極型質量分析計により分析できるようになっている。そして、雰囲気温度470℃に到達した際にポリイミド膜から発生したガスについて上記四重極型質量分析計で分析して得られたマススペクトルから、m/z=20のピークの検出強度(20ピーク強度)を読み取った。なお、上記マススペクトルは、温度60℃におけるピーク強度が2000±100となるようにベースラインを調整した。 First, using perfluorotributylamine as a standard substance, the voltage of the quadrupole mass spectrometer was adjusted so that the detection intensity of the peak at m/z=69 was 800,000. Then, using the thermogravimetry apparatus, each polyimide film obtained in a comparative example described later (in detail, , the polyimide film sampled from each laminate so that the mass was 140 mg) was heated and the gas generated from the polyimide film when the atmospheric temperature reached 470 ° C. was analyzed with the quadrupole mass spectrometer. By heating the polyimide film under a helium gas stream using the analyzer, the helium gas becomes a carrier gas, and the gas generated from the polyimide film can be analyzed in real time by the quadrupole mass spectrometer. It's like Then, from the mass spectrum obtained by analyzing the gas generated from the polyimide film when the atmospheric temperature reached 470 ° C. with the quadrupole mass spectrometer, the detection intensity of the peak at m / z = 20 (20 peaks intensity) was read. The baseline of the mass spectrum was adjusted so that the peak intensity at a temperature of 60° C. was 2000±100.
<ポリイミド膜の作製>
 以下、実施例及び比較例のポリイミド膜(積層体)の作製方法について説明する。なお、以下において、化合物及び試薬類を下記の略称で記載している。また、ポリイミド膜の作製に使用するポリアミド酸組成物の調製は、いずれも窒素雰囲気下で行った。
NMP:N-メチル-2-ピロリドン
SFDA:スピロ[11H-ジフロ[3,4-b:3’,4’-i]キサンテン-11,9’-[9H]フルオレン]-1,3,7,9-テトロン
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
PDA:p-フェニレンジアミン
4-BAAB:4-アミノフェニル-4-アミノベンゾエート
DABA:4,4’-ジアミノベンズアニリド
DATA:N,N’-ジ(4-アミノフェニル)テレフタルアミド
PAM-E:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
DMI:1,2-ジメチルイミダゾール
<Preparation of polyimide film>
Methods for producing polyimide films (laminates) of Examples and Comparative Examples will be described below. Compounds and reagents are abbreviated below. Moreover, preparation of the polyamic acid composition used for preparation of the polyimide film was carried out under a nitrogen atmosphere.
NMP: N-methyl-2-pyrrolidone SFDA: spiro[11H-diflo[3,4-b:3′,4′-i]xanthene-11,9′-[9H]fluorene]-1,3,7, 9-Tetrone BPDA: 3,3′,4,4′-biphenyltetracarboxylic dianhydride BPAF: 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride 6FDA: 4,4′-( Hexafluoroisopropylidene) diphthalic anhydride PDA: p-phenylenediamine 4-BAAB: 4-aminophenyl-4-aminobenzoate DABA: 4,4'-diaminobenzanilide DATA: N,N'-di(4-amino Phenyl)terephthalamide PAM-E: 1,3-bis(3-aminopropyl)tetramethyldisiloxane TFMB: 2,2'-bis(trifluoromethyl)benzidine DMI: 1,2-dimethylimidazole
[実施例1]
 ステンレス鋼製攪拌棒を備えた攪拌機及び窒素導入管を装着した300mLのガラス製セパラブルフラスコに、重合用の有機溶媒として、88.0gのNMPを入れた。次いで、フラスコ内容物を攪拌しながら、2.240gのPDAをフラスコに入れて溶解させた。次いで、フラスコ内容物に、9.760gのSFDAを加えた後、温度25℃の雰囲気下、フラスコ内容物を24時間攪拌し、ポリアミド酸組成物を得た。得られたポリアミド酸組成物を、スピンコーターを用いてガラス基板(コーニング社製、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体(実施例1の積層体)を得た。
[Example 1]
A 300 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen inlet was charged with 88.0 g of NMP as an organic solvent for polymerization. 2.240 g of PDA was then added to the flask and dissolved while stirring the flask contents. After adding 9.760 g of SFDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere of 25° C. to obtain a polyamic acid composition. The resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 1) having a polyimide film having a thickness of 10 μm on a glass substrate.
[実施例2]
 ステンレス鋼製攪拌棒を備えた攪拌機及び窒素導入管を装着した300mLのガラス製セパラブルフラスコに、重合用の有機溶媒として、88.0gのNMPを入れた。次いで、フラスコ内容物を攪拌しながら、2.240gのPDAをフラスコに入れて溶解させた。次いで、フラスコ内容物に、9.760gのSFDAを加えた後、温度25℃の雰囲気下、フラスコ内容物を24時間攪拌した。次いで、フラスコ内容物に、DMIを添加して、ポリアミド酸組成物を得た。DMIの添加量は、フラスコ内容物中のポリアミド酸100重量部に対して1重量部であった。得られたポリアミド酸組成物を、スピンコーターを用いてガラス基板(コーニング社製、材質:無アルカリガラス、厚み:0.7mm、サイズ:100mm×100mm)上に塗布し、空気中において120℃で30分加熱した後、窒素雰囲気下において430℃で30分加熱し、ガラス基板上に厚み10μmのポリイミド膜を備える積層体(実施例2の積層体)を得た。
[Example 2]
A 300 mL glass separable flask equipped with a stirrer with a stainless steel stir bar and a nitrogen inlet was charged with 88.0 g of NMP as an organic solvent for polymerization. 2.240 g of PDA was then added to the flask and dissolved while stirring the flask contents. After adding 9.760 g of SFDA to the contents of the flask, the contents of the flask were stirred for 24 hours under an atmosphere at a temperature of 25°C. Next, DMI was added to the contents of the flask to obtain a polyamic acid composition. The amount of DMI added was 1 part by weight per 100 parts by weight of polyamic acid in the contents of the flask. The resulting polyamic acid composition was applied onto a glass substrate (manufactured by Corning, material: non-alkali glass, thickness: 0.7 mm, size: 100 mm x 100 mm) using a spin coater, and coated in air at 120°C. After heating for 30 minutes, it was heated at 430° C. for 30 minutes in a nitrogen atmosphere to obtain a laminate (laminate of Example 2) having a polyimide film having a thickness of 10 μm on a glass substrate.
[実施例3~17及び比較例1~8]
 使用した酸二無水物及びその仕込み割合、並びに使用したジアミン及びその仕込み割合を、表1及び表2に示すとおりとしたこと以外は、実施例1と同じ方法により、実施例3、5、6、8、10、12、13、15及び17並びに比較例1、2、3及び5の積層体をそれぞれ得た。また、使用した酸二無水物及びその仕込み割合、並びに使用したジアミン及びその仕込み割合を、表1及び表2に示すとおりとしたこと以外は、実施例2と同じ方法により、実施例4、7、9、11、14及び16並びに比較例4、6、7及び8の積層体をそれぞれ得た。なお、実施例3~17及び比較例1~8のいずれについても、ポリアミド酸組成物を調製する際の酸二無水物の合計物質量は、実施例1及び2と同じであった。また、実施例3~17及び比較例1~8のいずれについても、ポリアミド酸組成物を調製する際のジアミンの合計物質量は、実施例1及び2と同じであった。
[Examples 3 to 17 and Comparative Examples 1 to 8]
Examples 3, 5, and 6 were prepared in the same manner as in Example 1, except that the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Tables 1 and 2. , 8, 10, 12, 13, 15 and 17 and the laminates of Comparative Examples 1, 2, 3 and 5, respectively. In addition, in the same manner as in Example 2, except that the acid dianhydride used and its charging ratio, and the diamine used and its charging ratio were as shown in Tables 1 and 2, Examples 4 and 7 , 9, 11, 14 and 16 and the laminates of Comparative Examples 4, 6, 7 and 8, respectively. In addition, in all of Examples 3 to 17 and Comparative Examples 1 to 8, the total substance amount of the acid dianhydride when preparing the polyamic acid composition was the same as in Examples 1 and 2. Further, in all of Examples 3-17 and Comparative Examples 1-8, the total substance amount of diamines in preparing polyamic acid compositions was the same as in Examples 1 and 2.
 なお、表1及び表2において、「-」は、当該成分を使用しなかったことを意味する。また、表1及び表2において、「酸二無水物」の欄の数値は、使用した酸二無水物の全量に対する各酸二無水物の含有率(単位:モル%)である。表1及び表2において、「ジアミン」の欄の数値は、使用したジアミンの全量に対する各ジアミンの含有率(単位:モル%)である。表1及び表2において、「DMI」の欄の数値は、ポリアミド酸100重量部に対するDMIの量(単位:重量部)である。また、実施例1~17及び比較例1~8のいずれについても、調製したポリアミド酸組成物中のポリアミド酸の各残基のモル分率は、ポリアミド酸の合成に使用した各モノマー(ジアミン及びテトラカルボン酸二無水物)のモル分率と一致していた。 In addition, in Tables 1 and 2, "-" means that the component was not used. In Tables 1 and 2, the numerical values in the "acid dianhydride" column are the content of each acid dianhydride relative to the total amount of acid dianhydride used (unit: mol%). In Tables 1 and 2, the numerical values in the "diamine" column are the content of each diamine relative to the total amount of diamines used (unit: mol%). In Tables 1 and 2, the numerical value in the "DMI" column is the amount of DMI (unit: parts by weight) per 100 parts by weight of polyamic acid. Further, in all of Examples 1 to 17 and Comparative Examples 1 to 8, the molar fraction of each residue of polyamic acid in the prepared polyamic acid composition was different from each monomer (diamine and tetracarboxylic dianhydride).
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<物性の測定結果>
 実施例1~17及び比較例1~8のそれぞれについて、物性の測定結果を、表3に示す。なお、表3において、「-」は、測定しなかったことを意味する。また、表3において、「フッ素原子含有率」は、上述した式により算出した計算値である。
<Measurement results of physical properties>
Table 3 shows the measurement results of the physical properties of Examples 1 to 17 and Comparative Examples 1 to 8. In Table 3, "-" means not measured. Further, in Table 3, the "fluorine atom content" is a calculated value calculated by the above formula.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例1~17において調製したポリアミド酸組成物中のポリアミド酸は、構造単位(1)を含み、かつフッ素原子含有率が5重量%以下であった。表3に示すように、実施例1~17では、内部応力が40MPa以下であった。よって、実施例1~17で得られたポリイミドは、内部応力を低減できていた。実施例1~17では、ヘイズが1.0%未満であった。よって、実施例1~17で得られたポリイミドは、透明性に優れていた。実施例1~17では、Tgが420℃以上であった。よって、実施例1~17で得られたポリイミドは、耐熱性に優れていた。 The polyamic acid in the polyamic acid compositions prepared in Examples 1 to 17 contained the structural unit (1) and had a fluorine atom content of 5% by weight or less. As shown in Table 3, in Examples 1 to 17, the internal stress was 40 MPa or less. Therefore, the polyimides obtained in Examples 1 to 17 were able to reduce the internal stress. Examples 1-17 had a haze of less than 1.0%. Therefore, the polyimides obtained in Examples 1 to 17 were excellent in transparency. In Examples 1 to 17, Tg was 420° C. or higher. Therefore, the polyimides obtained in Examples 1 to 17 were excellent in heat resistance.
 比較例1及び2において調製したポリアミド酸組成物中のポリアミド酸は、フッ素原子含有率が5重量%を超えていた。比較例3~8において調製したポリアミド酸組成物中のポリアミド酸は、構造単位(1)を含んでいなかった。表3に示すように、比較例1、2及び6~8では、内部応力が40MPaを超えていた。よって、比較例1、2及び6~8で得られたポリイミドは、内部応力を低減できていなかった。比較例3~5では、Tgが420℃未満であった。よって、比較例3~5で得られたポリイミドは、耐熱性に優れていなかった。 The polyamic acid in the polyamic acid compositions prepared in Comparative Examples 1 and 2 had a fluorine atom content of more than 5% by weight. The polyamic acid in the polyamic acid compositions prepared in Comparative Examples 3-8 did not contain the structural unit (1). As shown in Table 3, in Comparative Examples 1, 2 and 6-8, the internal stress exceeded 40 MPa. Therefore, the polyimides obtained in Comparative Examples 1, 2 and 6-8 could not reduce the internal stress. In Comparative Examples 3-5, the Tg was less than 420°C. Therefore, the polyimides obtained in Comparative Examples 3 to 5 were not excellent in heat resistance.
 以上の結果から、本発明に係るポリアミド酸組成物から得られるポリイミドが、内部応力を低減しつつ、透明性及び耐熱性に優れることが示された。

 
From the above results, it was shown that the polyimide obtained from the polyamic acid composition according to the present invention has excellent transparency and heat resistance while reducing internal stress.

Claims (17)

  1.  下記一般式(1)で表される構造単位を含み、
     フッ素原子含有率が5重量%以下である、ポリアミド酸。
    Figure JPOXMLDOC01-appb-C000001
     (前記一般式(1)中、
     R及びRは、各々独立に、水素原子、1価の脂肪族基又は1価の芳香族基を表し、
     Xは、2価の有機基を表す。)
    Including a structural unit represented by the following general formula (1),
    A polyamic acid having a fluorine atom content of 5% by weight or less.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1),
    R 1 and R 2 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group,
    X 1 represents a divalent organic group. )
  2.  前記一般式(1)中、R及びRは、いずれも水素原子を表す、請求項1に記載のポリアミド酸。 The polyamic acid according to claim 1, wherein both R1 and R2 in the general formula (1) represent a hydrogen atom.
  3.  前記一般式(1)中、Xは、下記化学式(2-1)で表される2価の有機基、及び下記一般式(2-2)で表される2価の有機基からなる群より選ばれる一種以上である、請求項1に記載のポリアミド酸。
    Figure JPOXMLDOC01-appb-C000002
     (前記一般式(2-2)中、Yは、下記化学式(3-1)で表される2価の有機基、下記化学式(3-2)で表される2価の有機基、下記化学式(3-3)で表される2価の有機基、下記化学式(3-4)で表される2価の有機基、下記化学式(3-5)で表される2価の有機基、及び下記化学式(3-6)で表される2価の有機基からなる群より選ばれる一種以上である。)
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (1), X 1 is a group consisting of a divalent organic group represented by the following chemical formula (2-1) and a divalent organic group represented by the following general formula (2-2) The polyamic acid according to claim 1, which is one or more selected from.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2-2), Y 1 is a divalent organic group represented by the following chemical formula (3-1), a divalent organic group represented by the following chemical formula (3-2), a divalent organic group represented by the chemical formula (3-3), a divalent organic group represented by the following chemical formula (3-4), a divalent organic group represented by the following chemical formula (3-5), and one or more selected from the group consisting of divalent organic groups represented by the following chemical formula (3-6).)
    Figure JPOXMLDOC01-appb-C000003
  4.  下記一般式(4)で表される構造単位を更に含む、請求項1に記載のポリアミド酸。
    Figure JPOXMLDOC01-appb-C000004
     (前記一般式(4)中、
     R及びRは、各々独立に、水素原子、1価の脂肪族基又は1価の芳香族基を表し、
     Xは、2価の有機基を表し、
     Yは、下記化学式(5-1)で表される4価の有機基、下記化学式(5-2)で表される4価の有機基、下記化学式(5-3)で表される4価の有機基、及び下記化学式(5-4)で表される4価の有機基からなる群より選ばれる一種以上である。)
    Figure JPOXMLDOC01-appb-C000005
    The polyamic acid according to claim 1, further comprising a structural unit represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (4),
    R 3 and R 4 each independently represent a hydrogen atom, a monovalent aliphatic group or a monovalent aromatic group,
    X 2 represents a divalent organic group,
    Y 2 is a tetravalent organic group represented by the following chemical formula (5-1), a tetravalent organic group represented by the following chemical formula (5-2), or a tetravalent organic group represented by the following chemical formula (5-3). It is one or more selected from the group consisting of a valent organic group and a tetravalent organic group represented by the following chemical formula (5-4). )
    Figure JPOXMLDOC01-appb-C000005
  5.  フッ素原子含有率が、1重量%未満である、請求項1に記載のポリアミド酸。 The polyamic acid according to claim 1, wherein the fluorine atom content is less than 1% by weight.
  6.  請求項1に記載のポリアミド酸と、有機溶媒とを含有する、ポリアミド酸組成物。 A polyamic acid composition containing the polyamic acid according to claim 1 and an organic solvent.
  7.  更にイミド化促進剤を含有する、請求項6に記載のポリアミド酸組成物。 The polyamic acid composition according to claim 6, further comprising an imidization accelerator.
  8.  前記イミド化促進剤の量が、前記ポリアミド酸100重量部に対して、10重量部以下である、請求項7に記載のポリアミド酸組成物。 The polyamic acid composition according to claim 7, wherein the amount of the imidization accelerator is 10 parts by weight or less with respect to 100 parts by weight of the polyamic acid.
  9.  請求項1に記載のポリアミド酸のイミド化物であるポリイミド。 A polyimide which is an imidized product of the polyamic acid according to claim 1.
  10.  1%重量減少温度が500℃以上である、請求項9に記載のポリイミド。 The polyimide according to claim 9, which has a 1% weight loss temperature of 500°C or higher.
  11.  ガラス転移温度が420℃以上である、請求項9に記載のポリイミド。 The polyimide according to claim 9, which has a glass transition temperature of 420°C or higher.
  12.  請求項9に記載のポリイミドを含むポリイミド膜。 A polyimide film containing the polyimide according to claim 9.
  13.  黄色度が25以下である、請求項12に記載のポリイミド膜。 The polyimide film according to claim 12, which has a yellowness index of 25 or less.
  14.  支持体と、請求項12に記載のポリイミド膜とを有する積層体。 A laminate comprising a support and the polyimide film according to claim 12.
  15.  前記支持体は、ガラス基板であり、
     前記ポリイミド膜と前記ガラス基板との間の内部応力が、40MPa以下である、請求項14に記載の積層体。
    The support is a glass substrate,
    15. The laminate according to claim 14, wherein the internal stress between said polyimide film and said glass substrate is 40 MPa or less.
  16.  支持体とポリイミド膜とを有する積層体の製造方法であって、
     請求項6に記載のポリアミド酸組成物を支持体上に塗布することにより、前記ポリアミド酸を含む塗布膜を形成し、前記塗布膜を加熱して前記ポリアミド酸をイミド化する、積層体の製造方法。
    A method for producing a laminate having a support and a polyimide film,
    Manufacture of a laminate by applying the polyamic acid composition according to claim 6 onto a support to form a coating film containing the polyamic acid, and heating the coating film to imidize the polyamic acid. Method.
  17.  請求項12に記載のポリイミド膜と、前記ポリイミド膜上に配置された電子素子とを有する電子デバイス。

     
    13. An electronic device comprising the polyimide film according to claim 12 and an electronic element arranged on the polyimide film.

PCT/JP2022/025343 2021-07-01 2022-06-24 Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, production method for laminate, and electronic device WO2023276888A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247003339A KR20240027771A (en) 2021-07-01 2022-06-24 Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
CN202280046631.XA CN117580893A (en) 2021-07-01 2022-06-24 Polyamic acid, polyamic acid composition, polyimide film, laminate, method for producing laminate, and electronic device
JP2023531905A JPWO2023276888A1 (en) 2021-07-01 2022-06-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021110116 2021-07-01
JP2021-110116 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023276888A1 true WO2023276888A1 (en) 2023-01-05

Family

ID=84691422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025343 WO2023276888A1 (en) 2021-07-01 2022-06-24 Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, production method for laminate, and electronic device

Country Status (5)

Country Link
JP (1) JPWO2023276888A1 (en)
KR (1) KR20240027771A (en)
CN (1) CN117580893A (en)
TW (1) TW202319445A (en)
WO (1) WO2023276888A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148150A1 (en) * 2015-03-17 2016-09-22 田岡化学工業株式会社 Novel tetracarboxylic dianhydride, and polyimide and polyimide copolymer obtained from said acid dianhydride
WO2019195148A1 (en) * 2018-04-06 2019-10-10 E. I. Du Pont De Nemours And Company Polymers for use in electronic devices
JP2022061487A (en) * 2020-10-06 2022-04-18 東レ株式会社 Resin composition, production method of display device or light-receiving device using the same, substrate and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903789B2 (en) 2010-07-22 2016-04-13 宇部興産株式会社 Copolymer polyimide precursor and copolymer polyimide
JP6086139B2 (en) 2015-10-05 2017-03-01 宇部興産株式会社 Polyimide precursor and polyimide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148150A1 (en) * 2015-03-17 2016-09-22 田岡化学工業株式会社 Novel tetracarboxylic dianhydride, and polyimide and polyimide copolymer obtained from said acid dianhydride
WO2019195148A1 (en) * 2018-04-06 2019-10-10 E. I. Du Pont De Nemours And Company Polymers for use in electronic devices
JP2022061487A (en) * 2020-10-06 2022-04-18 東レ株式会社 Resin composition, production method of display device or light-receiving device using the same, substrate and device

Also Published As

Publication number Publication date
CN117580893A (en) 2024-02-20
TW202319445A (en) 2023-05-16
KR20240027771A (en) 2024-03-04
JPWO2023276888A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6516048B2 (en) Polyimide precursor and polyimide
CN110028666B (en) Polyimide precursor and resin composition containing same
JP2018048344A (en) Polyimide film having cavity and method for producing the same
TW201809069A (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device made by using same, and method for producing laminate
JP7292260B2 (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, flexible device and its manufacturing method
JP2012035583A (en) Method of manufacturing laminate, and flexible device
WO2022045207A1 (en) Polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
WO2021261177A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, method for producing layered product, and electronic device
JP5842429B2 (en) Polyimide precursor and polyimide
KR20210138701A (en) Polyamic acid composition and manufacturing method thereof, polyamic acid solution, polyimide, polyimide film, laminate and manufacturing method thereof, and flexible device and manufacturing method thereof
WO2023157790A1 (en) Polyamide acid, polyamide acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
WO2022054766A1 (en) Polymer composition, varnish, and polyimide film
JP2022516282A (en) A method for producing a polyamic acid composition containing a novel dicarbonyl compound, a polyamic acid composition, a method for producing a polyamide-imide film using the same, and a polyamide-imide film produced by the method for producing the same.
WO2023074350A1 (en) Polyamide acid, polyamide acid composition, polyimide, polyimide film, multilayer body, method for producing multilayer body, and electronic device
WO2012176806A1 (en) Flameproofed alicyclic polyimide resin composition and thin-walled molded body of same
JP2023123900A (en) Polyamide acid composition, polyimide, polyimide film, laminate, electronic device and method for producing polyimide film and laminate
WO2023276888A1 (en) Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, production method for laminate, and electronic device
WO2022054765A1 (en) Polymer composition, varnish, and polyimide film
JP2022044020A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
WO2022255174A1 (en) Polyamic acid composition, polyimide, laminate thereof, flexible device, and method for producing laminate
KR20240089738A (en) Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
WO2023063202A1 (en) Polyamic acid, polyamic acid composition, polyimide, polyimide film, laminate, method for producing laminate, and electronic device
JP2022145217A (en) Polyamic acid composition, polyimide, laminate of the same, flexible device, and production method of laminate
TW202409147A (en) Polyamic acid composition, polyimide production method, laminate production method, and electronic device production method
WO2022085620A1 (en) Poly(amic acid), poly(amic acid) solution, polyimide, polyimide film, layered product, electronic device, and method for producing polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531905

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280046631.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247003339

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE